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Abstract 

Research on causal-based categorization has found two com-
peting effects: According to the causal-status hypothesis, 
people consider causally central features more than less cen-
tral ones. In contrast, people often focus upon feature patterns 
that are coherent with the category’s causal model (coherence 
hypothesis). Following up on the proposal that categorization 
can be seen as inference to the best explanation (e.g., Murphy 
& Medin, 1985), we propose that causal models might serve 
different explanatory roles. First, a causal model can serve as 
an explanation why the prototype of a category is as it is. Se-
cond, a causal model can also serve as an explanation why an 
exemplar might deviate from the prototype. In an experiment, 
we manipulated whether typical or atypical features were 
linked by causal mechanism. We found a causal-status effect 
in the first case and a coherence effect in the latter one, sug-
gesting both are faces of the same coin. 

Keywords: categorization; causal reasoning; causal status ef-
fect; coherence effect; explanation. 

Introduction 

The question how people organize objects into categories 

and form abstract concepts about the world to make sense of 

it has puzzled philosophers for centuries. It is therefore not 

surprising that categorization has been an important topic in 

cognitive science since its beginnings. Early but neverthe-

less prominent accounts concentrated on the role of similari-

ty between exemplars, or exemplars and category proto-

types, or rules with respect to defining features of a category 

(e.g., Nosofsky, 1986; Rosch & Mervis, 1975; for an over-

view see Ashby & Maddox, 2005). In contrast, more recent 

accounts emphasize the role of abstract conceptual, mostly 

causal knowledge as an integral part of category representa-

tions (see Murphy & Medin, 1985; Rehder, 2010; Rehder & 

Hastie, 2001; Sloman, Love, & Ahn, 1998): People do not 

only know which features are typical for a category and 

which not. They often represent knowledge about how 

strongly and why features are correlated with each other 

within a category (Ahn, Marsh, Luhmann, & Lee, 2002; 

Murphy & Medin, 1985). For instance, people do not only 

know that birds typically have wings, can fly, and build 

nests on trees. People also know that birds build nests on 

trees because they can fly and that they can fly because they 

have wings. 

This kind of causal knowledge underlying category con-

cepts can be formalized in causal graphical models or Bayes 

nets (see Rehder, 2003a, 2003b; Waldmann, Holyoak, & 

Fratianne, 1995). A causal Bayes net consists of nodes, 

which represent causally relevant variables (i.e., in case of 

categorization: the presence or absence of features or—more 

general—properties of objects), and arrows, which stand for 

counterfactual or statistical dependencies between these 

variables. The arrows are placeholders for underlying causal 

mechanisms (Pearl, 2000) and render the variables into 

causes and effects. Figure 1 shows an example of a com-

mon-cause network that relates a cause feature FC to three 

effect features FE1, FE2, and FE3. The features of a category 

are usually coded such that the typical feature value is 1 

(i.e., presence) and the atypical value is 0 (i.e., absence). 

 

 
 

Figure 1: An example of a simple common-cause structure 

that connects a cause feature FC with three effect features 

FE1, FE2, and FE3. Due to the causal relations, the state of 

each effect feature depends counterfactually or statistically 

upon the state of the cause feature. 

 

Nowadays, it’s quite uncontroversial that causal know-

ledge is an important part of people’s concepts that underlie 

category representation (see Rehder, 2010, for a review). 

But it is still in controversial debate how causal knowledge 

affects the classification of objects. 

In a typical causal-based categorization task people are 

introduced to a target category that possesses a set of mostly 

three or four features. In addition, it is pointed out how these 

features are causally related to each other due to some caus-

al mechanisms that hold for the category (e.g., a common-

cause model as shown in Figure 1). Then, participants are 

presented with several potential exemplars with the catego-

ry’s features being either present or absent. For each of the 

presented exemplars, membership ratings are obtained. The 

enduring controversy, then, spans around the question how 

the instructed causal model interacts with the presence and 
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absence of features with respect to the membership ratings 

of the presented exemplars. 

Some researchers propose that causal knowledge is an 

important determinant of individual feature weights in these 

judgments (e.g., Ahn, Kim, Lassaline, & Dennis, 2000; 

Marsh & Ahn, 2006). According to this account, the causal 

status of a feature matters. Others, however, emphasize the 

importance of feature configurations that are more or less 

coherent with the category’s causal model (Rehder, 2003a, 

2003b; Rehder & Hastie, 2001; Rehder & Kim, 2010). Al-

though the effects are conceptually independent of each 

other (Rehder, 2010), both sides claim (and have—

puzzlingly—shown empirically) that the other effect plays 

only a marginal, if any, role in human categorization. 

In the following sections, we will describe the causal sta-

tus hypothesis and the coherence hypothesis in more detail. 

Then, we will offer an account that—in our view—makes 

sense of the diverging evidence, and present an experiment 

that tests our claims. 

Causal status effect 

According to the causal status hypothesis, features that are 

causally more central (i.e., that have more dependents in the 

causal model or that appear earlier in a causal chain) have 

greater influence in categorization decisions when other 

perceptual (e.g., salience) or statistical (e.g., cue validity) 

properties of the material are held constant or controlled for 

(e.g., Ahn et al., 2000). The causal status of a feature is, 

therefore, an important determinant of its decision weight. 

For example, with respect to a common-cause model (see 

Figure 1), the presence vs. absence of the cause feature FC 

should have more influence on the membership rating of an 

exemplar than the presence vs. absence of an effect feature. 

In Figure 2a, such an idealized causal status effect is shown: 

The membership ratings increase with the number of fea-

tures being present; the increase, however, is higher for the 

cause feature (ΔC), than for effect features (ΔE). 

Conceptually, the causal status effect has been linked to 

psychological essentialism (Ahn et al., 2000). Hence, people 

believe in things having essences that make them the objects 

they are. An essence, then, is the (unobservable) root cause 

for the surface features that can be observed in category 

members (Gelman & Wellman, 1991). Features that have a 

high causal status might be seen as most diagnostic for an 

object’s essence and, therefore, category membership (Ahn 

et al., 2000; see also Rehder & Kim, 2010). 

Coherence effect 

Whereas the causal status effect is defined with respect to 

the weight of individual features, the coherence effect arises 

from the impact of feature interactions (Rehder, 2010). 

According to the coherence hypothesis, exemplars whose 

feature configurations are most coherent with the category’s 

causal model are seen as the best members. Causal models, 

therefore, provide us with information about which features 

should go together in an exemplar. Features that are con-

nected by a causal link should be either both present, or both 

absent (Rehder, 2003a; Rehder, 2010). With respect to a 

 
 

Figure 2. Predicted patterns for category membership ratings are shown according to (a) the causal status hypothesis and (b) 

the coherence hypothesis. The predicted ratings are computed for a category possessing four features that are connected as a 

common-cause model (as shown in Figure 1). The ratings depend upon the presence of the cause feature (FC = 0 vs. FC = 1; 

dashed vs. solid lines) and upon the number of effect features being present, #(FE = 1)={0, 1, 2, 3}. 
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common-cause model (see Figure 1), for example, member-

ship ratings should be an increasing function of the number 

of effects being present when the cause feature is present, 

but a decreasing function in its absence. Figure 2b shows 

such an idealized coherence effect. Membership ratings are 

expected to be highest when all features are either present or 

absent. In this case, all causal links are preserved (i.e., such 

an exemplar is most coherent). The worst (i.e., most inco-

herent) exemplars, in contrast, are those that preserve none 

of the links: The cause feature is present but all effect fea-

tures are absent, or the cause feature is absent but all effect 

features are present (three violated links in both cases).  

Coherence in the proposed manner, however, faces a 

problem when assessed intuitively in real world cases that 

pop into one’s mind: It does not make sense. An animal that 

does not have wings, does not fly, and does not build nests 

on trees is not a bird, although the absence of these features 

is perfectly coherent with the causal model of the concept 

“bird”. Marsh and Ahn (2006) therefore suggested that the 

coherence effect may be not more than an experimental 

artifact arising from the artificial material used by Rehder 

and colleagues (e.g., Rehder 2003a, 2003b; Rehder & Has-

tie, 2001). Nevertheless, we propose otherwise. 

Explanatory roles of causal models  

So far, the whole debate has neglected the fact that causal 

models may play different roles in the representation of 

concepts that underlie categories. Causation in those models 

is implemented (or thought) in a way that causes, when 

present, have the power to bring about their effects, but are 

causally inactive when absent (Cheng, 1997; Rehder, 

2003a). At first glance, this might not matter anyway: Usu-

ally, the presence of the cause goes together with the pres-

ence of its effects, as well as the absence of the cause goes 

together with the absence of its effects (Note, that this su-

perficial symmetry is the basis for the coherence hypothe-

sis). However, whereas the first fact is a direct consequence 

of causal mechanism, the latter is just an indirect “side ef-

fect” of it (Dowe, 2000, aptly mentioned that in this case the 

absence of the cause prevents the presence of its effect by 

omission, i.e., just by not causing it). Although this differ-

ence hasn’t received much attention yet, we think it is cru-

cial for understanding causal-based categorization. 

Categorization can be seen as a kind of inference to the 

best explanation (Jameson & Gentner, 2008; Lombrozzo, 

2009; Murphy & Medin, 1985; Rips, 1989), according to 

which causal models provide a system of explanatory links 

that tie the features of a category together. Therefore, exem-

plars whose configuration of features can be best explained 

in the light of the category’s causal concept are rated as the 

best members. With respect to the causal analysis given 

above, we propose—in contrast to the coherence hypothe-

sis—that only those feature combinations matter that are 

relevant with respect to the underlying causal mechanisms 

(e.g., when both are present, but not when both are absent), 

because it is the mechanism but not the regularity that has 

explanatory value (see Keil, 2006, for an overview). 

From this point of view, we can at least differentiate two 

explanatory roles of causal models. First, when causal 

mechanisms are established in terms of typical features, the 

causal model serves as an explanation why the category’s 

prototype or prototypical exemplar (i.e., all features present) 

is as it is. The bird example given above belongs to this type 

of explanation. With respect to a common-cause model (see 

Figure 1), we would expect a strong increase of membership 

ratings with more effect features being present when the 

cause feature is also present. In this case more and more 

explanatory links are served (i.e., the exemplar becomes 

more and more coherent with the provided explanation). But 

when the cause is absent, the effect features are conceptual-

ly unrelated to each other. Therefore, we would expect a 

much smaller increase when more and more effects are 

present. Since the presence vs. absence of the cause feature 

modulates the positive influence of the effect features, we 

expect membership ratings that—in the aggregate—exhibit 

a strong causal status effect. 

Second, however, it is also possible to establish causal 

mechanisms with respect to atypical feature values (usually 

coded as absences). In this case, the causal model serves as 

an explanation for why a category member might deviate 

from the category prototype (e.g., fouling that makes an 

apple not looking like an apple anymore). When now pre-

sented with an exemplar that lacks all typical features, you 

would probably be much more willing to judge this exem-

plar a category member than in the bird example, because 

the causal model provided you with an explanation why this 

atypical exemplar deviates from the prototype. Thus, in case 

the causal model links atypical feature values, we expect a 

pattern that looks quite like the prediction of the coherence 

hypothesis (see Figure 2b). First related evidence for this 

proposal comes from Ahn, Novick, and Kim (2003): In their 

studies, participants judged persons who showed a set of 

abnormal characteristics (e.g., suffering from insomnia, 

memory deficits, and episodes of extreme anxiety) as more 

“normal” when provided with plausible causal relations 

between these abnormal characteristics compared to a con-

dition in which no such links were provided.  

To summarize, we believe that the diverging evidence 

found in the literature regarding the causal status and the 

coherence effect stems from the fact that causal models play 

different roles in categorization and that those studies might 

differ with respect to the explanatory role of the instructed 

causal model. In the next section we present an experiment 

that tests our claim. 

Experiment 

To test our hypothesis we adapted the material used in the 

experiments of Rehder (2003a; in similar versions also used 

in Marsh & Ahn, 2006; Rehder, 2003b; Rehder & Kim, 

2008, 2010, and others). Rehder presented subjects with 

instructions about several artificial categories (e.g., Kehoe 

Ants, Mya Stars) possessing four features that were linked 

in a common-cause model (see Figure 1). Features were 

introduced without giving precise base rate information 
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(e.g., “Some Kehoe Ants have blood that is very high in iron 

sulfate. Others have blood that has normal levels of iron 

sulfate.”, “Some Kehoe Ants have an immune system that is 

hyperactive. Others have a normal immune system.”)
1
. 

Then, causal mechanisms were introduced by plausible 

descriptions (e.g., “Blood high in iron sulfate causes a hy-

peractive immune system. The iron sulfate molecules are 

detected as foreign by the immune system, and the immune 

system is highly active as a result.”). After participants have 

learned the category, they had to rate all possible exemplars 

(all possible combinations of features being present or ab-

sent) regarding their category membership. In his studies, 

Rehder found evidence for the coherence effect (but see 

Marsh & Ahn, 2006, for a critical discussion). 

In our experiment, we used the same procedure and same 

material. To manipulate the explanatory role of the instruct-

ed causal model, we explicitly instructed which of the fea-

ture values were described as typical for the category (e.g., 

hyperactive immune system or normal immune system). So, 

between conditions, the typicality of the feature values 

changed but the description of causal mechanisms remained 

constant for the same feature values. By that, however, we 

manipulated the explanatory role of the causal mechanisms 

(i.e., whether typical or atypical values were linked by 

mechanisms). Furthermore, we added a replication condi-

tion that was identical to Rehder (2003a), to ensure that our 

procedure (and translated material) yields the same findings. 

Method 

Participants 96 students (62 women, mean age 22.4 years) 

from the University of Göttingen, Germany, participated in 

this experiment as part of a series of various unrelated com-

puter-based experiments in our computer lab. Participants 

received either course credit or were paid €8 per hour. 

 

Material Two categories used in Rehder (2003a) were 

translated into German: Kehoe Ants (a biological kind) and 

Mya Stars (a non-living natural kind).
2
 Each category pos-

sessed four binary features. Depending on condition, each 

feature had a typical value (coded throughout this paper as 

“1”) and an atypical value (coded as “0”). For example, 

Kehoe Ants have an immune system that was either hyper-

active or working normal. Which of the two values was 

described as typical depended on the experimental condition 

(e.g., in the typical condition, it was stated: “Typically, 

Kehoe Ants have an immune system that is hyperactive. A 

few have a normal immune system.”, in the atypical condi-

tion, it was stated: “Typically, Kehoe Ants have a normal 

immune system. A few have an immune system that is hy-

peractive.”). 

Additionally, the features were causally linked in a com-

mon-cause network. Each causal relationship was described 

as one feature causing another in the same way Rehder 

                                                           
1 Note that normal values were coded as “0” (= absence). 
2 Rehder (2003a) used six categories, but no differences for 

membership ratings were obtained. Therefore, we only used two 

randomly chosen categories. 

(2003a) did (see above). The description of causal mecha-

nism was identical for all conditions. 

 

Procedure Participants were randomly assigned to one of 

the two categories and to the typical, atypical, or replication 

condition. They completed the experiment individually on 

desktop computers. The experiment consisted of two phases, 

an instruction phase and a test phase. 

In the instruction phase, we presented subjects with in-

formation about the category (Kehoe Ants, Mya Stars). 

Subjects were introduced to the four binary features and 

their typical values (depending on typical or atypical condi-

tion, respectively). Then, subjects were provided with in-

formation about how the features are causally connected. 

(As stated above, in all conditions the causal links where 

instructed between the same feature values. However, the 

typicality of these feature values and, therefore, the explana-

tory role of the causal model differed depending on condi-

tion.) In the replication condition the causal links were 

presented in the same way, but no information about the 

typicality of the values was given (as in Rehder, 2003a). 

The instructions were followed by a multiple choice test in 

which participants were required to demonstrate that they 

had learned all given information about the assigned catego-

ry. In case of incorrect answers they had to reread the in-

structions and had to take the test again until they commit-

ted 0 errors. 

In the test phase, subjects were presented sequentially 

with all 16 possible exemplars (all combinations of the four 

binary features) in two consecutive blocks. Order of exem-

plars was randomized in each block. For each exemplar, 

subjects were requested to give a category membership 

 

 
Figure 3. Results of the replication of the experiment of 

Rehder (2003a). Membership ratings of exemplars are 

shown with cause feature present (FC=1) vs. absent (FC=0). 

X-axis displays the number of effect features being present 

(i.e., having typical value). Error bars indicate 95% confi-

dence intervals. 
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rating on a scale from 0 (not a member at all) to 10 (defi-

nitely a member). 

 

Design The membership ratings were aggregated for each 

subject across blocks and with respect to the cause feature 

being present (FC = 0 vs. FC = 1) and the number of effect 

features being present (#[FE = 1] = {0, 1, 2, or 3}). This 

yielded a 3 (typical, atypical, replication condition) × 2 

(category: Kehoe Ants vs. Mya Stars) x 2 (FC = 0 vs. FC = 

1) × 4 (#[FE = 1] = {0, 1, 2, or 3}) ANOVA design with 

condition and category as between-subjects factors and the 

presence of the cause or effect features, respectively, as 

within-subjects factors and average membership rating as 

dependent variable. 

Results 

Category In line with previous studies, the category (Kehoe 

ants, Mya stars) revealed no significant influence on mem-

bership ratings, neither as main effect nor in any interaction 

(all ps>.1). Therefore, the factor is aggregated over in the 

following analyses. 

 

Replication In Figure 3, the results of the replication condi-

tion are shown. When the cause feature was present (FC = 1) 

membership ratings increased with increasing number of 

effects being present. In contrast, when the cause feature 

was absent (FC = 0) membership ratings decreased, yielding 

a significant interaction (F3,99=62.5, p<.001). This replicates 

the findings of Rehder (2003a) and is in line with other 

studies using the same material. 

 

Explanatory Role Figure 4 displays the aggregated mem-

bership ratings for the typical and atypical condition. In 

both typical and atypical conditions, subjects rated exem-

plars with a present cause feature (FC = 1) better members 

the more typical effect features were present. So, the exem-

plar with all features being present was rated very high (9.8 

and 8.9 in typical and atypical condition, respectively) 

whereas the exemplar with all effects being absent was rated 

very low (2.6 and 1.7, respectively). 

Exemplars, however, with the cause feature being absent 

(FC = 0) exhibit a significant interaction between conditions 

(F3,198=28.2, p<.001) (The three-way interaction was also 

significant, F3,198=17.79, p<.001). In typical condition, rat-

ings’ increase was only marginal significant (F3,102=2.24, 

p=.088). In atypical condition, subjects rated exemplars 

lower, the more effect features expressed the typical value. 

So, the exemplar with all effects being absent (and, there-

fore, all features being absent) was rated very high (9.6), 

whereas the exemplar with all effects being present was 

rated very low (1.7). 

Thus, the atypical condition looks like the prototypical 

case of a coherence effect. In fact, individual influence of 

features (i.e., marginalized across the states of the other 

features) are negligible and even negative (ΔC = –0.67, ΔE 

= –0.14). In contrast, the typical condition revealed a strong 

causal status effect (ΔC = 2.83 vs. ΔE = 1.37), as we have 

predicted. 

Discussion & Summary 

It is widely accepted that causal knowledge is an important 

part of people’s concepts that underlie category representa-

tions. Nevertheless, it is still quite controversial how causal 

knowledge affects membership ratings: Some researchers 

propose that causal knowledge determines the individual 

feature weights in categorization judgments (causal status 

hypothesis; see Ahn et al., 2000), whereas others, however, 

emphasize the role of feature combinations and whether 

those are coherent with the statistical regularities imposed 

by the category’s causal model (coherence hypothesis; see 

e.g., Rehder, 2003a, 2003b; Rehder & Kim, 2010). We 

presented one possible solution to this puzzle: According to 

 
Figure 4. Average category membership ratings are shown 

for (a) typical condition and (b) atypical condition with 

cause feature present (FC=1) vs. absent (FC=0). X-axis dis-

plays the number of effect features being present (i.e., hav-

ing typical value). Error bars indicate 95% confidence inter-

vals. 
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our proposal, causal knowledge is important in categoriza-

tion because it provides people with explanatory links such 

that they can make sense of presented exemplars. Thus, 

categorization is seen as inference to the best explanation 

(Murphy & Medin, 1985; Rips, 1989). And because the 

explanatory value of causal knowledge is engrained in peo-

ple’s beliefs about underlying mechanisms (and not statisti-

cal regularities), we derived at least two possible explanato-

ry roles of causal models: First, a causal model can serve as 

explanation why a prototypical exemplar is as it is (e.g., 

why most birds can fly). Second, a causal model can also 

serve as explanation why a category member might deviate 

from the prototypical exemplar (e.g., why some birds cannot 

fly). Depending on which kind of causal model people have 

in mind for a given category we expect people to judge 

different exemplars as best and worst category members. 

We presented an experiment in which we manipulated the 

explanatory role of the instructed causal knowledge directly, 

and we found huge differences in membership ratings. In-

terestingly, in the typical condition (i.e., typical feature 

values were linked by causal mechanisms) judgments exhib-

ited a causal status effect. In contrast, in the atypical condi-

tion (i.e., atypical feature values were link by causal mecha-

nisms) we found a strong coherence effect. Therefore, we 

believe that causal-status as well as coherence effects are 

both faces of the same coin. 
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