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Brain MRI predicts worsening multiple sclerosis disability over 5 
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Abstract

Background and Purpose: Brain MRI-derived lesions and atrophy are related to multiple 

sclerosis (MS) disability. In the Serially Unified Multicenter MS Investigation (SUMMIT), from 

Brigham and Women’s Hospital (BWH) and University of California, San Francisco (UCSF), we 

assessed whether MRI methodologic heterogeneity may limit the ability to pool multisite data sets 

to assess 5-year clinical-MRI associations.

Methods: Patients with relapsing-remitting (RR) MS (n=100 from each site) underwent baseline 

brain MRI and baseline and 5-year clinical evaluations. Patients were matched on sex (74 women 

each), age, disease duration, and Expanded Disability Status Scale (EDSS) score. MRI was 

performed with differences between sites in both acquisition (field strength, voxel size, pulse 

sequences), and post-processing pipeline to assess brain parenchymal fraction (BPF) and T2 lesion 

volume (T2LV).

Results: The UCSF cohort showed higher correlation than the BWH cohort between T2LV and 

disease duration. UCSF showed a higher inverse correlation between BPF and age than BWH. 

UCSF showed a higher inverse correlation than BWH between BPF and 5-year EDSS score. Both 

cohorts showed inverse correlations between BPF and T2LV, with no between-site difference. The 

pooled but not individual cohort data showed a link between a lower baseline BPF and the 

subsequent 5-year worsening in disability in addition to other stronger relationships in the data.

Conclusions: MRI acquisition and processing differences may result in some degree of 

heterogeneity in assessing brain lesion and atrophy measures in patients with MS. Pooling of data 

across sites is beneficial to correct for potential biases in individual data sets.
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Introduction

Brain MRI is commonly used as a surrogate to monitor the underlying multiple sclerosis 

(MS) disease process.1 This includes the detection of lesions2 and atrophy,3 both of which 

are associated with physical disability,4 cognitive impairment,5 risk of disease progression,6 

and response to disease-modifying therapy.7 In prospectively designed multicenter MS 

therapeutic trials, MRI is commonly employed as a supportive outcome measure.8 This 

involves advanced planning and harmonization of MRI methodology to assure consistent 

data acquisition across sites, typically followed by centralized image processing using a 

single processing pipeline at one site.

However, given the valuable information provided by brain MRI, it would be desirable to be 

able to retrospectively combine heterogeneously acquired and processed MRI data sets 

across sites to provide deep characterization of the MS disease process in large numbers of 

patients. In most instances, such data were not consistently obtained, which poses a 

challenge on several fronts given the potential for divergence of MRI results based on 

numerous inconsistencies in acquisition and processing between or within sites. For 

example, studies have shown that field strength,9–11 type of pulse sequence,9,12–14 scanner 

upgrades,9 scanner vendor,9,15 and voxel size13 may each influence MS-related cerebral 

lesion and atrophy volumetric measures. Furthermore, the type of post-processing image 

segmentation pipeline,12,13,16–20 pre-processing image preparation and software version 

within the same pipeline,9,21 or workstation operating system21 may also add variation to the 

results. Even when using a consistent field strength, scanner vendor, and high-resolution 

harmonized pulse sequences, there is considerable variability in manual and automated 

segmentation results22 partly based on hardware factors such as gradient non-linearity.23 

Such challenges have led to intense interest in developing post-hoc statistical and technical 

approaches to harmonize results from heterogeneously-acquired data sets.23–27

The purpose of this study was to evaluate “real-world” effects on clinical-MRI relationships 

between two comprehensive care MS centers when the brain MRI methodology used to 

quantify lesions and atrophy had major differences between sites in both acquisition (field 

strength, voxel size, pulse sequences), and post-processing pipeline.

Methods

Patients

This study was part of the Serially Unified Multicenter Multiple Sclerosis (SUMMIT) 

investigation, which includes the Brigham and Women’s Hospital (BWH) and the University 

of California, San Francisco (UCSF) MS programs.28 We retrospectively identified 100 

patients at each site with a diagnosis of relapsing-remitting (RR) MS29 who underwent a 

neurological examination and brain MRI scan at baseline followed by a repeat clinical 
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examination five years later, as part of prospective studies at each site.28 Clinical 

examination included determination of the Expanded Disability Status Scale (EDSS) score30 

by an MS-specialist neurologist. At the follow-up visit, patients were also evaluated for 

conversion of their MS subtype from RR to secondary progressive (SP).31 Subject 

characteristics are summarized in Table 1. Based on study design, the patients were matched 

as closely as possible at baseline by age, sex, disease duration and EDSS score (Table 1). 

Because the source data were prospectively collected, all patients signed informed consent 

to be included in this study, which was approved by each hospital’s research ethics 

committee.

Brain MRI acquisition

For the 100 patients from BWH, MRI was performed at 1.5T on a General Electric (GE) 

Signa scanner (Milwaukee, WI) using a consistently acquired T2-weighted 2D dual-echo 

series with the following parameters: TR/TE2/TE1: 3000/80/30 ms, voxel size 0.94 × 0.94 × 

3 mm, no inter-slice gaps, 54 axial slices. For the 100 patients from UCSF, MRI was 

performed on a 3T General Electric Signa scanner to acquire T1-weighted 3D images 

(Inversion Recovery Spoiled Gradient Echo pulse sequence, TR/TE/TI: 7/2/400 ms, flip 

angle 8 degrees, voxel size 0.94 × 0.94 × 1 mm, no inter-slice gaps, 160 axial slices ) and 

T2-weighted 2D dual-echo images (TR/TE2/TE1: 2000/80/20 ms, voxel size 0.47 × 0.47 × 3 

mm, no inter-slice gaps, 44 axial slices).

MRI analysis-BWH

For the patients from BWH, the 1.5T 2D images were processed at BWH using a fully-

automated in-house-developed TDS+ pipeline32,33 to derive cerebral T2 hyperintense lesion 

volume (T2LV) and brain parenchymal fraction (BPF), a normalized estimate of whole brain 

atrophy.34

MRI analysis-UCSF

For the patients from UCSF, 3T 3D images were processed at UCSF using an automated 

Structural Image Evaluation, using Normalization, of Atrophy (SIENAX) pipeline (https://

fsl.fmrib.ox.ac.uk/fsl). While SIENAX is traditionally used to derive normalized brain 

parenchymal volume (BPV), to more closely harmonize the data from the two cohorts, we 

derived BPF from the UCSF images by dividing the SIENAX derived brain volume by 

(SIENAX brain volume + ventricular CSF). An experienced observer analyzed baseline and 

follow-up images concurrently using Jim software (v.7, Xinapse Systems, West Bergholt, 

UK; www.xinapse.com) to derive manually segmented T2LV; these masks were used as 

input for the SIENAX segmentation.

Statistical analysis

The baseline clinical and MRI characteristics of the two cohorts were compared using a two-

sample t-test for continuous variables and a chi-squared test for dichotomous outcomes. 

Within each cohort, we estimated the association between the brain MRI measures (T2LV 

and BPF) and demographic and clinical measures (age, disease duration, EDSS at baseline, 

EDSS at 5 years and EDSS change) using Pearson’s correlation coefficients. For T2LV, we 
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used a cube root transformation so that the variable was approximately normally distributed. 

We also treated EDSS as a continuous variable for all analyses given the moderate sample 

size in the two cohorts. We compared the Pearson’s correlation coefficients between cohorts 

using Fisher’s tests based on a z-transformation with the cocor library in R. In addition to 

these correlations, we fit a multivariable linear regression model with change in EDSS as the 

outcome and BPF, cube root transformed T2LV, age and sex as the predictors in all subjects 

and each cohort separately. Since linear regression and Pearson’s correlation coefficient 

assume underlying normality and this does not hold for the EDSS, we confirmed all analyses 

using a multilevel ordinal logistic regression model and Spearman’s correlation coefficient, 

and the results from these approaches were similar (data not shown). Finally, to determine if 

conversion of the SIENAX outputs to BPF instead of BPF led to inherent differences in the 

data, we estimated the correlations using BPF and BPV from SIENAX in the UCSF cohort.

Results

Demographic and clinical characteristics

As shown in Table 1, the BWH and UCSF patients were similar at baseline on sex (74 

women each), age (mean±SD) (BWH: 39.5±8.4, UCSF: 39.5±8.0 years), disease duration 

(7.7±6.8, 7.2±6.6 years), and EDSS score (1.2±1.1, 1.4±1.2). The two groups were also 

similar on T2LV (BWH median 3.6 IQR 1.9–5.7 ml, UCSF 3.9, 1.4-8.1 ml, Table 1). At 

follow-up, four patients from BWH (4%) and seven patients from UCSF (7%) converted 

from RR to a diagnosis of SP MS (p=0.54). At follow-up, EDSS score increased to 1.6±1.5 

in the BWH group and 2.3±1.4 in the UCSF group (p=0.001). We calculated the mean 

change over 5 years between EDSS scores in all subjects in the two groups separately, and 

then calculated the difference in the mean change between the two sites. For all subjects, the 

mean change was an increase of 0.69 (95% confidence interval: 0.51, 0.85). Within each site 

this was 0.46 (0.20, 0.72) at BWH and 0.91 (0.69, 1.13) at UCSF. The difference in change 

between sites was 0.45 (0.12, 0.78) (p=0.0086) and 0.0075 (0.0021, 0.013); p=0.0076 for the 

monthly rate of change. Thus, the UCSF cohort had higher on-study levels of progression of 

disability than the BWH cohort.

T2LV vs. clinical measures: correlation analysis

Univariate correlations are shown in Table 2, and Figures 1 and 2. Regarding T2LV vs. 

clinical measures, the UCSF cohort (n=100) showed a higher correlation than the BWH 

cohort (n=100) for the relationship between T2LV and disease duration (Table 2). For the 

correlation between T2LV and all EDSS variables, there were no significant differences 

between sites (Table 2). With the two cohorts pooled (n=200), the correlations resembled the 

UCSF site, with the relationships between T2LV and disease duration, EDSS at baseline, 

and EDSS at 5 years all reaching significance (Table 2).

BPF vs. clinical measures: correlation analysis

Univariate correlations are shown in Table 2, and Figures 1 and 2. Regarding BPF vs. age, 

the UCSF cohort showed a higher inverse correlation with age than the BWH cohort (Table 

2). Regarding BPF vs. clinical measures, the UCSF cohort showed a higher inverse 

correlation than BWH for the relationship between BPF and EDSS score at 5 years (Table 
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2). For the correlation between BPF and all EDSS variables and disease duration, there were 

no significant differences between sites (Table 2). With the two cohorts pooled, the 

correlations were significant for the relationships between BPF and age, EDSS at baseline, 

EDSS at 5 years, and EDSS 5-year change, but not for disease duration (Table 2).

BPF vs. T2LV: correlation analysis

Both the BWH and UCSF cohorts, and the pooled cohort, showed significant inverse 

correlations between BPF and T2LV, with no significant difference in the strength of 

correlation between sites (Table 2).

MRI prediction of 5-year disability change

Regression modeling assessed the multivariate relationships between baseline T2LV or BPF 

and change in EDSS score over the subsequent 5 years, adjusting for age, disease duration 

and sex. None of the baseline MRI parameters predicted the 5-year change in EDSS, 

considering each site separately (Table 3). However, with the pooled data from the two sites, 

a lower baseline BPF predicted disability worsening (p<0.05, Table 3).

We also performed an exploratory analysis comparing the T2LV and BPF in subjects at 5-

year follow-up who converted to SPMS (n=11) vs. those who did not (n=189). We used a 

linear regression model with conversion status, age, gender and cohort as a predictor. The 

estimated difference in cube root transformed T2LV comparing converters to non-converters 

was 0.51 (95% CI: 0.10, 0.92; p=0.014). The estimated difference in BPF was −0.006 (95% 

CI: −0.029, 0.017; p=0.60). We have chosen to not to present or discuss these results in 

further detail given the small sample size of the converter group.

Discussion

This study showed mixed results in comparing two cohorts of demographically and 

clinically baseline matched patients with RRMS on their clinical-MRI relationships in a 5-

year study. The major finding was, despite the wide between-site differences in MRI 

acquisition (field strength, scanner vendor, voxel sizes, type of pulse sequences) and post-

processing pipelines, most of the correlations were of similar direction and strength between 

cohorts.

However, a few of the comparisons showed clear differences, such as: 1) Age vs. BPF. It is 

possible that this result reflects a contribution of slight differences in disease duration, given 

that the latter is well known to influence brain atrophy in MS.35 2) Disease duration vs. 

lesion volume. This may also reflect differences in the disease severity of the cohorts, given 

that the UCSF patients clearly developed more disability and more of them developed 

progressive disease on-study. It is well known that cerebral lesion volume is related in part to 

disability change in MS.36 3) BPF vs. 5-year EDSS score. This may again reflect the 

different on-study change in disease severity of the cohorts. In addition, the weaker 

associations that were seen in the BWH cohort may have been a result of less precise 

volumetric assessment compared with the UCSF cohort given the differences in MRI 

acquisition (1.5T vs. 3T, T2-2D vs T1-3D sequences, and 3 mm vs. 1 mm slice thickness). 

However, a potential advantage of pooling data sets across centers is to increase statistical 
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power due to larger sample size in the assessment of clinical-MRI relationships. This proved 

to be one benefit shown in our study, given that the pooled but not individual cohort data 

showed a link between baseline BPF and the subsequent 5-year change in EDSS score in 

addition to other stronger relationships in the data.

This works does not explore which factors make the most contribution to data heterogeneity, 

for example, whether the MRI field strength, type of sequence, resolution, or post-

processing pipeline is the primary source of variability in the output metrics. The answer to 

these questions would only be possible if some of the data were acquired or processed in 

both centers, which we plan to test in future studies. Nonetheless, we present a useful 

benchmark for the limits of what is to be expected when data are pooled from multiple 

centers with vastly different data protocols.

A recurring theme throughout these results was that both T2 lesions and brain atrophy 

showed significant relationships to disease duration and EDSS scores. These results are 

supported by previous studies indicating that both white matter lesions and overall tissue 

destruction in the brain contribute to neurologic dysfunction in MS, and tend to provide 

complementary information on disease status and treatment efficacy.4,7,37 In RRMS, white 

matter lesions are thought to be largely the result of adaptive immunity responses, such as 

lymphocyte entry into the CNS.39 In contrast, brain atrophy, and the risk for developing 

secondary progressive disease, reflects a wide variety of processes not limited to the effect 

of destructive white matter lesions in the brain, but also gray matter factors such as cortical 

lesions, innate immunity, meningeal pathology, and neurodegeneration.39

We would conclude that there is a high degree of consistency in the information obtained 

from the MRI measures between sites, albeit with not perfect consistency, but clearly with 

more similarities than differences. These results provide an impetus to pool such data sets in 

the investigation of clinical-MRI relationships in large studies. Since the correlation 

coefficients are independent of the overall scaling of the metrics, these should be comparable 

if the metrics are related by a simple scaling factor – which they probably are for the MRI 

volumes.25 The differences in correlations where they do occur, may reflect differences in 

the clinical factors/disability of the cohorts. Despite the attempt to match at baseline, this 

study does not allow us to discern methodological vs. biological differences driving the 

differences in MRI data between cohorts. The differences in EDSS change on-study suggests 

that these may not be similar patients in terms of disease biology/severity. Indeed, the 

slightly higher EDSS score in the UCSF cohort at baseline suggests even at the study onset, 

that it may be a more severely affected group. It is well known that early EDSS 

measurements are related to subsequent changes in disability in MS.40
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Figure 1. 
Baseline T2 lesion volume vs. EDSS score at baseline and 5-year follow-up

Global cerebral T2 hyperintense lesion volume (T2LV) at baseline vs. Expanded Disability 

Status Scale (EDSS) score at baseline and at 5-year follow-up from the Brigham and 

Women’s Hospital (BWH) (top) and the University of California, San Francisco (UCSF) 

(bottom) cohorts. Scatter plots with regression slopes illustrate the relationship between 

T2LV and EDSS score at baseline (BWH: Pearson r = 0.178, p=0.077, UCSF: r = 0.207, 

p=0.038), and at 5-year follow-up (BWH: Pearson r = 0.237, p=0.017, UCSF: r = 0.294, 

p=0.003). The correlation coefficients were not different between the two cohorts at either 

time point (p>0.05). See also Table 2.
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Figure 2. 
Baseline BPF vs. EDSS score at baseline and 5-year follow-up

Brain parenchymal fraction (BPF) at baseline vs. Expanded Disability Status Scale (EDSS) 

score at baseline and at 5-year follow-up from the Brigham and Women’s Hospital (BWH) 

(top) and the University of California, San Francisco (UCSF) (bottom) cohorts. Scatter plots 

with regression slopes illustrate the relationship between whole brain atrophy and EDSS 

score at baseline (BWH: Pearson r = −0.174, p=0.084, UCSF: r = −0.371, p<0.001), and at 

5-year follow-up (BWH: Pearson r = −0.072, p=0.479, UCSF: r = −0.366, p<0.001). The 

correlation coefficients were different between the two cohorts at the 5-year time point 

(p<0.05). See also Table 2.
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Table 1.

Patient characteristics: Baseline and 5-year follow-up

BWH (n=100) UCSF (n=100) p value

Age (years) – baseline 39.5±8.4 (21-55) 39.5±8.0 (23-56)  1.0**

Sex (% women) 74 74  1.0**

Clinical type – baseline RR (100%) RR (100%)  1.0**

Clinical type – follow-up RR (96%)/SP (4%) RR (93%)/SP (7%)  0.54

Disease duration* 7.7±6.8 (0.4-33.7) 7.2±6.5 (0-34.0)  0.56**

BPF– baseline 0.86±0.04 (0.77-0.94) 0.74±0.04 (0.65-0.83)   <0.001

T2LV (ml) – baseline 5.3±5.7 (0.7-30.7) 7.9±15.7 (0-132)  0.12

MRI-clinical follow-up interval (months) 60.8±2.2 (55-67) 61.1±2.4 (55-67)  0.34

EDSS – baseline 1.2±1.1 (0-5.5) 1.4±1.2 (0-5)  0.13**

EDSS – follow-up 1.6±1.5 (0-6.5) 2.3±1.4 (0-6.5)  0.001

Key: data are shown as mean ± standard deviation (range), except as otherwise indicated;

*
years from first symptoms; n = number of subjects; BWH = Brigham and Women’s Hospital; UCSF = University of California, San Francisco; 

BPF = brain parenchymal fraction; T2LV = global cerebral T2 hyperintense lesion volume; EDSS = Expanded Disability Status Scale score;

**
as part of study design, the patients were matched as closely as possible on these baseline characteristics
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Table 2.

MRI-clinical and MRI-MRI correlations

All subjects (n=200) BWH (n=100) UCSF (n=100) BWH vs. UCSF: p value

Baseline T2LV vs:

Disease duration 0.272 (0.139, 0.396)

p<0.001***
0.104 (−0.094, 0.295)

p=0.303
0.395 (0.215, 0.549)

p<0.001*** 0.029*

EDSS at baseline 0.194 (0.056, 0.324)

p=0.006**
0.178 (−0.02, 0.361)

p=0.077
0.207 (0.011, 0.388)

p=0.038* 0.829

EDSS at 5y 0.257 (0.122, 0.382)

p<0.001***
0.237 (0.043, 0.415)

p=0.017*
0.294 (0.103, 0.463)

p=0.003** 0.674

EDSS 5y change 0.121 (−0.018, 0.255)
p=0.088

0.119 (−0.079, 0.309)
p=0.237

0.130 (−0.068, 0.318)
p=0.198 0.941

Baseline BPF vs.

Age −0.188 (−0.318, −0.05)

p=0.008**
−0.202 (−0.383, −0.006)

p=0.044*
−0.523 (−0.653, −0.364)

p<0.001*** 0.009**

Disease duration −0.111 (−0.246, 0.028)
p=0.118

−0.220 (−0.399, −0.025)

p=0.028*
−0.331 (−0.495, −0.144)

p=0.001** 0.402

EDSS at baseline −0.235 (−0.362, −0.100)

p=0.001**
−0.174 (−0.358, 0.023)

p=0.084
−0.371 (−0.528, −0.188)

p<0.001*** 0.137

EDSS at 5y −0.311 (−0.431, −0.180)

p<0.001***
−0.072 (−0.264, 0.127)

p=0.479
−0.366 (−0.525, −0.183)

p<0.001*** 0.029*

EDSS 5y change −0.146 (−0.279, −0.007)

p=0.039*
0.070 (−0.129, 0.262)

p=0.492
−0.037 (−0.232, 0.16)

p=0.711 0.456

Baseline MRI-MRI correlations:

BPF vs. T2LV −0.160 (−0.290, −0.020)

p=0.023*
−0.360 (−0.520, −0.180)

p=0.0002**
−0.230 (−0.410, −0.180)

p=0.023*
0.31

Key: Pearson correlation r values are shown with 95% confidence intervals. In the last column, the correlation coefficients between sites were 
compared by the approach of Fisher for the comparison of independent correlation coefficients. BWH = Brigham and Women’s Hospital; UCSF = 
University of California, San Francisco; BPF = brain parenchymal fraction; T2LV = global cerebral T2 hyperintense lesion volume (the cube root-
transformed T2LV was used); EDSS = Expanded Disability Status Scale score;

*
p<0.05;

**
p<0.01;

***
p<0.001.
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Table 3.

Modeling the ability of MRI to predict disability change over 5 years

All subjects (n=200) BWH (n=100) UCSF (n=100)

BPF −2.37 (−4.71, −0.02)

p=0.048*
3.30 (−4.03, 10.64)

p=0.37
−0.72 (−6.18, 7.63)

p=0.84

T2LV 0.16 (−0.10, 0.42)
p=0.23

0.38 (−0.23, 0.98)
p=0.22

0.17 (−0.12, 0.46)
p=0.25

Age −0.009 (−0.031, 0.012)
p=0.39

−0.011 (−0.044, 0.023)
p=0.53

0.009 (−0.024, 0.042)
p=0.60

Sex −0.19 (−0.59, 0.21)
p=0.35

−0.16 (−0.78, 0.46)
p=0.61

−0.11 (−0.62, 0.41)
p=0.67

Key: These estimates with 95% confidence intervals are unstandardized regression coefficients from a linear regression with 5-year change in 
Expanded Disability Status Scale score as the outcome and these four predictors in the model together. BWH = Brigham and Women’s Hospital; 
UCSF = University of California, San Francisco; BPF = brain parenchymal fraction; T2LV = global cerebral T2 hyperintense lesion volume (the 
cube root-transformed T2LV was used);

*
p<0.05.
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Table 4.

Whole brain volume measurement at the UCSF site: comparison of two methods

BPF BPV

Disease duration −0.331 (−0.495, −0.144)

p=0.001**
−0.332 (−0.496, −0.145)

p=0.001**

EDSS at baseline −0.371 (−0.528, −0.188)

p<0.001***
−0.370 (−0.528, −0.187)

p<0.001***

EDSS at 5y −0.366 (−0.525, −0.183)

p<0.001***
−0.362 (−0.522, −0.178)

p<0.001***

EDSS 5y change −0.037 (−0.232, 0.160)
p=0.711

−0.033 (−0.228, 0.165)
p=0.745

T2LV −0.227 (−0.406, −0.032)

p=0.023*
−0.231 (−0.409, −0.037)

p=0.021*

Age −0.523 (−0.653, −0.364)

p<0.001***
−0.526 (−0.655, −0.367)

p<0.001***

Key: Pearson correlations between the clinical/demographic variable in the first column and whole brain volume, with 95% confidence intervals. 
UCSF = University of California, San Francisco; BPF = brain parenchymal fraction; BPV=normalized brain parenchymal volume; EDSS = 
Expanded Disability Status Scale score; T2LV = global cerebral T2 hyperintense lesion volume (the cube root-transformed T2LV was used);

*
p<0.05;

**
p<0.01;

***
p<0.001.
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