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Abstract

Anisotropy and Disorder in Fractionalized Phases

by

Erik E Aldape

Doctor of Philosophy in Physics

University of California, Berkeley

Professor Ehud Altman, Chair

In this dissertation we will describe aspects of the interplay of anisotropy and disorder with
fractionalized phases of matter through three studies.

The first study concerns a material, α-RuCl3, which has been suggested to be proximate
to a fractionalized phase called the Kitaev spin liquid. Despite the presence of traditional
magnetic order at low temperatures, ab-initio predictions, and an observed continuum of
magnetic excitations at high energies has led to excitement that the material is close to the
spin liquid phase. In this study, we describe the magnetic excitations of α-RuCl3 as observed
by time-domain terahertz spectroscopy. In the presence of a small (1.5T) magnetic field,
a discontinuity in the spectra of magnetic excitations as well as a continuum of magnetic
absorption is observed. These observations are suggestive of a field induced transition or
proximity to the Kitaev spin liquid. However, with the assumption of random bond anisotropy,
we show that a conventional magnetic order is sufficient to explain all observed features.
While we find that the experiment can be qualitatively fit to a Hamiltonian with large Kitaev
coupling, all aspects of the experiment are shown to be well described by non-fractionalized
excitations.

In the second study we consider the impact of lattice vacancies in the Kitaev spin liquid,
which represents an expected form of disorder in any physical realization of the phase. In
Kitaev’s exactly solvable honeycomb model, it has been shown that introducing a lattice
vacancy binds an emergent Z2 flux. This offers a feasible route to creating and trapping
this fractionalized excitation. However, it is unclear if this would hold generally for Kitaev
spin liquids or only for Kitaev’s integrable model. To address this, we introduce a universal
low-energy effective theory for the spin liquid with vacancies and Z2 fluxes. Using this
low-energy theory in the gapless phase we find that the binding energy can be attributed to
the suppression of a scattering resonance caused by the vacancy. In the non-abelian phase,
where Z2 fluxes are Ising anyons, we find that the binding energy has a topological origin.
Identifying the doubled spin liquid as a quantum Hall state allows us to argue that spectral
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flow as flux is threaded through the vacancy induces the binding energy. Our results show
that lattice vacancies offer a robust method of creating and trapping Ising anyons in realistic
instances of the Kitaev spin liquid. Additionally, this finding indicates that in the presence
of vacancy disorder, the Kitaev spin liquid should be expected to have a ground state with
Z2 fluxes pinned to the vacancies.

In the final chapter we introduce exactly solvable models of the phase transition between a
Fermi Liquid and a fractionalized Fermi Liquid (FL∗) defined by the emergence of a U(1)
gauge field. We compare the cases where the interactions of this model are spatially disordered
or translationally invariant. Unlike previous attempts to analytically describe this phase
transition, the approach that we introduce allows for the description of strongly coupled fixed
points. In particular, we find that it can describe the ubiquitous linear in temperature strange
metal resistivity observed near many metallic critical points. For spatially disordered couplings
this strange metal phenomenology only appears if the spin liquid deconfines anisotropically
into two-dimensional planes of the three-dimensional material. In the limit of strong damping
of the critical boson, the model describes a Planckian strange metal in which quasiparticle
lifetimes are set only by fundamental constants and the temperature.
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Chapter 1

Introduction

Of the bizarre quantum phenomena that have been discovered in the last century, fraction-
alization may be the strangest and most beautiful. In a striking realization of Anderson’s
vision that “more is different” [6], when many degrees of freedom are assembled, the quantum
numbers of their collective excitations may be fractions of the originals. For instance, in the
fractional quantum Hall effect, quasiparticles have been observed that carry one-third of the
electron’s charge [154, 84, 120]. A further surprise is that these fractionalized excitations can
have different exchange statistics than the elementary degrees of freedom from which they are
formed [12, 162, 105, 145]. Indeed, they need not even be bosons or fermions! In many cases
fractionalization can be described in terms of deconfinement of an emergent gauge field and
therefore defines robust phases of matter we will call fractionalized phases [52, 138, 78, 16,
48]. Fractionalized phases of matter offer an opportunity to study effective field theories with
entirely different forces and particle content from those provided by nature at the microscopic
level.

An inescapable feature in many materials in which fractionalized phases may arise is the
presence of random impurities. Therefore, to understand the properties of fractionalized
phases in real materials it is important to understand how disorder impacts this physics.
For example, theoretical study of the response of a polyacetylene molecule to a doped static
charge lead to the discovery of spin-charge separation in this system [142, 141, 147, 66].
In this dissertation we will explore the impact of the natural imperfections disorder and
anisotropy in several fractionalized phases of matter.

The rest of this chapter is dedicated to reviewing the fractionalized phases considered
in this dissertation. We will first give a brief general introduction to spin liquids, which are
fractionalized phases of quantum magnets. Then we provide a review of a class of exactly
solvable models known as Kitaev spin liquids, considered in chapters two and three of the
thesis. Spin liquids will be reviewed in general briefly before a detailed review of the Kitaev
spin liquid will be given [78]. The Kitaev spin liquid will be the focus of chapters two and
three. Next, we will give some background on the physics of heavy fermion systems. We
review the standard theory for emergence of the large mass in a Kondo lattice model and
the possible transition to a fractionalized metallic phase with a light mass. This transition
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between a Fermi liquid and a fractionalized Fermi liquid (FL∗) will be the focus of Chapter
Four.

1.1 Spin Liquids Review
Many familiar spin models, like the two-dimensional Ising model, find a classical magnetic
order at sufficiently low temperatures. That is, the ground state is well-approximated by a
product state with each spin direction fixed. Excitations of these systems are simply flips of
the spins relative to this classical order. These excitations are not fractionalized because the
spin flip operators are the elementary degrees of freedom of the system. On the other hand,
the nature of the excitations of a magnetic system without a classical magnetic order in its
ground state are much less obvious. We can think of such a system as being “melted” (not a
technical term) with quantum fluctuations. Entanglement is a necessary ingredient here as if
the system could be written as a product state, the spins’ directions would be well-defined.
We will show several examples where this leads to excitations that are fractionalized. We
will define a spin liquid by when a magnetic systems effective theory can be described as a
deconfined phase of an emergent gauge field.

To understand why the ground state of a magnetic system might not find a classical
order, an illustrative example of quantum effects is provided by a simple model of two
spin-1/2 moments. If the Hamiltonian of the system is simply a magnetic field along
the z-axis, H = −h(Sz1 + Sz2), the two will align with the field and the wavefunction is
described by ψ = |+ z〉|+ z〉. This state is classical as each spin has a well-defined direction.
Compare this to the case where the Hamiltonian is instead the Heisenberg interaction
H = JS1 · S2 =

J
2
((S1 + S2)

2 − S2
1 − S2

2). This interaction is antiferromagnetic as energies of
anti-parallel spins are lower than parallel ones. For classical configurations where the spins
are in definite directions n̂1 and n̂2, the ground state energy is minimized when they point in
opposite directions and the energy is given by −J/4. There are two classical spin configurations
which minimize the energy, |+ z〉| − z〉 and | − z〉|+ z〉. If we now allow quantum effects,
we find that true ground state is given by a superposition of these two classical solutions.
Specifically, the ground state is the spin-0 singlet, ψ = 1√

2
(|+ z〉| − z〉 − | − z〉|+ z〉. The

expectation value of either spin vanishes, similar to our expectation for a spin liquid. By
allowing superpositions of classical configurations the spins have become entangled, and the
energy has been reduced to −3J/4. Building on this intuition we should look for spin liquids
in systems that have an extensive classical ground state degeneracy.

To find a system with extensive classical ground state degeneracy we can look for interac-
tions between spins which cannot be simultaneously minimized classically. This frustration
can come from the interactions not being compatible on-site - the Kitaev honeycomb model
reviewed later provides an example of this [78]. Additionally, it is possible that the geometry
of the lattice is incompatible with these minimization attempts. The effect of this is evident
when you compare the models of spin-1/2 moments on the square and triangular lattice
when they couple to nearest neighbors via the anti-ferromagnetic Heisenberg interaction (see



1.1. SPIN LIQUIDS REVIEW 3



 





X

Figure 1.1: On the square lattice spins can be arranged such that all neighbors are antiparallel.
On the triangular lattice this isn’t possible and leads to a frustration of classical magnetic
order.

Fig. 1.2). As demonstrated in the previous paragraph, the classical minimum energy occurs
for anti-parallel spins. On the square lattice we see that we can choose spin assignments for
each lattice site such that all bonds correspond to interactions which are classically minimized.
Once we have chosen the first spin direction, all the rest are fixed, so the classical degeneracy
of the ground state is two. On the triangular lattice, the story is different. There is no way
to minimize each bond even over just a single triangle. For every two triangles there is at
least one bond that is not satisfied. This suggests that the number of classically degenerate
ground states for this system is proportional to the system size and therefore we anticipate
the system might host a spin liquid.

Fifty years ago, these consideration and the absence of antiferromagnetism in experimental
realizations of the triangular lattice antiferromagnet led Anderson to introduce the concept of
the spin liquid [9, 118]. Anderson argued that the ground state energy of the triangular lattice
Heisenberg antiferromagnet could be minimized by pairing neighboring spins into singlets
and then forming a superposition over different ways that the spins could be paired. This
wavefunction was called the resonating valence bond state (RVB). In Fig. 1.1(a) one possible
covering of the lattice with singlets is shown. As there is no magnetic order in this state, the
excitations can’t be simple spin flips (spin waves). Instead, an excitation can be generated by
imposing the condition that two sites are not coupled into any singlets. From our arguments
earlier on the two-spin case, we expect that excitation will cost an energy of order J , the
Heisenberg coupling constant. After creating this defect we are left with two decoupled
spin-1/2 moments (see Fig. 1.1(b)). Therefore, in the RVB state, instead of the spin-1 spin
waves like in a classical magnet, the excitations fractionalize into spin-1/2 quasiparticles. The
exchange statistic of these excitations was measured numerically by adiabatically exchanging
them and they were found to be fermions [80]. While it was later found that the RVB state
wasn’t the correct ground state of this model [67], the hypothetical wavefunction would prove
to be an insightful mistake (and models would be found that realized it [102]). In particular,
the RVB state demonstrates how entanglement in spin systems can lead to the appearance of
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a) b)

Figure 1.2: (a) One possible dimer covering of the triangular lattice. Each ellipse represents
a singlet paired between neighboring spins. The RVB wavefunction is a superposition over
different dimer coverings. (b) A dimer covering with two sites left unpaired. These defects
carry spin-1/2.

fractionalized excitations with exchange statistics different from their underlying degrees of
freedom.

The intuition provided from the RVB state, that the spins fractionalize into fermions, can
be utilized by explicitly rewriting the spin operators of a model with a fermionic representation
[2, 13]. While such a substitution is always formally valid, a spin liquid occurs when these
fermions are deconfined into independent excitations. These techniques are called parton
methods and will be used extensively in this dissertation. One such method replaces a
spin-1/2 moment S, with fermion creation and annihilation operators c†α, cα [1]:

~S =
∑

α,β=1,2

c†α
~σαβ
2
cβ, 〈c†αcα〉 = 1. (1.1)

The second equation is a constraint which must be satisfied to remain in the same Hilbert
space as the original spin. Without the constraint each two-dimensional spin would be
replaced with a four-dimensional Hilbert space. An advantage of this parton method is that
it makes explicit the origin of emergent gauge fields. Fundamentally, a gauge symmetry
informs us that the presented degrees of freedom overcount the physical ones. Therefore,
given a Hamiltonian with effective excitations described unconstrained c fermion, a gauge
symmetry could restore the correct Hilbert space by enforcing the constraint Eq. (1.1). This
gauge symmetry is explicit as spin S doesn’t physically change under an SU(2) rotation of
the fermions cα → Uαβcβ. As this applies to each spin individually, it is a local symmetry
(gauge symmetry). However, in any effective model with these degrees of freedom this
reparametrization symmetry can be broken to any subgroup of SU(2) such as U(1) and Z2.
This leads to the definition of a quantum spin liquid we will assume in this text as a magnetic
system in which such a fractionalization occurs, and an emergent gauge field deconfines. In
Chapters Two and Three, we will consider a spin liquid with an emergent Z2 gauge field and
in the fourth we will consider a fractionalized phase with an emergent U(1) gauge field.

The definition that a gauge field becomes deconfined in a spin liquid is a theoretical
notion which can be challenging to identify in practice. In gapped phases, this corresponds
to a ground state degeneracy known as topological order [160]. In the appendix, we cover
an example of how this ground state degeneracy can be argued from the anyonic content
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of the fractionalized excitations of a particular solvable model (the Toric code) [77]. This
ground state degeneracy can be detected in simulation by a universal contribution to the
entanglement entropy of the ground state [79]. Recent simulation of spin liquids on analog
quantum computers have measured loop operators of spins whose condensation can be shown
to imply the deconfinement of a gauge field [137, 158, 49]. However, neither entanglement
entropy, nor string operators, are experimentally accessible quantities of material candidates
for spin liquids. For material candidates we must relate predictions of a spin liquid’s properties
to quantities which experiment can report on. Kitaev’s solvable honeycomb spin liquid model
has provided instructive on this front, and we will now go over this model, and its predictions
in detail.

1.1.1 Kitaev Spin Liquids
In this section we will review Kitaev’s honeycomb spin liquid model and the associated phases
called Kitaev spin liquids. Kitaev’s honeycomb model provides a solvable model in which
spin-1/2 moments fractionalize into propagating Majorana fermions and static, gapped Z2

fluxes [78]. The Z2 fluxes are the excitations of an emergent Z2 gauge field and act as sources
of π flux for the fermions. One strength of the model is that it depends on several parameters
which as they are varied allow it to realize several distinct phases of spin liquids. Additionally,
the model retains its solubility under certain types of disorder which has made it a useful
testbed for understanding how spin liquids interact with disorder.

Kitaev Honeycomb Model and Solution

In the Kitaev honeycomb model neighboring spin-1/2 moments on the vertices of a honeycomb
lattice couple via bond-dependent Ising interactions as shown in Fig. 1.3:

H = −
∑

<j,k>γ

Jγσγj σ
γ
k γ ∈ {x, y, z}. (1.2)

Along one direction a spin is coupled by its z-component, on the other x and so on. Note that
the terms all serve to frustrate a possible classical magnetic order. At best, a classical order
could only minimize the interaction energy on a third of the bonds. Therefore, according
to the arguments of the previous section we expect that this will lead to a large classical
degeneracy and possibly a spin liquid state. Remarkably, this model can be solved, and the
spin liquid nature of its ground state can be shown directly.

This model can be solved with parton methods in a similar spirit to the fermionic spin
representation presented earlier (Eq. (1.1)). For every spin, you introduce four Majorana
fermions c, and bx/y/z. For every two Majorana fermions, you can create one complex fermionic
mode (e.g. a = c1 + ic2) that can be occupied or not. Therefore, four Majorana fermions
create a four-dimensional Hilbert space. This is too large to represent the spins, so a local
Z2 constraint must be enforced to halve the dimension. The spin operators are given by the
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Figure 1.3: In the Kitaev honeycomb spin liquid model, spins are assigned to vertices of the
honeycomb lattice and are coupled with bond dependent anisotropic interactions.

product:
σγj = ibγj cj, Djψ = bxj b

y
j b
z
jcjψ = ψ, (1.3)

and the constraint is that the operator D must act trivially on any physical state ψ. As
D2 = 1, D is Z2 valued, and this reduces the dimensionality of the Hilbert space by half. As
emphasized in the previous section, a Z2 gauge field appearing in the effective description of
excitations directly corresponds to this constraint.

Substituting the Majorana form of the spin operators into the Hamiltonian reveals it to
be a free fermion hopping model for the c Majorana coupled to a frozen Z2 gauge field. The
Kitaev interaction over an x-bond rewritten in terms of fermions is:

σxj σ
x
k = (ibxj cj)(ib

x
kck) = −i(ibxj bxk)cjck = −iujkcjck, ujk ≡ ibxj b

x
k. (1.4)

We have defined an operator ujk on the bond between j and k. The other terms work
out the same with x → γ. The model is solvable because the the bond variables ujk are
conserved quantities. To see that they commute with the Hamiltonian, notice all terms of
the Hamiltonian are quartic in Majorana and therefore commuting the ujk through them
yields a sign (−1)8 = 1 (or (−1)6 = 1 in the special case where the term considered is the
same bond as the ujk lives on). They are Z2 valued because u2jk = (bxj )

2(bxk)
2 = 1. The bond

variables ujk aren’t themselves gauge invariant as Djujk = −ujkDj, however the product of
ujk over any closed loop of the lattice is gauge invariant. These loop products of the Z2 bond
variables are the physical degrees of freedom of the Z2 gauge field. The minimal loop wraps
a single plaquette, Wp =

∏
〈jk〉∈p ujk, and when this has eigenvalue (−1) we will say that a

Z2 flux is present in that plaquette. Because uij corresponds to the hopping phase of a free
Majorana fermion, when encircling a Z2 flux the wavefunction acquires a π phase shift. Once
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these conserved quantities are fixed, what is left is the free Majorana Hamiltonian:

H =
i

4

∑
jk

Ajkcjck, Ajk = 2Jγjkujk. (1.5)

Solving a free Majorana fermion Hamiltonian is similar to that of the more familiar
complex fermion case. In the complex case, to solve the system, one simply diagonalizes
the hopping matrix A to obtain the single particle energies and creation and annihilation
operators of the energy eigenstates. This is possible because any unitary rotation of complex
fermion creation and annihilation operators leads to creation and annihilation operators in
the new basis. The ground state of the Hamiltonian is then given by the state which has all
negative energy modes occupied. The goal of diagonalizing a free Majorana Hamiltonian is
the same, to find the complex fermionic energy eigenstates. To form a complex fermionic
mode, the Majoranas must be paired. This amounts to finding an orthogonal rotation such
that in the new basis of Majorana c̃, the Hamiltonian takes the form:

i

2

∑
k

εkc̃kc̃
′
k =

∑
k

εk(a
†
kak − 1/2), (1.6)

where the sum runs over positive εk and ak = 1
2
(c̃k + ic̃′k) is the annihilation operator for

the complex fermion energy eigenstate 1. Therefore, as in the complex Fermion case, free
Majorana Hamiltonians can be solved by a diagonalization of the matrix A. This can be
accomplished on infinite lattices with translational symmetries or finite lattices (up to large
system sizes).

Any solution of the Majorana Hamiltonian Eq.(1.5) requires that we must first fix the
background Z2 field’s ujk variables. Fortunately, Lieb’s theorem guarantees that when the
Kitaev couplings are translationally invariant, the ground state energy of the fermions is
minimized when the vacuum is flux free [90, 91]. This sets WP = +1 and fixes the choice
of ujk up to gauge equivalent configurations. One choice of a flux free pattern is given by
partitioning the lattice into A and B sublattices and setting ujk = 1 if j is in the A sublattice.
The stability of the flux free state can be tested by introducing a Z2 flux in this pattern and
then calculating the ground state energy difference. As mentioned previously, on a finite
lattice this can be calculated by direct diagonalization. By extrapolating to infinite-size
lattices, Kitaev found that each isolated Z2 flux raised the ground state by ∆E ≈ .015J
[78]. Given that the Z2 fluxes are gapped, the flux free background is stable and even in the
presence of perturbations, integrating them out should only yield short range interactions for
the fermions.

In the absence of Z2 flux, the model is translationally invariant with respect to the two-site
unit cell of the honeycomb lattice and therefore can be solved on infinite lattices [78]. We can

1A useful trick for calculating the eigenvalues εk is directly diagonalizing the matrix A will always yield
the correct energies even without an orthogonal matrix. The only downside with this technique is you don’t
know the basis to rotate the Majorana without finding the orthogonal matrices that put the Hamiltonian in
the form Eq. (1.6).
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take a Fourier transform with respect to these translations by forming aλ = 1√
N

∑
r e

−iq·rcr,λ
where N is the total number of vertices and we have introduced a sublattice index λ = A/B.
After the Fourier transform the Hamiltonian decouples at each momentum q:

H =
i

2

∑
q,µλ

Aµλ(q)a
†
q,µaq,λ, iA(q) =

[
0 if(q)

−if(q)∗ 0

]
, (1.7)

where f(q) is given by:
f(q) = 2(Jxeiq·n1 + Jyeiq·n2 + Jz). (1.8)

Here the λ, µ indices correspond to sublattice position, and n1 and n2 are the unit cell
translations n1/2 = (±1/2,

√
3/2) (setting our length scale of unit cell translations to 1).

Diagonalizing this Hamiltonian yields the spectra:

ε(q) = ±|f(q)|. (1.9)

The function f(q) has zeros if none of the following inequalities holds:

|J i| > |J j|+ |Jk|. (1.10)

If one of these inequalities holds, one coupling is larger than the others and the fermions are
gapped. In the anisotropic limit where one of the couplings becomes much larger than the
others the system can be described by the Toric code on the square lattice (see appendix
for details of the Toric code) [77]. For nearly isotropic couplings, the model then is gapless.
Therefore, by tuning the anisotropy of the model it can recognize a stable gapless phase, as
well as a gapped phase.

Most of our attention in this dissertation will be near the isotropic point in the gapless
phase, and we will make use of its continuum limit low-energy theory. At the isotropic point
defined by J = Jα, the zero-crossings occur at momenta kK/K′ = ±(4π/3)x̂. These two
crossings are called valleys which we will label with ±. Linearizing the hopping matrix A(q)
in momenta near the valley momenta, we get the following:

i

2
A(K± + p) = vf (σ

xpy ± σypx) +O(p2) vF = (3)1/2J/2. (1.11)

Therefore, at low energies the fermions are described by two real Dirac fermions. The
continuum limit low-energy theory in the absence of Z2 flux is thus described by Hamiltonian:

H =

∫
d2p

(2π)2
(ψK(p)

†(~σ · ~p)ψK(p) + ψK′(p)†(~σ∗ · ~p)ψK′), (1.12)

where ψK/K′(p) are fermionic annihilation operators with momenta (p) relative to the valley
points and the Fermi velocity (vF ) has been set to 1. The Dirac fermion low-energy theory
of the gapless Kitaev spin liquid phase will be the starting point of our analysis in chapter
Three. Familiar from the low-energy theory of graphene, the Dirac fermion’s gaplessness is
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protected by time-reversal symmetry and inversion symmetry. However, unlike graphene, the
real space fermion operators are Majorana fermions and therefore particle-hole symmetry
cannot be broken by creating a trivial inversion symmetry breaking mass [78]. Therefore,
only perturbations which break time-reversal symmetry can open a gap in this low-energy
theory.

When time-reversal symmetry is broken in the gapless Kitaev spin liquid, the Dirac
fermions acquire a topological gap and the model enters a non-abelian spin liquid phase
[78]. One way to break time-reversal symmetry is to apply a uniform magnetic field to
the system δH = −µ

∑
i
~h · ~σ. For weak fields, |H| � J , this addition can be treated in

perturbation theory. This is because applying a spin operator to the ground state must
create a pair of Z2 fluxes which are gapped with an energy cost proportional to the Kitaev
coupling J . The leading non-constant contribution from perturbation theory of this operator
comes at third order. It has a strength of κ = 6hxhyhz

(∆E)2
∝ hxhyhz

J2 , where ∆E is the energy of
creating two adjacent fluxes. In the fermion description, these terms are given by imaginary
second-neighbor hoppings (iuijujkcick) and a local quartic interaction. The exact ground
state can still be found by diagonalizing Eq. (1.5) if only the second-neighbor hoppings are
retained. This is because the model is simply a Majorana version of the Haldane model
[57]. However, the precise nature of time-reversal symmetry breaking is irrelevant for the
low-energy theory which is always only modified by the inclusion of a mass with opposite
sign in the valleys (for the convention of the Dirac Hamiltonians Eq.(1.12)) [78].

Physical Properties of Kitaev Spin Liquids

Now that we have reviewed the solution of the Kitaev honeycomb model, we aim to relate
the distinct phases of the spin liquid to experimentally accessible predictions. An example of
a commonly accessible experimental quantity is the the expectation values of the spins in
Kitaev spin liquid candidates. Measuring this in experiments on materials this is possible
with elastic neutron scattering (yielding a Fourier transform of the spin texture) [17]. For
analog quantum simulations of the phase on Rydberg atoms measuring the spins could be
locally accomplished with fluorescent imaging [137]. With inelastic scattering experiments
like like neutron scattering [17, 18, 19] or time-domain Terahertz spectroscopy [94, 172] the
imaginary part of the magnetic susceptibility is measured. By the fluctuation-dissipation
theorem this allows experimental access to spin-spin correlation functions [97]. Additionally,
heat transport can be measured with thermometry [72, 71, 44]. All of these probes can be
related to properties of the Kitaev spin liquid which can distinguish it from other phases.

Many physical properties of the Kitaev spin liquid follow from the absence of Z2 fluxes in
the ground state (WP = +1) and the fact that each spin operator σγ anticommutes with two
adjacent plaquette operators. Rewriting the flux operator with spins, WP = σz1σ

x
2σ

y
3σ

z
4σ

x
5σ

y
6

(labeling the spins clockwise starting from the topmost of a plaquette), we find that for any
site, two types of Pauli operators will anticommute with WP . That is, any spin operator
acting on the ground state creates two Z2 fluxes (defined by WP = −1) and must result in a
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state orthogonal to the ground state. Therefore 〈~S〉 = 0, and as in the initial vision of a spin
liquid presented in this chapter, the Kitaev spin liquid possesses no magnetic order.

The conservation of Z2 fluxes in the Kitaev spin liquid also implies distinct features of
the spin-spin correlation functions in the ground state. First, these correlation functions are
highly local. For the two-spin correlation functions, the only non-vanishing terms are given by
those with spins on-site or across a nearest neighbor bond to preserve WP = +1 [78]. Second,
the fractionalization of the spin operators into Z2 gauge field degrees of freedom (fluxes) and
Majorana fermions will be manifest as the two-spin function will have the character of a
multi-particle correlation function. That is, unlike the sharp response that the dynamical
structure factor (Fourier transformed spin-spin correlation function) has in magnetically
ordered phases [153], where it captures the sharp dispersion of a single spin flip. In the Kitaev
spin liquid, the dynamical structure factor captures the continuum response of all possible
pairs of fluxes and Majorana fermions at a fixed momentum. Because the Z2 fluxes have no
dispersion, they act like momentum sinks for this pair and the dynamical structure factor
won’t reveal a changing dispersion as total momentum is changed. The exact dynamical
structure factor has been calculated [81] and can be compared to experimental realizations
[17].

In the non-abelian phase of the Kitaev spin liquid there are additional robust features which
can be used to confirm the phase. Many of these features can be argued straightforwardly by
considering two uncoupled layers of the spin liquid. By doing this we can identify the doubled
Kitaev spin liquid as a quantum Hall state and utilize this state’s topologically protected
properties [85] to imply properties about the individual spin liquid layers. This is made
possible because for free Majorana Hamiltonians like Eq. (1.5), if two identical copies are
added together the resulting Hamiltonian has an identical hopping matrix (up to a constant
multiple). The Majorana fermions are replaced with complex fermions a = c1 + ic2 built from
the two layers. Complex Dirac fermions which are gapped by the breaking of time-reversal
symmetry give rise to a quantized Hall conductivity [57], this implies several features for the
real fermion case relevant to spin liquids. While there is no charge current for real fermions,
as fermion number isn’t conserved, there can be energy transport. Due to the existence
of complex gapless chiral edge modes in the quantum Hall effect state, there must be real
gapless chiral edge modes in each layer. These will carry an energy current leading to a
quantized thermal Hall conductivity κxy/T =

π2k2b
6h

, which is exactly one-half of the thermal
conductivity of the ν = 1 quantum Hall effect state [78, 29]. A measurement of this exactly
quantized result would be a smoking gun signal of the non-abelian Kitaev spin liquid.

Another implication of the quantized Hall conductivity of the doubled non-abelian Kitaev
spin liquid is that all Z2 fluxes should carry unpaired Majorana zero modes. This is the
hallmark of the Ising anyon, which can fuse to the vacuum or a fermion [78], and this
nontrivial fusion is why this phase is called the non-abelian Kitaev spin liquid. This can be
argued by adiabatically threading a Z2 flux (one half a flux quantum in the language of the
quantum Hall state) in the doubled system. The quantized Hall-conductivity implies that the
flux then carries an excess +1/2 charge [85]. However, switching the layers corresponds to a
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charge conjugation symmetry which would create a −1/2 excess charge Z2 flux state with
the same energy. The operator which takes you from one state to the other must correspond
to a zero-energy charge 1 complex fermionic mode. This complex zero-energy mode implies
the existence of an unpaired Majorana zero mode associated with the Z2 flux in each layer.
So long as these Z2 fluxes are kept well-separated, their bound modes should have energy
zero up to exponentially small corrections in the distance between them. This makes them of
interest for quantum computation as any form of local error can only change the wavefunction
in the ground state subspace with rate exponentially suppressed in the distance between
the Z2 fluxes [78, 106]. Detection of this zero mode could be accomplished with thermal
interferometry if the Z2 fluxes could be reliably created and trapped [159].

Experimental evidence to date has rejected several material candidates and remains
inconclusive for others. Fortunately, the Kitaev interaction (Eq.(1.2)) has been shown to
be a natural consequence of strong spin-orbit coupling in certain insulators [65, 168]. A
prescription was given to find heavy 4d and 5d transition-metal based insulators which were
expected to have large effective Kitaev couplings. From this several material candidates have
been explored such as Li2RhO3, α−RuCl3 and Na2IrO3 [168]. However, all of the candidates
exhibit magnetic order at sufficiently low temperature, therefore without modification they
aren’t in the Kitaev spin liquid phase. Excitement was generated by neutron scattering
experiments for α−RuCl3 which demonstrated a continuum of magnetic excitations which
persisted above the magnetic ordering temperature [19]. It was suggested that this continuum
represented the fractionalization of a spin flip operator into a pair of fluxes and a Majorana
fermion [81]. α−RuCl3’s magnetic ordering was shown to be suppressed with applied magnetic
field [18]. For a tilted out of plane magnetic field there exist claims of observation of the
quantized thermal Hall conductivity of the non-abelian Z2 spin liquid [71, 175], however
other groups have not reproduced the same result [44]. Therefore, the status of α−RuCl3 as
a spin liquid in applied field is not definite, nor is even the effective model that describes
it at low-fields. In Chapter Two we describe an effective model of α-RuCl3 to consider
whether certain experimental signatures are related to fractionalization or if they have more
conventional explanations.

In realistic models of materials, we must include the possible anisotropy and disorder
present in them. We can then ask what properties of the perfect and clean material persist
or how do they change? The Kitaev model offers a unique opportunity for this because the
couplings J can be different on each bond and the model is still solvable on finite lattices.
Lattice vacancies are a naturally occurring form of disorder which is defined by removing a
spin from the material. This can be simply included in the Kitaev model by turning off all
couplings to an individual site. In this case Lieb’s theorem no longer guarantees a flux free
background in the ground state [91, 90]. Within the Kitaev honeycomb model, it was shown
numerically that when a lattice vacancy was created a Z2 flux was energetically favorable to
be placed through the vacancy [163, 164, 70]. If this was a robust feature of the Kitaev spin
liquid it could be utilized to create and trap Ising anyons. Inteferometry experiments could
then be utilized to confirm the phase imparted on fermions from the Z2 flux which would be
direct evidence that the material was a spin liquid. In Chapter Three we will consider the
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energetics of lattice vacancies binding Z2 fluxes from a perspective which only depends on
the universal properties of the spin liquid phases to confirm that this isn’t only a feature of
Kitaev’s integrable model, but instead extends to generic Kitaev spin liquids.

1.2 Heavy Fermion Materials and Fractionalized Fermi
Liquids (FL∗) Review

In this section we will review the heavy fermion systems, which are the topic of Chapter
4. First, we explain the standard theory for emergence of a large effective mass in these
materials through condensation of a valence fluctuation in a microscopic Kondo lattice model.
Then, we discuss the possibility for establishment of a fractionalized metallic phase on the
other side of the condensation transition. Unlike the Kitaev spin liquid section, which started
with an exactly solvable model to describe a hypothetical material, in this section we will be
confronted with the task of explaining real experimental observations. Developing a solvable
model of the phenomenon reviewed in this section will be the target of Chapter Four.

A curious observation that started the heavy fermion material story was that the specific
heat capacity and electrical resistivity of CeAl3 is several orders of magnitude larger than of
typical metals [11]. To interpret these results we can turn to Landau’s paradigm of Fermi
liquids [83]. In a Fermi liquid, despite potentially strong (bare) interactions, near the Fermi
surface (or the boundary between occupied and unoccupied fermionic levels) interactions
become effectively weak due to a lack of available phase space for scattered states. Therefore,
for experimentally accessible quantities at low-temperatures, the physics is described by
classical quasiparticles with a renormalized mass m∗ and a long lifetime 1/τ ∼ T 2. By
utilizing these quasiparticles, it can be shown that the specific heat, CV /T = γ ∝ m∗, and the
electrical resistivity, ρ = ρ0 + AT 2 (with A ∝ (m∗)2), follow a common form in Fermi liquids.
From this the large specific heat and electrical resistivity in CeAl3 could be understood if the
effective mass was increased nearly three orders of magnitude compared to typical values [11].
Over the years many more metals were found with similarly enhanced effective mass and
these heavy fermion materials would become some of the most robust evidence of Landau’s
Fermi liquid theory’s predictions [68].

A common factor in these heavy fermion materials was the presence of rare earth or
actinide ions with tightly bound d and f orbitals [35]. A reasonable expectation is that a
lattice of such ions creates a very weakly dispersing band of electrons that when hybridized
with the other conduction bands will create a Fermi surface with large effective mass (see
Fig. 1.4). In the limit of complete immobility for electrons in the d and f orbitals, we can
model these degrees of freedom as just spins. Following this reasoning, Doniach suggested
that the Kondo lattice model described heavy fermion metals [45, 73]. In the Kondo lattice
model, spins arranged on a lattice couple to the spin moments of the conduction electrons:

H =
∑
k,α

εc,kc
†
k,αck,α + JK

∑
r,α,β

(~Sr · c†r,α~σαβcr,β). (1.13)
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Figure 1.4: Schematic picture of the formation of a heavy fermion metal. Left: The blue
band is the localized f fermions and the orange band corresponds to the conduction electrons
c. If no singlets have formed they are uncoupled. Right: When the two bands hybridize the
Fermi surface of the conduction fermions grows and the effective mass near the Fermi surface
greatly increases.

This model isn’t directly solvable, so approximations are necessary to understand how it
leads to the formation of a heavy fermion material.

To understand the formation of the heavy fermion material from the Kondo lattice model,
we can briefly consider the simpler problem of a single spin-1/2 impurity coupled to a Fermi
liquid [134]. As described in previous sections, a coupling JK ~S · ~σ is minimized for spin
singlets. However, we expect that the dispersion of the conduction fermions competes with
this localizing effect. Kondo explored this problem to understand a minimum in electrical
resistivity at low temperatures [82]. Both Kondo and Anderson concluded that this was
caused by a logarithmic growth of the effective Kondo coupling as the temperature lowered
using perturbative arguments [5]. From this logarithmic growth, JK(T ) grows to order unity
and outside the validity of perturbation theory when the temperature is less than the Kondo
temperature, TK ∼ Λ exp−1/(2νJK(0)) (where Λ is the bandwidth of the conduction fermions
and ν is the density of states at the Fermi surface) [5]. The fact that JK continues to grow
beyond the perturbative regime was confirmed by nonperturbative renormalization group
calculations later in an early success of Wilson’s program [165]. As JK becomes large, the
spin impurity will form a singlet with the adjacent conduction fermion site to minimize the
interaction energy (as discussed in the spin liquid review). In the strong coupling limit, the
model can be taken to be non-interacting by ignoring the impurity and placing an on-site
potential V c†0,αc0,α which removes the singlet bound conduction electron as V → ∞. This
equivalent perspective suggests that the low-temperature physics is described by a Fermi
liquid scattering off the screened impurity [107]. Following this line of reasoning, Noziére
showed that the resulting Fermi liquid would have a scattering resonance due to the impurity



1.2. HEAVY FERMION MATERIALS AND FRACTIONALIZED FERMI LIQUIDS (FL∗)
REVIEW 14

spin. For energies near this resonance the quasiparticles would have a large effective mass
set by the inverse of TK , corresponding to a mixing of the localized spin and the conduction
electrons. We imagine then that as the number of impurity spins grows that the resonances
would form a section of the Fermi surface and the system would become a heavy fermion
material.

Using parton techniques with the Kondo lattice model ((Eq. (1.13)) it can be argued
that this screening of spins leads to a heavy fermion material [125, 14, 138, 139, 132]. As in
the spin liquid sections, we begin our study of the possible fractionalizations with a parton
technique and decompose the spin into fermions subject to a constraint:

~Sr =
∑
α,β

f †
r,α

~σαβ
2
fr,β, nf,r = 1. (1.14)

This single occupancy constraint can be enforced by introducing a Lagrange multiplier field
into the Hamiltonian:

δH =
∑
r

iλr(nf,r − 1). (1.15)

λr is a complex valued field and we have multiplied by i for convention. With this substitution
the Kondo interaction becomes a quartic fermion interaction:

−JK
∑
r,α,β

(f †
r,αcr,αc

†
r,βfr,β +

1

2
f †
r,αfr,αc

†
r,βcr,β). (1.16)

Due to the single occupancy constraint of the f fermions, the second term is just a shift
of chemical potential for the c fermions and can be absorbed into the definition of the
dispersion εc,k. This quartic term can be decoupled by introducing a bosonic field br via a
Hubbard-Stratonovich transformation [125, 14, 138, 139, 132]:

−JK
∑
r,α,β

f †
r,αcr,αc

†
r,βfr,β → −

∑
r,α

(brf
†
r,αcr,α +H.c.) +

∑
r

b†rbr
JK

. (1.17)

Collecting terms, the Hamiltonian is given by:

H =
∑
k,α

εc,kc
†
k,αck,α +

∑
r

iλr(nf,r − 1)−
∑
r,α

(brf
†
r,αcr,α +H.c.) +

∑
r

b†rbr
JK

. (1.18)

In the parton description it becomes clear that the formation of a heavy fermion material
corresponds to the condensation of the boson b. If b condenses, then the conduction fermion c
mixes with the dispersionless f fermions and becomes heavy. Additionally, when b is condensed
the f fermions will become part of the c Fermi surface - a fact which was anticipated from
the single spin case. Therefore, in the heavy fermion material phase we expect a Fermi liquid
phase with Fermi volume that includes both the conduction fermions and the spins. By
Luttinger’s theorem, this must be the case [96, 108].



1.2. HEAVY FERMION MATERIALS AND FRACTIONALIZED FERMI LIQUIDS (FL∗)
REVIEW 15

At this point, all manipulations of the Kondo lattice model have been exact, however, to
demonstrate that this condensation occurs we must utilize approximations. Anticipating the
condensation of b, we can perform a mean-field analysis treating the boson br = b0 and the
lagrange multiplier field λr = λ0 as constants. The Hamiltonian (Eq. (1.18)) then becomes
described by free fermions. The self-consistent mean-field equations are:

b0 =
JK
V

∑
k,σ

〈c†kσfkσ〉 , 1 =
1

V

∑
k

〈f †
kσfkσ〉 . (1.19)

Here V is the number of lattice sites. Notice that at the mean-field level, b is the hybridization
of c and f , and the second equation says that nfr = 1 is satisfied on average. From these
equations it was shown that for any JK , a condensation of b0 occurs for temperatures lower
than the Kondo temperature TK that appeared in the single spin problem [41]. Therefore, at
least in the mean-field approximation a heavy fermion material is established as the ground
state of the Kondo lattice model.

These mean-field solutions can be justified in a large-N limit of the number of spin
components [36, 34, 125, 14]. This is accomplished by promoting the SU(2) indices of the
fermions α = 1, 2 to N SU(N) components. With this substitution and a rescaling of the
Kondo coupling, JK√

N
(brf

†
r,αcr,α +H.c.), the action becomes extensive in N . As the action is

proportional to N , path integrals will be dominated by their saddle-point solutions in the
large-N limit - namely the solutions of the mean-field equations in the previous paragraphs.
Therefore, finding the saddle point solutions amounts to an exact solution in this limit. In
this large-N limit, due to the asymmetry of the limit between the number of bosons and
fermions, the self-energy for fermions which comes from scattering from the single species of
bosons is suppressed 1/N and vanishes. Thus, within the large-N limit, the formation of a
heavy fermion material was shown - however, it was at the cost of removing the possibility of
any strongly coupled physics (precluding non-Fermi liquid behavior).

If heavy fermion materials couldn’t be driven to phase transitions and their physics
was always well described by weakly coupled fermions, then the role of a theorist would be
finished. However, heavy fermion materials have been observed to undergo phase transitions
by application of magnetic fields, pressure and charge doping to metallic phases with smaller
Fermi surfaces corresponding to the charge density of the conduction band alone [143, 109, 51,
98]. Luttinger’s theorem tells us that the charge density is always given by the Fermi volume
[96, 108]. As this charge density is measured per unit cell, the breaking of translational
symmetry during a phase transition naturally results in a discontinuity of the Fermi volume
with respect to the new Brillouin zone [143]. However, recent experimental evidence has
shown that the heavy fermion material CeCoIn5 can be tuned to a small Fermi surface phase
without breaking translational symmetry [98]. The Hall coefficient RH = Ey

jxBz
= ρxy

µ0H
at

high-fields is a measure of the charge carrier density n. In this limit, RH = 1
en

. Tracking the
Hall-coefficient while doping revealed that the number of charge carrier density suddenly
shifted (see Fig. 1.5). The implication is that the assumptions of Luttinger’s theorem cannot
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Figure 1.5: Inverse Hall coefficient measurement of CeCoIn5 as a function of doping. Tin
doping leads to a sudden increase in charge carrier density. This image is reproduced from
[98].

be true on both sides of the phase transition, namely that both phases cannot simply be
Fermi liquids.

The phase transition observed in CeCoIn5 can be understood if an emergent U(1) gauge
field becomes deconfined when entering the small Fermi surface phase [138]. The origin of the
U(1) gauge field can be seen in our parton analysis by the constraint nfr = 1, as emphasized
in the previous section. The model obeys a U(1) gauge symmetry where λ is the time-
component of the emergent gauge field. The gauge symmetry is manifest in the lagrangian
term fr,α(∂τ + iλr)fr,α, where the gauge symmetry acts by transforming fr,α → eiθr(τ)fr,α and
λr → λr−∂τθr(τ). As b is related to f by b ∼ c†f they both have charge +1 under this gauge
symmetry. Therefore, the ground states of the system represent phases of an emergent U(1)
gauge theory coupled to matter fields [138, 139, 52]. In the heavy fermion material phase,
b, charged under this emergent U(1) symmetry, is condensed and therefore this emergent
gauge field is in the Higgs (or confined) phase. If the Hamiltonian is perturbed such that the
ground state has 〈b〉 = 0, then the U(1) gauge field is deconfined, the Fermi surface of the c
fermion will shrink by excluding the f fermions and no local symmetry is broken.

This U(1) deconfinement transition can be accommodated in the mean-field picture that
we have reviewed with a natural modification. The spin moments will generally interact
with each other via the Ruderman-Kittel-Kasuya-Yosida interaction (RKKY) which leads to
antiferromagnetism [128, 73, 176]. A simple model of the impact of this antiferromagnetic
interaction is provided by introducing nearest-neighbor Heisenberg interactions JH

∑
〈rr′〉

~Sr ·
~Sr′ . Including this in the parton mean-field formalism only modifies the Hamiltonian by
introducing a dispersion εf (k) for the f fermions. For finite JH couplings, this change is
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sufficient to uncondense b and deconfine the U(1) gauge field [138, 139].
We therefore have learned quite a bit about the phase transition under which the Fermi

surface suddenly changes volume without breaking symmetry from this mean-field theory,
or equivalently this large N limit. As mentioned previously, these approximations came at
the cost of vanishing fermion self-energies. This is at odds with experimental observations of
electrical resistivity at finite temperatures above the critical point, where linear in temperature
resistivity, unlike the robust T 2 prediction of Fermi liquid theory is obtained [98]. This non-
Fermi liquid “strange metal” behavior originally observed in the normal state in high Tc
superconductors [150, 40] has now been observed near many metallic critical points [144,
146, 98, 152, 109]. Therefore, it is expected that the this phenomenon is then connected
to fermions coupling to critical fluctuations [32, 21, 139, 115]. A fascinating aspect of the
strange metal phenomenology is that there is growing evidence of an lower bound on the
transport timescale τ ∼ h̄

kBT
which has been dubbed the “Planckian time”. This timescale is

determined only by fundamental constants and the temperature [27, 152, 60, 28, 89, 130]. In
Chapter Four we will develop a new large N approach to this problem that can describe this
strongly coupled physics.
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Chapter 2

Magnetic Field Evolution of Magnons
in Kitaev Material α-RuCl3

2.1 Introduction
While the Kitaev model’s anisotropic bond-dependent couplings may seem unphysical, it has
been shown that the Kitaev interaction is a natural outcome of strong spin orbit coupling in
a number of transition metal insulators [65, 168]. In this chapter we describe and explain
an experiment on such a material, α-RuCl3, that has been suggested to be proximate to
the Kitaev spin liquid state [19, 17, 18, 133]. The experiment was performed by Joseph
Orenstein’s group and led by Liang Wu and Arielle Little and and we provided the theoretical
modeling and analysis of the results [171].

Similar to the Kitaev honeycomb model, in α-RuCl3, effective spin 1/2 moments live on
the honeycomb lattice and interact primarily with their in-plane neighbors [168]. Unlike the
Kitaev spin liquid, α-RuCl3 is found to be magnetically ordered below 7K [135]. Below this
temperature the spins align ferromagnetically on zigzag lines through the honeycomb lattice
and adjacent ferromagnetic lines are anti-aligned (see Fig. 2.1). As there are three ways to
pass orient a zigzag line through the honeycomb lattice, there are three C3 rotation-related
zigzag orders. In the absence of C3 symmetry breaking, these magnetic orders represent
degenerate ground states. We find that this degeneracy leads to large experimental differences
when even small amounts of disorder are introduced.

Ever since it was realized that spin-orbit coupling can lead to the Kitaev interaction
in transition metal compounds like the iridates and α-RuCl3, there has been a hunt for
materials in the phase [65, 30, 168]. Unfortunately, unlike the Kitaev model, all known
material candidates magnetically order at low temperatures [95, 31, 33, 23, 151, 135]. The
question that remains is, are these materials proximate to the Kitaev spin liquid phase, and
if so, can they be pushed into those phases by some accessible means?

In α-RuCl3 probes of the magnetic excitations have yielded suggestive evidence of a
closeness to the Kitaev spin liquid. The results of inelastic neutron scattering [19, 17, 18] and



2.2. EXPERIMENTAL DETAILS 19

a) b) c)

Figure 2.1: The three possible zigzag magnetic orders. The four-site unit cell is shown by
gray dotted lines. (a) Q=Y (b) Q=M (c) Q=M’

Raman spectroscopy [133] have shown a broad continuum of scattering at high energies and
Q = 0 (zero momenta transferred). This is seen in addition to sharper magnon excitations. It
was suggested that this continuum scattering is related to the continuum scattering expected
from Kitaev spin liquid where a spin fractionalizes into majorana fermions and a Z2 magnetic
flux [81, 17, 18]. However, other authors have suggested that such a continuum corresponds
to anharmonic behavior expected due to a frustrated classical order and is not a strong
indicator of proximity to the Kitaev spin liquid [166].

Further excitement was generated by indications of a field-induced transition into a
magnetically disordered state [136, 15, 178, 86, 18], as well as reports of a quantized thermal
Hall conductivity in this regime [71, 175]. However, THz spectroscopy experiments have
shown that the spectral weight of the continuum excitations doesn’t grow as a function
of magnetic field up until the critical field which suggests the nature of excitations in the
adjacent phase aren’t related to this scattering feature [94].

In this chapter we report and explain a measurement of the magnetic excitation spectrum
in α-RuCl3 via time-domain THz spectroscopy (TDTS). With this technique the zero-momenta
spin-spin correlation function is accessed via measurement of the magnetic susceptibility. We
find that all features observed can be described with calculations based on linear spin wave
theory (LSWT), provided we assume the presence of a random C3 breaking anisotropy which
generates a multidomain structure of the magnetic order. Additionally, we find that broad
continuum excitations can be explained with contributions from two-magnon states.
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Figure 2.2: (a) Transmitted THz electric field amplitude at T = 294 K as a function of
sample angle. Blue and red lines represent the minimum transmission axes at a′ and b′ [94]
(b) Schematic of honeycomb structure showing a and b monoclinic axes relative to Ru-Ru
bonds. Color of atoms illustrates zigzag order. Bond labels x, y, and z denote the component
of the spin interacting along a given bond in the Kitaev model. (c) Magnon absorption as
a function of frequency for H ‖ b′ ‖ BTHz and H ‖ b′ ⊥ BTHz respectively. The magnon
contribution is extracted from the total THz absorption by subtracting a reference at T = 8
K, above TN , from a T = 4 K spectrum at each field. Traces are offset for clarity.

2.2 Experimental Details
In this experiment, THz pulses are passed through α-RuCl3 and the time delay for a return
echo, paired with the frequency resolved absorption rate allows for a determination of the
imaginary part of the magnetic susceptibility [94]. By measuring the transmission coefficient
of these pulses t(ω) we access the absorption coefficient α(ω) by the following relationship:

t(ω) ≈ 4n

(n+ 1)2
e−α(ω)d, (2.1)

where n is the index of refraction of the material, and d is the length of the sample. α(ω)
has magnetic and dielectric contributions. To isolate the contribution which comes from
magnetic dipole coupling it is useful to consider the differential absorption ∆α(ω) where the
absorption from T = 8k > TN (the ordering temperature) is subtracted [94]. The imaginary
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part of the dynamic magnetic susceptibility can then be calculated:

χ′′(ω) =
4∆α(ω)d

ωTrt
, (2.2)

where here Trt is the time of a THz pulse to travel through the system and then make a return
echo. The THz pulses are linearly polarized before entering the sample. A DC magnetic field
is applied to the sample in parallel and perpendicular in-plane directions between 0− 7T.

Directions for polarization of THz spectroscopy and orientation of DC field were guided
by first finding the axes of the honeycomb layers. THz electric field amplitude was measured
when rotated between crossed linear polarizers, as shown in Fig. 2.2. A pure honeycomb lattice
has C3 rotational symmetry, which would manifest in such a plot by zeros of transmitted
intensity along the honeycomb’s a or b axes. As this is not observed in experiment, C3

symmetry must be broken. One possible explanation, which we promote, and micro-Laue
diffraction confirms, is the presence of an elongation of one of the three bond directions and
the presence of several patches of different bond anisotropy. As there are clear minima nodes
in the plot, one of the three possible lattice distortions is the dominant anisotropy and can
be identified as effective axes for the system a′ and b′. With the dominant axes of the system
charted the TDTS could be done with applied external field along directions referencing the
underlying honeycomb lattice.

Now we can summarize the main experimental findings. In Fig. 2.2(c) and (d) the
differential absorption coefficient shown for TDTS with applied external fields H ‖ b′ with
THz pulses polarized along the b′ and a′ axes respectively. At H = 0T, two well-defined
magnon peaks appear in the different polarizations. In the parallel polarization (Fig. 2.2(c)),
the magnon peak continuously evolves as the field is increased. In the perpendicular channel
(Fig. 2.2(d)), there is a discontinuity in the magnon evolution near 1.5T. At high fields (∼ 5T),
two higher energy broad excitations labeled L3 and L4 appear in the perpendicular channel.

2.3 Theoretical Description
Starting with a family of Hamiltonians suggested by ab-initio studies [167] we will demonstrate
a set of parameters which lead to the phenomenon observed. We will start by finding the
classical magnetic order of the model. Then we will perform a semiclassical expansion about
this order known as linear spin wave theory (LSWT) to find the magnetic excitations. From
this, we can compare predictions of the absorption to the TDTS experiment. We will show
that to explain the discontinuous evolution of the magnon absorption it will be necessary to
assume the existence of patches with differing anisotropy. Finally, we will show that the next
leading order in this semiclassical expansion which involves pairs of spin wave excitations is
sufficient to explain the continuum features.

2.3.1 Linear Spin Wave Theory
The starting point for the LSWT calculations is the effective spin Hamiltonian,
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Figure 2.3: Magnon energies and absorption strengths at Q = 0 as a function of external
in-plane magnetic field, H. Experimental data is in panels (a)-(d). Magnon absorption was
extracted by subtracting the 8 K spectra from the 4 K spectra at each value of H. Spectra
were taken in 0.2 T steps from 0 - 5 T and in 0.1 T steps from 5 - 7 T; intermediate field
values are interpolated. The mode dispersion is shown for four configurations of H and the
THz probe field, BTHz relative to a′ and b′: (a) and (c) show H ‖ BTHz along the a′ and b′

directions respectively, while (b) and (d) show H ⊥ BTHz. Note the difference of color scales:
absorption in the parallel configuration is roughly twice as strong. Panels (e) and (f) show
LSWT calculations for absorption in H ‖ b with the probe field parallel and perpendicular,
respectively. Solid dots overlaid on (f) represent mode energies predicted by LSWT. The
orange and pink dots coincide with observed Ω1 and Ω2. Two higher energy modes (white
dots) are forbidden by selection rules and do not contribute to THz absorption. Intensity
in the region 4 - 6 meV results from 2-magnon absorption and is consistent with observed
features L3 and L4.
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HS =
∑
<ij>

[
J1Si · Sj + Γ(S

αij

i S
βij
j + S

βij
i S

αij

j ) +KS
γij
i S

γij
j

]
+
∑
<ij>3

J3Si · Sj − µBg
∑
i

H · Si
(2.3)

where 〈ij〉 and 〈ij〉3 denote summation over nearest neighbor and third neighbor bonds, respectively
[124, 167, 173, 156, 166]. K is the Kitaev interaction, Γ is the symmetric off-diagonal term and
J , J3 are the nearest-neighbor and third neighbor Heisenberg couplings, respectively. The γij are
bond labels (x, y, or z) as shown in Fig. 2.2(b) and αij , βij are the two remaining directions for
each bond. Note that the magnetic field is expressed in spin-space components, for example, H ‖ a
is expressed as H = H (1, 1,−2)/

√
6 and H ‖ b is H = H (1,−1, 0)/

√
2.

The parameters in Eq. (2.3) lead to a classical ground state with the observed zigzag antiferro-
magnetic order, pictured in Fig 2.1. We obtain the collective modes by expanding the Hamiltonian
to quadratic order in the fluctuations about the ordered magnetic moment [62, 153, 38]. The spin
wave theory is reliable when quantum (or thermal) fluctuations are small compared to the ordered
moment, in which case the normal modes are non-interacting magnons. We obtain the theoreti-
cal THz absorption by computing the linear response of the magnons to an oscillating magnetic
field. Beginning from the Hamiltonian in Eq. (2.3) of the main text, our spin wave approximation
represents the dilute limit of magnon fluctuations above a classical spin configuration. Such an
approximation is accomplished by rewriting the local longitudinal spin component as polarized
minus a number operator. Consistency of the commutation relations of the spin variables and new
bosonic variables fixes the rest of the dictionary:

Szi = S0 −Ni = S0 − a†iai (2.4)

S−
i − = (2S0)

1/2a†i (1− a†iai/(2S0))
1/2 ≈ (2S0)

1/2a†i (2.5)

S+
i = (2S0)

1/2(1− a†iai/(2S0))
1/2ai ≈ (2S0)

1/2ai. (2.6)

Here S0 is the spin magnitude and the approximation in these equations are assumed in LSWT.
These redefinitions are necessarily local when the magnetic order is not ferromagnetic. This
technique is detailed in the more general case of incommensurate structures by Toth et al. [153].
The classical spin configuration is obtained by assuming a given zigzag order and minimizing the
presented Hamiltonian. We then expand the Hamiltonian in our bosonic operators about this
classical configuration. The accuracy of this approximation requires that the spin deviation remains
small on the spin size.

Making these substitutions yields a bosonic theory with interactions, which we neglect, resulting
in a quadratic theory. The quadratic Hamiltonian is not number conserving and can be solved with
a Bogoliubov transformation using the technique of Colpa et al. [38]. The zero-point quantum
fluctuations of the spins are captured in this approach and lead to reduction of the magnetic moment
compared to its classical value. This reduction of static moment is the correction that we include
when calculating the theoretical DC magnetic susceptibility (see Fig. 2.5) and it is important in not
overestimating this quantity.

The dynamic structure factor is given by the two-spin correlation function which can be calculated
with free field correlators in the bosonic language. This is related to absorption with linear response
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theory. ∫ ∞

−∞
eiωt

∑
i,j

(< Sµi (t)S
ν
j > + < Sνi S

µ
j (t) >)

∝ coth
(
βh̄ω

2

)
χ′′
µν(ω,Q = 0)

(2.7)

In the bosonic language this expression amounts to the evaluation of two- and four-point functions in
a free theory. The transverse contributions are exclusively two-point functions and should therefore
only be sensitive to, in this approximation, the one magnon spectrum. The longitudinal component of
each spin contains a number operator so evaluating the longitudinal absorption involves a four-point
function. A four-point function in free field theory splits into an integral over pairs (in our case
with net momentum zero) and necessarily generates a continuum response. It is interesting that
this continuum can generate contributions that look sharp enough in width to be confused with
higher energy spin wave modes or other bound states.

For our Hamiltonian, the 1/S corrections to spin-wave theory are small but not insignificant.
They are strongest at 0-field, and close to the ∼7 T transition. The 0-field corrections come from
spin flip occupation at momentum given by the wave vectors of the unchosen zigzag orders. The
zero field corrections are due to soft fluctuation modes at the right wave-vector that would take one
zigzag configuration to one of the other two degenerate states. These corrections however should
not couple strongly to the individual Q = 0 modes. Near the transition, the zero-point fluctuation
(namely, the occupation of the Holstein-Primakoff bosons nk = a†kak) is almost exclusively at Q = 0
and we expect quantum corrections to our calculated spectra.

In the zigzag state, the unit cell of the honeycomb is enlarged to include four sites, as such there
are four independent dispersing magnon modes. Of these, only two contribute to THz absorption,
corresponding to the Ω1 and Ω2 modes discussed above. The two higher energy modes cannot
be excited by the uniform in-plane THz field. This selection rule is exact, and is a result of a Z2

symmetry of the zigzag state, whereby two pairs of spins within the unit cell may be exchanged.
Thus, we do not associate the observed peaks at L3 and L4 with these modes.

We find the Hamiltonian enjoys two residual Z2 symmetries even in presence of the zigzag order.
The first is a sublattice symmetry. In a zigzag order the sublattice contains four spins, two on each
ferromagnetic strip. The sublattice symmetry is a simultaneous switching of spins within each zigzag
strip. This symmetry acts simply on the Q = 0 modes and they transform under representations of
it. The higher energy modes are odd under this transformation and the lower energy modes are
even. A uniform magnetic field is even under this transformation so it can only couple to the lower
modes. This explains the absence of a response from the two higher spin wave modes. The second
selection rule is the result of a spin-space symmetry of the zigzag state. This symmetry exchanges
the two spin directions not associated with the bond that joins ferromagnetic strips. For instance, if
the bond that joins the ferromagnetic strips is z-type, then at zero external field there is a symmetry
upon the exchange of the x and y spin coordinates. This symmetry is approximate at finite field and
exact for zero field. One of the lower modes, Ω1 is odd under this transformation, while Ω2 is even.
The in-plane probe field, BTHz, if applied parallel or perpendicular to the ordering wave vector will
be respectively odd or even under this transformation and couple to a mode of the same parity.

To find appropriate values for the parameters in Eq. 2.3, we began with the representative
values chosen by Winter et al. [169, 166] to model INS data, and adjusted them to fit the energies
of the modes seen by TDTS. We note that the parameters suggested by Ran et al. [123], obtained
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by fitting exclusively to INS spectra at the M point, yield spin wave energies at Q = 0 much larger
than found experimentally. A linear spin wave calculation with the parameters of Winter et al.
leads to an accidental degeneracy of modes Ω1 and Ω2. Refinement of these parameters is needed to
account for our observation that these modes are split by 0.7 meV at H = 0. We find that fitting
the spectra is accomplished by increasing the relative strength of the Γ term, such that Γ/K ∼ −1
instead of Γ/K = −1/2. A representative fit to the energies of modes Ω1 and Ω2 as a function of H
using the parameter set (J , K, Γ, J3) = ( -0.35, -2.8, 2.4, 0.34) meV is shown as dots in Fig. 2.3(f).
We assume the same in-plane g-factor of 2.3 as used by Winter et al. [169, 166].

The calculated energies of the magnon modes are an excellent fit to the measured energies.
Nevertheless, the parameters we have chosen should not be viewed as a definitive set representing
microscopic interactions. As we show below, there are sizable quantum corrections to spin wave
theory, which should be viewed as based on renormalized parameters. Such renormalized interactions
may be dependent on magnetic field and the wave vector of the mode. In this context the main role
of the LSWT analysis is to explain the origin of defining features of the spectra, such as spectral
weight ratios, zero-field splittings, polarization selection rules, and trends with increasing applied
magnetic field.

2.3.2 Low-Field Crossover
In the following we show that the polarization selection rules predicted by LSWT account for
the intricate mode-switching behavior observed at intermediate magnetic fields, shown in Fig. 2.3
(a-d). The crossover at H =1.5 T coincides with the disappearance of magnetic Bragg peaks
corresponding to one of the three possible orientations of zigzag order on the honeycomb lattice
[136, 18]. Previously, this effect was interpreted assuming that three degenerate zigzag orientations
are present as domains [136]. Within this picture, application of a magnetic field lifts the 3-fold
degeneracy, driving energetically favored domains to grow at the expense of others. The possibility
that the disappearance of magnetic Bragg peaks is related to a gradual reorientation of the ordered
moments within domains was also discussed [18].

We find that a picture of gradual domain growth [136] or spin reorientation [18] is incompatible
with the abrupt changes in the THz spectra that are observed when the applied magnetic field
reaches 1.5 T. Instead, our explanation of the sudden changes at 1.5 T is based on the fact that
in α-RuCl3 the C3 symmetry of the honeycomb lattice is broken, which removes the degeneracy
of the three different possible orientations of the zigzag magnetic order. The dependence of the
relative energy of the three orientations on H will lead to a field-induced level crossing in which the
wavevector of the zigzag order will abruptly switch. In the following, we refer to this phenomenon
as a “Q-flop” transition to distinguish it from the conventional spin-flop in which the spin direction
changes but not the ordering wavevector. We believe that a Q-flop transition is required to account
for the abrupt changes in the THz spectra and the vanishing of certain elastic neutron peaks near
1.5 T [136, 18]. Below, we discuss in detail how the Q-flop picture accounts for the unusual evolution
of mode frequencies and spectral weights as a function of magnetic fields.

As mentioned previously, the breaking of C3 occurs with a relatively small elongation of one of
the three bond directions. We incorporate this distortion into the spin Hamiltonian by reducing the
coupling constants J , K and Γ for the “stretched” bond. Breaking C3 symmetry in this manner
lifts the degeneracy between the three possible zigzag wave vectors, Q; the zigzag with Q parallel to



2.3. THEORETICAL DESCRIPTION 26

H || b

0 T

1.5 T

4 T

Ω11asfdda Ω11asfddaΩ21asfdda Ω21asfdda Ω21asfdda

BTHz || a
+ +

H
 (T

es
la

)

Q=Y Q=M Q=M’

!"#$%&'%()'*# +"#$%&'%()'*#,"#$%&'%()'*#

Figure 2.4: Illustration of the evolution of the three possible zigzag states and active modes
for perpendicular case H ‖ b, BTHz ‖ a, where a, b are axes of the z-stretched domain.
Bottom row of honeycombs shows preferred spin orientations at H = 0 T, with ordering wave
vectors defined with respect to the z-stretched domain. The ellipses show the projection of
polarization of Ω1 (red) and Ω2 (blue) onto the ac plane for each domain above and below
HX = 1.5 T. Solid arrows indicate a mode that absorbs for BTHz ‖ a, dashed arrows indicate
a mode that does not absorb. Upper row of honeycombs shows reoriented spins above HX .

the direction of its stretched bond (local monoclinic b axis) is energetically favored, the two other
orientations of Q related by ±120◦ rotation are degenerate and higher in energy. This zero-field
splitting plays a key role in shaping the field dependence of the THz spectra.

Our scenario for the evolution of the spectra with magnetic field is illustrated in Fig. 2.4, which
presents a table of the energetically preferred states and active modes for each domain, for values of
H below and above 1.5 T. We label each bond direction by x, y, or z, depending on the orientation
of its Kitaev interaction. The hexagons with x, y, and z-stretched bonds shown in the bottom row of
the table illustrate the spin order of the three domains at H = 0, where the spins are projected onto
the ab plane. Our calculations show that application of a magnetic field favors zigzag orientations
for which |Q ·H| is largest. At a crossover field, HX , the Q ·H energy gain exceeds the zero-field
splitting. For H > HX the zigzag wave vector in all domains aligns with the direction selected by
the magnetic field, while structural domains remain intact. The field-induced crossover is illustrated
in Fig. 2.4 for the case where the applied magnetic field favors the domain shown in the left-hand
column, in which the z bonds are stretched. For H > HX the zigzag wave vector of the y and x
domains will reorient to the Q of the z-stretched domain. This process is analogous to the usual
spin-flop transition in antiferromagnets, with the distinction that here the rotation involves both
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the direction of the moments and wave vector of the magnetic order.
The Q-flop crossover described above accounts naturally for the complex evolution of the THz

absorption with applied field when we take into account the polarization and relative spectral
weight of Ω1 and Ω2. As illustrated by the arrows inside the ellipses in Fig. 2.4, for the preferred
zigzag order of a z-stretched domain (Q = Y ), Ω1 is excited by BTHz ‖ b and Ω2 by BTHz ‖ a. The
polarization of these modes reflects an approximate symmetry with respect to exchange of x and y
spin coordinates within the zigzag state. This symmetry is exact at zero field. Furthermore, our
LSWT calculations predict that the spectral weight of Ω1 is approximately a factor of six larger
than that of Ω2 (as indicated by the eccentricity of the ellipses). Thus, LSWT predicts strong
optical anisotropy for a single structural domain. The fact that the measured THz absorption is
nearly isotropic in plane follows from the presence of the three structural domains with comparable,
though unequal, population.

The state of the system for H < HX is indicated by the lower row of ellipses in Fig. 2.4. In
this regime, for all directions of BTHz the spectrum is dominated by the strong Ω1 mode at 2.6 meV,
although Ω2 at 3.3 meV appears faintly as well. The upper row of ellipses shows the reorientation of
the polarization that accompanies the Q-flop crossover at HX . With all the ellipses now aligned
with the applied field, there is suddenly a strong dependence on the relative orientation of BTHz
and H; BTHz ‖ H couples only to Ω1 while BTHz ⊥ H couples only to Ω2. This results in the
mode-switching from Ω1 to Ω2 that is observed only in the BTHz ⊥ H channel. Fig. 2.3 panels (e)
and (f) show the evolution of the THz absorption spectra calculated with LSWT on the basis of the
above model, which accurately reproduces the complex field and polarization dependent features of
the experimental data.

In Fig. 2.5, we show that the multi-domain LSWT theory described above captures the curious
deep minimum in spectral weight for BTHz ⊥ H at 1.5 T (expressed as χ⊥(0)). The upper theoretical
curve is the classical result, while the lower curve includes zero-point fluctuations of the spin 1/2
moments. The sudden reduction in spectral weight for BTHz ⊥ H occurs when the applied field
aligns the Q of each domain, such that at H = HX , BTHz couples only to the weaker Ω2 mode.
Although the crossover predicted by the theory is sharp when compared with experiment, broadening
of the Q-flop crossover is expected in the presence of structural disorder. We note that our scenario is
consistent with the increase of the M point spin-wave intensity at 2 T observed in INS measurements
[18].

2.3.3 Two-Magnon Contribution
Finally, we discuss the features L3 and L4 that are observed in the BTHz ⊥ H channel in the photon
energy range ∼ 4− 6 meV (Fig. 2.3 panels (b) and (d)). These modes cannot be identified as single
magnon excitations because of the exact Z2 symmetry discussed above. However, LSWT predicts
absorption by a continuum of two-magnon states in precisely this energy range (Fig. 2.3(f)). A
further prediction is that the two-magnon absorption takes place selectively for BTHz parallel to the
ordered moment. As shown in Fig. 2.4, for H > HX the moments have flopped to an orientation that
is nearly perpendicular to H. Thus, the two-magnon interpretation of L3 and L4 is consistent with
the selection rule seen in the data, as these features appear for BTHz ⊥ H and are unobservable
for BTHz ‖ H.
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Figure 2.5: Experimental and theoretical χ(0) as a function of H ‖ b ⊥ BTHz configuration.
Blue: Susceptibility of the classical spin configuration. Green: Calculation of susceptibility
with corrections. Magenta: Experimental values.

Although the selection rules show unambiguously that L3 and L4 are two-magnon excitations,
the details of the calculated field dependence (Fig. 2.3(f)) differ from the data. This is in contrast to
the excellent agreement in the case of the single-magnon modes Ω1 and Ω2. The most likely origin
of this discrepancy is that while the single magnon modes are measured at Q = 0 the two-magnon
absorption depends on the spin wave dispersion over the entire Brillouin zone. While our LSWT
parameters reproduce the local minima at the M-points seen by INS, they do not reproduce the
local minimum observed also at the Γ-point [18]. Indeed, all the theoretical models of this system
studied to date do not reproduce this feature of the INS data [169, 148]. The dispersion of the
modes across the Brillouin zone for our LSWT model, at H = 2 T, is shown in Fig. 2.6, where
local minima appear at the M-points but not the Γ-point. We find that a local minimum at the
Γ-point may be introduced by adding a second nearest neighbor ferromagnetic Heisenberg term on
bonds perpendicular to the order wave vector on the order of .3 mev. Anisotropic second neighbor
terms of this order and larger are predicted by ab initio studies [167]. Including such terms has
the additional benefit of increasing the M-point gap closer to observed values. We would like to
emphasize that in modeling the full dispersion, such terms shouldn’t be ignored due to their small
magnitude because for each site, there are six second neighbor couplings. Further study is required
to fit such terms to experimental data. However, we find that a Γ-point minimum appears within
LSWT when further interactions are added, for example second nearest-neighbor ferromagnetic
coupling. Finding a spin Hamiltonian that describes all aspects of the single-magnon, two-magnon,
and INS spectra is a goal for future research.
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Figure 2.6: Theoretical spinwave dispersion at H = 2 T applied along the b-axis.

2.4 Discussion
In summary, we used polarized time-domain THz spectroscopy to track the frequencies and spectral
weights of optically accessible magnetic excitations in α-RuCl3 approaching the ∼7.5 T transition to
a spin disordered state. The THz spectra were determined for parallel and perpendicular orientation
of the static and THz magnetic fields. We observed two sharp resonances at 2.5 and 3.2 meV and
broader features in the range 4-6 meV that appear only at applied fields of above approximately 4 T.
In the theoretical section of the paper, we showed that linear spin wave theory can account for the
totality of the data, i.e, the field dependence of spectral weights, mode frequencies, and polarization
selection rules. The two lower frequency peaks are attributed to zero-wavevector magnons and
the higher energy features that appear at approximately 4 T are consistent with a continuum of
two-magnon excitations.

In our analysis, we focused on the unusual field dependence observed with H perpendicular to
BTHz, where an apparent jump in spin wave frequency from 2.5 to 3.2 meV and a deep, narrow
minimum in spectral weight occur at an applied field of 1.5 T. We showed these phenomena arise
from the combination of two factors. First the C3 symmetry of a perfect honeycomb is broken in the
α-RuCl3 lattice, which gives rise to the presence of three structural domains. Second, the frequencies
of the two optically active spin waves are split even in zero applied magnetic field; the degeneracy
of these modes seen in previous spin-wave calculations [169, 166] is an artifact of the parameters
used in those models. Based on these factors, we conclude that the apparent jump in frequency and
spectral weight minimum arise from a Q-flop crossover at 1.5 T, where the external field overcomes
the anisotropy of the crystal to select a preferred ordering wave vector of the zigzag state. Although
the mode jump was previously associated with Dzayaloshinskii-Moriya (DM) interaction [121], or
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to a sudden splitting of modes caused by the applied magnetic field [140], we believe that our
model based on zero-field splitting and field-induced ground state energy crossing is uniquely able to
account for the totality of the data. The constraints on the effective spin Hamiltonian parameters
that emerge from our analysis will aid in understanding the phase diagram of α-RuCl3 and potential
for existence of spin liquid ground states in this fascinating compound.
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Chapter 3

Theory of Z2 Flux Binding to Lattice
Vacancies in Kitaev Spin Liquids

3.1 Introduction
Anyons are particles with nontrivial braiding statistics that can emerge as excitations in phases of
matter with topological order in two spatial dimensions [145, 161]. The experimental realization and
detection of anyons in concrete physical systems has long been an important goal. Only recently this
has been achieved in fractional quantum Hall systems using mesoscopic interference experiments
[105].

Quantum spin liquids, discussed in some length in the introduction section, can also host anyon
excitations. However, it is an open problem how to controllably create and detect anyonic excitations
in this case. Even experimental identification of a spin liquid is an unrealized goal, in part because
it is hard to come up with positive signatures of a spin liquid. Finding concrete schemes for creating
and detecting topological excitations of spin liquids is a promising approach to obtain unique
signatures of such phases. To this end, solvable models of spin liquids, such as Kitaev’s honeycomb
model, offer a useful laboratory for studying manipulation and detection of anyons.

Kitaev’s Honeycomb model is a solvable spin model with a Z2 spin liquid ground state. The
excitations include propagating Dirac-Majorana fermions and static gapped Z2 fluxes that act as a
source of π-flux for the fermions. With addition of time-reversal symmetry breaking terms, Kitaev’s
honeycomb model can also realize a non-abelian spin liquid, hosting non-abelian anyon excitations.
The model, its solution and basic properties are reviewed in the introduction.

An interesting property of the Kitaev honeycomb model for the purpose of preparing and
manipulating anyons is that lattice vacancies tend to bind a flux of the Z2 gauge field [164, 70, 56].
In the non-abelian phase the vacancy traps a non-abelian anyon, at least if the gap is not too big
[70]. A natural question is whether these results, obtained via exact solution of the honeycomb
model represent more general properties of Z2 spin liquids and proximate non-abelian phases.

In this chapter we identify a robust mechanism for trapping of Z2 fluxes by lattice vacancies. Our
analysis is based on the universal low-energy theory of the spin liquid and a proximate non-abelian
chiral spin liquid.

In section II we investigate the effect of lattice vacancies on the ground state of a Z2 Dirac
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Figure 3.1: In the Kitaev honeycomb model, nearest neighbor spins couple with Ising
interactions whose spin component depends on the direction of the connecting bond.

spin liquid by treating them as scattering centers. We show that a vacancy produces a scattering
resonance unless it is accompanied by a Z2 (i.e. π) flux. The presence of the scattering resonance
involves transfer of spectral weight from large negative energies to a peak at zero energy which
implies an increase of the ground state energy. Thus, the suppression of the scattering resonance by
the Z2 flux explains the binding energy.

In section III we show that the flux binding has a topological origin by formulating a pumping
argument. To this end we weakly break time-reversal symmetry to open a small gap in the Dirac
dispersion, which takes the system slightly into a non-abelian spin liquid phase. Threading a Z2

flux adiabatically through the vacancy then reduces the energy through spectral flow.

3.2 Flux Trapping From Low-Energy Scattering
Theory

3.2.1 The Low-Energy Effective Theory
The low-energy theory of a Z2 spin liquid can be motivated and derived starting from the solution
of Kitaev’s honeycomb model, but is more general. Kitaev’s model is reviewed in the introduction,
and we give it here for convenience:

H = −
∑

<j,k>γ

Jγσγj σ
γ
k γ ∈ {x, y, z}. (3.1)

Where the spin-1/2 moments are located on the honeycomb lattice and interact via bond-dependant
Ising interactions as shown in Fig. 3.1. We will focus on the isotropic point where all couplings Jγ
are approximately equal. As shown in the introduction the exact solution of this model involves
rewriting spin operators using four Majorana operators σγj = ibγj cj supplemented by a local parity
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constraint. The model is then given as a Hamiltonian of Majorana fermions coupled to Z2 gauge
degree of freedom on the links and the ground state can be shown to be in the sector with no Z2

flux through plaquettes. In the zero flux configuration, the fermions have two conical crossings of
zero-energy leading to a Dirac dispersion at low-energies [78]. In Kitaev’s model the Z2 gauge field
fluctuations are completely static, so the physics is described by non-interacting fermions for any
given flux configuration. More generally the fluxes can gain dynamics, but they represent gapped
degrees of freedom. Integrating out the gapped gauge field fluctuations leads to interaction terms
between the Majorana fermions that are irrelevant at low energies. In what follows we will allow for
bound Z2 flux excitations that act as a source of π-flux for the Majorana fermions.

The discreteness of Z2 fluxes presents a challenge for writing a long wavelength continuum field
theory of the Majorana fermions that couple to them. First, a Z2 flux can only be implemented
using a singular vector potential as illustrated in Fig. 3.2. Second, it is often useful to introduce
a perturbation adiabatically and this is impossible to do with a flux of a Z2 gauge field because
of its discreteness. We resolve both these issues by formally doubling the problem. By taking two
uncoupled layers of the spin liquid the Majorana fermions can be replaced with complex fermions
a = c1 + ic2 that can couple to a static U(1) gauge field. The resulting model is equivalent to the
original (doubled) Majorana model as long as all physical configurations of the U(1) gauge field
include only zero or π fluxes threading plaquettes. However, the U(1) gauge freedom allows us to
represent these configurations vector potential field that is smooth everywhere except at the origin
and can be included in a continuum field theory. Furthermore, we can study the change between a
configuration with zero flux threading a plaquette to one with a Z2 flux by adiabatically increasing
the flux from zero to π.

The low-energy Dirac theory coupled to the U(1) vector potential is given by

H =

∫
d2x(ψ†

K~σ · (~p− ~A)ψK + ψ†
K′~σ

∗ · (~p− ~A)ψK′), ~A = Φ
θ̂

r
. (3.2)

Here ψ†
K and ψ†

K′ are each two component spinors in the sublattice degree of freedom and σα are
Pauli matrices in this space. The labels K and K ′ represent the two valleys of the Dirac dispersion.
A convenient gauge to describe an Aharonov-Bohm flux Φ at the origin has ~A = Φ ẑ × r̂/r.

As in graphene, the Dirac fermions are protected by particle-hole symmetry and time-reversal
symmetry. In this case because the model must describe two decoupled Majorana-Dirac models, the
particle-hole symmetry cannot be broken by any physical perturbation. Therefore, only time-reversal
symmetry breaking can generate a gap. In section III we show that under the presence of weak
time-reversal symmetry breaking the conclusions of this section are not changed.

A lattice vacancy can be described as a special impurity potential within the effective continuum
theory. First, we note that it prevents occupation of a specific lattice site belonging to one sub-lattice,
say sublattice A. Therefore, it acts as a local infinite repulsive potential for only one pseudo-spin σ
component. Second, because the potential it produces the same inter-valley as intra-valley coupling.
These two observations imply the following potential to represent a vacancy at the origin:

U(r) = u δ(r)ψ†(1 + σz)(1 + τx)ψ, (3.3)

where σ and τ are Pauli matrices that act on the sublattice and valley degrees of freedom respectively.
We always need to take the limit u → ∞ at the end of the calculation to represent a physical
vacancy.
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a) b)

Figure 3.2: (a) A lattice vacancy changes the ground state flux configuration by binding a Z2

flux in the honeycomb Kitaev spin liquid. The red lines represent singular vector potential
connecting the fluxes, passing over which fermions acquire a minus sign. (b) We describe
the effect of Z2 fluxes within a continuum low-energy theory where fluxes are represented as
smooth Aharonov-Bohm fields. In the double layer system, these can contain arbitrary flux
Φ.

3.2.2 General Argument Using Friedel Sum Rule
In this section we use a Friedel sum rule to argue that a lattice vacancy gives rise to a scattering
resonance, whereas the presence of a Z2 flux near the vacancy suppresses the resonance. As explained
above, suppression of the resonance involves transfer of spectral weight from the zero-energy peak
to large negative energies, reducing the ground state energy.

Friedel’s sum rule relates the charge that is removed from the system by an impurity potential
to the scattering phase shift at zero energy. For a short-range potential Friedel’s sum rule is given
by [50]:

∆N =
1

π
η(0). (3.4)

In this expression η(E) is the scattering phase shift and it assumes that the scattering phase shift
vanishes at energies of the order of the cutoff. In our case the particle-hole symmetry of the Dirac
fermions ensures that creating a lattice vacancy corresponds to removing (or adding) half-charge
from the system, i.e. ∆N = ±1/2. Hence, by the Friedel sum rule, the zero-energy scattering phase
shift is η(0) = ±π

2 . Recall that the scattering cross section depends on the phase shift as sin2(η).
A phase shift of π/2 corresponds to the unitarity limit [61]. By the Breit-Wigner[26] formula a
scattering phase shift π/2 implies that the cross section and the density of states form a peak at
zero energy corresponding to a resonance. This is familiar in tight-binding models of graphene,
where a quasilocalized zero-energy mode is known to appear created by a lattice vacancy [20] and
earlier from the resonant-level model [8, 42]. The appearance of a resonance incurs an energy cost.
Due to particle-hole symmetry, the spectral weight associated with the zero-energy resonance must
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be taken from both positive and negative energies. As the ground state energy is the sum over all
negative energy states, the transfer of states from negative to zero energy increases the ground state
energy.

The Friedel sum rule shows us that the scattering phase shift at zero energy is η(0) = π/2. The
scattering cross section depends on sin2(η) and therefore the zero-energy scattering has reached the
unitary limit [61]. By the Breit-Wigner formula a scattering phase shift π/2 implies that the cross
section forms a peak - corresponding to a metastable bound state also called a resonance [26]. This
is familiar in tight-binding models of graphene. On a finite lattice this appears as a quasilocalized
zero-energy mode created by a lattice vacancy [119]. The creation of a lattice vacancy in any
bipartite hopping model imbalances the number of sublattice sites and guarantees the appearance of
a zero-energy eigenstate. In an infinite system this mode isn’t normalizable, and therefore appears
through a resonance of the scattering states [119]. We have thus shown that lattice vacancies induce
a zero-energy scattering resonance [46, 119]. Due to particle-hole symmetry, the spectral weight
associated with this zero-energy resonance must be drawn from negative energies. As the ground
state energy is the sum over all negative energy states, this must increase the ground state energy.

Next, we seek to use a Friedel sum rule to compare the scattering phase shift when a Z2 flux is
threaded through a vacancy, however the previous Friedel sum rule only worked for short-ranged
potentials. To remedy this we consider a more general Friedel sum rule. We begin by calculating
the change in particle number ∆N as a result of a perturbation:

∆N =

∫ 0

−Λ
∆ρ(E)dE

= − 1

π

∫ 0

−Λ
Im(Tr(G(E)−G0(E)))dE

=
1

π

∫ 0

−Λ
∂E Im(ln det(T (E)))dE

=
1

π
(η(0)− η(−Λ)),

(3.5)

Here ρ(E) = − 1
π Im TrG(E) is the density of states, and Λ is the cutoff of the system. In this

expression G0(E) and G(E) are the Green’s functions before and after the perturbation is introduced
and the T matrix is defined by the relation G(E) = G0(E) +G0(E)T (E)G0(E). We have utilized
the Green’s function identity Tr(G(E)−G0(E)) = ∂E ln detT (E) [61]. Now fixing ∆N = −1/2 we
obtain the general Friedel sum rule for vacancies which can accommodate long-range potentials:

η(0)− η(−Λ) = −π/2. (3.6)

The only difference between this Friedel sum rule and the one given previously is the appearance
of a scattering phase shift at the cutoff energy. However, in the absence of long-range potentials
like an Aharonov-Bohm field, we can take η(−Λ) ≡ 0 mod π, physically stating that at sufficiently
high energies the quasiparticles are essentially free [93].

Next, we apply this Friedel sum rule to calculate the zero-energy phase shift of a vacancy
threaded with flux Φ, 0 < Φ < 1. For this case we can no longer safely assume that η(−Λ) ≡ 0
mod π. This is because even at the highest energies, in an Aharonov-Bohm field, encircling the
origin imparts a phase. However, we can provide a quick heuristic derivation of this phase shift and
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we will verify the resulting predictions in the next section. In the presence of an Aharonov-Bohm
potential, all particles acquire an additional angular momenta Φ. At asymptotically large distances,
this leads to the simple change of outgoing and ingoing radial waves being multiplied by a phase
∝ e±i(πΦ/2). This is true in both the Schrödinger equation [3, 129] and for the components of the
Dirac equation [54, 126]. In the Schrödinger equation this leads to energy-independent scattering
phase shifts in all partial waves ηl(E) = −π

2 (|l+Φ|−|l|) = ±π
2Φ, where the sign comes from whether

the effective angular momentum l +Φ is positive or negative [3, 129]. In the Dirac equation, the
scattering phase shifts approach this at large energies [54, 126]. We assume that this holds for
our low-energy theory and evaluate η(−Λ) by summing over all angular momentum l and valley v
contributions:

η(−Λ) =
∑
l,v

ηl,v(E) = −πΦ(1− Φ). (3.7)

This sum requires analytic continuation and has been performed before in the context of Friedel sum
rules in the presence of Aharonov-Bohm fields [103]. The result is proportional to the correction of
the ideal gas law for anyons [39]. There it corresponds to an anyonic exclusion pressure. Rearranging
Eq. (3.6) we obtain the Friedel sum rule for vacancies threaded with flux:

η(0) ≡ π(1/2− Φ(1− Φ)) mod π. (3.8)

We note that the scattering amplitude sin2(η(0)) is minimized for Φ = 1/2, or in other words, for
a Z2 flux. Additionally, this scattering cross section is reduced by a factor of one-half relative to
vacancy-only scattering. We have thus shown that by threading a Z2 flux reduces scattering peak
at zero-energies due to a lattice vacancy.

The fact that a Z2 flux maximally suppresses the scattering resonance from a lattice vacancy
suggests that the binding energy for the pair arises from this effect. As the resonance is suppressed,
spectral weight must be transferred back to larger negative energies which should make the ground
state energy lower. However, it is unclear if other effects compete with this, and we must verify
that this doesn’t happen with a direct solution of the scattering theory.

3.2.3 Solution of Scattering Problem
In this subsection we will solve the scattering theory of the Dirac fermions perturbed by vacancies
and fluxes. To corroborate the Friedel sum rule’s result, we will explicitly show how spectral weight
transfers from the zero-energy resonance to the cutoff scale as a result of threading flux and that no
competing effects occur.

To show the transfer of spectral weight, we need to calculate the shift in density of states
induced by a lattice vacancy with and without a Z2 flux. To do this we will calculate the Green’s
functions of the Dirac fermions with a vacancy and with a vacancy threaded by flux. We accomplish
this in three steps: first, we solve the non-interacting Dirac equation with and without Z2 fluxes,
second, we use these solutions to calculate “free” Green’s functions G0, and finally, we use an exact
expression for the T matrix of a vacancy to calculate the “final” Green’s functions G from the free
Green’s functions. With these final Green’s functions in hand, we compare the shift in density of
states between the two cases. Then, we use these density of states to evaluate the binding energy of
a Z2 flux and a lattice vacancy.
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The single particle Dirac Hamiltonian in the Aharonov-Bohm field can be solved directly[126,
54]. The problem is greatly simplified by using the conservation of the z component of angular
momentum Jz = Lz± 1

2σ
z in valleys K ′ and K respectively. The Aharonov-Bohm fields do not spoil

this conservation because they are rotationally invariant. We can now reduce the Dirac equations
to a one-dimensional radial equation for the four components of the spinor by using the ansatz:

ψ(r, θ) =


ψKA (r, θ)
ψKB (r, θ)

ψK
′

A (r, θ)

ψK
′

B (r, θ)

 =


ψKA (r)ei(j+1/2)θ

ψKB (r)ei(j−1/2)θ

ψK
′

A (r)ei(j
′−1/2)θ

ψK
′

B (r)ei(j
′+1/2)θ

 , (3.9)

where j, j′ are the half-integral total angular momentum quantum numbers of the valleys K and
K ′. Using the above ansatz leads to the following radial equations in each valley:[

0 (∓∂r + j∓1/2−Φ
r )

(±∂r + j±1/2−Φ
r ) 0

][
ψ
K/K′

A (r)

ψ
K/K′

B (r)

]
= E

[
ψ
K/K′

A (r)

ψ
K/K′

B (r)

]
. (3.10)

The solutions of these equations are given by Bessel functions of order j′ ± 1/2−Φ. Intuitively, this
is telling us that a flux shifts the effective angular momentum of all particles in its presence by Φ.
Despite the appearance of uncoupled equations in the valleys, a crucial element of this calculation is
a boundary condition that forces a relationship between the valleys at non-zero Φ. For Φ = 1/2 this
condition is:

lim
r→0

(r1/2ψKA (r) = r1/2ψK
′

A (r)),

lim
r→0

(r1/2ψKB (r) = r1/2ψK
′

B (r)).
(3.11)

When a Dirac fermion is coupled to a flux, a boundary condition must be added to ensure that
the Hamiltonian remains well-defined [54, 126]. In the case of multiple Dirac fermions the valley
fermions can be related by this boundary condition [127]. In this appendix we derive the boundary
condition presented. From Eq. (3.11) we notice that for any wavefunction which is less singular than
r−1/2 near the origin that the condition is trivial. Therefore, most states are not impacted by this
condition. Looking forward to the next section, this boundary condition is important as it results in
a single bound zero-mode appearing with a Z2 flux when time-reversal symmetry is broken.

After solving the radial equations, we can sum over all eigenstates to calculate the free Green’s
functions with and without a Z2 flux:

G0(r, r′, E) =
∑
γ∈{±}

∫
d2k

∑
j,j′

ψj,j′,γE(k)(r)ψ
†
j,j′,γE(k)(r

′)

z − γE(k)
. (3.12)

In this expression we sum over particle/hole branches γ and angular momenta j and j′. The Green’s
functions for Φ = 0 and Φ = 1/2 are calculated in the supplemental material. For Φ = 0, the
diagonal Green’s function is given by:

G0(r, r;E)αβ,αβ =
E

4π
ln
(

E2

E2 − Λ2

)
. (3.13)
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Here α = A,B is the sublattice index and β = K,K ′ is the valley index. All diagonal elements of
the Green’s functions are the same. For Φ = 1/2, the diagonal Green’s function close to the origin
is dominated by a divergent contribution:

G0(r, r;E)αβ,αβ ≈ −ie
2irz

2πr
. (3.14)

Far from the origin it approaches the Φ = 0 case’s Green’s function.
Now, we find the exact expression for the T matrix of a vacancy [92, 46, 61]. For the lattice

vacancy potential Eq. (3.3), denoted here as U , the T matrix is given by a geometric sum that we
can evaluate directly:

T (E) = (1 + 4uG0(rv, rv, E)+x,A;+x,A + (G0(rv, rv, E)+x,A;+x,A)
2 + . . .)U

= (1− 4uG0(rv, rv;E)+x,A;+x,A)
−1U

lim
u→∞

T (E) = −δ(r − rv)(G
0(rv, rv;E)+x,A;+x,A)

−1 (1 + σz)

2

(1 + τx)

2
.

(3.15)

Here we have indicated that the Green’s function is taken from the A sublattice and valley-even
(+x) component. rv = 0 is the location of the vacancy.

We can calculate the Green’s function corresponding to a system with a vacancy by applying the
T matrix to the free Green’s function. This is accomplished using the relationship G = G0+G0TG0.
Taking the imaginary part of these Green’s functions we get the density of states. With some
simplifying Green’s function identities we can evaluate the total shift in density of states (see
appendix)[61]:

∆ρ(E) = ∂EArg 1

G0(rv, rv, E)+x,A;+x,A
. (3.16)

Therefore, given our free Green’s functions G0, we can quickly calculate the shift in density of
states due to the vacancy. By looking at the Green’s functions rate of change of phase we can
anticipate the results. For Φ = 0, the Green’s function (Eq. (3.13)) at zero energy changes sign.
This corresponds to an abrupt phase shift of Π which via Eq. (3.16) will lead to a delta function
peak at the origin. This is our predicted resonance. For Φ = 1/2, we note that the phase of the
Green’s function (Eq. (3.14)) near zero-energy is constant. Therefore, a lattice vacancy does not
induce more shifts in density of states when a flux is present.

First, we consider the case of introducing a vacancy without flux. We find that the scattering
resonance well known from graphene appears [119, 46]. The total shift in density of states is
well-approximated by:

∆vρ(E) ≈ δ(E)− (δ(E − Λ) + δ(E + Λ)), (3.17)
with corrections that vanish under integration for large Λ. We find that the dominant scattering
physics corresponds to the creation of a zero-energy scattering resonance and that this spectral
weight almost all comes from the cutoff energy (see Fig. 3.3(a)). This directly implies that the
ground state energy increases as a result of the vacancy.

Second, we compare the case of a vacancy with flux threaded through it. We anticipate from the
Friedel sum rule that a Z2 flux will suppress the scattering peak at zero-energy. Utilizing Eq. (3.16)
we find that the shift in density of states is well-approximated by:

∆vΦρ(E) ≈ 1

2
δ(E)− 3

4
(δ(E + Λ) + δ(E − Λ)), (3.18)
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a) b)

c) d)

Figure 3.3: (a) A lattice vacancy generates a resonance at zero-energy. The y-axis represents
the shift in density in units of delta functions. Half-filling necessitates that spectral weight is
drawn from large energies and thereby increases the ground state energy. (b) When a flux is
threaded through the vacancy the resonance is partially suppressed and the spectral weight is
returned to high energies, thereby generating a binding energy for the flux-vacancy pair. (c)
The response to a vacancy is unchanged in the presence of time-reversal symmetry breaking
(d) When a flux is threaded through the vacancy in the presence of time-reversal symmetry
breaking the zero-energy peak is split between E = ±m.

in the large Λ limit. We note that the zero-energy resonance induced by a vacancy now has reduced
in magnitude by half (compare panels (a) and (b) in Fig. 3.3). We see from the solution to the
scattering theory that this spectral weight returns directly to the cutoff scale.

From the shift of the density of states induced by a vacancy, both with and without a flux bound
to it, we can calculate the respective change to the ground state energy. Specifically, the binding
energy of a π-flux to the vacancy is

EvΦ − Ev = −Λ

4
. (3.19)

This binding energy originates from pushing half of the resonance’s spectral weight from zero energy
back to the cutoff scale.
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3.3 Topological Argument for Flux Binding by
Vacancies

In this section we will show that in presence of a weak time-reversal breaking field which introduces
a gap to the Majorana dispersion, the binding energy of a flux to a vacancy can be derived from
a topological argument. Furthermore, we will argue that the binding energy is in general not
dependent on the strength of the time-reversal breaking field in the limit of small field. Hence, the
argument we develop can also be used to explain the flux binding in the gapless phase, which was
explained in the previous section using a different approach (scattering theory).

In presence of a time reversal breaking field the gapless Kitaev spin liquid becomes a gapped
non-abelian state in which Z2 fluxes become Ising anyons [78]. Therefore, our argument will also
establish that in the non-abelian state, at least with moderate time-reversal breaking field, lattice
vacancies naturally bind Ising anyons.

Like in the previous section, we will double the effective theory of the spin liquid, written in
terms of free Majorana fermions, to a theory of (complex) Dirac fermions, which can couple to an
external U(1) flux. Our argument will rely on tracking the evolution of the ground state energy
upon adiabatic flux insertion into the hole associated with the vacancy. The essence of the argument
uses the fact that in presence of time-reversal breaking field the Dirac theory (i.e. doubled Majorana
model) is in a quantum Hall state 1. As in Laughlin’s well-known argument, adiabatically threading
flux pumps charge away from the vacancy toward the bulk [85]. The zero mode that carried this
charge moves to negative energy, thereby lowering the ground state energy.

To establish this phenomenon carefully, we examine a Corbino disc geometry centered on the
vacancy (see Fig. 3.4(a)). In what follows we will consider the anomalous edge theory living on the
inner and outer boundaries of the Corbino disc. To facilitate a low-energy theory, we enlarge the
hole so that instead of a single vacancy it consists of a cluster of 2N + 1 vacancies. We will ask
whether this larger cluster of vacancies traps a Z2 flux (half a flux quantum, Φ = 1/2). Note that
by the Friedel sum rule argument given in the previous section, an odd number of vacancies gives
rise to a resonance and hence at least one zero mode.

When we turn on a time-reversal breaking field, the bulk forms a gapped quantum Hall state,
while the zero mode in the hole becomes one mode of the chiral edge state on its perimeter [78].
More precisely, the chiral edge state disperses linearly with the discrete angular momentum around
the hole and includes a mode at exactly zero energy:

H = −vE
∑
k

(k − k0)(ψ(k)
†ψ(k)). (3.20)

Here vE is the edge velocity, k = 2πn
L with n an integer. k0 is the zero-intercept of the dispersion.

The sign of vE (direction of the chiral edge state) depends on the direction of the time-reversal
symmetry breaking field. For convenience we will assume vE > 0. There is also an edge state located
on the outer edge of the Corbino disk with perimeter Lo � L. This state has the opposite chirality
of the inner edge state (opposite sign velocity). Adiabatic threading of a flux Φ (in units of the flux
quantum) through the hole leads to transport of the angular momentum states from n to n+ Φ.

1Microscopically the doubled model with time-reversal breaking field is the same as the Haldane model
[57].
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Figure 3.4: (a) The annulus geometry used for the flux pumping argument. The interior
boundary is formed from a cluster of 2N + 1 vacancies and flux Φ is adiabatically threaded
through it. (b) The edge spectrum’s spectral flow is indicated with arrows. Blue arrows
correspond to states which are occupied in the ground state. One of two initially zero energy
modes remain occupied during spectral flow. The black bar corresponds to ultraviolet details
which connect the two curves.

When the angular momentum shifts n→ n+ 1, a single charge has been transported from one edge
to the other.

As seen in Fig. 3.4(b), the spectral flow as flux is adiabatically threaded through the vacancy
induces energetic changes in the single particle energies. These changes at first glance appear to
cancel, the modes of one edge state shift up while the other shift down. However, only negative
energy modes contribute to the many-body ground state energy. Before threading flux, we have exact
zero modes on the inner and outer edge, because one (the inner zero mode) moves to negative energy
and the other (outer zero mode) moves to positive energy their contributions remain uncompensated.
It is this effect that leads to a binding energy between lattice vacancies and Z2 fluxes.

To make this argument quantitative we can calculate the ground state energy by summing over
states. As mentioned earlier, when the number of vacancies that form the inner hole is odd the
chiral edge state must possess a mode with exactly zero-energy. This zero mode corresponds to some
angular momentum k0 = 2πn0/L, with n0 integer, which we can set to zero for convenience. The
mode energies in presence of the flux Φ are then Ei(n,Φ) = −vE 2π(n+Φ)

L and Eo(n,Φ) = +vE
2π(n+Φ)

Lo
.

Summing over the states yields the shift in ground state energy as a function of flux Φ (0 ≤ Φ < 1):

∆E(Φ) = E(Φ)− E(0)

= −2πvE
L

∞∑
n=0

((n+Φ)− n)− 2πvE
Lo

∞∑
n=1

((n− Φ)− n).
(3.21)

These sums are seemingly divergent but are, in fact, regularized by the finite width of the edge
dispersions, which are connected to each other through the bulk (see Fig. 3.4(b)). The physical
regularization can be done by reducing the velocity toward zero with increasing n. To accomplish
this we set dEi

dk = −vEe−a|k| with a > 0. Physically, a should cut off the growth of energies near
the cutoff momenta Λ and therefore, a should be on the order of the lattice constant l ∼ 1/Λ.
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Integrating over k gives the regularized energies:

Ei(n,Φ, a) = −vE
1

a
(1− sgn(n+Φ)e−a

2π|n+Φ|
L ),

Eo(n,Φ, a) = +vE
1

a
(1− sgn(n+Φ)e−a

2π|n+Φ|
Lo ).

(3.22)

Using these regularized energies and summing over states we can calculate the shift in ground state
energy induced by threading Φ = 1/2 flux:

∆E(Φ = 1/2, a) = −vE
2a

tanh
(πa
2L

)
. (3.23)

As this energy is negative, in the language of the spin liquid, a Z2 flux is bound. As the number of
vacancies making up the hole tends to one (L ∼ O(1)) this binding energy becomes proportional
to the cutoff energy Λ. As this binding energy is on the order of the cutoff Λ for any strength of
time-reversal symmetry breaking, it must then continue to hold in the gapless case. Therefore, this
topological argument ensures that lattice vacancies bind Z2 fluxes in both the non-abelian and
gapless Kitaev spin liquids.

In the limit of a large hole, or equivalently small a/L, summing over states yields the following
simple form of the shift of ground state energy for arbitrary flux Φ:

∆E(Φ, a) = −vEπ
L

(Φ(1− Φ) +
a

L
f(Φ) +O(

a

L
)2), f(1/2) = 0 = f(0)

≈ −vE
L
η(−Λ).

(3.24)

While only Φ = 0 and Φ = 1/2 are possible for the individual spin liquid layers, this result shows
that Φ = 1/2 minimizes the ground state energy over all U(1) possibilities. Another method that
leads to the same answer, in this limit, is zeta function regularization as done in Section 3.2 for
deriving a Friedel sum rule and it is presented in the appendix. Interestingly, we find that in this
limit, the shift in ground state energy is proportional to the scattering phase shift due to a flux Φ
at the cutoff scale.

A corollary of the topological argument is that in the limit of a large hole the flux binding is
protected from generic local perturbations. Local perturbations cannot remove the chiral edge state,
nor can they remove the edge mode at precisely zero energy when an odd number of vacancies form
the inner hole. The perturbations could, for example, break the rotational symmetry, in which
case we can no longer label the discrete states of the edge mode by angular momenta. But the
charge pumping argument, which relies on the spectral flow of the zero-energy state still holds.
Additionally, local perturbations with strength t can only couple to the Z2 flux density at order
O(L) in perturbation theory as a fermion must be transported around the hole to observe the flux.
Intermediate states in this perturbation calculation will have fluxes excited on the perimeter of
the hole because generic spin perturbations excite fluxes. Therefore, such contributions will be
suppressed by a factor (t/∆)L, where ∆ is the Z2 flux gap. In the context of the spin liquid, a
strong on-site field could be added, effectively freezing a single spin and therefore adding another
vacancy. Then we would no longer be guaranteed the zero mode that was critical for our argument.
However, to freeze a spin would require a perturbation on the order of the cutoff scale.

Having argued that lattice vacancies bind Z2 fluxes, we verify that these fluxes are accompanied
by Majorana zero modes as expected for Ising anyons in the non-abelian phase. In our doubled
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Figure 3.5: Creating a lattice vacancy breaks the bonds of the Z2 bond variables. In the
Kitaev honeycomb model a magnetic field couples the b and c Majorana, however in the
general case an odd number of additional Majorana fermion will be coupled locally. This
ensures that the result of threading a flux through a vacancy still creates an Ising anyon.

system the Majorana zero modes are doubled and therefore should show up as Dirac zero modes.
However, as we have used extensively in the topological argument, a lattice vacancy creates a zero
mode that is moved to non-zero energies by spectral flow when a Z2 flux is adiabatically threaded.
From this it might appear that Z2 fluxes bound to lattice vacancies are not Ising anyons.

To understand the resolution to this problem we can first gain some intuition from Kitaev’s
honeycomb model. In this model each spin degree of freedom is composed of four Majorana modes,
the c Majorana mode, and three bγ Majoranas that constitute the gauge field. In the undisturbed
honeycomb lattice these gauge field Majorana were paired into the Z2 bond variables uγjk = ibγj b

γ
k .

After their removal, the Majorana with which they paired into bond variables become decoupled (see
Fig. 3.5). So, before inserting the flux we have four Majorana zero modes around the vacancy: the
three unpaired b Majoranas and the vacancy induced zero mode in the c-Majorana sector. Inserting
the Z2 flux will pump out the c-zero mode leaving the three bγ-modes at zero energy. In a generic
model all four original zero modes will be coupled with each other. But this coupling cannot change
the parity of Majorana zero modes. In particular, upon inserting the Z2 flux, we will generically
have one remaining zero mode, as expected for an Ising anyon.

3.4 Discussion
We have shown that lattice vacancies bind Z2 fluxes in the gapless and gapped non-abelian Z2

Kitaev spin liquids. This was shown from general properties of the spin liquids and did not rely on
details of particular models. To remain model independent, our starting point was a low-energy
theory for the spin liquid with vacancies and Z2 fluxes. In the gapless case we showed that a lattice
vacancy created an energetically expensive scattering resonance at zero energy and that a Z2 flux
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suppressed this. We argued this first by introducing a Friedel sum rule for the scattering phase shift
created by a vacancy with flux threaded through it. Then, by solving the scattering theory, we were
able to directly calculate the binding energy. In the non-abelian phase, we showed that the binding
energy in both phases had a topological origin. By doubling the effective theory of the spin liquid
and identifying the system as a quantum Hall state we formulated a pumping argument for the
binding energy. We showed that spectral flow induced by adiabatically threading a Z2 flux through
the vacancy reduced the ground state energy. This extends previous numerical results [163, 164,
70] on the Kitaev honeycomb model by ensuring that this is a generic property of the spin liquids
considered.

The structure of the arguments presented in this chapter suggests several generalizations. While
we focused only on Z2 spin liquids, by doubling the spin liquid’s effective theories we allowed for
external U(1) valued fluxes. Both the Friedel sum rule approach, and the topological argument,
suggested that Z2 fluxes produced the minimal ground state energy when threaded through a
vacancy over all U(1) possibilities. An honest calculation of the optimal U(1) flux must include
gauge field dynamics, which we have ignored due to the flux gap of the Z2 phase. It is an interesting
future direction to consider how dynamical gauge fields would modify this picture. Zooming a bit
out on the structure of our argument, we included a Z2 flux in a low-energy theory by minimally
coupling an Aharonov-Bohm field to the fermions. The Aharonov-Bohm field’s flux was fixed by
the mutual statistic of the fermions and the fluxes. Such a calculation could be repeated for other
anyon content. For instance, we could model the impact of another anyon’s (potentially non-abelian)
mutual statistic by minimally coupling a U(N) valued “Aharonov-Bohm” field. Whether other
types of point defects could be shown to trap other types of anyons remains to be seen.

Now that we have shown that lattice vacancies offer a robust tool for creating and trapping
Ising anyons, we can consider how they can be utilized. Rydberg quantum simulators have created
gapped abelian Z2 spin liquids [137], and proposals for generating the spin liquids discussed in
this chapter exist [69]. Creating lattice vacancies in optical lattice simulations simply corresponds
to not trapping an atom. Therefore, the Rydberg atom simulations are well-equipped to use this
feature of non-abelian spin liquids to create and trap Ising anyons. Even static trapped Ising
anyons could be useful for a measurement based topological quantum computation scheme [24, 25].
While the non-abelian Z2 spin liquid isn’t sufficient for universal quantum computation [106], the
circumstances leading to Ising anyons binding to lattice vacancies appear to be so general that we
eagerly anticipate further study revealing a sufficient non-abelian spin liquid exhibiting the same
effect.

Supplemental Material
In this supplemental material we will derive some of the results which were used in the main text.
The goal of these calculations is to show that a lattice vacancy creates a binding energy for a Z2 flux.
The steps that are used to arrive at this fact are the following: first we derive the single particle
solutions to the Dirac equations with and without a Z2 flux, second we derive the associated Green’s
functions, third we solve for the Green’s functions after a vacancy is introduced with scattering
theory, finally these Green’s functions can be utilized to calculate density of states and hence ground
state energies to verify that a lattice vacancy binds a Z2 flux. These steps each correspond to a
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section of this supplemental material. After this is accomplished, we demonstrate that a chiral
spin liquid called the Yao-Kivelson-Kitaev (YKK) model also exhibits lattice vacancies binding
Z2 fluxes. To this end we first provide proof of what the background flux configuration in this
model. In a particular limit the YKK model becomes the non-abelian Kitaev honeycomb model,
and this argument therefore provides a proof of the ground state flux pattern in both models (that is
commonly assumed to be true). Next, we show with exact finite lattice calculations that introducing
a vacancy in the YKK model binds a Z2 flux.

3.5 Low-Energy Theory - Single Particle Solutions
In this section of the supplementary material, we will solve for the single-particle solutions of the
low-energy theory which is used in the main text. The starting point of our analysis of low-energy
Hamiltonian of the isotropic Kitaev model [78]:

H± = ±mσz + vf (σ
x(py −Ay)± σy(px −Ax)) . (3.25)

Here we have minimally coupled a vector potential A, the spin operators σ act on sublattice indices
(B, A) and ± refers to valley indices. This vector potential can be vanishing to describe a flux-free
vacuum or set to be an Aharonov-Bohm field at the origin to describe the presence of a magnetic
flux:

~A = Φ
θ̂

r
. (3.26)

We will only focus on the cases of Φ = 0 and Φ = 1/2. We will take the convention that the four
component (sublattice and valley indices) spinor is written:

ψ =


ψ+
B

ψ+
A

ψ−
A

ψ−
B

 , (3.27)

as in this basis the Hamiltonians in both valleys take the same form:

H = mσz + (−σy(px −Ax) + σx(py −Ay)). (3.28)

The eigenfunctions of this Hamiltonian in each valley can be quickly found by utilizing the
conservation of Jz = −i∂θ + σz

2 which allows us to write the ansatz:

ψn(r, θ) =

[
f(r)
g(r)eiθ

]
einθ. (3.29)

With this ansatz the eigenvalue equation takes the form:[
m (∂r +

n+1−Φ
r )

(−∂r + n−Φ
r ) −m

] [
f(r)
g(r)

]
= E

[
f(r)
g(r)

]
, (3.30)

where here we have allowed for general flux Φ.
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Figure 3.6: (a) Within the Kitaev honeycomb model lattice vacancies lead to a ground state
flux configuration with a Z2 flux that threads each hole. (b) Ground state energy cost of
creating a flux with (red) or without (blue) a vacancy present as a function of system size.
Energies are reported in units of J (c) The splitting of the lowest energy fermionic modes in
the presence of a vacancy bound flux in the non-abelian phase is exponentially suppressed in
distance separating them.

Solving this equation, we obtain the most general single particle solutions at energy E:

ψE,n,Φ(r, θ) =

[
(E+m)√

(E−m)(E+m)
(c1Jn−Φ(

√
E2 −m2r) + c2Yn−Φ(

√
E2 −m2r))

(c1Jn+1−Φ(
√
E2 −m2r) + c2Yn+1−Φ(

√
E2 −m2r))eiθ

]
einθ, (3.31)

with integration coefficients c1 and c2. When Φ = 0, in the absence of flux, the r → 0 boundary
condition is fixed by regularity. All the Y Bessel functions diverge at the origin, therefore c2 = 0.
The normalized Φ = 0 solutions are then given by:

ψE,n,0(r, θ) =

√
k

2
√
π

[
sgn(E)

√
1 +m/E(Jn(kr))√

1−m/E(Jn+1(kr))e
iθ

]
einθ. (3.32)

For any Φ 6= 0 the story is more complicated. For any Φ 6= 0, there exists a single angular momentum
sector n for which no choice of coefficients ensures regularity of the wavefunction. For Φ = 1/2, this
is the n = 0 sector. For all |n| > 0, regularity fixes the integration constants:

ψE,n,1/2(r, θ) =

√
k

2
√
π

[
sgn(E)

√
1 +m/E(J|n−1/2|(kr))

sgn(n)
√
1−m/E(J|n+1/2|(kr))e

iθ

]
einθ |n| > 0 (3.33)

Ultimately, the unavoidable singularity in the n = 0 sector implies that the correct boundary
condition must be specified with other information. We will accomplish this by parameterizing all
possible well-defined boundary conditions and then narrowing the possibilities with microscopic
symmetries. Well-defined boundary conditions lead to solution spaces on which H is self-adjoint. To
be self-adjoint H must be symmetric and the Hilbert space it acts on must be the same as its dual.

The symmetric condition is:

W = 〈χ|Hψ〉 − 〈Hχ|ψ〉 = 0. (3.34)
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The contribution of a single valley to W can be calculated by applying the Hamiltonian (Eq. (3.28))
and is simplified with an integration by parts leaving only a contribution from the origin:

W = 2πi lim
r→0

(r
[
f∗χ g∗χ

]
σy
[
fψ
gψ

]
). (3.35)

For Φ = 0, the symmetric condition is immediately satisfied if we choose the regular solutions in
each n sector as Jn(cr) ∝ (cr)|n| near the origin. Similarly, for Φ = 1/2, this is satisfied for all
|n| > 0 if the regular solutions are chosen. This then only leaves the special n = 0 sector to be
resolved when Φ 6= 0.

Similar to Roy, Stone [127], who considered a modified graphene model, we ensure a self-adjoint
Hamiltonian by imposing a boundary condition at r → 0 parameterized in the following way:

lim
r→0

r1/2
[
ψ+
B

ψ−
A

]
= lim

r→0
r1/2

[
a b
c d

] [
ψ+
A

ψ−
B

]
, (3.36)

with a, b, c and d as free complex parameters. Plugging this into Eq. 3.28 we get a boundary
condition on χ in the dual space:

lim
r→0

r1/2
[
χ+
B

χ−
A

]
= lim

r→r0
r1/2

[
a∗ c∗

b∗ d∗

] [
χ+
A

χ−
B

]
(3.37)

For both Hilbert spaces to be the same this matrix must be the same as this implies the boundary
conditions for eigenvalues in the direct and dual space coincide. This implies for real variables
A,B,C,D:

M =

[
a b
c d

]
=

[
A C − iB

C + iB D

]
. (3.38)

Therefore, we have completely parameterized all boundary conditions that ensure the Hamiltonian
is self-adjoint with four real numbers. Now, we can specify these numbers further with the input
of symmetry. Recall that our underlying theory is built from two uncoupled layers of Majorana
fermions. Because of this, we could only break time-reversal symmetry to generate a gap - and cannot
open the trivial inversion symmetry breaking gap. Additionally, we can not break particle-hole
symmetry. Inversion symmetry acts by swapping sublattice and valley indices respectively. This
implies that the matrix M encoding the boundary conditions obey σxMσx = M . Particle-hole
symmetry acts by flipping valley indices while maintaining sublattice indices and this translates into
a condition M2 = 1. Together, these conditions force B = 0, A = D, and A2 = C2 = A2 + C2 = 1.
Up to phase redefinitions, the matrix M is either equal to the identity or σx. If we enforce an
additional reflection symmetry, M = σx, however, this also follows from the more robust assumption
that no bound state is valley-polarized (and hence doesn’t carry momentum). We will therefore
take M = σx and verify our assertion after deriving the bound state spectrum.

Our boundary conditions therefore force a spinor near the origin (at fixed angle θ = 0) to have
ratios of components given by:

lim
r→0

(r1/2ψ1 = r1/2ψ4),

lim
r→0

(r1/2ψ2 = r1/2ψ3).
(3.39)

The allowed scattering states are all solutions with |E| > |m| that satisfy this condition near the
origin. This condition is trivially satisfied for all Φ = 0 solutions described previously, as they are
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regular near the origin. In the n = 0 sector of Φ = 1/2, all wavefunctions have a r−1/2 singularity
rendering this condition non-trivial. To satisfy these boundary conditions, near r → 0, all the n = 0
solutions must asymptote to:

ψ ≈ r−1/2


x
y
y
x

 , (3.40)

at θ = 0 for some constants x and y. All such scattering states are linear combinations of the
following basis:

ψ1 =

√
k

2
√
2π


sgn(E)

√
1− (m/E)2J−1/2(kr)

(1−m/E)J1/2(kr)e
iθ

(1 +m/E)J1/2(kr)

sgn(E)
√

1− (m/E)2J−1/2(kr)e
iθ

 ,

ψ2 =

√
k

2
√
2π


sgn(E)(1 +m/E)J1/2(kr)√
1− (m/E)2J−1/2(kr)e

iθ√
1− (m/E)2J−1/2(kr)

sgn(E)(1−m/E)J1/2(kr)e
iθ

 .
(3.41)

Having completed the description of the scattering states we turn to bound modes, for which
|E| < |m|. A bound mode must satisfy our boundary conditions (Eq. (3.40)) and be normalizable.
To find the normalizable solutions, we start with the general solution set (Eq. (3.31)) and consider
only solutions which decay at large distances. This relates the bound state energy to the ratio of
spinor components, within a valley, at the origin:

ψ1/ψ2 = sgn(m)

√
m+ EB
m− EB

, (3.42)

where ψ is a pseudospin spinor and EB is the energy of the bound state. Our boundary condition
excludes a valley-polarized solution. To have a bound state, the energy of the bound state in the
upper and lower valleys must match (as Hψ = Eψ). This forces x/y = y/x = ±1. Assuming
without loss of generality m > 0, only the ratio x/y = +1 leads to a bound state and its energy is
Eb = 0; that is, we have found a zero-mode. The wavefunction of this bound state is given by:

ψB(r, θ) =
e−r|m|√|m|√

4πr


sgn(m)
eiθ

1
sgn(m)eiθ

 . (3.43)

Had we instead taken M = 1 for our boundary conditions, we could form bound state solutions with
only the top or bottom two components. These would be valley-polarized and have an unphysical
net momentum of K±. This complex zero-mode split between the two layers implies the existence
of an unpaired Majorana zero-mode in each layer bound to the flux, as expected in the non-abelian
spin liquid.
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3.6 Low-Energy Theory - Initial Green’s functions
In the main text we refer to the Green’s functions of the system before a vacancy is created as the
initial Green’s functions and label them with a superscript G0. In this appendix we will calculate the
initial Green’s functions G0 and from these we will obtain the density of states (with and without
flux) prior to creating lattice vacancies. We can calculate the Green’s functions directly by summing
and integrating over the bound and scattering solutions respectively:

Gα1β1;α2β2(r, r
′, z) =∫

dk(
∑
n

ψn,E(k)(r)ψ
†
n,E(k)(r

′)

z − E(k)
+
∑
n

ψn,−E(k)(r)ψ
†
n,−E(k)(r

′)

z + E(k)
) +

∑
i

ψi(r)ψ
†
i (r

′)

E − Ei
.

(3.44)

In this equation G is retarded, z has small positive imaginary part, the states are continuum
normalized with norm of δ(k − k′). All wavefunctions ψ have pseudospin (sublattice) indices α and
valley indices β.

To calculate the density of states, we need to evaluate the trace of the Green’s function. For
this we first calculate the on-site Green’s function in the case of Φ = 0. Plugging the solutions
Eq. (3.32) into the definition of the Green’s function we arrive at:

TrG(r, r, z) =
∫

2zkdk

π(z2 − E2(k))

∞∑
n=−∞

J2
n(kr) =

∫
2zkdk

π(z2 − E2(k)
=
z

π
log
(

m2 − z2

m2 + Λ2 − z2

)
. (3.45)

The local density of states is given by the imaginary part of this expression:

ρ(r,E) = − 1

π
ImTrG(r, r; z) = |E|

π
Θ(E2 −m2). (3.46)

Here Θ is the Heaviside theta function. We have recovered the familiar Dirac conical density of
states.

As discussed in the main text, the response to a vacancy can be calculated with the sublattice-
polarized and valley-even component of the initial Green’s function, G0. A calculation like the one
above yields:

G0(rv, rv; z)+x,A;+x,A =
z

4π
log
(

m2 − z2

m2 + Λ2 − z2

)
. (3.47)

Repeating the above calculations for the Φ = 1/2 case, we find that the local density of states
will vary dramatically from the Φ = 0 case near the origin. However, the integrated density of
states will be identical with the exception of an increase of density of states at E = 0. Plugging in
the Φ = 1/2 solutions (Eq. (3.33),(3.41),(3.43) to the Green’s function definition we arrive at the
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following:

TrG(r, r; z) =
∫

2zkdk

π(z2 − E2(k))
(2

∞∑
n=0

J2
n+1/2(kr) +

(E2(k)−m2)

2E2(k)
(J2

−1/2(kr)− J2
1/2(kr))

+
|m|e−2r|m|

πrz

=

∫
2zkdk

π(z2 − E2(k))
(
2Si(2kr)

π
+
E2(k)−m2

2E2(k)
(J2

−1/2(kr)− J2
1/2(kr)) +

|m|e−2r|m|

πrz

= GΦ=0(r, r; z)

+

∫
2zkdk

π(z2 − E2(k))
(
2Si(2kr)

π
− 1) +

∫
2zk2 cos(2kr)dk

π2rE2(k)(z2 − E2(k))
+

|m|e−2r|m|

πrz
,

(3.48)
where the last term came from the bound state and E(k) =

√
m2 + k2 is the dispersion of the Dirac

modes. In the previous expression Si is the Sin Integral which approaches π/2 as its argument goes
to infinity and zero as its argument goes to zero. The grouping of terms was chosen to demonstrate
that as distance from the origin grows the Green’s function becomes identical to the Φ = 0 case. At
short distances there are strong deviations coming from the n = 0 angular momentum sector, which
contribute the 1/rE singularity.

Using this Green’s function to calculate the local density of states we arrive at:

ρ(r,E) =
|E|
π

(
2Si(2kr)

π
+
k cos(2kr)
E2πr

)Θ(E2 −m2) +
|m|e−2rm

πr
δ(E), (3.49)

where we see an enhancement of local density of states at small k and r. To get the total density of
states we can integrate the Green’s function over space, momenta and take the imaginary part:

ρ(E) = − 1

π
Im(2π

∫
rdrTrG(r, r, z))

=
Λ→∞

ρΦ=0(E)− 1

4
(δ(E −M) + δ(E +M)) + δ(E).

(3.50)

This expression can be derived by integrating against e−ar and taking the limit as a → 0+. At
m = 0 we have the simple result:

ρ(E) = ρΦ=0(E) +
1

2
δ(E). (3.51)

The shift of density of states due to the creation of a flux at finite cutoff depends on cutoff
implementation details. However, the restriction of remaining half-filled implies that the worst-case
in terms of flux energy (largest energetic cost) is that the low-energy change of density of states is
totally compensated at the band edge:

ρ(E) = ρ(E)Φ=0 = −1

4
(δ(E − Λ) + δ(E + Λ) + δ(E −m) + δ(E +m)) + δ(E), (3.52)

which we will assume for the sake of making the strongest argument that threading a flux through
a vacancy is the preferred ground state. One particular implementation of the cutoff would be to
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restrict integration of Eq. (3.49) over space to r ' 1/Λ, effectively softening the singularity of the
near flux modes. In such a case the largest reduction of density of states occurs near k = 0 instead
of the band edge.

We can also compute the valley-even sublattice polarized Green’s function for the Φ = 1/2 case:

G0(rv, rv, z)+x,A;+x,A =

∫
2zkdk

π(z2 − E2(k))
(
Si(2krv)

2π
+
E2(k)−m2

4E2(k)
(J2

−1/2(krv)− J2
1/2(krv))

+
|m|e−2rv |m|

2πrvz

≈ −2rvz

π2
(Λ−

√
m2 − z2 arctan

(
Λ√

m2 − z2

)
− ie2irv

√
z2−m2√

z2 −m2

2πrvz
,

(3.53)
in the last equality we have taken Si(2kr) ≈ 2kr, and the remaining terms are evaluated in the
infinite cutoff limit. Approximating the sine integral is valid for kr < π/4 as the vacancy is located
as close to the origin as possible. The first term vanishes as z → 0, so the second term dominates
the low-energy physics.

3.7 Low-Energy Theory - Vacancy Scattering
In this section of the supplemental material we apply scattering theory techniques to exactly solve
for the change in density of states induced by lattice vacancies [92, 46, 61].

We will model a vacancy with the limit of a large on-site potential V . H0 corresponds to the
Hamiltonian before introducing a vacancy for which we have already solved for a Green’s function
G0. The Green’s function including the perturbation, G, must satisfy:

(z −H0 − V )G(r, r′, z) = 1. (3.54)

Multiplying by G0 we obtain the following equation for G:

G(r, r′, z) = G0(r, r′, z) +G0(r, r′′, z)V (r′′)G(r′′, r′, z). (3.55)

Iterating this equation, we get a formal solution:

G = G0 +G0TG0

T = V + V G0V + . . . .
(3.56)

If this T matrix is known exactly, it can be used to directly calculate the change in density of states
induced by the scattering potential V [92]:

∆ρ(E) =
1

π
∂E arg det(T (E)). (3.57)

This expression was used in the main text to write a Friedel sum rule.



3.7. LOW-ENERGY THEORY - VACANCY SCATTERING 52

In the case of a point potential the T matrix can be evaluated explicitly. We specify V = Uδr,rv
to be an onsite (position rv) potential of strength U , then this infinite sum can be carried out:

T (r, r′, z) = δr,rvδr′,rv
U

1− UG0(rv, rv, z)
=U→∞ −δr,rvδr′,rv

1

G0(rv, rv, z)

G(r, r′, z) = G0(r, r′, z)− G0(r, rv, z)G
0(rv, r, z)

G0(rv, rv, z)
,

(3.58)

where we have introduced a vacancy by taking the limit of infinite on-site potential. Therefore,
given the initial Green’s functions G0 we arrive at the solution for the system when perturbed by a
vacancy G. We will use this to calculate the shift in density of states induced by the vacancy and
from there the ground state energy differences between having and not having a flux.

The local density of states (LDOS) can be calculated from the imaginary part of G:

ρ(r,E) = − 1

π
Im(G(r, r′, z)). (3.59)

We can calculate the shift in LDOS by taking only the imaginary part of the difference G−G0:

∆ρ(r,E) =
1

π
Im(

G0(r, rv, z)G
0(rv, r, z)

G0(rv, rv, z)
). (3.60)

Summing over all r, the total change in density of states can be written simply as:

∆ρ(E) =
1

π
Im 1

G0(rv, rv, z)

∑
r

G0(rv, r, z)G
0(r, rv, z)

= − 1

π
Im∂EG

0(rv, rv, z)

G0(rv, rv, z)

= − 1

π
Im∂E ln

(
G0(rv, rv, z)

)
= ∂EArg 1

G0(rv, rv, z)
.

(3.61)

Here we have used the identities [61]:∫
d~rG0(rv, r, z)G

0(r, rv, z) = 〈rv|((G0)2|rv〉 = 〈rv|(−
∂G0

∂E
)|rv〉. (3.62)

In our double-valley model an on-site (on fixed sublattice) potential V , which scatters between
all momenta, will be represented by:

V ≈ u(r)(1 + σz)⊗ (1 + τx), (3.63)

where u(r) is a sharply peaked function of r which we can take to be a delta function. This modifies
our previous solution only in presentation:

T (z) = (1 + 4UG0(rv, rv, z)+x,A;+x,A + (G0(rv, rv, z)+x,A;+x,A)
2 + . . .)V

= (1− 4UG0(rv, rv;E)+x,A;+x,A)
−1V

lim
U→∞

T (z) = −δ(r − rv)(G
0(rv, rv; z)+x,A;+x,A)

−1 (1 + σz)

2
⊗ (1 + τx)

2
.

(3.64)
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Here we have indicated that the Green’s function is taken from the A sublattice and valley-even
(+x) component.

The shift in total density of states is then given by:

∆ρ(E) = ∂EArg 1

G0(rv, rv, z)+x,A;+x,A
. (3.65)

To find the response of the flux-free system to the creation of a vacancy we can use the Green’s
function Eq. (3.47) in the shift of density formula Eq. (3.65):

∆ρ(E) = δ(E)− 2(Λ2)|E|

(Λ2 +m2 − E2)(E2 −m2)(π2 + (log
(
| m2−E2

Λ2+m2−E2 |
)
)2)

Θ(E2−m2) ≈ δ(E), (3.66)

where the approximation is taking the infinite cutoff limit. At all values of m, a vacancy induces a
shift of density of states at E = 0 by introducing a delta function. At m = 0 this is a resonance
and at m 6= 0 this a vacancy bound state. As the model is forced to remain at half-filling due to
particle-hole symmetry of the Majorana fermions, a single charge must be removed from the band
edge to accommodate the removal of a half-charge and the zero-energy resonance.

Similarly, the shift in density of states caused by a vacancy when a Z2 flux (Φ = 1/2) is present
can be calculated by utilizing Eq. (3.53) and Eq. (3.65):

∆ρ(E) ≈ −δ(E) +
1

2
(δ(E +m) + δ(E −m)) =m→0 0. (3.67)

We see the vacancy gets rid of the flux zero mode and transfers spectral weight to the gap edges at
finite mass. Note that this shift is relative to the Z2 flux ground state in the absence of a vacancy.
Comparing the shift in density of states to the flux free ground state without vacancy or flux, reveals
a shift of 1

2δ(E) at m = 0. Compared to the case of a vacancy with no flux, this has reduced the
zero energy resonances spectral weight by half and returns a quarter charge to each band edge.

3.8 Regularizations of Ground State Energy Sum
In this appendix we show an equivalence of two regularizations of the ground state energy sum
utilized in Section 3.3. The sum was:

∆E(Φ) = E(Φ)− E(0)

= −2πvE
L

∞∑
n=0

((n+Φ)− n)− 2πvE
Lo

∞∑
n=1

((n− Φ)− n).
(3.68)

In the main text we used a physically motivated regularization which let the velocity approach zero
with increasing |n|. This was accomplished by setting dEi

dk = −vEe−a|k| with a > 0. Integrating this
yielded the energies for modes on the inner and outer edges:

Ei(n,Φ, a) = −vE
1

a
(1− sgn(n+Φ)e−a

2π|n+Φ|
L ),

Eo(n,Φ, a) = +vE
1

a
(1− sgn(n+Φ)e−a

2π|n+Φ|
Lo ).

(3.69)
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For a > 0, the sums become convergent geometric series and the ground state energy can be
evaluated. At Φ = 1/2, in the large outer boundary limit, the shift in ground state energy at general
a is given by:

∆E(Φ = 1/2, a) = −vE
2a

tanh
(πa
2L

)
. (3.70)

At general flux Φ, in the large-hole limit a/L� 1, the shift in ground state energy is given by:

∆E(Φ, a) = −vEπ
L

(Φ(1− Φ) +
a

L
f(Φ) +O(

a

L
)2), f(1/2) = 0 = f(0). (3.71)

The a/L → 0 limit yields a universal contribution which agrees between different regularization
techniques.

An alternative approach to calculating these sums starts directly with the sum (Eq. (3.68)) and
uses zeta function regularization. For this we first exponentiate each term of Eq. (3.68) to some
power −s. For sufficiently large real s, these sums then converge and can be analytically continued
back to power s = −1. That is we can calculate the finite part of ∆E(Φ) = ∆E(Φ, s = −1) from
the following:

∆E(Φ, s) = −2πvE
L

∞∑
n=0

((n+Φ)−s − n−s)− 2πvE
Lo

∞∑
n=1

((n− Φ)−s − n−s)

= −2πvE
L

(ζH(s,Φ)− ζR(s))−
2πvE
Lo

(ζH(s, 1− Φ)− ζR(s)),

(3.72)

where ζR(s) =
∑∞

n=0 n
−s is the Riemann zeta function and ζH(s,Φ) =

∑∞
n=0(n + Φ)−s is the

Hurwitz zeta function. Utilizing the identities ζR(−1) = − 1
12 and ζH(−1,Φ) = 1

2Φ(1− Φ)− 1
12 , in

the large outer length limit, we arrive at the shift in ground state energy:

∆E(Φ) = −vEπΦ(1− Φ)
1

L
, (3.73)

identical to the energy calculated from the other regularization approach.

3.9 Ground State Flux Configuration With and
Without Vacancies in the Yao-Kivelson-Kitaev
Model

The Yao-Kivelson-Kitaev (YKK) model is a modified Kitaev honeycomb model that realizes a true
chiral spin liquid phase because its ground state spontaneously breaks time-reversal symmetry [174].
In the YKK model, each spin on the honeycomb lattice is replaced with three spins forming a
triangle (as seen in Fig. 3.7). Each bond of the original hexagon is assigned a spin component
γin{x, y, z} depending on its orientation, as in the Kitaev model. Similarly, each bond orientation
of the new triangles is assigned a spin component γ′. Then the Hamiltonian is given by:

H = −J
∑
〈j,k〉γ

σγj σ
γ
k − J ′

∑
〈j,k〉γ′

σγ
′

j σ
γ′

k . (3.74)
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Figure 3.7: (a) The reflected flux configuration of an elementary dodecahedron. The phase
acquired closing a loop is π (b) The reflected flux configuration of an elementary triangle.
We can’t specify what the flux is, however after reflection, both triangles have the same flux.

Here 〈j, k〉γ corresponds to nearest neighbors on the hexagonal bonds, and 〈j, k〉γ′ corresponds
to nearest neighbors on the triangular bonds. This model is solved using the same techniques as
in the Kitaev honeycomb model, by introducing four Majorana and a Z2 constraint. With this
substitution the model reduces to a Hamiltonian of free Majorana fermions hopping in a frozen Z2

gauge field. We seek to verify that in this spin liquid that vacancies also bind Z2 fluxes. However,
the ground state flux pattern of this model is not provided by Lieb’s theorem [91, 90], and has only
been suggested from numerical results. In this section, we will first prove what the optimal flux
pattern is, and then check that introducing a lattice vacancy binds a Z2 flux relative to this.

In the limit where the triangle bond strengths J ′ are much larger than the hexagon bond
strengths J , this model coincides with the non-abelian Kitaev honeycomb model [174]. Lieb’s
theorem only guarantees the flux pattern in the Kitaev honeycomb model in the gapless and Toric
code phases [91, 90]. Hence, a proof in the YKK model of the optimal flux immediately provides a
proof of the optimal flux for the non-abelian Kitaev honeycomb model as well.

Lieb’s theorem doesn’t apply to the triangle-honeycomb lattice, however, we will be able to
leverage one of his lemmas to demonstrate the optimal flux pattern. Our task is to find the minimal
ground state energy, provided we are given a free fermionic hopping model with hopping strengths,
but not hopping phases, which are fixed. Assuming that the hopping model is half-filled (ours
must be as our model is built from Majorana fermions), and that the magnitude of the hopping
coefficients are reflection symmetric with respect to some symmetry cut, then the conditions for his
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Figure 3.8: We compare the ground state energy through a vacancy with and without a flux
as a function of the ratio of J/J ′. Negative energies correspond to a preference for lattice
vacancies to bind a flux. The phase transition from the abelian to non-abelian phase is
indicated with vertical line at J/J ′ = 1/

√
3.

reflection positivity lemma are satisfied [91, 90]. This lemma states that if the ground state energy
of some flux configuration is minimal, then the ground state energy of a flux configuration where the
phases are unchanged on one side of the symmetry cut, and reflected with a π phase shift on each
bond on the other side, also yields a minimal ground state energy (see Fig. 3.9). This holds also at
finite temperature where the free energy replaces the ground state energy. It also continues to hold
in the presence of interactions which respect the joint action of complex conjugation, particle-hole
transformation and geometric reflection.

The structure of our argument than assumes that we start with some unknown optimal flux
configuration and by a sequence of the combined reflection operations transform the flux configuration
such that we completely fix it (up to a degeneracy related to spontaneous breaking of time-reversal
symmetry). First, we apply the lemma to a horizontal cut through vertical honeycomb edges.
Focusing on a single dodecagon we see that the flux encircled by traversing a dodecagon after
applying the lemma is:

Arg(t1t2t3t4t5(−t∗5)(−t∗4)(−t∗3)(−t∗2)(−t∗1)) = π, (3.75)

(see Fig. 3.7 (a)). Therefore, all the dodecagons have optimal flux π.
Demonstrating the optimal flux pattern of the triangles takes a sequence of applications of Lieb’s

lemma, and we will find that two equivalent configurations exist corresponding to a spontaneous
breaking of time-reversal symmetry. Our underlying model is composed of Majorana fermions
and therefore the flux through any triangle must be ±π/2 as all hoppings can be taken complex.
Assuming that the flux through a lower triangle along a horizontal symmetry cut is fixed to be
Φ, we can show that after the cut the triangle above it must also have flux Φ as the hopping
operator traversing the upper triangle is (−h∗3)(−h∗2)(−h∗1) = h1h2h3 as the hoppings can be taken
complex. We show in Fig. 3.9 how via a sequence of symmetry cuts one can completely cover all
triangles with the same flux Φ. The first sequence of steps are designed to ensure all triangles in
a row of honeycombs agree. This is achieved by staggering horizontal and vertical cuts, where at
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each stage the vertical cut is moved to the right by one honeycomb. After a horizontal row of
honeycombs have triangles all with the same flux this row can be repeatedly “folded” upwards by
taking horizontal cuts directly above the boundary of the triangles whose flux have been already
fixed. After this sequence of applications of Lieb’s lemma all triangles agree and can either be set to
π/2 and −π/2, the two must both be optimal as they are related by the time-reversal symmetry
that the Hamiltonian is invariant under.

Therefore, we’ve established that the optimal ground state energy flux corresponds to a fixed
choice of ±π/2 uniformly in all triangles and π in each dodecagon.

We can now ask the question: do lattice vacancies trap Z2 fluxes in this model relative to this
background? By direct numerical evaluations of the ground state energy on finite lattices we find
that they do. Flux binding occurs in both phases, however, the binding energy quickly decreases in
the abelian phase. We display the results in Fig. 3.8.

It is worth noting that the maximal binding energy of a Z2 flux to a lattice vacancy in the
YKK model is nearly three times larger than the binding in the Kitaev honeycomb model with the
same coupling strengths. This might be useful if trying to engineer a spin liquid for the purpose of
topologically protected qubits as the errors are suppressed exponentially in this gap [78].
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1) 2) 3)

....

....

4)

Figure 3.9: By repeatedly applying Lieb’s lemma we can show that an optimal flux configu-
ration can be taken to have flux which agrees in all triangles. Blue triangles represent a fixed
flux ±π/2 and the white triangles represent undetermined flux.
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Chapter 4

Solvable Models of Strange Metals at
the Fermi Liquid - Fermi Liquid∗

Transition

4.1 Introduction
In this chapter, based on the collaboration [4], we consider a phase transition under which a heavy
fermion material breaks down and a fractionalized Fermi liquid emerges. Unlike the previous
chapters in which we considered insulating spin liquid phases, these metallic phases can be probed
with electrical transport measurements. We will introduce a family of solvable models describing this
transition with which we can analyze the impact of spatially disordered interactions on transport
phenomenon.

The properties of heavy fermion materials have been a continued source of fascination, calling
fundamental concepts of solid state physics into question [144]. An important ingredient in the
physics of the HFMs is the coexistence and interplay of conduction electrons with a half filled
localized valence electron band behaving as local spin-1/2 moments [45]. Early on, a mechanism
was proposed whereby the valence levels (VLs) effectively hybridize with the conduction electrons
through Kondo-like screening of their spin [125, 36]. This mechanism explains the establishment
of a heavy Fermi liquid (FL) with a large Fermi surface (FS) that includes both the conduction
and valence electrons as required by Luttinger’s theorem. However, many of these materials can be
tuned through quantum critical points (QCPs) at which the large FS gives way to one with a small
volume, equal to the filling of the conduction band alone [143, 109, 51, 98].

Reconstruction of the FS can occur through two distinct routes. The first is through symmetry
breaking, such as an antiferromagnetic transition, as seen in CeRhIn5 [143]. In this case the
emergent small FS satisfies Luttinger’s theorem within the new reduced Brillouin zone. However
recent experiments with a related material, CeCoIn5 [98] suggest a FS changing transition without
symmetry breaking.

Such a transition has a simple description within a scheme [36, 139] in which the Kondo
interaction is expressed as a coupling to a bosonic valence fluctuation, i.e. c†σfσb. Here, cσ represents
the conduction electron with spin index σ, and fσ is a fermion operator carrying the spin of the singly
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occupied VLs. Hybridization between the conduction and valence bands emerges with condensation
of the boson b, leading to the creation of a heavy FL phase.

As emphasized by Senthil et. al. [139], besides carrying a physical electron charge, this boson is
also charged under an emergent U(1) gauge field that fixes the local occupation of the VLs. Therefore,
condensation of b in the heavy FL phase leads to confinement through the Higgs mechanism. In the
gapped (uncondensed) phase of the boson, on the other hand, the VLs effectively decouple from the
Fermi sea and form a U(1) spin liquid. This phase is referred to as a fractionalized Fermi liquid
(FL?), and it was argued that it supports a small FS [138], thereby obeying a generalized form of
Luttinger’s theorem [108].

This so-called “slave boson” theory [36, 139] describes a route for a transition involving change
in the FS volume without symmetry breaking. However, the standard large N approach [36] used
to approximate the theory fails to capture essential properties of QCPs seen in HFMs; it does not
offer a robust explanation of the ubiquitous “strange metal”, with its linear in temperature (T )
resistivity ρxx at the QCP [146, 98]. The essential problem in the theory is that the feedback of the
single critical boson on a large number of N fermion species is suppressed by 1/N . The conduction
electrons are therefore non-interacting at the large N saddle point. Thus, the same feature that
makes this theory solvable also prevents it from describing a fully strongly coupled QCP.

In this paper, we introduce a valence fluctuation theory, which captures a strongly coupled QCP
showing marginal Fermi liquid (MFL) phenomenology [155] and strange metal T -linear resistivity, in
a solvable limit. We start from the same degrees of freedom as in the slave boson theory described
above [36, 34]. However we introduce a different large N limit, which allows controlled calculation
of transport properties nonperturbatively.

The new large N limit is inspired by recent work on “low rank” Sachdev-Ye-Kitaev (SYK)
models, in which N fermion flavors interact via random Yukawa couplings with αN boson flavors
[22, 111, 100, 157, 47, 75]. Recently, this approach has been used to compute quantum critical
properties and quantum chaos in the 2+1-dimensional Gross-Neveu-Yukawa model, namely, massless
Dirac fermions coupled to a critical boson field [74]. The critical exponents found at the saddle point
level are in excellent agreement with those obtained from conformal bootstrap, even for moderate
values of N . The key advantage compared to the standard large N limit is that, because both the
fermion and boson numbers scale with N , the saddle point equations include self-consistent feedback
between them, allowing us to capture a strongly coupled QCP.

We implement the large N scheme in the Kondo lattice problem by introducing N flavors of
the spin-1/2 fermions cσ and fσ, and of the valence fluctuation (spin-0) boson b, while retaining
the global su(2) spin symmetry. We consider two distinct models of the fermion-boson couplings
grijk. In Model I, the couplings are spatially disordered, and in Model II they are flavor random but
translationally invariant. Thus, the randomness in Model II is just a theoretical tool. Integrating
over it may be viewed as averaging over an ensemble of translationally invariant models that all
yield identical long wavelength behavior.

In both models, we obtain a QCP showing linear in T resistivity up to logarithmic corrections,
however these critical points describe transitions between slightly different phases. In Model I, we
obtain the linear in T resistivity at the QCP only if the heavy FL transitions to a “layered FL?”
phase, where the spinons fσ and boson b are deconfined only within two-dimensional (2D) planes.
In Model II, on the other hand, the MFL is obtained at a transition to a fully three-dimensional
(3D) FL? phase. Moreover, not only is the resistivity linear in T at the QCP, the transport lifetime
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always takes the universal “Planckian” value τtr ≈ h̄/(kBT ). Model I by contrast can be tuned
between a strongly damped ”Planckian” regime, and a weakly damped MFL charaterized by a
sub-Planckian linear in T relaxation rate. Interestingly, in the weakly damped MFL regime, we
find an enhancement of the Hall coefficient RH in the critical regime, similar to recent experimental
findings in CeCoIn5 [98].

The rest of the paper is organized as follows: in Section II, we review the standard large N
approach to Kondo lattice models and then introduce the new large N limit. In Sections III and IV
we solve two models, with and without translation invariance, in this large N limit, and calculate
transport quantities. We find strange metal behavior with T -linear resistivity at the QCP, and
the evolution of the Hall resistivity across the QCP confirms a change of carrier density, with an
additional enhancement of the Hall coefficent near criticality.

4.2 Large N Kondo Lattice Models
In HFMs, rare earth or actinide ions contribute a lattice of localized valence spins ~S coupled to the
mobile conduction electrons cσ. The essential low energy physics of HFMs are generally believed to
be captured by the Kondo lattice model and variations of it [45]:

H =
∑
k,α

εc,kc
†
k,αck,α + JK

∑
r,α,β

(~Sr · c†r,α~σαβcr,β), (4.1)

where εc,k is the momentum (k) space dispersion of the conduction electrons. The localized valence
spin at lattice site r can be expressed in terms of Abrikosov fermions (spinons):

~Sr =
∑
α,β

f †r,α
~σαβ
2
fr,β, (4.2)

which are subject to a single occupancy constraint at each lattice site. The Kondo coupling is written
as a quartic interaction between these fermions and the conduction electrons. A standard way to
then describe the possible hybridization between the valence fermions and conduction electrons is
through a Hubbard-Stratonovich decoupling of the quartic interaction [125, 14, 138, 139]

JK
∑
r,α,β

(~Sr · c†r,α~σαβcr,β) → g
∑
r,α,β

(c†r,αfr,αbr + H.c.), (4.3)

At the mean-field level the “slave boson” br is equal to the hybridization 〈
∑

α cr,αf
†
r,α〉. Note that

in this convention the Abrikosov fermion f † creates a hole in the valence band, while b† creates a
bound singlet consisting of a conduction electron and a valence spin. Thus, the constraint ensuring
a single valence spin per site is ∑

α

f †r,αfr,α − b†rbr = 1. (4.4)

The constraint can be implemented by a Lagrange multiplier acting as the time component of a U(1)
gauge field. Upon renormalization, the gauge field is expected to become dynamical. The matter
fields, i.e. the b bosons and f fermions carry charges 1 and −1 respectively under this emergent
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gauge field. Note that under our gauge choice the boson b† carries the same physical charge as the
conduction electron, while the fermion has no physical charge. The low temperature states represent
phases of the emergent U(1) gauge theory coupled to matter fields [138, 139, 52].

The FL? phase, characterized by a small FS, the boson is gapped and the gauge theory is in the
deconfined phase. The heavy FL phase with a large Fermi surface is established at a QCP at which
the boson b condenses, thereby confining the gauge field through the Higgs mechanism.

Condensation of the valence fluctuations provides a simple understanding for the main features
of the heavy FL phase [45, 82, 7]. As evident from (4.3), the condensed boson hybridizes the f
fermions with the conduction electron. Thus, the Fermi surface must grow to encompass the full
density of conduction and valence electrons. The coherent mixing between the mobile conduction
electrons with the localized f spinons also explains the large effective mass, which is the hallmark
of the heavy FL phase. However, an exact description of the aforementioned Higgs transition within
this model is in general hard, as it involves fluctuating gauge fields coupled to multiple matter
particles. The standard approach to make analytic progress in the valence fluctuation theory has
been to artificially enlarge the su(2) spin symmetry to su(N), and take the large N limit. The large
number N of c and f fermion species, controls an exact saddle point solution equivalent to a static
mean-field theory, where br = 〈

∑
α cr,αf

†
r,α〉 is obtained self-consistently [10, 36, 14]. Because the

critical fluctuations of the boson and the gauge field are suppressed, the conduction electrons remain
non-interacting, or at least good quasiparticles. Hence, this large N limit is not a good starting
point for obtaining non-trivial critical transport properties, and in particular, the strange metal
phenomenology that we want to describe. The main point of this paper is to introduce a new large
N limit that retains solubility of the problem yet describes non-quasiparticle physics already at the
saddle point level. The most important difference between our approach and the previous large N
theories is that we keep the fermion spin indices σ su(2) instead of promoting them to su(N), and
instead endow all three species c, f, b with a flavor index i = 1, . . . , N . The large N modification we
make then is:

cσ, fσ, b→ ci,σ, fi,σ, bi, i ∈ 1, . . . , N, σ ∈ 1, 2. (4.5)

One can also continuously vary the ratio of the numbers of flavors of each particle type, however
here we fix the same N for all particles. Because all the species have a comparable number of flavors,
their self-energies all remain O(1) within the large N limit.

The second new feature in our generalized large N limit is the introduction of a random ensemble
of interaction constants, similar to recently studied “low-rank” SYK models, which involve fermions
with random Yukawa coupling to bosons [22, 111, 100, 157, 47, 75, 74]. The random interactions
should be viewed as a mathematical construct implementing a particular type of controlled large N
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limit. We therefore consider the following family of model Hamiltonians;

H =
∑

λ∈{cσ ,fσ ,b}

Hλ +Hint,

Hλ =
N∑
i=1

∑
k

(ελ,k − µλ)λ
†
k,iλk,i,

Hint =
1

N

N∑
i,j,l=1

∑
r,σ

(grijlc
†
r,i,σfr,j,σbr,l + H.c.),

N∑
i=1

(
b†r,ibr,i −

∑
σ

f †r,i,σfr,i,σ

)
= Nκ.

(4.6)

Here grijl are complex Gaussian random variables. We have included emergent dispersions ελ,k for
λ = fσ, b, which are expected to be generated when integrating out higher energy modes. The last
line of (4.6) is the large N generalization of the occupancy constraint in (4.4) (κ is a free parameter).

We consider two models for the coupling tensors grijl. In Model I these are taken to be uncorrelated
between different sites r, whereas they are identical on all sites in Model II:

Model I: grijl g
r′
i′j′l′ = g2δrr′δii′δjj′δll′ ,

Model II: grijl g
r′
i′j′l′ = g2δii′δjj′δll′ . (4.7)

Thus, Model I is spatially disordered, and should be viewed as a depiction of HFMs with spatially
disordered Kondo couplings. Model II, on the other hand, is translationally invariant and should be
viewed as a model for clean systems. The averaging over flavors in both models eliminates various
intractable Feynman diagrams [99, 47, 74], thus allowing controlled access to the QCP at strong
coupling.

While the f and b are also additionally coupled to the emergent U(1) gauge field a, the coupling
constant scales as 1/

√
N : Hλa ∼ (a/

√
N)
∑N

i=1 λ
†
iλi, for λ = f, b. This ensures that the gauge

field fluctuations do not contribute to the f, b self-energies in the large N limit. Nonetheless,
integrating out the emergent gauge field propagator leads to exact Ioffe-Larkin constraints on the
current correlators [64, 87], tantamount to imposing series addition of the conductivities of f, b
(Appendix 4.9).

In both models we assume simple quadratic dispersions ελ = k2/(2mλ) for all three species
λ = c, f, b. We choose the masses mλ to be appropriate for the creation of a heavy FL phase upon
condensing the bosons, which implies that the mass of f should be much larger than that of c.
Furthermore, since b is a composite particle of c and f , its motion requires the combined motion of c
and f that can only occur at higher orders in perturbation theory, and it will therefore have a mass
even larger than that of f . We thus take the hierarchy mb > mf � mc. This choice of masses implies
the bandwidths of c and f are large relative to that of b. The c, f chemical potentials are chosen
such that the respective densities are close to equal, motivated by stoichiometric considerations,
and by an observed near doubling in Hall coefficient across the transition from the heavy FL to FL?
in CeCoIn5 [98].

The transition between the FL? and heavy FL phases occurs, as in previous theories, through
condensation of the boson b. A natural parameter that can control the transition across the QCP in
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Figure 4.1: The only contributing diagrams to the self-energies of the three particle species.
All others are suppressed by the large N limit or averaging over grijl. The averaging over
the coupling tensors is indicated by the dotted lines, with its correlator given by (4.7). The
dotted lines carry momentum for Model I but do not for Model II.

experiments is the total physical charge density, nel = 〈nb〉 + 〈nc〉, while the VL occupation and
hence κ = 〈nb〉 − 〈nf 〉 is held fixed. However, for convenience of calculation we tune κ instead. The
two approaches are approximately equivalent in the regime we consider, where the bandwidths of c
and f are much larger than that of b, with the difference between the approaches amounting only
to small relative changes in the c, f occupations, which only make small changes in the physical
properties of c, f , and therefore will not significantly alter our results.

As in the case of previous work on SYK-like models [99, 47, 74], the averaging over the coupling
tensors in the large N limit yields exact coupled Schwinger-Dyson (SD) equations for the Green’s
functions of the three species c, f, b, which we solve self-consistently throughout the phase diagram.
The self-energies for these SD equations are shown in Fig. 4.1. Using these, we compute non-
perturbatively the T -dependent conductivity tensors in the two models, focusing in particular, on
the critical regime.

In the analysis of Model I, we assume a special FL? phase, in which the emergent gauge field, and
thus also the f and b particles that are charged under it, are all deconfined only within individual
2D planes. The physical 3D system is a stack of these 2D layers. The behavior of the resistivity
across the transition between the layered FL? and the heavy FL phase is shown in Fig. 4.2(a).
In the quantum critical regime ρxx shows a quasi-linear T dependence (linear with a logarithmic
correction).

The nature of the critical MFL depends on a dimensionless coupling strength γ between the
bosons and fermions. For sufficiently strong coupling, the bosons are overdamped, and the QCP
displays a near-universal “Planckian” transport lifetime τ ∼ h̄/(kBT ), which is independent of all
microscopic details of the model (up to logarithmic factors). In the opposite regime of weak damping
(γ � 1), the critical behavior provides an example of a skewed MFL [53], in which the scattering
rates of particle and hole excitations about the electron FS are different. The resistivity is linear in
T but sub-Planckian, and the fermion self-energies are asymmetric about ω = 0. On tuning across
the QCP, the in-plane Hall coefficient RH computed for weak out-of-plane magnetic fields transitions
between two plateau values that correspond to the different effective carrier densities of the FL?
and FL phase. In the weakly damped regime this change of RH is non-monotonic, developing a
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peak in the quantum critical region as a function of the tuning parameter κ (Fig. 4.2(b)). This
enhancement of RH near criticality is reminiscent, yet much more modest than that observed in
experiments on CeCoIn5 [98].

For Model II, we consider a fully 3D deconfined FL? phase. We show that ρxx is quasi-linear in
T in the critical region if the f FS at the QCP matches that of the conduction electrons, and if
the f fermions and b bosons additionally rapidly relax momentum via impurity scattering and/or
self-interactions on the lattice. This is closely related to the work of Paul et. al. [115], who
find a MFL for matching FS’s coupled to a complex bosonic field under certain phenomenological
assumptions. Within Model II however, this result is exact in the large N limit. We further show
that the two FS’s may be naturally self-tuned to matching at the QCP, in order to maximize the
free energy released when the bosons condense. Unlike in Model I, we find that the bosons in Model
II are always overdamped, leading to Planckian transport lifetime at low temperatures independent
of the coupling strength. Because of the overdamped nature of the bosons there is no enhancement
of RH in Model II.

4.3 Model I: Spatially Disordered Couplings
In this section we solve for the Green’s functions in Model I and calculate transport temperature
dependence of transport quantities across the transition. We identify two regimes of the critical
behavior, depending on the boson-fermion coupling strength. The calculation is exact in the large
N limit.

4.3.1 Self-Energies and Phase Diagram
The starting point for obtaining the phase diagram and calculating the transport properties in this
model at large N are the coupled Schwinger Dyson equations for the Green’s functions of the three
species:

Gc(iω) =
1

V

∑
k

1

iω − εc,k + µc − Σc(iω)
,

Gf (iω) =
1

V

∑
k

1

iω − εf,k + µf − Σf (iω)
,

Gb(iω) =
1

V

∑
k

1

−iω + εb,k +∆b − Σb(iω)
,

(4.8)

where V is the system volume. The self-energies Σc,f,b in the large N limit are given exactly by the
diagrams in Fig. 4.1, which read

Σc(iω) = g2T
∑
iω′

Gf (iω
′)Gb(iω − iω′),

Σf (iω) = g2T
∑
iω′

Gc(iω
′)Gb(iω

′ − iω),

Σb(iω) = −2g2T
∑
iω′

Gc(iω
′)Gf (iω

′ − iω).

(4.9)
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Here V is the system volume, and the factor of 2 in the equation for Σb arises from the su(2)
spin degeneracy of c and f . The self-energies only involve momentum-averaged Green’s functions
Gλ(iω) = (1/V )

∑
kGλ(iω, k) because the random interactions in Model I are uncorrelated between

different sites. In the relevant regime where the fermion bandwidths are the largest scales, their
momentum-averaged Green’s functions take the simple form Gc,f (iω) = −(i/2)νc,f sgn(ω) [114],
where νc,f are the respective spinless densities of states at the Fermi energies. This allows to
calculate the boson self-energy Σb

Σb(iω) = −2g2T
∑
iω′

Gc(iω
′)Gf (iω

′ − iω) = −γ|ω|+ Cb,

γ = g2νcνf/(2π) = g2(3nc)
1/3mcmf/(2π

4/3).

(4.10)

Here γ is a dimensionless coupling constant characterizing the strength of the boson damping. We
will explain the effects of its magnitude on the physics of the system in the subsequent paragraphs.
The T -independent constant Cb can be absorbed by the T = 0 chemical potential of the bosons.

With the Green’s functions in hand, the phase diagram is obtained by solving for the boson gap
∆b(T ) and the fermion chemical potential µf (T ) that would satisfy the constraint 〈nb〉 − 〈nf 〉 = κ.
In the relevant regime of large fermion bandwidth (or Fermi energy) compared to the temperature,
the change in the fermion occupation with temperature is negligible. Therefore fixing κ is essentially
equivalent to fixing the boson occupation

〈nb〉 = T
∑
ω

Gb(iω) = κ+ 〈nf 〉, (4.11)

where 〈nf 〉 is treated as a constant. The phase transition, associated with condensation of the
boson, is then tuned by the parameter κ, analogous to the fixed length constraint in the O(N) rotor
model at large N [131]. Similar to the rotor model, the boson occupation is fixed by solving for the
variation of the “soft gap” ∆b(T ) in the boson Green’s function (4.9) with temperature.

The defining features of the zero temperature phases tuned by κ are shown in Fig. 4.2(c).
In the FL∗ phase, obtained for κ < κc, the zero temperature gap ∆b(0) is positive and vanishes
continuously as κ approaches the critical value κc. For κ > κc, on the other hand, one of the boson
flavors is condensed at T = 0 and acquires a condensate amplitude |〈br,1〉| = r0

√
N . This leads to

the hybridization of the f and c fermion bands, which characterizes the heavy FL phase. Details of
the calculation are given in Appendix 4.7.

The temperature dependence of the soft gap ∆b(T ) is crucial for determining the thermodynamic
and transport properties. Solving the constraint equation at criticality we find that soft gap grows
quasi-linearly with temperature as ∆b(T ) ∼ Tw1(γ, T ), where w1 varies quasi-logarithmically with
T 1. Details of the calculation are given in Appendix 4.8. In the FL? phase (κ < κc) ∆b(T ) exhibits
the critical behavior for T � ∆b(0), while its temperature dependence is exponentially suppressed
for T � ∆b(0).

In the heavy FL phase (κ > κc) the temperature dependence of ∆b is more subtle because the b
and f fermions are no longer confined to hop within planes in this phase. Once a condensate is
established, the inter-layer interactions generate inter-layer hopping terms of the b and f partons of

1The function w1(γ, T ) vanishes quasilogarithmically as T → 0, diverges logarithmically as γ → 0, and is
quasi-linear in γ for γ � 1
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Figure 4.2: (a) The phase diagram for Model I. We have ρxx − ρxx(T = 0) ∼ Tα ln(Λ/T ),
and the color indicates the value of α = d ln(ρxx/ ln(Λ/T ))/d ln(T ). We exclude the (gray)
crossover region where our approximate treatment of the 3D condensed phase breaks down.
(b) The plot of RH at weak out-of-plane magnetic field vs. κ − κc. RH transitions non-
monotonically between two plateau values controlled by the effective carrier densities in
the FL? and heavy FL phases respectively. The value of RH is enhanced in the quantum
critical region. The dashed lines indicate points within the gray region that are omitted.
Due to the different dimensionality of f and c, the plateau value on the right is only roughly
1/(nc + nf ). (c) The boson “soft gap”, ∆bmb, and the strength of the boson condensate,
〈br,1〉 = r0

√
N , are plotted vs. κ− κc at low temperature. ∆b is finite when κ < κc and is

exponentially suppressed when κ > κc, at which point inter-layer instabilities allow for a 3D
boson condensate to form, forcing ∆b = 0. Again, we omit the crossover between these two
regimes (gray region). Here γ = 0.02 � 1, nc = nf = 1, Λmb = π2/2, mb = 5mf = 50mc (we
set h̄ = kB = al = 1 everyhwere, where al is the lattice constant).

strength proportional to r20, thus establishing a fully 3D Higgs phase (for full details see Appendix
4.11). The approximate description of the Higgs phase in terms of a self-consistent 3D condensate
remains valid in the heavy FL phase below a crossover temperature scale T ∗ that vanishes at the
QCP. Above the crossover scale T ∗ the b sector is dominated by 2D critical fluctuations 2. In

2As is well known there is no phase transition between the low T Higgs phase and high T confined phase.
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computing the transport properties for κ > κc we will treat these two regimes separately, leaving
out the more complicated crossover regime (gray region in Fig. 4.2(a)).

We now turn to the fermion Green’s functions, showing first that they accquire a MFL self-energy
at the QCP. To calculate the fermionic self-energies Σc,f we need the momentum-averaged b Green’s
function:

Gb(iω) =

∫
ddk

(2π)d
1

−iω + k2/2mb + γ|ω|+∆b

≈ mb

2π
ln
(

Λ

−iω + γ|ω|+∆b

)
, d = 2,

(4.12)

where Λ = π2/(2mb) is the boson bandwidth. We always consider sufficiently low frequency and
temperature such that max(|ω|, γ|ω|,∆b) � Λ. This ensures that self-energies remain smaller than
the bandwidths of their respective species and thereby will keep our computations self-consistent.
The logarithmic form in (4.12) is only obtained for 2D bosons. The QCP is defined by ∆b = 0;
when inserted into (4.12) and (4.9), we obtain MFL self-energies:

Σc(iω, T = 0) = g2
∫
dω′

2π
Gf (iω

′)Gb(iω − iω′)

=
γmb

2πνc

[
iω ln

(√
1 + γ2

eΛ/|ω|

)
+ cot−1(γ)|ω|

]
+ Cc.

Σf (iω, T = 0) = g2
∫
dω′

2π
Gc(iω

′)Gb(iω
′ − iω)

=
γmb

2πνf

[
iω ln

(√
1 + γ2

eΛ/|ω|

)
− cot−1(γ)|ω|

]
+ Cf . (4.13)

The constants Cc,f can be absorbed into µc,f .
The parameter γ, related to the strength of damping of the b bosons, allows us to tune between

different physical regimes. In general we expect γ to increase with the strength of the Kondo
coupling g. In the limit of γ � 1, the analytic continuation of (4.13) to real frequency gives

Im[Σc,f,R](ω, T = 0) = − γmb

4νc,f
|ω|, (4.14)

which is the traditional MFL form [155]. On the other hand, when γ � 1, the fermion self-energies
(4.13) are asymmetric about ω = 0:

Im[Σc,R](ω, T = 0) =
γmb

2πνc,f
|ω|
(
−π
2
− cot−1(γ)sgn(ω)

)
, (4.15)

Im[Σf,R](ω, T = 0) =
γmb

2πνc,f
|ω|
(
−π
2
+ cot−1(γ)sgn(ω)

)
.

Thus, in this regime, our model provides a concrete example of a “skewed” MFL [53]. This skewed
MFL is expected to have a nonvanishing Seebeck coefficient in the T → 0 limit due to the asymmetric
inelastic scattering rate in (4.15) [53, 55]. The nonvanishing Seebeck coefficient as T → 0, and

Accordingly, there is no true finite T Bose condensation transition, only a crossover
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the asymmetric frequency dependence of the electron spectral function, provide experimentally
detectable signatures of the small γ regime 3.

In the FL? phase, where ∆b(T = 0) > 0, we obtain, in a similar fashion to (4.13),

Σc,f (iω, T = 0) = −γmb ln(Λ/∆b(T = 0))

πνc,f
iω

+ i
γ2mb

2πνc,f∆b(T = 0)
ω2. (4.16)

The O(ω2) term leads to a Fermi liquid ω2 scattering rate on the real frequency axis, and hence a
scattering rate ∝ ω2 + π2T 2 upon analytic continuation to the thermal circle for T > 0. The O(ω)
term leads to a renormalization of the Fermi liquid quasiparticle weights, and hence an enhancement
of the conduction electron effective mass, given by

m∗
c = mc

(
1 +

γmb

πνc
ln
(

Λ

∆b(T )

))
. (4.17)

Here, we extended the result to small nonvanishing temperatures by replacing ∆b(0) → ∆b(T ).
Since ∆b(T = 0) ∼ κc − κ vanishes on approach to the QCP, the zero temperature effective mass
diverges, consistent with experimental findings in HFMs [146, 43]. In the critical region ∆b ∝ T up
to logarithmic corrections. Thus, the divergence of m∗

c is cut-off logarithmically by the temperature
at criticality.

We now calculate the imaginary part of the fermion self-energies at finite T , necessary for
computing conductivities. The c fermion self-energy in the Lehmann representation is given by:

Σc(iω, T ) = −g2
∫

dεdε′

(2π)2
Af (ε)Ab(ε

′)
nB(ε

′) + nF (−ε)
ε′ + ε− iω

, (4.18)

where nB, nF are the Bose and Fermi functions at temperature T , Af (ε) = −2Im[GRf (ε)] = νf is
the fermion spectral function, and Ab(ε) the boson spectral function. We analytically continue
iω → ω + iδ to obtain

Im[Σc,R(ω, T )] = −g2νf
∫

dε

4π
Ab(ε)(nB(ε) + nF (ε− ω)). (4.19)

This expression also holds for Im[Σf,R] with the change νf → νc and ω → −ω. The boson spectral
function is derived in Appendix 4.7 and is given by:

Ab(ω) =
mb

π

[
πΘ(ω −∆b) + tan−1

(
γω

∆b − ω

)]
, (4.20)

where Θ(x) is the Heaviside step function. Note that the temperature dependence of Ab comes
entirely from its dependence on ∆(T ). We have shown that in the critical region ∆b ∝ T up to
logarithmic corrections. Therefore, up to these corrections, the spectral function can be expressed as
Ab(ω/T, z), with z = ∆b/T a temperature independent constant. Using this expression in (4.19) and

3The magnitude of the low-temperature Seebeck coefficient is ∼ kB/e when γ � 1, declining to zero as γ
is increased to γ � 1.
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scaling the integration variable immediately gives a T -linear result up to the logarithmic corrections.
We will show that this property implies near T -linearity of the resistivity.

In the two limits γ � max(1,∆b/T ) and γ � 1 we obtain explicit expressions for the imaginary
parts of the self-energy in the critical region (Appendix 4.8). For large γ we have

Im[Σc,R(ω, T )] ≈ − γmb

2πνc
T

[
∆b

γT
ln
(
Λe

∆b

)

+ π ln
(
2 cosh

( ω
2T

))]
; ∆b/(γT ) < 1,

∆b ≈
πγT

ln
(

Λ
Tγe

)W0

(
2
√
e

π2
ln
(

Λ

Tγe

))
, (4.21)

where W0(z) is the Lambert W function. For γ � 1, (4.13) is well approximated by:

Im[Σc,R(ω, T )] ≈ −γ
2mb

2πνc
T
(
1 + eω/T

)
, |ω| . T. (4.22)

Like at T = 0 (4.15), this self-energy is asymmetric between positive and negative frequencies, and
is therefore skewed.

4.3.2 Conditions for Planckian Dissipation
It has been proposed that inelastic relaxation times, in most if not all situations, cannot be much
smaller than the quantum mechanical “Planckian” time scale τP = h̄/(kBT ) (see [60] and references
therein). There is a growing list of materials, showing strange metal behavior at low temperatures,
which seem to be close to this limit, namely they relax on the Planckian time scale up to a constant
of order one [27, 89, 104, 28, 113]. Since the self-energies calculated above imply relaxation times
proportional to 1/T , it is interesting to ask how systems described by Model I line up with the
proposed Planckian bound.

Note however, that the correct quasiparticle relaxation time cannot be extracted directly as the
inverse ImΣR. Rather it is renormalized by the same factor as the mass. To see this, we eliminate
the prefactor of the ω term to obtain the standard Fermi liquid form of the Green’s function

Gc,R(ω, k) =
Z

ω − Zξk − iZIm [Σc,R(ω)]
(4.23)

with Z = m/m∗
c . From this we can immediately obtain 1/τc = Z Im (Σc,R(ω = 0)). This is the same

timescale extracted from analysis of transport data pertaining to strange metal QCPs [27, 89, 104,
28, 113] using the Drude formula for quasi particle transport τ = m∗σxx/(ne

2). In the experiments
the effective quasiparticle mass is measured slightly away from the critical point. Note that we focus
here on the relaxation rates of the conduction electrons because, as shown in Sec. 4.3.3 below, they
dominate the transport.
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Figure 4.3: The diagrams that contribute to the c conductivity. These diagrams are not
suppressed by the large N limit, but only the first (bubble) diagram is nonzero in Model
I; in Model II, the corrections to the bubble do not identically vanish, but their effects are
nevertheless suppressed (see main text). As in Fig. 4.1, dotted lines indicate the averaging
over the flavor random couplings grijl, which carry momentum in Model I (but not in Model II).
Consequentially, the momentum integrals in the left and right loops of the correction diagrams
are decoupled only in Model I. The diagrams that contribute to the f and b conductivities
are analogous to the ones above. The diagrams that contribute to the cross-correlations
of currents of different species are analogous to the vertex diagrams correcting the bubble
diagram above, and also vanish in Model I (but not in Model II).

In the strongly damped regime, where γ � 1,∆b/T , equations (4.17) and (4.21) give

τc =

(
πνc
γmb

+ ln
(

Λ

γT

))
h̄

kBT

≈ ln
(

Λ

γT

)
h̄

kBT
, (4.24)

At realistic temperatures τc can be viewed as Planckian relaxation modified only by a slowly varying
logarithmic function of temperature and nearly independent of the microscopic couplings. The result
provides an appealing potential explanation for observation of near Planckian relaxation across
different materials, with O(1) proportionality constants that vary only slightly between materials
[27].

In the weakly damped regime γ � 1 equations (4.17) and (4.22) give

τc =
1

γ

(
πνc
γmb

+ ln
(

Λ

T ln(π/γ)

))
h̄

kBT
, (4.25)

which is manifestly nonuniversal. The proposed Planckian lower bound is still obeyed, but exceeded
by a large factor of at least 1/γ. Thus we do not expect Planckian transport in the weak damping
regime. Such “sub-Planckian” behavior has in fact recently been reported in experiments on HFMs
[152].

4.3.3 Transport
The computation of transport properties is greatly simplified in Model I due to the spatially
disordered coupling grijl. To clarify this point, let us first ignore the effects of the emergent U(1)
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gauge field. In this case the Kubo formula for Model I takes a particularly simple form involving
only the bare bubble diagram for each of the three species (the first diagram in the series shown
in Fig. 4.3). To see this, first note that only vertex corrections with non-crossing boson lines can
potentially contribute in the large N limit. However, in such diagrams, the momentum integral
on the loop containing the bare current vertex is decoupled from the rest of the diagram due to
averaging over the site-uncorrelated couplings grijl. Once decoupled, these loop integrals vanish
because the current vertices and the propagators on the loop have opposite parities under spatial
inversion. Note that all cross species current correlations must involve vertex corrections, which
vanish by the same mechanism. Thus, the conductivities associated with the different species can
be separately calculated from their respective bubble diagrams. Physically, these diagrams describe
current decay due to scattering of fermions on critical bosons, which is not momentum conserving
due to the spatially disordered couplings.

The effects of the emergent U(1) gauge field on transport can now be included by integrating
it out exactly in the large N limit. This leads to a Ioffe-Larkin composition rule for the in-plane
conductivities of the three species, described by the respective bubble diagrams (see Appendix 4.9)
[64, 87]:

σσσ =

(
σxx σxy
−σxy σyy

)
= σσσc + (σσσ−1

b + σσσ−1
f )−1 ≡ σσσc + σσσbf . (4.26)

In other words, the conductivities of the f fermions and the bosons, which carry a U(1) gauge
charge, are added in series and their combined current is added in parallel to that of the conduction
electrons.

The transport properties of the two phases can be easily understood from this composition
rule. In the heavy fermi liquid phase, obtained for κ > κc, the boson is condensed and therefore
contributes zero resistance to the in-series addition. The total conductivity is then a result of
adding the f and c fermions currents in parallel, consistent with the expected increase of the carrier
number associated with the large Fermi surface. In the FL∗ phase, obtained for κ < κc, the boson
conductivity vanishes at zero temperature due to the soft gap. The combined conductivity of the
bosons with the f fermions also vanishes due to the series addition. Therefore the total conductivity
is equal to just that of the conduction electrons σσσ = σσσc, compatible with a small fermi surface
consisting of only those electrons.

We now argue that in the quantum critical region at finite temperatures the transport is also
dominated by the conduction electrons. To obtain the boson contribution σb, note that in the
critical regime we have ∆b(T ) ∼ T (up to logarithms), which retains the scaling of the Green’s
function as 1/ω. A simple scaling analysis of the bubble diagram then shows that σσσb ∼ T 0, much
smaller than σf ∼ 1/T . Thus, the small boson conductivity bottlenecks the series addition with the
spinons. Then the total conductivity is dominated by the much larger σc ∼ 1/T added in parallel.
We confirm by exact numerical evaluation that indeed the total conductivity in the critical region is
dominated by the conduction electrons (Fig. 4.4 inset).

The longitudinal resistivity of the conduction electrons, derived from the bubble diagram in
Fig. 4.3, takes the form [114] (see also Appendix 4.6):

ρc,xx = T

(
nc
8mc

∫ ∞

−∞
dω

sech2(ω/(2T ))

|Im[Σc,R(ω, T )]|

)−1

. (4.27)
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In the critical region Im[Σc,R(ω, T )] ∼ T for |ω| . T , so that the integral in (4.27) is independent of
T at leading order. Thus we get nearly T -linear resistivity in the critical strange metal.

In the FL? phase we found in (4.16) that |Im[Σc,R(ω, T )]| ∝ ω2+π2T 2. Plugging this into (4.16)
gives ρxx ∝ T 2 as in a normal Fermi liquid (Fig. 4.2(a)).

In the heavy FL phase, the boson conductivity diverges due to the condensation of 〈br,1〉 ∼
r0
√
N and the Ioffe-Larkin composition rule therefore implies the parallel addition of the c and

f conductivities. The condensate also generates inter-layer hopping of the bosons and spinons,
which in return stabilize the condensate, within this mean-field treatment, at nonvanishing low
temperatures. Details of this self-consistent model are described in Appendix 4.11.

Note that the c and f fermions continue to couple to the N − 1 uncondensed gapless boson
flavors b2,...,N . The 3D boson dispersion for b2,...,N implies that we must compute the equivaluent of
(4.12) with an additional integral over the out-of-plane momentum, which leads to it having a ω1/2

frequency dependence (instead of ln(ω)), and subsequently to Im[Σc,f,R] ∼ const.+max(T 3/2, ω3/2).
This results in a resistivity that behaves as ρxx ∼ const. + T 3/2 at low T as seen in Fig. 4.2(a),
where the constant contribution to Im[Σc,f,R] (and therefore ρxx) is generated by scattering off of
the condensed b1 mode. The N − 1 uncondensed boson modes leading to the T 3/2 correction exist
only as an artifact of the large N limit, and they will not be present in the physical N = 1 limit.
Therefore, in the physical system we expect the finite T corrections to the resistivity in the heavy
FL phase to be weaker than T 3/2.

At nonzero out-of-plane magnetic fields, B 6= 0, σσσ may be computed by expressing the Kubo
formula in the basis of Landau levels, since the local self-energies are spatially independent. Vertex
corrections to the current correlation functions continue to vanish even when B 6= 0 (Appendix
4.6). As a result of integrating out the emergent U(1) gauge field, the in-plane σσσb,f are computed in
presence of renormalized magnetic fields produced by the response of the emergent U(1) gauge field
to the (weak) external magnetic field B (Appendix 4.9):

Bf = B
χb

χf + χb
, Bb = B

χf
χf + χb

. (4.28)

Here χy is the diamagnetic susceptibility for species y. We set χf = 1/(24πmf ), i.e. the free fermion
Landau diamagnetic susceptibility, corrections to which are suppressed by the large f bandwidth
(see Appendix 4.10), and χb to its zero field value as we are only concerned with small B.

In the FL? phase and the quantum critical region, since the transport is dominated by the
conduction electrons as discussed above, we can express the weak-field Hall coefficient as

RH ≈ RcH =
σc,xy

(σc,xx)2

= −4T

nc

∫∞
−∞ dω sech2 (ω/(2T )) Im[Σc,R(ω, T )]

−2(∫∞
−∞ dω sech2 (ω/(2T )) Im[Σc,R(ω, T )]−1

)2 . (4.29)

When Im[Σc,R(ω, T )] is independent of ω, we get RH ≈ −1/nc. Thus an enhancement of RH
beyond this value requires a strong frequency dependence of Im[Σc,R(ω, T )] at |ω| . T , as otherwise
RH would be independent of the self-energy. In the FL? phase, Im[Σc,R(ω, T )] ∝ ω2 + π2T 2,
and RH ≈ −1.05/nc. We find that in the quantum critical region, for weak damping γ � 1,
RH ≈ −4/(3nc), which can be obtained by inserting (4.22) into (4.29). Therefore, there is an
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Figure 4.4: RH vs. T in Model I for various B and ∆κ = κ − κc, computed numerically
without any approximations. RH is roughly constant within the critical region and is higher
than the expected RH ≈ −1/nc seen in the FL? region (blue and orange curves). A larger B
suppresses RH slightly. There is a large enhancement in the crossover region between the
condensed bosons and the quantum critical region, when we ignore inter-layer instabilities for
κ > κc (green curve). (Inset) ∆ρxx ≡ ρxx − ρxx(T = 0) vs. T for different values of ∆κ. The
other parameters are the same as in Fig. 4.2.

enhancement of RH upon entering the quantum critical region from the FL? phase. In the strongly
damped γ � 1 regime, the frequency dependence of Im[Σc,R(ω, T )] in the quantum critical region
(4.21) is weaker than that in (4.22), and consequently RH ≈ −1.07/nc in the quantum critical
region, which is a negligible enhancement over the FL? phase. In Fig. 4.4 we demonstrate the
enhancement of RH for γ � 1, seen when crossing from the FL? phase to the quantum critical region
as a function of T , by computing the total conductivity numerically without any approximations.
The enhancement of RH is suppressed by magnetic field and sharpened (as a function of κ) with
decreasing temperature. 4.2(b) shows the enhancement of RH in the crossover between the two
regimes as a function of the tuning the parameter κ at constant temperature. This enhancement is
more modest than that observed in experiments on CeCoIn5 [98].

We have noted already that upon tuning κ into the heavy FL phase (κ > κc), the total
conductivity tensor is simply σc + σf , because the boson is superconducting and connected in series
to the f . Moreover, in the presence of an external magnetic field, the Meissner effect generated by
the superconducting boson leads to a divergent susceptibility χb that screens the magnetic field seen
by the boson, while the f fermions see the full magnetic field up to the small Landau diamagnetism.
Consequently the Hall effect is just as it would be for a Fermi liquid composed of both the c and f
fermions, |RH |nc = nc/(nc + nf ) = 1/2. Thus, as seen in Fig. 4.2(b), |RH |nc changes from ≈ 1 in
the FL? phase to ≈ 1/2 in the heavy FL phase.

Note, however that the calculation performed to obtain these plots is interrupted in the grayed
out crossover region of Fig. 4.2(a) between the critical and heavy FL regime. We can attempt
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to capture RH in this region by continuing the calculation from the critical regime, with the
boson fluctuations decoupled between 2D layers, down to low temperatures. In this case we find
a strong enhancement of the Hall coefficient over an intermediate temperature window (Fig. 4.4)
in the weakly damped γ � 1 regime. The enhancement is dominated by the contribution of the
boson conductivity σσσb to the total conductivity σσσ . The strong non-monotonic behavior stems
from a competition between two effects. On the one hand the boson gap decreases rapidly with
decreasing temperature and becomes exponentially suppressed below the grayed out crossover regime,
∆b ∼ T exp

[
−2π(κ−κc)

Tmb

]
. This leads to a large σb,xy due to bosons excited above the small gap. On

the other hand, the susceptibility χb diverges rapidly ultimately leading to vanishing of Bb and
hence also of σσσb at zero temperature. The interplay between these two effects leads to the sharp
peak in |RH | versus temperature seen in Fig. 4.4. This strong enhancement is more reminiscent of
the experimental results on CeCoIn5 [98].

We note that when the boson is strongly damped, with γ � 1, this mechanism for enhancement
of RH is not effective because the boson becomes nearly particle-hole symmetric with Gb(iω) ≈
Gb(−iω).

4.4 Model II: Translationally Invariant Couplings
In this section we consider the model (4.6) with random tensor couplings that are the same on all
lattice sites, satisfying grijl gr

′
i′j′l′ = g2δii′δjj′δll′ . We also assume that, in the FL? phase, the U(1)

gauge field is fully deconfined in three dimensions. Due to the momentum conservation, the SD
equations (with self-energies given by Fig. 4.1) now involve momentum dependent (rather than
momentum-averaged) Green’s functions. We further specialize to the case where the c and f FS
match [115], which we will demonstrate is a natural condition. We will then continue to compute
the transport quantities in parallel to the analysis of Model I.

4.4.1 Matched Fermi surfaces
We argue that the matching of the FS’s of c and f fermions is not as fine tuned a condition as it
might appear. First, an equal site occupation n ≈ 1/2 in both bands is in many cases a natural
result of stoichiometry [98]. But though having equal Fermi surface volumes is a necessary condition,
it does not necessarily imply matching. A key point is that the f fermions are emergent degrees of
freedom (partons), whose dispersion is generated dynamically, unlike the dispersion of the c which is
fixed by microscopic material parameters. Below we argue that the dynamical variable that controls
the dispersion of the f fermions self tunes to match the FS of the c fermions at the critical point as
such matching maximizes the free energy relieved by condensation of the b.

To demonstrate the energetic mechanism behind the matching of the FS’s, we assume that the
c and f FS’s are ellipsoidal, with the dispersions

εc,k =
k2x

2mc,x
+

k2y
2mc,y

+
k2z

2mc,z
,

εf,k =
k2x

2mf,x
+

k2y
2mf,y

+
k2z

2mf,z
,

(4.30)
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and that they have the same volume

VFS = µ3/2c

√
2mc,xmc,ymc,z/(3π

2)

= µ
3/2
f

√
2mf,xmf,ymf,z/(3π

2).
(4.31)

The ratios rα={c,f};β={y,z} = mα,β/mα,x control the shape of the Fermi surfaces. We will treat
the parameters of the f dispersion as variational parameters that minimize the ground state energy
of the system upon boson condensation. When the boson is uncondensed, the grand free energy of
the non-interacting fermion system at T = 0 is F0 = −(2/5)VFS(µc+µf ), not taking into account the
fluctuations of the bosons. Upon condensing b→ b0, and ignoring the remaining boson fluctuations,
the mean-field Hamiltionian is

H0 =
∑
k,σ

[
(εc,k − µc) c

†
k,σck,σ + (εf,k − µf ) f

†
k,σfk,σ

]
+ b0

∑
k,σ

[
c†k,σfk,σ + H.c

]
+ E(b0), (4.32)

where E(b0) ∼ −b20 + b40 < 0 is the grand free energy arising from the purely bosonic part of the
Hamiltonian. We then determine the change in grand free energy at T = 0 of the two fermion bands
produced by diagonalizing the 2× 2 c, f Hamiltonian;

F − F0 =
∑
±

∫
d3k

2π3

(
(εc,k − µc) + (εf,k − µf )

±
√
(εc,k − εf,k + µf − µc)2 + 4b20

)
× θ

(
µc + µf − εc,k − εf,k

∓
√
(εc,k − εf,k + µf − µc)2 + 4b20

)
+

2

5
VFS(µc + µf ) + E(b0).

(4.33)

We can now consider the set of parameters for f that maximize δF ;c,f = F0 − F + E(b0), which
is the fermion contribution to the grand free energy relieved by boson condensation. The total
grand free energy relieved, F0 − F , then is also maximized for fixed b0. We know that, physically,
the f bandwidth is much smaller than the conduction electron bandwidth, so we fix µf at some
value µf � µc. Eliminating mf,x through this and the constraint on V , we then vary the remaining
parameters rf ;y and rf ;z. We indeed find that δF ;c,f is maximized when rf ;y,z = rc;y,z respectively
(Fig. 4.5), implying the matching of the c and f Fermi surfaces in our toy mean-field calculation.
We will study the renormalization of the f dispersion at strong coupling beyond the mean-field
level (which can be obtained by exact numerical solution of the SD equations and by minimizing
the total interacting grand free energy at the large N saddle point) in future work.
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Figure 4.5: The relative grand free energy relieved, δF ;c,f/(b
2
0F0), vs the eccentricity ratios

controlling the shape of the ellipsoidal f Fermi surface relative to that of the c Fermi surface,
for µf = µc/10. We use V = 20

√
2/(3π2), mc,x = 1.0, rc;y = 0.8, rc;z = 1.2. It is maximized

when the f and c Fermi surfaces are of the same shape, i.e. rf ;y = rc;y and rf ;z = rc;z, which
is denoted with a star on the plot.

4.4.2 Self-Energies and Phase Diagram
The SD equations for Model II with the matched FS that we have motivated are given by:

Gc(iω, k) =
1

iω − εc,k + µc − Σc(iω, k)
,

Gf (iω, k) =
1

iω − εf,k + µf − Σf (iω, k)
,

Gb(iω, k) =
1

−iω + εb,k +∆b − Σb(iω, k)
.

(4.34)

These equations are complemented by the expressions for the self-energies (diagrams in Fig. 4.1)

Σc(iω, k) = g2T
∑
iν

∫
d3q

(2π)3
Gf ((iω + iν), k + q)

×Gb(−iν, q),
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Σf (iω, k) = g2T
∑
iν

∫
d3q

(2π)3
Gc(−(iω + iν), k + q)

×Gb(−iν, q), (4.35)

Σb(iω, k) = −2g2T
∑
iν

∫
d3q

(2π)3
Gc(iω + iν, k + q)

×Gf (iν, q).

Here again, the factor of 2 in the equation for Σb arises from the su(2) spin degeneracy of c and f .
Although the self-energies here can have momentum dependence due to the translational invariance
of Model II, let us assume to begin with that the fermionic ones are independent of momentum
for k near the FS, that is Σc,f (iω, k) = Σc,f (iω). We will see below that this is a self-consistent
assumption.

With the assumption of momentum independent fermionic self-energies, we can average the
contributions to the bosonic self-energy coming from small patches of the FS [101]. The contribution
from a given patch is

Σpb(iω, k) =

− 2g2T
∑
iν

∫
dq⊥
2π

d2q‖

(2π)2

(
iν − vf,F q⊥ − q2‖/(2mf )

− Σf (iω)

)−1

×

(
iν + iω − vc,F (q⊥ + k⊥) (4.36)

− (q‖ + k‖)
2/(2mc)− Σc(iω + iν)

)−1

,

where ⊥, ‖ define the directions relative to the patch of the matched FS, vc,f,F are the Fermi
velocities, and mc,f are the fermion masses. After integrating over q and averaging over patches
(see Appendix 4.12), we obtain

Σb(iω, k) ≈ −2g2mcmf
|ω|
k

≡ −γ2
|ω|
k
. (4.37)

Here γ2 = 2g2mcmf is the natural dimensionless coupling for the boson damping, akin to γ in Model
I. The FS matching allows a small momentum boson (k → 0) to decay into c-f particle-hole pairs,
resulting in a low k singularity of the boson self-energy. This self-energy is identical to the “Landau
damping” form [101] of low momentum bosons coupled to low energy particle-hole excitations about
the FS of an ordinary metal. The Landau damping we obtain implies a dynamical exponent z = 3
for the critical bosonic fluctuations which has been shown to lead to MFL phenomenology in d = 3
[116, 117], as we will also explain in the following paragraphs.

Having calculated the boson self-energy, we may now determine the boson gap ∆b(T ) using the
occupancy constraint as done above for Model I. Similarly to Model I, we get a QCP separating the
FL? phase for κ < κc, where the boson is soft gapped at zero temperature and the heavy FL phase
for κ > κc, where the boson is condensed 〈b1〉 ∼ r0

√
N . At the critical point we find ∆b(T ) ∼ T 5/4
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at low temperatures (and B = 0). The phase diagram of Model II is therefore qualitatively similar
to Fig. 4.2: the critical fan is flanked by a FL? phase with a T 2 resistivity on the left, and a heavy
FL phase with a large carrier density on the right.

With the boson Green’s function determined we can compute the c self-energy (the calculation
for f is almost identical):

Σc(iω, k) =

g2T
∑
iν

∫
dq⊥
2π

d2q‖

(2π)2
1

iν + γ2
|ν|
q + q2

2mb
+∆b

×

(
iν + iω − vf,F (q⊥ + k⊥)

− (q‖ + k‖)
2/(2mf )− Σf (iω + iν)

)−1

.

(4.38)

Since the fermion propagator (which depends on q⊥ ∼ q2‖) is much more sensitive to q⊥ at small
frequencies and momenta than the boson propagator (which depends on q2⊥ + q2‖ ∼ q4‖ + q2‖), we
can set q⊥ = 0 in the boson propagator. As a result of this the self-energy takes a form similar
to Model I, coupling momentum-averaged Green’s functions (q⊥ averaged for fermions and q‖ for
the bosons). Moreover, the self-energy we obtain resembles the behavior in Model I in that the
momentum-averaged fermions couple to an effectively 2D boson;

Σc(iω, k) ≈ g2T
∑
iν

(∫
dq⊥
2π

Gf (i(ν + ω, q + k)

)

×

(∫
d2q‖

(2π)2
Gb(−iν, q‖)

)
(4.39)

= − ig2

2vf,F
T
∑
iν

∫
d2q‖

(2π)2
sgn(ν + ω)

iν + γ2
|ν|
q‖

+
q2‖
2mb

+∆b

.

This self-energy is indeed independent of momentum k, as promised earlier. We continue by
noting that we can ignore the iν term compared to the boson self-energy γ2|ν|/q‖, which is much
larger at low frequencies. Hence we obtain the self-energy in the low frequency limit and T = 0:

Σc,f (iω, T = 0) = − γ2mb

12π2mc,fkF

× iω ln

(
e
√

2mbΛ3

γ2|ω|

)
(QCP),

Σc,f (iω, T = 0) = −γ2mb ln(Λ/∆b(T = 0))

8π2mc,fkF
iω (4.40)

+ i
γ22
√
mb/2

32πmc,fkF∆
3/2
b (T = 0)

ω2 (FL?),
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where Λ is the boson bandwidth and kF is the Fermi momentum of the matched FS’s. Due to the
strong Landau damping we obtain a non-skewed MFL for all values of the damping parameter γ2.
This should be contrasted with Model I, which leads to a skewed MFL for small damping parameter
γ. However the renormalization of the effective fermion masses upon approaching the QCP from
the FL? phase are the same as in Model I.

At low but non-zero temperatures above the critical point, the Matsubara frequency sum in
(4.40) may be computed analytically upon ignoring the iν term as before. Then, we can compute
the q‖ integral numerically with a UV cutoff ∼

√
2mbΛ to obtain

Σc,f (iω, T ) = − iγ2mb

mc,fkF
T sgn(ω)ϕ

(
|ω|
T
,
Λ

T
,

Λ

∆b(T )

)
. (4.41)

The dependencies on Λ/T and Λ/∆b(T ) are logarithmic, as in Model I. As we have seen in the
calculations for Model I, this form of the self-energy leads to a universal Planckian scattering rate
τ−1 = (mc/m

?
c(T ))Im[Σc,R(ω = 0, T )], up to slowly-varying logarithmic factors. Note that we

obtain this Planckian scattering rate independent of the damping parameter γ2 unlike in Model I,
which resulted in Planckian scattering only in the strong damping regime γ � 1.

4.4.3 Transport
An exact calculation of the transport properties in Model II is more complicated than in Model I,
because the vertex correction diagrams in Fig. 4.3 do not vanish. Due to momentum conservation,
the momentum integrals in the left and right loops of these diagrams do not decouple as they do in
Model I. Similarly, the cross-species current correlations do not vanish in Model II as they do in
Model I and complicate the Ioffe-Larkin rule. Nonetheless, we will argue below that the effects of
all of these corrections may be neglected, leading to transport properties that are dominated, as in
Model I, by the self-energies obtained from the bubble diagram in the previous section (4.41) 4. We
show that this results in strange metal phenomenology (nearly T -linear resistivity) in the critical
fan for sufficiently low temperatures. In the subsequent paragraphs, we will explain explicitly how
this comes about.

First, we note that the conductivity in the quantum critical and FL? regimes is dominated by
the conduction electrons c. The much heavier damped bosons, added in parallel, form an insulator
in the FL? phase, and a poor conductor at the QCP, and therefore contribute negligibly to the
conductivity. In the heavy FL phase, condensation of b leads to effective hybridization of the c and
f bands, and the electrical transport is determined by the large hybridized Fermi surface.

Let us now turn to the question of vertex corrections. In conventional quantum critical systems,
a single scattering of an electron off a low momentum critical boson (q → 0), included in the electron
self-energy, leads to vanishing current relaxation. The transport time is therefore not set by the
quasiparticle relaxation time, and is instead obtained from the Kubo formula only by summing over
multiple scatterings, which are included in the current vertex corrections. In Model II, the situation
is different because the decay process included in the electron self-energy ck → fk−q + bq leads to

4While the transport vertex corrections can still be resummed exactly as a ladder series owing to our
controlled large N limit, unlike in previous work on fermions coupled to critical bosons [76], this calculation
is tedious, and we therefore defer it for future work



4.5. DISCUSSION 81

significant current relaxation even at small momentum transfers q → 0. The final state current
carried by the boson ∼ eq/mb, is much smaller than the initial state current ∼ evF carried by the
conduction electron. Note that the f fermion does not contribute any additional current to the final
state: due to the local occupancy constraint enforced by the Ioffe-Larkin rules, the boson and f
fermion must carry the same current, which is also equal to the total current carried by them, as
the f fermion is uncharged.

Although single scattering events lead to current relaxation over short timescales, whose rate is
set by the electron self-energy, as argued above (see also [115]), we also need momentum relaxation
in order to obtain a finite DC conductivity. The nonzero overlap of the total current and the
conserved total momentum operators will prevent the current from fully relaxing over the long
timescales relevant to DC transport, leading to an infinite DC conductivity [59]. However, this
problem is resolved in practice by the existence of an adequate amount of impurities that can
scatter the heavy f fermions and thus dissipate the momentum received from the c fermions faster
than the equilibration rate between the three species. This eliminates the above “momentum drag”
phenomenon, and allows the self-energy to also set the current relaxation rate of the conduction
electrons c over long time scales.

Our identification of the current relaxation rate with the rate set by the c electron self-energy
(4.41), just like in Model I, therefore allows for an identification of Planckian strange metal
phenomenology in the critical regime of Model II at sufficiently low T . As in Model I, we can obtain
the resistivity from Eq. (4.27), which results in ρxx ∼ T ln(Λ/T ).

Important differences from Model I, however, arise from the boson damping Σb(iω, k) ∼ |ω|/k,
which is parametrically much larger at small k than Σb(iω, k) ∼ γ|ω| in Model I regardless of the
value of γ. Because the momentum of occupied bosons is effectively cut off at k ∼

√
mbT . We can

identify an effective damping constant γ(T ) = γ2/
√
mbT , which is always large at sufficiently low

temperatures (see Appendix 4.12). Hence there is never any significant enhancement of RH in the
critical regime at low T in Model II, as there is no weak b damping regime like the small γ regime
for Model I, that was required there to obtain an enhanced RH . Furthermore, the strong damping
ensures that Model II is always in the Planckian regime at low enough T , as opposed to Model I,
which was Planckian only when γ � 1.

In Appendix 4.12, we consider a higher temperature regime, occuring for T � γ22/mb, in which
the boson damping is weaker and an enhancement of RH is consequently obtained. However, the
resistivity in this regime is no longer T -linear and instead scales as ∼

√
T .

4.5 Discussion
The new large N approach formulated in this paper captures a strongly coupled QCP, showing
linear in T resistivity at a Kondo breakdown transition involving a change of the Fermi surface
volume. Such MFL phenomenology, seen ubiquitously in experiments with heavy fermion materials,
could not be obtained in a controlled way within previous large N theories [125, 36, 14, 139]. The
essential new element in our formulation is that the number of fermions and critical boson species
are both scaled with N .

The MFL with linear in T resistivity is obtained within two distinct models of the Kondo lattice.
It is worth emphasizing the differences in the physical situations they describe, and in the predicted
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phenomena. Model I is disordered, and leads to a MFL only if the QCP and adjacent FL? phase are
deconfined in layers, that is deconfined inside 2D planes, yet confined between planes. This model
can be tuned between two regimes by a coupling constant γ. In the strong damping limit γ � 1
the system exhibits Planckian dissipation, with a universal electron relaxation time τtr ≈ h̄/(kBT ).
The strong damping also prevents any significant enhancement of the Hall coefficient RH in the
critical regime. In the weak damping regime, γ � 1, the transport relaxation time is much larger
than the Planckian time (by a factor 1/γ), and the Hall coefficient RH is enhanced in the critical
regime. Furthermore, the electron self-energy in this regime is “skewed”, with an asymmetry in
the damping of particle vs. hole excitations (4.22). We note that strange metallic behavior with a
transport relaxation time much larger than the Planckian time has been observed experimentally in
HFMs [152].

Model II, on the other hand, is translationally invariant, and describes a transition from a fully
3D FL? with a small Fermi surface to a heavy Fermi liquid with a large Fermi surface. The critical
boson is always strongly damped at low temperatures due to Landau damping, leading to Planckian
dissipation with a universal electron transport lifetime τtr ∼ h̄/(kBT ). The strong damping prevents
enhancement of RH in the critical regime.

A testable prediction, which follows from the analysis of the two models, is that Planckian
dissipation at the QCP cannot be accompanied by enhancement of the Hall coefficient RH . En-
hancement of RH at the QCP, as has been observed in recent experiments with CeCoIn5 [98],
can occur only in the weakly damped regime of Model I, where a set of additional features are
predicted: first, the QCP and the nearby FL? phase are deconfined only within 2D planes, which
would have observable implications on transport. For example, the thermal conductivity is expected
to be strongly anisotropic, because in this phase spinons contribute to the in-plane, but not to the
out-of-plane thermal transport. The charge conductivity, on the other hand, is dominated by the
conduction electrons, which can hop between planes, and would therefore be much more isotropic.
Consequently, only the in-plane Lorenz ratio is expected to be significantly enhanced. Another
unique property of the weakly damped (γ � 1) MFL, is a skewed fermion spectral function, which is
expected to generate a low temperature Seebeck coefficient in the critical regime [53, 114]. Sizeable
T → 0 Seebeck coefficients have recently been reported experimentally in 2D strange metals [55, 37],
and it would be interesting to investigate whether these arise due to skewed electron self-energies.

The new large N approach we have introduced to study the Kondo breakdown transition in
HFM can also be useful in formulating a controlled theory of other quantum critical states. The
high Tc cuprate superconductors, for example, exhibit similar signatures of FS reconstruction near
optimal doping [122], accompanied by T -linear resistivity [149]. While there are no local moments
to be subsumed in the Fermi sea, a parton model describing a change in FS volume has recently
been proposed [177]. Investigating this QCP using the new large N scheme is an interesting problem
for future work. Our approach can also be used to address the interplay of these critical fluctuations
with superconductivity and magnetism, which appear to be crucial to cuprate phenomenology.

Another interesting extension of this work would be to formulate a controlled treatment of gapless
gauge field fluctuations coupled to matter fields. This is important, for example, for describing
gapless U(1) spin liquids or the Halperin-Lee-Read state in a half-filled Landau level [58, 76]. The
standard large N theory captures the gauge field fluctuations within a 1/N expansion, which is
known to be uncontrolled [88]. In the large N models we introduced here, gauge field fluctuations are
still suppressed by 1/N , but the 1/N expansion could possibly be better controlled. Furthermore, it
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is interesting to explore generalizations of the scheme to include N flavors of U(1) gauge fields with
flavor-random gauge couplings, and thereby capture the feedback of the gauge field fluctuations
self-consistently at the saddle point level itself.

Supplemental Material

4.6 Kubo formula in Landau Level Basis for Model I
In this Appendix, we obtain expressions for the conductivities of the different species in Model I via
the Kubo formula, which are given by their respective bubble diagrams of Fig. 4.3, as described in
the main text. We compute these generally at nonzero values of the out-of-plane magnetic field B
by working in the Landau Level basis in the x− y plane with wavefunctions

ψn,k(x, y) =
1√
Lx`

eikxφn,k(y/`); (4.42)

φn,k(z) =
π−1/4

√
2nn!

Hn(z + k`) exp
(
−(z + k`)2

2

)
,

where ` = 1/
√
eB and Hn(x) are the (physicist’s) Hermite polynomials satisfying the recursion

relation Hn+1(x) = 2xHn(x)−H ′
n(x). The energy of the states is ωcλ(n+1/2) where ωcλ = |e|B/mλ,

where λ ∈ {c, f, b}. The use of the Landau level basis is possible because the self-energies of all
three species are independent of momentum and therefore proportional to the identity matrix in
real space, which implies that they are also proportional to the identity matrix in the Landau level
basis, greatly simplifying the computation. Results such as (4.27) and (4.29) in the weak magnetic
field limit can be obtained by taking the B → 0 limit of our expressions here.

It is important to recall the following identities:∫
dzφn,k(z)∂zφm,k(z) =

√
m

2
δn,m−1 −

√
m+ 1

2
δn,m+1,∫

dzφn,k(z)∂z(z + k`)φm,k(z) =

√
m

2
δn,m−1 +

√
m+ 1

2
δn,m+1.

(4.43)

Now, our starting point is the Kubo formula in momentum space, which we will transform to
the Landau Level basis. Recall that [97] σλ,αβ(ω, q) = −ImΠRλ,αβ(ω, q)/ω where

Πλ,αβ = − 1

V

∫
dxdx′dydy′eiqx(x−x

′)eiqy(y−y
′)

∫ 1/T

0
dτeiωτ 〈TτJ†

λ,α(r, τ)Jλ,β(r
′, 0)〉, (4.44)

where τ is imaginary time. With the above identities, a straightforward calculation will yield the
spatially-integrated current as

2mλi

e

∫
dxdyJλ(r, τ) ≡

∫
dxdy

(
λ†r(τ)(∇− ieA)λr(τ)− (∇+ ieA)λ†r(τ)λr(τ)

)
=

2

`

∑
k,n

((
i
1

)√
n+ 1

2
λ†nk(τ)λn+1,k(τ) +

(
i
−1

)√
n

2
λ†nk(τ)λn−1,k(τ)

)
.

(4.45)
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We now evaluate Πλ,xx and Πλ,xy at q = 0 using this expression. UsingGλnk(τ) = 〈λnk(τ)λ†nk(0)〉,
we get(

Πλ,xx
Πλ,xy

)
= −η e2

V `2m2
λ

∫ 1/T

0
dτeiωτ

∑
nk

(
n+1
2 Gλnk(τ)Gλ,n+1,k(−τ) + n

2Gλnk(τ)Gλ,n−1,k(−τ)
−in+1

2 Gλnk(τ)Gλ,n+1,k(−τ) + in2Gλnk(τ)Gλ,n−1,k(−τ)

)
(4.46)

= −η
e2ω2

cλ

2π
T× (4.47)∑

iνn

(∑
n

n+ 1

2

(
1
−i

)
Gλn(iνn)Gλ,n+1(iνn − iω) +

n

2

(
1
i

)
Gλn(iνn)Gλ,n−1(iνn − iω)

)
.

where η = ± for bosons and fermions, respectively, because of time-ordering. In the second step, we
switched to Matsubara frequencies, used the fact that Gnk(τ) ≡ Gn(τ) is independent of k, and
there are LxLy/`2/(2π) terms in the k sum.

We have neglected the vertex corrections to the conductivity in Fig. 4.3 here, which can be
shown to vanish even at B 6= 0. Since the disordered interactions grijk are uncorrelated between
different sites in Model I, such corrections can be written as

δΠλ =

∫
dxdydx′dy′dx1,2dy1,2×〈

Jλ(r, τ)

∫
dτ1,2,3,4λ

†
r1(τ1)λr1(τ2)K(τ1, τ2, τ3, τ4)λ

†
r2(τ3)λr2(τ4)Jλ(r

′, τ ′)

〉
.

(4.48)

Since λr(τ) =
∑

n,k ψn,k(r)λnk(τ), and Gλnk(τ) are independent of k, the identity∫
dkHn(z + kl)Hn±1(z + kl)exp

(
−(z + kl)2

)
= 0, (4.49)

ensures that these corrections vanish.
Proceeding similarly as to [97], we next switch to the Lehmann representation, analytically

continue, take the imaginary part, and expand for small ω. We find

σλ,xx = −sλ lim
ω→0

Im[Πλ,xx(ω)]

ω
= −

sλe
2ω2

cλ

4π

∑
n

(n+ 1)

∫
dε

(2π)
Aλn(ε)Aλ,n+1(ε)

(
∂nη(ε)

∂ε

)

= −sλe
2

4π

∫
dε

2π

4Σ′′
λ(ε)

∂nη(ε)
∂ε

4[Σ′′
λ(ε)]

2 + ω2
cλ

(
2Σ′′

λ(ε) + 2(ε+ µ̃λ)Im
[
ψ0

(
1

2
+

−ε+ iΣ′′
λ(ε)− µ̃λ
ωcλ

)])
,

(4.50)
where sλ is the spin degeneracy of the species λ. We performed the Landau level sum in terms of
the digamma function, ψ0, and we used ψ0(z) = ψ0(1 + z)− 1/z and

Aλn(ε) =
2ηΣ′′

λ(ε)

(ε+ µ̃λ − (n+ 1/2)ωcλ)2 + [Σ′′
λ(ε)]

2
, (4.51)

so that Σ′′
λ(ε) = Im[Σλ,R(ε)] and µ̃λ = µλ − Re[Σλ,R(ε)].
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For σλ,xy, we convert to relative and center of mass coordinates εc = (ε+ ε′)/2 and εr = ε− ε′.
We then symmetrize with respect to εr in order to get an integral from 0 to ∞. We find

Πλ,xy(ω → 0) = −i
e2ω2

cλ

4π

∑
n

(n+ 1)

∫
dεdε′

(2π)2
Aλn(ε)Aλ,n+1(ε

′)(nη(ε)− nη(ε
′))

[
2(ω + iδ)

(ε− ε′)2

]
,

σλ,xy = −
sλe

2ω2
cλ

2π

∑
n

(n+ 1)

∫ ∞

0

dεr
2π

∫ ∞

−∞

dεc
2π

sinh
(
εr
2T

)
cosh

(
εc
T

)
− η cosh

(
εr
2T

) 1

ε2r

×
[
Aλn

(
εc +

εr
2

)
Aλ,n+1

(
εc −

εr
2

)
−Aλn

(
εc −

εr
2

)
Aλ,n+1

(
εc +

εr
2

)]
= − sλe

2

(2π)3

∫ ∞

0
dεr

∫ ∞

−∞
dεc (Fλ(εc, εr)− Fλ(εc,−εr))

sinh
(
εr
2T

)
cosh

(
εc
T

)
− η cosh

(
εr
2T

) 1

ε2r
,

(4.52)
The sum can be done to give an explicit expression for Fλ(εc, εr) as

Fλ

(
ε+ε′

2 , ε− ε′
)

2Σ′′
λ(ε)Σ

′′
λ(ε

′)
= Im

 ψ0

(
2ε−2iΣ′′

λ(ε)−2µ̃λ(ε)
2ωcλ

− 1
2

)
(2ε− ωcλ − 2iΣ′′

λ(ε)− 2µ̃λ(ε))

Σ′′
λ(ε)(Σ

′′
λ(ε

′)2 + (ε′ − ε+ ωcλ + iΣ′′
λ(ε)− µ̃λ(ε′) + µ̃λ(ε))2)

 (4.53)

+ Im
[ψ0

(
2ε′+2iΣ′′

λ(ε
′)−2µ̃λ(ε

′)
2ωcλ

+ 1
2

)
(2ε′ + ωcλ + 2iΣ′′

λ(ε
′)− 2µ̃λ(ε

′))

Σ′′
λ(ε

′)
(4.54)

× 1

(Σ′′
λ(ε

′)2 − Σ′′
λ(ε)

2 + 2iΣ′′
λ(ε

′)(ε− ε′ − ωcλ + µ̃λ(ε′)− µ̃λ(ε))− (ε− ε′ − ωcλ + µλ(ε′)− µλ(ε))2)

]
.

For the fermions, for small magnetic fields, these expressions give the same result as the
expressions derived from the Boltzmann equations in [114] with the identification v2F ν/(4π) → n/m
where vF is the Fermi velocity, n is the density, and m is the mass. However, for large magnetic
fields, our expressions will have quantum oscillations that are absent in the Boltzmann treatment.

4.7 Boson Spectral Function and ∆b in Model I
In this appendix, we derive the boson spectral function and the soft gap ∆b generally for a nonzero
out-of-plane magnetic field. As in the derivation of the Kubo formula, we use the Landau level
basis, which is made possible by the spatial locality and site-invariance of the occupancy constraint
in the last line of (4.6). The values of ∆b at small magnetic fields can be obtained by taking the
B → 0 limit in our expressions.

Because µc, µf � ωc,c/f , we still have the original result for the fermion Green’s function that
Gc,f (iω) = −i(νc,f/2)sgn(ω). That is, the fermions are less affected by the Landau level quantization
than the bosons, and, consequently, the boson self-energy calculation in the main text is unaffected.

However, the boson spectral function must be calculated by summing over the spectral functions
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in each Landau level instead of integrating over momentum. The result is

Ab(ω) =
1

`22π

∑
m

2γω

(ω − (m+ 1/2)ωcb −∆b)2 + γ2ω2

= −mb

π
Im
[
ψ0

(
1

2
− −∆b + ω + iγω

ωbc

)]
(4.55)

B→0−−−→ mb

π

[
πΘ(ω −∆b) + tan−1

(
γω

∆b − ω

)]
,

where Θ(x) is the Heaviside step function, ψ0(z) is the digamma function, ` = 1/
√
ebB, and

ωcb = ebB/mb with eb,mb the charge and mass of the boson respectively.
Now, recall from the main text that the scaling of the fermion self-energy expressions above

depends crucially on ∆b(T ). It can be easily checked that the change in the number of f fermions
in response to a shifting chemical potential is suppressed by ∆µf/Λf where Λf , the f fermion
bandwidth, is assumed to be large. Therefore, the constraint can be written as

κ− κc = (Gb(τ = 0−,∆b(T ))−Gb(τ = 0−,∆b,c(0)), (4.56)

and ∆b depends on both temperature and κ, but we suppress the κ dependence generally. When
κ = κc, ∆b = ∆b,c and ∆b,c(T = 0) = 0. This is reminiscent of the O(N) rotor model [131] and the
calculation of the thermal mass in [112].

Although we can do this calculation carefully in multiple ways, we will recall that Gb(τ =

0−) =
∑

i〈b
†
i (τ = 0−)bi(τ = 0−)〉 ≡ nb, which is the number density of bosons. For this number to

converge, we choose to regulate it in the usual way (see [97])

nb =
1

V

∑
nk

∫ ∞

−∞

dω

2π
nB(ω)Abn(ω,∆b), (4.57)

where Abn is the summand seen in (4.55).
Fig. 4.6 summarizes the behavior of ∆b(T ) in the three phases at zero and finite applied field.

The important feature is the T -linear (up to logarithmic corrections) growth in the critical region.
Low T transport is dictated by the limit of z = ∆b/T which shifts from ∞ to zero across the
transition.

Note that∫ ∞

−∞
dωnB(ω)Abn(ω,∆b) =

∫ ∞

0
dωnB(ω)(Abn(ω,∆b)−Abn(−ω,∆b))−

∫ ∞

0
dωAbn(−ω,∆b), (4.58)

and that the first integral on the right-hand side is 0 when T = 0. Recalling the form of the boson’s
spectral function from (4.55), we will find

2π(κ− κc)

=
ωcbmb

2π

[∫ ∞

0
nB(ω)

(Ab(ω,∆b)−Ab(−ω,∆b))

1/(`22π)
+

2γ

γ2 + 1
ln
(
Γ(N + 3/2)Γ(1/2 + ∆b/ωcb)

Γ(N + 3/2 +∆b/ωcb)Γ(1/2)

)]
,

(4.59)
where we have cut off the Landau level sum at N = Λ/ωbc and Γ(n) is the Gamma function.
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Figure 4.6: We plot ∆b vs. T for various ∆κ = κ−κc with the color indicating ∆κ. All curves
become T -linear upon entering the critical region, but are either exponentially suppressed or
approach a constant as T → 0 if ∆κ > 0 or ∆κ < 0 respectively. All other parameters are
the same as in Fig. 4.2 in the main text.

Taking the B → 0 limit of (4.59), we can scale out ∆b = zT and x = ω/T to find

2π2(κ− κc)
1

Tmb

=

∫ ∞

0

dx

ex − 1

[
tan−1

(
γx

z − x

)
+ tan−1

(
γx

z + x

)]
− π ln

(
1− e−z

)
− γ

γ2 + 1
z ln

(
Λe

zT

)
.

(4.60)

As z → 0, the first two terms of the left-hand side dominate and as z → ∞, the rightmost term
dominates, so we see that there is a solution with z, whose value will change logarithmically, as
T → ∞. As expected, there is always a solution, so the bosons are not truly condensed as long as
their dispersion is strictly 2D. Instead, for κ > κc the gap becomes exponentially small in (κ−κc)/T ,
i.e. ∆b ∼ T exp

[
−2π(κ−κc)

Tmb

]
. In reality, however, there is a stable condensate solution at low

temperature, facilitated by the 3D boson dispersion self-consistently generated by the presence of
the condensate. For this reason, we have treated this low-temperature regime of the large Fermi
surface phase (κ > κc) separately (see Appendix 4.11).

4.8 Limiting Self-Energy Calculations in Model I
At low temperatures over the critical region, ∆b/T is order one, so σbxx and σbxy are suppressed
relative to the fermions, which are gapless. Therefore, by the Ioffe-Larkin composition rules (see
Appendix 4.9), σbfxx ≈ σbxx and RH ≈ RH,c at low temperatures, which we confirm numerically. RH,c,
in turn, is determined by (4.29), and depends on the dimensionless parameters (κ − κc)/(Tmb),
Λ/T , and γ. In Fig. 4.7 we plot the dependence of RH,cnc at criticality (κ = κc) on the latter two
parameters.
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To understand this behavior, we now derive simple limiting forms for the low-temperature ∆b

and fermion self-energy at criticality at low B. We’ll consider three limits γ → 0 with T small but
finite, γ → ∞ with T small but finite, and T → 0 with γ fixed. These expressions are used to obtain
an estimate of the enhancement of the Hall coefficient given in the main text.

We first wish to solve (4.60) when κ = κc and γ → 0 at fixed T . The integral on the right-hand
side (RHS) is smaller than the other two terms, in this limit. We make the guess that e−z � 1, so
we arrive at

z =
∆b

T
= ln

[
π

γz ln
(
Λe
zT

)] = ln
(
π

γ

)
− ln

[
z ln

(
Λe

zT

)]
≈ ln

(
π

γ

)
− ln

[
ln
(
π

γ

)
ln
(

Λe

ln(π/γ)T

)]
; γ → 0,

(4.61)

which justifies our assumption. In the last step, we used the fact that the second term is smaller
than the first as γ → 0, so we obtained an approximate expression for z by simply substituting
z = ln(π/γ) on the RHS. Better approximations are obtained by iteration, by substituting the
improved expression for z.

By inserting (4.55) into (4.19), we can evaluate the self-energy at leading order in γ at criticality:

Γω,T ≡ Im[Σc,R(ω, T )]

= lim
γ→0

− γmb

2πνc
T

[
ln

(
1 + e(ω−∆b)/T

1− e−∆b/T

)

+ γ

(
−ω
T

+
∆b

T
ln
(

∆b

|∆b − ω|

))]
.

(4.62)

The O(1) term arises from approximating the spectral function as a step function. In the limit that
T is fixed and γ → 0, ∆b/T ∼ ln(1/γ). Corrections to the spectral function, therefore, need only be
integrated against nF (ε′−ω)−Θ(−ε′), which we evaluate with the Sommerfeld approximation. The
first term in (4.62) goes as Te−∆b/T ∼ γ∆b, but, in this limit, the second term goes as γω2/∆b and
is therefore higher order. Computing RH,cnc using (4.29), and using just the first term in (4.62),
gives exactly 4/3 when γ � 1.

Turning to the γ → ∞ limit, we see that the integral in (4.60) is well approximated by taking
the integrand as π from zπ/(2γ) to z, and as 0 everywhere else. The error from this approximation
is roughly a constant close to π/2 as γ → ∞, so we end up needing to solve

−π ln

(
1− e−zπ/(2γ)√

e

)
=
z

γ
ln
(
Λe

zT

)
. (4.63)

If T is small enough, z/γ will be small, which allows us to approximate the left-hand side as
−π ln[(zπ)/(2

√
eγ)]. Finally, since z/γ is small, we neglect the term (z/γ) ln(z/γ) that appears on

the right-hand side. These approximations altogether yield

z ≈ πγ

ln
(

Λ
Tγe

)W0

(
2
√
e

π2
ln
(

Λ

Tγe

))
; γ → ∞, (4.64)

where W0(z) is the Lambert W function.
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Figure 4.7: We plot RH,cnc, the Hall coefficient for the c electrons when κ = κc, which
approximates the total RH at low temperatures. In this regime, it depends on only two
parameters: γ and Λ/T . We find in this supplement that the peak at low γ is exactly at 4/3.

The self-energy in the large γ limit is well approximated by the following:

Γω,T = − γmb

2πνc
T
[ z
γ

ln
(
Λe

zT

)
+ π ln

(
1 + eω/T

)
(4.65)

− tan−1(γ) ln

(
1 + eω/T

1 + e−ω/T

)]
; γ → ∞, z/γ < 1,

where the integrals over the fermion occupation functions are done by setting ∆b → 0 in the spectral
function, which is accurate so long as ∆b/(Tγ) � 1. When z → 0 limit of that expression is plugged
into (4.29), one finds RH,c ≈ −1.07/nc in good agreement with the numerics. Numerical studies
confirm RH,cnc increases near γ = 0,∞ with a single minimum near γ = 1, the maximum being 4/3.

To understand the temperature dependence of the resistivity at criticality and small γ we use
the formula [114].

ρc,xx =

(
nc

8mcT

∫ ∞

−∞
dε

sech2(ε/2T )

Γε,T

)−1

= T

(
nc
8mc

∫ ∞

−∞
dx

sech2(x/2)

(ΓxT,T )/T

)−1

.

(4.66)

Plugging the value of ∆b (4.61) into (4.62) or the exact result we get that ΓxT,T /T depends on T
only through logarithmic corrections.

To calculate the self-energy in the low-temperature limit at fixed field–as we do in our numerical
calculations–we must use the finite field expression (4.55). For temperatures sufficiently lower than
B the self-energy takes the form Γc ≈ (T 2/B)g(ω/T ) and will be dominated by the cyclotron
frequency. This will invalidate the small field approximation. In this case we must include the
quadratic terms in B for the Hall coefficient [114]. The Hall coefficient then goes to one as Γ/B → 0.
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Aµ = Aµ +

b

b

aµ
Aµ +

f

f

aµ
Aµ

Figure 4.8: The diagrams that contribute to the renormalized charge. The propagators and
polarization bubbles are all fully dressed. Aµ is the external gauge field, aµ is the emergent
gauge field, and the lines to the right of the diagrams are either b or f propagators depending
on whether the renormalized b charge or renormalized f charge is being computed.

4.9 Derivation of the Ioffe-Larkin Condition for Model
I

The Kubo formula allows us to evaluate the conductivity tensors for the three species. To find the
total conductivity, however, we must combine the contribution from the three species. Although the
c fermions are a separate species and will be added in parallel to the b and f contribution, the latter
two species add together in series instead of in parallel due to the Ioffe-Larkin composition rule. In
this section, we will derive the Ioffe-Larkin composition rule closely following Lee and Nagaosa [87].
Our derivation is exact in the large N limit.

Due to the emergent gauge field, the charge of the b bosons and f fermions is renormalized. The
physical condition is that eb + ef = −1 as the bfc† term in the Lagrangian must conserve charge.
How the charge is distributed is a gauge choice, with the emergent gauge field ensuring the physical
results are independent of this choice.

We see in Fig. 4.8 that there are three diagrams that contribute to the renormalization of the
charge. In the diagrams, the polarization bubbles, ΠΠΠ, 5 and propagators are fully renormalized (with
the fermionic spin degeneracy included). Any other diagram is either zero because of the locality of
the SYK-type interaction or suppressed by 1/N . We note that the propagator for the emergent
U(1) gauge field is [87]

DDD(τ − τ ′) = −〈a(τ)a(τ ′)〉 = −(ΠΠΠf +ΠΠΠb)
−1, (4.67)

and the boldface is indicating tensors, which follows if the inverse bare propagator is taken to be
infinitesimal.

Summing these diagrams for, e.g. the f fermions gives

eeerf = ef − efΠΠΠf (ΠΠΠf +ΠΠΠb)
−1 + ebΠΠΠb(ΠΠΠf +ΠΠΠb)

−1 (4.68)
= (ef + eb)ΠΠΠb(ΠΠΠf +ΠΠΠb)

−1 = −ΠΠΠb(ΠΠΠf +ΠΠΠb)
−1,

where the extra minus sign for ΠΠΠb comes because f and b are oppositely charged under the emergent
gauge field, and all polarization bubbles are evaluated at (ω, q). Switching f ↔ b will give the boson
result. Therefore, the charge renormalizes to become a tensor. It is worth noting that ΠΠΠb, ΠΠΠf , and

5The polarization bubbles ΠΠΠf,b involve the subtraction of diamagnetic terms not explicitly shown in
Fig. 4.8, which render ΠΠΠf,b(ω, q) = ΠΠΠf,b(ω, q)−ΠΠΠf,b(ω = 0, q = 0)
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ΠΠΠb+ΠΠΠf are 2×2 antisymmetric matrices and therefore commute with each other. When we compute
the total current-current correlator due to the f and b sub-systems after renormalizing the currents
using the respective charge renormalizations. We find, since there are no current cross-correlations,
as discussed in the main text,

ΠΠΠtot = ΠΠΠbΠΠΠ
2
f [(ΠΠΠb +ΠΠΠf )

−1]2 +ΠΠΠfΠΠΠ
2
b [(ΠΠΠb +ΠΠΠf )

−1]2

= (ΠΠΠ−1
b +ΠΠΠ−1

f )−1, (4.69)

which implies that the f and b resistivity are added in series.
One important point that is glossed over in the above is that the electric and magnetic field are

renormalized differently, and ΠΠΠb and ΠΠΠf are evaluated for different effective magnetic fields. In our
notation, ΠΠΠ(ω, q) ≈ −iσσσω+χχχq2, so the renormalization changes depending on whether the vertex is
magnetic Aµ(ω = 0, q → 0), or electric, Aµ(ω → 0, q = 0). We find, for instance for the f fermions

Efeff = σσσb(σσσf + σσσb)
−1E, Bf

eff =
χb

χb + χf
B, (4.70)

for a weak magnetic field B. In the magnetic field case, we additionally average over q, which
replaces χχχ with half its trace χ = (χxx + χyy)/2.

In our derivation, we have neglected contributions to σσσ and χχχ from potential cross-correlations
fb ∼ 〈JfJb〉. Doing so is valid, as Model I’s site-uncorrelated grijk render them of the form

fb(iω, q) ∼
∫
d2kd2k′dΩdΩ′vf,kvb,kGf,k+q/2(iΩ+ iω/2)Gf,k−q/2(iΩ− iω/2)Kfb(iΩ, iΩ

′, ω, q)

×Gb,k′+q/2(iΩ
′ + iω/2)Gb,k′−q/2(iΩ

′ − iω/2), (4.71)

where vx,k = ∇kεx,k. Since Gx,k = Gx,−k, Gx,k+q/2(iΩ + iω/2)Gx,k−q/2(iΩ − iω/2) = Gx,k(iΩ +
iω/2)Gx,k(iΩ− iω/2) +Ξx,k(iΩ, iω)|q|2, with Ξx,k = Ξx,−k, and vx,k = −vx,−k, the O(ω) and O(q2)
terms in the expansion of fb(ω, q) vanish and we can thus neglect these cross-correlations.

4.10 Diamagnetic Susceptibilities in Model I
Because of the renormalization of the magnetic field from the internal gauge field, we must find
expressions for χf and χb. To find them, we evaluate χλq2 = Πλ(ω = 0, q → 0)−Πλ(ω = 0, q = 0).
We average the two possible directions. Then, we have the bubble contributions (vertex corrections
vanish for the same reason as (4.71) does)

Πλ(q → 0) =
Πλ,xx +Πλ,yy

2
= −η 1

V

∑
k

k2

2m2
λ

T
∑
iν

(Gλ(k − q/2, iν)Gλ(k + q/2, iν))

= −2ηT

∫ k̃max

0

dk̃

(2π)2

∫ 2π

0
dθk̃3

(∑
iν

1

(iν/T − k̃2 + k̃q̃ cos(θ)− q̃2/4 + µλ/T − Σλ/T )

1

(q̃ → −q̃)

)

χλ = −η 1

2mλ

∫ kmax

0
k3
dk

2π

(∑
iν

(iνλ/T + µ/T − Σλ/T )

(iν/T − k2 + µλ/T − Σλ/T )4

)
,

(4.72)
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where in the second line of the above, we re-scaled the momenta by a factor of k̃ = k/
√
2mλT , and

we relabeled k̃ → k in line 3.
We can do the Matsubara sums exactly in the bosonic case since Σb(iω) = −γ|ω|. We carry

them out to find (z = −µ/T = ∆b/T ):

χb = − 1

2mb

∫ √
Λ/T

0

dk

2π
k3

 z

(k2 + z)4
+ Re

ψ2

(
k2+z

2πγ−2πi

)
(2πγ − 2πi)3

+
k2

3

ψ3

(
k2+z

2πγ−2πi

)
(2πγ − 2πi)4

 , (4.73)

with ψn(z) the polygamma function and Λ is the boson bandwidth. This expression diverges as
χb ∼ (1/mb) ln(Λ/∆b) when ∆b → 0.

For the f fermions, we can transform (4.72) to

χf =
1

2mf

∫ Λf

−µf

dε

2π
(ε+ µf )T

∑
iν

(
(iν + µf − Σf (iν))

(iν − ε− Σf (iν))4

)
= T

∑
iν

(Λf + µf )
2(Λf − 2µf + 3Σf (iν)− 3iν)

24πmf (Λf +Σf (iν)− iν)3(µf − Σf (iν) + iν)
.

(4.74)

We note that T and |Σf (iν)| are always much smaller than the f bandwidth Λf and Fermi energy
µf , for any value of ν, since |Σf (iν)| is bounded by a scale controlled by the boson bandwidth
Λ � Λf , µf . Therefore we can expand the summand of (4.74) in powers of Σf and take the T → 0
limit. It may then be seen that the sum of the absolute values of the contributions from all these
terms in the expansion is bounded by a quantity that vanishes in the limit of Λf , µf → ∞, leaving
χf to take its free fermion value of 1/(24πmf ), which can be easily verified by inserting the result
for Σf (iν) and then numerically integrating over ν in this limit.

4.11 Inter-Layer Instabilities in Model I
Using the expressions from the previous sections, we can find ρxx and RH exactly for a 2D version
of Model I without inter-layer couplings, for all values of parameters at small B. For the same
parameters used in the main text, we plot RH and ρxx in Fig. 4.9 while ignoring inter-layer couplings,
which should be compared with Fig. 4.2 in the main text that takes inter-layer couplings into account.
Note the large enhancement of RH seen at low temperatures when κ > κc, as also seen in Fig. 4.4
in the main text.

Despite the exact solvability of Model I in its 2D version described here, to make physical
predictions we must analyze possible instabilities that will take us away from our solution. In
the 2D version of Model I, the only possible instabilities at large N are BCS-like fermion pairing
instabilities, induced by adding weak attractive interactions, which occur at exponentially small
energy scales and which we hence ignore. However, the physical version of Model I includes a third
spatial dimension, and we should therefore ask what relevant inter-layer interactions are allowed
and what their impact on the physics will be.

An important feature of the physical version of Model I is that the b and f partons are deconfined
in a stack of independent 2D layers. We can therefore write down the following large N , instability
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inducing [110], local, gauge-invariant, quartic interactions between adjacent layers l and l′, where r
denotes the 2D coordinate of a site within a layer:

Hbb = −Jb
N

N∑
i,j=1

∑
r

b†r(l),ibr(l′),ib
†
r(l′),jbr(l),j ,

H ′
bb = −

J ′
b

N

N∑
i,j=1

∑
r

b†r(l),ib
†
r(l′),ibr(l′),jbr(l),j , (4.75)

Hff = −
Jf
N

N∑
i,j=1

∑
r,σ,σ′,
τ,τ ′

f †r(l),i,σf
†
r(l′),i,σ′fr(l′),j,τfr(l),j,τ ′ ,

Hbf = −
Jbf
N

N∑
i,j=1

∑
r,σ

[
b†r(l),ibr(l′),if

†
r(l),j,σfr(l′),j,σ + H.c

]
.

None of these terms contribute directly to the parton self-energies or transport at large N .
Hff induces BCS-like inter-layer f fermion pairing instabilities, which occur at exponentially small
energy scales, and are therefore not of concern to us. The terms in Hbb create inter-layer boson
instabilities driven by susceptibilities that scale as ∼ mbJ

′
b ln(Λ/∆b). In the gapped phase of the

boson, and in the quantum critical region, these susceptibilities are thus small at the temperature
scales of interest, hence we ignore them. However, for κ > κc, ∆b(T ) starts decreasing rapidly below
some temperature scale (Fig. 4.6), which makes these susceptibilities large, causing the onset of
instabilities that lead to the condensation of inter-layer boson bilinears in the gray region of Fig. 4.2
in the main text. The resulting 3D boson phase will then further have single-boson condensation as
temperature is lowered [131], entering the region below the gray wedge. Once this happens, both
the partons will have 3D dispersions as these boson interaction terms will appear like inter-layer
hoppings, b†l b

†
l′blbl′ ∼ cbb

†
l bl′ , and Hbf will similarly generate inter-layer hopping for the f fermions 6.

This leads to two important changes to the model; first the partons develop an anisotropic dispersion
with hopping proportional to the single-boson condensate strength at temperatures well below the
gray wedge, second the fermions now scatter off both the N − 1 critical bosons b2,..,N as well as the
condensed mode 〈b1〉.

To model these effects, the dispersion of the partons is changed to be

εb/f,k =
1

2mb/f
(k2x + k2y + Yb/fk

2
z), Yb/f = 4π2Jb/bfr

2
0, (4.76)

where r0 is the size of the condensate. For Fig. 4.2 in the main text we take Jb = 1. Rewriting the
SD equations within the condensed phase, the only changes are to the fermion self-energy and the
constraint. The constraint equation becomes

κ− κc = r20 + (nb − ncb), (4.77)
6H ′

bb will also generate inter-layer boson pairing terms ∼ c′bb
†
l b

†
l′ , but the Hugenholtz-Pines theorem [63]

nevertheless ensures a 3D gapless boson phase, with the same effects on the fermions.
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Figure 4.9: (a) The phase diagram for Model I in 2D with no inter-layer instabilities. The
resistivity is given by ρxx − ρxx(T = 0) ∼ Tα ln(Λ/T ), and the color indicates the value of
α = d ln(ρxx/ ln(Λ/T ))/d ln(T ). (b) The plot of the weak-field RH vs. κ − κc. RH has a
peak near the crossover from Fermi-liquid behavior to T -linear resistivity and approaches a
constant to either side signaling the change in carrier density. The large peak of RH seen at
low temperatures is occurring as the boson is condensing, as discussed in the main text. The
same parameters are used as in Fig. 4.2 in the main text.

where, in this equation, nb is the number of bosons not participating in the condensate with ∆b = 0,
and using the self-consistently determined dispersion. The self-energy expression is changed to be

Im[Σc,R] = −r20g2
νf
2

(4.78)

− g2
νf
4π

∫ ∞

−∞
dεĀb(ε)(nB(ε) + nF (ε− ω)),

with Ãb the spectral function of the uncondensed modes.
To keep the number of f fermions fixed, as the dispersion changes, the Fermi energy shifts

which in turn modifies the density of states. In order to connect with the 2D model, we introduce a
maximum momentum in the z direction, K. The spinless density of states is then given by

νf =


Kmf

π ε0F >
YfK

2

3mf

mf

π

(
3ε0FKmf

cf

)1/3
ε0F <

YfK
2

3mf

, (4.79)

where εF,0 is the Fermi energy with Yf = 0. Note that we take K = π so the density of states in the
small condensate regime is νf = mf , the same as in the purely 2D case. We will work in the regime
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where the second condition of (4.79) is never reached, this is achieved by taking Jbf sufficiently
small. If the second condition was achieved, γ = g2νcνf/(2π) would change.

The spectral function for the uncondensed modes can be evaluated utilizing the 2D results by
replacing ∆b → ∆b + Ybk

2
z/(2mb) in (4.55) to find

2π

mb
Ãb(ω, 0) = Ksgn(ω)− 2K

π
tan−1

(
YbK

2

4γmbω
− 1

γ

)
(4.80)

− 4

πYb
Im

[√
2(1 + iγ)ωmb tanh−1

(
YbK√

2mb(1 + iγ)ω

)]
.

Unlike the O(N) rotor model, the dispersion is also modified as the condensate grows. This changing
dispersion results in a different temperature dependence when Tmb � κ− κc and also results in
multiple self-consistent values of the condensate size r0 at fixed κ and T . If we assume interactions
which generate a 3D instability at T = 0, the physical solution for r0 is the one that approaches a
non-zero constant at low temperatures, which is the one we use in our numerical calculations.

Deep in the condensed phase at low temperatures, r0 will be roughly constant and large. In this
regime, the frequency dependence of the spectral function for the uncondensed boson modes then
goes as as

√
ω, leading directly to Im[Σc,R(ω = 0, T )] ∼ T 3/2 + const. behavior.

4.12 Self-Energies and Critical Transport in Model II
To evaluate the boson self-energy we start with the individual patch contribution (4.36). Integration
over q⊥ yields (using vc,f,F = kF /mc,f , where kF is the Fermi momentum)

Σpb(iω, k) = −ig2T
∑
iν

∫
d2q‖

(2π)2
(sgn(ν + ω)− sgn(ν))

×

[
vf,F

(
i(ν + ω)− Σc(iν + iω)− vc,Fk⊥ −

k‖q‖ cos(θ)
2mc

−
k2‖

2mc

)
− vc,F (iν − Σf (iν))

]−1

, (4.81)

where θ is the angle between q‖ and k‖. This further reduces upon integration over θ to

Σpb(iω, k) = − ig
2

2π
T×∑

iν

∫ qmax

0

q‖dq‖ (sgn(ν + ω)− sgn(ν))

vf,F (i(ν + ω)− Σc(iν + iω))− vc,F (iν − Σf (iν))−
vf,F k‖q‖

2mc
− vc,F vf,Fk⊥ −

vf,F k
2
‖

2mc

× 1√
1 +

vf,F k‖q‖
m

vf,F (i(ν+ω)−Σc(iν+iω))−vc,F (iν−Σf (iν))−
vf,F k‖q‖

2m
−vc,F vf,F k⊥−

vF k2‖
2m

≈ g2qmaxmc

π2vf,F

|ω|
k‖

=
g2qmaxmcmf

π2kF

|ω|
k‖
.
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Here the cutoff qmax ∼ kF dΩ, where dΩ is the solid angle subtended by the patch, is the cutoff on
the patch size. If we now average over all patches, we obtain

Σb(iω, k) ≈ −
∫ 2π

0
dφ

∫ π

0
sin θdθ

g2mcmf

π2
|ω|

k sin θ
= −2g2mcmf

|ω|
k

≡ −γ2
|ω|
k
. (4.82)

We now discuss the fermion self-energies (4.40) at criticality. There, the c, f self-energies are
expected to show MFL frequency dependence because of the log divergence of the momentum
integral over q‖. As mentioned at the end of Sec. 4.4.3 in the main text, in this Appendix, we are
interested in the higher temperature regime where the boson is not that strongly damped, so we do
not ignore the iν term in the boson propagator in (4.40) while computing the fermion self-energies.
The Matsubara frequency sum can then be separated into a UV divergent piece, that is a constant
and which may be absorbed by a chemical potential shift, and a UV finite piece, which may be
computed analytically. Then we can compute the momentum integral numerically with a UV cutoff
∼

√
2mbΛ to obtain

Σc,f (iω) ≈ const.− iγ2mb

mc,fkF
T ϕ̃

(
ω

T
,
Λ

T
,

Λ

∆b(T )

)
. (4.83)

where the function ϕ̃ is no longer symmetric between ±ω in the higher energy regime Λ � ω, T �
γ22/mb, where the iν term in the boson propagator in (4.40) is dominant.

In this higher temperature (energy) regime, the small wavevectors in the boson propagator are
cut off by temperature as q2‖ ∼ mbT (by comparison of q2‖/(2mb) to the iν term), and the boson
self-energy γ2|ν|/q‖ (which we now treat as a perturbation), may therefore be approximated to be
∼ γ2|ν|/

√
mbT in (4.40). Model II then behaves similarly to Model I at small γ, with γ ∼ γ2/

√
mbT ,

from the point of view of the fermions. Then, by virtue of (4.27, 4.29), we have ρxx(T ) ∼
√
T (up

to log corrections), and |RHnc| → 4/3.
In Fig. 4.10 we show the crossover between the strongly damped low-temperature regime and

the weakly damped higher temperature regime over the QCP, by exact numerical calculation of the
conduction electron bubble diagram contribution to the conductivity tensor. As we also argued for
the case of Model I, this bubble diagram is still the dominant contribution at criticality. Indeed, the
contribution of the f fermions and the bosons are still suppressed even in the higher energy regime
of Model II (that is similar to the γ � 1 regime of Model I), due to the relatively low conductivity
of the bosons.
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Figure 4.10: (a) Temperature dependence of ρxx over the QCP in Model II. The dashed green
lines indicate fits to ρ(T )/ρ(T0) = a1

√
T/T0 and ρ(T )/ρ(T0) = a2(T/T0) ln(a3T0/T ) in the

main and inset plots respectively (b) Temperature dependence of RH in Model II. We use
γ2 = 0.02, mb = 1.0, the crossover scale T0 = γ22/mb = 4× 10−4, and the boson bandwidth
Λ = π2/2 ≈ 1.23× 104 T0. The bandwidths of the conduction electrons and f fermions are
assumed to be very large.
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Appendix A

Toric Code Review
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Figure A.1: (a) The square lattice with spins assigned to edges. (b) The plaquette operator
Bp.(c) The vertex operator As.

The Toric code is an exactly soluble quantum spin liquid which exhibits topologically protected
qubits [77]. In the Toric code spin operators fractionalize into two distinct bosons who anti-commute
with each other under exchange. These bosons are the flux and charge excitations of an emergent
Z2 gauge field. The Toric code is defined by placing spin 1/2 moments on each of the square lattice
as shown in Fig. A.1. The Hamiltonian is given by a sum over terms, one for each plaquette Bp and
one for each vertex As also shown in Fig. A.1. The Hamiltonian is given by:

H = −K
∑
p

Bp −K
∑
s

As Bp =
∏
i∈p

Zi As =
∏
i∈s

Xi. (A.1)

All of the terms in this Hamiltonian commute because star and plaquette operators always overlap
on zero or two spins. This implies that the ground state can be quickly found by maximizing the
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eigenvalues of all the operators. As B2
p = A2

s = 1 the only eigenvalues possible for both operators are
±1, so the ground state is defined by Bp|GS〉 = As|GS〉 = +|GS〉. A direct approach to generating
such a state is by projection:

|GS〉 ∝
∏
s

(
1 +As

2
)|+ z〉⊗N . (A.2)

As [Bp, As] = 0 and Bp|+ z〉⊗N = +|+ z〉⊗N we see that this ansatz satisfies all plaquette conditions.
The star operator in front serves to project out any component with eigenvalue (−1) with respect
to the star operators. What is left therefore must be an unnormalized ground state.

In this ground state we find a local symmetry, As|GS〉 = Bp|GS〉 = |GS〉, for all plaquettes and
stars. Amazingly, this spin model produces a ground state with an emergent Z2 gauge symmetry.

Within this solvable model all excitations are easily described as violations of the plaquette or
star terms which are called magnetic fluxes and electric charges respectively. Magnetic flux pairs are
created by acting a string of X operators through the dual lattice and electric charges are created
by acting a string of Z operators through the direct lattice. From this construction we can work out
their mutual statistics by creating a well separated pair of electric charges and creating a pair of
magnetic fluxes, propagating one around a single electric charge and then annihilating the magnetic
flux. This process can be described by:∏

i∈Cb
Xi

∏
j∈L

Zj |GS〉 =
∏
s∈C

As
∏
j∈L

Zj |GS〉 = −
∏
j∈L

Zj |GS〉, (A.3)

where here Cb refers to the boundary of the loop taken by the magnetic flux, L refers to the line that
separates the electric charges and we have used the fact that for any closed loop Cb with interior C,∏
i∈CbXi =

∏
s∈C As. What we have shown is that the electric charges and magnetic fluxes of the

model acquire a phase of (−1) when one is braided around the other, a feature not shared with any
higher dimensional model. A similar calculation will show that both are mutual bosons, in that they
have trivial self-statistics. By similar considerations, we can consider the act of creating a pair of
quasiparticles and propagating them around any non-trivial cycle of the surface on which the model
is defined, before annihilating it on a partner. As these operators fail to commute we can choose an
eigenbasis of only one for each cycle-for instance the charge transporting operator

∏
i∈ν Zi for some

cycle ν. By comparison with the plaquette flux operators we see that this operator measures the Z2

magnetic flux through the cycle ν, it commutes with all terms in the Hamiltonian and therefore
gives rise to a ground state degeneracy which depends on the surface it belongs to [77]. In the case
of the torus, this topological order manifests as a degeneracy of four due to the two cycles each with
two possible flux configurations.
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