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1  |  INTRODUC TION

Biodiversity is structured hierarchically across spatial, temporal, and 
taxonomic scales (Leibold & Chase, 2017). Fluctuations of species 
abundances within communities operate on ecological timescales, 
on the scale of handfuls or tens of generations. Population genetic 
variation, by contrast, accumulates and degrades over timescales of 
tens to tens of thousands of generations (Leffler et al., 2012), while 
phylogenetic and functional diversity accumulate even more slowly, 
on the order of thousands to millions of generations (Uyeda et al., 
2011). Over time, various fields have emerged to investigate pro-
cesses within individual levels of organization (macroecology, com-
parative population genetics, macroevolution), but only recently 
have inroads been made to combine theory across multiple scales 
of space and time into a general unified model (Thompson et al., 
2020; Vellend, 2010, 2016). Complicating matters, there is little 
consensus over whether, and to what degree, ecological interactions 
contribute to the structuring of ecological communities (Harmon & 
Harrison, 2015; Rabosky & Hurlbert, 2015). Likewise, the relative 

contributions of colonization and in situ speciation to the composi-
tion of community structure remains an open question (Patino et al., 
2017).

Discovering universal rules that structure ecological commu-
nities is a challenging task given the difficulty of disentangling the 
relative influence of faster ecological mechanisms from slower 
evolutionary processes (Ricklefs, 2004), yet a unification of the-
ory across multiple scales will provide significant insight into the 
formation of biodiversity (McGill et al., 2019). Ecological models of 
community biodiversity inspired by the Equilibrium Theory of Island 
Biogeography (MacArthur & Wilson, 1967) and the Neutral Theory 
of Biodiversity and Biogeography (Hubbell, 2001) have focused on 
predicting only a single biodiversity metric, the shape of the local 
species abundance distribution (SAD). As central as the SAD is to 
macroecology and community ecology, it is often insufficient to dis-
tinguish among different models of community assembly, particu-
larly at equilibrium (Chave et al., 2002; Haegeman & Etienne, 2011; 
McGill et al., 2007). Recently, DNA sequence data sampled at the 
community-scale has offered a powerful new approach for studying 
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Abstract
Biodiversity accumulates hierarchically by means of ecological and evolutionary pro-
cesses and feedbacks. Within ecological communities drift, dispersal, speciation, and 
selection operate simultaneously to shape patterns of biodiversity. Reconciling the 
relative importance of these is hindered by current models and inference methods, 
which tend to focus on a subset of processes and their resulting predictions. Here 
we introduce massive ecoevolutionary synthesis simulations (MESS), a unified mecha-
nistic model of community assembly, rooted in classic island biogeography theory, 
which makes temporally explicit joint predictions across three biodiversity data axes: 
(i) species richness and abundances, (ii) population genetic diversities, and (iii) trait 
variation in a phylogenetic context. Using simulations we demonstrate that each data 
axis captures information at different timescales, and that integrating these axes 
enables discriminating among previously unidentifiable community assembly models. 
MESS is unique in generating predictions of community-scale genetic diversity, and in 
characterizing joint patterns of genetic diversity, abundance, and trait values. MESS 
unlocks the full potential for investigation of biodiversity processes using multidimen-
sional community data including a genetic component, such as might be produced by 
contemporary eDNA or metabarcoding studies. We combine MESS with supervised 
machine learning to fit the parameters of the model to real data and infer processes 
underlying how biodiversity accumulates, using communities of tropical trees, arthro-
pods, and gastropods as case studies that span a range of data availability scenarios, 
and spatial and taxonomic scales.
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community ecology, community genetic diversity, community phylogenetics, comparative 
phylogeography, population genetics
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community dynamics at the genetic level (Baselga et al., 2013, 2015; 
Dapporto et al., 2019; Múrria et al., 2017; Papadopoulou et al., 
2009). While empirical investigation of community intraspecific ge-
netic diversity has flourished, modelling efforts have remained con-
strained, with current theory either lacking an explicit population 
genetic foundation (Vellend, 2005), considering genetic variation 
only of a focal species (Laroche et al., 2015), or modelling but not 
fully exploring genetic variation at the community scale (Aguilée 
et al., 2018; Manceau et al., 2015). Demonstrating the power of 
unified modeling, a great deal of work has been done to incorpo-
rate phylogenetic information with abundance data to make infer-
ences about community assembly processes (Jabot & Chave, 2009; 
Webb et al., 2002). While such approaches make useful predictions, 
they are predicated on assumptions of equilibrium within the local 
community and also assume that the phylogeny is a reliable proxy 
for functional trait diversity, an assumption violated by traits that 
are not phylogenetically conserved (Cavender-Bares et al., 2009). 
Likewise, there have been other successful efforts to unify theory 
across timescales with mechanistic ecoevolutionary models of as-
sembly. Cabral et al. (2019) unify population-level and evolutionary 
timescales to investigate the dynamic relationship between com-
munity age, competition, and local richness. Pontarp et al. (2019) 
developed a trait-based, spatially explicit ecoevolutionary model to 
make inferences about prey and predator niche widths with poten-
tially diverse data types. Incorporating temporal dynamics can help 
to distinguish among ecological processes (Chisholm & O’Dwyer, 
2014; Jabot et al., 2018; Ricklefs, 2006), yet current theory fails to 
generalize across levels of biological organization. Adding more axes 
of data to process-based models without increasing model com-
plexity at the same rate is therefore a necessary advance to break 
this many-to-one mapping of hypotheses to observation (Leibold & 
Chase, 2017; McGill et al., 2007).

The massive multidimensional data sets that continue to 
emerge from high-throughput biodiversity investigations applying 
community-wide surveying techniques such as eDNA (Deiner et al., 
2017), metabarcoding (Andújar et al.,2018; Dopheide et al.,2019), 
and remote-sensing technologies that can directly infer trait data 
(Cavender-Bares et al., 2017), are therefore timely. However, the 
challenges associated with moving beyond descriptive approaches 
of interpretation and inference have limited broader understanding 
of processes generating biodiversity patterns (but see Bohan et al., 
2017; Derocles et al., 2018). Historically there have been two general 
approaches to investigate the evolutionary and assembly processes 
underlying the patterns we observe in nature: (1) “process-first” ap-
proaches that use first principles to derive generative mechanisms to 
make predictions of a single data type under the assumptions of an 
idealized community (Gavrilets & Vose, 2005; Marquet et al., 2014; 
Rosindell et al., 2012); and (2) “pattern-first” approaches that reveal 
aggregate differences in macroecological patterns from real world 
systems across a range of spatial and temporal scales (Craven et al., 
2019; Keil & Chase, 2019; Ricklefs & Bermingham, 2001; Rominger 
et al., 2016; Wagner et al., 2014). Recent advances in simulation-
based inference under increasingly complex models provide a third 

option of unifying multiple processes and multiple data types across 
different scales (Overcast et al., 2019; Pontarp, Bunnefeld, et al., 
2019). A unified model of community assembly, which accounts for 
the fundamental processes underlying biodiversity across spatial 
and temporal scales (Vellend, 2010), could be used to make predic-
tions about multiple axes of biodiversity data that include species 
richness and abundances, distributions of species genetic diversities, 
and trait variation. Several studies have recently shown that such 
complex biological models and resultant high-dimensional data can 
be tractable within a machine learning framework (Schrider & Kern, 
2018), providing a robust inference procedure for simulation-based 
interrogation of empirical data.

Here we introduce the massive ecoevolutionary synthesis sim-
ulations (MESS) model, building upon classic community ecology 
theory (Hubbell, 2001; Leibold & Chase, 2017; MacArthur & Wilson, 
1967; Vellend, 2016) to produce a mechanistic model of local com-
munity assembly for making joint predictions of observed multidi-
mensional biodiversity data such as that currently emerging from 
high-throughput metabarcoding studies (Taberlet et al., 2012). 
MESS integrates ecological models of community biodiversity, com-
parative population genetics, and trait evolution, with an explicit 
focus on incorporating microevolution and ecological interaction 
processes, which are often underrepresented in mechanistic models 
(Leidinger & Cabral, 2017). MESS can simulate community assem-
bly across a continuum of scenarios from evolved to assembled, and 
from purely neutral to niche-structured by either competition or en-
vironmental filtering. These simulations generate predictions for lo-
cally sampled distributions of abundance, genetic variation, and trait 
values which are summarized using a novel combination of statis-
tics that capture the variation within and among these biodiversity 
data axes. We combine summary statistics from numerous simula-
tions with supervised machine learning methods to test an array of 
competing models and to estimate model parameters relevant to 
understand complex histories of community assembly and evolu-
tion. We perform extensive simulation-based cross-validation anal-
yses to explore precision and accuracy of model inference. Finally, 
we apply the model to four high-throughput biodiversity data sets 
representing different taxonomic and spatial scales: two arthropod 
communities with varying dispersal capacity from Mascarene islands 
of different ages (Emerson et al.,2017; Kitson et al., 2018); plot level 
sampling of Australian tropical forest trees (Rossetto et al., 2015); 
and archipelago-scale sampling of Galapagos Islands gastropods 
(Kraemer et al., 2019; Triantis et al., 2016).

2  |  MATERIAL S AND METHODS

2.1  |  Metacommunity composition

The MESS model comprises three components summarised in 
Figures 1b and 2 (See Table 1 for model parameter details). The 
metacommunity is modelled as a regional pool which is very large 
and fixed with respect to the timescale of the assembly process in 
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the local community. It consists of a global phylogeny relating all 
species, along with species abundances, and trait values evolved 
along the phylogeny. The global phylogeny is produced by simulat-
ing a homogeneous, time-constant diversification process, in which 
lineages give rise to new lineages or die with fixed speciation (�) and 
extinction (� ⋅ �) rates, until the desired number of species (SM) is 
reached (treesim v2.4; Stadler, 2019). Next, we simulate a Brownian 
motion model of trait evolution on the phylogeny with a root value 
of 0 and a rate of σ2 M (ape v5.3; Paradis et al., 2004). Continuous 
traits evolve following a Brownian process of random drift in the 

metacommunity, rather than an Ornstein–Uhlenbeck process, which 
is stochastic with a central tendency (Butler & King, 2004), because 
we assume species in the metacommunity are not exposed to con-
straints imposed by the local environmental conditions. Likewise 
with this model, we make no assumption about the degree of phylo-
genetic conservatism for each trait simulated. While multiple traits 
evolving under varying degrees of phylogenetic conservatism may 
provide more nuanced biological insight, for reasons of computa-
tional tractability we consider individual trait evolution as a reason-
able first approximation. Additionally, we do not model intraspecific 
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trait variation, on the assumption that trait values represent the 
mean phenotype of each species. Finally, the species abundances 
are sampled from a log-series distribution parameterized by the total 
number of species (SM) and the total metacommunity size (JM).

2.2  |  Local community dynamics

The foundations of the community dynamics underlying MESS are 
based on the joint neutral model of abundance and genetic diversity 
described in Overcast, et al. (2019). The individual based community 
assembly model broadly follows that used in Rosindell and Harmon 
(2013), which is inspired by the ecological neutral theory of Hubbell 
(2001). A fundamental assumption of this theory is that all species 
are ecologically equivalent (exchangeable) and that community as-
sembly dynamics are governed entirely by ecological drift. The MESS 
model implements a birth/death/colonization/speciation process 
within a semi-isolated local community of fixed size (J) and proceeds 
in discrete time steps as follows. In each time step an individual is 
randomly sampled and removed from the local community. Under 
neutral dynamics all individuals are equally likely to be removed, that 
is, die, irrespective of their species identity. The sampled individual 
is immediately replaced by a new individual to maintain constant 
saturation of the local community. With probability 1 − m, where m 
is the immigration rate, the replacement is the offspring of another 
individual in the local community. The local community is assumed 
to be well mixed, so the parent of the offspring is chosen at random 
from all individuals in the local community, excluding the recently 
deceased individual. With probability m the replacement individual 
is a migrant arriving from the metacommunity. All metacommunity 
individuals are equally likely to colonize; however, because the spe-
cies have different metacommunity abundances, not all species are 
equally likely to colonize. In either case, the new individual inherits 
the species identity and trait value of its parent. The metacommu-
nity is sufficiently large (JM ≫ J) such that the species, along with 
their abundances and trait values, are assumed to remain static with 
respect to the timescale of assembly in the local community. As 
with the typical spatially implicit neutral model (Hubbell, 2001), the 
local community diversity approaches a dynamic equilibrium state 

from its initial conditions such that ultimately local extinction due to 
ecological drift is counterbalanced by new species arriving through 
colonisation.

Departing from the previous model, MESS allows relaxation of the 
assumption of ecological neutrality, generating individual fitness dif-
ferences which account for biotic and/or abiotic interactions. MESS 
local community dynamics can range from fully neutral (species traits 
have no effect), to various degrees of non-neutrality determined by 
the magnitude that species traits influence individual death proba-
bility (�) through competition or environmental filtering. Following 
Ruffley et al. (2019), we based our environmental filtering and compe-
tition models on a functional relationship common in coevolutionary 
models which relates trait-based interactions with the probability of 
persistence in a community, scaled by the ecological strength of the 
interaction (sE; Lande, 1976; Nuismer & Harmon, 2015). The sE pa-
rameter determines either the strength of species-species competitive 
interactions or species-environment filtering interactions depending 
on whether a competition or filtering model is specified. MESS does 
not simultaneously model competition and filtering, though this will be 
a potential future development. Calculated death rates per species are 
normalised to provide a vector of death probabilities that weight the 
random sampling of which individual will die in each time step accord-
ing to a multinomial distribution (see Appendix S1:Methods).

As a first approximation, within the local community we imple-
ment a point mutation speciation process (Hubbell, 2001), although 
other modes could be incorporated in future versions of the model 
(Haegeman & Etienne, 2017; Rosindell et al., 2010). Speciation is 
implemented phenomenologically and takes place with probability 
� upon each birth event. Upon each speciation event, the new in-
dividual is assigned a unique species identity, and its prior species 
identity is recorded as the parental species for purposes of building 
the local phylogeny. The descendant species receives a trait value 
sampled from a normal distribution centered on the parent species’ 
trait value and with variance equal to σ2 M/(�+� ⋅ �), which is the ex-
pected variance of trait differences between parent and offspring 
species in the metacommunity. As each simulation proceeds, trait 
values continue to evolve in a punctuated fashion at each speciation 
event, and branch lengths within local radiating lineages are updated 
to reflect the accumulated time since speciation.

F I G U R E  1  Conceptual diagram illustrating the machine learning inference procedure and the three primary components of MESS 
simulations. (a) The MESS machine learning inference procedure proceeds broadly in three steps. First, community-scale data is obtained 
for one or more axes of biodiversity data including abundances, trait values, and genetic sequence data, and community summary statistics 
are calculated. Next, prior ranges on model parameters are selected (depicted are migration rate (m), speciation rate (ν), and equilibrium 
(Λ)), numerous simulations are performed to match the sampling of the observed data using parameters sampled from these prior ranges 
(dashed box; see exploded view of simulations in (b), and the identical suite of summary statistics are calculated. Finally, a machine 
learning framework is trained using the simulated data, learning the mapping between summary statistics and simulation parameters. The 
trained machine learning framework is then used to estimate model parameters using the observed community summary statistics. (b) 
MESS simulations are composed of three hierarchically linked components. The metacommunity component (red) encompasses a global 
phylogenetic history of all species, along with species abundances and trait values evolved along the phylogeny. The local community 
component (black) involves a forward-time process during which a local community assembles by individual birth/death, immigration 
(dispersal from the metacommunity), and local speciation or extinction. The population genetic component (blue) approximates per species 
genetic polymorphism from coalescent simulations that are parameterized from the abundance histories and colonization times generated 
by the forward-time local community component. Processes which operate within and between each hierarchical level are indicated within 
each subpanel (see Figure 2 for further details on model parameters)
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2.3  |  Population genetics component

Following Overcast, et al. (2019), the forward-time histories of 
colonization and abundance changes through time per species are 
rescaled to parameterize divergence time and effective popula-
tion size in backward-time coalescent models with immigration for 

each species (Kelleher et al., 2016) to generate sampled local nu-
cleotide diversities (π; Nei & Li, 1979). For reasons of computational 
efficiency, and to achieve a realistic scale in terms of numbers of 
individual organisms, we use a scaling parameter (�) to specify the 
number of individuals per deme, thus the total number of organ-
isms in the local community is given by J ⋅ �. This notion of demes, 
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or ‘cohorts’, groups of individuals that perform the same actions 
at the same time, is conceptually similar to that of Harfoot et al. 
(2014). We use the forward-time frequency of colonization events 
(scaled to number of colonizations per generation) for each spe-
cies to parameterize the migration probability in the coalescent of 
colonization/divergence with ongoing immigration. The per site per 
generation mutation rate is � and we use the harmonic mean of the 
forward-time population size history of each species to approximate 

each corresponding effective population size (Karlin, 1968; Pollak, 
1983). The time of initial colonization of each species is the diver-
gence time from the source population in the metacommunity within 
which the final coalescent events take place (going back in time). We 
scale forward-time Moran time steps by a factor of 2∕J to convert to 
backward-time Wright-Fisher units of nonoverlapping generations. 
Finally, given an observed data set, coalescent simulations match the 
observed sample sizes of each species for which DNA sequence data 

F I G U R E  2  Flow diagram illustrating MESS model processes and parameters. A flow diagram illustrating all MESS model processes and 
the parameters that govern their behaviour. Each box illustrates a subcomponent of the model (colored to correspond with subcomponents 
illustrated in Figure 1b), and indicates the parameter(s) which determine the behaviour of each subcomponent. Diversification and trait 
evolution processes in the metacommunity (red) are determined by speciation (λ) and extinction (ε) rates, the total number of species in 
the metacommunity (SM), and the rate of trait evolution (σ2 M), which follows a Brownian process. Abundances in the metacommunity are 
sampled from a log series distribution such that the total number of individuals is equal to JM. The local community (black) is initialized 
with a fixed number of individuals (J) and proceeds by a stepwise birth/death/immigration/speciation process, which (in the neutral case) is 
governed by the immigration rate (m) and the local speciation probability (ν), and which proceeds for a fixed amount of time per simulation 
determined by the Λ parameter. For non-neutral local community dynamics, unequal death probabilities (i.e. fitness differences) are 
determined by species trait values, the strength of ecological interactions (sE) and the local trait optimum (zE; in the case of environmental 
filtering). Finally, the population genetics component (blue) generates predictions of genetic variation per species based on standard 
population genetic parameters which are either fixed for all species per simulation (sequence length (L), mutation rate (μ), and number of 
individuals per deme (α)) or which are dynamically recorded per species per simulation (divergence time (τ) and effective population size [Ne]). 
Arrows between subcomponents indicate information flow through the simulations

TA B L E  1  MESS model parameters

Categorical parameters

Parameter Options

Community assembly model Neutral/Competition/Environmental filtering

In situ speciation model None/Point mutation/Random fission

Local community initial conditions Metacommunity sample/Monodominance

Symbol Meaning of parameter Type and range

Metacommunity component parameters

JM Total number of individuals Integer ≫ 1

SM Total number of species Integer > 1

Λ Per lineage birth rate (speciation) Real in (0,∞)

Ε Per lineage death rate (extinction) as proportion of � Real in [0, 1]

�2
M

Trait evolution rate variance (Brownian motion) Real >0

Local community component parameters

J Total number of individuals Integer > 1

S Local species richness* Integer > 1

ν Per capita per birth speciation rate Real in [0, 1]

m Immigration rate from metacommunity (per step) Real in [0, 1]

σ2 Trait evolution rate variance* Real > 0

ZE Optimal trait value in environment* Real

SE Strength of ecological filtering Real > 0

Λ Fraction of turnover equilibrium* Real in [0, 1]

Population genetics coalescence component parameters

L Sequence length of simulated genomic region (bp) Integer > 0

µ Mutation rate Real > 0

α Abundance/Ne scaling factor Integer > 0

Note: All MESS model parameters, their interpretations and range of possible values. Parameters indicated with an asterisk (*) are pseudoparameters 
which are either emergent, compound, or randomly sampled from a distribution with parameters determined by other elements of the model.
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was obtained with regards to numbers of individuals per species and 
length of sequence.

2.4  |  Summary statistics

We specify a hierarchical structure of summary statistics for each 
target data axis: species abundances, population genetic variation, 
and trait values. First, several relevant summary statistics are calcu-
lated per species, for each of the data axes. Next, each species-level 
statistic is aggregated and community-scale summary statistics are 
calculated per axis of data, capturing information about the distri-
bution of the statistic across the community. We include as sum-
maries the first four moments of each community-wide distribution, 
as well as pairwise Spearman rank correlations among all data axes. 
For correlations involving the trait axis, we consider the absolute 
value of the difference between the species trait and the local trait 
mean as the trait variable. We also calculate the differences be-
tween regional and local values of trait mean and standard deviation 
(Δtrait

�
 and Δtrait

�
 respectively). Additionally, we utilize a framework of 

generalized Hill numbers as community-scale summary statistics, to 
quantify the shape of each distribution (Chao et al., 2014). In order 
to distinguish between these diversity metrics when calculated on 
distributions of different data axes we will refer to the Hill number 
of order q for abundance data as qD, for genetic data as qGD, and for 
trait (functional) data as qFD (see Appendix S1:Methods for further 
details). For simplicity, throughout the manuscript we will refer to 
Hill numbers calculated on distributions of each data axis as abun-
dance, π, and trait Hill numbers.

As an example of the hierarchical nature of our summary statis-
tics, consider genetic variation per species within a local community. 
The average number of pairwise differences among sampled gene 
copies (π; Nei & Li, 1979) is calculated to summarize the genetic di-
versity of each species. As a per species metric π is well suited for 
characterizing genetic diversity of molecular data as it is able to cap-
ture most of the true population genetic diversity with only 5–10 
individuals (Tajima, 1983). The per species π values are accumulated 
to compose the community genetic diversity distribution, and the 
first four orders of qGD of this distribution are calculated, summa-
rizing the partitioning of genetic variation at the community scale. A 
similar hierarchical decomposition of abundance and trait diversity 
can be obtained. Importantly, with respect to the question of bias 
induced in summary statistics by unsampled taxa, within the local 
community it is reasonable to assume that unsampled taxa will be 
at very low abundance (Preston, 1948). In this case the failure to 
sample them will have essentially no impact on the abundance, π, 
and trait Hill numbers, and will induce relatively minor bias in the first 
four moments, though investigating the nature of this bias is beyond 
the scope of this manuscript. The complete MESS model predictions 
are compared with empirical data via summary statistics and machine 
learning inference methods enabling selection between local com-
munity models as well as estimation of parameters relevant to the 
community assembly process.

2.5  |  Model behaviour

We simulated communities under a range of parameter values to 
understand how different model processes affect the distributions 
of community-scale data, and whether the summary statistics cap-
ture information to discriminate among various alternative models. 
Given that the MESS model is dynamic in time, we controlled for 
this by running each simulation to the same fixed point in the as-
sembly process. We quantified this point as the proportional ap-
proach to equilibrium (Λ) and fixed this parameter at 0.75. This value 
is measured as the fraction of information about the initial state of 
the local community which is no longer present in the current state 
(see Overcast, et al., 2019 for a full treatment of this parameter). 
We allowed � to take one of three values corresponding to no-, 
low- and high-speciation (0, 5 × 10−4, and 5 × 10−3 respectively) and 
generated 10,000 simulations for each assembly model (see Table 
S1 for simulation parameters). We also investigated how summary 
statistics of different assembly model types vary through time. To 
this end, we generated 10,000 simulations for each assembly model 
while allowing � to vary as above, sampling communities at different 
stages of the assembly process (Λ ~ U[0,1]; see Table S2 for simula-
tion parameters).

2.6  |  Machine learning inference and cross-
validation

The MESS package includes an automated multistage machine learn-
ing (ML) inference procedure (Figure 1a). First, MESS model param-
eters of interest are identified for estimation, and prior ranges are 
established based on some knowledge of the system under inves-
tigation. Next, simulations are performed until parameter space is 
sufficiently sampled. The quantity of simulations to perform de-
pends on the system under investigation and the number of pa-
rameters being explored, but 1e5 is on the right order. Prior to ML 
model training, we perform a feature selection procedure in order 
to remove all summary statistics that are invariant or uninforma-
tive with respect to the target classes (boruta_py v0.1.5; Kursa & 
Rudnicki, 2010). Performance of the ML model hyperparameters 
(e.g., the number of trees in a random forest and the maximum tree 
depth) that dictate the structure and functioning of the algorithms. 
Performance can vary greatly between different data sets and dif-
ferent parameterizations, so MESS tunes these by optimizing cross-
validation scores using a random search method to explore broad 
priors placed on hyperparameter space. Next a model selection pro-
cedure is performed, during which an ML classifier is trained on the 
simulations using the summary statistics as features and the com-
munity assembly model class (Neutral, Filtering, Competition) as the 
target variable. The trained model is then confronted with empiri-
cal data and the predicted model class probabilities are generated. 
Next, the best community assembly model class is selected as that 
with the highest predicted probability, and a parameter estimation 
step is performed. Simulations are filtered to retain only those which 
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belong to the best model, and an ML regressor is trained on this 
subset of simulations. A second round of feature selection and ML 
model hyper-parameter tuning is performed prior to ML regressor 
model training. Following this, summary statistics from empirical 
data are used to estimate MESS parameters of interest. We quan-
tify uncertainty on parameter estimates as prediction intervals (PIs) 
using a quantile regression approach (Meinshausen, 2006). At this 
stage we are careful to evaluate parameter estimate uncertainty in 
light of the fact that uncertainty on model selection has not been 
propagated forward, which is an avenue for further development. 
Finally, to evaluate model adequacy we implement posterior predic-
tive simulations (PPS) to assess goodness of fit of the model to the 
observed data (Gelman, 2003). Additionally, after both classification 
and regression training steps, feature importances can be extracted 
to evaluate the proportion of information with respect to a given 
target variable that is contained within each retained summary sta-
tistic. The MESS ML classification and regression procedures can be 
performed with a number of ensemble learning strategies including 
random forest (Breiman, 2001), gradient boosting (Friedman, 2001), 
and adaboost (Freund & Schapire, 1997). Unless otherwise indicated, 
all ML algorithms are implemented in python using the architecture 
of scikit-learn (v0.20.3; Pedregosa et al., 2011).

We explored the power, accuracy, and bias of the ML inference 
procedure to classify community assembly models and estimate pa-
rameters using simulation experiments and cross-validation (CV). To 
evaluate assembly model classification, we generated 10,000 simu-
lations per model class (i.e., neutral/filtering/competition) and fixed 
all MESS parameters at intermediate values, varying only the size of 
the local community (J) and the local speciation probability (v) (see 
Table S3 for simulation parameters). To quantify the accuracy and 
bias of MESS parameter estimation utilizing an ML ensemble method 
regression framework, we generated 10,000 community simulations 
per assembly model class while varying several parameters of inter-
est (�, J, sE, m, v, and Λ) using log-uniform or uniform prior distribu-
tions (see Table S4 for parameters). ML estimator performance was 
then investigated using a K-fold CV procedure whereby simulations 
were split into training and testing sets, with the model being iter-
atively trained on each K-fold and performance being evaluated as 
minimized CV prediction error on the held out training set. Classifier 
model adequacy was quantified by the percent error rate of mis-
classification, and regression model accuracy was quantified by the 
explained variance and R2 (coefficient of determination) regression 
scores.

2.7  |  Empirical examples

As case studies, we selected four systems that occupy different spa-
tial scales and probably occupy different locations on the continua 
of dispersal, speciation, ecological drift and non-neutrality. Each 
system has some combination of community-scale data available for 
two of the three axes which can be considered by the model. In this 

way we hope to demonstrate the power of MESS across taxonomic 
and spatial scales, using data availability scenarios that might be en-
countered by empirical biologists in the present or very near future. 
These systems are: (1) spiders from Réunion island with abundances 
collected from ten 50 × 50 m plots and 1,282 individuals sequenced 
for one ~500 bp mtDNA region (COI; Emerson et al., 2017); (2) wee-
vils from two Mascarene islands (Réunion and Mauritius) which 
have been densely sampled for abundance and sequenced for one 
mtDNA region (~600 bp COI) at the community-scale (Kitson et al., 
2018); (3) three subtropical rain forest tree communities scored for 
multiple continuous traits and shotgun sequenced for whole cpDNA 
(Rossetto et al., 2015); and (4) Galapagos snail communities collected 
from all major islands, sampled for one mtDNA region (~500 bp COI; 
Kraemer et al., 2019) and scored for two continuous traits (Triantis 
et al., 2016). For both the tree and snail communities, we collapsed 
the multidimensional trait data using principal component (PC) anal-
ysis, and selected the position of each species along PC1 as its trait 
value. For each empirical data set we conducted 10,000 simulations 
of each assembly model class and generated abundances, trait val-
ues, and genetic variation corresponding to genomic regions with 
identical numbers of base pairs under an infinite-sites model at a 
rate sufficient to generate diversity similar to the empirical data 
(see Appendix S1: Methods for precise empirical data curation and 
simulation procedures). We then conducted a round of ML model 
selection, parameter estimation, and quantile regression to generate 
parameter estimates and PIs. Finally, we implemented PPS to assess 
goodness of fit of the selected model and parameters to each of the 
observed data sets. For the PPS we generated 100 simulations using 
the estimated MESS model parameters and reduced the resulting 
simulated and observed summary statistics into lower-dimensional 
space by applying principal component analysis. We assessed cen-
trality of the empirical summary statistics in PC space with respect 
to simulated summary statistics to evaluate goodness of fit.

3  |  RESULTS

3.1  |  Model behaviour

Simulations generated under different community assembly mod-
els produced markedly different distributions of community-scale 
data and summary statistics. First we considered one static point 
in time (at Λ = 0.75; Figure 3). Neutral simulations generated com-
munities with higher species richness, more even distributions of 
abundance as summarized by the normalized qD values, and higher 
mean and standard deviation of π values. Filtering and competition 
models were largely indistinguishable in terms of abundance and 
genetic diversity, with distributions of species richness, and mean 
and standard deviation of the population genetic statistics broadly 
overlapping (Figure 3). Distributions of statistics related to trait val-
ues showed more nuanced and variable behaviour, obtaining char-
acteristics that differ between the three models. There was little 
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distinction between models in terms of distributions of difference in 
local and metacommunity mean trait values (Δtrait

�
), with the excep-

tion that filtering models produced more variable results. However, 
distributions of local and metacommunity difference in trait stand-
ard deviation (Δtrait

�
) varied considerably among models, with compe-

tition tending to yield negative values (more variation locally than in 
the metacommunity), filtering producing positive values (less varia-
tion locally in the metacommunity), and neutral models producing 
values centred on zero. This pattern is borne out in Figure 3, which 
illustrates the standard deviations of trait values increasing with 
competition, and decreasing with filtering, with respect to neutral 
models. The trait diversity values (qFD) tended to be slightly higher 
for neutral models.

Next, we investigated the temporal dynamics of MESS commu-
nity histories (Figure 4). Again, species richness in neutral models 
tended to exceed that of the non-neutral models throughout the 
entire community assembly process. In general, a low rate of local 
speciation produced a slight increase in richness and Hill numbers 
for neutral simulations, whereas a high rate produced dramatic 

increases in these metrics for all simulation scenarios. Between 
non-neutral models, richness and Hill numbers for competition 
were, on average, always greater than those of filtering models 
across all time points, with differences increasing with increasing 
speciation rate (v). For neutral models, qD tended to slowly in-
crease monotonically through time, whereas qGD initially increased 
quickly with community-scale genetic diversity accumulating more 
slowly in later stages of assembly. Increasing v increased the av-
erage maximum qGD for non-neutral models, but in these simula-
tions this maximum value tended to saturate very early, with little 
change through time. qFD demonstrated a more dynamic temporal 
trajectory. Broadly, the relationships among the trait Hill numbers 
mirrored those of the abundance and π Hill numbers, with neu-
tral models obtaining the highest, filtering the lowest, and com-
petition somewhat intermediate values, and a trend of increasing 
values through time. However, one key difference in qFD is that 
early-stage communities display relatively high values, with values 
decreasing as Λ increases from 0 to ~0.2, and then showing an in-
creasing trend as Λ proceeds from 0.2 to 1.

F I G U R E  3  Effect of varying speciation rate and community assembly model on summary statistics. Species richness, rank abundance, 
rank genetic diversity, and rank distributions for 1000 simulations generated under neutral (orange), competition (dark blue) and filtering 
(aqua) scenarios with time fixed at 500 generations. From bottom to top, rows of panels correspond to simulations with high (� = 0.005), 
low (� = 0.0005) and no (� = 0) speciation. In the left column of panels, kernel density plots indicate the distribution of richness across 
simulations. In the rank plots (centre two columns of panels), thick lines indicate average rank values and shaded areas show plus and minus 
one standard deviation. The right column of panels shows kernel density plots of zero-centred trait distributions
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3.2  |  Model selection ML cross-validation

ML model classification prediction error reached a minimum value 
with local community size (J) of 10,000 for all model classes and all 
evaluated feature sets (Figure 5; mean error rate 0.16). Prediction 
error was slightly higher for small J (mean error rate 0.19), and did 
not improve dramatically when increasing J from 1000 to 2000 
(mean change in error rate −0.02). Neutral simulations were more 
accurately classified than non-neutral simulations across all feature 
sets and v values (mean error rate 0.05 and 0.18 respectively). ML 
classifiers trained using summary statistics from all data axes were 
most accurate; however, including trait information along with just 
one other data axis (either π or abundance) produced classification 
error rates close to models trained on the full suite of summary sta-
tistics. ML classifiers trained using only summary statistics related to 
abundance and π produced accurate classification of neutral simula-
tions (mean error rate 0.05), but failed to distinguish between the 
two non-neutral models (error rate >0.4). Importantly, in this condi-
tion the predicted model class for non-neutral simulations was over-
whelmingly the alternative non-neutral model and rarely the neutral 
model. For example, simulations under a competition model were 

misclassified as filtering (0.35) with a much higher rate than neutral 
(0.08).

3.3  |  Parameter estimation ML cross-validation

Cross-validation explained variance and R2 regression scores for 
model parameter (�, J, sE, m, v, and Λ) estimation were broadly con-
gruent and positive in almost all cases, indicating that the simulated 
and estimated parameter values were correlated (in some cases 
highly so). For neutral simulations Λ had the highest R2 (0.963) and 
ecological strength (sE) the lowest (–0.037), with most parameters 
having moderate R2  values (e.g. α  =  0.567; m  =  0.685; Figure 6). 
The small R2 for sE is expected given that neutral simulations should 
have no information about strength of environmental interactions. 
Estimates of small to moderate values of m and v were accurate, but 
larger values tended to be underestimated. ML parameter estima-
tion for simulations of filtering and competition models obtained 
improved accuracy to estimate sE (R2 = 0.146 and R2 = 0.287, respec-
tively); however, R2 values for other parameters were somewhat re-
duced with respect to the neutral simulations (Figures S1 & S2). Both 

F I G U R E  4  Community summary statistics through time for neutral and non-neutral models. This plot depicts the temporal change 
in select summary statistics for the three focal community assembly models at three different speciation rates: No, Low, and High 
corresponding to � = 0, 0.0005, 0.005, respectively. The x-axis indicates community age measured as progress of the community toward 
equilibrium (Λ). Community assembly models depicted are neutral (orange), filtering (aqua), and competition (dark blue). Each subpanel 
shows the resultant summary statistic for 1000 simulations equally spaced through time for each model class. Simulated values are depicted 
as points, and a least squares polynomial is fit to better illustrate the trajectory. The far left column of panels illustrate species richness on 
the y-axes (S). The y-axes of the remaining columns illustrate the Hill number of order 1 (effective number of species) for abundance, genetic 
diversity, and trait values, respectively
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non-neutral models produced diffuse estimates of � (R2 = 0.205 and 
R2 = 0.258) and J (R2 = 0.398 and R2 = 0.448). The most significant 
difference between the non-neutral models concerned estimates 
of Λ. Under competition scenarios, Λ estimates were precise but 
upwardly biased between Λ = 0 and 0.5, with increasing variance 
between Λ = 0.75 and 1. Under filtering scenarios, Λ estimates were 
only accurate for values close to Λ = 0.5, with decreasing accuracy 
as Λ moved away from this value in either direction.

3.4  |  Empirical examples

The ML classification procedure identified the neutral model as 
the most probable for all three Mascarene arthropod communities 
(Figure 7a), with considerable support for neutrality of the Reunion 
spider community (predicted class probability 0.939), and more 
equivocal class probabilities for Mauritius and Réunion weevil com-
munities (0.566 and 0.53, respectively). The most important fea-
tures for classification were 1D, standard deviation and mean of π, 
2D, and 4D (accounting for 44% of relative importance of all retained 
features). ML classification identified environmental filtering as the 
most probable model for all tree and snail communities, with highest 
support for the snails (mean predicted class probability 0.698), and 
weaker support for the trees (mean probability 0.440). Combining 
filtering and competition predicted class probabilities indicated the 

average probability of non-neutrality for the trees was 0.633, and 
for the snails was 0.865. Feature importance values for classification 
using axes of trait and genetic data were broadly diffuse across the 
retained summary statistics, with Δtrait

�
 accounting for 11% of relative 

importance of all retained features, and the remainder accounting 
for 5% or less.

The ML regression procedure for parameter estimation indicated 
that the selected empirical data sets occupied a broad swath of pa-
rameter space (Figure 7b; Table S6). Empirical PIs were quite varied, 
with some parameter estimate PIs spanning the width of the prior, 
while the PI of other parameters were narrow, a result which is con-
sistent with CV results. The tree communities had small α estimates 
with narrow PIs (mean α  =  1423; 1019–2481 95% PI), when com-
pared to the arthropod and snail communities, which had larger α 
estimates (e.g., Mauritius weevil α = 7107; 3497–9831 95% PI). ML 
estimates of Λ were more varied, with the weevil and spider com-
munities approaching or reaching Λ = 1, snail communities having 
more intermediate Λ, and tree communities having the lowest values 
(<0.4 in all cases). Estimates of m and ν displayed an idiosyncratic 
pattern, with spider and snail communities having low estimated 
values for both, weevils having high estimated values for both, and 
trees having high ν and low m estimates. Consistent with the CV ex-
periments, ecological strength (sE) was the most difficult parameter 
to estimate, in the sense that all estimates were close to the mean of 
the prior, and PIs spanned the majority of the prior range. Posterior 

F I G U R E  5  Machine learning classification error rates and confusion matrices. The top row shows random-forest misclassification 
error rates given different combinations of available data axes for varying sizes of local communities (J). Data axes used for each suite of 
simulations are indicated along the top of the figure. The x-axis indicates increasing sizes of J, from 500–10,000 in regular intervals. The 
y-axis indicates probability of assembly model misclassification, averaged over 1000 simulations per model class for each J (i.e., lower values 
indicate more accurate classification). In the figure, orange shows neutral simulations, aqua shows filtering, and dark blue shows competition. 
Solid lines indicate 1 - precision and dashed lines indicate 1 - recall. The bottom row shows confusion matrices depicting detailed model 
misclassification rates for data availability scenarios given J values between 9000 and 10,000. In these figures, values on the diagonals 
indicate the proportion of accurately classified simulations for each model class. Off-diagonal values indicate misclassified simulations
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predictive simulations indicated a good fit of the estimated param-
eters to all empirical data sets, with the exception of the Reunion 
spiders (Figure S3).

4  |  DISCUSSION

Community ecology has been perceived as a "mess" (Lawton, 1999) 
because of the endless proliferation of processes proposed for shap-
ing biodiversity. To remedy this, Vellend (2010) proposed a concep-
tual framework to unify the study of community assembly dynamics 
composed of four fundamental processes: dispersal, stochastic drift, 
selection (e.g., deterministic competition/filtering), and speciation. 
These different processes operate on different timescales and con-
tribute information to different biodiversity data axes (i.e., species 
richness, abundances, trait distributions). To more fully character-
ize the interaction among these processes it is therefore necessary 
to develop process based joint models of these data axes. Recently, 
Overcast, et al. (2019) took a new step in this direction and proposed a 
unified model of community ecology and population genetics, which 
accounted for local processes of dispersal and drift, and introduced 
a novel population genetic process. This model makes predictions of 
local genetic diversity which are a record of community history on an 
intermediate timescale, and are complementary to joint predictions 
of abundance. Furthering this unification, here we have described 
an individual-based mechanistic model of community assembly, the 

MESS model, which fully unifies the key processes underlying the 
dynamics of local accumulation of biodiversity across multiple time-
scales: dispersal, stochastic drift, selection (e.g., deterministic com-
petition/filtering), and speciation (Vellend, 2010, 2016). The MESS 
model integrates these processes in an hierarchical framework to 
make temporally explicit multidimensional predictions of species 
abundances, population genetic diversities, and trait variation in a 
phylogenetic context. MESS allows for simulating community-scale 
data from communities assembled entirely by in situ speciation (e.g., 
Galapagos finches; Grant & Grant, 2011) to those assembled only 
by dispersal (e.g., nearctic snakes; Burbrink et al., 2015), as well as 
the full continuum between these. Additionally, MESS can gener-
ate predictions across the full spectrum of ecological interactions, 
from complete neutrality to strong niche-structuring through biotic 
or abiotic interactions. MESS expands the toolbox of practicing com-
munity ecologists by allowing to incorporate community genetic se-
quence data, along with abundances, and trait data for inferring the 
processes which have shaped observed biodiversity patterns.

Simulation experiments show that MESS model summary statis-
tics retain a very strong signal of temporal state (Figure 5; Figures S1, 
S2; Λ subpanels) and that neutral models have elevated S, qD, qFD, and 
qGD compared to filtering and competition models across all except 
the earliest time points (Figure 4). This is a direct result of the ecolog-
ical equivalence of individuals in neutral models generating communi-
ties with lower species dominance. In a similar fashion, for non-neutral 
models, species that are more fit survive preferentially and increase 

F I G U R E  6  Machine learning cross-validation parameter estimation. 1000 parameter estimation cross-validation (CV) replicates using 
neutral community assembly model simulations and summary statistics from all data axes. True parameter values are on the x-axes and the 
corresponding point estimates are on the y-axes (R2 values: � = 0.567, J = 0.845, sE = −0.037, m = 0.685, v = 0.714, Λ = 0.963). A parameter 
that is well estimated will have CV results that fall on or around the identity line (depicted in red). Note that ecological strength (sE) has 
no impact on neutral simulations, which produces the poor CV performance in estimating this parameter
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in abundance, reducing evenness in the community and causing 1D to 
plateau at a low level, though it should be noted MESS does not im-
plement negative density dependence and this is an avenue for future 
research. The finding that neutral models generate the highest spe-
cies richness may be in conflict with theory that suggests competition 
is important for maintenance of biodiversity (Tilman, 1994), however 
the spatially implicit model of competition implemented in MESS may 
not fully capture competition dynamics, and so this result should be 
interpreted with care. Increased speciation rate has little impact on 
1D in the neutral case because ecological equivalence confers no cost 
or benefit to offspring species, whereas in non-neutral models new 
species inherit ancestral trait values with small perturbation. In these 
conditions increasing speciation rate increasingly favours the evolu-
tion and accumulation of small clades of species that have ecological 
advantage, causing a concurrent reduction in 1D.

Overall, we find that any two of the three data axes are suffi-
cient to accurately identify the relative strength of neutral versus 
non-neutral processes in local community assembly, and that in-
cluding trait information allows discrimination between which of 
the non-neutral processes are more important in driving the local 
patterns of biodiversity (Figure 5). This latter finding suggests that 
niche-structured abundances and genetic diversity distributions are 
broadly similar between environmental filtering and competition 
models, and that the variance in local traits is necessary to distin-
guish between them. These results should be robust to values of sE 
that generate moderate to strong non-neutrality (i.e. sE ≥ 1), with a 
corresponding increase in misclassification rate as sE approaches 0. 
More generally, using any two data axes always resulted in improved 
classification accuracy when compared to using a single axis alone. 
Furthermore, our results highlight the flexibility of MESS to mask 

F I G U R E  7  MESS empirical analysis. Empirical classification and parameter estimation of five local communities including snails, tropical 
trees, and island arthropods. (a) depicts machine learning classification probabilities for each empirical community for three focal community 
assembly models. The proportion of colour within each bar represents the proportional predicted model class for neutrality (orange), 
environmental filtering (aqua), and competition (dark blue). (b) depicts pairwise estimates of five different model parameters under the best 
classified model for each local community data set. The value along each parameter axis is indicated by the position of the representative 
icon. Parameters depicted include number of individuals per deme (α), ecological strength (sE), migration rate (m), local speciation probability 
(ν), and fraction of equilibrium (Λ)
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unobserved summary statistics such that inference can be made 
from a wide variety of high-throughput biodiversity surveys across 
different spatial scales and data availabilities. This will enable prac-
ticing community ecologists to perform inference with whatever 
biodiversity data is in hand.

The empirical communities we chose to evaluate represent both 
a variety of available data axes, and a range of perceived dispersal 
limitation, with Galapagos snails being the most dispersal-limited, 
the Australian trees being least limited, and the Mascarene spiders 
and weevils somewhat intermediate. The results from the Reunion 
spider community (classified as neutral with Λ approaching 1, m 
high and v low) are consistent with a late-stage community that is 
structured primarily by colonization and ecological drift (Vergnon 
et al., 2012); however, we note that the model provided a relatively 
poor fit to this data, so this finding should be interpreted with cau-
tion. Both weevil communities had similarly high estimates of Λ, 
but higher estimated v, and less clear support for classification as 
neutrally evolving. The snail communities were classified as being 
structured by environmental filtering, with low estimated m aligning 
with expectations of low dispersal. However, the low estimates of 
v and sE are somewhat surprising, given their documented pattern 
of single-island endemism (Parent & Crespi, 2006). Finally, because 
the Australian tree communities are plot-level samples from smaller 
scales representing semi-isolated habitat patches and not true in-
sular systems we expect their parameter estimates to deviate from 
those of true island assemblages. This is in agreement with the find-
ing that these tree communities are all far from equilibrium (Rossetto 
et al., 2015). Specifically, our approach estimates that the system is 
characterized by moderate m, and high v and sE estimates which in-
dicate that local turnover, in the context of a selective environment, 
is important and ongoing.

4.1  |  Future perspectives

As a first approximation of the feedbacks between processes operat-
ing at different timescales MESS makes several simplifying assump-
tions which can be treated as targets for future model improvement. 
Non-neutral dynamics could constrain trait evolution as a function 
of resource availability or density-dependence (Múrria et al., 2018), 
allow for filtering and competition processes within the same model, 
and/or allow for mutualistic rather than simply competitive interac-
tions. Additionally, directly modelling multivariate trait evolution 
may increase statistical power of inference (Zheng et al., 2009) while 
bypassing the biases associated with reducing the dimensionality 
of multivariate data into one trait dimension (e.g., with PCA; Uyeda 
et al.,2015). Modelling more realistic metacommunity processes and 
patterns, and including more sophisticated measures of diversity 
such as temporal correlations and environmental matching would 
allow for expanding beyond the simple local/regional dichotomy. 
One caveat is that MESS assumes all species (or operational taxo-
nomic units) have been well identified and do not deviate from pan-
mictic population structure, as this will distort model selection and 

parameter estimation during inference. For example, cryptic popu-
lation structure will reduce S and inflate metrics of genetic diver-
sity, which could bias MESS inference to prefer non-neutral models, 
within which these features are common hallmarks. Another special 
consideration is the variance in the rate at which Λ changes with 
respect to time as measured in generations. Specifically, the neutral 
approach to equilibrium is much slower (with respect to numbers 
of generations) than either of the non-neutral models, potentially 
confounding comparisons between models at fixed values of Λ. This 
also highlights the need for a more robust measure of equilibrium, 
which can account for processes across timescales. From a practical 
perspective, the limitations of current MESS ML inference (i.e., point 
estimates of model parameters and uncertainty estimated using 
quantile regression) may be overcome by implementing a machine 
learning procedure which would allow for full posterior inference 
(e.g., Bayesian additive regression trees; Chipman et al., 2010).

Another approximation is the use of the rescaled Wright-Fisher 
coalescent process to generate the community-wide population ge-
netic predictions of the forward-time Moran birth/death process. 
Yet future advances could make use of the powerful new tree-
sequence recording (Haller & Messer, 2019; Kelleher et al., 2018) to 
more accurately and flexibly match the full demographic and abun-
dance history of each species with its respective underlying popu-
lation genetic history. Although here we modelled a single locus per 
species to match the barcode and metabarcode data that are emerg-
ing from high-throughput ecological sampling efforts, implement-
ing tree-sequence recording methods could also allow for flexible 
downstream options to incorporate spatial information associated 
with genetic georeference databases (Lawrence et al., 2019).

4.2  |  Conclusions

With our approach we were able to identify whether real com-
munities were near equilibrium or not, and the ecoevolutionary 
processes underlying those dynamics. For example, despite the 
near-equilibrium state of both spider and beetle communities on 
islands, we discovered that the approach to these equilibria were 
different, with spider communities assembling largely by immigra-
tion, compared to the more prominent role of speciation in weevil 
communities. This confirms suspected, but as of yet untested, hy-
potheses from other island arthropod systems (Rominger et al., 
2016) that can only now be evaluated. We were also able to pin-
point the mechanistic causes (turnover and environmental filtering) 
of nonequilibrium in the tree communities. Finally, our analysis of 
Galapagos snails highlight areas for future improvement in modeling 
more fine scale environmental heterogeneity and its impact on fil-
tering and speciation.

The MESS model unifies the study of biodiversity by linking 
ecological and evolutionary theory across three disparate times-
cales within an individual-based, mechanistic framework. The model 
generates explicit temporal predictions of community-scale data 
across these three diversity axes (species richness and abundance, 
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population genetic diversity, and trait variation), spanning equilib-
rium and nonequilibrium conditions, and allowing for stochasticity 
along a continuum of scenarios ranging from pure ecological neutral-
ity, to strong ecological interactions and/or environmental filtering. 
To complement the MESS model simulations, our implementation in-
cludes an extensive suite of ML tools for performing model selection 
and parameter estimation from observed data, and plotting routines 
for visualizing and evaluating results. This unified mechanistic model 
provides a general framework for hypothesis testing and biodiver-
sity data synthesis, enabling the generation of multidimensional 
forecasts and test parameterized hypotheses about the historical 
and future processes driving biodiversity patterns from small-scale 
intensively sampled plots, to islands sensu lato, to regional and sub-
continental scales.
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