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ABSTRACT OF THE DISSERTATION

Essays In Empirical Industrial Organization: The Determinants of the Firms’ Investment

Decisions

by

Lorenzo Cattivelli

Doctor of Philosophy in Economics

University of California, Los Angeles, 2022

Professor John W. Asker, Co-Chair

Professor Hugo A. Hopenhayn, Co-Chair

I study the determinants of the firms’ investment decisions.

First, I quantify how building transport infrastructure affects investments. Whereas there

is growing evidence that new infrastructure reduces trade costs, we lack a rigorous empirical

understanding on how it impacts investments. To make progress, I leverage the U.S. crude oil

industry. I specify a structural model of discrete investments centered around the producers’

dynamic trade-off between current revenues and delaying investments to wait for additional

transport infrastructure. I bring this model to a comprehensive dataset that allows me to

match the drilling activity of oil producers with the construction of pipelines across space

and over time. I estimate that pipelines reduce the producers’ transportation costs by 15%,
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increasing the amount of new oil wells by 28%. In sum, I find that firms substantially increase

investments in response to the new transport infrastructure.

Then, I study how the firms’ ownership structure affects investments. Vertical integration

could increase investments for the integrating firm and reduce investments for its rivals. I

measure the investment outcomes of eight vertical mergers in the US motion picture industry

using 1997-2019 movie-level and companies’ ownership data. Using a difference-in-difference

research design, I estimate that vertical mergers increase investments for the integrating

counterpart by 73.5%, while reducing investments for its rivals by 47%. Then I specify a

within-firm model of resource allocation in order to separate the role of credit constraints

and industry-specific technology from the change in the internalized return from investments.

The results support the property rights theory.
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CHAPTER 1

The Investment Outcomes of Transport Infrastructure: The Crude Oil Industry

1.1 Introduction

Trade costs are a pervasive force in the production side of the economy, as they deter-

mine firms’ profits (Firth, 2017). Given that transportation markets often rely on large

infrastructure networks to connect sellers with buyers, a growing body of literature studies

how building transport infrastructure affects trade costs, and how the impact propagates to

prices, output, and aggregate productivity. (Donaldson, 2018, Allen and Arkolakis, 2019,

Hornbeck and Rotemberg, 2021, Fajgelbaum and Schaal, 2020) Yet, we lack a rigorous em-

pirical understanding of the firms’ investment decisions causing the changes in output and

productivity.

In this paper, I uncover how building new transport infrastructure affects the investments

of upstream firms. I depart from the general equilibrium framework that characterizes the

trade literature, and I model the firms’ investment choices as dynamic optimal stopping

point problems. Assuming firms respond to profits, firms’ choices respond to the impact of

infrastructure on costs. I exploit a revealed preference approach to recover how the firms’

cost primitives depend on the transport infrastructure, while accounting for a rich set of

time varying states. With these estimates at hand, I then simulate the investment response

of firms to alternative levels of infrastructure.

This approach allows me to uncover how transport infrastructure projects affect both the

timing and the level of investments. The dynamic interaction between transport infrastruc-
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ture and upstream investments is ambiguous. On the one hand, once the infrastructure is

built, firms have higher incentives to make sunk investments because of the lower shipping

costs. On the other hand, firms have incentives to wait for the construction of new infras-

tructure, delaying sunk investments. This mechanism can be particularly acute when the

infrastructure projects take long time to build, which is often the case with transport net-

works. The specification of a dynamic optimal stopping point has the benefit to incorporate

both these factors in modeling the firms’ investment decisions.

I apply this approach to the crude oil industry in Texas, where I estimate the effect of

new pipelines on the drilling decisions of production companies.1 My focus on the crude oil

industry is driven by several factors that create empirical leverage to address this question.

First, the transport sector plays a crucial role in this industry, since the crude’s demand

regions are distant from the supply basins.2 Thus, changes in the cost of moving crude oil

have large economic consequences for the industry. Oil producers drill wells to extract oil,

then they ship it to the downstream demand centers, bearing the cost for transportation.

Pipelines are the cheapest way to move crude oil. Since the construction of pipelines requires

large fixed costs and a significant amount of time, the rapid increase of the oil supply between

2008 and 2019 wasn’t immediately followed by new pipeline projects. Anecdotal evidence

suggests that producers delayed the drilling of wells without a connection to a pipeline in

order to save on trucking and rail costs.3

A second compelling reason to choose the crude oil industry is the unparalleled availability

of micro-data on the firms’ drilling activity and the presence of pipelines. Indeed, a crucial

component to this paper is the construction of a comprehensive data set on the crude oil

extraction and transportation in Texas, collected and synthesized from numerous sources.

1These companies are known in the industry’s jargon as exploration and production (E&P) companies.
2In Texas the largest oil discoveries are located in the Permian Basin, which is distant from the coastal

refineries and the main crude market hub located in Cushing Oklahoma
3“Because of the takeaway constraints, some operators with a geographically diverse portfolio of upstream

assets plan to redirect capital expenditures to other onshore U.S. regions, while others may reduce well
completions or look for alternative higher-cost transportation options.” Energy Information Administration,
September 2018
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The data comprises two key components. First, I obtained the data on the universe of

drilling prospects where a well has been drilled from Enverus, a private data provider, which

I leverage to quantify the firms’ discrete investments. Second, I was able to reconstruct the

pipeline network across space and over time since 2008. Thanks to the geographic coordinates

of wells and pipelines present in both datasets, I can match the pipelines with the individual

wells. Compared to the past literature, this provides me a much richer variation in the access

to transport infrastructure.

A descriptive look at the data indicates that pipelines affect the profitability of investments

in drilling. Although I do not directly observe the producers’ costs, prices at completion

should contain information on the cost of shipping crude oil. Indeed, producers invest in

drilling when the difference between the price and the variable cost of selling the crude is

sufficiently high. I find that drilling prospects connected to the pipeline are completed at

prices on average two dollars per-barrel lower than those without a connection. This evidence

suggests that pipelines reduce the cost of shipping crude oil, due to the lower tariffs.

As a result, crude producers have incentives to wait for new pipeline projects in order

to save in shipping costs. This creates a dynamic trade-off between the present revenues

and the higher profit margins in the future. To provide evidence of this trade-off, I exploit

the staggered timing of the new pipeline projects. During 2008 and 2019, I observe more

than one thousands drilling prospects that get connected to a pipeline. I use the completion

decisions of these prospects to assess the impact of the pipelines on the timing of drilling,

modeling the time that a producer takes to drill a well as a function of the time that it

takes to connect the prospect to a pipeline. I estimate that a one year delay in the pipeline

connection delays the drilling decision by four months.

Although the previous evidence suggests that pipelines affect the producers’ drilling deci-

sions, it is not enough to understand how different levels of infrastructure affect investments.

Furthermore, the estimated impact of pipelines on prices does not account for the effect of

pipelines on the shadow cost of moving crude oil. New pipeline projects should relax the
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geographic constraints and the scarcity of trucking fleets in the region. As a consequence,

the reduced form estimate of a two dollar price differential is a lower bound for the impact

of pipelines on the producers’ marginal costs.

To recover the producers’ cost primitives, I specify and estimate a dynamic structural

model of investments, where each drilling decision is an independent optimal stopping point

problem. Every period, producers consider wether to complete the drilling prospects or to

delay completion to the next period. A prospect is characterized by the availability of a

pipeline, its expected production and additional profit shifters. Inspired by the descriptive

facts outlined above, I model the connection to a pipeline as a stochastic state that affects

the marginal cost of producers. Therefore, if a prospect is not connected to a pipeline, the

producer holding the drilling option forms expectation over the prospect getting connected

to a pipeline.

The model’s solution centers around the dynamic trade-off between forgoing present sales

for higher future profits if the well is connected to a pipeline. The dependence of the

producers’ payoffs on the cost of shipping crude oil creates option value from waiting. A

producer decides to drill a well if the current profits exceeds the option value from waiting.

Therefore, the probability that a prospect is completed depends on the impact of the pipelines

on the producers’ costs.

I exploit this relationship to estimate the cost primitives of the producers via maximum

likelihood, following the dynamic discrete choice literature. That is, I use a nested fixed

point algorithm in the spirit of Rust (1987) to recover the costs internalized by the producers.

Thanks to the data on prices and quantities, I am able to separately identify the marginal

cost of selling crude oil and the fixed costs of drilling. Given that I allow the marginal

costs to depend on the pipeline connection, the difference between the per-barrel costs for

prospects with and without a connection to the pipeline provides me an estimate for the

impact of pipelines on the cost of moving crude oil.

I estimate the model using the observations coming from the drilling prospects in the
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Permian Basin between 2008 and 2019, which include discovered and completed prospects, as

well as discovered but uncompleted prospects. To establish the causal effect of the connection

to a pipeline on the decision to drill a well, one would ideally compare the costs of the

prospects with a randomly assigned connection to the pipeline to those without a connection.

However, there are two main identification challenges.

First, the construction of infrastructure is not random. Pipeline builders are more likely to

place a pipeline where there is a large amount of oil that allows them to recoup the large fixed

costs. This creates a correlation between the local productivity of oil and the infrastructure,

generating an endogeneity problem when producers react to this serial-correlation. A second

challenge is that I observe a censored assignment process. By construction, I only observe

drilling prospects getting connected to a pipeline conditional on not being completed.

The fine granularity of my data, combined with the crude’s extraction process overcomes

the endogeneity between infrastructure and local productivity. Assuming producers and

builders form on average correct expectations on the amount of crude extracted by a well,

the latter proxies for the expected productivity. Furthermore, the wells drilled in a region

produce more oil when the underlying reservoir contains more oil. Hence, controlling for the

prospect’s production absorbs part of the unobserved local productivity shocks.

Since I observe the connection to a pipeline at the well-level, I can model the probability

that a prospect is connected to a pipeline as a function of the prospect’s cumulative produc-

tion. Then I can feed this probability to my model as the producer’s belief on the building

of new infrastructure, explicitly accounting for the relation between infrastructure and local

productivity. To further corroborate my identifying assumption, I model the dependence of

the pipeline’s constructions on the local supply of oil and past level of infrastructure. I show

that my cost estimates are robust to the inclusion of these proxies for the local productivity

in the producer’s problem.

I am now left with the censorship plaguing the pipelines’ stochastic process. I overcome

this problem estimating the law of motion for pipelines using the observations coming from
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periods and fields where no prospect is completed. When this is true in the data, the condi-

tional probability of receiving a connection to the pipeline coincides with the unconditional

probability.

When I bring the model to the data, I find that on average a connection to the pipeline

reduces the cost of moving crude oil by $11.38 per-barrel. This effect is significantly higher

than the two dollars difference that I estimated in the descriptive facts. This magnitude

is consistent with the dynamic model capturing the additional effect of the pipeline on the

shadow cost of moving crude. The access to a transport infrastructure relaxes local geography

and market constraints that make moving crude disproportionately expensive. Given that

in my sample, the average amount of crude extracted over a well’s life cycle is 126,000 crude

barrels, a pipeline connection generates savings equivalent to a $1.5 million per-prospect.

With the support of the estimated dynamic model, I uncover the impact of the transport

infrastructure on the industry’s growth. Specifically, I simulate the investments in wells

arising under two alternative pipelines’ configurations. I then compare these investment

patterns against the ones arising under the pipeline projects realized in the data.

First, I derive the counterfactual drilling if the pipelines that became active after 2008

would have not been built. Producers would substantially curtail investments, reducing the

amount of completed wells by 28%. Thus, pipelines had a substantial impact on the indus-

try’s growth. Furthermore, the new pipelines contributed to the completion of larger and

more productive prospects. Without building the additional pipeline projects, the average

well would extract 15% less barrels of oil over its life cycle. This is because in absence of

the transport infrastructure, producers have additional incentives to delay the completion of

more productive wells in order to benefit from the lower transport costs.

Next, I simulate the drilling activity if all prospects got connected to the pipeline. Cu-

mulative investments would increase by 9.5% compared to the baseline drilling patterns,

although the drilling activity would slow down in the initial years of the sample compared to

the baseline scenario. This is because the connection to a pipeline increases both the current
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profits and the future expected profits. Nonetheless, after the oil prices topped in 2012,

producers boosted their investment and surpassed the investment patterns in the baseline

scenario.

My results highlight how transport infrastructure affects upstream investments. The large

impact of pipelines on the producers’ drilling activity suggests that transport infrastruc-

ture projects generate sizable investment spillovers in the upstream industry. These results

contribute to several strands of literature. First and foremost, I contribute to the growing

empirical literature that studies the outcomes of infrastructure on trade costs. As recog-

nized by Banerjee et al. (2012), transportation infrastructure is often mentioned as a key to

promoting growth and development. This motivated the authors to provide reduced form

evidence on the impact of access to transport networks to regional income growth in China.

Motivated by the same pursuit, Donaldson (2018) exploits a general equilibrium trade model

to quantify the impact of railroads in India on trade costs, income and regional productivity.

The author quantifies a spatial equilibrium model to further measure the welfare’s effect of

the transport infrastructure. In a similar fashion, Allen and Arkolakis (2019), incorporates

traffic congestion in a general equilibrium framework to measure the welfare impact of new

highways.4 These papers do not empirically address the investment patterns leading to these

increase in production.

For this reason, I depart from the general equilibrium spatial framework, and instead I

model investments as dynamic optimal stopping point problems that depend on the transport

infrastructure. This approach is better suited to uncover the firms’ investment decisions, and

allows me to provide compelling evidence that building new infrastructure projects affects

the investment decisions of upstream firms. The use of micro-level data sheds further light on

the mechanisms behind the impact of infrastructure on investments, showing that building

transport infrastructure reduces the producers’ option value from waiting, thus boosting

investments.

4Other relevant papers include: Chatterjee (2019), Fajgelbaum and Schaal (2020), Hornbeck and Rotem-
berg (2021)
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My modeling choice connects this paper to the vast discrete choice literature that started

with Rust (1987). The applications closer to my paper are Kellogg (2014), and Brancaccio

et al. (2020).5 The former studies the impact of price volatility on the optimal drilling

decisions of oil producers. Methodologically, my paper has multiple points of contact with

Kellogg (2014), since we both study sunk investments in oil drilling. Nonetheless, my research

questions drastically differ, and I focus on how pipelines affect investments.

Instead, Brancaccio et al. (2020) study the interaction between the market for transporta-

tion services and the market for world trade in goods. The authors model the optimal ballast

decisions of ships as dynamic optimal stopping point problems to recover the ships’ sailing

and port costs. At the same time, this paper does not analyze the micro-level producers’

response to infrastructure.

My paper also tangentially contributes to the industrial organization literature of natural

monopolies and regulation in energy markets (Borenstein et al., 2002,Timmins, 2002, Bush-

nell et al., 2008, Lim and Yurukoglu, 2018, Preonas, 2019). I provide empirical evidence on

the investment outcomes of building new midstream infrastructure, which is the segment of

the industry vulnerable to monopolization. Policy makers must carefully measure the invest-

ment spillovers in the upstream industry, when providing price incentives to the monopolist

to build new infrastructure.

At last, I contribute to a recent and vibrant literature studying the onshore oil industry:

Kellogg (2014), Covert and Kellog (2017), Anderson et al. (2018), Agerton and Upton (2019),

and Herrnstadt et al. (2020). To the best of my knowledge, my paper is the first to study

the investment outcomes of new pipeline projects.

5Other relevant applications include Collard-Wexler (2013), Kalouptsidi (2014), Hodgson (2021).
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1.2 Institutional Setting and Data

1.2.1 The Organization of Crude Oil Production and Drilling Data

Oil and gas reserves lie beneath the earth’s surface in geologic formations called fields.

Oil producers secure the extraction rights signing lease contracts with private land owners.

Subsequently, they extract crude oil from the ground drilling oil wells. Wells can be one

of three types: exploratory, development, or infill. Exploratory wells are drilled into new

prospective fields to discover the presence of oil. Development wells follow exploratory wells

to drain the reserves. Finally, the infill wells are drilled later in the field to fully exploit the

reservoir.

According to the Energy Information Administration, the average well’s cost in Texas

was $7.5 million in 2014, with producers reporting costs between $2.5 and $12.3 million,

depending on the wells’ depth and the location geological features. These drilling costs can

be split among two main categories. First, the cost of actually drilling the well’s hole through

the rental of a drill bit. Second, once a well has been drilled, it must be completed before

the well can extract the crude from the ground. Completion costs are associated with the

perforation, fracking, and the disposal of water that are performed by fracking crews hired

from third-parties service companies. In the end, a large portion of the well’s costs are

almost completely sunk, since the drilling rig’s rental costs, the fracking crew’s wages cannot

be recovered.

Drilling wells can therefore be thought as a fully irreversible investment that is sensitive

to the economic and operational conditions affecting the well’s profitability. I will use this

dependence to infer the cost of shipping crude oil from the producers’ investment decisions.

Specifically, I focus on the relationship between the decision of drilling and the presence of

a pipeline to recover the impact of infrastructure on the investments’ returns.

I identify the timing and location of the drilling activity using the data I obtained from

Enverus, a private data provider. The dataset is at the well level, and covers all the wells

9



that have been drilled between 2000 and 2021. For each well, the data reports its comple-

tion date and the geographic coordinates, which I use to identify the time and the location

of investments in wells. Given that the focus of this paper is to understand the relation-

ship between investment decisions and the access to the transport infrastructure, I decide

to ignore investments in exploration in this paper. Exploratory wells are drilled with the

precise purpose of obtaining information on the presence of oil in the underground reserves.

Therefore, the amount of the crude oil obtained from the well is not central for exploration

decisions, making those investments less sensitive to the presence of the transport network.

The Enverus dataset reports detailed well’s characteristics. Among the more relevant ones,

there are the oil producer holding the well and the crude oil extracted from the well, which

combined with the crude prices allows me to measure the revenue obtained from each well6.

Additionally, I observe the oil field where the well is located, and if this field is a wildcat - that

is if there is no oil in the ground. I use this information to distinguish the exploratory wells

from the development wells.7 Figure 1.1 shows that the drilling activity in Texas drastically

increased between 2005 and 2015, while exploration rates gradually declined after the new

shale plays have been delimited.

6In the Appendix Section A.1 I describe the data that I collected on crude daily prices.
7In what follows I refer to development and infill wells simply as development wells. In the Appendix

Section A.1 I describe the exact criteria that I use to define the development wells in the data.
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Figure 1.1: Drilling Activity Over Time by Wells’ Classification

Notes: The graph includes all the wells that have been completed in Texas between
2000 and 2019. The “Development” wells encompass development and infill wells.

In the next section I show that the increase in drilling activity was gradually followed by an

expansion of the transport infrastructure. Then, I ask how this new transport infrastructure

contributed to the development of new wells.

1.2.2 The Crude Oil Transport sector and the Pipeline Infrastructure Data

Crude oil is an intermediate good that must be refined to become gasoline. In Texas, the

refining capacity is mainly located on the coastal region, since the crude’s refining process

requires large amount of water.8 Consequently, oil producers must ship the crude barrels

over long distances from the well-head to downstream refineries, bearing high transport costs,

especially in the Permian Basin.

Figure 1.2 displays the allocation problem between the refining capacity and crude oil

production in Texas. All the black and gray regions in panel 1.2a represent the daily crude

oil supply, which must be shipped to the blue demand regions in panel 1.2b or outside the

8Depending on the refinery configuration, processing different types of crude can take 0.34, 0.44 and 0.47
barrel of water per barrel of crude.
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state Texas.

Figure 1.2: Spatial Mis-match of Supply and Demand

(a) Production

(b) Refinery Capacity

Notes: The supply of oil is measured in thousands of daily bar-
rels of oil. The refinery capacity is expressed in thousands of daily
crude barrel.

There are three main modes of transportation of on-shore crude oil: pipeline, rail and

trucks. Pipelines are the predominant, and the cheapest shipping method for crude. The

infrastructure network of pipelines can be divided in two types of pipes: gathering lines, and

transmission lines. The former are short-haul lines that connect the wells to gathering sta-
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tions. Transmission lines are long-haul lines with large diameters starting from the gathering

stations and delivering the crude to the end points, such as refineries or market hubs.

To accurately reconstruct the pipeline infrastructure in Texas, I combine two datasets.

These data are separately available from the Texas Railroad Commission of Texas. The first

portion of the data includes the current stock of pipelines, which can be downloaded from

their Public GIS Viewer Service (Maps) available the RRC website. The observation level

of the dataset are segments of the pipeline lines. The data has detailed information about

the geographic coordinates, the diameter and the length of the pipe of each segment, which

I use to locate the infrastructure across space.

The construction permits for new pipelines constitute the second portion of the data.9

I digitized the time series of those permits filed to The Railroad Commission from 2008

onward. These permits report the proposed start date, the pipeline’s operator, the fluid

carried by the pipe, the diameter and the miles of the pipeline. Crucially, the Texas’ Maps

data reports the T4 permit indicator for each pipeline segment, which I employ to combine

the two separate data sources and reconstruct the dynamic evolution of the pipeline network

since 2007.

Additionally, pipeline operators have to file a permit when pipelines are abandoned. The

pipeline’s map indicate which segments are currently abandoned, and their permit number.

With this information at hand, I can identify the abandoned project in the RCC archives.

Then I collected the abandonment date, and the reason for abandonment from each individ-

ual permit. Combining these multiple data sources allows me to observe the evolution of the

pipeline network starting from 2008. Observing how the network evolves over time provides

me a key input to quantify the impact of the transport infrastructure on the upstream’s

investment patterns.

I focus on the pipeline network active since 2008. Table 1.1 indicates that the data cover

9According to the Texas Administrative Code, each operator of a pipeline or gathering system shall obtain
a pipeline permit, to be renewed annually, from the Railroad Commission of Texas. Upon the receipt of a
complete application, the Commission has 30 calendar days to issue, amend, or deny the pipeline permit as
filed.
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a total of 48309 pipelines’ segments, whose average length is 1.14 miles, with a maximum of

65.4 miles. Short segments are likely to be associated with gathering lines. The pipeline in-

frastructure underwent substantial changes during the period under consideration, as shown

by the 19% of segments that became active after 2008, and the 30.6% of segments that

got abandoned and stopped carrying crude oil between 2008 and 2020.10 Figure 4.2 in the

Appendix shows the spatial distribution of these pipelines.

TABLE 1.1. Infrastructure Dataset: Summary Statistics

N mean std min 50% max

Abandoned segment 48039 0.306 0.461 0.000 0.000 1.000
Active segment 48039 0.694 0.461 0.000 1.000 1.000

New segment 48039 0.191 0.393 0.000 0.000 1.000
Gathering segment 48039 0.846 0.361 1.000 1.000 1.000

Miles 48039 1.147 3.788 0.000 0.142 65.429

Notes: The data covers pipeline segments that has been active since 2007. Miles
indicate the length of the segments.

Pipelines require large capital investments and a long time to construct. According to the

Oil and Gas Journal estimates, the construction cost of pipeline in 2013 was $6.57 million

per-mile. After the pipeline is built, the maintenance and operation costs are around $135,00-

$170,000 per-mile. Additionally, the average time to build a pipeline system in my dataset is

about four years. Given the substantial expenses necessary to build pipelines, the midstream

segment is much more concentrated than the upstream segment of the industry. Pipeline

builders are predominantly large public companies, vertically separated from the upstream

on-shore oil producers.11

The companies building the transport infrastructure recoup the large fixed costs charging

a per-barrel shipping tariff to producers. Oil producers pay this tariff, and only bear the

10This percentages are not adjusted for the mileage of each segment.
11There are only few large global companies, such as Chevron, BP and Exxon Mobil that operate in

the upstream, midstream and downstream segments of the crude industry. These companies own their own
pipeline infrastructure. However, their activity in the Texas crude oil industry has been limited. The Texas’s
crude oil boom was led by independent E&P company only active in the upstream sector.
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capital expenditures to build short pipe segments that hook-up the wells to the gathering

lines.12

1.2.3 The Relationship between Investments in Drilling and Pipelines

Because the transport facilities are owned by third parties companies, the producers pay a

fee proportional the volume of crude delivered. The shipping costs can have a large impact

on the profitability of drilling, indeed, according to recent data from the Energy Information

Administration, oil producers spend approximately between 2.25 million to transport crude

oil over a well’s life-cycle. Thus, the cost of moving crude oil is approximately 20% of the

revenues obtained by the average well, assuming that the crude is sold at a price of 100$.

Crucially, there are large differences in tariffs across transport methods. In 2016 shipping

the crude by pipelines over short distances costed between $0.25 and $1.50 per bbl. Trucks

were more expensive, ranging between $2.00 and $3.50 per bbl. Although I did not find

a tariff breakdown for Texas, a publication by the Oil and Gas Journal reports that the

pipeline’s tariffs for moving the crude from North-Dakota to Oklahoma are one half and one

third of rail and truck’s ones, respectively. Because of these large tariff differentials, the

presence of a pipeline significantly affects the profitability of drilling and in turn producers’

should respond to the presence of pipelines.

To understand how producers respond to pipelines, I need to identify which drilling

prospects are connected to a pipeline. I limit the candidate points to those prospects where

a well has actually been drilled between 2008 and 2022. For each well in the data, I observe

its completion date, that is once the drilling and casing are completed and crude oil flows

out of the ground. Given my focus on development wells, I assume that a drilling prospect

is discovered after the producer completes the first successful producing well in a field.

Then, I compute the minimum distance of each drilling prospect from each pipeline seg-

ments. I impute a connection to a pipeline if there is gathering segment within a five miles

12These segments are generally less than a mile, and thus not subject to the Texas Railroad Commission
pipelines’ regulation. Hence, they won’t appear in the map and in my dataset.
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radius from the drilling prospect. To improve the precision of my measurement, I leverage

the information on the midstream pipeline operator, which is reported in the infrastructure

data. At the same time, oil producers must report the oil gatherer on every lease they hold,

hence each well is associated with a pipeline or trucking company in charge to take the

oil barrels away from the production site. When computing the minimum distance of the

drilling prospect from the pipeline infrastructure, I restrict the sample to pipeline segments

operated by the same firm listed as gatherer on the lease.13

Drilling prospects can be classified in three categories according to when they received a

connection to a pipeline. A fraction of drilling prospects is never connected to a pipeline

before completion, another portion has always enjoyed a connection to a pipeline, and the

remaining portion obtained a connection between the date of discovery and the date of

completion.

13I exclude from my sample those prospects that have been assigned multiple producing entities. These
prospects have multiple wells extracting oil from the same location and potentially different gathering oper-
ators. The data do not report information about the names of the gathering companies for those prospects.
Therefore, I cannot identify which pipeline is in charge of shipping the crude oil away from the producing
entities. For this reason, I focus uniquely on drilling prospects with a single producing well.
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TABLE 1.2. Descriptive Relationship between Investments and the Con-
nection to a Pipeline

N mean std min 50% max

Never had Connection
Cumulative oil 23470 0.096 0.124 0.000 0.040 1.464
Months to completion 23487 44.672 30.654 1.000 38.000 144.000
Price at completion 23487 76.689 21.479 26.578 82.250 130.575

Always had Connection
Cumulative oil 6667 0.132 0.148 0.000 0.067 2.438
Months to completion 6667 45.108 31.280 1.000 38.000 144.000
Price at completion 6667 72.865 20.958 26.578 72.589 130.575

Obtained Connection
Cumulative oil 1567 0.193 0.129 0.000 0.184 0.813
Months to completion 1567 78.600 36.297 7.000 75.000 144.000
Price at completion 1567 60.919 17.324 26.578 54.056 102.589

Notes: The data covers pipeline segments that has been active since 2008. The cumulative pro-
duction is measured in hundred of thousands of crude oil barrels. Prices at completion are lagged
three months before completion and computed using the daily dollar delivery prices from the West
Texas.

Table 1.2 shows that it takes on average 30 months longer to complete the prospects that

obtained a connection to the pipeline relative to the other drilling prospects. This could

indicate that producers delay completion, if they expect that a pipeline will be built in the

future. The construction of the pipeline reduce the cost of moving crude oil, raising the

option value from waiting.

Furthermore, on average, pipelines reach more productive prospects that generate higher

shipping volumes. The average cumulative production of wells without access to the pipeline

is 96,000 barrel of crude. This corresponds approximately to half of the average well’s

production of the prospects that obtained a connection to the pipeline, and two third of the

average production of the prospects that were always connected. Larger prospects benefit

more from a connection to the pipeline, because the transport costs increase with the volume

of crude moved. Additionally, the pipeline builders who higher revenues from connecting

more productive wells. This set the basis for an empirical correlation between prospect’s

productivity and the likelihood to obtain a connection to the pipeline.
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At last, the bottom row of each prospect’s group in Table 1.2 show that a connection

to the pipe correlates with a lower price at completion. The average price at completion

for wells without a connection to the pipeline is $4 per-barrel higher than wells that have

always enjoyed a connection to the pipe, and $16 per-barrel higher than wells that obtained

a connection to the pipeline. This is consistent with producers incurring lower transport

costs to move oil from wells connected to a pipeline.

However, part of this price difference can depend on the the time series of crude prices,

and the longer time of completion. Prospects that obtained a connection to the pipeline are

more likely to be drilled after the 2014 oil crash, which is reported in Figure 1.3.

Figure 1.3: Time Series of Crude Oil Prices

Notes: This is the price paid for crude’s delivery from the West Texas region. The
crude price is measured in dollars per-barrel.

This calls for the use of an empirical strategy that controls for the time and productivity

selection, in order to make some progress in the understanding of the relation between the

drilling activity and the pipeline infrastructure. In what follows, I develop an empirical

strategy to address these confounding factors.

18



1.3 Facts

This section provides robust evidence on how producers react to pipelines. First, I provide

compelling evidence that the pipeline lowers the producers’ variable costs. Second, I show

that producers delay the completion of wells to wait for the pipeline. I use a regression

approach to control for time trends and the selection of infrastructure on the prospects’

expected productivity.

1.3.1 The Prices at Well’s Completion Depend on the Presence of the Pipeline

The relationship between the crude prices at completion and the connection to a pipeline

contains information on the impact of pipelines on the producer’s transport costs. The

range of prices when drilling becomes profitable expands if the transport costs drop. Hence,

if pipelines reduce the producers’ shipping costs, there should be a range of crude prices

where it is profitable to complete only the drilling prospects connected to a pipeline .

Based on this intuition, the empirical distribution of prices at completion should differ

by the prospects’ connection state. Following Kellogg (2014), I assume that the crude price

realized three months before the well’s completion is the price that producers consider when

deciding to drill.14 Figure 1.4 shows that the cumulative distribution of prices for the wells

connected to the pipeline is stochastically dominated by the one of wells without a connection

to the pipeline. Wells connected the transport network are more likely to be completed when

producers face completion prices that are below 80$ per barrel.

14This lag is consistent with the drilling and casing time of a well. This is also true in the data, where the
median well’s completion time since a prospect has been spudded is three months.
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Figure 1.4: Cumulative Distribution of Crude Prices at Completion

Notes: Prices reflect the price of the West Texas Intermediate crude oil. I use wells
completed for crude prices between the 5th and the 95th percentile of the empirical
distribution. All prices have been lagged by three months. The sample includes single
entities development or infill drilling prospects that have been completed between 2008
and 2020.

At the same time, the endogeneity of the infrastructure on the prospect’s characteristics

complicate the interpretation of these distributions. In order to control for this selection, I

model the crude oil prices at the well’s completion as a function of the access to the pipeline

network, a set of wells specific covariates, and a linear time trend in the prospect’s year of

discovery. Specifically, for each well i, in a field l, I model the crude oil prices three months

before completion, t− 3 as:

P c
i,l,t−3 = γ0 + βI{Pipeline Access}i,t−3,l + γ1Xi,l + γ2{Ti,l − 2008}+ γl + εi,l,t−3 (1.1)

The main regressor of interest in equation 1.1 is the indicator variable for the connection

to a pipeline, {Pipeline Access}. The vector X contains the well’s productivity, the type of

hole that is drilled, its depth and the gravity of oil extracted from the well. The variable T
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is the prospect’s year of discovery

Pipelines are associated with lower prices at completion, indicating that the prospects

connected to a pipeline are profitable at a price per-barrel lower than those without a con-

nection. This price difference ranges between $1.32 and $1.63, as reported in Table 1.3. The

well’s cumulative production is negatively correlated with the price at completion. The more

productive wells are more likely to be profitable when crude prices are low.

TABLE 1.3. Relationship Between Prices at Completion and Transport
Infrastructure

Dependent Variable: Price at Completion

Specification (1) (2) (3) (4) (5)

Connection to a pipeline -1.318*** -1.540** -1.565** -1.633** -1.557**
(0.220) (0.661) (0.696) (0.688) (0.791)

Well’s cumulative oil -0.025*** -0.020*** -0.020*** -0.020*** -0.021***
(0.001) (0.004) (0.004) (0.004) (0.003)

Producer’s size 0.003 -0.003
(0.006) (0.006)

Linear time trend 7 3 7 3 3

Oil field FE 7 3 3 3 7

Producer FE 7 7 7 7 3

County FE 7 7 7 7 3

Observations 30,402 30,402 30,402 30,402 30,402
R-squared 0.383 0.440 0.440 0.446 0.342

Notes: Standard errors in parentheses; *** p<0.01; ** p<0.05;* p<0.1. Standard errors are clustered
at the field level in column (1) to (4). Standard errors are clustered at the producer level in column
(5). The sample includes only single producing entities that have been completed in Texas between
2008 and 2019. The well’s cumulative production is measures in thousands of crude oil barrel. Prices
at completion are measured using the daily West Texas Intermediate crude oil price. Producer size in
a given date is proxied adding the total number of wells that the producer has drilled across Texas.

The wedge in prices persists using different regression’s specifications that account for the

producer’s size and producers fixed effects. In columns (3) and (4) of Table 1.3 I control

for the producer’s size, which is measured by the total number of wells drilled by the firm

between 2008 and 2019. In column (5) I replaced the field-level fixed effects with county

fixed effects in order to avoid multicollinearity issues due to single-producer operated fields.

Whereas these findings suggest that pipelines affect the producers’ variable costs, one
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remark is due. Since I am only using the prices at completion, the reduced form estimates

in Table 1.3 only capture the dollar difference between transport tariffs. However, they

ignore the impact of pipelines on the shadow price of moving crude oil. The construction

of new infrastructure projects relaxes market and geographical constraints, reducing the

shadow price of moving crude oil where the alternative methods of transportation would

be prohibitively expensive. This implies that the estimated dollar amount in Table 1.3 is a

lower bound of the impact of infrastructure on the producers’ costs.

1.3.2 The Timing of Investments Depends on the Presence of the Pipeline

In this section I investigate the relationship between the building of pipelines and the timing

of drilling. The previous sections suggest that when a well is connected to a pipeline, the

producer saves on shipping costs. Hence, producers have incentives to substitute away from

trucks and rails. Consistently with this argument, Figure 4.3 in the Appendix section A.1

shows that the percentage of crude disposed by pipelines in Texas went from 33% in 2013,

to 55% in 2019.

Nonetheless, the long time required to build pipelines creates a lag between the discoveries

of new crude reservoirs and the construction of an infrastructure network that can absorb

the additional oil supply. There is a dynamic trade-off between revenues today and higher

profit margins in the future, because oil producers have incentives to wait for new pipeline

projects to reduce the transport costs. Do producers actually delay the completion decisions

of drilling options without a connection to the pipeline?

I answer this question accounting for the fact that pipeline operators build the pipes where

there is enough crude to recover the large construction costs. Given this correlation, a cross

section comparison of the completion time for drilling prospects connected to the pipeline

to those without a connection produces a biased estimate. To minimize the concerns for the

pipeline’s endogeneity, I restrict the sample to only those prospects connected to a pipeline

at the time of completion.
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To identify the effect of the pipelines on the timing of investments, I leverage the time

variation in the data generated by the different construction dates of the pipelines built

between 2007 and 2020. The staggered time of new pipeline projects creates variation in

the time that prospects get connected to the pipeline. As a result, I estimate the effect of

the time incurred for connecting a prospect to a pipeline on the time for completing it. If

producers delay completion, I expect that the time for obtaining a connection has a positive

impact on the time for completion.

Both time variables are computed starting from the date of the prospect’s discovery.

Using the prospect’s completion and discovery dates, I recover the share of prospects that

were connected to a pipeline between their discovery and completion. I model the time for

completing a drilling prospect as a linear function of the time that it takes to connect the

drilling prospect to a pipeline according to

T ci,d,f,p = α + βT ai,d,f,p + γXi,d,f,p + λd + λf + λp + εi,d,f,p (1.2)

I allow the completion time for the drilling prospects i to depend on the prospects’ discovery

year, d, the specific geological features of the crude oil field f through discovery year and

field fixed effect. I also account for unobserved time-invariant heterogeneity, adding crude

producer p fixed effect.

Identification is achieved as long as, conditional on the well’s realized production, the

field’s geological features, and the producer’s unobserved heterogeneity the timing for the

pipeline connection is as good as random. Given the complex regulatory process combined

with the long time for constructions, it seems reasonable to assume that producers do not

have perfect forecasting over the pipeline’s construction. I find that producers delay the

completion of the drilling prospects without a connection to the pipeline.15 Columns 3 of

15As a control group, I also include in the sample the prospects that have always had a connection to the
pipeline. In the Appendix I report the estimates without the adding the prospects that have always had
a connection to the pipeline.The estimates are larger, but similar. This strengthens the confidence in the
results.
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TABLE 1.4. The Impact of Transport Infrastructure on the Timing of
Investments

Dependent Variable: Time for Completion

Specification (1) (2) (3) (4) (5)

Time for connection 0.630*** 0.325*** 0.296*** 0.332*** 0.235***
(0.070) (0.049) (0.039) (0.042) (0.054)

Well’s cumulative oil 0.005 -0.008 -0.009** -0.009**
(0.007) (0.005) (0.004) (0.004)

Price at completion -0.036*** -0.032*** -0.026** -0.025**
(0.011) (0.010) (0.011) (0.011)

Discovery Year FE 3 3 3 3 3

Oil Field FE 7 7 3 3 3

Producer FE 7 7 7 3 3

Pipeline Operator FE 7 7 7 7 3

Observations 7,375 7,197 7,197 7,197 7,197
R-squared 0.353 0.602 0.666 0.580 0.594

Notes: Standard errors in parentheses; *** p<0.01; ** p<0.05;* p<0.1. Standard errors are
clustered at the year of discovery level. The sample includes only single producing entities that
have been completed after 2008 and before 2020. Well cumulative production is measures in
thousands crude oil barrel. Prices at completion are lagged by three months and measured using
the daily West Texas Intermediate crude oil price. The time to complete the drilling prospect
and the time to build the pipeline connections are measured in months. I impute 1 month as
the time to build the pipeline connections for those drilling prospects who have always enjoyed
the connection to a pipeline

Table 1.4 shows that one month delay for the pipeline’s construction, delays completion by

0.33 months. This is equivalent to say that an extra year in the connection to the pipeline

delays the well’s completion by approximately four months. All the specifications report

a strictly positive and statistically significant correlation between the time for building the

pipeline and the time for completing the drilling prospect.

This results provide evidence in favor of the dynamic trade-off between the current revenues

and the future profit margins. In the next section I build a structural model of wells’

completion centered around this trade-off. I use this model to recover the impact of pipelines

on the trade costs of crude oil, that include the tariffs’ differential between pipelines and

alternative method of transportation together with the shadow cost of moving crude in
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absence of the pipeline infrastructure.
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CHAPTER 2

The Investment Outcomes of Transport Infrastructure: A Structural Model of

Investment

2.1 Model

In this section, I develop a dynamic model of investments that predicts the completion

decisions of the producers’ drilling options. Each producer holds a drilling option over a

prospect after its discovery. In every period, the producer’s problem is to decide wether to

drill a well. I treat the drilling and the completion decisions jointly, and in what follows I

will refer to them interchangeably.

If the producer does not drill the prospect in the current period, she keeps the option

of drilling the next period. If the producer pays the well’s sunk cost she completes the

prospect. The producer simultaneously incurs the cost of shipping the crude to the delivery

point and she sells the extracted oil for a profit. Oil producers are price takers. Completion

decisions are irreversible, making it an absorbing state. One key output from the specification

and estimation of the model is the impact of pipelines on the investment decisions. This

informs the degree to which the producers value the transport infrastructure when making

the strategic investment decisions.

2.1.1 Setup

The model generates data on a large set of drilling prospects indexed by i = 1, ..., N . A

prospect enters the producer’s decision problem when it is discovered. The passing of time is
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discrete and it takes value t = 1, ..., T .1 At the beginning of period t, each drilling prospect

is characterized by an exogenous state variable xti,c, which represents its completion status.

The producer decides wether to complete an uncompleted drilling prospect ai,t = 1, or to

delay the completion to the next period ai,t = 0. Therefore, if the prospect is uncompleted

at the beginning of period t the producer’s choice set coincides with Ai(xti,c = 0) = {0, 1}.

Instead, completion is understood as an absorbing state such that Ai(xti,c = 1) = {∅}.

I assume that a producer holding multiple completion options treats them independently

of one another. This is motivated by my focus on development options, which are drilled

following the exploration stage, and consequently they contain little new information on the

presence of oil. This limits the concern for serial correlation across the drilling decisions.

In the period when the producer decides to complete the prospect she pays a sunk cost for

completion, κi, which depends on some observed feature of the drilling prospect. I denote

these cost shifters as wi, which include geological and technological factors. For instance,

the drill type (horizontal or vertical) dictates the technology to drill the well and therefore

the cost of completion materials (e.g. fracking liquid).

Following the completion decision, the well extracts the crude oil from the ground. To

realize the sales, the producer moves the crude from the wellhead to the delivery point, paying

the shipping costs of moving the crude. These costs are proportional to the quantity of oil

moved, and they depend on the method of transportation used. Thus, a drilling prospect is

characterized by its connection to a pipeline.

I incorporate the prospect-specific connection to the pipeline, xti,p, in the set of the observed

payoff-relevant state variables.2 I want to capture to which extent the presence of the pipeline

affects the cost of shipping crude oil. For this reason, I allow the variable costs to depend on

the connection to the pipeline and the quantity of oil recovered from the ground, qi. I denote

the producer’s variable costs with c(xti,p, qi). These costs capture also the other per-barrel

1This data generating process creates an unbalanced panel. Different prospects enter and exit the sample
at different points in time.

2Whereas I observe if a drilling prospect has a connection to the pipeline, I do not observe the delivery
point of the crude for each well. Therefore, I cannot specify different trade routes.
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costs, such as the royalty rates paid to the landowner or the well’s maintenance. Crucially,

the difference in per-barrel cost between prospects with different connection status identifies

the cost impact of the pipeline.

The producers’ profits are proportional to the quantity of oil recovered from the ground,

qi. I include the quantity of crude oil in the set of exogenous profit shifters rather than in the

producer’s choice set. This is motivated by the crude oil extraction process, where drilling a

well is irreversible, and oil flows on the surface following the pressure differentials generated

by the drilling. This limits the ability of producers to actively control the quantity of oil

extracted after the well’s completion, except for shutting-in the well. However, producers

rarely take this decision given the high risk of permanently making unrecoverable the crude

left in the ground. For this reason, I augment the set of exogenous profit shifters with the

well’s production, denoting it as w̃i = {qi, wi}.

Producers’ decisions will also respond to the crude prices, pt. The price at completion

determines the expected revenues obtained from the well, which I denote as r(pt, qi). In

sum, the common knowledge payoff-relevant state space in period t comprises

X t =
{
xti,c, x

t
i,p, p

t, w̃i

}
(2.1)

Thus, the one-and-for-all payoff from drilling an uncompleted prospect can be written as:

r(pt, qi)− c(xti,p, qi)− κ(wi) + εti ≡ π(xti,p, p
t, w̃i) + εti (2.2)

I assume that revenues are measured with random measurement error i.i.d., εti, which follows

a mean zero type-I extreme value distribution governed by the scale parameter σe. If a

producer does not drill the well, the revenues and the cost from delaying completion are zero.

Oil producers don’t suffer any capital depreciation since they do not purchase the drilling

equipment, which is rented from the oil service companies, and they pay land owners a royalty

rates upon oil extraction, avoiding the costs from holding the land before completion. Thus,
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if a producer decides not to complete the drilling prospect, the payoffs are zero.

2.1.2 Law of Motions

In the model there are two stochastic processes that evolve over time, the construction of

pipelines connecting the drilling prospects to the point of delivery, and the evolution of crude

oil prices.

I assume that pipelines are stochastic from the producers’ standpoint, since third-party

companies build the infrastructure and new pipelines are subject to substantial regulatory

delay.3 These factors create exogenous uncertainty for the producers about the exact date

when a pipeline becomes active. For this reason, I need to model the producers’ beliefs over

the new infrastructure.

To model the construction of pipelines, I take into account that builders aim to recoup

the fixed costs of building the infrastructure. To this end, they charge a per-barrel tariff on

the amount of crude oil that flows through the pipe. Whereas this tariff is regulated under

the common carrier regulation, the builders are “free” to choose where to place the pipeline,

becoming more prone to place a pipeline where there is a large amount of oil. This creates

two types of selection. Pipelines are more likely to connect high productive prospects and

to be placed in fields where the local supply is booming.

Therefore, I model the probability of receiving a connection to the pipeline as:

Pr(xt+1
i,p = 1|xti,p = 0) = h(qi, Q

t
f , S

t
f ) (2.3)

I use this probability as the producers’ belief over receiving a connection to a pipeline. In

equation 2.3, qi represents the well’s cumulative production, and Qt
f denotes the supply

of crude from field f . Additionally, I take into account that the initial level of pipeline

infrastructure might impact the cost of new pipeline projects. For instance, it is cheaper to

extend an existing network, rather than building an entirely new pipeline system. Thus, I

3They need to meet a series of strict environmental and safety criteria
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add the Stf component in equation 2.3, which denotes the share of prospects and wells in

field f that are connected to a pipeline.4

Whereas a portion of the drilling prospects was connected to a pipeline between their

discovery and completion, virtually no prospects enjoyed the access to the pipeline and lost

it before completion. For this reason, the construction of a pipeline is an absorbing state.

The evolution of crude oil prices is the other time-varying stochastic process that impact

the producer’s problem. Indeed, Kellogg (2014) studies how the optimal drilling decisions

of wells depends on the price volatility. However, this is not the focus of my paper and thus

I will fit a simple random walk on the crude prices. I specify the distribution of crude oil

prices following Hodgson (2021), where the log oil price follows:

pt+1 = exp(log(pt) + ζt) (2.4)

In this formulation the unobserved component ζt follows a normal distribution, N(µζ , σζ).

2.1.3 Optimal Investment Decisions

The producer’s problem at a given period t is to maximize the present value Vit of the drilling

prospect by optimally choosing the period of completion. This optimal stopping problem is

given by equation 2.5 below, in which Ω denotes a decision specifying wether the prospect

should be completed in each period d ≥ t as a function of the xi,p,d, pd, εi,d and the set of

exogenous profit shifters w̃i. I denote Id a binary variable indicating the outcome of this

decision rule in each period, while β denotes the monthly producer’s real discount factor.

Vit = max
Ω

E
{∑

d=t

βd−t[π(xi,p,d, pd, w̃i, Id) + εi,d(Id)]
}

(2.5)

Because the completion of a prospect is irreversible, the producer has an option value in

delaying completion when the future arrival of the pipeline is uncertain. If the prospect

4I do not explicitly model the builders’ decision problem. However, the exogeneity of the pipelines holds
assuming that Qf and Sf are sufficient statistics for the state variable in the builders’ dynamic problem.
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obtains a connection to the pipeline, postponing the completion decision when the shipping

cost of crude are lower increases the well’s profitability. The producer must trade-off the

crude oil revenues from completing the prospect immediately, against the expected profits

in a later period.5

This trade-off is captured restating the optimal stopping problem as the Bellman equation

2.6 below, in which Vi represents the current maximized value of the completion option as a

function of the state variables xi,p, p, εi, M = {Q,S}, w̃i:

V (xi,p, p, w̃i,M, ε) = max
{
π(xi,p, p, w̃i, 1) + ε(1), βEV [(x′i,p, p

′, w̃i,M
′, ε′, 0)] + ε(0)

}
(2.6)

An oil producer decides to complete a drilling prospect if and only if the profits from drilling

today exceeds the option value from delaying drilling to the next period. Formally, the

optimal control function I(xi,p, p, w̃i,M, ε) is defined by

argmax
{0,1}

{ π(xi,p, p, w̃i) + εt(1), βE[V (x′i,p, p
′, w̃i,M

′, ε′)] + εt(0)}

Under the identical and independent distributed logit assumption the model provides me a

closed form solutions for the probability that a prospect is drilled.6 Given the realized state

variables, the choice probability that a prospect is drilled is given by

Pr(I = 1|xi,p, p, w̃i,M) =
exp(π(xi,p, p, w̃i)/σe)

exp(π(xi,p, p, w̃i)/σe) + exp(β ∗ E[V (x′i,p, p
′, w̃i,M ′, ε′)]/σe)

(2.7)

This probability increases in the per-period profits from drilling today, while it decreases

in the option value from waiting. Vice versa, the choice probability that a prospect is not

drilled increases in the option value from waiting, while it decreases in the per-period profit

5Uncertainty in prices creates additional option value from waiting, however this is constant across drilling
prospects

6The proof is in the Appendix section A.3
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from completion and it is given by

Pr(I = 0|xi,p, p, w̃i,M) =
exp(β ∗ E[V (x′i,p, p

′, w̃i,M
′, ε′)]/σe)

exp(π(xi,p, p, w̃i)/σe) + exp(β ∗ E[V (x′i,p, p
′, w̃i,M ′, ε′)]/σe)

(2.8)

The option value from waiting is increasing in the connection to a pipeline if this generates

savings in shipping cost. Given equation 2.8 this increases the probability that a prospect is

not completed prior to the construction of the pipeline. Therefore, producers holding newly

discovered drilling prospects without a connection to the pipeline have incentives to delay

completion until a gathering line is built.

It is important to note that in this formulation, the option value from waiting is increasing

in Q, S because of their effect on the producers’ beliefs. An higher oil supply increases the

likelihood that a pipeline is built, pushing the producer to wait for the construction of new

pipeline projects.

2.2 Baseline Model

The primary goal of the model is to measure the producer’s savings in transport costs

generated by the pipeline infrastructure.

2.2.1 Parametrization

The data legwork described above, allows me to observe if a drilling prospect is connected

to a pipeline. Given the volumetric tariff that producers pay to pipelines’ operators, I

parametrize the producer’s variable costs as a function of the prospect’s connection state:

c(xti,p, qi) = qi

( ∑
x,∈{1,0}

τx[1{xti,p = x}]
)

(2.9)

In this specification, τ0 captures the transport costs without a connection to the pipeline

together with the additional well’s operating costs, which include the artificial lift, main-
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tenance, royalty rates and income taxes. Similarly, τ1 captures the sum of the transport

costs having a direct connection to the pipeline and the additional operating costs. The key

estimate of interest for this project is the difference between τ1 and τ0, which provides the

impact of the pipeline on the producer’s shipping costs.

A large portion of the costs associated with drilling and completing a well are fixed. In

this specification, I allow them to depend on the technique used to drill the prospect, that

is if a well is vertical or horizontal. The choice of the drilling technique is dictated by the

geological characteristic of the oil reservoir, therefore I model vertical and horizontal wells

as an exogenous cost shifter:

κ(wi) = κ0 + κ11{Horizontal} (2.10)

Additionally, I allow the fixed cost of completion to depend on a linear time-trend in the

estimation routine. However, I that assume producers’ do not anticipate this variation when

making the completion choice. In other words, the passing of time does not enter the set of

relevant state variables in the bellman equation .

Producers do not delay completion in the anticipation of a future decline in fixed costs. In

a recent contribution, Agerton (2020) shows that firms extracting natural resources obtain

large productivity gains learning the resource quality and the most profitable locations for

drilling. The acquisition of this new information is costly, and not driven by the exogenous

arrival of new information.

For this reason, I do not incorporate the passing of time as a state variable, but I add it to

the estimation routine as follows:

κt(wi) = κ(wi) + κ2(t− t0) (2.11)

In equation 2.11 t is the calendar year and t0 is the beginning year of the sample, 2008.

To complete the parametrization of the per-period producers’ payoffs, I need to model the
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present value of the expected revenues from selling the crude. In principle, this is equivalent

to the sum of the product of the well’s monthly production and the expected crude oil price

each month. Rather then modeling this discounted sum explicitly, I follow Kellogg (2014)

and model it as

r(pt, qi) = ptqi (2.12)

In this formulation, qi represents the sum of the expected monthly crude oil production. I

use the crude oil price realized three months before the actual completion date as pt. This

approximation subsumes that firms value the future production using the crude oil price

three months before completion. 7

I am left to characterize the producer’s expected value from delaying completion. This

depends on the expectations of oil producers over the likelihood that a pipeline is built

in the future, connecting the drilling prospect to the transport infrastructure. I assume

a simplified stochastic process for the constructions of pipelines. In the baseline model, I

suppress the dependence of infrastructure on time varying location characteristics, Qf , Sf ,

conditional on the prospect-specific expected productivity. That is, I model the probability

of being connected to the pipeline only as a function of the project specific production.

Formally, I specify the probability that a prospect obtains a connection to the pipeline using

the specification

h(qi) =
exp(δ0 + ρqi)

1 + exp(δ0 + ρqi)
(2.13)

In sum, the baseline set of parameters recovered from the data and the model comprises:

Θ̃ = {{κn}2
n=0, {τn}1

n=0, δ0, ρ, µζ , σζ , σe, β} (2.14)

7Kellogg (2014) uses the 18-months crude oil futures prices. This should be the average oil price that
prevails during the extraction period.
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2.2.2 Estimation and Identification

I recover the cost primitives following the dynamic discrete choice literature (Rust, 1987).

I build a nested fixed point algorithm, which solves for the producer’s value function at

every guess of the parameters, and then it estimates the cost parameters from the optimal

investment choice probabilities via maximum likelihood.

Before solving the model, I estimate the parameters governing the stochastic law of motions

of pipelines outside the model, using the partial likelihood implied by the evolution of the

state variables. Rust (1987) proves the validity of this approach under the independence of

the unobserved error term. The estimation of δ0 and ρ is carried out by maximum likelihood

of the logit model governing the pipeline data generating process specified in equation 2.13.

Then, I match σζ and µζ to the variance and the mean of the monthly changes in the log

oil price. Recovering these parameters allows me to use the transition laws to compute the

producer’s option value from waiting.

Each month, the producers decide wether to complete the prospects that they hold or to

delay completion to the next period. Given the the exogenous profit shifters, the realized

time series of pipeline constructions and oil prices, the model’s solution yields the probability

that any given prospect will be drilled in each month t as well as the probability that the

prospect will not be drilled by the end of the sample.8 These choice probabilities form

the basis for the likelihood function, which is obtained multiplying the choice probabilities

derived in equation2.7 and 2.8.

Let Iit denote an indicator variable that takes on a value of one if prospect i is completed

in month t and zero otherwise, let T denote the final month of the sample. Let Nt denote

the number of wells actually drilled at t, and denote N0 the number of prospects not drilled.

8Some of these prospects won’t be completed by 2019. Therefore, the model also generates the probability
that a prospect won’t be drilled by the end of the same conditional on being completed in 2021. This is
unbiased if the prospects completed by July 2021 approximates the universe of discovered prospects by the
end of 2019. This can be justified by the lower exploration rates.
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The log-likelihood function can be written as

l((N1, N2, ..., NT ), N0|x,p, w̃; Θ̃) =

T∑
t=1

NtlogPr(Iit = 1|x,p, w̃; Θ̃) +N0logPr(Iit = 0|x,p, w̃; Θ̃) (2.15)

The estimation of Θ̃ = {{κn}1
n=0, τ0, τ1, σe, β} is carried out by maximizing the likelihood

function using a nested fixed point routine. An inner loop computes the unknown function

EVΘ̃ for each value of Θ̃ and an outer hill climbing algorithm searches for the value of Θ̃

which maximizes the likelihood function. I provide the details of the nested fixed point

algorithm in the section A.4 of the Appendix.

The marginal cost and the fixed costs are separately identified up to a normalization for

the discount factor and the variance of the unobserved logit term. I formally prove the

identification of the different cost primitives in the Appendix section A.4, where I also show

that the discount factor and the unobserved logit variance are not identified. Thus, I will

calibrate those two parameters. In the rest of this section, I discuss the intuition behind

some additional identification hurdles present in my setting.

I use the construction of new pipelines across space and over time to recover the prospect-

level probability of obtaining a connection to the pipeline. The logit specification would

allow me to parametrically identify the distribution of infrastructure shocks assuming that

conditioning on the prospect production a pipeline connection was as good as random. Ide-

ally, to identify δ0 and ρ I would use data on the unconditional realizations of the pipelines

segments connecting the universe of the drilling prospects. Observing these unconditional

realizations would allow me to estimate equation 2.13. Then, I would feed these estimates

to the dynamic optimization problem as the producers’ beliefs.

In my setting, the data on the pipeline connections are generated by a censored process.

The completion decision of a prospect is an absorbing state, which prevents me from re-

covering the unconditional probability of the connection to a pipeline from the data. By
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construction, I only observe a connection to the infrastructure conditional on not having

completed a drilling prospect in the current period. This posits a threat to the conditional

independence assumption. However, by the Bayes theorem:

Pr(xt+1
i,p = 1|xt+1

i,c = 0) = Pr(xt+1
i,p = 1) ⇐⇒ Pr(xt+1

i,c = 0) = 1 (2.16)

That is, in periods and locations where the probability of completion decision is zero, the con-

ditional pipeline’s constructions process is equivalent to the unconditional one. Empirically,

this condition is satisfied for those periods when the fields’ completion rate is approximately

zero. When this is true in the data, I assume that receiving a connection to a pipeline is

independent of the completion’s decision. Hence, I conduct the estimation of the law of

transition h, only on the portion of the data coming from the months and fields when no

prospect is completed.

I have already discussed how aggregate market and geographical characteristics could

affect the presence of infrastructure. I evaluate the relevance of these concerns in section

2.2.5, and momentarily assume that these factors don’t affect the producers’ expectations

over pipelines’ constructions.

2.2.3 Results

I now present the estimates for the producers’ cost primitives. I use the completion decisions

generated by the prospects that were never connected to a pipeline and the ones that got a

connection between their discovery and completion dates. That is, I exclude the prospects

that have always had the connection to a pipeline. 9

To estimate the model, I only use the prospects in the Permian basin. I choose to impose

this data restriction for two reasons. First, the Permian Basin is the largest production

9The prospects that have enjoyed a connection to the pipeline could be part of a pad-drilling project.
These involves multiple wells drilled in sequence. Therefore, their access to the pipeline is driven by serially
correlated unobservables in the model, e.g. past discoveries and firms’ private information. The economic
incentives behind the investment decisions might largely differ from the completion decisions of single pro-
ducing entities, and at the same time they become difficult to incorporate as a state of the dynamic model.
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basin in Texas, where I observe 19896 unique development drilling prospects and a total of

1123691 decisions. This strikes a balance between the computationally tractability of the

estimation and having meaningful variation in the data. Second, focusing on a single basin

limits the unobserved heterogeneity in the shipping routes.

As mentioned before, both the discount factor and the logit scale parameter are not

identified from the data. Thus, I pin down the discount factor using data on the average

inflation and the discount rate. Between the 2008 and 2019 the average inflation rate was

1.57%. At the same time, according to a 2016 Mercer Capital report, the market applied

approximately an 8.5% median discount rate to the future cash flows of wells drilled located

Permian Basin. The inflation data combined with the median discount rate implies a monthly

discount factor about 1.0157
1.085

= 0.935. Then, I estimate the cost parameters for different values

of the variance of the unobserved the logit component. I evaluate the pair of discount factor

and variance that optimize the model’s ability to fit the data, given the estimation result.

Afterward, I discuss the estimates of the cost primitives.

I assess the ability of the model to match the data comparing the choice probabilities

generated from the model to their empirical counterparts. The latter are computed as the

sum of completion decisions, over the total number of observations. I estimate the model

for different values of the variance governing the prospects’ unobserved productivity shock.

Given a monthly discount factor of .935, the variance parameter that better fits the data

is 2.5. This is shown in Figure 2.1. The graph benchmarks the model’s probability of

completion with those recovered from the data. Given that I introduced a limited number

of sources of heterogeneity in the baseline model, the model demands high values for the

variance of the unobserved component to rationalize the patterns in the data. The addition of

an unanticipated linear time trend in the producers’ fixed costs greatly improves the model’s

goodness of fit, as it is apparent juxtaposing Figure 2.1 and Figure 4.5 in the Appendix.

This corroborates the choice of excluding the time trend from the vector of state variables,

supporting the assumption that producers do not wait for an exogenous decrease in the sunk
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Figure 2.1: Goodness of fit

Notes: The discount factor used across all the specifications is β = .935

costs.

Table 4.2 in the Appendix A.5 reports the cost estimates for the alternative values of the

variance of the unobserved logit component. These estimates imply that having a connection

to the pipeline reduces the variable cost for producers, which is consistent with pipelines

having lower tariffs than trucks or rail. Whereas the presence of savings in the cost of

shipping oil persists across all the specifications, the magnitude of these savings depends on

the specific variance assigned to the unobserved logit component. I discuss the magnitude

of the cost parameters relative to the parameter taking a value of 2.5, which provides the

best fit for the data with a .935 discount factor.

This combination of parameters provides one of the most conservative estimate for the

impact of the pipeline on costs. These estimates are reported in Table 2.1. The average cost

saving per-barrel generated by having a connection to the pipeline corresponds to $11.38

per-barrel. This is given by the difference between τ0 and τ1. Given that the average amount

of crude extracted from a well is 126,000 barrels, this estimate implies an average saving of

$1.5 million per-well.
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TABLE 2.1. Cost Estimates for the Baseline Specification

Marginal Costs Fixed Costs

Baseline Specification τ0 τ1 κ0 κ1 κ2

77.954 66.676 13.470 2.065 -1.134
( 1.521) (1.159 ) ( 0.084) ( 0.214) (0.014 )

Notes:Standard errors in parenthesis. Standard errors are obtained from bootstrapping the
standard errors with the random sampling of wells. They are computed using 50 repetitions.
The discount factor across all specification is β = .935. Revenues are expressed in million
of dollars. Fixed costs parameters are expressed in million of dollars. Transportation costs
parameters are expressed in dollars per-barrel. The mean of the unobserved term logit
distribution is calibrated at zero.

To better interpret this quantity, I benchmark these estimates against the transport tariffs

and the drilling costs reported in 2016 by the Energy Information Administration. Initially,

the crude must be moved from the well to the gathering stations. In 2016, the cost of moving

crude oil by pipeline over the short distances in the Permian basin was about $0.75 per-bbl.

The cost of moving the crude by truck was about $2.50. This generates an approximate cost

saving of $1.75 per barrel. Crude oil must be moved over the long distances from gathering

stations to refineries or market hubs. The cost of moving crude over long-distances from

the Permian ranged between $4.00 and $13 per barrel. Assuming that the former are the

shipping cost using pipelines, and the latter the costs of using rail, the implied savings

generated by the pipeline would be about $11.75 per bbl. This number is remarkably close

to the one predicted by my benchmark model.

Nonetheless, this back of the envelope calculation provides an upper limit to the dollar

savings. Using $4.00 as the pipeline tariff and $13 as the pipeline tariffs, I assigned the

largest tariffs gap for moving crude from the Delaware and Midland basins.

The large difference in the primitives recovered from the model can be explained by the

shadow cost imposed by physical and market constraints from moving the crude oil in absence

of infrastructure. For instance, without a pipeline the crude has to move through a longer

route to reach the nearest available rail carrier. Alternatively, the scarcity of trucking freights
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would increase the cost of shipping of crude oil. The connection to a pipeline relaxes these

constraints, decreasing the marginal cost of moving crude oil and generating cost savings

that exceed the pure differential between tariffs.

The estimation routine provide an average $13 million expenditures in the fixed cost of

drilling and completion, with an additional cost of two millions for horizontal wells. These

large estimates reflect that during many months no drilling occurs. As expected, horizontal

wells are more expensive than vertical ones. Fracking is a new technology, and it demands

pumping more materials to recover the crude.

At last, the estimates at the bottom of Table 4.2 in the Appendix section A.5 show that

the prospect’s cumulative production has a sizable impact on the probability of that the well

receives a connection to the pipeline. In turn, pipelines are more likely to reach large wells,

suggesting that the scarcity of infrastructure disproportionately delays the development of

the most profitable wells. This correlation magnifies the impact of the pipelines on the

industry’s growth.

2.2.4 Sources of Heterogeneity

In this section, I assess the ability of the model to capture the dimensions of heterogeneity

present in the data. First, I show that the model can mimic the drilling activity over time

and across space. I use years and sub-basins as the time and spatial dimensions of interest,

leveraging the fact that the territory covered by the Permian Basin is classified in three

sub-basins with underlying geological differences between reservoirs.

I compare the choice probabilities predicted by the model with their empirical counterpart.

The model is able to replicate the increase in drilling activity after the 2008 financial crisis,

and the subsequent drop in investments triggered by the crash of oil prices in 2014.10 The

model also replicates the bounce back in drilling after the crash.

Figure 2.2a displays a divergence between the model and the data at the end of the sample

10The price crash can be visually seen in Figure1.3
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period. The estimated cost of extraction declines too fast to fully rationalize the data. This

sharp bounce back is likely to be driven by the high coefficient imposed on the linear time

trend, which makes the fixed costs disproportionately low over time. Nonetheless, the model

captures the main time-trend underlying the data. This speaks to the predominance of

the price dynamics, the construction of infrastructure, and the decline in drilling costs into

explaining the relevant time heterogeneity in the data.

Figure 2.2: Time and Location heterogeneity

(a) Time

(b) Location

Notes: The discount factor used across all the specifications is
β = .935

Now, I shift my focus to the spatial heterogeneity. Across the Permian’s sub-basins, there

is a small discrepancy between the model predictions and the data. This is displayed by the
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overlapping points and crosses in Figure 2.2b. The accurateness of the baseline model can

be rationalized by the fact that the distribution of drill types together with the cumulative

production capture the spatial dimensions correlating with the investment’s decisions.

The baseline model does account for differences in the producers’ cost structure. Nonethe-

less, the firm’s size might explain part of the variation in the costs of drilling wells and

extracting crude oil. Large producers can leverage economies of scales splitting the drilling

rental costs between multiple prospects. They also enjoy a better bargaining position with

landowners and oil service companies.

These factors reduce the cost of investing and completing a well relative to a small pro-

ducer. To assess the empirical validity of this claim, I classify the upstream producers based

on the total number of drilling prospects that they hold during the 2008-2019 sample years.

On average, the model comes close to predict the probability of completion by size. However,

it over-estimates the probability of completion for those producers that held one hundred

or less drilling prospects. Figure 2.3 displays a one percentage point difference between the

model and the data predictions for producers with less than fifty prospects.

This pattern is consistent with small producers bearing higher costs than the estimated

ones. Large producers drive down the average cost of completion in the estimation routine,

making the average estimated costs lower than the true cost primitives of small producers.

Lower costs put upward pressure on the choice probability predicted by the model. This gap

quickly closes as the number of prospects held by producers exceeds one hundred.

Another interesting pattern emerging from the data is that the absolute probability of

completion declines with size. This can be rationalized by larger producers holding a broadly

differentiated set of prospects and taking on more risky projects in new fields. By contrast,

small producers might enter where reserves have already been proved increasing their drilling

rates.

I further investigate the fixed heterogeneity across producers. In Figure 2.4, I plot the

choice probability predicted by the model as a function of the choice probability in the data.
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Figure 2.3: Size heterogeneity

Notes: The discount factor used across all the specifications is β = .935. The sample
includes all the producers holding a drilling prospect during the years 2008-2021. The
producers’ size is computed using the total number of development prospects held by
the firm in Texas.

Any divergence from the forty-five degree line reflects a discrepancy between the model’s

prediction and the data. There is dispersion across producers. However, the dispersion in

the data seems uncorrelated with the drivers of the investments’ decisions, since the model

does not consistently over-predict or under-predict the choice probabilities. The dots in the

graph are evenly distributed below and above the forty-five degree line.
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Figure 2.4: Producer heterogeneity

Notes: The sample includes the producers that held more than one-hundred develop-
ment projects during the years 2008-2021.

2.2.5 Robustness checks

In this section I extend the model to account for additional heterogeneity. The baseline

specification does not accurately capture the differences in completion decisions between

producers with different sizes, posing a threat to identification if the producers’ size correlates

with getting a connection to the pipeline.

In order to address this concern, I allow the fixed cost of drilling and the variable costs of

extraction to depend on the producer’s size. I classify each producer as small or large based

on the total number of wells the firm drills during the 2008-20219 sample period, splitting the

sample at the 25th percentile number of wells per producer. Then, I specify the producer’s

cost structure as a function of the producer’s size, which enters the payoffs as an additional
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fixed profit shifter. Formally, I model variable and fixed costs as follows:

c(xti,p, qi) = qi

( ∑
x,∈{0,1}

τx1{xti,p = x}+ τ21{Small}
)

(2.17)

κ(wi) = κ0 + κ11{Horizontal}+ κ31{Small} (2.18)

In this specification, τ2 captures the impact of the producer’s size on the variable costs.

Instead, κ3 captures the effect of size on the sunk costs of drilling. 11

A natural concern when estimating the impact of infrastructure projects is that of bias

due to a potential correlation between project placement and unobserved changes in lo-

cal environment (Donaldson, 2018). These concerns are likely to be less important in my

setting, given the granularity of the data. My model allows for selection at the prospect

level proportional to the cumulative oil extracted by each well.12 The quantity of crude

extracted from a well depends on the past exploration activity and the geological features

of the prospect’s location. Therefore, the realized production correlates with the spatial

characteristics, partially mitigating the concerns for unobserved location characteristics.

Nevertheless, to better control for the correlation between the building of new infrastruc-

ture and changes in the local economic environment, I expand the set of factors driving the

construction of new pipelines. I specify a stochastic process for the pipeline’ connections

that allows the infrastructure to depend on time-varying field-level characteristics. I assume

that the likelihood that a prospect gets connected to a pipeline depends on the local supply

of crude oil, which I measure with the cumulative oil extracted from the field. Additionally,

I incorporate the correlation between the connection to a pipeline and the amount of infras-

11I do not incorporate producers’ fixed effects as an additional state variable. This would greatly expand
the state space. At the same time, the unobserved heterogeneity across producers appeared uncorrelated to
the drilling rates, reducing the threat of endogeneity along this dimension.

12Oil producers conduct extensive analysis before drilling to forecast the crude present in the ground.
Additionally, focusing on development wells reduced the uncertainty on the presence of oil. Therefore,
producers are likely to be able to accurately predict the crude extracted from a development prospect.
Hence, the realized production is a credible proxy for the production expected by producers when making
the completion decision.
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tructure built on the field. This is measured with the field-level share of prospects connected

to pipelines.

Incorporating the local supply of oil is motivated by the fact that builders have more

incentives to construct infrastructure where the supply will grow. Given a volumetric tariff

structure, builders have more chances to recover the large infrastructure costs when large

volumes of crude are shipped through the pipelines. Separately controlling for the past level

of pipeline infrastructure is motivated by the fact that midstream companies are likely incur

lower construction costs where there is a well developed infrastructure network. The law of

motions for pipelines follows a logit probability distribution according to:

h(Qt
f , S

t
f , qi) =

exp(δ0 + δ1Q
t
f + δ2S

t
f + ρqi)

exp(δ0 + δ1Qt
f + δ2Stf + ρqi) + 1

(2.19)

Where Qf , Sf and qi represent the field supply of crude, the field level infrastructure and

the prospect’s production of crude, respectively. The field’s oil supply and the infrastructure

level enter the producer’s drilling choice problem only through her beliefs on the pipeline’s

arrival. Therefore, I do not incorporate them as separate state variables.

I first estimate the parameters governing the logit law of transition for new pipeline connec-

tions in equation 2.19. Then, I predict the probability that a prospect receives a connection

to the pipeline given its cumulative expected production, the local supply of oil and the level

of infrastructure. I incorporate this predicted probability as a new state variable for the

producer’s problem. This approach has the advantage of reducing the state space, keeping

the estimation routine computationally tractable.

I first estimate the model adding only the size’s indicator, without changing the pipeline’s

law of motion. Small firms have fixed costs $1.7 million higher than the producers beyond

the 25th percentile distribution, according to the first column of Table 4.3 in the Appendix

section A.5. This result is consistent with large producers having substantial economies of

scales.

47



However, small producers have $11 per-barrel lower variable costs from extracting oil.

This result can be rationalized by the differences in the areas of activity. Anecdotal evidence

suggests that small producers enter an oil plays as followers, which might confine them

in regions with less crude. Thus, they drill smaller and shallower wells. Those prospects

demand less maintenance and fracking materials, which reduces the variable costs of drilling.

As a second robustness check, I augment the pipeline’s law of motion. Both the field crude

supply and the amount of pipeline’s infrastructure present in the field have strong predictive

power for receiving a connection to a pipeline. The positive coefficients in the second column

of Table 4.3 supports this evidence. Adding these variables to the law of motion decreases by

half the coefficients on the well’s cumulative production. This also implies that controlling

for the well’s productivity largely captured the impact of location-specific characteristic.

Interestingly, in column (2) the size’s estimates shrinks compared to column (1). Control-

ling for the local characteristics capture part of the size’s effect on costs. This strengthen

the intuition that the producer’s size affect the costs’ estimates because it correlates with

different drilling areas. Additionally, the complete model reduces the producer’s specific

dispersion. This can be seen comparing Figure 2.4 above and Figure 4.7 in the Appendix

section A.5. In the latter graph, the probability of completion is more concentrated along

the diagonal.

Despite these improvements in precision, the estimated effect of pipelines on the marginal

costs is consistent across the model’s specifications. This estimate ranges between $10.8

per-barrel and $ 10.6 per-barrel in the augment model . The magnitude of this estimate is

only $0.5 lower than the one generated by the baseline model. The proximity of all these

estimates suggests that the heterogeneity missing in the baseline model is uncorrelated with

the building of pipeline.

This strengthens the credibility of the parsimonious specification in the baseline model.

The main goal of this project is to capture the effect of the midstream infrastructure on the

upstream investments, which is almost unaffected by incorporating additional states in the
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model. Given the purpose of this project, to properly decompose the factors driving the

producers’ beliefs and producer’s fixed effect is second order. For this reason, I favor the

baseline specification to conduct the counterfactual analysis in the next section.

2.3 Counterfactual Analysis

To illustrate how the transport infrastructure and investments interact, I simulate the drilling

dynamics implied by alternative pipeline’s configurations. In the first configuration, I assume

that none of the prospects gets connected to a pipeline. In the second configuration, I assume

that each prospect gets connected to a pipeline. Then, I compare the investments given

these two configurations against the ones under the pipelines that were actually built in the

Permian Basin. I define the latter as the baseline investments produced by the model.13

The difference between the first counterfactual and the baseline informs us how investments

in wells would have changed if the pipelines built after 2008 were not built. New pipelines

significantly contributed to the growth of the extraction of crude oil. The impact of new

pipelines on the drilling activity is quantified by the difference between the dotted line and

the continuous line in Figure 2.5a.

The absence of new infrastructure would have increased the cost of shipping crude, and

thus depressed the yearly investments. The additional infrastructure increased the total

number of completed wells by 1672 in the sample period 2008-2019. This is equivalent to

approximately a 8.5 percentage point difference in the cumulative number of investments,

that translate into a 28% increase in additional wells.

Instead, the difference between the second counterfactual and the baseline investments,

informs us how the industry dynamics would have changed if additional pipelines reached the

prospects that did not obtained a connection to the pipeline. I assume that the counterfactual

connections would have been realized at the date of discovery. Connecting the prospects

without a connection to a pipeline further raises investments in drilling. This is in line with

13In both counterfactuals, I hold unchanged the producers’ beliefs on the probability of receiving a con-
nection to the pipeline.
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the significant impact of pipelines on the marginal cost of moving crude oil. Oil producers

would complete 8438 wells if each prospect received a connection to a pipeline.

Nonetheless, the producers would delay the completion of some wells between 2008 and

2010 to wait for higher prices. Figure 1.3 shows that crude prices were healing from the

2008 financial crisis during these two years. Once the prices peak after 2011, drilling quickly

ramps up and exceeds the baseline levels.

Figure 2.5: Counterfactual Investments

(a) Yearly Drilling Activity

(b) Cumulative Drilling Activity

Notes: The discount factor used across all the specifications is
β = .935. The sample includes drilling prospects located in the
Permian Basin discovered between 2008-2019.

Additionally, the construction of pipelines increases the prospects’ average revenue and

the extracted quantity of crude. In Table 2.2 the average well extracts 138,000 barrels of
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crude oil over her lifecycle when all the prospects received a connection to the pipeline. By

contrast, the average well extracts 126,000 and 107,000 barrels of crude oil over her lifecycle

in the baseline scenario and when none of the prospects received a connection to the pipeline,

respectively.

This implies that producers delay the completion of more productive prospects to avoid

large profit cuts due to high shipping costs. Indeed, oil producers have a larger option value

from waiting to drill the more productive prospects. Therefore, the impact of pipelines on

the industry’s output and revenues is even larger when adjusted for the prospects’ quantities.

The transport infrastructure raises the drilling of more productive wells.

TABLE 2.2. Counterfactual Descriptive Statistics

Data Baseline
N Mean Min 25% 75% Max

Months for Completion 7703 44.879 0.000 25.000 64.000 84.000
Revenues 7703 12.252 0.000 1.402 17.360 114.375
Quantity 7703 0.126 0.000 0.018 0.183 1.028

None Connected
N Mean Min 25% 75% Max

Months for Completion 6031 42.024 0.000 20.000 62.000 84.000
Revenues 6031 10.111 0.000 1.345 13.099 105.443
Quantity 6031 0.107 0.000 0.018 0.145 1.028

All Connected
N Mean Min 25% 75% Max

Months for Completion 8438 41.642 0.000 20.000 60.000 84.000
Revenues 8438 12.934 0.000 1.762 21.408 140.396
Quantity 8438 0.138 0.000 0.022 0.226 1.419

Notes: The data covers drilling prospects in the Permian Basin. Quantities are measured in millions of
crude oil barrels. Revenues are measured in millions of dollars.

However, the second counterfactual is somewhat a limit case. Connecting some of these

prospects might be prohibitively expensive due to geographical constraints. A more realistic

counterfactual would be to predict how the introduction of an infrastructure subsidy affects

the constructions of pipelines. Then, based on the resulting pipeline connections I would

simulate the upstream investment decisions.

To perform this exercise, I need to model the builders construction choices of connecting

different oil prospects. The current model only accounts for a statistical dependence between
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the prospects’ characteristics and the connection to the pipeline, without explicitly modeling

the builders’ decisions. In my future research agenda I plan to endogenize the builders’

decisions to recover the cost of building pipelines. This allows me to simulate how a subsidy to

infrastructure would affect the construction of new pipelines, and in turn drilling investments.

2.4 Conclusions

This papers advances the empirical understanding of the impact of the transport infrastruc-

ture on the firms’ investment decisions. I show that building new infrastructure reduces the

shipping costs for firms, raising the profitability of investments. Therefore, the upstream

firms increase their investment levels in response to the new infrastructure. By contrast, the

scarcity of transport infrastructure increases the firms’ option value from waiting, causing

substantial delays in investments.

I use the crude oil industry as my empirical laboratory. Due to the distance between

supply and demand regions, the transport sector plays a crucial role in this industry.

I estimated a discrete model of investment and used it to evaluate the industry’s response

to new pipeline infrastructure. The model centers around the crude producers’ incentives to

delay drilling without a connection to a pipeline. I build a novel dataset that allows me to

control for selection of the infrastructure on the well’s productivity.

I find that pipelines have a substantial impact on the cost of shipping crude oil. In response,

crude producers substantially curtail their investment activity if they can not access pipelines

to move the crude oil. Specifically, I considered how investments in new wells would have

changed if the new infrastructure wasn’t built. The pipelines built between 2008 and 2019

were responsible for a 28% increase in the number of wells.
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CHAPTER 3

The Investment Outcomes of Vertical Integration

3.1 Introduction

This article measures the impact of vertical mergers on investments. Vertical integration

may solve hold-up problems for the integrating firm while exacerbating them for its down-

stream rivals (Grossman and Hart 1986, Bolton and Whinston 1991). Though integration

could significantly affect the incentives to investment, empirical evidence on the investment

outcomes of vertical mergers is still limited (Crawford et al., 2018). From an antitrust stand-

point, quantifying these effects is important. How vertical integration affects investments,

and its ultimate impact on welfare, has fueled the debate over recent and past mergers in

the entertainment industry (e.g., Live Nation and Ticketmaster in 2010, AT&T and Time

Warner in 2016).

Quantifying the investment effects of integration posits two major empirical challenges.

First, it is difficult to isolate the input patterns between upstream suppliers and downstream

distributors. Second, it is difficult to observe the measures of asset-specific investments. To

overcome these challenges in this article I conduct a retrospective analysis of a series of

vertical mergers and their investment effects both for the integrating firm and its rivals. The

analysis is based on a comprehensive data set on the US motion picture industry, compiled

from numerous sources.

The data set comprises project-level financial and technical information, the universe of

companies involved in financing, producing and distributing each project, and firm-level own-
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ership structure during the period 1997-2019. I use this unique data set to distinguish movies

distributed by the production company’s downstream counterpart from those distributed by

the distribution divisions of unintegrated studios. It is crucial for the analysis that the data

include the production budget of each project, which measures quality-enhancing investments

that increase the movies’ ability of capturing demand.

My focus on the US motion picture industry is motivated by several factors. First, the

contracts involved in the production of movies offer a unique opportunity to conduct this

analysis. The industry features upstream producers investing in the production budgets

of multiple projects while securing long-term contracts with downstream distributors that

implement marketing campaigns and secure exhibition slots. This structure resembles the

multilateral settings studied in Bolton and Whinston (1991). In their framework, multiple

downstream distributors compete to trade with an upstream supplier. Second, there is

significant ownership variation across firms and time. The research design benefits from this

variation, allowing me to implement a staggered difference-in-difference. Third, the detailed

data on project-level production expenditures allows me to directly measure the changes in

investments.

Moreover, I can distinguish the movies distributed by the integrating distributor from

those distributed by its rivals following a vertical merger. This provides me enough power

to split the data in two samples and separately identify the causal impact of mergers on

investments both for the integrating counterpart and its rivals. In this article I focus on the

upstream investment decision problem that is, the choice of how many resources to allocate

to movies’ production budget. I find that on average vertical mergers increase investments

in movies distributed by the integrating firm by $75 million, a 72% increase compared to the

pre-merger scenario. By contrast, vertical integration reduces investments for the integrating

firm’s rivals by $21 million, a 37% decrease compared to the pre-merger scenario.

Several factors can explain the causal effect of vertical mergers on investment. The most

relevant from an antitrust standpoint is the change in marginal returns from investment.
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This would support the property right theory and inform the analysis of future mergers.

Indeed, as long as contractual incompleteness holds, industries experiencing vertical inte-

gration should feature investment outcomes analogous to the ones estimated in this article.

However, vertical mergers could also relax the credit constraints for the upstream produc-

tion company. Distributors are generally part of large entities, called studios, which have

easy access to equity and debt markets. Therefore, vertical integration could reduce the

cost of capital for a stand-alone company. This might conflate with the hold-up explana-

tion. Lastly, industry-specific technological factors could magnify the effects of integration

in movie investments.

An important contribution of this article is to speak to the mechanisms behind these out-

comes. My goal is to separate the financial frictions and industry-specific technology from

the changes in the marginal return on investment after integration. To this end, I build

a within-firm resource allocation model in the spirit of Giroud and Mueller (2019) who il-

lustrated how financially constrained firms operating in multiple regions allocate internal

resources in response to regional shock. In my article, the purpose of the model is three-

fold. First, it provides testable empirical implications to rule out the relevance of financial

constraints. Second, it specifies an empirical production function of movie tickets, whose

out-of-sample estimation measures the role of the technological parameter. After estimating

the movie tickets technology, I back out the implied change in the revenue internalization

rates. This allows me to separate the role of industry-specific technology from the change in

the internalized marginal returns from investments.

The main endogeneity threat in the production estimation comes from the unobserved

productivity of upstream production companies. I leverage the movie-level covariates to

sidestep the restrictive assumption of time-invariant productivity. Instead of recovering the

unobservable productivity by inversion, such as in Olley and Pakes (1996), I model it as a

function of companies’ fixed effects and time-varying movie characteristics. Formally, the

key identifying assumption is that the unobserved productivity term is separable and addi-
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tive in the production company’s fixed effect and movie-specific covariates. This assumption

identifies the production function that transforms the production budget into movie tickets.

Lastly, I replace the production function estimates and the difference-in-difference reduced-

form estimates into investment first-order conditions. Inverting this equation I recover the

implied change in revenue internalization rates when production companies are making in-

vestment decisions.

The change in revenue internalization rates is the key mechanism responsible for the effects

on investments according to the property right theory. I estimate that vertical integration

increases the ex ante internalized returns by 37% when the upstream production company

invests in projects distributed by its downstream counterpart. By contrast, vertical inte-

gration reduces the internalized returns by 14% for movies distributed by its downstream

rivals. This change in internalized marginal returns from investments explains the previously

quantified effects of vertical integration on production budget.

These results suggest that the integrating firm solves hold-up concerns while reducing

investments that would benefit its downstream rivals. My results highlight the importance

of measuring the investment outcomes of integration when conducting merger evaluations.

The impact of a vertical merger on investments is large and, most importantly, driven by

a change in internalized marginal returns from investments. This implies that long-term

contracts fall short in substituting firm boundaries. As long-term distribution contracts are

pervasive of many industries, the patterns of the motion picture industry are likely to arise

in mergers consummated in other industries.

Related Literature. Despite the voluminous literature examining the reasons of inte-

gration, few articles have explored its outcomes (Crawford et al., 2018). Most of these stud-

ies (e.g., Chipty (2001), Hastings (2004), Ciliberto (2006), Gil (2007), Villas-Boas (2007),

HortaÃ§su and Syverson (2007), Mortimer (2008), Lee (2013), Atalay et al. (2014), Crawford

et al. (2018), Luco and Marshall (2018), and Yang (2020)) focus on the effects of vertical

56



integration on output prices, holding investments constant. A notable exception is Cilib-

erto (2006) who focused on investment decisions of hospitals that vertically consolidated

the provision of healthcare services. Lastly, Yang (2020) built a structural industry model

to evaluate the impact of integration on innovation via simulations in the system-on-chip

industry.

My contribution to the literature is twofold. First, I measure the effects of vertical integra-

tion on investments in multilateral settings. Second, I provide direct empirical evidence on

the mechanisms through which integration operates. Specifically, ownership affects invest-

ment, changing the ex ante internalized marginal return. This mechanism is not industry

specific, but potentially applies to many industries and markets, and lies in the contractual

primitives of the economy. Therefore, these results directly inform the antitrust debate on

whether the ownership of content by distributors harms welfare in recent mergers in the cable

TV industry. Moreover, I highlight the importance of accounting for the whole network of

firms trading with a specific supplier.

Finally, I contribute to the strand of literature that studies the motion picture industry

(e.g., Corts (2001), Einav and Orbach (2007), Gil (2007), Palia et al. (2008), Gil (2008),

Gil (2015), Waldfogel (2017), Caoui (2019)). In terms of vertical arrangements, this lit-

erature mainly focuses on the relationships between theatrical exhibitors and distributors.

Gil (2008) studies how firm boundaries affect prices and efficiency focusing on the relation

between movie theaters and distributors. His main metric of interest is the length of movie

run. One exception is Corts (2001), who studies how vertical structures between studios

and production companies affect movie release dates, specifically, how vertically integrated

distributors strategically determine the release dates to minimize profit cannibalization. The

author interprets his results in light of the common agency theory elucidated in Bernheim

and Whinston (1985). I contribute to this literature by analyzing how production budgets

change as a consequence of the integration between studios and production companies. My

focus on the production and distribution side, together with revenue and budget data, allows
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me to quantify the mechanisms explaining the effects of integration.

3.2 Institutional Detail and Data

This section describes the structure of the US motion picture industry and the contrac-

tual features that open the way for vertical mergers to shape investment patterns. It then

summarizes the data at hand.

3.2.1 Industry Structure

The industry is composed of two types of firms: stand-alone production companies involved

in the development and production of movies, which represent the upstream side of the in-

dustry, and studios responsible for distribution and marketing campaigns. However, studios

are large corporations that generally own several production units together with their dis-

tribution and marketing divisions. In contrast, stand-alone production companies do not

have a distribution division, and sign long-term distribution deals with studios to distribute

their projects. This article focuses on the investment outcomes of vertical mergers between

studios and stand-alone production companies.

Figure 3.1: Industry structure: Pre-Merger

U3U2U1

D1D2
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Figure 3.2: Industry structure: Post-Merger

U3U2U1

D1D2

To fix ideas, Figures 3.1 and 3.2 describes how these vertical mergers affect the industry

structure. Specifically, I focus on scenarios where a stand-alone company, U1 in the example,

had signed long-term distribution deals with one or more studios before the merger. These

studios each operate a downstream distribution unit; in the example the blue studio owns D1,

and the green studio, D2. This situation is described in 3.1, where the arrows indicate U1 is

distributing movies through D1 and D2. The blue studio is already controlling two upstream

production divisions, U2 and U3. This article studies how investments in projects produced

by a stand-alone company, U1, change after the integration with a studio, D1. It quantifies

the impact of the vertical merger on investments for movies distributed by D1, which is part

of the integrating firm, and by D2, which directly competes with the downstream division

D1. The new industry structure is represented in 3.2.

To clarify the timing and the type of investments I describe the value chain of movies.

Before theatrical exhibition, each movie goes through a sequence of distinct stages. The

following description holds with generality for movies with a production budget above $5

million. 1 During the development phase a production company acquires the intellectual

property rights over a “source”. The latter might be a comic character, a book or a video

game. The company hires a writer, or a team of writers, to create a screenplay based on the

source. Once the screenplay takes shape, it is matched to a creative team that selects the

primary cast members, the line producer and the director. In the meanwhile, the projected

budget is accurately compiled, net of the marketing expenditures. The screenplay, projected

1Low-budget movies rely on peculiar funding sources and go through heterogeneous bargaining protocols.
For this reason I exclude them from my analysis.
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budget and creative team form the “package”. This is the essential input to produce the

final good. The production company finances the project up to this point. Development

expenditures range from 5% to 20% of the total production budget.2

After the development stage, substantial funding is needed to bring the movie into pro-

duction. Corts (2001) and Palia et al. (2008) analyze contractual efficiency in the US movie

industry. In their analysis, they provide an exhaustive description of the basic financing

arrangements. Aggregating these forms to a relevant level for this article, two main sce-

narios arise. On the one hand, production funding is uniquely provided by the production

company. On the other hand, the movie is co-financed by the production company and the

studio. In the first scenario, the quality enhancing-investments are incurred only by the up-

stream company, whereas in the second scenario both the downstream and upstream firms

invest in content quality. Once financing has been secured, the project enters the production

phase, which encompasses both filming the movie and post-production activities such as

editing and creating visual effects. Each title’s production budget encompasses expenditures

incurred up to this point.

The very nature of movies as products clarifies why these expenditures are quality-enhancing.

Adding more features, and therefore spending more on production, can make a movie more

appealing to an audience3. Importantly, marketing and advertising costs do not enter the

gross production budget. These expenditures are concentrated early in the release cycle,

after production, and they are sustained only by the studio’s distribution arm, which at the

same time bargains with exhibitors to secure screens and favorable showtime. These stages

and the firms involved are described in Figure 3.3.

Two contractual features create the basis for vertical mergers to affect investments. First,

production companies sign long-armed distribution agreements with studios. The contracts

2The Guardian: Anatomy of a blockbuster, 2004 ; I corroborated this statistic by examining data from
several movies whose budget breakdowns are publicly available due to the Sony data breach lawsuit, such
as Sahara and Pixels

3In Appendix A I extensively discuss the extent to which the production budget measures quality-
enhancing investments.
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Figure 3.3: Supply Chain
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cover a slate of movies during a well-defined time window4. Potentially, both parties benefit

from the long-term nature of the contract. Production companies secure a distribution

outlet, which in turn helps them to raise funding from external investors. Studios secure

a steady flow of inputs, which avoids disruption or delays in production. However, due

to the contracts’ length, the specific projects that fall under the contracts’ umbrella are

not specified. Usually, only the quantity of movies to be supplied downstream is clearly

defined. Thus, specific investments are ex ante unknown. Concretely, it is impossible to

determine the best leading actor for a role without a finished screenplay. This prevents firms

to write complete contracts that include ex ante the amount of resources a studio invests in

exchange for quality-enhancing actions. Out of necessity, the production budget is not ex

ante contractible but determined ex post in the project-specific development stage.

The other contractual feature relevant for investment outcomes is profit sharing. The

production company and the distributor jointly hold rights over the gross profits of the movies

within the distribution deal. Under the so-called net deal the distributor collects a percentage

of the gross rental, to recoup its advertising expenditures from the remaining revenues before

4DreamWorks Animation and 20th Century Fox sealed a distribution deal on August 18, 2012, with an
“output term of 5 years”.
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distributing the net proceeds to the production company (Corts (2001)). Sellout contracts

allocating the full residual profit claim to a single party are virtually nonexistent. Two main

reasons undermine the two-part tariffs in this industry. First, these contracts are ineffective

to alleviate double-sided moral hazard. The latter arises when investments take place on

both sides of the market, such as in the motion picture industry, where the distributor incurs

marketing expenditures whereas the production company invests in the production budget.

Second, franchise fees have significant drawbacks when firms are risk adverse and the final

demand is uncertain. In a “nobody knows world” 5, such as the motion picture industry,

this concern has a solid foundation. Therefore, the marginal returns from quality-enhancing

investments are never allocated to a single company. By contrast, vertical integration makes

the studio the only residual claimant over its investment. Consequently, the incentives to

invest may drastically increase for the integrating studio.

These features of the contractual environment posit the theoretical basis for two out-

comes and justify the analysis that follows. Specifically, integration could solve hold-up

problems for the integrating firm, raising investment levels. However, during the unwinding

of long-term distribution deals between a studio and a production company, a rival studio

might acquire the upstream production company. After the merger, the production com-

pany directly competes against the unintegrated distributor in the output market. Thus,

the production company might degrade the input quality, benefiting downstream rivals by

reducing investments.

3.2.2 Data

I divide the core of my data into two broad categories: movie-financials, which measure

expenditures and revenues associated with each project, and firm-financials, which include

each company’s ownership-organizational structure, entry year, and the activity carried out

within the production and distribution of each movie. Additionally, the data set contains

5Waldfogel (2017)
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detailed project-level technical details.

Opus Movie Database. The Opus Movie Database is the backbone of the data set.

It spans 21,000 movies released or re-released in theaters from 1997 to the beginning of

2019. Among these titles 13,254 were released in the US. Movies’ financials are the first key

information contained in the Opus Database. For each movie the database includes box office

revenues (domestic and international6), domestic DVD sales with associated revenues and

the project’s production budget. This information is complemented by detailed technical

characteristics of each film. The most important for this article are the MPAA ratings and

a sequel indicator, because they proxy project-specific risk. For the sake of exposition, I

describe other technical attributes only when they are directly included in the following

analysis. Table 3.1 provides summary statistics for movies with a production budget greater

TABLE 3.1. Opus Movie Database: Descriptive Statistics

N Mean SD Min Max

Production budget ($ million) 2692 50.99 50.75 5.00 425.00
Domestic box office ($ million) 2692 66.13 85.36 0.00 936.66
International box office ($ million) 2692 88.91 153.30 0.00 2015.84
DVD & Blu-ray units (million) 1810 1.75 2.57 0.00 24.11
DVD & Blu-ray revenues ($ million) 1446 29.04 47.68 0.02 548.89
Opening weekend theaters 2692 2216.13 1349.89 1.00 4662.00
Maximum theaters 2692 2417.98 1182.04 1,00 4662.00

Running time (minutes) 2586 110.07 18.12 42.00 201.00
IMAX 2692 0.08 0.28 0.00 1.00
Sequel 2690 0.13 0.33 0.00 1.00
Wide 2692 0.77 0.42 0.00 1.00
G-rated 2688 0.02 0.14 0.00 1.00
PG-rated 2688 0.15 0.36 0.00 1.00
PG13-rated 2688 0.41 0.49 0.00 1.00
R-rated 2688 0.40 0.49 0.00 1.00

Notes: The sample includes data on movies released in theaters from 1997 to 2019 and having
a production budget above $5 million. Production budget, box office data and DVD revenues
are in millions of dollars. Production budget does not include marketing costs and advertising
expenditures incurred to promote the movie.

than or equal to $5 million. This subset adds up to 2,692 movies. The average production

6In what follows the attribute “domestic” refers to US data, and “international” refers to other territories.
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budget and domestic box office are $56 and $71.62 million, respectively.

The second key piece of information included in the Opus Database is the US distributor

and the companies involved in financing, developing and producing the movie. Three sets of

dummies allow me to disentangle the exact role of each company. The “financing” indicator

identifies the companies that funded the movie. Additionally, the “production” dummy

isolates those firms that carried out the physical shooting of the movie. Finally, co-financiers

are recorded with the “in association with” flag set. This set of information falls within

firm-financials, and allows me to match the studio’s distribution branch with the upstream

companies investing in the project.

Ownership Data. In this article, the research design leverages the time variation of

ownership configurations to identify the investment outcomes of vertical mergers. I focus on

firms that financed at least two projects with a budget greater than or equal to $5 million

dollars. The set of companies in my data spans 106 distribution arms and 151 produc-

tion companies, for a total of 257 entities. However, the previous count conflates different

subsidiaries under the same company with independent firms. Indeed, the Opus Database

displays only the names of companies involved in each project. In order to fill this gap, I

manually reconstructed the ownership of each company mainly from the Orbis Database. I

was able to match each firm to its parent company. The latter is the corporate that the Or-

bis Database credits as directly holding the majority of shares. Then, I matched the parent

companies with their ultimate global corporate owner. When possible, I corroborated this

information with publicly available information such as companies’ SEC filings. With this

data at hand I observe the production companies that underwent a vertical merger between

1997 and 2019. Figure 3.4 displays all the vertical acquisitions consummated between 1997

and 2019 in the US motion picture industry, with the acquired upstream companies and their

respective buyers. For instance, Pixar operated as a stand-alone company until 2005 and

became vertically integrated with The Walt Disney Company in 2006 in a $7.4 billion deal.

This article ignores partial vertical integration and vertical disintegration, and focuses on
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Figure 3.4: Vertical Mergers Timeline

Notes: Production companies that experienced a vertical merger between 1997 and 2019. In each cell there

is the ownership share of the downstream studio for the row-specific developer. The years when the developer

operated as independent are marked by an “x”. By contrast, “.” indicates those years when the developer

had not been founded yet. Majority shares are reported with “> 50” if the Orbis Database does not provide

the exact percentages. Relativity Media acquired Focus/Rogue’s distribution assets and started to release

movies to theaters. As a result, the underlying production arm became vertically integrated.

vertical mergers where the downstream studio acquires more than 50% of the shares of the

production company. Majority deals grant the acquiring firm full control over the upstream

asset. Therefore, I retrospectively analyze the investment outcomes of eight vertical mergers.

7

Based on ownership and input patterns, I divide the data as follows. First, I select movies

financed by production companies that underwent a vertical merger during the time win-

dow covered by the data. Then, I divide post-merger movies distributed by the integrating

studio (in-house movies) from those distributed by unintegrated studios (outward movies).

This procedure generates two distinct subsamples. The first subsample includes in-house

post-merger movies and pre-merger movies (in-house sample). Pre-merger movies are those

produced in an “unintegrated” fashion because in absence of a distribution arm, the produc-

tion company had to sign distribution deals with studios.

7The final list of majority vertical mergers analyzed in the article is Lionsgate-Mandate, Lionsgate-
Summit, Paramount-MTV, Relativity-Focus, Disney-ImageMovers, Disney-Lucas, Disney-Marvel and
Disney-Pixar.
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I excluded these mergers from the in-house sample for the following reasons. Mechanically,

Mandate kept distributing movies only through different distributors, falling in the outward

category. I excluded Relativity to maintain homogeneity in the economic rationale behind

integration and the interpretation of results. Relativity differs from the other vertical mergers

because it internally integrated by opening its own distribution branch. Therefore, there was

not a potential hold-up issue between an existing studio and an upstream producers that

called for a reallocation of property rights between two existing firms.

Finally, the second subsample includes post-mergers outward movies and pre-merger un-

integrated movies (outward sample). The three mergers for which I observe post-merger

outward movies are Marvel, which had deals with Sony, Paramount, and Universal, Rel-

ativity Media and Mandate. Mechanically I had to exclude other production companies,

such as Pixar, because they kept distributing solely with the integrating studio. Despite the

altogether foreclosure of rival studios leading to potentially anticompetitive outcomes per se,

I lack an appropriate counterfactual to measure these effects.

The in-house sample includes a total of 133 titles, and the outward sample includes 98

titles. I augment each subsample with a group of “never treated” titles, i.e., movies origi-

nating from production companies that did not change ownership over time (either they had

always been vertically integrated or were unintegrated from 1997 to 2019). I provide more

detail on the selection criteria in the following section. Table 3.2 concludes this section,

displaying the summary statistics of the two augmented subsamples.
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TABLE 3.2. Augmented In-house and Outward Sample, Descriptive
Statistics

In-house Sample
N Mean SD Min Max

Production budget ($ million) 621 74.84 61.18 5.00 356.00
Domestic box office ($ million) 621 104.49 117.50 0.01 936.66
International box office ($ million) 621 150.36 202.84 0.00 1842.81
DVD & Blu-ray units (million) 468 2.63 3.24 0.00 24.11
DVD & Blu-ray revenues ($ million) 385 44.46 55.96 0.08 341.51
Opening weekend theaters 621 2744.83 1209.02 0.00 4662.00
Maximum theaters 621 2923.98 967.69 0.00 4662.00
IMAX 621 0.18 0.38 0.00 1.00
Screenplay 621 0.51 0.50 0.00 1.00
Sequel 620 0.20 0.40 0.00 1.00
Wide 621 0.88 0.33 0.00 1.00
PG-rated 620 0.17 0.37 0.00 1.00

Vertical mergers 6

Outward Sample
N Mean SD Min Max

Production budget ($ million) 345 66.59 54.56 5.00 275.00
Domestic box office ($ million) 345 88.07 89.94 0.04 533.72
International box office ($ million) 345 120.44 158.02 0.00 960.50
DVD & Blu-ray units (million) 276 2.17 2.75 0.00 22.28
DVD & Blu-ray revenues ($ million) 216 39.87 57.66 0.02 548.89
Opening weekend theaters 345 2723.22 1144.38 2.00 4404.00
Maximum theaters 345 2905.43 909.19 5.00 4404.00
IMAX 345 0.13 0.34 0.00 1.00
Screenplay 345 0.56 0.50 0.00 1.00
Sequel 345 0.16 0.36 0.00 1.00
Wide 345 0.87 0.33 0.00 1.00
PG-rated 345 0.12 0.32 0.00 1.00

Vertical mergers 3

Notes: Both samples include data on movies released in theaters from 1997 to 2019 and having a

production budget above $5 million. Production budget, box office data and DVD revenues are in millions

of dollars. The production budget does not include marketing costs and advertising expenditures incurred

to promote the movie. The Marvel acquisition belongs to both subsamples, though two disjoint subsets of

projects are included in the post-merger scenario.

3.3 The Causal Effect of Vertical Mergers on Investments

This section estimates the causal impact of vertical acquisitions on upstream investments. I

show that after vertical integration, the production budget substantially increases for movies

produced by the integrated company and distributed by its downstream counterpart. Con-

versely, movies distributed by rival studios experience a sharp and persistent decrease in

their production budget after vertical integration. I estimate a difference-in-difference model
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which identifies the average treatment effect of vertical mergers on investments. I separately

run it on the in-house and outward sample. Thus, the in-house sample identifies changes in

investments benefiting the integrating unit, whereas the outward sample identifies changes in

investments affecting the integrating unit’s rivals. Identification posits two main challenges.

First, integrated production companies might be on a different investment trajectory than

the full population. To address this challenge, I match each upstream production company

that underwent vertical integration to a placebo firm that did not change ownership. Second,

vertical mergers are endogenous. To mitigate this concern, I show that outcomes diverge

only after the merger.

A preliminary step to implement the research design is defining an appropriate control

group. I leverage the large number of upstream companies that did not change ownership to

identify the counterfactual. The selection procedure isolates a control company, minimizing

the distance on average investments between the assigned treated company and the control

group. This procedure is described in detail in Appendix B.3. After selecting the control

group for each sample, I specify a movie-level model where the passing of calendar time is

pinned down by movies’ production years. Specification 3.1 measures the dynamics of the

effects, while at the same time probing the validity of the research design by testing whether

there appears to be any effect of vertical mergers before the acquisition actually occurs 8.

Ymjt =
l∑

k=−l

βAllk I{LAllmjt=k} +
l∑

k=−l

βkI{Lmjt=k} + ζt + ζj + βzZmjt + εmjt. (3.1)

Here Ymjt is the production budget of moviem, financed by the upstream company j in year

t. This outcome variable is a function of a full set of leads and lags around each acquisition,

Lmjt = tm −Mj = k, where Mj is the year company j became vertically integrated and tm

is the production year of movie m produced by the treated firm. The specification includes

a set of leads and lags Lallmjt = tm −Mj = k, where Mj is the year of the vertical integration

8This specification follows Jaravel et al. (2018)
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of company j and tm is the production year of movie m produced by the treated firm and its

placebo firm. The additional leads and lags serve the purpose of better capturing the time

trends common to the treatment and control groups around the merger years. Moreover,

following Palia et al. (2008), I add a sequel indicator and MPAA rating control for project-

specific risk. The indicators for the production method and opening pattern complete the

set of covariates. These variables are denoted by Zmjt. Lastly, ζt and ζj denote production

year and production company fixed effects, respectively. The coefficients of interest are

{β(k)}lk=−l. The effects of interest are identified as long as E[I{Lmpt=k}εmpt|Xmpt, t, j] = 0.

Figures 3.5a and 3.5b report the point estimate and the 90% confidence intervals for

the coefficients βk obtained from specification (1). The lack of a pre-trend for any of the

subsamples supports the identifying assumption. The set of coefficients drastically differ

in the two samples. Following the merger, projects distributed by the integrating unit

experience a sudden and persistent increase in their production budget compared to pre-

merger levels. By contrast, after the merger projects distributed by the integrating unit’s

rivals experience a sudden and persistence drop below pre-merger levels.
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Figure 3.5: Identification Assumption and Dynamic Effects

(a) Inhouse pre-trends

(b) Outward Sample

Notes: Production budget is expressed in million dollars. The
red vertical line is the year before the production company’s
takeover. The coefficient β(−1) is normalized to zero. Standard
errors are robust to heterogeneity.

To quantify the average impact of vertical mergers on investments, I employ a second

specification with a dummy that becomes 1 after a vertical merger. Specifically,

Ymjt = βAllAfterMergerAllmjt + βAfterMergermjt + ζt + ζj + βzZmjt + εmjt. (3.2)
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Under the identification assumption, β captures the average causal treatment effect of vertical

mergers on the production budget. The AfterMerger dummy’s coefficient accounts for a

maximum of 10 years following the acquisition9. Vertical integration significantly raises

investments benefiting the integrating firm.

The investments in the production budget increase on average by $72.4 million for projects

distributed by the integrating studio compared to pre-merger levels, as reported in column

(3) of Table 3.3. Comparing the estimated effects with the average budget of projects

produced before the mergers shows the economic relevance of these estimates. Indeed, the

outcome corresponds to an average increase of 73.5% compared to the pre-merger level.

Conversely, vertical mergers negatively affect investments in projects distributed by rival

studios. The investments in the production budget decrease on average by $26.6 million

for projects distributed by the integrating unit’s downstream rivals. This corresponds to an

average decrease of 47% compared to the pre-merger level. The effects are robust across the

specifications of Table3.3, bolstering confidence in the magnitude and economic importance

of the results.

The increase in investments for the in-house sample is consistent with the internalization

of larger profits by a vertically integrated firm. The theoretical foundation for these effects

lies in Hart and Moore (1990), Bolton and Whinston (1991) and, in general, the property

right theory. Additionally, these outcomes support a recent article by Yang (2020), who

studies complementary innovation in vertical industries. Here, integration leads to a joint

maximization problem that solves under-innovation stemming from firms’ failure to internal-

ize complementarities when separated. Counterfactual simulations suggest that integration

increases coordinated investments. In the movie industry, upstream producers invest in prod-

uct quality (production budget), and downstream distributors complement the investment

with expensive advertising campaigns (which in many instances exceed the production bud-

get). Both investments are key for the project success. Therefore, my results complement

9Appendix B presents the short-term outcomes computed restricting the leads to a maximum of five years
after the acquisition.
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TABLE 3.3. Causal Effects of Vertical Mergers on Production Budget ($
million)

Dependent Variable: Production Budget ($ million)

(1) (2) (3) (4) (5) (6)
Specification In-house In-house In-house Outward Outward Outward

AfterMerger 73.400*** 75.206*** 72.354*** -19.203** -21.136** -26.609**
(20.293) (20.913) (22.847) (8.895) (8.470) (7.586)

AfterMerger (All) 7 3 3 7 3 3

Time-varying controls 7 7 3 7 7 3

Company FE 3 3 3 3 3 3

Year FE 3 3 3 3 3 3

Mean pre-merger outcome 105.263 105.263 105.263 88.600 88.600 88.600
Observations 622 622 620 345 345 345
Adjusted R-squared 0.435 0.435 0.489 0.258 0.258 0.358

Notes: Results are computed using all available observations. Standard errors in parentheses; *** p<0.01; ** p<0.05;*
p<0.1. Standard errors are block-bootstrapped at the production company level with 200 replications. Each specifica-
tion uses movies’ production budget as the dependent variable expressed in million dollars. The AfterMerger dummy
includes 10 leads after the year of merger.

and support Yang (2020), providing a retrospective analysis and data from vertical mergers

consummated in the entertainment industry.

The reduction in the production budget instead resonates with supply assurance concerns.

Specifically, it speaks in favor of a change in competitive incentives in line with the theory of

Bolton and Whinston (1991). The reduction in investments decreases the attractiveness of

projects distributed by the integrating unit’s rivals, softening competition for the integrating

firm on the output market.

At the same time, entering a studio can alleviate the credit constraints for the upstream

producer. Studios are diversified firms with access to equity and bond markets and a vast

amount of pledgeable collateral. This mechanism conflates with the change in profit internal-

ization, complicating the interpretation of the increase in investments. Similarly, the higher

debt burden together with financial frictions could be partially responsible for the drop in the

production budget. This is a relevant threat to the interpretation, in particular in light of the

fact that a large part of the variation in the outward sample comes from Relativity Media,

who vertically integrated by opening a distribution branch. The initial debt burden might
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curtail initial investments, conflating with the difference-in-difference estimates. Therefore,

in what follows I partially mitigate these concerns by explicitly testing the relevance of credit

constraints and isolating other competing mechanisms explaining the outcomes of interest.

3.4 A Model of Within-firm Resource Allocation

This section presents a model of optimal within-firm resource allocation to illustrate how

ownership configurations, technology and financial constraints affect upstream investments.

First, I describe the industry structure where firms make investment decisions. There are a

set N of upstream production units, {Un}Nn=1, and a setM of downstream distribution units,

{Dm}Mm=1. The set of active firms in the industry, F , can be partitioned in two categories,

studios and stand-alone companies. Each studio controls a subset J of upstream production

units, {Un}n∈J , and has access to the output market through the ownership of a distribution

unit Dm. 10 In contrast, stand-alone companies operate only a single upstream production

unit Un. To access the output market, a stand-alone company must sign a distribution deal

with the studio.

I focus on the upstream investment decision problem. That is the choice of how many

resources to allocate to movies’ production budget. The problem is static, and input choices

are centralized at the firm level. At the beginning of each period t, each production unit is

endowed with resources Cn. The firm pools resources and reallocates them among production

units. I assume that the divisions along the supply chain do not compete for resources. This

subsumes that production budget investments do not crowd out resources to advertisement

expenditures. The assumption is justified by the complementarity of the two investments.11

10In reality, studios contract with movie theaters and obtain a cut of the box office. In this article, I ignore
the strategic price interaction of motion picture chains. This is motivated by the industry practice to split
the tickets’ revenue in half between studios and motion picture chains. Bargaining influences mostly the
number of opening screens, which I observe in my data and can control for. In the difference-in-difference
specification, the opening indicator proxies this margin. In the robustness check section I will directly control
for the number of opening theaters, to further neutralize this channel.

11A movie with a very high production budget and no marketing campaign is likely to suffer large losses.
Similarly, large expenditures in marketing must be backed up by the high quality of the movie (reflected in
the production budget).
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The industry produces a homogeneous good, movie tickets, using a technology that trans-

forms the production budget Ln invested in t into t+ 1, according to

Yn = fn(Ln) = eωn(Ln)α, (3.3)

where the time index is omitted in virtue of the static nature of the model. Here ωn is

the unit’s productivity and α is the constant investment elasticity of production. In the

following section I provide an additional micro-foundation to this functional form. Revenues

from tickets’ sales are expressed as pfn(Ln), where p is the price of a movie ticket. To

simplify notation, each production unit Un produces one movie per period. Extending the

model to accommodate a production unit to produce multiple projects does not affect the

investment choices, as long as the budget constraint and resource allocation remain at firm

level. Therefore, Ln can be interpreted as the production budget of a movie.

Contractual features enter as an ownership-dependent primitive of the model. The own-

ership status of the upstream production company affects the firm’s revenue internalization

rate, and in turn this affects the input allocation choices. Specifically, the internalized rev-

enues are τ(pfn(Ln)), where τ ∈ ({τ(v), τ(s)}), and v and s indicate the ownership status of

the upstream production unit, vertically integrated or separated, respectively. The parame-

ter τ can be rationalized as summary statistics of rent-seeking behavior, complementarities

of investments and anticompetitive incentives. In presence of hold-up problems when making

investment decisions, or anticompetitive incentives, I expect τ to be lower than one. Sim-

ilarly, if integration solves the hold-up issues for the integrating firm, τ increases, because

the firm appropriates all the returns from investments.

Firms invest in production units to maximize profits. A stand-alone company f controls a
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single production unit Uj, and thus produces only one movie in the baseline model, solving

max
Lj

τ [pfj(Lj)]− Lj

s.t.

Lj ≤ Cf ,

where τ = τ(s). Denote λ the Lagrange multiplier associated with the budget constraint.

The firm maximization problem is equivalent to

max
Lj ,λ

τ [pfj(Lj)]− Lj + λ[Cj − Lj]. (3.4)

The Kuhn-Tucker conditions are

τ(s)pf ′j(Lj) = (1 + λ) (3.5)

Lj ≤ Cj (3.6)

λ[Cj − Lj] = 0; λ ≥ 0. (3.7)

When the resource constraint binds, λ > 0, then Lj = Cj. An increase in the production

unit’s initial resources perfectly correlates with an increase in the unit’s production budget.

Now I focus on the optimal allocation of inputs to the same production unit if it were

controlled by a studio. There are two major changes. First, the production unit is vertically

integrated. Second, the production unit gains access to larger internal capital markets.

Denote Ig the set including the production units controlled by the studio before the merger

and the acquired production unit j. In each period after the merger the studio maximizes
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profit solving

max
{Li}i∈Ig

∑
i∈Ig

{
τ(pfi(Li))− Li

}
s.t.∑
i∈Ig

Li ≤
∑
i∈Ig

Ci.

Denote λ the Lagrange multiplier associated with the budget constraint. The firm maxi-

mization problem is equivalent to

max
{Li}i∈Ig

∑
i∈Ig

{
τ(pfi(Li))− Li

}
+ λ[

∑
i∈Ig

Ci −
∑
i∈Ig

Li]. (3.8)

The Kuhn-Tucker conditions are

τ(v)pf ′i(Li) = (1 + λ) ∀i (3.9)∑
i∈Ig

Li ≤
∑
i∈Ig

Ci (3.10)

λ[
∑
i∈Ig

Ci −
∑
i∈Ig

Li] = 0; λ ≥ 0. (3.11)

Equations 3.5 and 3.9 show that the optimal amount of resources invested in unit Uj increases

with the rate of revenue internalization, τ , and diminishes with the severity of the financial

constraints, λ. Before leveraging the first-order conditions to directly estimate τ , I derive the

following result: When the firm’s resource constraint binds, investment Lj in production

unit j is less sensitive to the unit’s cash flows, Cj, if the firm controls multiple upstream

production units than if it controls a single upstream production unit. The proof is in

Appendix B.4. If the stand-alone company controlling j is financially constrained and gets

acquired by a studio, the model predicts that the investments in the production unit j

become less sensitive to the initial unit cash flow Cj. Intuitively, a studio allocates its
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investment across multiple upstream assets to smooth idiosyncratic productivity shocks. In

contrast, a financially constrained stand-alone production company is fully dependent on

its productivity sequence. Instead, if companies had perfect access to external funding,

ownership would not impact credit constraints. Regardless of its size, a firm would borrow

the amount necessary to satisfy the unrestricted optimality condition (λ = 0). I use this

result to directly test for the effect of vertical mergers on credit constraints.

3.5 Mechanisms

The final contribution of this article is to quantify the different mechanisms behind the

change in investments. To this end, I proceed in three steps. First, I perform a reduced-form

test to assess the relevance of credit constraints. Second, I estimate the production function

of movie tickets to pin down α, i.e., the conversion rate of investment into output. Third, I

isolate and estimate the change in the ratio
τj(i)

τj(s)
. The last two steps serve to distinguish the

change in marginal returns from investments from the industry specific-technology. This is

important in light of the multiple combinations of α and
τj(i)

τj(s)
that can originate the reduced-

form evidence. Different combinations of these objects can originate the same investment

effects in the data.

In principle, α and the ratio
τj(i)

τj(s)
are not separately identified from the optimality con-

ditions. With only data on budget, it would not be possible to separately identify the

technological parameter alpha from the difference in marginal returns between integrated

and non-integrated production companies. However, I also observe output, which is proxied

by box office revenue. Thus I overcome the identification problem in two steps. First, I

estimate the production function. Then I leverage the investment first-order conditions to

pin down the difference in internalized marginal returns.

Identifying both components is crucial for policy implications. Intuitively, suppose the

investments’ effect arises because of a very large alpha and a negligible change in internal-

ized returns. The former mechanism is industry-specific. Therefore integration would have
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sizeable effects in the motion picture industry, but it would be unlikely to affect investments

in other industries or production processes. By contrast, the change in marginal returns from

investment is a function of the economic primitives of the markets. Hold-up problems lie

in contractual incompleteness, which plagues different contracting environments. Therefore,

if the predominant force explaining the estimated investment outcomes is a change in the

internalized return on investment, the results of this article will extend to vertical mergers

outside the entertainment industry.

3.5.1 Credit Constraints

Financial frictions posit the basis for vertical integration to affect investments through bor-

rowing constraints. With imperfect access to external capital markets, entering a diversified

studio could improve access to funds. At the same time, vertical integration could increase

the debt of the firm curtailing investments. Then, reducing borrowing frictions affects invest-

ment decisions. When the borrowing constraint binds, Lemma 3.4 proves that the production

budget correlates less with cash flows after a vertical merger, providing a testable implication

for the relevance of borrowing constraints.

Therefore, I aggregate the revenues from domestic box office at year- and production-unit

level. I use box office revenues as a proxy for available cash flows. The reason is twofold.

First, it maximizes the power of the test as I have domestic box office revenue for every

observation. Second, both the international box office and the additional revenue stream are

directly proportional to domestic box office. Then I specify the production budget in year t

as a function of cash flows, proxied by the domestic box office in year t− l, ownership status,

and the interaction between cash flows and ownership:

Ymjt = αBOj,t−l + γAfterMergermjt + βAfterMergermjt ∗BOj,t−l + βzZmjt + εmjt. (3.12)

The null hypothesis is that the coefficient on the interaction variable is not different from
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zero, implying that either credit constraints do not bind or they are orthogonal to the

ownership status. This suffices to rule out any confounding effects related to vertical mergers

affecting investments through changes in firms’ borrowing constraints. I run specification

3.12 separately for the in-house sample and the outward sample.

To robustify the results, I account for the possibility that the relevant cash flows for invest-

ments are from domestic box offices collected one, two or three years before the production

year of the movie (t − l ∈ {1, 2, 3}). Cash flows are correlated to investments, support-

ing the presence of borrowing constraints in the industry. The coefficient on the box office

variable in Table 3.4 is statistically significant and economically relevant in half of the spec-

ifications. Notwithstanding, vertical integration does not impact access to funds. In all the

TABLE 3.4. Test the Impact of Vertical Mergers on Borrowing Constraints

Dependent Variable: Production Budget ($ million)

(1) (2) (3) (4) (5) (6)
Specification t-l=1 t-l=2 t-l=3 t-l=1 t-l=2 t-l=3

Box-Office 0.235*** 0.104 0.173*** 0.142*** 0.100 0.065
(0.045) (0.064) (0.047) (0.047) (0.075) (0.221)

AfterMerger*Box-Office -0.056 0.065 -0.055 -0.082 -0.043 0.051
(0.060) (0.078) (0.073) (0.063) (0.082) (0.226)

Observations 96 93 84 80 71 59
Adjusted R-squared 0.379 0.224 0.199 0.298 0.208 0.310

Notes: Standard errors in parentheses; *** p<0.01; ** p<0.05;* p<0.1. Standard errors are robust to
heteroskedasticity at company level. Production budget, the dependent variable, and cash flows are mea-
sured in million dollars. Results in column (1)-(3) are based on the in-house sample, and results in columns
(4)-(6) are based on the outward sample.

specifications I do not reject the null hypothesis that the correlations between cash flows and

investments change after integration. Therefore, changes in ownership status do not reduce

financial frictions for stand-alone companies. Based on these results, in the rest of the article

I assume that credit constraints are independent from vertical mergers.

79



3.5.2 Technology

I estimate the technology transforming investments, measured by production budget, into

output, measured by movie tickets. The parameter governing this relation is industry spe-

cific. Conversely, the changes in investments’ marginal returns due to ownership apply to

a multiplicity of markets and industry. Quantifying the technological rate of transforma-

tion allows separating the portion of effects explained by industry-specific mechanisms from

those explained by hold-up problems and the anticompetitive rationale. The presence of

these latter mechanisms informs antitrust decisions outside the entertainment industry.

The industry produces a homogeneous good: movie tickets. Two types of investment are

required to bring a movie into theaters: production budget and advertising expenditures.

Those investments take place sequentially, and are incurred by divisions operating in differ-

ent levels of the industry. Upstream production divisions invest in the production budget,

whereas downstream distribution divisions invest in advertisement. These investments show

high complementarities, but are also partially substitute. A very famous actor, with a very

high salary, potentially offsets an ineffective marketing campaign. Accordingly, I model

tickets’ production according to a Cobb-Douglas production function:

Ymji,t+1 = eωmjt(Lmjt)
α̃(Ami,t+1)β̃.

Here ωmjt represents the productivity shocks that are potentially observable or predictable

by the production companies when they make input decisions; Lmjt indicates the production

budget invested by the upstream division j in year t; and Ami,t+1 represents the advertising

expenditures incurred by the distributor i.

Intuitively, the production budget can be thought of as a summary statistic of the phys-

ical input quality. The marketing investment expands the market creating awareness of

the project among potential consumers. The timing reflects the fact that an advertising

campaign generally starts in the post-production phase of the movie, whereas budget ex-
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penditures are set at the end of the development stage. Therefore, the distribution divisions

observe the production budget before making advertising expenditures. It is industry prac-

tice to calibrate the advertising expenditures on the project’s production budget. Motivated

by these facts, I assume that advertising is a function of production budget:

Ami,t+1 = h(Lmjt) = (Lmjt)
γ

Ymj,t+1 = eωmjt(Lmjt)
α,

where α = α̃+β̃γ. Therefore, log-advertisement expenditures in t+1 are directly proportional

to log-production budget investment in t. This transformation subsumes that there are no

underlying differences at distribution level. That is, the distribution units have the same

access to resources and ability to implement marketing campaigns. Generally, this is a

strong assumption. However, two characteristics of the industry mitigate this assumption’s

implications on my estimates. First, in the outward sample the distributor is held fixed

before and after the merger by construction. In the in-house sample, except for the Marvel

merger, the distributor remains constant before and after the vertical mergers. Second, the

distribution side of the industry is an oligopoly where the five major companies have similar

market shares. Thus, even for the subset of Marvel movies in the in-house sample the extent

of the unobserved marketing confounders is limited.

My goal is to identify and estimate α. To this end, I leverage the information on movie-

level box office revenues in the data. Studios are effectively price takers at the box office and

charge a common price P̃ . As argued by Einav and Orbach (2007), one reason lies within the

contractual features implemented to discipline movie theaters. However, box office revenues

are only a fraction of studios’ revenues. Nonetheless, ancillary revenues are proportional

to the box office success of a movie. Streaming video platforms, such as Netflix, acquire

the rights to stream the movie paying an amount proportional to the movie’s box office

success. Similarly, the revenues from theme parks are increasing in the theatrical success of
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the film. Given that ancillary revenues are directly proportional to theatrical sales, P ∝ P̃ ,

project-level revenues can be written as

Rmj,t+1(Lmjt) = Peωmjt+εmjt(Lmjt)
α, (3.13)

where εmjt is a log-normal idiosyncratic term. I estimate the trans-log of equation 3.13

rmj,t+1 = p+ ωmjt + αlmjt + εmjt, (3.14)

where p is the constant stemming from the OLS specification and represents the average

return from investment.

The technology parameter of interest, α, is recovered by variation in the observed pro-

duction budget. The main endogeneity threat in the production estimation comes from the

production-division unobserved productivity term. Thanks to the granularity of the data I

sidestep the restrictive assumption of time-invariant productivity, without having to recover

the unobservable productivity by inversion such as in Olley and Pakes (1996). Project-level

covariates, such as the sequel indicator, capture part of the time-varying productivity shock,

whereas I assume that the remaining productivity is time-invariant, and at the division level.

This reflects the talent present in the production division. Indeed, many of these compa-

nies were built around directors or producers who stayed and identified with the company

along its production activity. Formally, the key identifying assumption is that the unob-

served productivity term is separable additive in the production company fixed effects and

project-specific covariates:

ωmjt = ωj + ρzZmjt. (3.15)

Finally, identification might be still threatened by a concern of functional dependence

similar to the one pointed out by Ackerberg et al. (2015). Indeed, the first-order conditions in

specification 3.9 show that the optimal production budget depends on credit constraints, the
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technological parameters, the rate of profit internalization and ω. Hence, if credit constraints

are constant over time, there is no variation left to identify α, except the change in profit

internalization rates.

One way to neutralize the functional dependence problem is to assume an optimization

error. That is, it exists an optimal level of the production , Lmjt, but the firm chooses the

optimal level plus noise. The sensibility of this assumption is industry-specific. Notwith-

standing, the motion picture industry appears well-suited for this data-generating process.

The uncertainty behind a movie’s success is extremely elevated, especially for new projects.

Moreover, the production budget is chosen before the production stage and numerous are

the instances when projects go far beyond the ex ante planned budget because of a director’s

artistic requests. Under such optimization error, estimating equation 3.14 provides consis-

tent estimates for the technological parameter of interest. And, again, this data-generating

process is the same as the one required for Olley and Pakes (1996).

To further reduce the concerns about unobserved heterogeneity at the distributor level

I use out-of-sample data that is, projects produced by the main production unit of each

studio and distributed through their distribution division. Thus, the firm-level heterogeneity

is constant along the supply chain, justifying the use of production-unit fixed effects. The

technological rate of transformation of the variable input into output lies in a narrow interval

when controlling for movie-level controls. The estimates in Table 3.5 range from 0.645 to

0.580, lending credibility to movie-level controls for capturing a large part of the unobserved

endogeneity. In what follows, I use the estimate of the within model to back out the implied

change in revenue internalization rates. Intuitively, a 10% increase in the production budget

is associated with a 6.07% increase in the ticket unit price. Table 3.5 also reports the results

from a standard OLS specification and a model with time-fixed effects.
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TABLE 3.5. Out-of-Sample Production Function Estimates

Dependent Variable: Log Revenues

(1) (2) (3) (4)
Specification OLS OLS Within Total

Log-production budget 0.740*** 0.645*** 0.607*** 0.580***
(0.047) (0.050) (0.052) (0.054)

Time-varying controls 7 3 3 3

Company FE 7 7 3 3

Year FE 7 7 7 3

Observations 655 654 654 654
Adjusted R-squared 0.385 0.408 0.409 0.420

Notes: Results are computed using projects from the studios’ original upstream
division, distributed by their own distribution branch. I focus on productions
where the studios’ division is the main holder of residual profit claims based on
company credits. Standard errors in parentheses; *** p<0.01; ** p<0.05;* p<0.1.
Standard errors are robust to heteroskedasticity.
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3.5.3 Contractual Incompleteness and Hold-ups

I use the previous results to back out the implied change in marginal returns from invest-

ment. To estimate the change in revenue internalization due to vertical integration I use

the investment optimality conditions 3.9. After quantifying the technological parameter, α

is observed. Moreover, the orthogonality of between vertical integration to borrowing con-

straints implies that λj,t(o) = λj,t. Denoting the constant term ln(Pα)
1−α = γ and replacing the

productivity as a function of the project’s characteristics and company fixed effects I write

lmjt = γ +
1

1− α
[ln(τjt(o))− ln(1 + λj,t(o))] +

ωmjt
1− α

(3.16)

lmjt = γ +
1

1− α
[ln(τjt(o))] + ω̃j + ρ̃zZmjt + λ̃j,t, (3.17)

where the tilde denotes terms scaled by 1
1−α . At last, I assume that τjt(o) = τ(o). That

is, the revenue internalization depends only on the company ownership status. The motion

picture industry’s contracting environment justifies this assumption. Stand-alone produc-

tion companies enter into long-term distribution contracts with defined revenue shares. The

contract defines the output, and sets minimum clauses about advertising and distribution

effort on the studio’s account. Therefore, except for ownership changes, there is a narrow

margin for changes in revenue internalization over the course of the distribution deal. Us-

ing an indicator for the ownership status, Xmjt(i), and the fact that credit constraints are

absorbed by the measurement error term, equation 3.17 is equivalent to

lmjt = γ + Xmjt(i)
1

1− α
[ln(τjt(v))− ln(τjt(s))] +

1

1− α
[ln(τjt(s))] + ω̃j + ρ̃zZmjt + εj,t.

(3.18)

As a consequence, a standard difference-in-difference estimator captures β̂ = 1
1−α [ln(τ(i))−

ln(τ(s))]. As the production function estimation recovered α, I can invert this equation,
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taking the exponential on both sides, to derive

τj(v)

τj(s)
= exp((1− α̂) ∗ β̂). (3.19)

This quantity embodies the change in internalized marginal returns after vertical integration.

A sizeable increase in this ratio is consistent with the predictions of the property right theory,

corroborating the importance of firms’ boundary for investments decisions. In presence

of hold-up concerns, bringing production in-house increases investment for the integrating

firm. This is because both parties do engage in rent-seeking behavior and ideally solve a

joint maximization problem when making investment decisions. In contrast, a post-merger

decrease in the ratio can be driven by anticompetitive incentives to reduce input quality.

Another rationale is the increased coordination issues between multiple firms. However,

the conceptual boundary between these two mechanisms is thin. Crucially, the investment

outcome is the same together with a reduction in welfare in the short run.

The inversion step highlights the importance of the production function estimation step.

Indeed, the ratio is not identified by a simple difference-in-difference regression. Multiple

combinations of ln(τ(v)) − ln(τ(s)) and α̂ could lead to the same β̂. Moreover, α is an

industry-specific parameter. Conversely, the change in investments’ marginal returns gener-

alizes to a multiplicity of markets and industries where long-term distribution contracts are

used. Prominent examples are airplane manufacturers, electric utilities and cable TV. As

mentioned above, the main results subsume α̂ = 0.607 as technological parameter. This is

the value estimated by the within model in Table 3.5.

Integration solves hold-up issues for the integrating firm. In contrast, it raises anticompet-

itive concerns for its rivals. Indeed, Table 3.6 exhibits a sizeable change in marginal returns

from investments in both samples, but of opposite sign. The integrating firm internalizes

37% higher revenues after vertical integration compared to the pre-merger scenario. By con-
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TABLE 3.6. Implied Change in Internalized Marginal Return on Invest-
ment

In-house Outward

(1) (2) (3) (4) (5) (6)

Estimates Full Full Full Full Full Full

ˆτj(v)

τj(s)
1.400 1.370 1.355 0.889 0.859 0.851

(.164) (.185) (.179) (.041) (.042) (.044)

Specification

Time-varying controls 7 3 3 7 3 3

Distribution pattern 7 7 3 7 7 3

Company FE 3 3 3 3 3 3

Year FE 3 3 3 3 3 3

Notes: Here
τj(v)
τj(s)

represents the ratio of revenue internalization parameters; β̂ is the coefficient on the

ownership dummy stemming from the difference-in-difference estimation with log production budget as the
dependent variable; and α is the technology parameter that governs the transformation of inputs (production
budget, as summary statistic for input quality) into output (domestic box office tickets). The columns labeled
“Full” use the entire panel. The distribution pattern includes a dummy for movies who got a wide release,
i.e., more than 600 theaters in the opening weekend, compared to those that obtained a limited release. The
standard errors in parentheses are block-bootstrapped at the production company level with 200 replications.
To compute the bootstrapped standard errors I used the Within α estimated from in-sample observations
reported in Table 4.7 in order to maintain the same population during the bootstrap procedure.

trast, the upstream production company internalizes 14.1% lower returns when it anticipates

that its rivals distribute the movie. Thus, firms’ boundaries appear to be a relevant deter-

minant for investments. In turn, this leads to higher investments favoring the downstream

counterpart, while reducing investments towards its downstream rivals. The existence of a

sizeable change in marginal returns from investment confirms that this effect is general to

vertical integration. Therefore, they are likely to arise and to have a sizeable magnitude for

mergers taking place in industries plagued by contractual incompleteness.

3.6 Conclusions

In this article I combine reduced-form techniques with a model of within-firm resource allo-

cation to study the impact of vertical integration on investments. I apply these techniques to

the US motion picture industry, analyzing investments in the upstream production. A key

ingredient of my analysis is the construction of a unique data set, assembled from multiple
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sources, that includes detailed project-level cost and revenue data combined with informa-

tion on firms’ ownership structure over the last 25 years. This allows me to identify eight

vertical mergers and evaluate their impact on the investment patterns in the production

budget.

Vertical integration has a large and significant impact on investments. In the US motion pic-

ture industry, the investments in projects distributed by the integrating distributor increase

on average by $75 million compared to pre-merger levels. In contrast, the investments in

projects distributed by the integrating distributor’s downstream rivals decrease on average

by $21 million compared to pre-merger levels. To isolate the economic mechanisms behind

these effects, I combine the reduced-form estimates with a resource allocation model in the

spirit of Giroud and Mueller (2019), modified to account for the role of vertical integration.

The advantages of the model are threefold. First, it provides a testable empirical implication

to test for the role of financial constraints on investments. Second, it specifies a technology

function that combines investments to produce the industry output, movie tickets. Estimat-

ing the production function measures the parameter converting input into output. Third,

it allows me to distinguish the role of an industry-specific technology from the solution of

contractual incompleteness due to integration. Firm boundaries matter. When investing in

projects distributed by the downstream counterpart, a production company internalizes 37%

higher revenues after integration compared to the pre-merger scenario. In contrast, when

the project is distributed by a downstream rival, the upstream production company internal-

izes 14.1% lower returns. In turn, this leads to higher investments favoring the downstream

counterpart, while reducing investments towards its downstream rivals. This might have

relevant aggregate welfare consequences.

From an antitrust standpoint, these results call for an in-depth assessment of the investment

outcomes of vertical integration.
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CHAPTER 4

Appendix

A Chapter I and II

A.1 Data

In this subsection I provide a detailed description of the key variables I measured and in-

ferred from the raw data. Then, I provide a brief description of the data sources other than

the infrastructure and drilling ones.

Variable Definitions

development well. I define development wells those entities that are drilled within two

miles of a previously drilled well with proven positive production. Furthermore, the data

identifies those prospect drilled in ”Wildcat” fields. Those wells are exploratory wells that

turned out dry holes. I refine the precision of my inference of development wells excluding

these prospects from the data.

drilling prospect. I use wells that have been spudded between 2008 and 2022 to identify

drilling prospect. That is, a drilling prospect is defined as a point in space where a well has

been spudded between 2008 and 2021. Then, I assume that each drilling prospect enters the

producer’s choice set from its ”discovery date”.

discovery date. I trace back the discovery date of each well leveraging information on the

past drilling activity of the operator holding the prospect. I assume that the discovery date
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of a prospect coincides with the completion date of the first producing well held by the same

operator within a two miles radius. This is justified by my focus on development wells.

Additional Data Sources

Infrastructure I complemented this data with public available data on the location of crude

transmission pipelines, crude oil refineries, crude oil storage terminals, shale basins available

from the U.S. Energy Independent Administration (EIA). Figure 4.4 provides a snapshot of

the current infrastructure network.

Production Data. I measure firms monthly sales using a data-set of monthly crude oil

production that I obtained from Enverus, a private data provider. These data spans from

2000 to 2020 and each observation corresponds to an entity, a lease or a well, controlled by

a firm in charge of making production decisions. Then I use the company names and time

of production to identify entry, exit and incumbents in a given location.

Inventories and barrel disposition methods I measure infrastructure usage and inven-

tories at field-level with data on monthly methods of disposition of barrels from the field.

The data are publicly available in pdfs format from the railroad commission of Texas from

May 2013 to December 2020. I manually digitized those data. Barrels are shipped from the

wellhead to short-term storage facilities to eventually reach the downstream refineries. The

method of dispositions indicates how barrels are removed from the well-head, if by pipeline,

trucks or rail.

The data are at the sub-field level, and crucially the report the flow of barrels leaving the

field. They include the initial number of barrels present on the field at the beginning on the

month, the number of barrels produced, the number of barrels taken away, and the number

of barrels remaining at the end month. I match this data with production data based on

field-names, month and year. This allows me to identify inventories and initial transport

choices at a granular spatial level.

At the onset of the shale revolution, the pipeline network fell short in absorbing the crude
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oil production. Trucks dominate over pipelines as predominant crude disposition method.

Indeed, the number of barrels disposed by pipeline exceeded the one of oil disposed by trucks

starting mid 2015. This is consistent with the lagged expansion of the pipeline network. The

gap constantly widened from that point onward, despite the surge in supply. Figure 4.3

clearly show the substitution between pipelines and trucks.

Crude Oil Prices At last, I downloaded the price bulletin posted in the marketing bulletin

of the marketing division of Plains All American Pipelines. This include upstream purchas-

ing prices for specific region and crude type within Texas and other producing states. This

is the (discounted) price shipper pay at the well-head. Differences in these prices is used to

isolate aggregate transport costs at region level.

A.2 Descriptives: Dynamics

In this subsection I provide additional details about the industry’s evolution in the recent

decade. First, Figure 4.1 and 4.2 show how the pipeline network changed over time and

across space. Following the increase in the drilling activity, and thus oil supply builders

heavily invested in new pipeline. The rate of new constructions partly decelerated after the

2014 oil crash, to pick up again in 2018 and 2018.

At the same time, a large portion of the old pipeline network has been abandoned. This is in

line with the change of the geography of supply basins. The discovery of novel shale basins

changed to spatial distribution of oil in Texas. At the same time, some vertical wells dried

up. These trends explain why part of the infrastructure has been abandoned.

Despite the construction of new infrastructure, producers heavily rely on trucks to move

the crude away from the leases. However, the share of crude disposed by pipelines share

went from 35% to 55% of the monthly supply. Therefore producers substitute away from

trucks when pipelines were available. This is consistent with pipelines’ tariffs being lower

than trucks’.
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Figure 4.1: Timeseries of Pipeline Additions (2007-2020)

Notes: Additions and abandonments are measured in miles. The data includes
pipeline segments longer than one mile.
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Figure 4.2: Changes in the Texas Crude Oil Infrastructure Network

Notes: The data includes pipeline segments longer than one mile.
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Figure 4.3: Production, Transportation Methods, Inventories

Notes: The data points show the aggregate monthly quantity of crude disposed from
the Texas’ oil fields. Production are the barrels of crude extracted each month. The
closing stocks indicate the amount of crude do not moved away from the fields.
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A.3 Estimation

In this section I show the formal derivations of the closed form solution for the producer’s

probability of drilling. This choice probabilities are at the basis of the Nested Fixed Algo-

rithm. An oil producer decides to complete a drilling prospect if and only if the profits from

drilling today exceeds the option value from delaying drilling to the next period. Formally,

an oil producers decides to drill and complete a prospect if and only if:

π(xi, p, w̃i) + εt(1) > βE[V (x′i, p
′, w̃i,M

′, ε′)] + εt(0)

εt(1)− εt(0) > βE[V (x′i, p
′, w̃i,M

′, ε′)]− π(xi, p, w̃i)

The unobserved error component εi,t(I) is assumed to be identically and independently

distributed according to a logit distribution. Hence, the probability that a drilling prospect is

completed given the realized prices, the well’s access status and the exogenous profit shifters

coincides with the well known multinomial logit formula

Pr(Id = 1|p, xi, w̃i,M) =

Pr(εt(1)− εt(0) > βE[V (x′i, p
′, w̃i,M

′, ε′)]− π(xi, p, w̃i)) =

=
exp(π(xi, p, w̃i))

exp(π(xi, p, w̃i)) + exp(β ∗ E[V (x′i, p
′, w̃i,M ′, ε′)])

A.4 Identification

I consider a generic prospect i that obtained a pipeline connection in period t. In period

t− 1 the prospect does not enjoy a connection to the pipeline. I discuss identification up to

a normalization for the discount factor β and the logit variance σe.

I consider the time period when a prospect does not have access to the pipeline network.
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The ratio between the model’s choice probabilities can be expressed as:

Pr(It−1 = 1|τ0)

Pr(It−1 = 0|τ0)
=
exp((pt−1q − τ0q − κ(w))/σe)

exp((β ∗ ẼV t−1)/σe)
(4.1)

log
(Pr(It−1 = 1|τ0)

Pr(It−1 = 0|τ0)

)
= σ−1

e [pt−1q − τ0q − κi(w)− β ∗ ẼV t−1] (4.2)

Through inversion I can express τ0 as a function of this ratio:

τ0 =
β ∗ ẼV t−1

q
+ pt−1 −

κi(w)

q
− σe

q
∗ log

(Pr(It−1 = 1|τ0)

Pr(It−1 = 0|τ0)

)
(4.3)

Where for simplicity I suppressed the dependence on i, the state variable vector, and param-

eters other than the shipping costs, in the probability objects notation. On the right hand

side of the equations there are two unknowns, the scale parameter of the logit term and the

fixed costs κi.

Given the scattered arrival of the timeline, supposed there exist another prospect j that has

a connection to the pipeline in t− 1, then I can recover τ1 as:

τ1 =
β ∗ ẼV t−1

q
+ pt−1 −

κj(w)

q
− σe

q
∗ log

(Pr(It−1 = 1|τ1)

Pr(It−1 = 0|τ1)

)
(4.4)

Note that, in both formulations EVt−1 is observed following the inner fixed point routine of

the estimation algorithm. Suppose that both prospects have the same drilling technology,

such that κi(w) = κj(w) = κ0.

Therefore, to jointly identify τ0, τ1 and κ0 I need a third equation. To this end I leverage the

discontinuity in the probability of drilling for the same prospect triggered by the connection

to the pipeline.

τ1 − τ0 =
σe
q

[log
(Pr(It = 1|τ1)

Pr(It = 0|τ1)

)
− log

(Pr(It−1 = 1|τ0)

Pr(It−1 = 0|τ0)

)
]

− β

q
[(ẼV t − ẼV t−1)] + (pt − pt−1) (4.5)
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This steps make clear how identification is achieved up to a normalization for the discount

factor and the variance of the unobserved error component. Normalizing the discount factor

and the logit variance I obtain three equations in three unknown. Therefore the parameters

are jointly identified via maximum likelihood. Alternatively, to recover the logit variation

from the model I need to impose a normalization over the fixed costs one of the prospects.

This normalization is required since q is constant over time. This is the expected extracted

crude from the drilling prospect, which does not vary over time.

The identification of the cost parameter associated with horizontal well comes from the

spatial variation in drilling rates between prospects with different drill types, conditioning

on the pipeline state. Having multiple year in the sample allows mw to identify the linear

time trend, normalizing to zero the shock in the first year of the sample.

Algorithm details

Baseline Model. I solve the value function 2.6 on a grid of points in (p, xp, q, w̃ =

Horizontal) space using standard value function iteration. I extend the state space be-

yond realized price and production values. The state space I used extends one-tenth from

the lowest realized price and well’s production to one-tenth from the highest realized price

and well’s production. The crude extracted from each well is expressed in million of barrels.

The grid I use has 14,400 points: 60 price states, 60 production states, 2 connection to the

pipeline states and 2 well’s type states. Starting from this density, the estimated results

are insensitive to increase or decrease in the number of grid points. In the full estimation

routine, the initial value function used for each guess of parameters is the value function

from the previous guess. For the first parameter guess, the initial values is zero in all states.

The convergence criterion is 10−6 on the sup norm of the value function.

With the value function solved, I can match the value from delaying completion to any give

p, q, xp and w̃. However, the price and production points in the grid do not coincide with

the data realizations. Therefore, I use linear interpolation to find the value function at each
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revenue state. At each price-quantity grid point, (p, q) I calculate the value function at the

realized (p̂, q̂) by linearly interpolating the value function between the states immediately

above and below the grid’s point.

Robustness checks. The value function iteration is similar to the baseline model, however

the grid I use is more dense. In the augmented model I have 50 price states, 50 production

states, 50 probability states, 2 connection to the pipeline states, 2 well’s type states and 2

size states. Therefore, there are 750,000 grid points.

Starting from this density, the estimated results are insensitive to increase or decrease in the

number of grid points. In the full estimation routine, the initial value function used for each

guess of parameters is the value function from the previous guess. For the first parameter

guess, the initial values is zero in all states. The convergence criterion is 10−6 on the sup

norm of the value function.

In this formulation of the model, I expand the linear interpolation procedure to account for

the predicted probability of having a connection to the pipeline. The predicted probability

in the data, does not coincide with the grid points.

A.5 Graphs and Tables

Tables
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TABLE 4.1. The Impact of Transport Infrastructure on the Timing of Investments

Dependent Variable: Time for Completion

Specification (1) (2) (3) (4) (5)

Time for connection to pipeline 0.755*** 0.564*** 0.617*** 0.639*** 0.533***
(0.053) (0.045) (0.017) (0.036) (0.030)

Well’s cumulative oil 0.638 -0.087 -0.554* -0.519
(0.448) (0.571) (0.312) (0.424)

Price 3 months before completion -0.034*** -0.031*** -0.032*** -0.031***
(0.008) (0.005) (0.004) (0.005)

Discovery Year FE 3 3 3 3 3

Oil Field FE 7 7 3 3 3

Producer FE 7 7 7 3 3

Pipeline Operator FE 7 7 7 7 3

Observations 1,649 1,564 1,564 1,564 1,564
R-squared 0.885 0.912 0.935 0.908 0.911

Notes: Standard errors in parentheses; *** p<0.01; ** p<0.05;* p<0.1. Standard errors are clustered at
the year of discovery level. The sample includes only single producing entities that have been completed and
received a connection to the pipeline after 2008 and before 2020. Well cumulative production is measures in
thousands crude oil barrel. Price at completion is measured using the daily West Texas Intermediate crude oil
price. The time to complete the drilling prospect and the time to build the pipeline connections are measured
in months. I impute 1 month as the time to build the pipeline connections for those drilling prospects who have
always enjoyed the connection to a pipeline
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TABLE 4.2. Estimates of the Baseline Model, with discount factor β = .935

σe = 1 σe = 2.5 σe = 5 σe = 7.5 σe = 10 σe = 12.5

Cost Parameters

τ0 : variable costs without pipe 85.817 78.097 72.567 70.067 68.736 68.278
τ1 : variable costs with pipe 71.251 66.740 59.66 53.828 48.575 43.841

κ0: average sunk cost 6.294 13.443 25.104 36.861 48.657 60.462
κ1: horizontal well 0.455 2.058 5.907 10.070 14.264 18.402
κ2: linear time trend -0.652 -1.132 -1.889 -2.682 -3.491 -4.306

Laws of Transition Parameters

σζ : log prices’ change standard deviation 0.011 0.011 0.011 0.011 0.011 0.011
µζ : log prices’ change mean 0.000 0.000 0.000 0.000 0.000 0.000

δ0: logit constant -3.604 -3.604 -3.604 -3.604 -3.604 -3.604
(.005) (.005) (.005) (.005) (.005) (.005)

ρ: prospect’s cumulative production 10.112 10.112 10.112 10.112 10.112 10.112
(.060) (.060) (.060) (.060) (.060) (.060)

Notes:Standard errors in parenthesis. The discount factor across all specification is β = .935. Revenues are expressed
in million of dollars. Fixed costs parameters are expressed in million of dollars. Transportation costs parameters are
expressed in dollars per-barrel. The mean of the unobserved term logit distribution is calibrated at zero.
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TABLE 4.3. Estimates of the Complete Model

Size Size
Oil Supply

Infrastructure Level

Cost Parameters

τ0: variable costs without pipe 78.636 75.85
τ1: variable costs with pipe 67.879 65.250
τ2: small producer (variable) -11.215 -5.538

κ0: average sunk cost 13.574 13.334
κ1: horizontal well 2.438 2.581
κ2: linear time trend -1.205 -1.195
κ3: small producer (sunk) 1.769 1.332

Laws of Transition Parameters

σζ : log prices’ change standard deviation 0.011 0.011
µζ : log prices’ change mean 0.000 0.000

δ0 logit constant -5.840 -3.604
(.005) (.011)

δ1: oil supply 0.038
(.000)

δ2: infrastructure level 0.761
(.003)

ρ: prospect’s cumulative production 10.112 5.832
(.060) (.075)

Notes: Standard errors in parenthesis. The discount factor across all specification is β = .935.
Revenues are expressed in million of dollars. Fixed costs parameters are expressed in million of
dollars. Transportation costs parameters are expressed in dollars per-barrel. The mean of the
unobserved term logit distribution is calibrated at 0. The variance of the unobserved parameters
is calibrated at 2.5

Graphs
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Figure 4.4: US Crude Oil Infrastructure Network

Notes: The blue lines represent crude pipelines. The green dots indicate crude refineries. The orange dots
represent storage tanks. The light orange polygons indicate the crude oil basins that have been discovered
on the U.S. territory.

Figure 4.5: Baseline Goodness of Fit without Time Trend

Notes: The discount factor used across all the specifications is β = .935
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Figure 4.6: Augmented Model, Size-level heterogeneity

Notes: The model’s probabilities come from the augmented model. The discount
factor used across all the specifications is β = .935. The sample includes all the
producers holding a drilling prospect during the years 2008-2021. The producers’ size
is computed using the total number of development prospects held by the firm in Texas.
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Figure 4.7: Producer’s Dispersion

Notes: The model’s probabilities come from the augmented model. The discount factor used across all the
specifications is β = .935. The sample includes all the producers holding a drilling prospect during the years
2008-2021.

B Chapter III

B.1 Robustness Checks

Empirical The previous estimates use all the available years after the merger. To mitigate

concerns about long-run confounding factors, such as changes in market structure, I narrow

the post-merger time window. I use for estimation movies produced within five years after

vertical integration. The resulting estimates more accurately reflect short-term effects of

vertical mergers. The impact of vertical mergers on investments remains large and econom-

ically relevant. Vertical mergers increase investments on average by the integrating firm by

$56.2 million, while reducing them by $29.8 million for rivals, as reported in Table 4.4. At

last, I replicate the estimation of the internalized returns on investment using the trimmed

samples. The results are reported in Table 4.5. In the short-term, the estimates of the change

in internalized revenues become 23.7% and 17.7% respectively. Standard errors ensure that
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TABLE 4.4. Short-term Causal Effects of Vertical Mergers on Production Budget ($ million)

Dependent Variable: Production Budget ($ million)

(1) (2) (3) (4) (5) (6)
Specification In-house In-house In-house Outward Outward Outward

AfterMerger (real) 62.599*** 58.739*** 56.188*** -27.438** -29.668*** -29.803***
(20.099) (23.729) (18.850) (8.617) (8.594) (8.508)

AfterMerger (All) 7 3 3 7 3 3

Time-varying controls 7 7 3 7 7 3

Company FE 3 3 3 3 3 3

Year FE 3 3 3 3 3 3

Observations 287 287 287 215 215 215
Adjusted R-squared 0.502 0.503 0.573 0.309 0.309 0.418

Notes: Results are computed using movies produced within five years after vertical integration. Standard errors in
parentheses; *** p<0.01; ** p<0.05;* p<0.1. Standard errors are block-bootstrapped at the production company
level with 200 replications. Each specification uses movies’ production budget as dependent variable expressed in $
million. The AfterMerger dummy includes 10 leads after the year of merger.

these estimates are substantially above one for the integrating counterpart and below one

for rivals.
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TABLE 4.5. Short-term Causal Impact of Vertical Integration on Internalized Marginal
Return of Investments

In-house Outward
(1) (2) (3) (4) (5) (6)

Estimates 5-years 5-years 5-years 5-years 5-years 5-years

ˆτj(v)

τj(s)
1.270 1.240 1.229 0.828 0.819 0.801

(.135) (.127) (.117) (.048) (.049) (.056)

Specification

Time-varying controls 7 3 3 7 3 3

Distribution pattern 7 7 3 7 7 3

Company FE 3 3 3 3 3 3

Year FE 3 3 3 3 3 3

Notes:
τj(i)
τj(s)

represents the ratio of revenue internalization parameters. β̂ is the coefficient on

the ownership dummy stemming from the difference-in-difference estimation with log production
budget as dependent variable. α is the technology parameter that governs the transformation of
inputs (production budget, as summary statistic for input quality) into output (domestic box office
tickets). Columns labeled “5-years” use movies produced five years after the merger. Distribution
pattern includes a dummy for movies who got a wide release, more than 600 theaters in the
opening weekend, compared to those that obtained a limited release.Standard errors in parentheses
are block-bootstrapped at the production company level with 200 replications. To compute the
bootstrapped standard errors I used Within α estimated from in-sample observations reported in
Table 4.7 in order to maintain the same population during the bootstrap procedure.
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B.2 Quality-Enhancing Investments in the Motion Picture Industry

In this article I use movies’ production budget to measure quality-enhancing investments.

Hence, to gauge the validity of production budget as a measure for quality enhancing invest-

ments, I list the expenditures it encompasses. The production budget is typically divided

in four sections. above the line (creative talent), below the line (direct production costs) ,

post-production (editing, visual effects, etc.), and other (insurance, completion bond, etc.).

Best-seller writers, and Oscar winning actors command higher salaries. By the same token,

computer-generated imagery and elaborated visual effects demands significant investments1.

These investments contribute to realize visually stunning shows. Therefore, the bigger the

budget, the higher the movie’s potential of capturing demand. Prima facie evidence supports

the correlation between content expenditures and demand. I calculate the studios’ market

shares based on domestic box office in 2017. I aggregate data by studios’ global ultimate

owner, to capture distribution branches falling under the same company. Table ?? shows the

correlation between total content expenditures and market shares. More importantly, the

studios with the highest average production budget have the highest market shares. Interest-

ingly, The Walt Disney Company captured 22% of movie-goers releasing only 7 movies, the

same number as STX Entertainment, but with average budget of $ 205 million, five times

above STX Entertainment. Warner Media has the second highest market share, 18%. It de-

ployed on average $ 89 million per project. National Amusements and Twenty-First Century

Fox go against the tide. However, the former is facing a radical re-organization attempting

to merge Viacom and CBS Corporation, both its subsidiaries. Similarly, 20th Century Fox

has been recently taken over by the Walt Disney Company. Ineffective content expenditures

might signal corporate distresses that prelude a merger or exit from the market.

1For instance, (Avatar visual effects cost more than $100 millions)
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TABLE 4.6. Economic Performances of Active Studios in 2017

Market Shares (%) Movies Total Budget Average Budget
Studio

Walt Disney Company 22.13 7 1437 205.3
Warner Media 18.85 18 1606 89.22
Comcast 15.31 21 1100 52.36
Tweny-First Century Fox 14.01 18 1110 61.69
Sony Corporation 11.57 19 775 40.79
Lions Gate 6.537 14 494 35.29
National Amusement 4.557 10 815 81.50
STX Entertainment 2.120 7 328 46.91

The table shows the economic outcomes of studios that released a minimum of one movie with budget above $5
million in the US in 2017. Market shares are calculated using domestic (US) theatrical box offices. “Movies”
represents the movies distributed in 2017 by the studio. Total and average budget represents the total and
average production budget calculated in $ millions.

B.3 Algorithm to Select the Control Groups

In this section I provide additional details on the procedure adopted to select the control

groups. For each of the eight stand-alone company undergoing a vertical merger the pro-

cedure provides a placebo company matching trend in the outcome variable of interest. I

proceed as follow.

I define the years of activity of all the upstream divisions observed in the data. A company

is considered active in a given year if it has produced one movie that year. As a first step,

I matched the treated upstream company to production divisions that were active in the

same years. I focus on the five years preceding the vertical merger. This reduces the number

of potential placebos for each treatment company. However, I obtained a set of potential

controls for each vertical merger. That is, I have a set of candidate placebo production

companies for each stand-alone company that changed ownership in my sample. Therefore,

I refine the selection criteria using the yearly average production budget before the merger.

I select the production company that minimizes the difference in outcome pre-trends with

the treated company.

To reduce the threat of spillovers, I discarded division of the same studio from the set of
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potential placebos. Otherwise, the integration could directly affect the control, violating the

assumptions of the research design.

B.4 Proof of Lemma 3.4

Suppose production unit is j controlled by a stand-alone company. Condition 3.11 implies

that if λ > 0 Lj = Cj. Then LjCj = 1. Suppose production unit is j controlled by the

studio. The first order condition 3.9 for investments in production unit ∀ i ∈ I of studio g

can be explicitly written as

τpαeωiLα−1
i − (1 + λ) = 0

After some algebra manipulation the optimal input level Li can be expressed as

Li = e
ωi

1−α

( pατ

1 + λ

) 1
1−α

Consider investments in production unit j. Differentiating,

Ljλ = − e
ωi

1−α

(1− α)(1 + λ)
(
pατ

1 + λ
)

1
1−α

When the firm’s resource constraint binds, λ > 0,
∑

i∈Ig Ci =
∑

i∈Ig Li. Substituting Li

∑
i∈Ig

Ci −
∑
i∈Ig

{
e

ωi
1−α

( pατ

1 + λ

) 1
1−α
}

= 0

Define the LHS as G(λ,Cj). Applying the implicit function theorem and after some algebra

λCj = − (1− α)(1 + λ)

( pατ
1+λ

)
1

1−α

(∑
i e

ωi
1−α

)
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At last, combining the previous expressions

LjCj = LjλλCj =
e

ωi
1−α(∑
i e

ωi
1−α

) < 1

And the result follows.

B.5 Graphs and Tables

TABLE 4.7. In-Sample Production Function Estimates

In-house Outward
(1) (2) (3) (4) (5) (6)

Specification OLS OLS Within OLS OLS Within

Log-production budget 0.843*** 0.635*** 0.578*** 0.998*** 0.815*** 0.795***
(0.046) (0.057) (0.062) (0.065) (0.083) (0.092)

Time-varying controls 7 3 3 7 3 3

Company FE 7 7 3 7 7 3

Year FE 7 7 7 7 7 7

Observations 622 620 620 345 345 345
Adjusted R-squared 0.346 0.411 0.428 0.409 0.440 0.435

Notes: Standard errors in parentheses; *** p<0.01; ** p<0.05;* p<0.1. Standard errors are robust to
heteroskedasticity.
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Donaldson, D. (2018, April). Railroads of the raj: Estimating the impact of transportation

infrastructure. American Economic Review 108 (4-5), 899–934.

Einav, L. and B. Y. Orbach (2007). Uniform Prices for differentiated goods: The case of the

movie-theater industry. International Review of Law and Economics (27), 129â153.
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