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Abstract

We propose a novel mechanism of synaptic mainte-
nance whose goal is to preserve the performance of
an associative memory network undergoing synap-
tic degradation, and to prevent the development
of pathological attractors. This mechanism is
demonstrated by simulations performed on a low-
activity neural model which implements local neu-
ronal homeostasis. We hypothesize that, whereas
Hebbian synaptic modifications occur as a learning
process during wakefulness and SWS consolidation,
the neural-based regulatory mechanisms proposed
here take place during REM sleep, where they are
driven by bouts of random cortical activity. The
role of REM sleep, in our model, is not to prune
spurious attractor states, as previously proposed by
Crick and Mitchison and by Hopfield Feinstein and
Palmer, but to maintain synaptic integrity in face
of ongoing synaptic turnover. Our model provides
a possible reason for the segmentation of sleep into
repetitive SWS and REM phases.

Introduction

Half a century ago, Hebb (1949) proposed his solution to
the problem of the neural organization of memory. The
concept of Hebbian cell assemblies has since become an
accepted term in the neurosciences, and the idea that
learning takes place through synaptic modifications has
been proved experimentally and has been accepted as
a basic paradigm. There exists however a major prob-
lem in this approach: in order to maintain memories
synapses have to stay unchanged when no new learning
occurs. How is that possible in the face of the metabolic
turnover which they undergo all the time? In the present
paper we offer a solution to this problem. Our sugges-
tion is that synaptic maintenance occurs via a comple-
mentary process to Hebbian learning. We propose that
it is being carried out on the neural level and is driven
by the activity of the single neuron.

Our study is of theoretical nature, based on numer-
ical simulations of a neural network that serves as an
associative memory model, incorporating Hebbian cell
assemblies. The model is described in the next section,
where we introduce synaptic turnover and show that its
effects can be counteracted by a neurally-based synaptic
compensation mechanism. One interesting result which
follows from this process is that it allows, in a natural
way, to obtain a homogeneous distribution of the basins
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of attraction of memories. This solves another prob-
lem which is inherent in the Hebbian approach: How is
it possible to regulate memories in such a fashion that
pathological situations in which one memory overtakes
all others can be avoided? It turns out that the reg-
ulatory mechanism of synaptic maintenance serves this
purpose too.

The regulatory process that we suggest requires a pro-
cedure of measuring the activity of a single neuron as a
reaction to stimulation with random patterns of activity.
One may wonder which physiological process is respon-
sible for it. REM sleep is a good candidate. Some time
ago Crick and Mitchison (1983) have proposed that the
function of REM sleep is to serve as a ‘reverse learn-
ing’ mechanism whose aim is to remove ‘spurious’ pat-
terns that are engraved in the brain as a byproduct of
learning. In a companion paper, Hopfield et al. (1983)
have examined these ideas in the framework of an as-
sociative memory network, and have shown that reverse
learning may indeed allow the network to perform bet-
ter on subsequent learning and retrieval trials. In our
model there is no problem with spurious states, and no
anti-Hebbian steps are needed to guarantee memory re-
call. Nonetheless, we can draw on the same physiological
mechanism, associating random activation of the model
with the functional role of REM sleep.

We therefore hypothesize that random activity evoked
in the cortex during REM propels a synaptic buildup
mechanism that takes place during sleep and compen-
sates for synapses that were degraded during the previ-
ous day. This proposal complements the recent findings
of Wilson and McNaughton (1994) that support the pos-
sibility that memory consolidation, the process of trans-
ferring learned information from hippocampal stores to
long-term cortical stores, occurs during slow-wave sleep
(SWS). In accordance, cortical memory storage and cor-
tical synaptic maintenance occur in the SWS and REM
stages of sleep in a segregated manner. In the following,
we shall present a few computational insights as to the
reasons for this segregation, and discuss their implica-
tions.

Synaptic Maintenance

Our model is based on previous work in which we
have studied compensatory mechanisms in a model of
Alzheimer’s disease, simulated through random synap-
tic deletion (Horn et al. , 1993; Ruppin & Reggia, 1995;
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Horn et al. , 1996). For our present study we use an
excitatory-inhibitory attractor neural network, having
M memory patterns that are stored in N excitatory neu-
rons. The coding is sparse, i.e. each Hebbian cell assem-
bly consists of pN active neurons with p << 1. The
synaptic efficacy J;; between the jth (presynaptic) neu-
ron and the ith (postsynaptic) neuron in this network
18

L M
Jij = N_p‘;!lp'?”i’l”j (1)
where n*; are the stored memories and allowance is made
for different strengths g for embedding different mem-
ories. The updating rule for the activity state V; of the

ith binary neuron is given by
Vi(t+ At) = P (hi(t) - T) (2)

where T is the threshold, P is a stochastic function and

N
hi(t) = e 2 wiJi; Vi(t) —vQ(2) + L.
jF
This local field, or input current, includes the Hebbian
coupling of all other excitatory neurons, an external in-
put I;, and inhibition which is proportional to the total
activity of the excitatory neurons
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As long as its strength obeys v > Mp? this network
performs well.

The factors ¢; and w;; are the compensation and
degradation terms. To begin with they are assumed to
be 1. Degradation, or weakening of synapses, is modeled
by imposing a distribution of w;; < 1, which serves to
represent attenuation of the synapses. Compensation is
represented by the factors ¢; which correct the values of
all synaptic connections of neuron number i. To deter-
mine this factor we assume that a measurement period
exists, in which the neuron estimates its own activity in
response to the stimulation of the whole network by ran-
dom external inputs. It then changes its compensation

strength through
o (1 ~1 (hi(1)) ) _

dCi
@ Rt = 0)) 5)

From a biological perspective, such computational al-
gorithms may be pre-wired in neuronal regulatory mech-
anisms. Indeed, several biological mechanisms may take
part in neural-level synaptic modifications that self-
regulate neuronal activity (see (van Ooyen, 1994) for an
extensive review). In other words, there exist feedback
mechanisms that act on the neuronal level, possibly via
the expression of immediate early genes, to ensure the
homeostasis of neuronal activity. This readjustment pro-
cess is local to each neuron, and is done on the neural,
and not the synaptic, level. Hence the pre-degradation
value of each individual synapse is not necessarily recon-
structed. This strategy is adopted because in biological
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reality each synapse may have a distinct value which
should be allowed to change during the learning phase
of the system. Thus we have a natural separation be-
tween Hebbian synaptic learning and neuronal synaptic
regulation.
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Figure 1: Distribution of the fields h; in a network with
an activity level of p = 0.1 in response to the input
of an encoded pattern. The three curves display the
cases of the original network, of the one with average
synaptic attenuation of 0.8, and one where both synaptic
weakening and compensation are employed.

To explain why such a compensation mechanism can
work we present in Fig. 1 an example of the histogram
of the local inputs h; in such a network. This bimodal
distribution accounts for the fact that a fraction p of the
neurons (the ‘foreground’ neurons in the cued pattern)
will fire, and a fraction 1 — p (the ‘background’ neurons)
will stay quiescent, provided we choose the threshold T
to lie in between the two peaks. Once synaptic dete-
rioration occurs, the two parts of the distribution move
closer to one another, leading to the source of errors that
will eventually cause the demise of the memory system.
Compensating with a constant ¢ = 1/w, where w is the
average of w;;, shifts the two averages to their original
locations. Our dynamical compensation algorithm leads
to similar results.

In every simulation experiment, a sequence of synap-
tic degradation and compensation steps is executed. In
order to measure the average input field in each compen-
sation step, the system is presented with random inputs
and it flows into some of its attractors. After averaging
over many inputs one calculates the new ¢;. Then the
system is presented with its memory repertoire in order
to measure its performance, before another degradation
step is applied.

Performance of the network is defined by the average
recall of all memories. The latter is measured by the
overlap m*, which denotes the similarity between the
final state V the network converges to and the memory



pattern n* that is cued in each trial, defined by

H — ]' Al H
m*(t) = =PI Z(’h = p)Vi(t) . (6)

Parformance

£ = o

B @ @ -
A
4

bt
o
T

7] L L L i
00 20 40 60 80 100

Figure 2: Performance of a network with N=1000 neu-
rons and M=50 memories with activity level of p=0.05
is plotted vs. time. The dot-dashed curve represents a
case of synaptic turnover without compensation. After
a short while the network is unable to perform memory
retrieval. When compensation is employed (full curve)
the system can continue to serve as an attractor neural
network for a long time.

Fig. 2 shows the performance of the network as a
function of time. If no compensation is applied, memory
retrieval deteriorates fast. With our algorithm perfor-
mance can be maintained for long times. The factor that
determines this time span is the width of the distribu-
tion of random synaptic weakening that is employed. For
homogeneous weakening compensation is exact. How-
ever for random processes, the width of the distribution
grows with time, and, at some point the average com-
pensatory factors cannot overcome the distortion which
is introduces in the memory system. The latter needs
then fresh Hebbian learning to reload its memory.

Homogenization of the Basins of
Attraction

Our compensatory process has the characteristics of
maintaining the activity of single neurons. As a result
it strengthens weakened memories and weakens strong
memories. This leads to an interesting regulation pro-
cess which homogenizes the memories’ basins of attrac-
tion. Figure 3 shows the results of applying our compen-
sation algorithm, without any synaptic weakening, to a
model with 50 memories, of which three have strengths
of g = 4, 3 and 2, and all the rest have g = 1. We see
how within a short while the strongest memory, which
has dominated in the beginning, looses its big basin of
attraction. Afterwards all strong memories continue to
decrease together. The shares of the basins of attraction
of all memories at the beginning and at the end of the
time scale of Fig. 3 are presented in Fig. 4.
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Figure 3: Size of basins of attraction as measured by the
number of retrievals of specific memories for 200 random
trials at each epoch. No synaptic degradation is per-
formed, but the compensation mechanism is employed.
In addition to the 4 memories shown here, this experi-
ment had another 46 memories with strength g = 1.

Figure 4: Shares of memory space in the example stud-
ied in Fig. 3, for the beginning and the end of the ex-
periment. In the excitatory-inhibitory model that we
investigate, random inputs lead either to encoded mem-
ories or to the null attractor (gray shading) in which all
activity stops.



Discussion

The compensation mechanism presented above works
also when the network is presented with memory pat-
terns as inputs during the compensation measurement
period. However, it works significantly better with ran-
dom input patterns of activity, since the latter gauge not
only the patterns’ stability but also their basins of attrac-
tion. Much like Crick and Mitchison’s theory, this has
led us to postulate the existence of random cortical activ-
ity during REM sleep, which _rovides the random pat-
terns of activity needed for synaptic maintenance. This
proposal follows the findings that during REM sleep the
cortex is periodically stimulated in a diffuse, widespread
manner by the brainstem. Hobson and McCarley (1977)
have postulated the existence of a ‘dream generator’
in the pontine reticular formation, which periodically
genera‘es ponto-geniculate (PGO) waves. These pha-
sic PGO 1 ursting si-nals can be viewed as a template of
excitatory activity that projects onto cortical networks
during REM sleep. Interestingly, the activation of PGO
waves depends on withdrawal of noradrenergic inhibi-
tion, whose levels are markedly reduced during REM
sleep (Jones, 1991). The main functional effects of nore-
pinephrine release are an increase in the signal-to-noise
ratio governing neural dynamics, and the facilitation
of long-term potentiation (e.g., (Hopkins & Johnston,
1988)). Hence, its low levels during REM result in low
signal-to-noise and contribute to the generation of the
random activity that is required to homogeneously sam-
ple the input space. In addition, its low levels prevent
the occurrence of Hebbian cortical LTP changes during
PGO phasic burst activity, which otherwise would en-
hance the formation of pathological attractors.

We are now in a position to address several interest-
ing questions. Why is sleep segregated into distinct SWS
and REM phases? The answer to that may be that the
tasks of learning new patterns (implemented via Heb-
bian synaptic changes during SWS) and synaptic main-
tenance (carried out via neural-based synaptic changes
during REM) rely on distinct neurochemical resources.
If this is the case, then the segregation of sleep to two re-
peating phases may provide for the need of periodically
replenishing these neurochemical resources, and upreg-
ulating the synaptic receptors involved in one pathway
while the other one is activated. However, in light of
our proposal, the fundamental reasons for REM/SWS
separation may be computational. In accordance, while
learning involves changes in individual synapses, synap-
tic maintenance involves concomitant, uniform, changes
of all the neuron’s synapses. Obviously, these two pro-
cesses cannot occur together, but need to be segregated.
Since synaptic maintenance depends on the activation
of random patterns, Hebbian synaptic plasticity must
be depressed during that period to prevent the learning
of these ‘nonsense’ patterns. Hence, learning and con-
solidation are not possible during REM sleep, and must
occur in a separate period. On the other hand, synaptic
maintenance cannot be performed during the consolida-
tion period (SWS) when only a small set of new patterns
is presented to the network, which is insufficient to ade-
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quately sample the whole synaptic matrix and achieve a
correct evaluation of the neurons’ input fields.

Why should the SWS and REM sleep stages appear
in a repetitively cyclic manner? Again, there may be
several reasons for this sleep pattern which lie outside
the computational realm. However, our model offers an
interesting computational explanation to this repetitive
pattern: efficient synaptic maintenance requires a cyclic,
repetitive mode. The reason is that in any given main-
tenance ‘epoch’, only the strongest attractors are coun-
teracted, because they overwhelmingly attract random
input patterns (see, e.g., (Parisi, 1986; Ruppin et al. ,
1996)). Hence, the synaptic compensation process must
be performed iteratively, each time removing less and
less deep attractors. Such a pattern is illustrated in
Figure 3. As evident, the basin of attraction of other
strong memories begins to shrink only after the initially
strongest memory is brought to their strength. Not only
should compensation be performed in repeated cycles,
but so should learning/consolidation: Associative mem-
ory networks are prone to the formation of unbalanced
memory storage when Hebbian-like activity-dependent
changes are incorporated (Ruppin et al. , 1996). Due to
an inherent positive feedback loop which exists between
the strength of the embedding of a memory pattern and
the probability that it will be retrieved, random initial
differences in the strength of the synaptic embedding of
different memories tend to be magnified. Hence, if left
unchecked, a newly learnt memory pattern may bias the
learning of other patterns and dominate the retrieval of
the network, degrading its performance.

How do our ideas fare when considering REM sleep
indices in neurologic and psychiatric disorders? Inter-
estingly, REM sleep time is diminished in Alzheimer’s
disease (Reynolds et al. , 1987). These findings raise
the possibility that due to the decrease in REM dura-
tion there is less time available for synaptic regulation
to occur, resulting in inadequate synaptic compensation.
As shown in (Horn et al. , 1993; Horn et al. , 1996),
insufficient synaptic compensation can lead to memory
deterioration, a clinical hallmark of Alzheimer’s disease.
Schizophrenia is apparently not characterized by any no-
table changes in the duration of either REM or SWS
sleep (Benca et al. , 1992). Yet, the absence of such overt
changes in the length of sleep does not preclude the possi-
bility that sleep is disturbed in a more subtle manner. In-
creased dopaminergic activity is by far the most notable
neurochemical alteration that has been implicated in the
pathogenesis of schizophrenia, at least with regard to the
formation of positive symptoms. The neuromodulatory
action of dopamine, like norepinephrine, is thought to in-
crease the gain of the neuron’s activation function, i.e.,
in terms of our model, decrease its stochastic component
(see (Servan-Schreiber et al. , 1990) for a review). Thus,
the increased dopaminergic activity may severely reduce
the fraction of the patterns’ space probed during REM
sleep, and combined with the enhancement in LTP pro-
duced by increased dopaminergic activity (see (Ruppin
et al. , 1996)), may result in the formation of patholog-
ical attractors. Such attractors may contribute to the



formation of schizophrenic positive symptoms such as
delusions and hallucinations, as they are repetitively ac-
tivated spontaneously in the absence of an external input
trigger (Ruppin et al. , 1996). In summary, our model
suggests a link between the specific alterations in REM
sleep observed in AD and schizophrenia, and some of
their chief clinical symptoms.

Van Ooyen (1994) reviewed a rich body of exper-
imental data supporting the existence of neural-level,
activity-dependent mechanisms that regulate neural ac-
tivity via changes on various levels including synaptic
ones. These data testify to the plausibility of our ideas,
but obviously do not constitute a direct testimony to
their relevance. Our model puts forward, however, a
clear prediction which can be tested in a fairly straight-
forward manner: If one asks subjects to memorize a set
of items with different ‘embedding strengths’ (say dif-
ferent frequencies of presentation), then the retrieval of
such freshly learned items should be more homogeneous
after REM sleep than before. More elaborate electro-
physiological studies in monkeys may be performed (fol-
lowing a paradigm similar to that employed by Miyashita
and Chang (1988)) in order to trace the details of the ho-
mogenization process on the encoding level.

In this paper we have raised the hypothesis that
the function of REM sleep is to serve as a mechanism
for maintaining synaptic integrity in cortical associative
memory networks. We surveyed the biological data that
supports the plausibility of our hypothesis, and demon-
strated its viability by using neural networks with a
novel, local, synaptic maintenance algorithm. In our
view sleep serves two important tasks, at least as far as
learning and memory storage are concerned: A. Memory
consolidation, which occurs during SWS when the brain
is relatively free from the task of processing environmen-
tal stimuli. B. Neuronal homeostasis through regulation
of synaptic replenishment processes in an activity depen-
dent manner, while the brain is essentially cut-off from
the external environment during REM sleep.
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