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INTRODUCTION

Over the last decades, it has become increasingly impor-
tant to proficiently predict the consequences of climate 
change and biodiversity loss (e.g. Dietze, 2017; Godfray 
& May, 2014). Ecological forecasting, formally defined 
as the prediction of natural capital and ecosystems states 
and services, has advanced to be an imperative scien-
tific and applied discipline (Clark et al.,  2001; Dietze 
et al., 2018; Houlahan et al., 2017). Examples of its ap-
plications include predicting ecotoxicological effects on 

community responses (e.g. Clements & Rohr, 2009), fore-
casting the successes of species invasions (e.g. Romanuk 
et al.,  2009) and predicting how communities respond 
to climate change (e.g. Gauzere et al.,  2018; Hattab 
et al.,  2016; McCarthy et al.,  2018). However, in the 
context of the complexity of real-world systems, skilful 
ecological forecasting remains a major challenge to the 
point that its feasibility has been questioned (Beckage 
et al., 2011; Hayes & Barry, 2008; Planque, 2016).

Generally, an ecological network or system is more 
complex the more biotic and abiotic variables are part 
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Abstract

The potential for forecasting the dynamics of ecological systems is currently 

unclear, with contrasting opinions regarding its feasibility due to ecological 

complexity. To investigate forecast skill within and across systems, we monitored 

a microbial system exposed to either constant or fluctuating temperatures in a 

5-month-long laboratory experiment. We tested how forecasting of species 

abundances depends on the number and strength of interactions and on model 

size (number of predictors). We also tested how greater system complexity (i.e. 

the fluctuating temperatures) impacted these relations. We found that the more 

interactions a species had, the weaker these interactions were and the better its 

abundance was predicted. Forecast skill increased with model size. Greater system 

complexity decreased forecast skill for three out of eight species. These insights 

into how abundance prediction depends on the connectedness of the species within 

the system and on overall system complexity could improve species forecasting and 

monitoring.
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of it (Bradbury & Vehrencamp,  2014; Mitchell,  2009). 
The number of possible indirect interaction pathways 
between variables rapidly increases with increasing net-
work size (Borrett & Patten, 2003), and this is believed to 
hinder skilful predictions (Wootton, 2002; Yodzis, 1988). 
In fact, some studies have found that prediction skill de-
teriorated with increasing system complexity (e.g. Doak 
et al., 2008; Jonsson et al., 2018; Novak et al., 2011) and 
that species interactions can reduce community predict-
ability (Thompson et al., 2021), resulting in the view that 
ecology is unpredictable due to its complexity (Beckage 
et al., 2011). Yet, some recent results suggest the oppo-
site: complexity can increase rather than decrease pre-
diction skill (Barbier et al.,  2021; Iles & Novak,  2016; 
Mougi, 2017). For instance, it was found that the total 
abundance (the sum of all species abundances) was more 
predictable when the system consisted of more species 
(Dornelas et al., 2011), while another study showed that 
the prediction of interaction strengths improved with 
increasing food web size (Berlow et al., 2009). With ev-
idence pointing in both directions, it remains unclear 
whether there is a general relation between system com-
plexity and forecast skill or whether each result is spe-
cific to the system and to the quantity forecasted.

Within a system of a given complexity, commonly only 
a few strong species interactions are present with most in-
teractions being weak (e.g. Bascompte et al., 2005; Berlow 
et al., 2004; Paine, 1992; Wootton & Emmerson, 2005), 
though still being important for system stability (e.g. 
Kadoya et al.,  2018; McCann et al.,  1998; O'Gorman 
& Emmerson,  2009). Moreover, there is some evidence 
indicating that generalists (i.e. species with many possi-
ble interacting partners) mostly have weak interactions, 
while specialist species (i.e. fewer possible interact-
ing partners) show stronger interactions (Wootton & 
Stouffer, 2016). As in the case of increasing system com-
plexity, the more interactions a species has in a network 
the more indirect pathways exist that can influence its 
abundance. Hence, if prediction skill generally decreases 
with increasing complexity, we might hypothesise that 
the prediction skill for a given species will also decrease 
the more interactions that species has within a network, 
and consequently also the weaker these interactions are 
on average.

In this study, we investigated whether the prediction 
of species abundances depends on how many interac-
tions the species have, a hitherto untested question that 
could help explain why some species can be forecast bet-
ter than others (Harris,  1994). We also tested whether 
the forecast skill of species abundances depends on how 
many system variables are considered in the forecast.

Using a laboratory-based aquatic microbial commu-
nity as our study system, we carried out a 5-month-long 
experiment. The community consisted of algae, bacte-
ria, ciliates, flagellates and rotifer species. These spe-
cies are characterised by short generation times (e.g. 
Altermatt et al.,  2015), which renders them convenient 

study organisms for our experiment and questions. We 
exposed half of the community replicates to either a con-
stant temperature or a fluctuating temperature setting. 
The fluctuating temperatures added a layer of complex-
ity to the system, by potentially affecting the species and 
their interactions in both direct and indirect ways. We 
chose temperature fluctuations due to their relevance 
and relative ease of manipulation.

We forecasted species abundances and estimated the 
number and the strength of species interactions using 
the nonparametric time-series analysis framework em-
pirical dynamic modelling (EDM, Ye et al.,  2015). We 
built forecasts that included increasingly more variables 
as predictors. We hypothesised that the more a species 
is isolated (i.e. fewer and weaker interactions), the better 
its abundance can be predicted as it is less dependent on 
the system state. We expected that the fluctuating tem-
peratures would decrease forecast skill, unless they are 
a strong enough driver of system dynamics to outweigh 
the effect of increased system complexity. Further, we 
hypothesised that up to a threshold forecasting improves 
when more system variables are included in the predic-
tion, but that fewer variables are necessary to achieve 
the highest or close to the highest forecast skill for more 
isolated species. We also tested whether a variable that 
interacts strongly with a focal species is a good predictor 
variable of the abundance of said species.

M ATERI A L A N D M ETHODS

Experiment: design, setup and sampling

We carried out a laboratory-based experiment to record 
the dynamics of microbial communities (i.e. microcosms) 
at constant (17.3°C) and at fluctuating temperatures 
over a period of 154 days. We used three different fluc-
tuating temperature time series. One was identical to 
the temperature of a local small stream (Furtbach ZH, 
Switzerland); the other times series had the same mean, 
variance and autocorrelation structure as the natural 
time series, but differed in the temperature order (Cohen 
et al., 1999; Petchey, 2000). See the Section S2.1 for fur-
ther information regarding the temperature time series.

The tri-trophic microcosms were semi-naturalistic 
with respect to the potential co-occurrences of the 
species and the functional groups present (Table  S5, 
Figure  S2). The first trophic level of the commu-
nity consisted of three bacteria (Serratia fonticola, 
Brevibacillus brevis and Bacillus subtilis), an autotroph 
alga (Chlamydomonas reinhardtii), a mixotroph alga 
(Euglena gracilis) and a mixotroph ciliate (Euplotes 
daidaleos). The latter two are mixotrophic species and 
their trophic level is between the first and the second 
level (Ward & Follows,  2016). The second level con-
tained three bacterivore ciliate species (Colpidium stri-
atum, Dexiostoma campylum and Spirostomum sp.), one 
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omnivore ciliate species (Paramecium caudatum) and 
one omnivore rotifer species (Rotifer sp.), while one 
ciliate predator species (Didinium nasutum) made up 
the top level. Small non-identified flagellate species 
present in the species stock cultures were also part of 
the microbial communities and we classified them into 
the three groups ‘small and white flagellates’, ‘green and 
white flagellates’ and ‘big and white flagellates’. Prior 
to the experiment, we kept the ciliate and algae spe-
cies in stock culture jars at 20°C containing organic 
protozoan pellet medium (Carolina Biological Supply 
Company, Burlington NC; concentration of 0.55 gl−1, 
Altermatt et al., 2015). For the heterotrophic and mix-
otrophic species, we bacterised the medium with the 
same bacteria species. We fed D. nasutum with P. cau-
datum ad libitum and freshly established all stock cul-
tures 2 weeks prior to the experiment.

We set up the microcosms in 2 L screw-capped glass 
bottles filled with 250 ml of the non-bacterised me-
dium containing C. reinhardtii at 50 cells/ml, 750 ml 
of the bacterised medium, a magnetic stirrer and 20 
wheat seeds for slow and continuous nutrient release. 
We added the remaining species (except D. nasu-
tum and Spirostomum) at a density of 0.1 cells/ml. As 
Spirostomum sp. only reached low abundances in the 
stock cultures we inoculated it at a density of 0.005 
cells/ml. We added the predator D. nasutum at a den-
sity of 0.02 cells/ml 9 days after the start of the experi-
ment. We reintroduced all species (except bacteria and 
C. reinhardtii) at low densities (<0.01 cells/ml) once a 
week. This rate was high enough that extinct species 
could potentially re-establish in the long term and low 
enough to not influence population dynamics in the 
short term.

We kept the experimental bottles in temperature-
controlled incubators with a 14/10  h light–dark cycle. 
We distributed 18 replicates across six incubators. We 
set three of the incubators to the constant temperature 
and assigned one incubator to each of the three fluctu-
ating temperature time series. Thus, nine replicates were 
in the constant and nine in the fluctuating temperature 
environment.

We sampled the microcosms three times per week 
(Mondays, Wednesdays and Fridays) for 22 weeks (66 
data points per microcosm). We measured dissolved ox-
ygen concentration using a non-invasive oxygen recorder 
(Precision Sensing GmbH, Germany) with oxygen sens-
ing optodes attached to the inside of the bottles. Before 
sampling, we homogenised the microcosms on a magnetic 
plate. We sampled 65 ml per replicate and added the same 
amount of bacterised medium to them afterwards. We 
measured the abundances of the grouped bacteria spe-
cies and of the small, intermediate and large species by, 
respectively, using flow cytometry, FlowCAM imaging, 
video microscopy and manual counts (Table S5). Video 
microscopy involved the R-package bemovi (Pennekamp 
et al., 2015). For the video and the FlowCAM data, we 

used automated species classifications. For more details 
regarding measurements and classifications, see supple-
mentary Section S2.2.

Processing of recorded time series

Preceding analyses, we processed the recorded time se-
ries as follows (Benincà et al., 2008, see Section S2.1): We 
first interpolated the time series using a cubic hermite 
spline to obtain equally distanced time points (time step 
of 2.3 days). To flatten sharp changes in abundances, we 
carried out a fourth-root power transformation. We then 
regressed the time series against time and henceforth 
used the resulting residuals, which are trendless, after we 
standardised them.

Throughout the experiment, Spirostomum sp. re-
mained practically extinct (Figure S3m). As this species 
was effectively not part of the microbial community, we 
did not consider it in the subsequent analyses. Further, 
the predator D. nasutum did not show stable abun-
dance. We used this species only as a predictor variable. 
Accordingly, the forecasted target species were C. re-
inhardtii, E. gracilis, E. daidaleos, C. striatum, D. cam-
pylum, P. caudatum, Rotifer sp. and the three bacteria 
species considered as one group (for simplicity hence-
forth referred to as a species).

Forecasting of species abundances

We forecasted the abundances of species using the em-
pirical dynamic modelling (EDM) technique multiview 
embedding (Ye et al., 2015; Ye & Sugihara, 2016), as spe-
cies dynamics are often nonlinear (Blonder et al., 2017; 
Clark & Luis,  2020). In EDM, forecasting is based on 
the assumption that similar system states will lead to 
subsequent system states that are again similar. In this 
method, state variables are used as predictors in both a 
non-lagged and a lagged fashion, following Takens' theo-
rem that the time series of a variable contains informa-
tion of interacting variables (Takens, 1981). The lagged 
and non-lagged time series re-construct the attractor 
manifold and the number of time series used for this is 
the embedding dimension E.

Multiview embedding (Ye & Sugihara,  2016, 
Section S3) is an extension of this method in which for 
a fixed embedding dimension all possible combinations 
(called ‘views’) of the predictor time series are con-
structed, which are then ranked by in-sample forecast 
skill and the best k views are used for an average out-
of-sample forecast. We used an embedding dimension of 
E = 3 (sensitivity analysis in Section S8.3.1) and a max-
imum lag of l = 3 (i.e. we lagged the predictors by zero 
days, 2.3 days and 4.7 days, with species generation time 
ranging from hours to days, see Leary & Petchey, 2009; 
Altermatt et al., 2015).
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For each species, we repeatedly forecasted its abun-
dance using increasingly more predictors (i.e. we in-
creased the forecast model size). Excluding temperature, 
there were 13 possible non-lagged predictors for each 
target species (the eight target species, D. nasutum, the 
three flagellate groups and the dissolved oxygen). As the 
number of predictors, we used n = {1,2,3,4,6,8,10,13}. For 
each value of n we calculated the number of possible 
non-lagged predictor combinations 

(
13

n

)
. Out of these 

combinations, we randomly selected 200 if the number 
of combinations exceeded this value. We used the func-
tion Multiview() (R-package rEDM, Park et al.,  2021) 
which adds the lags to the predictor variables. We used 
the first 44 time points of the time series as the in-sample 
data and the last 22 points as the out-of-sample time 
points to be predicted (one-step ahead forecasts). For 
each predictor combination, we evaluated up to 25 val-
ues for k logarithmically spaced between 1 and 100. We 
previously confirmed that values above 100 do not im-
prove forecasts (Section S3.1). We then repeated all fore-
casts with the temperature added to the same predictor 
combinations and also for when temperature was the 
sole predictor. In total, we fitted more than 7.4 million 
multiview embedding models (Table S6). As a measure of 
forecast error, we calculated the root mean square error 
(RMSE) of each fitted model based on the out-of-sample 
data. Because we standardised the time series, an RMSE 
below one indicates that the used model predicts the 
abundance of a species better than its mean abundance 
does.

Estimation of the number and strength of 
interactions

For each target species T, we determined which and 
how many state variables influenced its abundance with 
convergent cross-mapping (CCM, Sugihara et al., 2012), 
following the recommendations of Deyle et al.  (2016, 
supplementary Section S4). CCM is a test of causation 
that reveals whether there is a causal link between vari-
ables. We defined the variables that showed a significant 
effect on a target species in a replicate as its interactors 
and their number as the number of interactions NT.

We then estimated the interaction strength time se-
ries of the species that were causally linked using S-map 
EDM (Deyle et al., 2016). The estimated pairwise species 
interaction strength time series are ST,I(t) = ∂T(t + τ)/∂I(t), 
where t is a time point and τ = 2.3 is the smallest time 
step, ∂ indicates the partial derivative and T(t) and 
I(t) are the transformed abundance time series of the 
target and the interactor state variables respectively. 
In S-map EDM, at each time point t the interaction 
Jacobian J (i.e. Jij = �Ti(t + �)∕�Ij(t), where Ti and Ij 
are the different target and interactor state variables) is 
calculated (Chang et al., 2021). This calculation is done 

by including information of when the system was in a 
similar state at other times using locally weighted mul-
tivariate linear regressions. The parameter θ determines 
how nearby system states are weighted in the regression. 
We used an intermediate value (θ =  5, sensitivity anal-
ysis in Section  S8.2.1). The interactor variables were 
limited to those that influenced the target in a given rep-
licate (based on the CCM analysis described above). We 
used the same eight target species as for the abundance 
forecasting.

Forecast error analyses

Relation between the number of interactions, 
mean interaction strength and forecast error

We calculated the mean interaction strength μT of the 
target species T with the NT state variables it interacted 
with as:

In Equation 1, IT is the set consisting of the interactors 
that affected the target T, ST,I is the interaction strength 
time series between target T and interactor I ∈ IT, |ST,I(t)| 
is its absolute value at time point t, NT is the number of 
interactions and L is the number of time points in the 
time series. We then computed the sum of interaction 
strengths ΣT by multiplying Equation 1 with the number 
of interactions NT: ΣT = NTμT.

We investigated the relations between the three ex-
planatory variables NT, μT and ΣT and the forecast error 
(RMSE) of species abundances. The RMSE values were 
based on the forecast models in which all variables were 
used as predictors. We fitted three separate linear mixed 
models with the RMSE as the response variable and one 
of the three explanatory variables as the regressor. We 
fitted a fourth mixed model between μT (response vari-
able) and NT. In each model, we included the temperature 
regime (i.e. constant or fluctuating) and its interaction 
with the other explanatory variable.

Forecast error as a function of the number of 
predictors and the number of interactors

We investigated the relation between the median forecast 
error and the number of predictors and the temperature 
regime (constant or fluctuating) with a linear mixed 
model conjointly for the eight different target species. 
We used the median RMSE as the response variable, 
while the log10-transformed number of used predictors, 
the temperature regime, a binary variable indicating 

(1)�T =
1

NT

1

L

∑

I ∈ IT

L∑

t=1

|
||
ST ,I (t)

|
||
.
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whether temperature was used as a predictor and the 
target species were the explanatory variables, alongside 
their pairwise interactions. We included bottle ID nested 
in target species as a random intercept.

Using the same settings as before, we then forecasted 
species abundances again using as predictors only vari-
ables that influenced the target species (based on the 
CCM analysis). Among all forecast models, we selected 
the ones that predicted the target species the best. For 
this, from the models that yielded an RMSE within 1% 
of the lowest achieved RMSE (for a given species and 
replicate), we selected the models with the fewest pre-
dictor variables (i.e. the smallest models). We then used 
the number of predictors in the best forecast models as 
the response variable in a mixed model that included 
the number of interactions, the temperature regime and 
their interaction as explanatory variables.

Interactor strength versus predictor  
importance

We investigated whether stronger interactors are also bet-
ter predictors. In each replicate, we calculated the mean 
interaction strength of each evaluated target-interactor 
species pair as the mean of the absolute values of their 
interaction strength time series. We log10-transformed 
this variable and used it in a mixed model in a three-way 
interaction with the temperature regime and the target 

species. The response variable was the RMSE of the 
forecast model in which the interacting species was the 
only predictor.

We fitted all linear mixed models using the function 
lmer (R-package lme4, Bates et al.,  2015). We included 
bottle ID as a random intercept in all models, if not spec-
ified otherwise.

RESU LTS

Relation between the number of interactions, 
mean interaction strength and forecast error

Both the number and the mean strength of interactions 
of a target species had a significant effect on the forecast 
error of species abundances (Figure 1, Table S1). Neither 
the temperature to which the microcosms were exposed 
nor its interaction with the other explanatory variables 
had significant effects on any of the following results 
(Table S1). Forecast error decreased (i.e. forecast skill in-
creased) the more interactions a species had (Figure 1a). 
Quantitatively, with every unit increase in number of 
interactions the forecast error decreased by 5.2% (con-
stant temperature) and 3.9% (fluctuating temperature) 
with respect to its maximum (t140  =  −6.04, p  < 0.001). 
Meanwhile, the stronger a species interacted on aver-
age, the worse it was predicted (Figure 1b): the forecast 
error increased by 6.5% (constant) and 4.8% (fluctuating) 

F I G U R E  1   Species with more but weaker interactions are predicted better. (a, b) Forecast error (RMSE), respectively, as a function of the 
number of interactions (a) and the mean interaction strength (b). (c) The relation between the number of interactions and the mean interaction 
strength. (d) Forecast error (RMSE) as a function of the sum of interaction strengths. The black line represents the fit of the respective 
regression models, and the shaded regions indicate the corresponding 95% confidence intervals. In each sub-figure, the left and the right panel 
show the data for the constant and the fluctuating temperature case respectively. The respective intercepts and slopes do not significantly differ 
between the two temperature settings.
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towards its maximum for every 0.1 increase in mean in-
teraction strength (t127 = 6.45, p-value < 0.001). The num-
ber of interactions and the mean interaction strength 
of a species were negatively correlated, with the mean 
interaction strength decreasing by 0.053 (constant) and 
0.055 (fluctuating) for every unit increase in number of 
interactions (t140  =  −9.66, p  < 0.001, Figure  1c), indicat-
ing that the more interactions a species had the weaker 
these were. These two measures consequently share con-
siderable explanatory power regarding the RMSE (ad-
justed R2: 0.31 for the single-regressor models, 0.34 for 
the model that included both quantities). The sum of in-
teraction strengths (the product of these two quantities) 
was thus unrelated to forecast error (t140 = 1.40, p = 0.163, 
Figure 1d). Each target species had a comparable num-
ber of interactions across replicates (Figure S8).

The described patterns persisted in a sensitivity analy-
sis for the parameters θ and E (Figure S13 and Figure S15) 
and across several robustness analyses reported in detail 
in the Section  S8. For instance, we repeated the fore-
casting by using recurrent neural networks and ARIMA 
(Figure  S22), and estimated interaction strengths with 
regularised S-map (Cenci et al.,  2019; Figure  S14) and 
with a multivariate auto-regressive system state model 
(Holmes et al.,  2012; Figure S23). These analyses show 
that our results are robust to the forecasting method 
used as well as how interaction strengths are quantified. 
They also provide evidence that the negative correlation 
between the number and the mean strength of interac-
tions is not a statistical artefact of the analysis methods.

Forecast error as a function of the number of 
predictors and temperature

In general, the median forecast error of species abun-
dances decreased the more variables were used as pre-
dictors (F  =  1847.81, p  < 0.001, Figure  2, Table  S2): the 
respective slopes ranged from −0.579 to −0.055 across 
target species (F = 175.86, p < 0.001), with 0.022 subtracted 
to these slopes in the case of fluctuating temperatures 
(F  =  5.76, p  =  0.016). Fluctuating temperatures signifi-
cantly affected forecast errors (F = 25.09, p < 0.001), but 
this was not the case for the forecasting of all target 
species as the difference in forecast error ranged from 
−0.034 to 0.373 across them (F = 4.79, p < 0.001, Tables S2 
and S7). Specifically, the fluctuating temperatures in-
creased the forecasting error of C. reinhardtii, Rotifer 
sp. and P. caudatum (respective differences in estimated 
marginal mean forecast errors of 0.373, 0.196 and 0.183, 
with respective p-values of <0.001, 0.003 and 0.005, see 
Section S6). The inclusion of temperature as a predictor 
decreased the forecast error (F = 26.62, p < 0.001), with 
the change ranging from −0.079 to −0.005 across targets 
(F  =  7.53, p  < 0.001), with no significant difference be-
tween the two temperature regimes (F = 0.31, p = 0.580). 
The value of using temperature as a predictor decreased 

the more other predictors were used in the forecasting, 
with temperature reducing forecast errors by 0.048 less 
for every 10-fold increase in the number of predictors 
(F = 27.53, p < 0.001).

The number of predictors used in the best forecast 
model of the abundance of a species was independent 
of the number of interactions of said species (t130 = 0.47, 
p = 0.637, Figure 3a, Table S3) regardless of the tempera-
ture regime (t137  =  −0.26, p  =  0.793). Across replicates, 
when the temperature was constant 38.9% of the best 
models had three predictors, 27.8% had two predictors 
and 22.2% had four predictors, and similarly, when the 
temperature varied in most cases the best models had 
three (43.1%), two (30.6%) and four (15.3%) predictors 
(Figure 3b). The sensitivity analysis for the embedding 
dimension confirmed these results (Figure S16). Adding 
predictors to the best forecast models did either worsen 
or not improve them (Figure S6).

Interactor strength versus predictor importance

Overall, we found no relation between the interaction 
strength of a state variable with a target species and the 
forecast error of the abundance of the target species with 
the state variable as the sole predictor (F = 2.30, p = 0.129, 
Figure  4, Table  S4), regardless of temperature regime 
(F = 0.05, p = 0.822). An alternative analysis confirmed 
these results (Figure  S12). The estimated slopes var-
ied across target species from −0.523 to 0.165 (F = 7.42, 
p < 0.001), but only for C. reinhardtii and E. gracilis there 
was evidence that the stronger interactors predicted 
these targets better (Table S8) and that the CCM skills 
(used to determine whether the species interacted, see 
above) positively correlated with interaction strengths 
(Section S7.1).

DISCUSSION

We found that the forecast skill of the abundance of a 
species increases the more interactions the species has 
within the system (e.g. with other species) but also that 
it increases the weaker these interactions are on average. 
We found that these two measures—the number of in-
teractions and their mean strength—are negatively cor-
related resulting in the abundance of species with many 
but on average weak interactions to be predicted the 
most skilfully. While the fluctuating temperatures did 
not influence these findings, they lowered the median 
skill of forecasting the abundances of three out of eight 
target species.

Previous studies reported contrasting results as in 
some cases predictions improved with increasing system 
complexity (Berlow et al.,  2009; Dornelas et al.,  2011; 
Iles & Novak,  2016; Mougi,  2017), while in others the 
opposite was the case (e.g. Doak et al.,  2008; Jonsson 
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et al., 2018; Novak et al., 2011). The latter led to the state-
ment that ecological forecasting is limited by the low in-
trinsic predictability of real-world systems due to their 
great complexity (Beckage et al.,  2011). In our study, 
the addition of complexity (i.e. the fluctuating tempera-
ture) to the system lowered forecast skill for some but 
not all species. Thus, a universal association between an 
increasing system complexity and the predictability of 
the abundance of its components is less likely to exist. 

Future studies could investigate the effects of other com-
plexifying factors.

In contrast, the more connected a species was in the 
system, the better it was forecasted. The negative cor-
relation between the number of interactions and the 
mean interaction strength could explain this as it might 
indicate that species with many but weak interactions 
were less dependent on the state of individual system 
components and more dependent on the state of the 

F I G U R E  2   Median forecast error of species abundance decreases the more state variables are used as predictors. Median forecast error 
as a function of the number of predictors used in the forecast model, of the predicted target species (sub-figures), of the temperature regime 
and of whether temperature was used as a predictor (colour). In each sub-figure, the left panel shows the data as a scatter plot with the points 
connected with solid lines if they come from the same replicate, while in the right panel the solid lines represent the fit of the fitted regression 
model, and the shaded regions indicate the corresponding 95% confidence intervals. (a) Bacteria. (b) Chlamydomonas reinhardtii. (c) Colpidium 
striatum. (d) Dexiostoma campylum. (e) Euglena gracilis. (f) Euplotes daidaleos. (g) Paramecium caudatum. (h) Rotifer sp.
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whole system. Regardless, this result provides a first in-
sight into why certain aspects of ecological systems are 
more predictable than others (e.g. some species abun-
dances more than others; Harris, 1994). It suggests that 
species with few, strong interactions should be sampled 
more frequently than those with many weak interactions 
to achieve a comparable forecast skill. Thus, it has the 
potential of improving the monitoring of species in real-
world ecosystem, which can be a costly endeavour (e.g. 
Jones, 2011; Manley et al., 2004).

Yet, it remains unclear why a species with few strong 
interactions is not predicted more skilfully than a species 
with many weaker interactions. However, this result is 
corroborated by the finding that interaction strength is 
not a good indicator of how well an interacting variable 
predicts the abundance of the target species. Knowledge 
about good predictors of species abundances could help 
our understanding of ecological forecasting and our skill 
in carrying it out (Petchey et al., 2015). Based on these re-
sults, it is likely that interaction strength can be excluded 
as an indicator of good species abundance predictors.

In this context, we found that the median forecast 
skill increased the more system variables we included 
as predictors in the forecast models. However, in most 

cases, we achieved the best forecast skill already with few 
predictors included (i.e. between two and four predictors 
in approximately 90% of forecast models), regardless 
of how many interactions the forecasted species had. 
This suggests that if it is known a priori which system 
components are good predictors of the abundance of a 
specific species, then data collection can be streamlined 
by focusing on these variables rather than on the whole 
system.

In our experiment, we compared fluctuating and con-
stant temperatures as the former are more truthful to 
natural conditions. The lower predictability of the abun-
dance of some species in the fluctuating temperature set-
ting when compared to the constant temperature setting 
suggests that prediction skill might be overestimated 
in experiments in which temperatures are constant. In 
fact, in laboratory-based or simulated time series ex-
periments, the temperature is usually kept at one or 
more constant levels (e.g. in Yeo et al., 2003; Ferguson 
& Ponciano, 2014; Daugaard et al., 2019) and only rarely 
fluctuating temperatures are used (e.g. Descamps-Julien 
& Gonzalez,  2005; Jiang & Morin,  2007). Given that 
temperature is a strong driver of species metabolic rates 
(Brown et al., 2016) and thus also of their dynamics (e.g. 
Bernhardt et al., 2018; Lee et al., 2007), fluctuating tem-
peratures should more frequently be considered to better 
reconcile results from laboratory or simulation experi-
ments with real-world insights.

The distribution of interaction strengths in a system is 
known to be right-skewed, with the bulk of the interac-
tions being weak and only comparably few interactions 
being strong (e.g. Paine, 1992; Wootton, 1997; Wootton 
& Emmerson, 2005). This was also the case in our study 
(Figure  S9). Moreover, our finding that the number of 
interactions and the average interaction strength are 
strongly negatively correlated strengthens the recent em-
pirical evidence (Ratzke et al., 2020; Ushio, 2022) of the 
theoretical finding that generalists have predominately 
weak interactions while specialist are responsible for 
the right-skew of the interaction strength distribution 
(Wootton & Stouffer,  2016). Given that weak interac-
tions have been identified as system stabilising (e.g. 
McCann & Hastings,  1997; Neutel et al.,  2002; Otto 
et al.,  2007), our results support previous observations 
stating that generalist species have a stabilising func-
tion due to the weak interactions they engage in (e.g. 
Mougi & Nishimura, 2007; Chakraborty, 2015; Brechtel 
et al.,  2019, note, however, that we did not carry out a 
stability analysis of the system in this study).

Several robustness analyses confirmed that the results 
are not sensitive to the specifications of the experimen-
tation and analyses (e.g. the choice of forecast method 
did not affect the results, Section S8.5.1). Noticeably, the 
analyses of the potential influence of the different mea-
surement methods on the results revealed that the main 
results most often still occurred within measurement 
method (Section  S8.4.6). However, the 95% confidence 

F I G U R E  3   The best forecast models consistently contained 
only few predictors, regardless of the number of interactions. (a) The 
relation between the number of predictors in the best forecast models 
and the number of interactions of the predicted species. The black 
lines represent the fit of the regression model, and the shaded regions 
indicate the corresponding 95% confidence intervals. (b) Bar-plot of 
the number of predictors in the best forecast models. The left panels 
are for the constant temperature case and the right ones for the 
fluctuating temperature case.
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intervals often overlapped zero due to small sample sizes. 
The analyses also showed that any effect of measurement 
method was not due to anything as simple as differences 
in measurement error across methods (Section  S8.4.5). 
Since measurement method is confounded with species 
identity, we cannot tease apart their possible influences 
on the main results, and therefore cannot completely 
rule out that measurement method has, for some reason, 
some power in explaining the main results reported.

In conclusion, we provide novel insights into why the 
abundance of some species is better predictable than oth-
ers in the same system. The dependency of forecast skill 
on the number and the strength of species interactions 
not only improves our knowledge of ecological forecast-
ing. It has also the potential of improving the resource 
allocation for the sampling and monitoring of species, as 
comparable forecast skill across species likely requires 
varying amounts of data per predicted species based 
on how much and how strongly this species interacts. 
We also shed further light on the relationship between 

elements of system complexity and forecast skill, show-
ing that the relationship can be both species-specific and 
of different signs within and across systems. Thus, fore-
casting skill may deteriorate with increasing complexity, 
but this cannot be taken for granted and can depend on 
whether one is comparing across or within systems.
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