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ABSTRACT 

UCRL-18985 

The four-particle, four--hole state in 16o and the. corresponding states 

in the even-even, N = Z nuclei of the 2s,ld shell have been investigated in the 

framework of the Hartree-Fock approximation. Detail calculations were per-

formed in each case to determine the most stable Hartree-Fock solution. By 

assuming a simple model the excitat'ion energies of the band heads were calcu­

lated which showed that 24Mg is. the last nucleus where a state· analogous to 

the four-particle, four-hole state in 16o might be observed. Energy levels have 

been calculated in 16o, 20Ne and 
24

Mg using a basis of good angular momentum 

states. A comparison between the predicted and the obeserved energy spectrum 

h b h I 160 . 1'.. . . as een s own. n , · calcu at2ons have been performed both with phenomena-

logical and realistic interactions and the results have been compared. The 

accuracy of the projected angular momentum states from the twelve-particle, 

four-hole solution in 
24

Mg has been estimated and shows that the projected states in 

this case are close to the eigenstates. We have demonstrated that one of two 

0+ states observed around 7 MeV in 20Ne is a eight-particle, four-hole state. 
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INTRODUCTION 
. 1 

The analysis of the experimental results of Carter et al. suggests 

that many of the low-lying positive parity excited states in 
16o may be 

approximately fitted into rotational bands. This identification is further 

supported by large E2-transitions encountered,2 ' 3 e.g. 

and 

B(E2' 4+ ~ 2+) + 2 4 ~ = 117 :.._ 10 e f 
l 1 

Although the rotational features in 16o are not as striking as in the case of 

heavy deformed nuclei of the rare-earth region, the interpretation of its. 

experimental data in terms of a rotating deformed intrinsic state is very 

tempting. 

During the last decade the Hartree-Fock (HF) method has been success-

fully applied to calculate intrinsic states of the deformed nuclei in the 

4 2s ,ld shell. The application of this method ·to calcualte intrinsic states 

in 
16o therefore seems desirable. A number of HF calculations has already 

been performed5 ' 6 in 
16o and an analysis of the results of these calculations 

leads to the important conclusion that the intrinsic state of the rotational 

band starting at 6.05 MeV is mainly composed of a four-particle, four-hole 

( 4p-4h) state. 

_By using certain s~etries of the HF density Banerjee et a1. 6 have 

shown that the most stable shape of the 4p-4h intrinsic state is ellipsoidal 
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(triaxial). They have also calculated the energy levels of the band by a 

crude approximation and their results are encouraging for undertaking a more 

rigorous calculation in the basis of good angular momentum states p~ojected 

out from the triaxial 4p-4h state. We have performed such a calculation and 

our results, to be presented in the text, a:re in good agreement with the 

experiment. However, in order to obtain a better agreement with the experiment 

and.in particular to acco'unt for the observed electromagnetic transition rates 

it is essential that the 4p-4h state, the Closed p shell and the two-particle, 

two-hole (2p-2h) states be admixed. In fact, the observed electron-position 

pair transition of the excited 0+ to the ground state can be explained through 
. 8 

such admixtures only. 7 ' . The shell-model calculations of Brown and Green, 9 

. ... 10 
and those of Celenza, et al. estimate such admixtures to the extent of 13% 

to 16%. Since their predi.cted B(E2) .1 s are in satisfactory agreement with. 

a number of observed B(E2)'s, their calculations may be taken as an excellent 

verification of the HF results concerning the importance of the 4p-4h state. 

It may be pointed out here that the investigation by Krieger
11 

shows 

that the 4p-4h state can not be brought down below 20 MeV above the ground 

state by HF calculations with present generation o~ realistic forces. However, 

despite this unpleasant feature, the 4p-4h state calculated with realistic 

potentials may be physically quite important. Energy levels calculated from 

this intrinsic state may compare well with the energy levels observed within 

the rotational band starting at 6.05 MeV. A detailed discussion on this 

aspect will be presented elsewhere in the text. 
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The fact of the 4p-4h state playing the major role in generating the 

intrinsic state of the lowest rotational band in 
16o makes it very tempting 

to examine if similar n-particle 4-hole (np-4h) states. exist in the even-

even, N = Z nuclei (4n nuclei) of the 2s,ld shell. (Th~ notation np-4h 

will refer to the states in 4n nuclei constructed by promoting four particles 

from the closed p shell to the 2s,ld shell. For example, in 20Ne it will 

refer to the 8p-4h state. ) An analysis of the results of the various calcula-

t . 12- 14 f. . h b . f 2 ld h 11 f th "t d t t 1ons per ormed us1ng t e as1s o · s, s e or e exc1 e s a es 

20 + of Ne lends strong support to this hypothesis. There are two 0 states in 
20 ... 

Ne observed around 7 MeV, whereas ~11 these calculations predict only one 
' 

+ • I+ 
0 state 1n this region. The other 0 states predicted by these calculations 

are nowhere close to 7 MeV. In particular, the failure of the complete shell­

model calculation14 in predicting two 0+ states around 7 MeV convincingly 

demonstrates that the basis of 2s ,ld shell is not adequate. Therefore one of 

the 0+ states is most likely due to the multiple particle-hole excitations from 

the 16o core. The 4p-4h structure of second 0+ state in 
16o which lies at 

approximately the same energy suggests that one of the 0+ states in 
20

Ne 

around 7 MeV may be a 8p-4h state. 

There is no such evidence for the existence of np.....4h states in other 

4n nuclei of the 2s,ld shell. However our preliminary calculations reported 

1 . 15 th.t h t t b . t t . 24M I 28s· 32s· ear 1er show · a sue as a e may e·1mpor an 1n g. n 1, 

and 36Ar it is very doubtful that such states will be of any relative 

importance because the ld5/ 2 shell is completely filled in this region. 

We have performed HF calculations for the np-4h states in all the 4n 

20 24 nuclei of the 2s,ld shell. In Ne and Mg where np-4h HF states are found 
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to lie at reasonaole energies relative to their ground states, energy levels 

have been calculated by projecting out good angular momentum states. The 

accuracy of the projected states have been tested in 24Mg. In other 

interesting cases like 16o and 20Ne similar accuracy tests are extremely 

involved because the shape of their intrinsic states is triaxial. In 

Sections II, and III we will describe the methods of our calculations. 

Section IV coritains·the numerical 'results and discussions. A summary is 

presented in Section V. 

.. 
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SECTION II 

As mentioned in the introduction, the concept of an intrinsic state 

plays a very impqrtant role in describing the rotational bands· of deformed 

nuclei. It represents, in an internally correlated manner, all the members 

of the b.~nd; and the physical quanti ties characterizing the band, such as the 

moments of inertia etc., can all be derived from a knowledge of the intrinsic 

state. By assuming that it can be represented by a Slater determinant, a 

definite procedure for obtaining the intrinsic wave function is provided by 

the HF theory. Excellent discussions on the HF method are available in 

literature
4' 16 

and only an outline of the method will be presented here. 

A. HF Equations 

Let a, B, etc., represent a complete set of single-particle basis 

. + 
states for wh~ch aa' aa are, respectively, the creation and destruction operators 

with respect to some reference vacuum lo ) . In the second-quantized form, 

the nuclear Hamiltonian is written as· 

H = L < a I K IS > a:as + f L < aS I vI oy > AS a:a;ayao (1) 

a,S a,S,y,o 

where K is the one-body kinetic energy operator and V is the 

two-body interaction operator. 

Given the Hamiltonian defined in Eq. (1) the prescription of the 

HF theory for determining the intrinsic wave function ·¢ of a nucleus with A 

' 
nucleons out of the vacuum I 0 ) consists in finding a unitary transformation 

U which defines a new basis of single-particle states I A ) and the associated 

t . . + 
crea ~on and destruct~on operators bA, ~A: 
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+ LA+ bA = u a a a 
a 

* 
bA = [uA a a a 

a 

such that ~ defined as the Slater determinant: 

A -
1~ > = IT b~lo.> 

A=l 

is a solution of the stationary condition: 

•. 

The condition (4) is satisfied if the HF matri~ 

A 

haS=< aiKIS > + L < aAIVISA) AS 

A=l 

is just diagonal on the new basis~ Le. if 

UCRL-18985 

(2) 

(3) 

(4) 

(5) 

(6) 

The Eqs. (5) and (6) define a self-consistency problem because the HF 

Hamiltonian h is defined in terms of the new orbitals lA ) . The solution to 

this problem is obtained through an iterative procedure: 

• 
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a. An initial set of orbitals lA.}, A in number, are guessed. 

b. HF Hamiltonian his constructed using Eq .. (5) and diagonalized. 

c. finally A appropriate eigenvectors of h give a new set of orbitals 

I A. ) which are again used to perform the operation b. This 

process is repeated until successive diagonalizations produce 

the same set of orbitals lA. ) • 

B. Symmetries of HF Hamil toni an 

The definition of the HF Hamiltonian h as given by Eq. (5) does not 

imply that h be invariant under the symmetry operations which keep the .actual 

Hamiltonian H invariant. To see this point more clearly let us introduce 

the one-body density operator p: 

(7) 

In terms of the density operator p, the HF Hamiltonian h can be written as 

(8) 

where the subscripts refer to the particles in whose space the operators 

operate. Since the density operator p as defined in Eq. (7) does not 

necessarily possess the symmetries of H, therefore it is also true that h 

does not necessarily possess the symmetries of H. However, it is clear from 

Eq. (8) that whatever symmetries of H are incorporated into density p, they 

also become incorporated in the HF Hamiltonian h. 

The importance of the various symmetries of the actual Hamiltonian in 

relation to the HF Hamiltonian has been studied in great detail by many 

th 6,17,18 B j t l 6 h au ors. aner ee L ~· ave 
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recently shown that the general exchange nature and the short range of the 

effective shell-model Ha.miltonianlead to the.existence ofsymmetries of 

HF density p of 4n nuclei under the following operations: 

(1) Time reversal; T, 
-i'JTJ 

(2) reflection through a plane, e.g. the x-z plane; Pe y 

(3) 

and· 

rotation by 'IT about an axis in the plane of t~e reflection 
i'JTJ 

symmetry, e.g. the z axis; e z 

where P in (2) is the parity operator. They further argue that as an implication 

of this one should not expect parity mixing in the HF wave fucntions of these 

·nuclei. 18 The calculation of Bassichis, Kerman, and Svenne strongly support 

this implication because they find no advantage in parity mixing unless the 

tensor force is increased to nearly twice its normal strength. Similar 

conclusions about parity admixture are also reached by Pal and Sta.mp17 in 

their HF calculations with the Yale potential. 

Besides the symmetries (1), (2), and (3) the HF density of 4n nuclei 

also has approximate symmetry under rotations in spin-isospin space. · A discussed 

by Banerjee et· ~·, 6 this _symmetry is once again due to the exchange- nature 

of the effective interaction because it leads to the occupation of each 

space orbital four times. 

The knowledge of the symmetries of HF density is of great importance in 

carrying out the HF calculations. It simplifies the choice of the initial p 

in the iterative program reQuired in the HF calculations. Clearly, a 

completely arbitrary choice for the initial p can immensely increase the 

labor in such calculations. 
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SECTION III 

A. Angular Momentum Projection 

The calculation of the intrinsic wave function, though very useful, 

is certainly not enough by itself to provide quantitative description of the 

rotational band. One has to project out states of good angular momentum 

from the intrinsic wave function in order to calculate the physical quantities, 

viz., energies of the rotational levels, electromagnetic moments etc. An 

alternative to the angular momentum projection could be used for the calculation 

of energy levels by making use of the moment of inertia which can be directly 

computed from the intrinsic single-particle wave functions and energies. 

However due to the ambiguities involved in the calculations of moment of 

inertia,19 '
20 

the alternate approach is not very reliable. Given the intrinsic 

wave function the method of angular momentum projection is certainly more 

reliable and accurate. 
21 There are several methods for projecting out angular 

momentum states ~d in our calculations we have applied the method based on 

the use of -:(;he Hill-Wheeler integral. 22 In the following we will briefly 

describe this method with reference to the calculation of energy levels. 

Let M and K denote the projection of J along the laboratory and body­

fixed z axis respectively. The angular momentum projection operator P~ is 

given by 

PJ = 2J+l f <ill DJ (Q) R(Q) (9) 
MK 87T2 MK 

Where R(S"l) is the rotation operator: 



R(~) = e 
-iaJ 

z 
e 
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-if3J -yJ 
y z 

e (10) 

in which~ stands as an abbreviation for the Euler angles a, {3, y, and the 

matrix elements of which are 

(11) 

The integral !d~ is an abbreviation for the triple integral: 

(12) 

The operator PJ has the following properties: 
MK 

and (13) 

To discuss the procedure for the calculation of energy levels let us 

consider the case when the intrinsic state ~ is triaxial. Acting on ~ the 

operator P~ first projects out the angular momentum eigenstate, 

(14) 

with quantum numbers J and K and then steps ~~ into a state ~~ with quantum 

numbers J.and M. The projected states satisfY the following orthogonality 



\ 

relations: 

where 

( ,,,J ,,,,J' ) = 
'~'MK '~'M'K' 
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,, 

(15) 

(16) 

J 
A state of good angular momentum '¥M corresponding to the intrinsic state <P 

is now given by 

(17) 

It is clear that the coefficients ~ do not depend on M. The energy 

of the state ~ is determined from the variationaJ. principle 

(18) 

This is equivalent to diagonalizing H in the non-orthogonaJ. basis spanned by 

J the wave functions 1/JMK. Therefore the solution to Eq. (18) reduces to 

solving the following set of linear equations 

(19) 

where 

(20) 



-12- UCRL-18985 

and 

(21) 

The quantities Y~ and ~ are 3-fold integrals of the functions Y(Q) and x(n) 

respectively, 

Y(n) = ( <I>IHR(Q) I <I>) 

and 

x(n) = < <I>IR(n) I <I>> (22) 

Th f t · d th · l YJ and x_J__ b d b ll · ese unc ~ons, an e ~ntegra s MK _"MK can e evaluate y fo ow~ng 

the techniques discussed in Refs. 21 and 23. 

The eigenvalues EJ and the eigenfunctions ~ determined by solving 

the Eq. ( 19) in the space of the wave functions 1/1~ correspond to the 

approximate. eigenvalues and the eigenfunctions of the actual Hamiltonian H. 

In case when the intri~sic state <I> is axially symmetric, the projection 

operator P~ defined by Eq. (9) reduces to 

fa
7T -iBJ 

= 2J;l · .. d~(S) e y sinS d(3 

. 0 

(23) 

where ~( (3) is the reduced rotation matrix, 

~(8) 
-iBJ 

= ( JKie YIJK) (24) 
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The Eq. (17) reduces to an identity and consequently the Eq. (19) is reduced 

to 

EJ = Y~/~ 

< <PKIHP~I<PK > 
(25) = 

( <PK I p~ I <PK ) 

The energy given by Eq. (25) can be more easily evaluated than in Eq. (19). 

Various simplfying features of this calculation are discussed in great detail 

in Ref. 24. 

B. Accuracy of the Projec~ed States 

It is important to know how accurate are the projected states when com-

pared to the actual eigenstates, i.e., the states which are obtained by the complete 

shell-model calculation. A simple accuracy test can be developed in the 

following way: 

Let ~J denote the projected angular momentum state.' We have 

(26) 

where EJ is given by Eq. (19).in the triaxial case and by Eq. (25) in the 

axial case. The wave functions ¢J together with ~J define a complete ortho­
n 

normal basis. The coefficients a are given by 
n 

(27) 
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where E1 and £ 1 in·Eq. (33) are respectively the experimental binding energy 
0 (). 

of 
16o and a set of single-particle energies relative to 16o. The normal 

( ) . 16o t 4 . (34). product in Eq. 33 refers to the core and o the He core ~n Eq. • 

4 16 . 
If we assume that the self-consistent orbitals in He and 0 are the same, 

then the primed and unprimed quantities are related by 

E = E' 4£1 8£1 +1. L: < BB 1 !vi BB 1 >AS 
0 0 lpl/2 lp3/2 2 

BB 1 

(35) 

£ = £1 L <aelvla.B >AS (). (). 
(36) 

B 

where the indices 8,8 1 run over the lp shell only. 

In Table I we list the experimental-energies £! relative to 16o and 
J 

the equivalent energies £j 

4 . 16 

relative to 4He. The experimental binding energy 

increase between He and 0 is 99.3 MeV. Our calculated binding energy 

increase is 100.05 MeV. Even assuming an increase in the Coulomb repulsion of 

about 10 MeV, we obtain good agreement with the experimental number. 

_In the case of 16o we performed an additional HF calculation using 

a realistic ihteraction which was defined by"· the e'f'fective :inatrix elements of 

the Yale potential calculated by Shakin et _ al. 25 Although the HF energy· . 

of the deformed 4p-4h intrinsic state of 16o calculated from this interaction 

is expected to be very poor it may then contain important dynamical cor-

relations to provide a good explanation for the nuclear properties within 

the band. Further discussion will be presented later in this section with 

the help of tables. 
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The HF calculations for the np-4h states can be very difficult in 

practice because there can exist many HF solutions with different or similar 

shapes. However, the work of the calculation can be considerably simplified 

if one knows the most stable shapes of then particles in 2s,ld shell and 

4 holes in lp shell, L e.· 12c. 

Recently Banerjee et a1. 6 have predicted the most stable shapes of 

the HF solutions of the 4n nuclei in 2s,ld shell from a consideration of short 

range attraction and general exchange properties of the effective two-nucleon 

interaction. Their predicted shapes are listed for the nuclei of interest 

in Table II. These shapes correspond to results known from earlier HF
4 

'
21 

and su
3

26 
calculations. Now this information and the fact that the most 

stable shape of 12c has a spheroidal oblate density distribution allows one 

to predict the most stable shapes of the np-4h states, if we assume that 

the most stable rtp-4h state is that which gives the maximum overlap of 

the density distributions of 

distribution. 6 For example, 

the 2s,ld shell nucleons with the 12c density 

consider the 4p-4h state in 
16o. The four 

20 
particles in 2s,ld shell correspond to Ne having a spheroidal prolate 

density distribution for the most stable state. This can be~ bombined with the 
' 

oblate spheroidal density of 12c in various ways. It can be seen that the 

maximum density overlap will hot be obtained by superimposing the two 
I 

densities so that their resultant density is rotationally invari.ant about 

the z axis; a better overlap is obtained by rotating the 12c density so 

that the two axes of rotational symmetry are perpendicular. The combined 

density destribution is thus triaxial. That this is true has already been 

16 verified in Ref. 6. Our HF calculations of the 4p-4h state of 0 also 
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confirm the correctness of this result. Using analogous arguments for the 

remaining. nuclei we predict their most stable shapes, i.e. their lowE!st 

intrinsic states as listed in Table III. 

To verify the validity of these arguments other HF solutions were 

also calculated in these nuclei. The properties of the various solutions are 

listed l.n Table IV. Comparing Table III with Table IV it is seen that the 

lowest solution in each case is that expected from these arguments. We con-

sider this as one ofthe important conclusions of our calculations. 

In Fig. 1 are plotted the excitation energies E of the band heads of 
X. 

the np-4h states as a function of the mass number A. 

calculated by the following equation: 

·' 

The quantities E were 
X 

( 37) . 

where EG and A are respectively the HF energy and the moment of inertia 

parameter for the ground state, Eph and A' are the corresponding quantities 

for the np-4h state. The parameters A and A' were calculated by the first 

. 27 order cranklng model. 

16 The result on 0 as shown in Fig. 1 is completely unsatisfactory 

because the band head of the 4p-4h state comes about 2 MeV below the ground 

state. This is due to the fact that the cranking model predicts too large a 

value for the parameter A'. Since the value A is zero for the spherical ground 

state no compensation occurs from the possible cancellation im,plied in Eq. (37). 

The results for the 4n nuclei in the 2s,ld shell are~physically quite 

significant. In this case where both A and A' contribute, and the excitation 
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energies E are perhaps not much affected by the errors in A and A'. The 
X 

cancellation implied in Eq. (37) may minimize the effect of such errors. ·rt is 

interesting to note from Fig. 1 that the excitation energy gradually increases 

through 24
Mg and then increases rapidly. This is quite understandable because 

ld
512 

shell is expected to be completely filled around 28si and hence it is 

relatively more costly to promote four particles from the closed lp shell to 

the 2s ,ld shell. It is quite clear from the results that 2_4Mg. is the 

last nucleus where it might be possible to find a state which is dominantly 

np-4h state. 

To understand properly the significance of the results in Fig. 1, the 

following limitations of our calculations should be noted. (i) The choice 

of the same set of single-particle energies €. for all the 4n nuclei, 
J 

16 ~A~ 36, is not quite justified. However, this may not be a serious 

defect because it can be seen from the discussions of Ripka
4 

on the extra-

polation of €. through the 2s,ld shell that the variation of €. with A could 
J J 

be small. (ii) Further correction is expected due to not taking into 

account the center of mass (c.m.) excitation likely to be important for the 

np-4h states. An estimate of the c.m. excitation can be obtained by evaluating 

the quantity S =· ( ci> I !h +·!hi ci> ) where the operator A was defined by Bar anger 

28 and Lee. The value of S for the triaxial 4p~4h state has been calculated 

by Giraud and Sauer29 and found to be very small, S = 0.009. Therefore we 

expect that the c.m. excitation will not be important for the np-4h states 

of the remaining 4n nuclei. It should be pointed out that the condition 

s << 1 implies that the c.m. ·stays close to the external origin (t9 which the 

motion of the individual nucleons are referred), and therefore the presence 
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of phenomenological €. in the nuclear Hamiltonian H is justified. (iii) The 
J . 

calculation of the inertial parameter by the first order cranking model may 

be a poor approximation. Despite these limitations, we believe that the 

results in Fig. 1 are of considerable physical significance. A rigorous 

1 1 t . f th 1 1 f th 4h . t . . t t . · 16o 20N ca cu a 1on or e energy eve·s o e np- .1n r1ns1c sa es 1n , e 
24 .. 

and Mg has been performed. 

The energy levels have been calculated by using the techniques of 

angular momentum projection discussed in Section IIIA. The single particle 

wave-functions of the HF determinants used in the calculations are given in 

Tables V - VI. A comparison between the calculated and experimental energy 

levels are given in Fig. 2 and Table VII. 

It can be seen from the Fig. 2 that the calculated and experimental 

energy levels are on the whole in good agreement up to about 5 MeV in 
16o. 

It may be noted that the 0 + state of the 4p-4h band has been plotted at the 

zero of the energy scale in the figure. 
. . . . + 

Our calculation predicts this 0 

state at 3.06 MeV above the ground state as compared to the experimental 

value of 6.06 MeV. This is however a great improvement over the corresponding 

result in Fig. 1. By increasing the energy separations between the lp and 

2s,ld shell by about 1 MeV it should be possible to bring our predicted 0+ 

state close to 6.06 MeV. Such an increment is unlikely to change the 

structure of the 4p-4h intrinsic state and hence the energy levels of the 

4p-4h band will remain the same as shown in Fig. 2. Confining ourselves to 

the comparison within the band we note that the predicted and experimental 

4+ 
states are very close in energy. The close agreement lends strong support 

to the conjecture of Brown and Green9 that the 4+ state is purely a 4p-4h 

state. We further note that the perdicted 2+ state is about 0.4 MeV above 
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the corresponding observed state. This is a gratifying feature. It is known 

that the 2p-2h states admix with the states of the 4p-4h band. Brown and 

Green9 predicted approximately 14% and 5% of such admixtures for the 2+ and 

0+ states of the 4p-4h band respectively. Therefore it is clear that as a 

. + 
result of such admixtures our calculated 2 state will be further lowered 

in energy to produce a better agreement with experiment. The corresponding 

+ + 
effect on the 0 state of the 4p-4h band will be relatively smaller. The 3 

state is predicted to be degenerate with the 4+ state and about l MeV lower 

than the corresponding observed state. As we go to the higher members of 

the band the agreement with the experiment further deteriorates. It appears 

that the K = 2 band is not adequately represented in the triaxial HF state. 

We have calculated the energies30 from the triaxial HF gro'lind state in 24Mg. 

The comparison of these energies with the experiment shown in Fig. 2 lends 

support to this conjecture. The 0+ and 2+ states predicted around 10 MeV 
·. . 24 

and 11 MeV respectively in Mg have been calculated from its l2p-4h HF state. 

+ 
It is significant to note that there also exists an experimental 0 state 

around 10 MeV in 
24

Mg. 

The results on 20Ne are of considerable importance. It seems quite 

+ evident from them that one of the two 0 states observed around 7 MeV is 

mostly a 8p-4h state and the other is a B-vibrating state described by the 

Tamm-Dancoff approximation (T.D.A.). It can be further seen from Fig. 2 

that our calculation also reproduces many of the excited states in 
20

Ne. 

However, a one-to-one correspondence between the predicted and observed 

levels cannot be made without further theoretical and experimental studies. An 

+ interesting feature of the calculated spectrum is the presence of a 3 
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state at about 10.5 MeV. Our experience in 16o and 24Mg shows that the 3+ 

state calculated from the triaxial HF solution is always about 1 MeV lower 

than the corresponding experimental state. + Therefore a 3 state should be 

expected experimentally in 20Ne at about 11.5 MeV. 

It should be noted that the levels labelled by (TH) in 20Ne are 

described by a linear ·Combination of projected angul·ar momentum states of 

two types. The first type is obtained from the HF ground state and the second 

type is obtained from an intrinsic state constructed out of the HF ground · 

state by TDA. 
. + + + + 

The wave functions of the f~rst set of 0 , 2 , 4 and 6 

levels are mostly of the first type and those of remaining (TH) levels are 

mostly of the second type. The mixing between the two types of states is 

J -dependent and varies from 2% to 4%. Details on this calculation can be found 

in an earlier publication by. one of us. 12 

The accuracy of the projected angular momentum states has been tested 

for the 12p-4h HF solution in 24
Mg by the method discussed in Section III B. 

The results are listed in Table VIII. It· is clear fro:in the, numbers in column 

4 that the projected states in this case are, to a very good approximation, 

the actual eigenstates of the Hamiltonian. In view of this conclusion it 

follows that the admixtures of the 10p-2h and ground states with the 12p-4h 

t . 24M 1· "bl sta e ~n g are neg ~g~ e. 

It has been pointed out earlier in this section that the first order 

cranking model predicts a large value for the moment of inertia (m.i.) 

parameter A' of the 4p-4h band in 
16o. The values of A( Ax:' Ay, Az) for 

the various intrinsic states of the different 4n nuclei are given in Table IV. 

It will be instructive to calculate the energies of the 4p-4h band by the 

Davydov-Filipov (DF) mode1
31 

using the predicted values of A' (A~, ft.;, A~) 
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compare the energies thus obtained with the energies obtained by the projection 

method. Such a comparison is presented in Table IX. A similar comparison 

is also presented in the same table for the 8p-4h state of 20Ne. It is clear 

from the Table IX that the m.i. 'parameter A' from the cranking model is 

quite large in 
16o, about twice its value obtained from the projection method. 

20 
In the case of Ne both the methods predict about the same value for A'. 

It should be noted that it is only some average value of the m.i. parameter 

which can be inferred from the Table IX. 

We will now conclude the discussions with some remarks on the signifi-

cance of the results of HF calculations with the realistic forces for the 

4p~4h state in 
16o. Our HF calculation with the Yale potential yields, as ex-

pected, a triaxial shape for the most stable 4p-4h intrinsic state. The HF 

energy of the intrinsic state is 37.62 MeV relative to the spherical ground 

state. The energies of the various J states of the intrinsic state have also 

been calculated by using the projection techniques discussed in Sec. IIIA. 

+ The J = 0 member of the intrinsic state comes down in energy by 5.80 MeV after 

projection to give it a net excitation energy of 31. 82 MeV. 

Krieger has recently made a detail study of the 4p-4h state by using a 

velocity-dependent potential which was especially derived to be used in the HF 

calculation. The energy of the 4p-4h intrinsic state is predicted in his cal-

culations as 26.1 MeV relative to the ground state. Assuming an expected gain 

of 6 MeV after projection the excitation energy of the 0+ state comes to ap-

proximately 20 MeV. This value is certainly very large when compared to the ex-

perimental value of 6.06 MeV. In view of the various refinements considered by 

Krieger in his calculations it may be stated that the HF calculations with 

realistic forces cannot reproduce the experimental 0+ state at 6.06 MeV. 
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The failure of the HF c~lculations with realistic forces in reproducing 

the 0+ state at 6.06 MeV is not surprising. It is well known from the various 

publications17 •25• 32 that the HF' and the Brueckner-Hartree-Fock (BHF) calcula-

tions underbind all the nuclei to a large extent and do not reporduce the ex--
- . 

perimental single-particle energies at all well. The results of Pal and Stamp17 
. 16 . 

obtained from the Yale potential for the ground state of 0 show that the energy 

gap between the lp
112 

and ld/ 
512 

orbitals is about 4.3 MeV larger than that 

ol?tained from experiment •. · Thus it iS· expected· that· the J- = 0+ member· of the 

4p-4h intrinsic state will have a much higher excitation energy compared to-6.06 

MeV· Nevertheless it is our contention that the 4p .... 4h intrinsic state obtained from 

the realistic forces is physically important and it contains the necessary 

dynamical correlations to explain the properties of the different member states 

of the 4p-4h band. That this is a justifiable contention is strongly suggested 

. 20 
by the HF calculations with Yale potential on Ne.· Although the binding energy 

of 20Ne is poorly reproduced, the energy spectrum of the ground band is very 

well reproduced. The example of 20Ne clearly suggests to expect a similar 

agreement in the case of the 4p-4h intrinsic state of 16o. In Table X is. 

presented a comparison of the energy levels from the 4p-4h intrinsic states 

calculated with the Yale potential and the phenomenological potential defined 

in Eq. (32). It is quite clear from the Table X that our contention is 

physically meaningful and justified. 
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SECTION V 

Sunnnary 

We have shown that the projected angular momentum states from the tri­

axial HF determinant of the 4p-4h state in 
16o pro~ides a good quantitative 

interpretation of the energy spectrum of the rotational band starting at 6.06 

MeV. By assuming· a reasonable phenomenological interaction in the HF calcu-

lation it is also possible to reproduce + the 0 state at 6.06 MeV. This is no 

more true if a realistic interaction is used in the HF calculation. 

Our calculation on 
20

Ne shows that one of + the two 0 states around 

7 MeV in 20Ne is a 8p-4h state and the other can be obtained from the deformed 

ground state by the TDA. 
24 + ' 

In Mg we have predicted a 0 state at 10.31 MeV. 

Th . . t 1 + t t th · . 24M · e exlstence of an exper:Lmen a 0 state a abou e same energy ln g sug-

gests that the experimentai studies on its structure will be ext.remely interesting. 

It is clear from our calculations that 24Mg is the last nucleus where a state 

corresponding to the four-particle excitation from the 
16o core might be ob-

served. 
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TABLE CAPTIONS 

Table I. 

force. 

Single particle energies used in the calculations with the Rosenfeld 

16 The energies in the second column are relative to a 0 core and 

4 
energies in the third column are relative to a He core. 

Table II. Shapes of the most stable ground intrinsic states of the N = Z 

even-even nuclei in the s-d shell as predicted by HF calculations. 

Table III. Predicted shapes of the most stable np-4h solutions of the HF 

equations for N ·. = Z even-even nuclei in the s-d shell. 

Table IV. Properties of HF intrinsic states for N = Z even-even nuclei in the 

s-d shell. Columns 1, 2, and 3 list the nucleus, its particle hole nature, 

and the expectation value of the Hamiltonian. Columns 4 and 5 describe the 

shape of the nucleus by presenting the expectation value for the operations 

2 2 . 2 2 2 
r Y

0 
and r (Y

2 
+ Y_

2
) respectively. Columns 6, 7, and 8 give the inertial 

·parameters A. = h 2 /2~. where 'tf. is the i th co~ponent of the moment of inertia. 1 1 1 . 

Columns 9, 10, and ll present the expectation values of the operators 

. 2 . "t f h 2 h J . th . th . t f th t t 1 l t J. 1n un1 s o w ere . 1s e 1 componen o e o a angu ar momen um. 
1 1 

Finally in column 12 we give the position of the band head by subtracting the 

rotational energy from the intrinsic states energy. All energy units are 

in MeV and all solutions were calculated with a Rosenfeld force and experimental 

single particle energies. 

Table V. Single particle energies in MeV, and wave functions for the 4p-4h 

HF solutions for 16o. The first solution was obtained using a Rosenfeld.force 

and experimental single particle energies. The second solution was obtained 

with effective matrix elements of the Yale potential. 
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Table VI. Single particle energies in MeV and the wave functions for the 

8p-4h H 1 t' . . 20N F so u ~on ~n e and the 12p~4h HF 1 t. . 24Mg so u ~on ~n • These solu-

tions were obtained using a Rosenfeld force and experimental single particle 

energies. 

Table VII. A tabulation of the experimental and theoretical energies presented 

in Fig. 2. For convenience of comparison some of the theoretical energies 

have been ommitted. The labels (ph) and (TH) are discussed in the text. and 

Fig. 2. 

Table VIII. A tabulation of the results from a calculation of the energy fluctu-

ation for the states of good angular momentum projected from the intrinsic 

12p-4h HF state for 24Mg given in Table VI. Since the ratios in column 4 

are nearly unity, the projected solutions are a good approximation to the 

exact eigenstates of the Hamiltonian. 

Table IX. A comparison of excitation energies relative. to the band head for 

states of good angular momentum obtained from HF intrinsic states by exact 

angular momentum projection and using the Davydov-Filipov model. The HF 

solutions for 20Ne and 
24

Mg are given in Table VI. 

Table X. A comparison of excitation energies relative to the band head for 

states of good angular ·momentum obtained by exact projection from HF intrinsic 

states given in Table V. Column 2 lists· the energies obtained with· the 

Rosenfeld force and column 3 gives the energies obtained with the Yale 

potential. The good agreement suggests that the intrinsic states are very 

similar. 
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Table I. 

.. 
Spherical harmonlc Single-particle energies 

oscillator states 

j E.'(MeV) 
J 

£.(MeV) 
J 

lp3/2 -21.83 1.06 

lpl/2 -15.67 7.22 

ld5/2 4.14 8.26 

2sl/2 - 3.27 . 1.97 

ld3/2. 0.94 13.34 

'· 

II 
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Table II. 

Nucleus Shape 

20Ne Prolate Axial 

24Mg Triaxial 

28Si Oblate Axial 

328 Triaxial 

36Ar Oblate Axial 
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Table III. 

Nucleus Hole-particle Structure Shape 

160 4p-4h triaxial 

20Ne 8p-4h triaxial 

24Mg 12p-4h oblate axial 

28Si 16p-4h triaxial 

32s 20p-4h oblate axial 

36Ar 24p-4h oblate axial 

111 



Table rv. 

Nucleus Type 2-..l 2 2 <J"2> <J2> <J2 > <H-AJ2> <H> <r · > <r y > A A A 
·o 2 X y z X y z 

160 Op Oh -99.98 o. 0. 00 00 00 o. 0. o. ··-99.98 

160 4p 4h -91.37 17.62 -4.14 0.3669 0.4193 0.9494 0 7. 722 9.814 3.803 -101.93 

160 4p 4h -83.57 17.28 0. 0.3434 0.3434 00 8~050 8.050 o. -89.10 

160 4p 4h -87.38 -ll. 38 0. 0.8227 0.8227 00 4.412 4.412 o. -94.62 

20Ne 4p Oh -139.25 14.36 0. o. 3658 0.3658 00 7· 725 7.725 o. -144.90 

20Ne 8p 4h -129.62 19.41 .;.9.34 0.2302 0.3376. 0.5044 11.61 13.05 7.923 -146.69 

20Ne 8p 4h -105.62 0.4063 0.4063 -116.11 
I 

20.27 0. 00 12.91 12.91 o. w 
.j:o" 
I 

20Ne 8p 4h. -116.81 -21.40 0. 0.2914 0.2914 00 11.88 11.88 o. -123.73 

24Mg 8p Oh -182.75 16.26 -5.04 0.2284 0.2683 o.5767 11.51 11.17 4.45 -190.94 

24Mg 12p 4h -173.17 -28.43 o. 0.3030 0.3030 00 14.40 14.40 o. -181.90 

24Mg 12p 4h -148.67 23.04 o. 0.1677 0.1677 00 16.91 16.91 o. -154.34 

288i 12p Oh -231.70 -21.30 o. 0.2434 0.2434 00 11.84 11.84 0. -237.46 

28si 16p 4h -202.56 -24.11 -4.05 0.2065. 0.3615 0.5857 18.57 ll.i4 4.10 -212.82 

328 16p Oh -283.36 -16.47 -4.14 0.2044 0.2796 0.5146 14.21 9.56 4.72 -291.37 
~ 

328 ~ 

20p 4h -238.74 -19.81 o. 0.1680 0.1680 00 13.94 13.94 o. -241.08 t-1 
I 

36A 
I-' co 

20p Oh -340.65 -13.13 o. 0.2848 0.2848 00 9.49 9.49 o. -346.06 \.() 
co 

36A 
\Jl 

24p 4h -270.77 -6.78 o. 0.2309 0.2309 00 3.59 3.59 o. -272.43 
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Table V. 

HF single- Basis states 

particle 
1/2 -3/2 1/2 1/2 . -3/2• ld1/2 . ld5/2 energy lsl/2 lp3/2 lp3/2 1PI/2 ld5/2 5/2 5/2 

(MeV) 

Rosenfeld Potential 
-24.195 0.16470 0.92411 -0.34480 

-17.973 0.78576 0.08837 0.61219 

-15.158 0.05061 0.66086 0.06734 

-=4:364 0.71092 0.47876 0.15173 

-3.773 0.59620 -0.37176 -0.71157 

-2.201 0.48838 -0.32237 -0.41335 

0.858 0.45226 -0.46238 0.36765 

2.343 0.12381 0.08410 -0.80572 

6.323 0.18344 -0.09628 0.13125 

1/2 .·. 
2sl/2 . 

-0.63632 

0.42292 

-0.54905 

0.00219 

0.27747 

-0.19440 

ld-3/2 . 
. 3/2 

ldl/2 
3/2 

-0.03906 ~0.38697 

0.09952 0.23151 

0.29375 0.31459 

-0.02272 -0.66781 

-0.29275 -0.40709 

-0.90336 ·0.29325 

{continued) 

I 
w 
V1 
1 

c:: g 
t"i 
I 
f-J 
CX> 
\0 
CX> 
Vl 



HF single­

particle 

energy 

(MeV) 

-43.597 

-23.253 

-17.331 

-7.127 

-7.064 

-0.570 

1.689 

4.410 

7.048 

9.972 

Tabl~ V (continued) 

Basis states 

l/2 -3/2 
lsl/2 lp3/2 

l/2 
lp3/2 

l/2 ~3/2 . l/2 
lpl/2 ld5/2 ld5/2 

ld5/2 
5/2 

l/2 2s l/2 
ld-3/2 

3/2 
ldl/2 

3/2 

Yale Potential 
0.98291 0.02115· 0.08009 0.04772 0.13106 -0.05083 -0.07069 

-0.02215 0.86612 -0.49935 

-0.77852 0.29842 0.55214 

0.00469 -0.03270 0.67904 -0.0508~ -0.61611 0.05406 -0.39080 

0.62723 0.40098 0.66768 

0.03048 0.80339 -0.37565 0.08926 -0.24666 0. 21~37 -0.312.65 

0.09409 -0.17778 -0.29607 0.54430 -0.61048 -0.27759 0.35479 

0.00804 -0.46649 -0.49150 -0.13578 -0.07667 -0.16567 -0.69927 

0.07355 0.17128 -0.11590 -0.75377 -0.28196 -0.48610 0.26049 

0.13646 -0.27292 -0.22072 -0.32296 -0.29039 0.77957 0.24862 

j t. 

I 
W· 
0\ 
I 

c::: 
0 
!::d 
t-' 
I 
f-' 
CP 
\0 
CP 
\.Jl 



Table VI. 

HF single- Basis states 
particle 

-3/2 1/2 1/2 ld-3/2 ldl/2 energy lp3/2 lp3/2 lp1/2 5/2 5/2 

-28.736 0.20316 0.92476 -0.32177 
20Ne 

-23.201 0.75474 0.06146 0.65314 

-17.627 0.20650 0.64651 

-15.169 0.67767 0.25620 

-4.876 0.11103 -0.55791 

-4.833 0.62378 -0.37555 -0.68547 

-0.880 0.65813 -0.38378 

0.669 0.14139 0.20755 

5.022 0.18073 -0.12145 

ld5/2 
5/2 

2s 1/2 
1/2 

-0.06139 -0.70447 

0.05127 0.35818 

-0.51236 -0.45114 

0.17236 -0.04616 

-0.81299 0.27428 

0.20105 -0.30748 

ld-3/2 
3/2 

ldl/2 
3/2 

0.13543 -0.14489 

0.21434 0.54613 

0.29279 0.35303 

0.00043 -0.62269 

-0.38797 -0.22411 

-0.83634 0.34373 

(continued) 

I 
w _.,.. 
I 

c::: 
0 
:::0 
t-< 
I 

f-' 
CX> 
1.0 
CX> 
Vl 



c::: 
0 
~ 
t-< 
I 
I-' 
co 
\0 
co 
\Jl 
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Table VII. 

160 20Ne 24Mg 

Experiment Theory Experiment Theory Experiment Theory 
J (MeV) (MeV) J (MeV) (MeV) J (MeV) (MeV) 

o+ 0.0 0.0 o+ 0.0 0.0 o+ 0.0 0.0 

o+ 6.06 3.06 2+ l. 63 l. 20(TH) 2+ 1.37 1. 4o 

~ 6.92 4.34 4+ 4.25 3. 8o(TH) 4+ 4.12 2.58 

2+ 9.85 5.87 o+ 6.72 5.76(TH) 2+ 4.23 2.60 

4+ 10.36 7.13 o+ 7.20 6.79(ph) 3+ 5.23 3.95 

3+ 11.08 7.05 2+ 7.43 8.05(ph) 4+ 6.00 3.96 I 
w 

o+ 11.26 2+ 7.84 8.6l(TH) o+ 6.44 
\0 
I 

2+ 11.53 6+ 8.79 7.8l(TH) 2+ 7.35 

4+ 13.89 8.54 4+ 9.16 9 .19(ph) 6+ 8.12 7.27 

2+ 9.50 9.3l(ph) 4+ 8.44 7.55 

3+ l0.48(ph) 5+ 8.86 8.96 

4+ 11.07 l0.66(ph),lD.97(TH) 6+ 9. 52 8.82 

o+ 10.68 10.3l(ph) 

2+ 11.99 11. 44( ph) 
6 
!:0 
t:-< 
I 
1-' 
():) 
\0 
():) 
Vl 
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Table VIII. 

<JIHIJ>2 < JJH2JJ > ~=<JJHJJ> 
J (Mev)2 (Mev) 2 c < JJH2JJ > l/2 

0 31469.2344 31475.9764 0.9999 

2 31070.0905 31106.8366 0.9994 

4 30162.4846 30265.1558 0.9983 

6 28799.9567 28996.9486 0.9966 
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Table IX. 

160 . 20Ne 
Projection DF Model Projection DF Model 

J (MeV) (MeV) (MeV) (MeV) 

0+ o. o. o. 0. 

2+ 1.28 2.35 1.26 1.66 

2+ 2.81 4.59 2.52 2.62 

3+ 3.99 6.94 3.69 4.29 

4+ 4.07 7.81 2.40 5.27 

4+ 5.48 10.14 3.87 6.94 

4+ 10.30 16.77 5.71 9.24 

'r-' 
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Table X. 
.. 

Phenomenological force Realistic fbrce 
J (MeV) (MeV) 

0+ o.o 0.0 

2+ 1.28 1.23 

2+ 2.81 2.31 

3+ 3.99 3.50 

4+ 4.07 3.87 

4+ 5.48 5.25 

4+ 10.30 9.48 
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FIGURE CAPTIONS 

Fig. 1. Excitation energies of np-4h intrinsic states in the N = Z even-even 

nuclei of the s--d shell. The excitation energies are computed using 

Eq. 37 in the text. 

Fig. 2. A comparison of experimental and calculated energies in 16o, 20Ne, and 

24Mg. The zero of energy in 16o has been taken at the first excited 0+ 

20 24 state. For Ne and Mg the zero of energy correspondS to the ground state. 

20 + 
In Ne, J (ph) corresponds to the projected state from the 8p-4h intrinsic 

state while J + ( TH) is a linear combination of projected states from the HF 

and TDA intrinsic states. 
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LEGAL NOTICE 

This report was prepared as an account of Government sponsored work. 
Neither the United States, nor the Commission, nor any person acting on 
behalf of the Commission: 

A. Makes any warranty or representation, expressed or implied, with 
respect to the accuracy, completeness, or usefulness of the informa­
tion contained in this report, or that the use of any information, 
apparatus, method, or process disclosed in this report may not in­
fringe privately owned rights; or 

B. Assumes any liabilities with respect to the use of, or for damages 
resulting from the use of any information, apparatus, method, or 
process disclosed in this report. 

As used in the above, "person acting on behalf of the Commission" 
includes any employee or contractor of the Commission, or employee of 
such contractor, to the extent that such employee or contractor of the 
Commission, or employee of such contractor prepares, disseminates, or pro­
vides access to, any information pursuant to his employment or contract 
with the Commission, or his employment with such contractor . 
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