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A B S T R A C T

Although deep autoencoders excel at extracting intricate features, their application in process monitoring is 
limited by the requirement for large sample sizes and interpretability of latent representations. This work pre-
sents a special deep learning structure named Siamese network to detect abnormal deviations in nonlinear dy-
namic processes. By leveraging the capability of Siamese architecture to process multiple inputs simultaneously, 
the training sample size expands exponentially, which enhances the learning potential of the model. Further-
more, a long short-term memory unit is integrated to enable the capture of long-term process dynamics. To refine 
the distribution of latent features extracted from diverse data types, a contrastive loss function is proposed, which 
strengthens the model’s fault detection capabilities and enhances its interpretation of latent representations. 
Then T2 statistic is established on the latent space to perform fault detection. The effectiveness of the method is 
demonstrated through case studies on simulation processes and an industrial process.

1. Introduction

Abnormal situations occur in process industries often cause huge 
losses in terms of economic and physical security. Generally, an 
abnormal situation arises from the emergence and development of faults 
during process operation (Amin et al., 2018). A fault can be defined as at 
least one measurement deviates from its pre-defined acceptable oper-
ating regions (R.Isermann and P.Ballé, 1997). As one of the tools 
available in the Process Engineering System (PSE) toolbox, process 
monitoring techniques not only serve as an important guarantee for 
production safety and reliability but also provide a prerequisite platform 
for the development of process optimization and control systems to 
improve profitability (Modak et al., 2020; Pistikopoulos et al., 2021). 
Data-driven fault detection and diagnosis, which relies on process 
measurements that do not necessitate process knowledge (Alauddin 
et al., 2018), have been attracting attention from both academia and 
industry as the level of factory digitization and automation evolves (Ji 
and Sun, 2022; Qin, 2012; Yin et al., 2014).

Traditional Multivariate Statistical Process Monitoring (MSPM) 
methods, underpinned by Principal Component Analysis (PCA), Partial 
Least Squares (PLS), and Independent Component Analysis (ICA) have 
been applied to monitoring chemical processes through linear projection 

(He and Wang, 2018; Kresta et al., 1991; Qin, 2012). By examining the 
variance-covariance of process variables, MSPM methods transform 
original data into a principal component subspace and a residual sub-
space where the Hotelling’s T2 statistic and squared prediction error 
statistic are calculated respectively to perform fault detection (Nomikos 
and MacGregor, 1995). However, with the development scale of modern 
industrial plants, the production process is characterized by strong 
nonlinearity and process dynamics. Over the past three decades, these 
methods have been extensively studied and modified regarding the 
extraction of various complex features of industrial process data (Ku 
et al., 1995; Lee et al., 2004; Li et al., 2014; Li et al., 2022). As a result, 
numerous novel MSPM methods have been proposed and achieved 
satisfactory performance in the application of the Tennessee Eastman 
Process (TEP), which is a well-known benchmark platform. Several 
studies also reported the application of MSPM methods to monitor the 
operating status of certain specific units (Ji et al., 2022; Kumar et al., 
2020).

Furthermore, the MSPM methods have also been combined with 
probabilistic models to achieve fault detection and root cause diagnosis 
simultaneously (Amin et al., 2018). Yu et al. proposed a probabilistic 
multivariate method for fault detection and diagnosis of industrial 
processes, in which Gaussian copula based on rank correlation was 
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employed for modeling of dependencies to distinguish between normal 
and faulty samples (Yu et al., 2015b). Amin et al. combined the proba-
bilistic model R-vine copula with MSPM to propose a risk-based fault 
detection and diagnosis method (Amin et al., 2021). As another effective 
probabilistic model, Bayesian Networks (BN) excel at mapping causal 
relations and conditional dependencies while capturing uncertainty. It 
has been proven to exhibit strength in reliability and risk analysis 
compared to related methods such as Markov chains and fault trees 
(Khakzad et al., 2013). Khakzad et al. demonstrated the superior per-
formance of BN in safety analysis through a comparison with the fault 
tree (Khakzad et al., 2011). Alauddin et al. integrated physics-based 
models within a BN framework to handle data variabilities in dynam-
ical process systems (Alauddin et al., 2024). Furthermore, BN also shows 
promising applications in hybrid modeling for simultaneously achieving 
fault detection and propagation path analysis. Amin et al. proposed a 
hybrid model that combined PCA and BN to identify the root cause and 
fault propagation pathway (Amin et al., 2018). Yu et al. utilized a 
modified Independent Component Analysis (ICA) and Bayesian Network 
(BN) to effectively detect process faults and trace the fault propagation 
path (Yu et al., 2015a). Gharahbagheri et al. further proposed a hybrid 
method that incorporated Kernel PCA and BN to enhance its perfor-
mance in nonlinear processes (Gharahbagheri et al., 2017). Galagedar-
age Don and Khan proposed a hybrid method based on hidden Markov 
model and BN for fault prognosis(Galagedarage Don and Khan, 2019). 
Amin et al. further conducted a comparative study to verify that the 
integration of multivariate fault probability into fault detection and 
diagnosis could lead to performance improvement (Amin et al., 2020). 
Overall, the hybrid modeling of BN and traditional fault detection and 
diagnosis methods utilizes the advantages of each method to overcome 
the limitations of an individual method, exhibiting promising applica-
tion prospects. However, with the increasing scale and complexity of 
equipment in modern process industries, sensors are liberally placed to 
capture a wide range of dynamic behavior, the consequence of which is 
the strong correlations among them. Coupled with various random 
factors during operation, multivariate statistical methods often fail to 
effectively capture the inherent information embedded in process data.

As an alternative, deep neural networks are beginning to be applied 
more widely in process monitoring, relying on their powerful feature 
processing capabilities derived from advanced model structures and 
massive learnable parameters. As Industry 4.0 emerges, instrumentation 
has significantly advanced, resulting in a pervasive availability of sensor 
data. Simultaneously, the process industries are witnessing a surge in the 
scale and complexity of the equipment. In response, Artificial Intelli-
gence (AI) methodologies have demonstrated their ability in modeling 
complex nonlinear relationships among process variables. Conse-
quently, the chemical industry is progressively integrating AI into its 
digital transformation strategies. Deep Neural Networks (DNNs) have 
gained prominence among AI techniques, with the emergency of big 
models represented by the ChatGPT exemplifying this trend. These AI- 
based models demonstrate promising application prospect in various 
engineering applications such as fault detection (Bhakte et al., 2024; Bi 
et al., 2022). Under this scope, Autoencoders (AEs) have been the most 
commonly used methods. Generally, the AEs consist of two fully con-
nected layers called encoder and decoder. The encoder aims to extract 
features from original data and the decoder is applied for data recon-
struction. The operating status can be monitored by observing the 
reconstruction error (Sakurada and Yairi, 2014). The depth of the 
encoder and the decoder can be adjusted according to the complexity of 
data characteristics. In addition, the model structure of the encoder and 
the decoder can also be adjusted to handle different types of process 
data. Yu and Zhao proposed a denoising AE to improve the robustness of 
the model (Yu and Zhao, 2020). Zhang and Qiu proposed a 
dynamic-inner convolutional AE to monitor nonlinear and dynamic 
processes (Zhang and Qiu, 2022). Cheng et al. proposed a Variational 
Recurrent Autoencoder (VRAE), where the gate recurrent unit is adop-
ted to extract the long-term time dependency of process data (Cheng 

et al., 2019). To further consider the graph structure of processes, a 
graph dynamic AE was proposed by Liu et al. for fault detection (Liu 
et al., 2022). Aiming to capture the spatial distribution information of 
measurements in the equipment, Ma et al. proposed a three-dimensional 
convolutional neural network to extract the spatial features of chemical 
process data (Ma et al., 2023). Regarding the issue of data imbalance, 
Jiang et al. proposed generative adversarial network-based method for 
monitoring industrial time series (Jiang et al., 2019). Jia et al. intro-
duced graph structure into deep learning models to consider the topol-
ogy relationship among variables (Jia et al., 2023). Liu et al. proposed a 
graph dynamic autoencoder to model the process dynamics (Liu et al., 
2022). Lv et al. further proposed a special graph network named 
causality-embedded reconstruction network for high-resolution fault 
identification in chemical process (Lv et al., 2024). Liu and Jafarpour 
incorporated Granger causality map into graph attention network to 
perform fault detection and root cause diagnosis (Liu and Jafarpour, 
2024). With the remarkable achievements of attention mechanisms in 
domains such as natural language processing and computer vision, they 
have also been introduced into fault detection in large-scale industrial 
processes (Lv et al., 2022; Zhou et al., 2023). Bi and Zhao proposed a 
orthogonal self-attentive VAE for fault detection, in which the orthog-
onal attention was introduced into the VAE to model the correlation and 
temporal dependency among process variables in different time steps (Bi 
and Zhao, 2021). Bi et al. further proposed a deep learning-based fault 
diagnosis method that utilized Transformer to discover causal relation-
ships in large-scale chemical process (Bi et al., 2023). One can witness 
the rapid development of deep learning models in the field of process 
monitoring.

Theoretically, given a certain depth with sufficient neurons, a neural 
network model can capture almost any complex relationship among 
measurements. However, process safety requires a high degree of 
interpretability and model generalization ability, which presents a 
substantial challenge to process monitoring methods based on black-box 
deep learning models. Firstly, the more complex the model is, the more 
training samples are required, or the model will not be generalized to 
new samples in test data, resulting in poor monitoring performance in 
real-time operation. Moreover, the reconstruction error of the AE is 
utilized as the training target and the monitoring indicator in most 
present methods, such that the latent features extracted by the model are 
not interpretable or even involved in fault detection.

The main goal of this work is to contribute to advancing the state-of- 
the-art in deep learning-based process monitoring by introducing a 
novel and effective Siamese Recurrent Autoencoder (SRAE) that ad-
dresses key challenges and limitations of existing methods. The original 
code of SRAE is available at https://github.com/Cheng960724. 
Compared with most relevant works on this topic that utilized conven-
tional deep autoencoders, the strengths of this study are mainly reflected 
in the following aspects:

(1) It utilizes a Siamese recurrent autoencoder architecture, which 
allows it to process multiple inputs simultaneously, and therefore 
enhance the learning potential of the model. Specifically, A Siamese 
neural network (SNN) with a long short-term memory (LSTM) unit is 
employed to conduct feature extraction from data with few available 
samples. This strength stems from the multi-input structure of the 
Siamese network. In this work, training data are input into the model 
in pairs. Compared with traditional neural networks with a single 
input, the available training samples can be increased exponentially, 
by which the generalization ability of the model is improved for a 
given sample size. Such a structure is mainly applied in the field of 
computer vision represented by face recognition, while has not ever 
been applied in fault detection and diagnosis.
(2) Most existing works that applied autoencoders for fault detection 
are trained using the reconstruction error, in which the distribution 
of latent representations has not been effectively regularized. 
Comparatively, a contrastive loss function is adopted in the training 
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process of this study to compress the distribution of latent features 
extracted from data collected under normal operating conditions, 
which significantly strengthens the model’s fault detection capabil-
ities and enhances its interpretation of latent representations. The 
contrastive loss is developed based on the idea that the latent fea-
tures extracted from data belonging to the same category, i.e., data 
under normal operating conditions in this work, should be similar. If 
a pair of inputs both belong to normal operating conditions, the 
distance between their latent features will be minimized, and if only 
one of them belongs to normal operating conditions, the distance will 
be maximized. This way, the latent features extracted from normal 
data will be regularized into a small region, by which the dissimi-
larity between normal data and fault data can be magnified and the 
fault detectability of the model is improved.
(3) Fault detection in existing works that utilize autoencoders is 
mostly performed through the mean square errors between input 
data and reconstructed data, while the fault detection of this work is 
performed based on the Siamese recurrent autoencoder with T2 
statistics in the latent subspace. The main training objective of this 
study is to minimize the distance between latent features extracted 
from normal samples, and therefore a compressed region in the 
latent subspace that represents normal operating conditions can be 
determined to perform fault detection. The association between 
feature extraction and fault detection is established, by which the 
fault detection results are also more easily understood and 
interpreted.

The rest of this paper is organized as follows: the basic knowledge for 
the proposed method is introduced in Section 2. Section 3 presents the 
model design and procedures of the proposed SRAE-based process 
monitoring method. In Section 4, the proposed method is validated 
through three case studies, and results are discussed and compared with 
other related methods. The conclusions are drawn in Section 5.

2. Preliminaries

In this section, several basic methods adopted in the proposed 
method are briefly reviewed.

2.1. Auto Encoders (AEs)

AEs have been the most widely used deep learning model to imple-
ment fault detection tasks. As a special form of the neural network, AEs 
employ an encoder to obtain a compressed representation to convert 
original data into a latent space, and then utilize a decoder to recon-
struct data with the information in the latent space. A primary AE can be 
described as follows, 

z = f(wx + b) (1) 

x̃ = fʹ(wʹz + bʹ
) (2) 

where x, z, x̃ represent the input data, latent features extracted by the 
encoder, and the reconstruction outputs obtained by the decoder, 
respectively. f(⋅) and fʹ(⋅) are nonlinear representations of the encoder 
and the decoder. w and wʹ are weights and b and bʹ represent the bias.

The training target of AEs is to find optimal parameters to minimize 
the reconstruction error between x and x̃. The reconstruction error is 
usually adopted as the monitoring indicator in AE-based process moni-
toring methods. The faulty data could not be reconstructed by the 
feature extractor established with data from normal operating condi-
tions. As a result, the reconstruction error increases accordingly, by 
which the fault can be detected. To improve the process monitoring 
performance, the structure of neural networks in AE should be adjusted 
according to the data characteristics of different processes.

2.2. LSTM neural networks

Process dynamics are prevalent in industrial process data, which 
should be considered explicitly to improve the process monitoring per-
formance. For this purpose, Recurrent Neural Networks (RNNs) are 
commonly applied to capture the process dynamics through the transi-
tion of hidden states. However, as the time step increases, the long-term 
time dependency of the process could be lost by conventional RNNs. 
LSTM unit is a well-known variant of RNNs to extract long-term time 
dependency. Its strength stems from the memory transitions controlled 
by a gate structure, which can be expressed as follows, 

it = σ(Wi⋅[ht− 1,xt ] + bi) (3) 

f t = σ
(
Wf ⋅[ht− 1,xt ] + bf

)
(4) 

gt = tanh
(
Wg⋅[ht− 1,xt ] + bg

)
(5) 

ot = σ(Wo⋅[ht− 1,xt ] + bo) (6) 

Ct = ft ⊙ Ct− 1 + it ⊙ gt (7) 

ht = ot ⊙ tanh(Ct) (8) 

where it , f t ,ot stand for the input gate, forget gate, and output gate, 
respectively, xt is the input at the current time step, gt is the current 
candidate state, Ct ,Ct− 1 are the memory cells of the current and last time 
step, ht ,ht− 1 are the hidden states of the current and last time step, W⋅, b⋅ 

are the weight and bias, and σ, tanh are sigmoid and tanh activation 
functions. With the gate structure, irrelevant information of hidden 

Fig. 1. Schematic diagram of SNN.
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states from the previous time step can be forgotten and useful infor-
mation from the current time step can be retained by the memory cell, 
making the LSTM unit more effective in extracting long-term time de-
pendency. Therefore, the LSTM unit is adopted in the proposed SRAE- 
based process monitoring method.

2.3. Siamese neural network (SNN)

SNN is a type of neural network architecture that involve two (or 
more) parallel neural networks that share the same architecture and 
weights. The name "Siamese" comes from the idea of two Siamese twins 
who are connected but operate independently. It was first introduced by 
Bromley et al. to perform signature verification (Bromley et al., 1993). 
The SNN is trained jointly on pairs (or tuples) of input data to compare 
their similarities or learn a relationship between them.. It shows sig-
nificant strengths in few shots learning or even one-shot learning to 
solve image verification as an image matching problem (Koch et al., 
2015). A Schematic diagram of SNN is shown in Fig. 1.

It can be shown that there are two parallel networks within the SNN. 
Each of the colored bars (blue and red) can be metaphorically regarded 
as latent representations obtained from separate but identical neural 
networks within the Siamese architecture. They are "parallel" in the 
sense that they process data independently but share the same under-
lying structure and parameters. The special characteristic is that each 
Siamese network would receive a different piece of data as input. For 
example, in a typical application of Siamese networks for face verifica-
tion, one network might receive an image of a known face, and the other 
an image of a query face. The shared weights allow the networks to 
collaborate in learning a common representation of the data. The simi-
larity between two inputs can be measured by the objective function, 
which is usually the Euclidean distance to measure the similarity in 
distance or Kullback-Leibler divergence to measure the similarity in 
their distributions.

If the different parts of input data come from various sources and 
exhibit different forms but there exist certain associations among them, 
the weights and the structures of each Siamese networks also could be 
different accordingly to better capture latent features from different 
parts of input data. In this situation, the model is called a pseudo- 

Siamese network. In this study, the SNN model shares the same 
weights and structure as both inputs are of the same type of data in the 
fault detection task, and the LSTM unit is adopted given the presence of 
process dynamics in industrial process data, as discussed before.

3. The SRAE-based process monitoring method

In this section, the proposed SRAE-based process monitoring method 
is presented, including the design of the model structure and loss func-
tion, the implementation procedures of the process monitoring method, 
and the indicators adopted to evaluate process monitoring performance.

3.1. Model design of the SRAE

To improve the generalization ability of deep learning-based process 
monitoring models, a novel SRAE model is proposed, whose structure is 
shown in Fig. 2.

The SNN is adopted as the basic structure of the proposed method, 

z1 = LSTM(x1) (9) 

z2 = LSTM(x2) (10) 

where x1, x2 are two inputs of the SNN, z1, z2 are corresponding latent 
features extracted by the LSTM encoder. In most situations, only one 
type of data, time series, is considered in industrial process monitoring. 
As a result, the two inputs are from the same source with significant 
similarity between them. Therefore, the SNN model in the proposed 
SRAE shares the same weights and structure. On the other hand, through 
the introduction of the SNN, the generalization ability of the model 
trained with the same sample size can be significantly improved. This 
stems from the multi-input structure of the SNN, as noted before. Given n 
training samples, the sample size can be expanded to n(n − 1)/2 by an 
SNN with dual inputs.

The selection and processing of training data for neural network 
inputs significantly influences the model’s performance. Data shuffling 
is a vital aspect of neural network training in various contexts, 
contributing to overfitting prevention, enhancing data independence, 

Fig. 2. The structural design of the proposed SRAE model.
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Fig. 3. The implementation procedures of the proposed SRAE-based process monitoring method.

Table 1 
The pseudo code for the training of the proposed Siamese recurrent autoencoder.

# Initialize parameters

- Set the input data dimension: input_size
- Define the hidden layer sizes: hidden_size
- Set the output data dimension: output_size = input_size
- Initialize weights W⋅ and biases b⋅

- Set the training parameters: learning rate, batch size, dropout rate, the number of training epochs

# Initialize the Siamese recurrent autoencoder (essentially two instances of the same autoencoder with shared parameters, as shown in Fig. 2)

- Create the autoencoder structure: Autoencoder(input_size, hidden_size, output_size)

# Define the loss function

- Define a contrastive loss function ContrastiveLoss(encoded_x1, encoded_x2, y)
- If y = 1 (similar samples), the loss is a function of the distance between the encodings, as shown in Eq. (11)
- If y = 0 (dissimilar samples), the loss function is adopted using the one presented in Eq. (12)

# Training process

- Divide datasets into x1, x2 and obtain their labels y
For each epoch from 1 to epochs:
For each batch from the datasets:
- Extract current batch of samples x1_batch from x1 and x2_batch from x2

- Extract current batch of labels y_batch from y
- Encode x1_batch and x2_batch using the SRAE to get encoded_x1 z1 and encoded_x2 z1

- Calculate the contrastive loss for the current batch: loss = Sum(ContrastiveLoss(encoded_x1[i], encoded_x2[i], y_batch[i])) / batch_size
- Use Adam optimization algorithm with learning_rate to update the weights and biases of the SRAE
- Compute gradients of the loss with respect to each parameter
- Update each parameter: param = param - learning_rate * gradient

# Training complete, save the model parameters

- Calculate T2 statistics of latent representations of normal samples using Eq. (13)
- Calculate thresholds using Eqs. (14) and 15
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improving generalization capabilities, and potentially evading local 
minima. For time-series data, such as those encountered in dynamic 
processes like chemical processes, shuffling the dataset is generally not 
recommended due to the inherent temporal dependencies within the 
data. In these cases, the order of the observations matters, as future 
values often depend on past values. Shuffling would disrupt these de-
pendencies, making it difficult for the model to capture the temporal 
patterns and dynamics of the process. Consequently, this study opts to 
preserve the original sequence of time-series data collected under 
normal operating conditions, ensuring that the model can effectively 
learn and leverage these temporal dependencies. Given a time series 
representing normal operating conditions, the division of x1 and x2 as 
inputs is performed as follows.

The Siamese Neural Network requires two inputs, while the core 
characteristic of time-series data lies in the temporal order relationship 
among its data points. Therefore, when processing time-series data in 
this study, it is crucial to ensure that this sequential relationship remains 
intact as much as possible. The two inputs of the Siamese Neural 
Network can be different segments from the same time series, or seg-
ments from two related but distinct time series. For the fault detection 
task in this study, we adopt an approach where the first half of the time 
series serves as the first input x1, and the second half as the second input 
x2. Although there is a temporal difference between the two inputs, they 
both belong to normal operating conditions. By employing the Siamese 
Neural Network and contrastive loss, their representations in feature 
space are as similar or closely aligned as possible, thereby ensuring the 
effectiveness of the model in fault detection.

Moreover, to further study the distribution of latent features 
extracted by the deep learning model, a contrastive loss is proposed as 
the loss function to regularize the distribution of latent features, 

loss = w1
‖ x1 − x̃1‖

2
2

n
+ w2

‖ x2 − x̃2‖
2
2

n
+ w3‖ z1 − z2 ‖, x1,x2 ∈ P (11) 

loss = w1
‖ x1 − x̃1‖

2
2

n
+ w2(max(margin − ‖ z1 − z2‖,0)), x1 ∈ P,x2 ∈ N

(12) 

where x̃1, x̃2 are the reconstruction of the decoder, w1,w2,w3 are 
weights of each term of the loss function, P denotes the input belonging 

to normal operating conditions in this fault detection task, while N de-
notes the input belonging to abnormal operating conditions, and margin 
is a user-defined parameter.

In most existing AE-based process monitoring methods, only the 
reconstruction error is adopted as the training target and monitoring 
indicator. The extracted latent features are simply available for 
obtaining better reconstruction of original data, which is rarely 
considered in process monitoring. In practice, it is more effective and 
reasonable to realize process monitoring directly in the feature space. 
Therefore, the proposed loss function in Eqs. (11) and 12 is designed by 
the idea that the latent features of two inputs of the same category 
should be similar to each other, while the latent features of two inputs of 
different categories should be far away from each other. In this work, the 
Euclidean distance is employed to measure the similarity between latent 
features. The mean square error between the input and output of the AE 
is also retained to extract more representative features. The dominance 
of each item is adjusted through the weights. In this work, the 
contrastive loss is set as the dominant objective of model training with a 
weight of 0.8, as the fault detection is performed in the feature space in 
the SRAE model. This way, the latent features extracted from normal 
training data could be regularized into a small region, and T2 statistics 
are established as follows, 

T2 = ztΛ− 1
z zT

t (13) 

where zt is the latent feature extracted at step t, and Λz is the covariance 
matrix of the eigenvectors. A control limit can be determined by the 
Kernel Density Estimation (KDE) method (Silverman, 1986), by which 
the online process monitoring can be realized. As a non-parametric 
estimation method, KDE can provide reliable threshold estimation 
without requiring any assumptions about the underlying data distribu-
tion. Given the monitoring statistics T2(x) calculated from normal 
operating conditions, a threshold under the 99% confidence interval can 
be determined as follows through KDE, 

ρ
(
T2(x)

)
=

1
̅̅̅̅̅̅
2π

√
dt

∑t

i=1
e−
(T2(x)− T2(xi))

2

2d2 (14) 

∫threshold

− ∞

ρ
(
T2(x

)
)dT2(x) = 0.99 (15) 

where d is the window width of the Gaussian kernel function employed 
in this work, which is usually determined using Silverman’s method 
(Silverman, 1986).

In summary, the strengths of the proposed SRAE-based process 
monitoring are reflected in the following aspects. Firstly, the general-
izing ability of the process monitoring model is enhanced because the 
sample size can be expanded exponentially. Then the distribution region 
of the latent features of normal data is compressed by the proposed loss 
function, by which the fault detectability of the process monitoring 
method has been improved. Combined with the monitoring statistics 
established on the feature space, the transparency of process monitoring 
has also been enhanced. The effectiveness of the proposed method will 
be demonstrated in the next section.

3.2. Procedures of the SRAE-based process monitoring methods

Based on the proposed SRAE model presented in Section 3.1, the 
implementation procedures, which can be divided into offline training 
and online monitoring phases, are shown in Fig. 3. The specific 
description is as follows:

Offline training:

(1) Historical data from normal operating conditions are collected.
(2) Historical data are normalized to zero-mean and unit-variance.

Fig. 4. The scatter plot of normal data and two faults of the simulation process.
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(3) Normalized data are divided into a training dataset and a vali-
dation dataset.

(4) Training data are input in pairs to train the proposed SRAE 
model.

(5) Validation data are applied for hyperparameter tuning.
(6) T2 statistics are calculated using data under normal operating 

conditions and the corresponding control limit is determined by 
KDE.

Online monitoring:

(1) Real-time test data are collected and normalized based on the 
mean and variance of historical data.
(2) Normalized data are input into the SRAE model to obtain latent 
features.
(3) Real-time T2 statistics are calculated and compared with the 
control limit to determine the operating status of the process.

To refine the description of experimental settings in the proposed 
SRAE model, the pseudo code for the training of the SRAE is shown in 
Table 1.

3.3. Evaluation indicators for process monitoring performance

To evaluate the process monitoring performance of different 
methods, two commonly used quantitative indicators, Fault Detection 
Rate (FDR) and False Alarm Rate (FAR), are adopted in this work, 

FDR =
TP

TP + FN
(16) 

FAR =
FP

FP + TN
(17) 

where TP is the abbreviation for true positives, which means the number 
of fault samples that are correctly detected. FN is the abbreviation for 
false negatives and represents the number of fault samples that failed to 

Fig. 5. Latent features extracted by (a) PCA; (b) AE; (c) LSTM-AE; (d) SRAE.
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be detected. FP corresponds to false positives, representing the number 
of normal samples that are wrongly detected as a fault, and TN is the 
abbreviation for true negatives and represents the number of normal 
samples that are correctly identified to be normal.

Moreover, considering that the early identification of abnormal 
process deviations during process operation is important, the Fault 
Detection Delay (FDD), which represents the time it takes for the model 
to detect a fault, is also used in this work.

4. Case studies

In this section, the proposed SRAE-based process monitoring method 
is tested through three case studies, including a numerical process, the 
TEP, and an industrial wax oil hydrogenation reactor unit.

4.1. A nonlinear numerical process

A bivariate nonlinear process is first investigated to illustrate the 
effectiveness of the proposed method. Data are simulated according to 

the following equation (He and Wang, 2007), 

y = x2 + φ (18) 

where x is a random variable that conforms to a uniform distribution 
between − 0.5 and 0.5, φ denotes random noise with N

(
0,0.012). A total 

of 5000 normal samples are generated as the training dataset, and two 
datasets with 1000 samples and a fault introduced at the 250th sample 
are simulated as the test datasets. The distribution of normal data and 
two faults are shown in Fig. 4.

It can be shown that the data show significant process nonlinearity 
and non-Gaussianity, and the magnitude of the faults is small, even 
within the range of normal fluctuations, which poses a significant 
challenge for fault detection. The performance of the proposed method 
is compared with those of several other methods, including PCA, AE, and 
LSTM-AE. The latent features extracted by different methods are shown 
in Fig. 5.

As a linear method, the nonlinear and non-Gaussian features of the 
original dataset cannot be extracted by PCA. Therefore, the faults cannot 
be distinguished from normal data. For deep learning-based methods, 

Fig. 6. Fault detection results for (a) AE, fault 1; (b) AE, fault 2; (c) LSTM-AE, fault 1; (d) LSTM-AE, fault 2; (e) SRAE, fault 1; (f) SRAE, fault 2.
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the T-distributed Stochastic Neighbor Embedding (T-SNE) is adopted for 
visualization, as the dimension of latent features is higher than that of 
original data. The faults still cannot be effectively distinguished by AE 
and LSTM-AE in the feature space because their main objective is to 
minimize the reconstruction error of training data, while the distribu-
tion of latent features is not regularized, resulting in poor fault sensi-
tivity to faults with small magnitudes. Comparatively, the proposed 
method effectively compresses the feature space of normal data, and the 
distance between fault data and normal data can be effectively amplified 
in the feature space, by which the fault detection performance can be 
significantly improved. As shown in Fig. 4(d), both faults can be clearly 
distinguished from normal data. The fault detection results of AE, LSTM- 

AE, and the proposed SRAE are shown in Fig. 6.
It can be seen from the process monitoring charts that AE and the 

LSTM-AE do not perform well in detecting faults. AE-based process 
monitoring is successful in detecting fault 2, but fault 1 cannot be 
detected promptly. LSTM-AE model fails to detect both faults, as the 
magnitude of the faults is too small, obscured by the normal fluctuations 
of data. By contrast, both faults can be effectively detected by the pro-
posed method as soon as the fault occurs. This is attributed to the 
compression of the region of normal data in the feature space. The re-
sults in Fig. 4 and Fig. 5 illustrate that the proposed SRAE-based process 
monitoring method achieves better performance than other methods.

To facilitate replication of the results, the key parameters of the 
models are provided below. The depth of the latent layer and the 
number of latent nodes of all three models are 1 and 5, respectively. The 
number of trainable parameters of AE is 27, and the number of trainable 
parameters of LSTM-AE and SRAE are both 224. It demonstrates that the 
performance of the model in fault detection is significantly improved 
with no increase in the number of parameters and model complexity. To 
further verified the proposed method with published studies, the results 
obtained by studies of Wang and He (2010), and Cheng et al. (2019) are 
also investigated and compared(Cheng et al., 2019; Wang and He, 
2010). The Statistics Pattern Analysis (SPA) by Wang and He is known as 
a more advanced statistical process monitoring method, but there are 
still certain false alarms and missed alarms. For other published methods 
including Kernel Principal Component Analysis (KPCA), Sequence 
Autoencoder (SA), and Variational Autoencoder (VAE), the faults cannot 
be detected. Only the Variational Recurrent Autoencoder (VRAE) is 
applicable to detect the faults of this case study. Although both the 
proposed SRAE method in this study and VRAE in Cheng et al.’s study 
shows promising fault detection performance, the trainable parameters 
and complexity of this study are much less than VRAE. For complex 
industrial processes, the strengths of this study regarding fault detection 
performance and generalization capability can be demonstrated, as 
verified in other case studies.

4.2. The Tennessee Eastman Process (TEP)

The TEP is selected as the next case study because it is a well-known 
benchmark platform for evaluating process monitoring performance. 
While a total of 52 process variables are measured in simulations, in this 
work, 33 process variables are used because the remaining 19 compo-
sition variables are sampled less frequently. A more detailed description 
of the process can be found in (Downs and Vogel, 1993). Data in TEP are 
sampled every 3 min, and 21 types of process faults can be introduced by 
the simulator. In this work, the public datasets provided by Chiang et al. 
are adopted (Chiang et al., 2000). The training data contains 960 sam-
ples collected under normal operating conditions, and the test data 
consists of 18 fault datasets, where faults 3, 9, and 15 are excluded 
because they have been widely reported to be difficult to observe due to 
the small fault magnitude.

The generalization ability of the model is an issue here, as there are a 
large number of parameters to be trained in deep learning models with 
only 960 normal training samples being available. On the other hand, 
there are several complex features contained in data, e.g., process 
nonlinearity, dynamics, and non-Gaussianity, which pose significant 
challenges to the model to effectively detect all types of process faults. 
As argued earlier regarding the strengths of the proposed SRAE-based 
process monitoring method, we expect notable improvement in the 
process monitoring performance.

The process monitoring results for all 18 faults are summarized in 
Table 2. Among these methods, the PCA performs the worst because it is 
insufficient to extract various features of the data, primarily because it is 
a linear transformation. As expected, the performance of deep learning- 
based methods is better than PCA. The hyperparameters needed and 
adopted for the training of deep learning models in this work are sum-
marized in Table 3. In this case study, the depth of all deep learning 

Table 2 
FDR results for 18 process faults of the TEP.

Fault 
No.

PCA 
T2

PCA 
SPE

AE SPA VRAE LSTM- 
AE

SRAE

1 0.991 0.998 0.995 0.990 0.993 0.994 0.999
2 0.984 0.955 0.980 0.973 0.985 0.981 0.986
4 0.201 1 0.748 0.999 1 0.805 1
5 0.240 0.191 0.935 0.980 0.939 0.22 1
6 0.990 1 1 1 0.998 1 1
7 1 1 1 0.998 0.999 1 1
8 0.969 0.846 0.973 1 0.976 0.969 0.984
10 0.299 0.229 0.319 0.795 0.931 0.299 0.904
11 0.406 0.731 0.528 0.991 0.993 0.549 0.863
12 0.984 0.893 0.984 1 1 0.983 1
13 0.936 0.951 0.944 0.923 0.945 0.943 0.958
14 0.993 1 0.999 0.998 0.998 1 0.999
16 0.139 0.231 0.333 0.769 0.973 0.119 0.943
17 0.768 0.946 0.86 0.986 0.999 0.858 0.976
18 0.894 0.900 0.894 1 0.961 0.893 0.905
19 0.088 0.163 0.013 0.959 0.984 0.010 0.976
20 0.313 0.485 0.449 0.935 0.900 0.374 0.906
21 0.355 0.485 0.384 0.999 0.668 0.346 0.656

Table 3 
A summary of hyperparameters needed for the training of neural network.

Hyperparameter Value

Number of layers 1
Maximum number of units neurons 64
Activation function Sigmoid, Tanh
Optimizer Adam
Learning rate 0.001
Number of epochs 1000
Batch size 256
Dropout rate None

Table 4 
FDD results for 18 process faults of the TEP (min).

Fault No. PCA T2 PCA SPE AE VRAE LSTM-AE SRAE

1 21 6 12 18 15 3
2 42 129 48 36 48 36
4 444 0 0 0 0 0
5 0 0 0 6 0 0
6 24 0 0 6 0 0
7 0 0 0 3 0 0
8 75 57 60 18 66 24
10 291 150 156 87 285 36
11 15 15 30 18 30 15
12 18 6 6 0 18 0
13 144 129 135 132 138 111
14 0 0 3 6 0 3
16 930 585 105 0 921 21
17 84 63 72 24 69 57
18 261 246 258 45 258 231
19 / 1230 / 39 / 0
20 255 258 252 225 252 195
21 1554 768 1482 0 1545 747
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models is 1, and the number of latent nodes is 64. The number of 
trainable parameters in AE, LSTM-AE, and SRAE are 4321, 38,024, and 
38,024, respectively. Although there are many more learnable param-
eters in LSTM-AE, its performance in fault detection is similar to AE. The 
reason for this result can be attributed to the generalization ability of the 

models, as there are only 960 samples available to train the model. It is 
natural that the model will overfit, indicating that the model cannot be 
generalized readily to validation datasets and test datasets. As a result, 
the mean square error of normal data in the validation dataset will in-
crease, ending up with a higher control limit. This adversely affects fault 

Fig. 7. Process monitoring charts for fault 5: (a) AE, (b) LSTM-AE, (c) SRAE.

Fig. 8. Process monitoring charts for fault 10: (a) AE, (b) LSTM-AE, (c) SRAE.

Fig. 9. Process monitoring charts for fault 11: (a) AE, (b) LSTM-AE, (c) SRAE.

Fig. 10. Process monitoring charts for fault 19: (a) AE, (b) LSTM-AE, (c) SRAE.
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detectability, leading to a lower FDR. On the other hand, the proposed 
SRAE achieves the best performance (at least as good) in almost all 18 
faults. It is worth noting that the same number of parameters and 
training samples as the LSTM-AE has been adopted by the proposed 
SRAE method, but the SRAE shows a much better generalization ability. 
Benefitting from the multiple input form, the sample size for model 
training has been widely expanded, which contributes to the better 
performance of the proposed SRAE-based method.

The effectiveness of the proposed method can also be verified 
through the FDD. The FDD results for the 18 faults are compared in 
Table 4. It is demonstrated that the proposed SRAE shows superior 
performance in monitoring all these faults at their early stage. Especially 
for a fault with a minor magnitude, for example, fault 19, the proposed 
method can detect it as soon as the fault occurs, while other methods fail 
even to detect it. Meanwhile, the FAR of SRAE for fault 19 is 0, which 
indicates that the fault detection result is reliable. The process moni-
toring charts of AE, LSTM-AE, and SRAE for faults 5, 10, 11, 19, and 20 
are shown in Figs. 7, 8, 9, 10, and 11. These faults have either small 
magnitudes or trigger the response of the control system. As a result, 
they cannot be effectively detected by conventional methods. For faults 

10, 11, and 20, the monitoring statistics of AE and LSTM-AE fluctuate 
around their control limits, which will greatly interfere with operators’ 
judgment of process operating status. Comparatively, benefitting from 
its special multi-input structure and the contrastive loss, the proposed 
SRAE-based process monitoring method shows powerful ability in the 
extraction of discriminative features in the latent space when the faults 
occur. As shown in the process monitoring charts, the fault detectability 
of the proposed method is significantly improved compared with other 
methods. Moreover, it can also be observed from the process monitoring 
charts that there are barely any false alarms triggered by the SRAE 
model, which further strengthens its application prospects in monitoring 
practical industrial processes. We further verified the proposed method 
by comparing with published studies. Similarly, the fault detection 
performance of PCA, KPCA, AE, SA, and VAE is significantly worse than 
that of the proposed SRAE. Regarding SPA and VRAE, the FDR results 
are compared in Table 1. It can be shown that the proposed SRAE per-
forms better than SPA and VRAE in most faults, especially for the first 14 
faults. The strengths of the SRAE can also be further verified through the 
FDD results shown in Table 3.

Fig. 11. Process monitoring charts for fault 20: (a) AE, (b) LSTM-AE, (c) SRAE.

Fig. 12. Structure and sensor placement of the wax oil hydrogenation reactor.
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4.3. The wax oil hydrogenation reactor unit

For the third case study, industrial process data from a wax oil hy-
drogenation reactor unit of an actual chemical factory in China are 
further applied to validate the effectiveness of the proposed method. 
There are 42 temperature measurement points distributed at 6 different 
reactor bed heights, which are shown in Fig. 12. A total of 8000 samples 
with a sampling frequency of 1 min collected from normal operating 
conditions are employed to train the models, and then the fault detection 
performance of different models is compared through a test dataset, 
which contains 2000 samples. According to the operating records, there 
is a temperature spike fault in the test dataset. The temperature spike 
fault will result in serious damage to the product quality and process 
safety. Therefore, it is of great significance to detect the fault at its early 
stage.

In this case study, the depth of all deep learning models is 1, and the 
number of latent nodes is 64. The number of trainable parameters in AE, 
LSTM-AE, and SRAE is 5482, 45,368, and 45,368. The process moni-
toring chart for this temperature spike fault is shown in Fig. 13. Mean-
while, the fault alarm time of different methods is summarized in 
Table 5. It can be shown that the alarm is triggered by the Distributed 
Control System (DCS) at the 1209th sample. Comparatively, this fault 
can be detected much earlier by data-driven process monitoring 
methods, which could provide operators more time to take action to 
minimize the impact of this fault. Among these methods, PCA performs 
worse than deep learning methods because of its lack of ability to extract 
complex nonlinear features of industrial process data. For deep learning 
methods, the fault is detected by the proposed SRAE method at the 
957th sample with scarce false alarms, which is 9 min and 12 min earlier 
than AE and LSTM-AE, respectively. The results demonstrate the better 
fault detection performance of the proposed SRAE method. Given the 
multi-input structure and the contrastive loss in latent space, the 
generalization ability and fault detectability of the deep learning 
method can be effectively improved with equivalent parameters to the 
baseline method. This case study further illustrates the industrial 
application prospect of the proposed method in monitoring chemical 

processes. The effectiveness of the SRAE demonstrated from this work 
may benefit researchers working on related topics, such as industrial 
process control, fault detection and diagnosis, and predictive 
maintenance.

5. Conclusions

This work presents a highly generalized deep learning model, named 
SRAE, for process monitoring. With the multiple-input structure of the 
Siamese network, the sample size of the training dataset is significantly 
expanded, by which the generalization performance of the deep learning 
model can be improved. Moreover, a contrastive loss is proposed to 
measure the distance between latent features extracted from the two 
inputs of the SNN, by which the region of normal data can be effectively 
compressed in the feature subspace. Accordingly, the fault detection 
performance of the model is enhanced through monitoring solely the 
feature subspace, which also brings a certain degree of transparency to 
the deep learning-based process monitoring methods. Overall, the pro-
posed method provides a useful strategy to motivate the development of 
further studies on the generalization performance of deep learning 
models for process monitoring. The strengths of this work in fault 
detection also demonstrate potential applicability in process industries, 
where it can be interfaced or integrated with the factory’s distributed 
control system to significantly enhance the overall reliability and 
robustness of the monitoring infrastructure, ultimately contributing to 
more effective predictive maintenance practices within the factory. In 
future work, we plan to extend the proposed method to multiple sources 
of industrial process data using a pseudo-Siamese network, and histor-
ical fault data can also be applied by the proposed method to further 
improve the process monitoring performance.
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Fig. 13. Process monitoring charts for the temperature spike fault: (a) PCA T2, (b) PCA SPE, (c) AE, (d) LSTM-AE, (e) SRAE.

Table 5 
Fault alarm time results of different methods.

Method DCS PCA T2 PCA SPE AE LSTM-AE SRAE

Fault alarm time 1209 1056 1004 969 966 957
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