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A Hybrid EM Algorithm for Linear Two-Way
Interactions With Missing Data

Dale S. Kim

University of California, Los Angeles

We study an Expectation-Maximization (EM) algorithm for estimating product-

term regression models with missing data. The study of such problems in the

frequentist tradition has thus far been restricted to an EM algorithm method

using full numerical integration. However, under most missing data patterns,

we show that this problem can be solved analytically, and numerical approxi-

mations are only needed under specific conditions. Thus we propose a hybrid

EM algorithm, which uses analytic solutions when available and approximate

solutions only when needed. The theoretical framework of our algorithm is

described herein, along with three empirical experiments using both simulated

and real data. We demonstrate that our algorithm provides greater estimation

accuracy, exhibits robustness to distributional violations, and confers higher

power to detect interaction effects. We conclude with a discussion of extensions

and topics of further research.

Keywords: EM algorithm; numerical integration; interactions; missing data

We consider the problem of missing data in regression models with product-

term predictors. In the educational and behavioral sciences, product-term

regression models are widely used to test hypotheses pertaining to interactions

(Aiken & West, 1991), moderation (Baron & Kenny, 1986), and/or conditional

processes (Hayes, 2018). For example, these hypotheses may refer to the differ-

ence in an effect between two groups, the dependence of an outcome-predictor

relationship on other variables, or the effect of two simultaneous symptoms

above and beyond their constituent effects. A considerable amount of methodo-

logical research has been dedicated to interpreting these models (Dawson,

2014; McCabe et al., 2018; Preacher et al., 2006), attesting to their importance

and popularity.

However, the estimation of product-term regression models is complicated

by the issue of missing data, which is particularly prevalent for data involving

human subjects. It can arise from subject dropout, item non-response, logistical

errors, or even serve as a designed aspect of data collection (Graham, 2009;
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Raghunathan, 2004). If the mechanism of missing data meets certain conditions,

this problem (or design) can be accommodated and consistent estimates can be

obtained. In particular, we consider the situation under which the missing data

mechanism is called ignorable (Schafer, 1997). Colloquially speaking, it means

that the probability of an observation being missing does not depend on its own

would-be realized value, and that the data value-generating mechanism is

distinct from the missingness-generating mechanism.

Previous literature on this problem can be broadly cast into two categories:

correctly specified and misspecified characterizations of the joint distribution of

the data. For product-term regression models, incorrect specification generally

occurs for the product terms. The most common type of misspecification is

naively assuming the product terms are jointly Gaussian along with their consti-

tuent factors (von Hippel, 2009). This has also been called the ‘‘just another

variable’’ approach (Seaman et al., 2012) as it treats the product term simply as

another Gaussian random variable. However, this introduces a contradiction of

distributional assumptions, as a product of Gaussian random variables cannot

itself be Gaussian. While some studies have shown that there may be some con-

ditions under which this method is reasonable (Enders et al., 2014; Seaman

et al., 2012), it is not guaranteed to provide unbiased estimates in general

(Bartlett et al., 2015; Lüdtke et al., 2019; Zhang & Wang, 2017).

To address these issues, correctly specified methods have been developed.

This is typically accomplished by factorizing the joint distribution into a product

with conditional distributions. In this way, it can be easier to correctly specify

the constituent factored distributions, rather than the original joint distribution

itself (Ibrahim, 1990). Hence, this technique can ensure compatibility between

the substantive model of interest, and the overall joint distribution of the data (J.

Liu et al., 2014). It has also been called factored regression modeling (Lüdtke

et al., 2019), substantive model compatibility (Bartlett et al., 2015), and model-

based handling (Enders et al., 2020).

The application of this technique however, has been largely focused on mul-

tiple imputation methods with Markov Chain Monte Carlo under a Bayesian

paradigm (Kim et al., 2015; Lüdtke et al., 2020; Zhang & Wang, 2017). On the

other hand, research in the frequentist framework has been scant. Currently,

only an EM algorithm using full numerical integration has been proposed by

Lüdtke et al. (2019). While their method is flexible and handles a variety of

nonlinear models, numerical integration is known to suffer in accuracy and

computational complexity as the number of dimensions increases (Hinrichs

et al., 2014; Simonovits, 2003). Hence, the feasibility of this method is in

question even when the number of variables is moderate. Indeed to date, this

method has only been tested under very optimistic conditions.

The premise of the current research is to propose a hybrid EM algorithm that

obviates much of the required calculations done by numerical integration.

Hybrid EM
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Specifically, we will show that numerical integration is not necessary for most

missing data patterns, and we will demonstrate how to use analytic solutions in

their place. These exact solutions will yield more accurate estimates relative to

their approximate counterparts. Therefore, this research has two main goals: (a)

to develop the theoretical motivation of the hybrid EM algorithm and (b) to

empirically study the benefits of analytic solutions in practical data scenarios.

Model and Notation

Let X;N p m,Sð Þ denote a p 3 1 random vector of predictor variables. Then

formulate a linear product-term model for a random scalar outcome variable Y

as follows:

Y = d Xð ÞT b+ E, ð1Þ

where E;N 0,s2
E

� �
is a scalar random variable of error terms, b is a d 3 1

vector of regression coefficients, and d Xð Þ is a d 3 1 vector-valued design func-

tion as follows:

d Xð Þ= 1 XT XjXk
��!T

h iT

, ð2Þ

where g Xð Þ
��!

denotes the vector of all unique permutations of g Xð Þ over the

specified indices. In this case, XjXk
��!

is a vector whose elements are comprised of

all unique permutations of XjXk for all j, k 2 f1, . . . , pg. Hence, d Xð Þ is a

vector that augments X with a regression intercept and the product terms.

We note that there are two implicit assumptions with this model for the pur-

poses of generality. First, we assume that the vector X contains the substantive

model predictors as well as any desired auxiliary variables. Second, it is

assumed the substantive model contains all possible two-way products among

the variables in X. To accommodate the fact that some auxiliary variables or

product terms may not be desired in the substantive model, their b coefficient

need only be constrained to zero.

Missing Data Assumptions

To recast the data from a predictor-outcome distinction to a missing-observed

distinction, we use the following notation. Denote an augmented data vector as

U= Y XT
� �T

, which can be reordered as UT
O UT

M

� �T
, where O is the index

set of observed variables and M is the index set of missing variables. Further,

the probability density/mass function of U is denoted f Uð Þ and parameterized

generally by a vector u, for which we write fu Uð Þ. Then, let R 2 f0, 1gp+ 1
be a

binary random vector, which indicates whether the elements of U are observed,

Kim
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and has a probability distribution parameterized by the vector z. It is generally

assumed that no variable in U will be completely missing in the sample.

We assume that the elements of u and z are distinct, or that the joint space of

u and z is simply their Cartesian product u 3 z. Further, we assume the data are

missing at random (MAR; Rubin, 1976):

Pz RjUð Þ=Pz RjUOð Þ: ð3Þ

Taking MAR in tandem with the distinctness of u and z, we say that the missing

data mechanism is ignorable (Schafer, 1997).

The EM Algorithm for Missing Data

The EM algorithm is a two-step iterative procedure for obtaining parameter

estimates for models with missing data (Dempster et al., 1977). The steps are as

follows:

E-Step. For any iteration t, define a Q-function given an intial parameter

start value u 0ð Þ:

Qu tð Þ uð Þ=Eu tð Þ log fu Uð ÞjUO½ �=
ð
uM

log fu Uð Þfu tð Þ uM juOð Þ duM : ð4Þ

M-Step. Maximize the Q-function with respect to u and set the result as

u t + 1ð Þ:

u t+ 1ð Þ= argmax
u

Qu tð Þ uð Þ, ð5Þ

where we use the integration symbol with respect to a vector as shorthand for

multiple integration or summation with respect to all elements of the vector,

depending on if the random variable is continuous or discrete (e.g.,Ð
z

f zð Þ dz=
Ð

z1
� � �
Ð

zp
f zð Þ dzp � � � dz1, for z 2 R

p). Hence, this is an iterative

procedure that maximizes the expectation of the complete data log-likelihood,

given the observed data. It is known to converge to a local maximum of the

likelihood function under very general conditions (Wu, 1983). Further, standard

errors can be obtained by numerically differentiating the EM iterations (Meng

& Rubin, 1991) or the Fisher score function (Jamshidian & Jennrich, 2000).

Hybrid EM
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Application to Product-Term Regression Models

For practical uses, the main task of applying the EM algorithm is setting up

the Q-function. We do so for product-term regression models by characterizing

the joint model of the data as follows:

f Uð Þ= f Y jXð Þf Xð Þ, ð6Þ

where

f Xð Þ=N p m,Sð Þ

f Y jXð Þ=N d xð ÞT b,s2
E

� �
:

ð7Þ

Since f Uð Þ factorizes into two Gaussian distributions, it can be written in expo-

nential family form:

f Uð Þ=exp h uð ÞTT Uð Þ � A uð Þ
h i

, ð8Þ

which yields a Q-function of

Qu tð Þ uð Þ=Eu tð Þ log fu Uð ÞjUO½ �

=Eu tð Þ h uð ÞTT Uð Þ � A uð ÞjUO

h i
=h uð ÞTEu tð Þ T Uð ÞjUO½ � � A uð Þ,

ð9Þ

where u is the vector which contains the unique elements of fb,s2
E ,m,Sg, h uð Þ

is the vector of canonical parameters, and A uð Þ is the log-partition function.

Hence, constructing the Q-function amounts to deriving E T Uð ÞjUO½ � per miss-

ing data pattern. It can be shown that T Uð Þ is

T Uð Þ=

Y Y X T
j

�!
Y 2 YXjX

T
k

���!
X T

j

�!
XjX

T
k

���!
X 2T

j

��!
XjXkX T

l

����!
X 2

j X T
k

���!
XjXkXlX

T
m

������!
X 2

j XkX T
l

�����!
X 2

j X 2T
k

����!h iT

:

ð10Þ

The derivation of T Uð Þ has been relegated to Supplemental Appendix A

(available in the online version of this article). We also derive the maximizers

of the Q-function in Supplemental Appendix B (available in the online version

of this article).

Missing Data Patterns

The theoretical motivation of this research is the derivation of analytic

Q-functions under as many missing data patterns as possible. The form of T Uð Þ
may appear complex and the possible missing data patterns for E T Uð ÞjUO½ � are

Kim
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combinatorially large. However, using an appropriate taxonomy, solutions for

general classes of missing data patterns can be obtained and applied easily. The

only types of missing data patterns (MDP) that need to be considered are as

follows:

� MDP 1: Y is missing and X has any missingness pattern.
� MDP 2: Y is observed and X is patterned such that no product terms are

fully missing.
� MDP 3: Y is observed and X is patterned such that one or more product

terms are fully missing.

We will provide the methods of calculating E T Uð ÞjUO½ � under each of these

patterns. Specifically, we will show that analytic solutions exist for MDP 1 and

MDP 2, and computational methods are only necessary for MDP 3.

Missing Data Pattern 1

MDP 1 is concerned with the case when Y is missing, and X can take on any

missingness pattern. We will show that all elements of E T Uð ÞjUO½ � under this

pattern can be calculated by known functions of u. Hence, the Q-function for

this MDP can always be constructed analytically.

First, we consider the sufficient statistics that are solely a function of X and

do not have a Y term. In Equation 10 these are the latter 8 (of 12) entries of

T Uð Þ. Note that these entries are all products of the elements of X (e.g.,

XjXkXlXm or X 2
j X 2

k ). Further, Y is missing in this MDP, so we have UO =XO.

Thus, under MDP 1, we can more generally express the elements of

E T Uð ÞjUO½ � that only depend on X as

E

Y
i2M

X
ai

i jXO

" #
, ð11Þ

where ai are non-negative integers.

Our strategy will make use of two key facts. First, Gaussian random vectors

are closed under conditioning, hence XM jXO is itself a Gaussian random vector

whose parameters are functions of m and S. Second, arbitrary product moments

of random vectors can generally be found by appropriately differentiating their

moment-generating function (Keener, 2010). Using the Gaussian moment-

generating function in this way will remain a key tool for the rest of the

theoretical development of this algorithm, so we will state the procedure in the

following lemma.

Hybrid EM
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Lemma 1. (Gaussian Product Moments). Let X be a Gaussian random vector

distributed as X;N p m,Sð Þ. Then any product moment of the form E
Qp

i= 1

X
ai

i

	 

can be expressed as a function of m and S.

Proof. This follows from a straightforward use of the Gaussian moment-

generating function, which is

MX tð Þ=exp tT m+
1

2
tT St

� �
: ð12Þ

Then by the moment calculation property, any arbitrary product moment can be

calculated with

∂aQp
i= 1 ∂t

ai

i

MX tð Þjt= 0 =E

Yp

i= 1

X
ai

i

" #
, ð13Þ

where a=
Pp

i= 1

ai and all ai take non-negative integer values. h

From here, the expectation in the form of Equation 11 can be obtained by

seeing that the parameters of XM jXO;N mc,Scð Þ are

mc =mM +SMOS�1
O xO � mOð Þ

Sc =SM � SMOS�1
O SOM ,

ð14Þ

which follows from the well-known parameterization of conditioning on

Gaussian random vectors. Then by applying Lemma 1 on XM jXO, we obtain

any of its product moments in terms of m and S. Thus, the latter eight entries of

E T Uð ÞjUO½ � can be written in terms of u analytically.

Among the remaining four sufficient statistics, we turn our attention to Y ,

YXj, and YXjXk . Notice that we can consider a general expression that encapsu-

lates the expectation of all three of these statistics by writing them as

E½YX a
j X b

k jXO� for a, b 2 f0, 1g. Then we can re-write this quantity as

E½YX a
j X b

k jXO�=E½d Xð ÞT bX a
j X b

k jXO�, ð15Þ

which follows from applying the law of total probability and Bayes’ rule (see

Supplemental Appendix C [available in the online version of this article] for

explicit proof). Noting that d Xð ÞT b is a linear combination of products of X,

we apply Lemma 1 with the linearity properties of the expectation operator to

obtain E½YX a
j X b

k jXO� in terms of u. Thus the solution for these expectations can

be derived analytically as well.

Finally, the remaining expectation is E½Y 2jXO�. This is derived as follows:

Kim
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E Y 2jXO

� �
=E E Y 2jXM ,XO

� �
jXO

� �
=E Var Y jXð Þ+E Y jX½ �2jXO

h i
=E s2

E + bTd Xð Þ
� �2jXO

h i
=s2

E +E bTd Xð Þd Xð ÞT bjXO

h i
=s2

E +E

X
i, j

bibj d Xð Þd Xð ÞT
� �

ij
jXO

" #
,

ð16Þ

where d Xð Þd Xð ÞT
� �

ij
refers to the i, jð Þ th element of d Xð Þd Xð ÞT . Once again,

since each entry in the matrix d Xð Þd Xð ÞT is a linear combination of products of

X, we can apply Lemma 1 and the linearity of expectation to write E Y 2jXO½ � in
terms of u. Thus finally, we have shown that all entries of E½T Uð ÞjUO� can be

written as analytic functions of u under MDP 1.

Missing Data Pattern 2

MDP 2 considers the scenario where Y is observed and X is patterned such

that no product terms are fully missing. Equivalently, we can say that X is pat-

terned such that at least one Xj is observed in every product term. In this situa-

tion, XM jY ,XO takes on a multivariate Gaussian distribution, and thus

E½T Uð ÞjUO� can be completely solved analytically. To see why this is the case,

let us re-write the analytical model in Equation 1 under the assumptions of

MDP 2. First, note that we can separate terms by observed variables and miss-

ing variables:

Y = d Xð ÞT b+ E

=b0 +
Xp

j= 1

bjXj +
X
j6¼k

bjkXjXk + E

=b0 +
X
j2O

bjXj +
X
j2M

bjXj +
X

j, k2O

bjkXjXk +
X

j2M , k2O

bjkXjXk + E:

ð17Þ

Then, we can regard all XO as constants and absorb them into the intercept and

product-term coefficients as follows:

~b0 :¼ b0 +
X
j2O

bjXj +
X

j, k2O

bjkXjXk

~bj :¼ bj +
X
k2O

bjkXk , for j 2 M :
ð18Þ

This allows us to re-write the model only in terms of the missing variables as

Hybrid EM
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Y = ~b0 +
X
j2M

~bjXj + E, ð19Þ

from which we can write for any fixed m 2 M :

Xm =
Y � ~b0 �

P
j2Mnm

~bjXj � E
~bm

: ð20Þ

Thus, any Xm is a linear combination of other Gaussian random variables,

therefore must be Gaussian itself. Hence, XM jY ,XO follows a multivariate

Gaussian distribution. The derivation of the exact density f XM jY ,XOð Þ can be

found in Supplemental Appendix D (available in the online version of this

article).

Since Y is observed in this missing data pattern, E½T Uð ÞjUO� only concerns

product functions of X. Hence, we only need to apply Lemma 1 to obtain these

expectations, as XM jY ,XO is a multivariate Gaussian. Thus, under MDP 2,

E½T Uð ÞjUO� can be written as a function of u and solved analytically.

Missing Data Pattern 3

MDP 3 concerns the case where Y is observed and X is patterned such that

product terms are fully missing. In this situation, the entries of E½T Uð ÞjUO�
may be difficult to derive analytically, or admit no closed form. We will show

this by showing how the distribution of XmjY ,XO would be characterized. As

in our argument for MDP 2, we will separate the terms of the regression model

by observed variables, missing variables, and terms with one of each:

Y = d Xð ÞT b+ E

=b0 +
X
j2M

bjXj +
X
j2O

bjXj +
X

j, k2M

bjkXjXk +
X

j2M , k2O

bjkXjXk +
X

j, k2O

bjkXjXk + E:

ð21Þ

Then we treat the observed variables as constants and absorb them into the b
coefficients as follows:

~b0 :¼ b0 +
X
j2O

bjXj +
X

j, k2O

bjkXjXk

~bj :¼ bj +
X
k2O

bjkXk , for j 2 M ,
ð22Þ

then for any m 2 M the model can be re-written as
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Y =~b0 +
X
j2M

~bjXj +
X

j, k2M

bjkXjXk + E

=~b0 + ~bm +
X

j2Mnm
bjmXj

0@ 1AXm +
X

j2Mnm

~bjXj +
X

j, k2Mnm
bjkXjXk + E,

ð23Þ

which implies that

Xm =
Y � ~b0 �

P
j2Mnm

~bjXj �
P

j, k2Mnm bjkXjXk � E
~bm +

P
j2Mnm bjmXj

: ð24Þ

From here we can see that Xm is a sum consisting of Gaussian ratio and product

Gaussian ratio random variables, when conditioned on Y and XO. The moments

or moment generation function of such random variables are difficult to derive

and are not readily available. Thus, this is the only missing data pattern for

which numerical integration is used to obtain E½T Uð ÞjUO�. That is, we approxi-

mate E½T Uð ÞjUO� with

E½T Uð ÞjUO�=
Ð
uM

T uM , uOð Þf uM juOð Þ duMÐ
uM

f uM juOð Þ duM

=
f uOð Þ
f uOð Þ

Ð
uM

T uM , uOð Þf uM , uOð Þ duMÐ
uM

f uMg, uO

� �
duM

’

PG
g = 1 T uMg, uO

� �
f uMg, uO

� �PG
g = 1 f uMg, uO

� � ,

ð25Þ

where uMg is the gth grid point over the domain of uM for numerical integration.

Note that the purpose of dividing by 1=
Ð
uM

f uM juOð Þ duM is to cancel out

f uOð Þ from the numerator. This allows us to perform calculations in terms of

f uM , uOð Þ, rather than f uM juOð Þ, thus the latter need not be derived.

Summary of Results

We propose to construct a hybrid EM method that uses the analytic results

derived in this section for MDPs 1 and 2, and numerical integration for MDP 3.

To incorporate these results into a hybrid EM algorithm, first consider the

Q-function from the perspective of a sample. Let a case index be denoted from

i= 1, . . . , n. Then the Q-function can be written as

Qu tð Þ uð Þ=
Xn

i= 1

Eu tð Þ fu uið ÞjuiO½ �: ð26Þ

The key observation of this characterization is that the conditional expectation

can be taken in a case-wise manner. Thus the calculation of the conditional

Hybrid EM
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expectation for each case can differ depending on the missingness pattern,

which dictates if numerical integration is necessary or not. That is, the analytic

solutions described earlier can be used if case i has MDPs 1 or 2, and numerical

integration can be used if it has MDP 3. A more formal description of the

complete algorithm is described in Algorithm 1.

Empirical Studies

Given that the hybrid EM algorithm minimizes the use of numerical approxi-

mations, we now investigate the impact this has on data analysis. We do this

over three empirical studies: (a) a basic simulation study varying several charac-

teristics of the data, (b) a simulation study using real data with behavioral mea-

sures, and (c) a study on power.

Basic Simulation Study

For a basic simulation study, we sought to study estimator performance over

several settings:

� Estimation methods: hybrid EM (HYB), full numerical integration (NI),

and complete data least squares (CD) as a baseline.

Algorithm 1. The Hybrid EM Algorithm

Input : Start values u 0ð Þ, observed data UO, model specification
1 Determine MDP. Categorize each uiO into MDPs, 1, 2, or 3 by comparing its

missingness pattern to the model specification;
2 Set t 0;
3 repeat
4 Hybrid E-Step. Calculate Eu tð Þ ½T uið ÞjuiO� for i= 1, . . . , n:
5 if uiO is MDP 1 then
6 Apply Equations 15 and 16 for expectations with Y ;
7 Apply Lemma 1 with parameters from Equation 14 for expectations

without Y ;
8 if uiO is MDP 2 then
9 Apply Lemma 1 with parameters from Equation D7 for all expectations;

10 if uiO is MDP 3 then
11 Apply Equation 25 for all expectations;
12 M-Step. Set u t+ 1ð Þ  argmax

u
Qu tð Þ uð Þ, see Supplemental Appendix B for

closed-form maximizers;
13 if max u t+ 1ð Þ � u tð Þ ł e, a small convergence criterion then break repeat;
14 else Set t t + 1;

Output: Parameter Estimates û u t+ 1ð Þ

Kim
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� Sample size (n): 100, 250, 500, and 1,000.
� Proportion of missingness (jMIS): 0.10, 0.20, and 0.30.
� r = 100 replications per condition combination.

Our primary interest was to study the effect of analytic EM iterations versus NI.

As such, we specifically generated missingness patterns from MDP 1 and MDP

2, which resulted in the HYB method using only analytic integration. The NI

method uses numerical integration regardless of missing data pattern, and we

used the Riemann midpoint method following Robitzsch and Lüdtke (2021) and

used 40 grid points spread uniformly between 6 4 standard deviations from the

marginal means. The least-squares estimates under listwise deletion were used

as the start values for both the HYB and NI methods. Note that for complete-

ness, we also investigated the effect of varying the prevalence of MDP 3

(jMDP3). These results can be found in Supplemental Appendix E (available in

the online version of this article).

Data Generation

The parameters for X were generated in the following way:

m;Up �3, 3ð Þ
S=DCD,

ð27Þ

where D is a diagonal matrix of standard deviations, with the diagonal distribu-

ted as Up 1,
ffiffiffi
3
p� �

and C is a constant correlation matrix with a unity diagonal

and off-diagonal entries of 0.3. Thus, each S is generated from the same under-

lying correlation matrix but scaled accordingly with random variance entries.

Once these parameters were drawn, X was sampled from N p m,Sð Þ. To reflect

a higher number of predictors that is more common in real data we set p= 7.

For the regression model, three of the seven predictors were chosen at ran-

dom to form product terms in d Xð Þ, for a total of d = 10 design variables. Then,

an adjusted R2 parameter and b vector were simulated using

R2
a;U1 0:1, 0:5ð Þ

b;Ud �3, 3ð Þ:
ð28Þ

Given a sample of x vectors and a sampled b, we can algebraically solve for a

s2
E such that the drawn R2

a is achieved (see Supplemental Appendix F in the

online version of the journal for details). This allows us to draw error terms with

E;N 0,s2
E

� �
and calculate the outcome with Y = d Xð ÞT b+ E.

Once X and Y were generated, the observed data indicator R was generated

under a MAR mechanism. This was done by randomly selecting a non-product

variable in X to serve as an always-observed auxiliary variable designated Xa,
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which determined missingness in all other variables. This ensured the MAR

assumption was always met. Using an intermediate latent propensity variable

based on Xa, we determined the cases that were designated to contain missing

values according to jMIS . Then half of these cases were allocated to MDP 1 and

the other half to MDP 2. The exact mathematical details of this procedure can

be found in Supplemental Appendix G (available in the online version of this

article).

Performance Metrics

To evaluate performance, we calculated bias and mean square error (MSE)

quantities aggregated within coefficient vectors as follows:

Aggregated Bias :¼
Xd
j=1

b̂j � bj

� �
d

Aggregated MSE :¼
Xd
j=1

b̂j � bj

� �2
d

:

ð29Þ

We then examined these quantities averaged over r = 100 replicated datasets,

per simulation condition.

Results

Plots of aggregated bias and aggregated MSE are displayed in Figure 1.

Across all conditions, the HYB method had a lower MSE than NI. While the

MSE increased with jMIS for both methods, the gap between HYB and NI also

increased, indicating that the HYB method is more robust to an increase in

missing data. As would be expected with maximum likelihood theory, the MSE

of CD, HYB, and NI decreased with n and are generally unbiased across all

conditions. While we did not formally study the elapsed computation time, we

note that in our implementation both the HYB and NI methods are inconsequen-

tially fast. Across all conditions, both methods averaged below one-tenth of a

second, with maximum run times of 1.31 s for HYB and 2.19 s for NI.

Real Data Study

In this study, we compared the practical use of the HYB and NI methods by

using data from real behavioral measures. Educational and behavioral data may

be discrete or skewed, contrary to the multivariate Gaussian assumption that we

utilize for the predictors. The Gaussian assumption is typically not required

when the data are complete, but utilized here to accommodate missingness in
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the predictors. Therefore, we study the robustness of the multivariate normality

assumption when the predictors are instead discretized or skewed as real data

would be. We do this by taking a set of real, complete, behavioral data and set-

ting it as our population of interest. We then sample from this population by

non-parametric bootstrap and then artificially insert missingness to the boot-

strapped datasets. The performance of the HYB and NI methods are then evalu-

ated in their ability to recover the regression parameters from these bootstrapped

datasets.

We analyzed measures of psychopathology from the Adolescent Brain

Cognitive Development (ABCD) Study (https://abcdstudy.org). The ABCD is a

large, multi-site study, whose data are publicly available (Volkow et al., 2018),

which was approved by the institutional review boards of the participating sites

(Clark et al., 2018). To avoid potential clustering effects by site and to reduce

the sample size to a more realistic scale, one site was selected randomly to pro-

vide the basis of our data (n= 1,011).

We considered a linear model of conduct disorder as a function of attention

deficit hyperactivity disorder (ADHD), depression (DEP), their product-term

(ADHD 3 DEP), controlled for by anxiety (ANX), and oppositional defiant

disorder (ODD). Previous work has shown comorbidity among these variables

FIGURE 1. Aggregated MSE and bias by n, uMIS, and method. Error bars indicate 6 1

standard error.
Note. MSE = mean square error.
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(Angold et al., 1999; Jensen et al., 1997). Measures were taken using summary

scores of the child behavior checklist (Achenbach & Rescorla, 2001). These

scores are fairly skewed and discrete, residing on the integers 0 to 15. We dis-

play histograms of these scores in Figure 2.

For each bootstrapped data set, missingness was inserted using the same

MAR generating procedure as the previous basic simulation study (equal pro-

portions of MDPs 1 and 2) but fixed jMIS = 0:2. For performance metrics, we

evaluated the empirical bias and empirical MSEs per coefficient. That is we

computed

Empirical Bias :¼ b̂j � bj

Empirical MSE :¼ b̂j � bj

� �2

:
ð30Þ

These metrics were evaluated over r = 100 bootstrapped repetitions. The least-

squares estimates of the original complete data set were considered the true

parameters. These estimates are displayed in Table 1.

Boxplots of the results are displayed in Figure 3. On average, the biases from

all methods were close to zero across all parameter estimates, with the only

exception being the NI method underestimating the bODD parameter by a factor

of 1.38. The HYB method had lower MSE than the NI method across all para-

meters except for bDEP, and was substantially lower for the intercept (b0) and

bODD. These results highlight the improved performance of the HYB method in

real data scenarios and its robustness to violating the Gaussian assumption over

the predictors in practice.

FIGURE 2. Histograms of the predictors variables for the real data study.
Note. MSE = mean square error.
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Power Study

Given that analytic iterations confer improved MSE as demonstrated by the

basic simulation study and the real data study, we examine how this may trans-

late to increased power. We used the same dataset as the real data study as a

basis, and once again set the least-squares estimates of the complete data as the

true coefficient vector. Then we used a parametric bootstrap to generate error

terms such that the alternative hypothesis will be true on the interaction

FIGURE 3. Empirical MSE and bias by method over all regression parameters.
Note. MSE = mean square error.

TABLE 1.

Estimates, Standard Errors, t-Values, and p-Values of the Original Data Least-Squares

Coefficients for the Real Data Study

Coefficient Estimate SE t-Value p-Value

b0 20.170 0.088 21.936 .053
bODD 0.573 0.033 17.583 .000
bANX 20.033 0.024 21.396 .163
bADHD 0.103 0.026 4.033 .000
bDEP 0.014 0.045 0.312 .755
bADHD3DEP 0.019 0.006 3.428 .001
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coefficient before missingness is inserted with an approximate power of 0.80

(in a one-tailed t-test with a= 0:05). That is, we generated complete datasets

using

~Ei;N 0,s2
~E

� �
~Y i = d xið ÞT bLS +~Ei,

ð31Þ

for all i= 1, . . . , n, and where xi are the original data predictors and bLS are

the original least-squares estimates. The parameter s2
~E is set to a value such that

the power on the interaction coefficient is .80 (further details are available in

Supplemental Appendix H in the online version of the journal). This allowed us

to generate complete datasets where the hypothesized model is true with the

desired amount of power determined by s2
~E . Missingness was then inserted using

the same scheme as the previous real data study. For each method, t-statistics

were calculated with

t=
b̂ADHD3DEPffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffidVar b̂ADHD3DEP

� �r , ð32Þ

where we calculated the standard errors for the HYB and NI by numerically dif-

ferentiating the Fisher score function (Jamshidian & Jennrich, 2000). Then the

estimated power was taken to be the proportion of times that the t-statistic

exceeded a critical t-value based on a= 0:05 and df= n� d. Thus we exam-

ined, over 100 replications, how much will the HYB and NI methods recover

the original power after missingness is inserted.

We display the estimated power of each method in Figure 4a. Complete data

least-squares estimates are included as a control comparison. The estimated

power was 0.82 for the complete data, 0.77 for HYB, and 0.42 for NI. As is

expected by the insertion of missingness, both the HYB and NI methods show

reduced power. However, the HYB method was substantially more robust, only

having a reduced power of 0.05, whereas the NI method had a reduced power

of 0.40 relative to the complete data power. Consistent with the results of the

previous two studies, this is attributable to the increased estimation variance of

the NI method, which can be seen in Figure 4b. These box plots display magni-

tudes of b̂ADHD3DEP for each method. We show that the complete data and

HYB methods have similar variances, whereas the NI method is visibly larger.

Discussion

In this research, we sought to improve the EM algorithm for linear models

with two-way product terms by deriving analytic E-steps for large classes of

MDPs. These derivations were used to develop a hybrid approach to the EM
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algorithm, where analytic E-steps were used whenever possible and NI was used

otherwise.

Comparing the hybrid method to NI, several themes arose across the three

simulation studies. First, both methods showed very little bias, even when the

predictors were non-normal. Second, the hybrid method outperformed NI pri-

marily in terms of estimation variability, in both normal and non-normal scenar-

ios. And third, this reduction in variability can translate to substantial increases

in power.

Tempering these promising results is the fact that the hybrid method used in

this study is specific only to product-term regression models. Certain aspects of

this research may generalize well toward other models, for example, our analy-

sis of MDP 1 may readily generalize into polynomial predictors. For other

regression designs, such as the generalized linear model and/or discrete predic-

tors, further study will be required to parse their idiosyncratic characteristics. In

contrast, the NI method remains general and readily applicable.

Another avenue for future research is to investigate other missingness

mechanisms. In the current study, we focused on an ignorable missingness

mechanism. However recently, frameworks have been developed to determine

situations where consistent estimates can be obtained when the missingness

FIGURE 4. Estimated power of the three methods (a) and the box plots of b̂ADHD 3 DEP

(b). Error bars on estimated power denote 6 1 standard error. The dotted line denotes

the critical value of b̂ADHD3DEP.
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mechanism is non-ignorable (Mohan & Pearl, 2021; Rabe-Hesketh & Skrondal,

2023). Also, the robustness of these methods to distributional violations could

be more systematically studied through more carefully designed experiments

that vary aspects such as discreteness and skewness.

From a computational perspective, the scalability of these methods can be

further investigated by varying the number of variables. At higher proportions

of missingness, a more principled strategy for start values may also be called

for. Additionally, the hybrid approach may also be incorporated into Monte

Carlo methods of integration, including Gibbs and Metropolis-Hasting variants

(Levine & Casella, 2001; Wei & Tanner, 1990). The NI method may also be

improved via other approximating functions (Q. Liu & Pierce, 1994) and/or by

adaptive methods (Rabe-Hesketh et al., 2002). In the context of the current

research, these topics are amenable directions for further study in missing data

methods for regression models, and may also result in higher power to detect

effects.

Declaration of Conflicting Interests

The author declared no potential conflicts of interest with respect to the research, author-

ship, and/or publication of this article.

Funding

The author received no financial support for the research, authorship, and/or publication

of this article.

ORCID iD

Dale S. Kim https://orcid.org/0000-0002-5365-3748

References

Achenbach, T. M., & Rescorla, L. A. (2001). Manual for the ASEBA school-age forms &

profiles: An integrated system of multi-informant assessment. University of Vermont.

Aiken, L. S., & West, S. G. (1991). Multiple regression: Testing and interpreting interac-

tions. SAGE.

Angold, A., Costello, E. J., & Erkanli, A. (1999). Comorbidity. Journal of Child Psychol-

ogy and Psychiatry and Allied Disciplines, 40(1), 57–87.

Baron, R. M., & Kenny, D. A. (1986). The moderator-mediator variable distinction in

social psychology research: Conceptual, strategic, and statistical considerations. Jour-

nal of Personality and Social Psychology, 51(6), 1173–1182.

Bartlett, J. W., Seaman, S. R., White, I. R., & Carpenter, J. R. (2015). Multiple imputa-

tion of covariates by fully conditional specification: Accommodating the substantive

model. Statistical Methods in Medical Research, 24(4), 462–487.

Kim

19

https://orcid.org/0000-0002-5365-3748


Clark, D. B., Fisher, C. B., Bookheimer, S., Brown, S. A., Evans, J. H., Hopfer, C., Hud-

ziak, J., Montoya, I., Murray, M., Pfefferbaum, A., & Yurgelun-Todd, D. (2018). Bio-

medical ethics and clinical oversight in multisite observational neuroimaging studies

with children and adolescents: The ABCD experience. Developmental Cognitive Neu-

roscience, 32, 143–154.

Dawson, J. F. (2014). Moderation in management research: What, why, when, and how.

Journal of Business and Psychology, 29(1), 1–19.

Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incom-

plete data via the EM algorithm. Journal of Royal Statistical Society: Series B, 39(1),

1–38.

Enders, C. K., Baraldi, A. N., & Cham, H. (2014). Estimating interaction effects with

incomplete predictor variables. Psychological Methods, 19(1), 39–55.

Enders, C. K., Du, H., & Keller, B. T. (2020). A model-based imputation procedure for

multilevel regression models with random coefficients, interaction effects, and non-

linear terms. Psychological Methods, 25(1), 88–112.

Graham, J. W. (2009). Missing data analysis: Making it work in the real world. Annual

Review of Psychology, 60(1), 549–576.

Hayes, A. F. (2018). Introduction to mediation, moderation, and conditional process anal-

ysis: A regression-based approach (2nd ed.). The Guilford Press.

Hinrichs, A., Novak, E., Ullrich, M., & Woźniakowski, H. (2014). The curse of dimen-
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