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We characterize the modes with real and complex wavenumbers for both longitudinal and transverse polarization
states (with respect to the mode traveling direction) in three dimensional (3D) periodic arrays of titanium dioxide
(TiO2) microspheres in the frequency range between 250 GHz and 350 GHz. Modal results are computed by using a
single magnetic dipole approximation (SDA) and an SDAmodel with correction (SDA-WC) that assumes the array
to be embedded in a host with an effective permittivity computed through Maxwell Garnett formulas. Moreover,
for the transverse polarization case, modal wavenumbers are computed also by fitting the full-wave simulation
magnetic field (one point per unit cell) in a finite thickness structure, and their agreement and disagreement are
discussed. The longitudinal polarization is not affected by the artificial correction introduced in the SDA-WC; in
the transverse polarization case, instead, the correction is needed to obtain results in better agreement with the
full-wave data fit. In the observed frequency range, there are one longitudinal mode and two transverse modes, one
forward and one backward, where the forward one is “dominant” (i.e., it contributes mostly to the field in the
array). Therefore, in the case of transverse polarization, we describe the composite material in terms of homoge-
nized refractive index and relative permeability, comparing results from (i) modal analysis (with and without
correction), (ii) Maxwell Garnett formulas, and (iii) Nicolson–Ross–Weir retrieval method from scattering para-
meters of finite thickness structures. The agreement among the different methods justifies the performed homo-
genization procedure in the case of transverse polarization. We show that artificial magnetism is generated from a
nonmagnetic composite material. © 2012 Optical Society of America

OCIS codes: 160.3918, 160.1245, 260.2065.

1. INTRODUCTION
The lack of strong magnetism in natural materials has moti-
vated in recent years the use of metamaterials to generate
artificial magnetism (i.e., the relative permeability tensor is
different from the unity tensor) from nonmagnetic constitu-
tive materials, especially at high frequencies where natural
magnetism disappears.

Several metamaterial configurations have indeed been pro-
posed to overcome this natural limitation throughout the fre-
quency spectrum. Artificial magnetism has been generated
through the split ring resonator (SRR) structure [1], initially
introduced at microwave frequencies, and then extended to
infrared frequencies by scaling the dimensions of the SRR
[2,3] [further miniaturization would not be effective because
of the growth of the kinetic (internal) inductance [3]]. Another
way to generate artificial magnetism is through pair-based
metamaterials, whose working principle is based on the exci-
tation of an antisymmetric resonance associated to an equiva-
lent current loop, such as staples [4], strips [5,6], dogbones
[7–10], and metallic nanospheres/nanoshells [10–12], based
on the original design with double bars in [13]. Alternatively,
one can choose to use magneto-dielectric particles (with high

values of permittivity and/or permeability) embedded in a
dielectric matrix [14–16], or two sets of particles with different
sizes and/or materials (one designed to resonate at the
electric resonant mode, the other one designed to resonate at
the magnetic resonant mode), to produce negative permeabil-
ity and/or an isotropic double negative material [17–28]. Simi-
lar results may be achieved by using arrays made of nanoshell
particles [25,29–30]. Also, the packing of plasmonic nanopar-
ticles in an engineered fashion to create nanoclusters [31–33]
allows for the generation of artificial magnetism.

A comprehensive way to understand and classify collective
resonances in composite materials is by modal analyses of ar-
rays periodic in three dimensions [34–41]. The approach de-
scribed in the present paper allows for the tracking and
especially for the characterization of the evolution of modes
varying frequency. The numerical procedure adopted in this
paper for evaluating the complex zeros of the dispersion
relation uses the Ewald representation [34,42] for the dyadic
periodic Green’s function (GF) to represent the field in three-
dimensional (3D) periodic arrays, which has been adapted
from [41] to the magnetic dipole case. The Ewald represen-
tation, besides providing analytic continuation to the complex
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wavenumber space, results in two series with Gaussian con-
vergence where only a handful of terms are needed.

In this paper, we choose to use titanium dioxide (TiO2) as
the constituent material for particles on several grounds: first,
it has useful properties in the 0.1–1 THz band among real
materials, combining very high real permittivity values (close
to 100) with low losses (loss tangent of a few percents) [43];
second, for practical reasons, because it is low-cost, nontoxic,
easily chemically processable, and widely available, and
therefore makes an excellent candidate for fabricating real-
life metamaterials. In particular, we aim at showing that a
composite material made of nonmagnetic TiO2 microspheres
(i.e., with unity relative permeability) allows for the genera-
tion of artificial magnetism at millimeter wave frequencies.
This means that, when homogenized, the metamaterial prop-
erties are described by an isotropic effective permeability
μeff ≠ 1. As will be shown in Section 4, dealing with a metama-
terial with finite thickness, despite the presence of two modes
for transverse polarization, only one is “dominant” in the
sense that it contributes mostly to the field in the array. There-
fore, in case of transverse polarization, we describe the com-
posite material in terms of homogenized effective refractive
index and permeability. These parameters are obtained by
using four methods as detailed in Section 5, and the agreement
among them confirms the validity of the homogeneous treat-
ment of the composite material. We extend and provide the
analytical formulation based on GFs for magnetic dipoles
(analogously to what was done for electric dipoles in [41])
and propose a corrected method based on single dipole ap-
proximation (SDA) to obtain results in better agreement with
full-wave ones [SDA with correction (SDA-WC); see Subsec-
tion 3.A]. Furthermore, the field fitting procedure introduced
in [41] for a 3D array of plasmonic nanospheres is improved by
considering here a superposition of two sets of traveling
waves with different wavenumber leading to the reconstruc-
tion of the dispersion diagram with two modes, one forward
and one backward (see Section 4).

The structure of the paper is as follows. We discuss in
Section 2 how to model the scattering arising from each mi-
crosphere under magnetic dipole approximation, and we sum-
marize the rigorous representation of the field in 3D periodic
arrays using the dyadic GF in the particular case of magnetic
dipoles. The detailed computation of the dispersion diagrams
for longitudinal and transverse polarization states (with
respect to the mode traveling direction) for a set of array para-
meters is then reported in Section 3. The magnetic field cal-
culated via a full-wave simulation based on the finite element
method [High Frequency Structure Simulator (HFSS) by
Ansys Inc.] on systems made of 11 layers of arrayed TiO2 mi-
crospheres, stacked in the direction of propagation of the nor-
mally incident plane wave illumination, is fitted via a Bloch
mode analysis in Section 4, justifiying the treatment of the
composite material as a homogenized material, with effective
refractive index and permeability. The retrieval methods for
the computation of these parameters are summarized in
Section 5. Last, in Section 6, these methods are adopted to
compute the effective refractive index and permeability,
and their agreement and disagreement are discussed. Also,
these parameters are compared against parameterization of
the periodicity of the 3D array. In addition, the evaluation

of the Ewald representation for the dyadic GF for 3D periodic

arrays of magnetic dipoles is summarized in Appendix A.

2. FORMULATION
The monochromatic time harmonic convention, exp�−iωt�, is
assumed here and throughout the paper, and is therefore sup-
pressed hereafter. In the following equations, bold letters re-
fer to vector quantities, a caret “̂ ” on top of a bold letter
refers to unit vector quantities, and a bar under a bold letter
refers to dyadic quantities.

A. Microsphere Modeling
Limiting the scattering from each microsphere to dipole-like
scattering, the induced electric and magnetic dipole moments
of a spherical particle are

p � αeeEloc; m � αmmHloc; (1)

where αee and αmm are the isotropic electric and magnetic po-
larizabilities of the microsphere, andEloc andHloc are the local
electric and magnetic fields acting on the microsphere.

According to Mie theory, the electric (a1) and magnetic (b1)
scattering coefficients for a spherical particle are [44]

a1 �
mψ1�mkr�ψ 0

1�kr� − ψ1�kr�ψ 0
1�mkr�

mψ1�mkr�ξ01�kr� − ξ1�kr�ψ 0
1�mkr� ;

b1 �
ψ1�mkr�ψ 0

1�kr� −mψ1�kr�ψ 0
1�mkr�

ψ1�mkr�ξ01�kr� −mξ1�kr�ψ 0
1�mkr� ;

(2)

and the electric and magnetic polarizabilities are [36,39]

αee �
6πiε0εh

k3
a1; αmm � 6πi

k3
b1; (3)

where r is the microsphere radius, ψ1�ρ� � ρj1�ρ� � sin ρ∕ρ −
cos ρ and ξ1�ρ� � ρh�1�1 �ρ� � �−i∕ρ − 1�eiρ are the Riccati–
Bessel functions [45] [a prime in Eq. (2) refers to the first
derivative of the function with respect to its argument], k �
ω �����εhp

∕c0 � k0
�����εhp

is the host medium wavenumber, where
k0 � ω∕c0 denotes the free space wavenumber and c0 is the
speed of light in free space, and εh and εm are the relative per-
mittivity of the host medium and of the TiO2 microspheres,
respectively, so that m �

�������������
εm∕εh

p
is the relative refractive in-

dex of the inclusions.
In what follows, we consider the frequency range between

200 GHz and 500 GHz, where, referring to the experimental
data in [43], we assume the permittivity of titanium dioxide
to be εm � 94� i2.35 (measured at 500 GHz). The value
Im�εm� � 2.35 represents a worst case scenario in the analyzed
frequency range 200 GHz and 500 GHz, assumed to take into
account extra losses that often arise in microparticle synthesis
(due to lower cristallinity, nonhomogeneity, roughness, etc.).
Finally we take εh � 1 for the host, and therefore k � k0, and
r � 52 μm for the sphere radius. Under these assumptions, to
establish which of the two dipolar scattering effects (i.e., elec-
tric or magnetic) is stronger, we observe the behavior of the
magnitude of the Mie scattering coefficients in Eq. (2) versus
frequency, reported in Fig. 1(b). It can be observed that the
magnitude of b1 is stronger than the magnitude of a1 in
the frequency range between 250 GHz and 350 GHz (with the
peak at around 294.5 GHz), thus in this range each TiO2

microsphere experiences a “magnetic-like resonance” and
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can be modeled as a single magnetic dipole (i.e., electric ef-
fects are negligible) by using an SDA method [39,41,44].

B. SDA for 3D Periodic Arrays of Microspheres
Modeled as Magnetic Dipoles
Consider a 3D periodic array of microspheres as in Fig. 1(a),
immersed in a homogeneous background, with relative
permittivity εh, for which each microsphere is placed at
position rn � r0 � dn, where n � �n1; n2; n3� is a triple index,
and dn � n1ax̂� n2bŷ� n3cẑ, with n1; n2; n3 � 0;�1;�2;…,
r0 � x0x̂� y0ŷ� z0ẑ, and a, b, and c are the periodicities
along the x-, y-, and z-directions, respectively [39,41].

According to Subsection 2.A, each TiO2 microsphere can be
modeled as a single magnetic dipole using the SDA in the fre-
quency range between 250 GHz and 350 GHz, i.e., ja1j ≪ jb1j
(dimensionless), as in Fig. 1(b), which in turn leads to
αee∕�εhε0� ≪ αmm (expressed in m3). Accordingly, the SDA
is a good approximation when particle dimensions are much
smaller than the wavelength, and when the edge-to-edge spa-
cing d between spheres is larger than the spheres’ radius r
(i.e., d ≥ r). However, even for smaller distances, the SDA
may provide satisfactory approximated results [33], though
in general, for a spacing between the spheres smaller than
their radius (i.e., 0 < d < r), more accurate results may in-
volve multipole field contributions [44,46–48].

Suppose now that the array in Fig. 1(a) supports a mode
with wavevector kB � kxx̂� kyŷ� kzẑ. Consequently, each
microsphere will have a magnetic dipole moment equal to
mn � m0 exp�ikB · dn�. Then, the local magnetic field Hloc

in Eq. (1) acting on a microsphere at position r0 is produced
by all the spherical microparticles of the array except the con-
sidered microparticle plus the external incident field to the
array (i.e., we are considering all the mutual magnetic cou-
plings). Accordingly,

Hloc�r0;kB� � Hinc�r0� � Ğ∞�r0; r0; kB� ·m0; (4)

where Ğ∞�r0; r0; kB� ·m0 is the magnetic field produced by all
the other microspheres but the one at position r0, and
Ğ∞�r0; r0; kB� represents the regularized GF. The latter is de-
fined as Ğ∞�r; r0; kB� � G∞�r; r0;kB� −G�r; r0�, which is not
singular at r � r0, where

G∞�r; r0;kB� �
X
n

G�r; r0 � dn�eikB·dn (5)

is the magnetic-field dyadic GF for the phased period array of
dipoles, and G�rm; rn� is the dyadic GF of the background
medium (see Appendix A for more details on the computation
of Ğ∞�r; r0; kB� through the Ewald method). If the array is
placed in a homogeneous medium, the GF (field produced
at rm by a unit magnetic dipole at rn) simply is

G�rm; rn� �
eikrmn

4π

��
k2

rmn
� ik

r2mn
−

1

r3mn

�
I

−

�
k2

rmn
� 3ik

r2mn
−

3
r3mn

�
r̂mnr̂mn

�
; (6)

where rmn � jrm − rnj and rmn is the vector from the source at
rn to the observer at rm. Substituting then the expression for
the local field at position r0 given in Eq. (4) into Eq. (1), we get

m0 � αmm�Hinc�r0� � Ğ∞�r; r0;kB� ·m0�; (7)

which leads to the linear system

A�kB� ·m0 � αmmHinc�r0�; A�kB� � I − αmmĞ
∞�r; r0; kB�:

(8)

Mode analysis in the 3D periodic array is then performed by
computing the complex zeroes of the homogeneous linear sys-
tem in Eq. (8), after having imposed no excitation source (i.e.,
Hinc�r0� � 0). This leads to the computation of the complex
zeroes of the determinant of A�kB� (see [41] for more details
on the properties of A�kB� in 3D periodic arrays).

3. MODES WITH REAL AND COMPLEX
WAVENUMBERS IN 3D PERIODIC ARRAYS
OF TIO2 MICROSPHERES
In this section, we show modes with real and complex wave-
number for traveling modes along the z-direction (i.e.,
kB � kzẑ, with kz � βz � iαz) with dipole moments polarized
along the z-direction (longitudinal polarization, “L-pol,” with
respect to the mode traveling direction) or either the x- or
y-direction (transversal polarization, “T -pol,” with respect
to the mode traveling direction) in a 3D periodic array of
TiO2 microspheres embedded in free space (i.e., k � k0,
εh � 1). In this paper we consider arrays with cubic lattice

Fig. 1. (Color online) (a) Schematic for a 3D periodic array of TiO2 microspheres embedded in a homogeneous medium with permittivity εh. r is
the radius of each microsphere, and a, b, and c are the periodicities along x-, y-, and z-directions, respectively. (b) Frequency behavior of the
magnitude of the electric (a1) and magnetic (b1) Mie coefficients in Eq. (2) in the case of TiO2 microspheres in free space, with constant permittivity
εm � 94� 2.35i, and radius r � 52 μm.
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(i.e., a � b � c), and with the parameters reported in Table 1
for different volumetric filling factor f vol � 4πr3∕�3 a3� (for
simple cubic lattices, the dense packing maximum filling fac-
tor is f vol;max � π∕6 ≈ 52%), in the frequency range between
250 GHz and 350 GHz, in which the magnetic effects are
dominant with respect to the electric ones, as explained in
Subsection 2.A.

A. Transversal Polarization (T-pol)—Structure II
The dispersion diagrams for modes for T -pol for structure II
are reported in Fig. 2. Only modes with αz ≥ 0, i.e., those
whose power flow is toward the positive z-direction, are
shown. Three different curves are shown: (i) solid curves
are computed by using the SDA method described in Subsec-
tion 2.B for the 3D periodic array embedded in free space (i.e.,
εh � 1); (ii) dashed curves are computed by using the SDA
method assuming the same 3D periodic array to be embed-
ded in a host medium with a relative effective permittivity
εh � εeff ≈ 2.38 (i.e., artificially including in the SDA an effec-
tive host permittivity due to the high value of the permittivity
of the TiO2 microspheres) computed through Maxwell
Garnett formulas as explained and shown in Subsection 5.B
[this method will be referred to as SDA with correction
(SDA-WC) throughout the paper]; (iii) dotted-circled curves
are computed by fitting the magnetic field calculated via an
HFSS full-wave simulation as explained in Section 4. Note
the small frequency shift between the modal analyses and
the fitting from the full-wave simulation. Moreover, it can
be observed that the use of the SDA-WC method provides
us with results in better agreement with the fitting curve than
the SDA result. This result could be further improved by mod-
eling the particle with dual (electric and magnetic) dipole
approximation, as will be investigated in future work.

At low frequencies, mode 1 (blue line) is characterized by a
phase constant larger than the free space wavenumber and
by a small attenuation; increasing the frequency, the disper-
sion curve bends exhibiting large phase constant. Further

increasing frequency, mode 1 experiences a bandgap with a
strong attenuation; finally, at higher frequencies mode 1 reen-
ters a propagation band with small attenuation. Mode 2 (green
line) at low frequencies is characterized by a large phase con-
stant at the edge of the Brillouin zone and a large attenuation
constant. Increasing the frequency, the attenuation constant
decreases (remaining yet larger than that of mode 1 in the
bandgap) in a small frequency region, with phase constant ap-
proaching very small values. At higher frequencies, mode 2 is
characterized by very small phase constant and large attenua-
tion constant. Other modes with normalized attenuation con-
stant larger than αza∕π � 1.5 are present but not reported
here since they dramatically decay as αz ≫ k0. The occur-
rence of two transversely polarized (“doubly degenerated,”
that is, admitting any transverse polarization) modes with
moderately low attenuation constant αz reveals a certain
degree of nonlocality in the 3D array, i.e., the presence of spa-
tial dispersion. This was noticed in [41,49,50] for a 3D array of
plasmonic nanoparticles. In [50], spatial dispersion was
noticed also for high dielectric spheres (though the longitudi-
nal case was not analyzed) and this depends on how dense the
array is. Though in this study trends are similar to those in
[41], the k − kz dispersion diagrams are different, because
of different losses, permittivity frequency-dispersion, and
especially, the fundamental difference in the exploited reso-
nance in the spheres. We have also checked that a slightly
smaller level of losses for TiO2, whether one takes a fre-
quency-dependent value or the highest one at 500 GHz, as dis-
cussed in Subsection 2.B, does not quantitatively affect the
results shown here and in the next sections. In particular,
the only change would be in the range 0.235 < k0a∕π <
0.245 for the T -pol case and 0.275 < k0a∕π < 0.285 for L-pol
in Subsection 3.B, where results would approach further the
lossless case discussed in [41].

In Fig. 3, we show the evolution of the modal wavenumber
kz � βz � iαz for varying frequency. Namely the trajectories
of the complex propagation constants are tracked in the com-
plex plane βz, αz in Fig. 3(a), normalized to the period a, and in
Fig. 3(b), normalized to the free space wavenumber k0. Notice
that a mode whose power flow is toward either the positive or
negative z-direction, for which either αz > 0 or αz < 0, is for-
ward (from the phase progression point of view) when
βzαz > 0, whereas it is backward when βzαz < 0. By looking
at Figs. 2 and 3, the forward mode 1 and the backward
mode 2 could be guided in the structure. As a final remark,

Table 1. Array Parameters

Structure r [μm] a [μm] f vol [%]

I 52 106.0 49.45
II 52 126.0 29.44
III 52 146.4 18.76

Fig. 2. (Color online) Dispersion diagram for T -pol for structure II in Table 1. (a) Real part and (b) imaginary part of the wavenumber kz. Solid
curves, SDA; dashed curves, SDA-WC; dotted-circled curves, fitting of the HFSS full-wave simulation fields as explained in Section 4.
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in the lossless case, these two modes assume the same modal
wavenumber kz in the range 0.24 < k0a∕π < 0.245, as was no-
ticed in Figs. 2 and 3 of [41] , and they may become degener-
ate. Note that in the lossy case, these two modes do not
assume the same modal wavenumber kz for any frequency,
as can be observed in Figs. 2 and 3 in this work.

B. Longitudinal Polarization (L-pol)—Structure II
The dispersion diagrams for structure II in Table 1 are shown
in Fig. 4 for both the real and the imaginary parts of the wa-
venumber kz � βz � iαz in the case of L-pol (longitudinal with
respect to the mode traveling direction z) computed with both
the SDA and the SDA-WC methods. Only the modes with
αz ≥ 0, i.e., those with power flow toward the positive
z-direction, are shown. Notice again that other modes with
normalized attenuation constant larger than αza∕π � 1.5 are
present but not reported here since guided modes can travel
a significant distance only when their attenuation constant is
small, or αz ≪ k0. The small value of the slope of the curve in
Fig. 4(a) reveals a certain degree of nonlocality, and thus spa-
tial dispersion [49]. A similar, but not identical, result was ob-
served in [41] for the case of a 3D crystal of plasmonic
nanoparticles. However, mainly due to the fact that here
we use different materials (different losses and material dis-
persion) and exploit a different resonance (due to b1 instead
of a1), the slope of the curve in Fig. 4(a) is slightly larger than
the one observed in [41], revealing a slightly larger spatial dis-
persion. The evolution of the modal wavenumbers varying
frequency is shown in the complex kz plane in Fig. 5. At

low frequencies, mode 1 (blue curve) is characterized by
very small phase constant and large attenuation constant.
Increasing frequency, the phase constant increases, whereas
the attenuation constant decreases. Note that since the
intermicrosphere longitudinal coupling is due to the near field
coupling of the magnetic field, as in [51,52], the effect of the
permittivity of the environment is weak, explaining why the
two curves shown are almost superimposed.

4. FIELD FITTING
In general, considering only modes with a moderately low at-
tenuation constant αz, a plane wave impinging on the finite
thickness composite material in the inset in Fig. 6 could excite
two modes with T -pol and one mode with L-pol, with different
amplitudes (as also briefly discussed in [38,41] for a 3D array
of plasmonic nanoparticles). For a normal incident plane
wave, only modes with T -pol could be excited. Our aim is
to show that, even though the analyzed structure has a certain
degree of spatial dispersion (as previously described in
Section 3, and in [38,41,49,50]), mode 1 (T -pol) in Subsec-
tion 3.A is “dominant” (i.e., it contributes mostly to the field
in the array). Accordingly, a wave in the composite material,
in the case of transverse polarization, could be described with
good approximation as a TEM wave in a homogeneous mate-
rial, which can in turn be represented by an effective refrac-
tive index and permeability. Though, strictly speaking, the
effective permeability characterizing the crystal as a homoge-
nized material has a small degree of nonlocality (spatial
dispersion) [38,49].

Fig. 3. (Color online) Trajectories of modal wavenumbers in the complex kz plane for T -pol, with respect to (a) the periodicity a, and (b) the free
space wavenumber k0. Notice that in (b), crossing the vertical black dash-dotted line at “−1” and “1” means crossing the light line βz � k0. Arrows
indicate direction of increasing frequency. Solid curves, SDA; dashed curves, SDA-WC.

Fig. 4. (Color online) Dispersion diagram for L-pol for structure II in Table 1. (a) Real part and (b) imaginary part of the wavenumber kz. Solid
curves, SDA; dashed curves, SDA-WC.
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From the HFSS full-wave simulation of 11 layers of TiO2

microspheres (see inset in Fig. 6), illuminated by a normally
incident plane wave traveling toward �z, with magnetic field
polarized along y, we extract the y component of the magnetic
field (1 point per layer, at the center of each sphere) for struc-
ture II in Table 1. As stated in Subsection 3.A, the forward
mode 1, and the backward mode 2 could be excited for some
frequencies. Therefore, we assume that the total magnetic
field could be represented as the superposition of two direct
(“�”) and two reflected (“−”) waves, pertaining to two modes
(T -pol) with complex wavenumber kz;f and kz;b, traveling
along the �z directions as follows:

Hy�n� � A�e
ikz;f �n−1

2�a � A−e
−ikz;f �n−1

2�a

� B�e
ikz;b�n−1

2�a � B−e
−ikz;b�n−1

2�a; (9)

where n � 1;…; 11, and A�, A−, B�, B−, kz;f , and kz;b are all
complex valued unknowns, with Re�kz;f � > 0 (i.e., forward,
mode 1) and Re�kz;b� < 0 (i.e., backward, mode 2), assuming
power flow toward the positive z-direction (i.e., Im�kz;f �,
Im�kz;b� > 0). The Hy�n� field obtained via HFSS is shown
in Fig. 6 (black crosses) at 290 GHz (i.e., the frequency for
which Im�kz;b� is minimum; for other frequencies Im�kz;b� is
even larger). Though by inspection the HFSS data in Fig. 6
seems to have a single exponential decay, we perform a curve
fitting by using Eq. (9), and we report the field fitting curves
(both magnitude and phase) in comparison to the extracted

full-wave simulation field in Fig. 6 (blue curves). It can be ob-
served that the fitting curves are in good agreement with the
fields from the HFSS simulation; thus we can conclude that
the field can be represented as in Eq. (9) (note, however,
that A− and B− are found to be several orders of magnitude
smaller than A� and B�, with A� orders of magnitude larger
than B�).

Moreover, we have reconstructed the dispersion diagram
for T -pol in the frequency range between 250 GHz and
350 GHz from the information of the fitted wavenumbers
kz;f and kz;b using Eq. (9) as the blue and green dotted-circled
curves in Fig. 2 (where the circles represent the analyzed
frequencies), which were found to be in good agreement
with the ones computed by using the SDA-WC method in
Subsection 3.A. We have also observed that, in the analyzed
frequency points, A� ≫ A−, B� ≫ B−, thus there is no signifi-
cant reflection at the two metamaterial-air interfaces, and that
A� ≫ B�, thus mode 1 is “dominant” (i.e., it contributes
mostly to the field in the array). Therefore kz;f could be also
retrieved by performing a single exponential fitting
of the data, which would lead to the same kz;f shown in
Fig. 2.

5. EFFECTIVE MEDIUM THEORY:
RETRIEVAL METHODS
In Section 4 we have observed that mode 1 (T -pol) in
Subsection 3.A is “dominant”; thus the composite material,

Fig. 5. (Color online) Trajectories of modal wavenumbers in the complex kz plane for L-pol, with respect to (a) the periodicity a, and (b) the free
space wavenumber k0. Notice that in (b), crossing the vertical black dash-dotted line at “−1” and “1” means crossing the light line βz � k0. Arrows
indicate direction of increasing frequency. Solid curves, SDA; dashed curves, SDA-WC.

Fig. 6. (Color online) Comparison between the HFSS full-wave field in 11 layers of microsphere arrays and the fitting result using Eq. (9) at
290 GHz. (a) Normalized magnitude and (b) phase of the extracted magnetic field.

1702 J. Opt. Soc. Am. B / Vol. 29, No. 7 / July 2012 Campione et al.



in the case of transverse polarization, may be treated as an
effective medium.

A. Retrieval from Mode Analysis: SDA and SDA-WC
Using the modal results computed in Section 3, it is possible to
retrieve the effective refractive index as neff � kz∕k0, where
kz is the wavenumber of the “dominant” mode (i.e., mode 1
for T -pol).

The effective relative permeability from the SDA method
can be computed as μeff � �neff�2; in the SDA-WC case,
instead, μeff � �neff∕

�������
εeff

p
�2, where εeff is as defined in the

next subsection.

B. Maxwell Garnett Formulas
In general, Maxwell Garnett theory [53,54] can be applied to
retrieve the relative effective permittivity and permeability of
a composite medium as

εeff � εh �
εh

N−1
D

h
ε0εhα−1ee � i k3

6π

i
− 1

3

;

μeff � 1� 1

N−1
D

h
α−1mm � i k3

6π

i
− 1

3

;
(10)

where ND � f vol∕VN , and VN � 4πr3∕3 is the microsphere
volume. Here, αee and αmm are the electric and magnetic
Mie polarizabilities as in Eq. (3), and radiative losses are sub-
tracted in Eq. (10) since the microspheres are on a regular
lattice with a < λ0∕2 [55]. Then, the effective refractive index
can be calculated as neff �

���������������
εeffμeff

p
. Note that these formulas

will be applied to arrays of microspheres embedded in free
space, as described in Section 3.

We show in Fig. 7 the relative effective permittivity re-
trieved by using Eq. (10) for the three arrays in Table 1. Note
that there is not a resonant effect; however, the effective value
differs largely from the one of free space (i.e., εh � 1): it
is observed that the effective permittivity is almost constant
in the analyzed frequency range for structures II and III.
In particular, for structure II, this constant effective value
has been assumed to be εeff ≈ 2.38 (as previously mentioned
in Subsection 3.1) and included in the SDA-WC method
(note also that the imaginary part is quite small, so the permit-
tivity has been assumed to be real in the SDA-WC). As a last
remark, we want to point out that the formulas in Eq. (10)
work well for diluted systems, i.e., for f vol < 0.4 [56]. There-
fore, to apply the SDA-WC method for structure I (for which
f vol ≈ 0.49 > 0.4), one should use the effective permittivity

computed, for example, through the method discussed in
the next subsection.

C. Nicolson–Ross–Weir (NRW) Retrieval Method
The transmission (T) and reflection (R) coefficients for a
stack of N � 11 layers (Fig. 6) computed by the full-wave
HFSS simulation are here used to retrieve the effective refrac-
tive index of the composite material by using the NRWmethod
[57–61]. Treating the composite slab as a uniform continuous
medium with the same thickness t, according to NRW, the
complex effective refractive index and impedance can be
retrieved by

neff � �
cos−1

�
1−R2�T2

T

�
k0t

� 2πq
k0t

;

Zeff � �
�����μ0
ϵ0

r ������������������������������
�1� R�2 − T2

�1 − R�2 − T2

s
;

(11)

where q is an integer to be determined, and t � Na, with N
denoting the number of layers and a the separation between
two contiguous layers. We address the reader to [60] for
guidelines on how to choose q and � in Eq. (11). Then, it
is possible to retrieve the relative effective permeability
as μeff � neffZeff

������������
ε0∕μ0

p
.

6. ARTIFICIAL MAGNETISM PROPERTIES
FROM NONMAGNETIC MATERIALS
In this section we show the comparison of the effective para-
meters results retrieved by using the methods described in
Section 5. Note that the NRW result based on reflection
and transmission computed through an HFSS full-wave simu-
lation is the most accurate, and its computational burden is
the heaviest. The second most accurate result is computed
by using the SDA-WC method (again, this result could be
further improved by modeling the particle with dual ele-
ctric and magnetic dipole approximation as mentioned in
Subsection 3.A).

A. Comparison of Retrieval Methods—Structure II
We start by comparing the relative effective permeability in
Fig. 8 and the effective refractive index in Fig. 9 for structure
II in Table 1. Note how the different methods are in good
agreement with each other. In particular, referring to Fig. 8,
large values of Re�μeff� (both positive and negative) can be
generated (with large Im�μeff� in the bandgap region outlined

Fig. 7. (Color online) (a) Real part and (b) imaginary part of the relative effective permittivity for the structures in Table 1 for T -pol retrieved
through Maxwell Garnett formulas in Eq. (10).
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Fig. 8. (Color online) Comparison of the permeability for structure II in Table 1 for T -pol retrieved through different methods.

Fig. 9. (Color online) Comparison of the refractive index for structure II in Table 1 for T -pol retrieved through different methods.

Fig. 10. (Color online) Comparison of the permeability for the three structures in Table 1 for T -pol according to NRW-HFSS retrieval method.

Fig. 11. (Color online) Comparison of the refractive index for the three structures in Table 1 for T -pol according to NRW-HFSS retrieval method.
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in Subsection 3.A); moreover, notice how the permeability re-
trieved through the SDA method matches the full-wave NRW
result: indeed, in the SDA case, the computed refractive index
shown in Fig. 9 corresponds to the magnetic part neff

m of the
total refractive index, which can be expressed as
neff � neff

e neff
m �

�������
εeff

p ��������
μeff

p
. Notice how using the SDA-WC

method provides a better result for the refractive index
than the SDA (with respect to the NRW result), while still pro-
viding a fair estimation of the effective relative permeability
in Fig. 8.

B. Comparison for the Three Structures in Table 1
We continue by comparing the relative effective permeability
in Fig. 10 and the effective refractive index in Fig. 11 for the
three structures in Table 1 (parametric analysis with respect
to the spatial period a of the array) retrieved through NRW.
Observe how an increase in the periodicity impacts in a de-
crease of the losses (i.e., imaginary part) of the system. Also,
observe the frequency blue shift for increasing periodicity.

7. CONCLUSION
This work provides a description of modal analysis in 3D per-
iodic arrays of titanium dioxide (TiO2) microspheres, aiming
at showing artificial magnetism (i.e., relative permeability ≠ 1)
generation from nonmagnetic materials, including the arise of
negative permeability frequency bands. We observe the pre-
sence of one longitudinal mode and two transverse modes,
one forward and one backward. In case of T -pol, mode 1
has been found to be dominant, allowing for the description
of the composite material in terms of homogenized effective
refractive index and relative permeability. We have shown
that the single magnetic dipole approximation provides accu-
rate results as long as the dipoles scatter in a homogeneous
environment where the host permittivity includes that of the
microspheres and it is calculated by using Maxwell Garnett
mixing formulas. These parameters have been retrieved by
four different methods, in good agreement with each other,
confirming the homogenization procedure to be possible. Ar-
tificial magnetism (including negative permeability) from non-
magnetic materials has been proven at millimeter and
submillimeter wave frequencies. Our results are corroborated
by a very recent experimental work [62] where some degree of
artificial magnetism in composite materials made of TiO2 mi-
croparticles has been demonstrated in the low-THz regime.

APPENDIX A: DYADIC EWALD GREEN’S
FUNCTION FOR 3D PERIODIC ARRAYS OF
MICROSPHERES MODELED AS MAGNETIC
DIPOLES
The dyadic form of the GF in Eq. (4) representing the mag-
netic field Hloc at a general observation point r due to the
3D lattice of magnetic dipoles mn but the one at r0 is

Ğ∞�r; r0; kB� � �k2I�∇∇��G∞�r; r0; kB�: (A1)

Here �G∞�r; r0;kB� is the regularized scalar GF, not singular at
r � r0, as in Eq. (11) in [41]. Note the difference between
Eq. (A1) in this paper and Eq. (10) in [41] due to the magnetic
dipole formulation.

The Ewald representation for the regularized dyadic GF is
then

Ğ∞�r; r0;kB� � Gspectral�r; r0;kB� � Ğspatial�r; r0; kB�; (A2)

and

Gspectral�r; r0; kB� � �k2I�∇∇�Gspectral�r; r0;kB�; (A3)

Ğspatial�r; r0; kB� � �k2I�∇∇��Gspatial�r; r0; kB�; (A4)

where representations for the terms in Eqs. (A3) and (A4), in
the specialized case r � r0 � 0, are given in [41].

ACKNOWLEDGMENT
The authors are grateful to Prof. Irina Vendik, St. Petersburg
Electrotechnical University, Russia, for useful discussions.
The authors acknowledge partial support from the National
Science Foundation, award NSF-CMMI #1101074, from the
European Commission FP7/2008, research area “NMP-2008-
2.2-2 Nanostructured meta-materials” grant “METACHEM”

no. 228762, and from the French GIS cluster “Advanced Ma-
terials in Aquitaine.” The authors also thank Ansys Inc. for
providing HFSS that was instrumental in this analysis.

REFERENCES
1. J. Pendry, A. Holden, D. Robbins, and W. Stewart, “Magnetism

from conductors and enhanced nonlinear phenomena,” IEEE
Trans. Microwave Theory Tech. 47, 2075–2084 (1999).

2. T. J. Yen, W. Padilla, N. Fang, D. Vier, D. Smith, J. Pendry,
D. Basov, and X. Zhang, “Terahertz magnetic response from
artificial materials,” Science 303, 1494 (2004).

3. M. W. Klein, C. Enkrich, M. Wegener, C. M. Soukoulis, and
S. Linden, “Single-slit split-ring resonators at optical frequencies:
limits of size scaling,” Opt. Lett. 31, 1259–1261 (2006).

4. S. Zhang, W. Fan, K. J. Malloy, S. R. Brueck, N. C. Panoiu, and
R. M. Osgood, “Near-infrared double negative metamaterials,”
Opt. Express 13, 4922–4930 (2005).

5. H. K. Yuan, U. K. Chettiar, W. S. Cai, A. V. Kildishev, A.
Boltasseva, V. P. Drachev, and V. M. Shalaev, “A negative per-
meability material at red light,” Opt. Express 15, 1076–1083
(2007).

6. W. Cai, U. K. Chettiar, H. K. Yuan, V. C. De Silva, A. V. Kildishev,
V. P. Drachev, and V. M. Shalaev, “Metamagnetics with rainbow
colors,” Opt. Express 15, 3333–3341 (2007).

7. G. Donzelli, A. Vallecchi, F. Capolino, and A. Schuchinsky,
“Metamaterial made of paired planar conductors: particle reso-
nances, phenomena and properties,” Metamaterials 3, 10–27
(2009).

8. A. Vallecchi, F. Capolino, and A. G. Schuchinsky, “2-D isotropic
effective negative refractive index metamaterial in planar
technology,” IEEE Microw. Wireless Compon. Lett. 19,
269–271 (2009).

9. A. Vallecchi and F. Capolino, “Tightly coupled tripole conductor
pairs as constituents for a planar 2D-isotropic negative refrac-
tive index metamaterial,” Opt. Express 17, 15216–15227 (2009).

10. A. Vallecchi and F. Capolino, “Metamaterials based on pairs of
tightly coupled scatterers,” in Theory and Phenomena of Meta-

materials, F. Capolino, ed. (CRC Press, 2009), p. 19.1.
11. A. Vallecchi, S. Campione, and F. Capolino, “Symmetric and

antisymmetric resonances in a pair of metal-dielectric nano-
shells: tunability and closed-form formulas,” J. Nanophoton.
4, 041577 (2010).

12. S. Campione, A. Vallecchi, and F. Capolino, “Closed form formu-
las and tunability of resonances in pairs of gold-dielectric nano-
shells,” Proc. SPIE 7757, 775738 (2010).

13. V. M. Shalaev, W. Cai, U. K. Chettiar, H.-K. Yuan, A. K. Sarychev,
V. P. Drachev, and A. V. Kildishev, “Negative index of
refraction in optical metamaterials,” Opt. Lett. 30, 3356–3358
(2005).

Campione et al. Vol. 29, No. 7 / July 2012 / J. Opt. Soc. Am. B 1705



14. C. L. Holloway, E. F. Kuester, J. Baker-Jarvis, and P. Kabos,
“A double negative (DNG) composite medium composed of
magnetodielectric spherical particles embedded in a matrix,”
IEEE Trans. Antennas Propag. 51, 2596–2603 (2003).

15. C. L. Holloway, M. A. Mohamed, E. F. Kuester, and A. Dienstfrey,
“Reflection and transmission properties of a metafilm: with an
application to a controllable surface composed of resonant par-
ticles,” IEEE Trans. Electromagn. Compat. 47, 853–865 (2005).

16. J. Liu and N. Bowler, “Analysis of double-negative (DNG) band-
width for a metamaterial composed of magnetodielectric
spheres embedded in a matrix,” IEEE Antennas Wireless Propa-
gat. Lett. 10, 399–402 (2011).

17. I. Vendik, O. Vendik, and M. Odit, “Isotropic artificial media with
simultaneously negative permittivity and permeability,”Microw.
Opt. Technol. Lett. 48, 2553–2556 (2006).

18. I. B. Vendik, M. A. Odit, and D. S. Kozlov, “3D isotropic meta-
material based on a regular array of resonant dielectric spheri-
cal inclusions,” Metamaterials 3, 140–147 (2009).

19. V. Yannopapas and A. Moroz, “Negative refractive index meta-
materials from inherently non-magnetic materials for deep infra-
red to terahertz frequency ranges,” J. Phys. Condens. Matter 17,
3717 (2005).

20. T. G. Mackay and A. Lakhtakia, “Correlation length and negative
phase velocity in isotropic dielectric-magnetic materials,”
J. Appl. Phys. 100, 063533–063535 (2006).

21. L. Jylha, I. Kolmakov, S. Maslovski, and S. Tretyakov, “Modeling
of isotropic backward-wave materials composed of resonant
spheres,” J. Appl. Phys. 99, 043102–043107 (2006).

22. I. Vendik, O. G. Vendik, and M. Odit, “Isotropic double-negative
materials,” in Theory and Phenomena of Metamaterials,
F. Capolino, ed. (CRC Press, 2009), p. 21.1.

23. I. B. Vendik, O. G. Vendik, and M. S. Gashinova, “Artificial dielec-
tricmediumpossessing simultaneously negative permittivity and
magnetic permeability,” Tech. Phys. Lett. 32, 429–433 (2006).

24. I. Vendik, O. Vendik, I. Kolmakov, and M. Odit, “Modelling of
isotropic double negative media for microwave applications,”
Opto-Electron. Rev. 14, 179–186 (2006).

25. G. Nehmetallah, R. Aylo, and P. P. Banerjee, “Binary and core-
shell nanoparticle dispersed liquid crystal cells for metamaterial
applications,” J. Nanophoton. 5, 051603 (2011).

26. I. Vendik, M. Odit, and D. Kozlov, “All-dielectric metamaterials
based on spherical and cubic inclusions,” in Selected Topics in

Metamaterials and Photonic Crystals, A. Andreone, A. Cusano,
A. Cutolo, and V. Galdi, eds. (World Scientific, 2011).

27. I. Vendik, M. Odit, and D. Kozlov, “3D metamaterial based on a
regular array of resonant dielectric inclusions,” Radioengineer-
ing 18, 111–116 (2009).

28. R. A. Shore and A. D. Yaghjian, “Traveling waves on three-
dimensional periodic arrays of two different alternating mag-
netodielectric spheres,” IEEE Trans. Antennas Propag. 57,
3077–3091 (2009).

29. E. F. Kuester, N. Memic, S. Shen, A. D. Scher, S. Kim, K. Kumley,
and H. Loui, “A negative refractive index metamaterial based on
a cubic array of layered nonmagnetic spherical particles,” Progr.
Electromag. Res. B 33, 175–202 (2011).

30. C.-W. Qiu and L. Gao, “Resonant light scattering by small coated
nonmagnetic spheres: magnetic resonances, negative refraction,
and prediction,” J. Opt. Soc. Am. B 25, 1728–1737 (2008).

31. A. Alu and N. Engheta, “Dynamical theory of artificial optical
magnetism produced by rings of plasmonic nanoparticles,”
Phys. Rev. B 78, 085112 (2008).

32. C. R. Simovski and S. A. Tretyakov, “Model of isotropic resonant
magnetism in the visible range based on core-shell clusters,”
Phys. Rev. B 79, 045111 (2009).

33. A. Vallecchi, M. Albani, and F. Capolino, “Collective electric and
magnetic plasmonic resonances in spherical nanoclusters,” Opt.
Express 19, 2754–2772 (2011).

34. F. S. Ham and B. Segall, “Energy bands in periodic lattices-
Green’s function method,” Phys. Rev. 124, 1786 (1961).

35. L. S. Benenson, “Dispersion equations of periodic structures,”
Radio Eng. Electron. Phys. 16, 1280–1290 (1971).

36. M. S. Wheeler, J. S. Aitchison, and M. Mojahedi, “Three-
dimensional array of dielectric spheres with an isotropic nega-
tive permeability at infrared frequencies,” Phys. Rev. B 72,
193103 (2005).

37. R. A. Shore and A. D. Yaghjian, “Traveling waves on two- and
three-dimensional periodic arrays of lossless scatterers,” Radio
Sci. 42, RS6S21 (2007).

38. A. Alu and N. Engheta, “Three-dimensional nanotransmission
lines at optical frequencies: a recipe for broadband negative-
refractionopticalmetamaterials,”Phys.Rev.B75, 024304 (2007).

39. S. Steshenko and F. Capolino, “Single dipole approximation
for modeling collection of nanoscatterers,” in Theory and Phe-

nomena of Metamaterials, F. Capolino, ed. (CRC Press, 2009),
p. 8.1.

40. R. A. Shore and A. D. Yaghjian, “Complex waves on 1D, 2D, and
3D periodic arrays of lossy and lossless magnetodielectric
spheres” (Air Force Research Laboratory, 2010).

41. S. Campione, S. Steshenko,M.Albani, andF. Capolino, “Complex
modes and effective refractive index in 3D periodic arrays
of plasmonic nanospheres,” Opt. Express 19, 26027–26043
(2011).

42. P. P. Ewald, “The calculation of optical and electrostatic grid
potential,” Ann. Phys. 64, 253–287 (1921).

43. K. Berdel, J. G. Rivas, P. H. Bolivar, P. de Maagt, and H. Kurz,
“Temperature dependence of the permittivity and loss tangent
of high-permittivity materials at terahertz frequencies,” IEEE
Trans. Microwave Theory Tech. 53, 1266–1271 (2005).

44. C. F. Bohren and D. R. Huffman, Absorption and Scattering of

Light by Small Particles (Wiley, 1983).
45. M. Abramowitz and I. A. Stegun, Handbook of Mathematical

Functions with Formulas, Graphs, and Mathematical Tables

(Dover, 1965).
46. J. D. Jackson, Classical Electrodynamics (Wiley, 1998).
47. V. A. Markel, V. N. Pustovit, S. V. Karpov, A. V. Obuschenko,

V. S. Gerasimov, and I. L. Isaev, “Electromagnetic density of
states and absorption of radiation by aggregates of nanospheres
with multipole interactions,” Phys. Rev. B 70, 054202 (2004).

48. D. W. Mackowski, “Calculation of total cross sections of
multiple-sphereclusters,”J.Opt.Soc.Am.A11, 2851–2861(1994).

49. M. G. Silveirinha, “Generalized Lorentz–Lorenz formulas for
microstructured materials,” Phys. Rev. B 76, 245117 (2007).

50. A. Alù, “First-principles homogenization theory for periodic
metamaterials,” Phys. Rev. B 84, 075153 (2011).

51. E. Shamonina, V. A. Kalinin, K. H. Ringhofer, and L. Solymar,
“Magnetoinductive waves in one, two, and three dimensions,”
J. Appl. Phys. 92, 6252–6261 (2002).

52. I. V. Shadrivov, A. N. Reznik, and Y. S. Kivshar, “Magnetoinduc-
tive waves in arrays of split-ring resonators,” Physica B 394,
180–183 (2007).

53. A. Sihvola, Electromagnetic Mixing Formulas and Applica-

tions (IEE, 1999).
54. A. Sihvola, “Mixing rules,” in Theory and Phenomena of Meta-

materials, F. Capolino, ed. (CRC Press, 2009), p. 9.1.
55. S. Tretyakov, Analytical Modeling in Applied Electromagnetics

(Artech House, 2003).
56. O. Ouchetto, Q. Cheng-Wei, S. Zouhdi, L. Le-Wei, and A. Razek,

“Homogenization of 3-D periodic bianisotropic metamaterials,”
IEEE Trans. Microwave Theory Tech. 54, 3893–3898 (2006).

57. A. M. Nicolson and G. F. Ross, “Measurement of the intrinsic
properties of materials by time-domain techniques,” IEEE
Trans. Instrum. Meas. 19, 377–382 (1970).

58. W. B. Weir, “Automatic measurement of complex dielectric con-
stant and permeability at microwave frequencies,” Proc. IEEE
62, 33–36 (1974).

59. A. H. Boughriet, C. Legrand, and A. Chapoton, “Noniterative
stable transmission/reflection method for low-loss material
complex permittivity determination,” IEEE Trans. Microwave
Theory Tech. 45, 52–57 (1997).

60. C. R. Simovski, “On the extraction of local material parameters
of metamaterials from experimental or simulated data,” in
Theory and Phenomena of Metamaterials, F. Capolino, ed.
(CRC Press, 2009), p. 11.1.

61. S. A. Ramakrishna and T. M. Grzegorczyk, Physics and Appli-

cations of Negative Refractive Index Materials (CRC Press and
SPIE Press, 2009).

62. H. Nemec, C. Kadlec, F. Kadlec, P. Kuzel, R. Yahiaoui,
U. C. Chung, C. Elissalde, M. Maglione, and P. Mounaix, “Reso-
nant magnetic response of TiO2 microspheres at terahertz
frequencies,” Appl. Phys. Lett. 100, 061117 (2012).

1706 J. Opt. Soc. Am. B / Vol. 29, No. 7 / July 2012 Campione et al.




