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High resolution imaging of continuously moving object 
using stepped frequency radar 
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Abstract. A stepped frequency inverse synthetic aperture radar is studied for imaging of continuously moving objects. The radar returns 
are shown to be a sum of two-dimensional complex exponentials over a small data aperture. A matrix pencil method is proposed to 
exploit the unique data structure and yield high resolution. The continuous motion of the object is utilized effectively. 

Zusammenfassung. Ein inverses Synthetik-Apertur-Radarsystem, das zur Abbildung eines sich kontinuierlich bewegenden Objekts 
eingesetzt wird, soll untersucht werden. Es wird gezeigt, dab die Radarechos sich additiv aus zweidimensionalen komplexen Exponen- 
tiellen tiber einer kleinen Datenapertur zusammensetzen. Ein Matrix-Pencil-Verfahren wird vorgeschlagen, das die spezifische Daten- 
struktur ausnutzt und eine hohe Aufl6sung liefert. Die kontinuierliche Objektbewegung wird auf wirksame Weise genutzt. 

R~surn~. Nous 6tudions un radar ~ ouverture synth6tique inverse h fr6quence par paliers dans le contexte de la visualisation d 'un objet 
se mouvant continuement. Nous montrons que les retours radar sont constituEs par la somme d'exponentielles complexes ~ deux 
dimensions sur une petite ouverture de donn6es. Nous proposons nne m6thode de matrix pencil pour exploiter cette structure de donn6es 
unique et obtenir une r6solution 61ev6e. Nous utilisons efficacement le mouvement continu de l'objet. 

Keywords. High resolution imaging; stepped frequency radar; matrix pencil. 

1. Introduction 

Radar imaging is a technology which has gone 
through three decades of research and development. 
Some modem research trends in this area can be found 

in [ 1-3, 9, 10]. One important issue which still domi- 
nates the interests of many researchers is resolution. 
High resolution is desired almost in all radar images. 

The conventional approach to obtain high resolution is 
to increase the effective aperture of the collected data. 

Correspondence to: Dr. Y. Hua, Department of Electrical Engi- 
neering, University of Melbourne, Parkville, VIC 3052, Australia. 
E-mail yhua @ mullian.ee.mu.oz.au 

*This work was supported by the Australian Defence Science and 
Technology Organization (DSTO) and the Australian Research 
Council (ARC). 

The synthetic aperture radar (SAR) [ 1] is the best 
example. While this is very effective in some applica- 

tions, the data aperture can be severely limited by a 

number of physical, as well as computational, con- 
straints in other applications such as the inverse syn- 
thetic aperture radar (ISAR). 

In a stepped frequency ISAR [2] the object to be 
imaged rotates around its center with respect to a sta- 

tionary radar. At one aspect angle of the object, the 
radar transmits a sequence of stepped frequency pulses 

towards the object and receives the returned signals. At 
the next aspect angle of the object, the radar does the 
same thing. This process is repeated for a number of 
times. As a result, the radar actually collects a two- 
dimensional (2-D) data set. The first dimension is the 
stepped frequency of the radar, and the second is the 
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34 Y. Hua /High resolution imaging of continuously moving object 

rotation angle of the object. Both the frequency and the 

angular dimensions are limited by several factors as 

explained below. First, the reflection coefficients of 

many objects are frequency dependent as well as angle 

dependent. In order to describe such objects by images 
(at a nominal frequency band and a nominal looking 

angle), both the frequency and the angle ranges must 
be limited to be small. Second, the collected data with 

either large frequency range or large angle range can 
be too complicated to process to yield a good image 

within a given computing time. This often forces the 

data aperture which we can use to be small, so that the 

data satisfies a simple model and hence an efficient 

algorithm can be applied. For example, in [2], the 

frequency and angle ranges are chosen to be so small 
that the received data can be modelled by samples of 

the Fourier transform (of  the object image) on rectan- 
gular coordinates, and hence the inverse fast Fourier 
transform (FFF) method can be applied. If the angle 
range is not very small, the radar returns are samples 

of the Fourier transform on polar coordinates, and 

hence (for computational efficiency) some interpola- 
tion methods must be used before the FFF can be 

applied. 
In this paper, we will study a stepped frequency 

ISAR problem where the data aperture is so small that 
none of the FFT based methods can provide a satisfac- 

tory resolution. Specifically, we will consider an object 
which moves continuously (rather than in steps as in 
[ 2, 12] ) with both angular and radial motions. We will 

show that the radar returns can be modelled by a sum 
of 2-D complex exponentials for a very small data 
aperture. To utilize the small aperture of data without 

loss of resolution, we will propose a matrix pencil 
method. This method retrieves the desired parameters 

(such as 2-D frequencies) from the radar returns more 

efficiently than other high resolution methods such as 
the maximum entropy and minimum variance [ 8 ]. This 
is because a searching in 2-D space is required by those 
methods but not the matrix pencil method. 

In Section 2, the model for the radar returns will be 
discussed in detail. The 2-D complex exponentials will 
be shown to be the valid model over a small data aper- 
ture. It will be shown that the 2-D frequencies in the 
model are linearly related to the positions of the point 

scatterers in the object, and once the radial and rota- 

tional velocities of the object are known or estimated, 

they can be used to obtain the exact scatterer positions, 

i.e., the radar image. (At microwave frequencies, many 

objects can be viewed as clusters of point scatterers.) 
In Section 3, we will present the matrix pencil method 

for retrieving the 2-D frequencies from the radar 
returns. In Section 4, the high resolution capability of 

the matrix pencil method will be illustrated by a com- 
puter simulation in comparison to the FFT method. 

2. The data model 

The coordinate system of a moving object is shown 

in Fig. 1 with respect to a stationary radar. At any given 
time t, the motion of the object can be completely 
described by three components. The first component is 
the angular rotation of the object around a reference 

point in the object. The second is the radial motion of 
the reference point (or the object) along the line of 

sight of the radar. The third is the tangential motion of 

the reference point (or the object) which is perpendic- 

ular to the radial motion. 

For a small angular change of the object and a narrow 
frequency bandwidth at microwave frequencies, the 

moving object is assumed to consist of a number of 

point scatterers each of which has a constant reflection 
coefficient. Then the complex envelope of a radar 
return can be described by 

s ( t )  = a i e x p  - j ~ - f ( t ) r i ( t )  , (2.1) 
i= l  

Radar 

d(t) 

Object 

Fig. 1. The coordinate system of the moving object (in x -y )  with 
respect to the radar. 
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Y. Hua /High resolution imaging of continuously moving object 35 

where I is the number of scatterers, a~ the (complex) 
reflection coefficient (incorporating the phase and 

amplitude of the transmitted signal and the attenuation 
along the wave path), c the wave velocity, f ( t )  the 

radar frequency, and r~(t) the distance between the 

radar and the i-th scatterer. The phase ( 4-rr / c)f(t)  ri (t) 

is due to the round trip travel between the radar and the 

i-th scatterer. When the object is in the far field, we 
have 

fu 

fo 

f(t) 

At 

Fig. 2. The frequency of the stepped frequency ISAR as function of 

time. 

ri(t) = d ( t )  + x i c o s ( O ( t ) )  +y i s in (O( t ) )  , (2.2) 

where d(t )  is the distance between the radar and the 

reference point in the object, O(t) the rotation angle, 

and (xi, yi) the position of the i-th scatterer. If  the whole 
observation time is short, the moving object remains in 

the radar beam width, the distance d(t )  changes with a 

constant radial velocity u, i.e., 

d(t )  =do + v t ,  (2.3) 

and the angle O(t) changes with a constant speed w, 
i . e . ,  

O(t) = wt .  (2.4) 

Note that the tangential motion of the object contributes 

nothing to the radar returns as long as the object is in 

the radar beam width. The initial angle is assumed to 

be zero without any loss of the geometry of the object. 

When the angular change is small, then r~(t) can be 
written as 

r~(t) = d(t)  + & - yi 0(t) 

=do + u t + x i  -y io~t .  (2.5) 

The radar transmits the stepped frequency pulses 

with the initial frequencyfo and the frequency step Af 
as shown in Fig. 2. Let At be the time interval between 

pulses, M the number of frequency steps from the low- 

est frequencyfo to the highest frequency fu and N the 
number of sweeps from f0 to fu. Then we can express 
the sampling time by t =  ( n M +  m)At ,  where m = 0,1, 

.... M -  1 and n = 0,1 . . . . .  N -  1. Using this expression, 
we can write 

f( t)  =fo + A f m ,  (2.6) 

r~(t) =do + v ( n M + m )  A t + x i - y i ~ o ( n M + m )  A t .  

(2.7) 

(Note that strictly speaking, we have assumed that the 

object can be viewed to be stationary during the pulse 

interval which can be smaller but no larger than the 
sampling interval At. ) Using (2.6) and ( 2.7 ) in ( 2.1 ), 

we now write 

s( t )  =s (m ,n )  

) = ai exp - j  - -  4~o(m) - " - -  4)i(m,n) , 
i=1 C C 

(2.8) 

where 

~bo(m) =do (fo+ A f m )  , (2.9) 

qbi( m,n ) =foxi + fo( v - yiw ) At m + f ) (  t, - yioj ) At Mn 

+ A f x i m +  A f ( v - y i  w) A t m  2 

+ Af(L,--yio~ ) A tMmn.  (2.10) 

Note that ~bo(m) can be compensated (i.e., removed) 
if the initial distance do is known. If do is unknown but 

an estimate d~ is given, then the corresponding 

O6(m) due to d6 can be compensated and the difference 

do - d6 is added to xi. If do - d6 is not so large to cause 
ambiguity, it only causes a translation of the whole 
object in the x-direction. 

In (2.10), the second last term ( of m 2 ) is negligible 

in the m-direction compared to the second term pro- 

vided that the radar frequency bandwidth is very nar- 

row, i.e., BT << fo where BT = M Af. The last term (of 
ran) is negligible in the n-direction compared to the 
third term given BT << fo. However, the last term is 
not negligible in the m-direction compared to the sec- 
ond term unless 
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36 Y. Hua / High resolution imaging of continuously moving object 

NBT <<fo- (2.11) 

Although NBT << fo is more restrict than BT << fo, it 
still can be easily satisfied in practice. But it may imply 

that N must be small. 

Neglecting tho (m) and the second last and last terms 

in chi(m,n), the radar returns can be rewritten as 

1 

s(m,n) = ~ bi exp(jwmim+jtonin) , (2.12) 
i~l 

where 

4"rr 
b~=ai exp ( - j  ~ -  foxi), (2.13) 

4xr 
OJrn i -- ( fo(U--yi  w) A t +  A f  xi) ,  ( 2 . 1 4 )  

C 

4xr 
O . ) n i  = - -  - - f o ( v - y ,  oJ) At M, (2.15) 

C 

Now we see that the radar returns are a sum of 2-D 

complexexponentialsprovidedNBT << fo (narrow fre- 

quency band) and wMNAt << 1 (small angular 

change). Furthermore, we know that the i-th 2-D fre- 

quency ( Wmi, wn~) provides a direct information about 

(x~, y~) the position of  the i-th scatterer. Although Wm~ 
and O)ni are not simple proportions ofx  i (range) and y~ 

(cross-range), respectively, they are linearly related to 

each other. When v and to are known or estimated, (x~, 

Yi) can be retrieved from (tOm~,tOn~) as follows: 

( (t)ni ) C 
\ - ~ - -  to,, i , (2.16) 

x i  - 4~r Af 

C © 

Yi 4~foto At M wni +-- (2.17) 

Note that the error in radial velocity (if  not so large to 

cause ambiguity) would introduce a constant shift in 

the cross range, and the error in angular velocity would 
introduce a scaling in the cross range. The range dimen- 

sion is robust to these errors. Also note that there is no 

'range walk' problem [ 1 ] here because we use a small 

data aperture. 
In the next section, we will present the matrix pencil 

method for estimating the 2-D frequencies (tom~,ton~) 

as well as the corresponding amplitudes b~ from s (re,n). 

3. Matrix pencil method 

Given the model shown in (2.12), several methods 

[ 8] are available to find the 2-D frequencies and the 

corresponding amplitudes. But the matrix pencil 

method we will now present is computationally more 

efficient. This is because a searching procedure in 2-D 

space, which is not required by the matrix pencil 

method, must be carried out by other methods. We note 

that the concept of  matrix pencil was previously used 

for 1-D superimposed exponentials [6] and recently 

used for a 2-D case [5].  A near optimum accuracy 

(compared to the Cramer-Rao bound) has been found 

for the matrix pencil approach in both I-D [6] and 2- 

D [5] cases. But the version shown in [5] as well as 

in [ 12] requires more computations than the version 

shown below although they have a similar accuracy 

[ 11]. (An enhanced matrix to be proposed here is 

much smaller than that proposed in [ 5 ] which accounts 

for the computational efficiency of  this version.) 

We first rewrite (2.12) into the form 

J K 

s(m,n) = ~, ~_, bjkp?q~, (3.1) 
j = l  k = l  

where {p/j = 1, J} are all the distinct elements from 

{exp(jwmi:i -= 1 . . . . .  I}, {qk:k = 1 . . . . .  K} all the distinct 

elements from exp(joJni) : i = 1 . . . . .  I}, { bjk:j = 
1 . . . . .  J; k =  1 . . . . .  K} consist of {bi:i = 1 . . . . .  I} and 

zeros. Clearly, the number of  nonzero bjk is/,  the num- 

ber of  scatterers. Because of  the zero bj~, redundancy 

is introduced into the model. But it is the redundancy 

that leads to the matrix pencil method to be shown. In 

addition, we feel that the redundancy also tends to 

absorb some amount of model errors or noise and hence 

leave the real scatterer components less perturbed. We 

note that J and K can be estimated as will be mentioned 

again, and I can then be estimated by the number of 

dominant bjk. 
Now we put s(m,n) into the matrix form: 

S =PBQ T , (3.2) 

where the superscript T denotes the transpose, and 

Signal Processing 



Y. Hua / High resolution imaging of continuously moving object 3 7  

I 1 ".. 1 1 p = Pl P2 "'" Pj 

M ~ . . .  - , p -1 p2M-I ... pM-I  

(3.3) 

[bj bw [ l _ "" bl/~] 
B =  b21 b22 "" bzK 

• : . . .  , 

bj,  bj2 "'" bJK J 

Q = qJ q2 "'" qk . 

q ~ - '  q~ ' ... q~-~ 

(3.4) 

(3 .5 )  

When P and Q are available, the matrix B can simply 

be found by (the least-square solution) 

B = P + S Q  +v , (3.6) 

where the superscript ÷ denotes the pseudoinverse, i.e., 

p + = (pHp)  - 1pH, (3.7) 

Q + = (QHQ) -1QH. (3.8) 

The superscript H denotes the conjugate transpose. The 

inverse used in (3.7) and (3.8) implies that J and K 
are assumed to be no larger than M and N, respectively. 

Note that each nonzero element [bjk[ in B represents 
the amplitude of the reflection coefficient of the point 
scatterer with the location defined by the corresponding 
pj and qk. The location defined by any pair ofpj  and q~ 

can be computed by using 

O.)  m =Im[ logp j ]  , (3.9) 

~o n = Im[log qk] , (3.10) 

in place of O~mi and (.One in (2.16) and (2.17). Im[ ] 
denotes the imaginary part. If  p~ and qk are estimated 
values, we found that forcing them to have the unit 

amplitudes stabilizes the computation of B using (3.6). 
To show how to find pj and qk, we will focus on pj 

only. This is because the role played by pj is the same 
as that by qk once m and j are exchanged by n and k, 
respectively. The whole procedure can be put into four 
steps as follows. 

The first step is to form the enhanced matrix: 

S~fb = [ S e , P S * ] ,  (3.1 l) 

where the superscript * denotes the complex conjuga- 

tion, P is the permutation matrix with ones on its anti- 

diagonal axis, and 

S~ = [So,Si . . . . .  SN-L] , (3.12) 

where Si consists of the ( i +  l ) th through ( i + L ) t h  

rows ofS. L is a free integer to be discussed later. Using 

(3.2) and (3.3) together with (3.11 ), one can verify 

S ~ n , - P  trJ p * L - l / - ~ * l  
- -  Lt~f, 0 ~ f J ,  (3.13) 

where 

I 1 1 '-- 

Pl P2 "" 
' . . .  

p , ~ - '  p~  ' . . .  

1 

p~-J 
(3.14) 

Po =diag[pl  ,P2 . . . .  ,pj] , (3.15) 

Qf = [ B Q  T , P o B Q  r . . . .  ,P ~ -  Z BQ'r  ] . (3.16) 

It can be shown (see Appendix A) that if 

J < ~ L ~ < N - J +  I , (3.17) 

then 

range (Sefb) = range ( PL ) • ( 3.18 ) 

The second step is to compute the matrix U of the J 

principal left singular vectors of Sefb. From (3.18) we 
know that 

range ( U ) = range (PL) , (3.19) 

or equivalently 

U = P L T ,  (3.20) 

where T is a unique J ×  J nonsingular matrix. 

The third step is to form the matrix pencil U~ - p U 2 ,  

where U~ is U without the first row, and U2 is U without 
the last row. Using (3.19), one can verify 

UI - p U 2  = (P1 - p P 2 ) T  , (3.21) 

where Pj is P without the first row, and P2 is P without 
the last row. From (3.14), we know that 

P1 = P 2 P o ,  (3.22) 

V o l .  3 5 .  N o .  1, J a n u a r y  1 9 9 4  



38 Y. Hua /High resolution imaging of continuously moving object 

and hence 

Ul - pU2 =P2(Po - pI )  T . (3.23) 

To ensure that the ( L -  1 ) -row matrix P2 also has the 
full rank J, we must modify (3.17) as 

J +  1 <~L < ~ N - J +  1 . (3.24) 

Then, a simple analysis [6] of (3.23) can show that 

{p/ j=  1 . . . . .  J} are the generalized eigenvalues (rank 

reducing numbers) of the matrix pencil Uj -pU2. 
The final step is to compute the generalized eigen- 

values of U ~ - p U 2  by computing the eigenvalues of 
(UnzU2)-  ~UHUI, For more discussions on the gen- 
eralized eigenvalue problem, see [ 7 ]. 

Note that the effect of the free parameter L on the 
noise sensitivity is great but similar to that for the 1-D 

sinusoidal case shown in [6]. Good choices of L are 
between N / 3  and 2N/3.  The choice of J follows from 

a property of Seeo, i.e., rank(Sefb) = J .  For noisy data, 
J should be the number of the dominant singular values 

of Sef b. 

Also note that although the matrix pencil method 
was motivated by the small size of the available data 
set, it works as well on a large data set. In fact, for a 
large data set, the matrix pencil method can be more 
efficient in computation than the FFT method. To jus- 

tify this, we can show (using some results in [4] that 
the total number of multiplications required by 
the matrix pencil method is in the order of 
4 L ( N - L / 2 ) N +  10L 3, assuming M = N  and 

N > L  >> max(J,K).  The condition L >> max(J,K) 

means that the image is sparse or composed of a small 
number of scatterers. It is also known that the total 
number of multiplications required for a typical 2-D 
FFT method to produce a 2-D FFT spectrum alone is 
in the order of N21og2 N, assuming M = N .  This is in 
addition to the computations required to search the peak 
frequencies and amplitudes in the 2-D spectrum. If N 
is also much larger than L (or if log2 N is larger than 
4L), then the 2-D FFT spectrum alone would be more 
expensive to obtain than the estimated frequencies and 
amplitudes by the matrix pencil method. 

4. Computer simulation 

To illustrate the performance of the matrix pencil 

method for radar imaging, we assume the following. 
For radar: 

c = 3 ×  108 m/s,  

f~ = 10 GHz, 
Af= 0.5 MHz, 
At = 18 ~s, 

M = N = 3 2 .  

For object: 

w= 5 degrees/s, 
v = 1 m/s,  

for i from 1 to 8 
xi = 10 cos(X~r(i - 1)) in meters, 

Yi = 10 sin( ¼ar(i- 1 )) in meters, 

ai = exp (jwi), 
where wg is randomly distributed between [ - nr,~r ] ; 

do >> 20 meters. 
Based on the above parameters, a 32 × 32 synthe- 

sized X-band stepped frequency ISAR data set was 

generated using ( 2.1 ) with ~bo(m) suppressed. We also 
added complex white Gaussian noise with SNR = 30 
dB where SNR = 101oglo( 1/2o" 2) and 2o -2 is the noise 

variance. Note that the total angle change is 
o)At M N  = 0.092 degree, and the radar frequency band- 

width is BT = A f M  = 0.0512 fo /N.  

Figure 3 shows the 2-D FFT amplitude spectrum of 

the data set, where the top 10 dB dynamic range (ratio 
of the peak value over the threshold) is shown. Due to 
the small data aperture, none of the eight scatterers can 

Fig. 3. The FFF amplitude spectrum of the synthesized X-band 
stepped frequency ISAR data. 

Signal Processing 



Y. Hua /High resolution imaging of continuously moving object 39 

be seen in this spectrum. From this spectrum, we can 

only tell a strong cluster of  scatterers present. 

Figure 4 shows the line spectrum defined by I bjkl 

versus the corresponding xi and Yi which were obtained 

by the matrix pencil method with L =  15 and J (or 

K) = 7. From this spectrum (with the dynamic range 

10 dB),  we clearly see eight dominant scatterers and 

six other (weak) extraneous scatterers. The amplitudes 

Fig. 4. The line spectrum obtained by the matrix pencil method of 
the same ISAR data. 

15 

10 

Y 0 

-5 

-10 

-15 
-15 15 

"',, 1.02 / ' "  

, /  1.24 ~ ~  "",, 

,"" 0.95 ""-, 

-5 o 

x 

Fig. 5. The amplitudes and locations of the scatterers obtained by the 
matrix pencil method. 

and positions of  the eight dominant scatterers are shown 

in Fig. 5. They are all close to the true values. 

5. Conclusions 

A high resolution method has been proposed for 

stepped frequency ISAR imaging of  continuously mov- 

ing object. This method called the matrix pencil method 

has been shown to provide much higher resolution than 

the conventional FFF method. The continuous motion 

of the moving object can be utilized effectively by 

applying the matrix pencil method to a small data aper- 

ture. More extensive simulation results of  this method 

are documented in [ 11 ]. 

Appendix A 

To prove (3.18), we let Se.k be a submatrix of Se,  

consisting of  the k-th column of  each of So, S~ . . . . .  SN- c .  

Using (3.13) and (3.16), one can verify 

Se.k = Pc [ c~,Po ck . . . . .  p N -  C Ck ] 

"v (A . I )  =PLCkPN-c+ 1 , 

where ck = [ cj~, c2k . . . . .  cjk] T is the k-th column of BQ T, 

Ck =diag [ clk,c2k . . . . .  cjk ] , (A.2) 

and Pu c+ J is defined as Pc but with N -  L + 1 rows. 

G i v e n J < ~ L a n d J < ~ N - L +  1 (i.e.,given (3 .17)) ,each 

of  Pc and PN-c+ ~ has the full rank J (i.e., each of  the 

J-column matrices Pc and PN-C+~ has J independent 

columns). Since B has no zero-row (otherwise, the 

number J would be reduced) and Q has K independent 

columns (K<~N is naturally assumed), each row of 

B Q  T has at least one nonzero element. Let cj,k~j) be a 

nonzero element of B Q  T, which is on the j-th row and 

the k(j)-th column. Then, according to (A.1),  

range(Se.~#~ ) belongs to range(Pc) and it must have a 
nonzero projection onto the j-th column of  Pc- It fol- 
lows that 

r a n g e ( S e . k ( l  j ,Se.k(2) . . . . .  Se.k(j)) = range(Pc ) . (A.3) 

Vol. 35, No. 1. January 1994 



40 Y. Hua / High resolution imaging of continuously moving object 

Since  the  ma t r ix  [Se . k ( l )  , Se,k(2) . . . . .  Se,k(j) ] cons i s t s  of  

a subse t  of  the  c o l u m n s  of  Sero, therefore ,  ( 3 . 1 8 )  is 

p roven .  
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