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ABSTRACT OF THE DISSERTATION 

 

Multiscale Simulation Approaches for Predicting Protein-Ligand Binding Kinetics  

 

by 

 

Benjamin Robert Jagger 

Doctor of Philosophy in Chemistry 

University of California San Diego, 2020 

Professor Rommie E. Amaro, Chair  

Professor J. Andrew McCammon, Co-Chair 

 

 

A detailed understanding of the interaction between a drug candidate molecule and its 

target is essential for the development, optimization, and efficacy prediction of a drug. Kinetic 

parameters such as the association rate and residence time of a molecule have been shown to better 

correlate with in vivo efficacy than more commonly used thermodynamic parameters. Efficient 

and accurate computational predictions of these quantities are therefore of great interest for their 

potential to inform and improve the development of novel pharmaceuticals. In this dissertation, I 

present the development and application of a multiscale molecular simulation approach which 



 xiv 

combines molecular dynamics and Brownian dynamics simulations with the theory of milestoning 

to efficiently calculate protein-ligand binding and unbinding rates. I begin with an overview of 

many of the existing multiscale simulation approaches for studying drug-protein binding. Then I 

present the methodology we have developed, Simulation Enabled Estimation of Kinetic Rates 

(SEEKR), and demonstrate its effectiveness for predicting the association and dissociation rates 

of the inhibitor, benzamidine, to the trypsin protein; a common model system. I then present the 

effectiveness of our multiscale milestoning approach for rank-ordering a series of chemically 

diverse ligands to the model system β-cyclodextrin. This study includes a direct comparison of 

both efficiency and accuracy to long timescale molecular dynamics simulations and also outlines 

best practices for the use of our approach and the assessment of sampling convergence. Finally, I 

present the implementation of a new milestoning algorithm, Markovian Milestoning with Voronoi 

Tesselations, in our multiscale methodology to significantly decrease the simulation cost of 

kinetics calculations, improve the assessment of sampling convergence, and provide a framework 

for the future development of additional capabilities with the SEEKR method. This study also 

includes the development and deployment of our toolkit along with documentation and tutorials to 

facilitate its use and continued improvement by the scientific community.  
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Multiscale Simulation Approaches to 

Modeling Drug-Protein Binding 
 

1.1 Abstract 

Simulations can provide detailed insight into the molecular processes involved in drug 

action, such as protein-ligand binding, and can therefore be a valuable tool for drug design and 

development. Processes with a large range of length and timescales may be involved, and 

understanding these different scales typically requires different types of simulation methodology. 

Ideally, simulations should be able to connect across scales, to analyze and predict how changes 

at one scale can influence another. Multiscale simulation methods, which combine different levels 

of treatment, are an emerging frontier with great potential in this area. Here we review multiscale 

frameworks of various types, and selected applications to biomolecular systems with a focus on 

drug-ligand binding.  

 

1.2 Introduction 

Protein-ligand interactions are integral to coordinating the complex functions of cellular 

activity. Such interactions include the binding of signaling molecules, enzyme substrates, toxins, 
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regulating factors, or other proteins to the protein of interest. Of particular interest for 

pharmaceutical development is the binding of drug molecules that mimic, inhibit, or modulate 

native protein-ligand interactions for therapeutic effect.  Molecular simulations are increasingly 

involved in drug discovery pipelines in understanding protein-drug binding interactions, and also 

have the potential to reduce cost and time of drug discovery associated with synthesizing and 

experimentally testing many compounds.1 Simulations can be used as screens during the hit 

identification phase2, provide insight for lead optimization3, and aid in analyzing drug resistance.4 

A particular focus is understanding and predicting drug binding and kinetics:5,6 increasingly it is 

clear that the biological activity of many drugs depends on the rates of association or dissociation 

from their targets, rather than their binding affinity.5–7 Developments in computer architecture, 

such as GPUs, and the promise of exascale computing power, are transforming the range and scope 

of biomolecular simulations.8 Simulations can reveal molecular mechanisms and analyze them in 

a level of detail and dynamic resolution beyond the reach of experiment.  

Simulations face conflicting challenges in this arena, with a tension between the need to 

address long timescales and large spatial scales for some relevant processes (large-scale 

conformational changes, macromolecular association, and beyond to changes in organelles and 

cells) and the requirement for accurate description of molecular interactions and reactions for 

reliable predictions.9 Methods exist to simulate biomolecules at different length scales, ranging 

from quantum mechanical electronic structure calculations to atomistic, coarse-grained, mesoscale 

and continuum models, each with well-established domains of applicability, and can provide 

useful predictions of biologically relevant properties when applied with simulation techniques to 

sample underlying structure, organization and dynamics.10 Furthermore, many enhanced sampling 

simulation techniques exist to more efficiently access the wide range of timescales relevant for 
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drug action. No one methodology is capable of completely and accurately describing the broad 

range of time- and length scales of the protein-drug binding process and the molecular changes 

that result from binding of a drug to its target. Therefore, there is great potential impact from the 

combination of different types of methods, e.g. for predicting the higher-level effects of changes 

at the molecular level by connecting across scales and understanding the mechanisms responsible. 

There is further promise in leveraging and connecting to the increasing wealth of experimental, 

genetic, and other biological data and ultimately informing future experiments to push forward 

drug development campaigns.  

Here, we review emerging multiscale methods for studying protein-ligand binding relevant 

to drug design and the development of small molecule therapeutics. Multiscale techniques bridge 

spatial and/or temporal scales, coupling together two or more different types of modelling 

approaches, with varying degrees of ‘tightness’ of coupling (Figure 1.1). Two or more different 

levels of representation may coexist within a single simulation, a switch between independent 

levels can be triggered when a critical configuration or milestone is reached, or sampling at a lower, 

computationally cheaper level can enhance and/or be informed by calculations at a higher level, 

with information being directly passed between different types of simulation. We also include in 

this review a brief description of enhanced sampling techniques, primarily focused on the atomistic 

scale, as these methodologies are essential for studying the longer temporal scales on which drug 

binding occurs and offer immense potential through combination with other multiscale techniques 

designed to access multiple length scales. The simulation methods we highlight are ordered by 

increasing scale (time and length) which, generally, is inversely correlated with computational cost.  
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Figure 1.1. Depiction of the range of scales relevant for drug binding and action, from atomic to cellular scales. 

Multiscale simulation techniques bridge two or more of these scales by combining different molecular representations 

or simulation modalities with varying degrees of coupling. Through multiscale approaches, one can potentially obtain 

information and make predictions at larger scale methods without losing the detail associated with smaller scale 

techniques. 

 

1.3 Combining QM methods with atomistic and coarse-grained representations 

Multiscale approaches can provide a route to combine the accuracy and detail of high-level 

methods with the ability to model large systems and perform significant sampling. Quantum 

mechanics/molecular mechanics (QM/MM) methods are a paradigm of multiscale molecular 

modelling. They combine an electronic structure description of a small region with a simpler 

empirical MM (usually atomistic) representation of the surroundings (e.g. protein, solvent). The 

QM treatment can provide an accurate description of the electrostatics and polarization of the high-

level region, and model chemical reactivity, e.g. to study covalent reactivity in situ.4 Inclusion of 

environmental effects may generally be crucial for reliable prediction of reactivity of drug-like 

molecules, for which ligand-only prediction approaches may fail.11 QM/MM methods have 

important relevant applications beyond chemical reactivity in investigations of drug binding. As a 

ligand binds to a protein, its environment changes significantly, e.g. from fully solvated to buried 

within the protein. This may cause significant changes in the polarization of the ligand preferably 
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when a charged residue is close to ligand, affecting its interactions, but the effects of such changes 

are not included in invariant charge MM models. The effects of electronic polarization changes on 

binding kinetics can be investigated by combining QM/MM free energy calculations with 

enhanced sampling simulations of binding (Figure 1.2). An example is a study of the anticancer 

drug imatinib binding to c-Src kinase,12 which combined metadynamics simulation of binding with 

QM/MM free energy corrections at critical points along the (un)binding pathway. In this approach, 

the free energy change for changing from a MM to a QM treatment of the ligand is calculated, for 

the bound complex, for the transition state (TS), and for the unbound ligand in solution, by replica 

exchange Monte Carlo simulations using a Metropolis-Hastings-Warshel algorithm (Figure 2).13 

The results show that there is a significant difference between these environments in the free 

energy for the change from a MM to a QM treatment of the ligand. This indicates that that 

polarization (and therefore interactions) of the ligand are significantly different in different 

environments, and changes as the drug binds to the protein. Inclusion of electronic polarization in 

this way has the effect of increasing the off rate, bringing it closer to the experimental value.  

QM/MM methods allow chemical reactions to be investigated in proteins and are now 

widely applied in modelling enzyme-catalyzed reactions, and increasingly in other relevant areas 

such as covalent inhibition and prediction of drug metabolism.14 In modelling drug metabolism, 

they have been combined with coarse-grained and atomistic molecular dynamics (MD) 

simulations:9 coarse-grained MD is used to generate a model of the membrane-bound enzyme 

investigate association with a drug (e.g. warfarin) in the membrane;  coarse-grained models are 

converted into atomistic MD simulations to investigate drug binding within the enzyme; and these 

atomistic simulations are used to generate QM/MM models to investigate reaction in the active 

site . The simulations showed important effects of the membrane, e.g. on the channels controlling 
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access to the active site and gating residues. This multiscale coarse-grained-atomistic-QM/MM 

protocol is applicable to other membrane-bound enzymes. QM/MM methods with impressive 

scalability are also being developed.15 QM/MM methods can also be combined with coarse-

grained representations, in triple resolution models directly containing QM, MM and CG regions, 

to model large systems.16 It should always be remembered that approximate QM methods suffer 

from limitations (e.g. some density functionals may fail to model some types of reactivity 

correctly);9–11 these can be overcome by multiscale methods that embed a high-level ab initio QM 

treatment within a larger region treated by density functional theory, effectively partitioning the 

QM region within a QM/MM framework. This embedding approach removes uncertainty due to 

the functional and allows calculation of reaction barriers with high accuracy.17  
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Figure 1.2 A practical multiscale simulation approach to modeling drug-protein binding kinetics combing 

atomistic metadynamics simulations and QM/MM free energy calculations. 

a.) A schematic representation of the unbinding pathway of the ligand from its protein target showing the most 

important states along the (un)binding pathway: the bound protein-ligand complex, transition state (TS) for binding 

and the unbound state (with the ligand free in solution). b.) Shows the one-dimensional free energy profile for binding 

of the cancer drug imatinib binding to c-Src kinase: this was calculated using parallel tempering metadynamics with 

path collective variables. c.) Representative structures of the imatinib-src bound complex (A), TS and encounter 

complex (C). d.) QM/MM corrections to the profile are calculated from the free energy of changing from a MM to a 

QM representation of the ligand for each state. The free energy cycle shows this for the bound and unbound states. 

∆𝐺𝑓𝑟𝑒𝑒
𝑄𝑀→𝑀𝑀

 and 𝐺𝑏𝑜𝑢𝑛𝑑
𝑄𝑀→𝑀𝑀

 are the QM/MM correction free energy for the bound and unbound states, respectively. The 

thermodynamic cycle shown provides a QM/MM estimate of the binding affinity, by correcting the binding free energy 

calculated at the MM level.  
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1.4 Accessing drug-relevant timescales 

Enhanced sampling simulations (usually based on atomistic MD) are increasingly used to 

study and predict drug binding kinetics.1,5–7,10,12 There is potential to apply enhanced sampling 

methods in multiscale frameworks to extend their scope.  

Atomistic MD simulations can provide good descriptions of biomolecular interactions, and 

with free energy approaches can analyze determinants of binding affinity. However, even with 

supercomputer resources, timescales are limited to the nanosecond-microsecond regime, so it is in 

general difficult to simulate multiple binding events unless a biasing or enhanced sampling method 

is applied to accelerate the process or to focus sampling on a desired region of phase space. Many 

such methods exist and can be applied with different potential functions (atomistic, coarse-grained, 

QM/MM, etc). An example of an enhanced sampling simulations approach is the calculation of 

residence times τ (τ = 1/koff) using τ-random acceleration molecular dynamics (τ-RAMD) for a 

diverse set of inhibitors of an important cancer target, the human N-terminal domain of heat shock 

protein 90α (N-HSP90). The τ-RAMD method relies on generating a random force which allows 

exit of the ligands within a short simulation time. τ-RAMD gives an excellent correlation between 

computed residence time (τcomp) and measured τexpt values for 78% of the compounds.18 Other bias-

based MD approaches have also been successful for predicting drug-target residence time. 19,20 

Metadynamics (MetaD) simulations21 of various types are being increasingly widely used 

in drug discovery, e.g. for prediction of binding kinetics, exploration of ligand binding or 

unbinding pathways,13,22,23 or analysis of conformational behavior e.g. relating to drug resistance,4 

and can be applied in multiscale frameworks and/or with multiscale potentials. MetaD sampling 

techniques rely on choosing appropriate collective variables (CV) to describe the slow degrees of 

freedom of interest. It is a nontrivial task to choose or identify effective and representative CVs to 
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describe a process effectively, often involving trial and error. Several recent developments address 

this issue.24 Bernetti et al. showed that with a Path Collective Variables (PCVs) description 

coupled with metadynamics can be combined with Markov state models (MSM).25 They applied 

this integrated method to model the binding of alprenolol to the β2-adrenergic receptor, providing 

as estimate of the binding free energy and identifying the minimum free energy path for formation 

of the protein-ligand complex. McCarty and Parrinello combined well-tempered metadynamics 

and time-lagged independent component analysis to obtain efficient collective variables.26  

Brotzakis et al. combined this variational approach to conformational dynamics with funnel 

metadynamics to calculate the absolute protein-ligand binding free energy and study energetic and 

structural details of benzamidine binding to trypsin at relatively low computational cost.27  

Alternative approaches to simulating molecular association and other slow processes, such 

as MSM28 and milestoning29,30 rely on statistical reconstruction of simulation data from many short, 

independent simulations. MSMs can describe small-molecule binding kinetics in good agreement 

with experiment31 and have also been used to elucidate the effects of protein dynamics for drug 

binding.32 The transition-based reweighting analysis method allows integration of unbiased and 

biased MD simulations, estimating a multiensemble Markov model, combining the advantages of 

MSMs and rare-event sampling simulations.33 Experimental data can also be integrated into 

augmented Markov models34 There are also multiple examples using milestoning with MD 

simulations to study ligand binding.35,36 Weighted ensemble approaches also show great promise.37  

Such approaches are powerful, but the most important limitation is generally the high 

computational costs of sampling of atomistic MD simulations of protein-drug binding. With 

sufficient sampling, the accuracy of predictions may be limited by the potential functions used:38 

typical atomistic MM forcefields do not allow for changes in electronic polarization and are limited 
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in their description of electrostatics and dispersion effects, so may not describe binding interactions 

correctly.39 Coupling to simulations with more physically correct models (e.g. QM electronic 

structure methods) in multiscale frameworks potentially allows for such limitations to be tested 

and corrected (Figure 1.2).12,13 Connecting higher level simulations with more approximate models 

potentially allows on-the-fly (and/or machine learned) refinement of the approximate models, 

which will help provide improved potential functions for specific systems. Enhanced sampling 

methods such as metadynamics can also be used to generate reactive conformations for subsequent 

QM/MM modelling of reactivity in investigations of targeted covalent inhibitors.4  

 

1.5 Combining molecular level descriptions  

Drug-protein binding typically occurs in two main steps: first, non-specific and long-range 

interactions, such as electrostatics, drive initial association to the binding site region, subsequently, 

more specific short-range interactions (covalent bonds, hydrogen bonds, salt bridges, etc.) within 

the binding site determine the final binding pose (where specificity of interactions is key). This 

immediately suggests that the whole binding and recognition process can be simulated by a 

combination of different methods to describe these two aspects, and indeed this has inspired 

multiscale approaches. From Smoluchowski theory, the maximum diffusion-limited rate 

coefficient of two molecules approximated as spheres of similar size in aqueous solution is on the 

order of 109-1010 M-1s-1.40 However, as a result of molecule size, molecular and hydrodynamic 

interactions, crowding, geometric constraints of binding sites, gating effects, etc. the observed rate 

coefficients of ligand binding occur over a much broader range, 103 to 1010 M-1s-1.40–42 Brownian 

dynamics (BD) simulations solve the Langevin equation in the overdamped limit, and often 

achieve decreased computational cost by neglecting internal degrees of freedom and describing 

solvent implicitly with a dielectric constant and viscosity term.43 As such, trajectory-based BD 
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simulations are well-suited for studying the long-range interactions that dominate ligand 

association, particularly the electrostatic steering involved in forming the initial ligand-protein 

encounter complex. BD simulations were combined with all-atom MD simulations in one of the 

earliest multiscale approaches to protein-ligand binding.44 Chang et al. presented a multiscale 

approach to model binding pathways of ligands to HIV-1 protease that involved initial coarse-

grained BD simulations followed by all-atom MD simulations initiated from snapshots of the BD 

trajectories.45 The low cost of the coarse-grained BD simulations allows for extensive sampling of 

multiple association pathways. The pathway data generated from these simulations served as the 

starting point for multiple follow-up studies, providing detailed descriptions of the drug binding 

process.46,47 Another approach to model ligand binding combines a molecular mechanics 

description of the ligand and water molecules with a coarse-grained Gō model description of the 

protein.48 This approach was applied to multiple G-protein coupled receptors and successfully 

predicted important residues for ligand binding, as well as binding poses.49 

Milestoning theory can also be leveraged to combine MD and BD simulations; balancing 

atomistic detail and accuracy with efficiency. In particular, Simulation Enabled Estimation of 

Kinetic Rates (SEEKR) is a multiscale milestoning simulation technique that directly combines 

MD and BD simulations to calculate kon, koff, and the free energy of protein-ligand binding, with 

a focus on small molecule drugs.50–52 Atomistic MD simulations are used in regions close to the 

binding site, where molecular flexibility and atomic-level detail are essential. Rigid-body BD 

simulations are used in the regions farther away from the binding site, where molecular flexibility 

is less important (Figure 1.3). The use of BD results in dramatic computational savings compared 

to purely MD simulations, as millions of individual millisecond-to-second trajectories can be 

generated overnight on a standard desktop computer, in contrast to MD simulations which require 
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multiple weeks and supercomputers, GPUs or other specialized hardware to produce a single 

trajectory on the order of 1 microsecond. SEEKR further reduces the compute time required for 

calculations via an enhancement in sampling of rare events due to statistical bootstrapping, and it 

is ‘embarrassingly’ parallel, as each independent milestone can be simulated concurrently. SEEKR 

has been shown to effectively rank-order ligands by both koff and binding free energy for the 

biosynthetic receptor, β-cyclodextrin.52 SEEKR has also been employed to calculate kon, koff, and 

the binding free energy for the well-studied model protein system trypsin with the noncovalent 

binder, benzamidine.51 In a similar study, Zeller et al. combined MD and BD simulations to obtain 

association rates and pathways for two clinically relevant inhibitors of the influenza neuraminidase 

enzyme.53 Using an MD/BD multiscale approach resulted in a reduction in computational cost 

while still retaining detailed information about the association pathway, such as intermediate states, 

that can be useful to inform inhibitor design. The binding and unbinding rates calculated with these 

methods can be used as parameters for larger-scale phenomenological and diffusion-based models, 

adding a further multiscale dimension. 
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Figure 1.3 SEEKR is designed for calculations of ligand receptor binding and unbinding kinetics in a 

multiscale framework using molecular dynamics and Brownian dynamics simulations.  

Regions closest to the binding site are simulated with atomistic MD and the regions furthest away is simulated using 

rigid body BD. Ligands are placed on each spherical milestone and only simulated until an adjacent milestone is 

touched. Arrows in red represent MD trajectories and blue arrows represent BD trajectories. Statistics from each of 

the independent simulations are combined to estimate association and dissociation rates, as well as binding affinity. 

 

 

1.6 Linking molecular detail to sub-cellular and beyond 

The methods discussed so far can model biomolecular (drug and protein) systems; however, 

the size and timescales that these methods can address prevent them from being able to directly 

address the complexities (e.g., off-target effects, cooperativity, metabolism, etc.) of drug binding 

in subcellular, cellular, and larger environments. Such increased system complexity typically 

necessitates a reduction in the level of detail with which each component can be described in a 

model. This can be accomplished using large-scale particle- or continuum-based methods. 
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Multiscale techniques capable of leveraging data obtained from more detailed (e.g., atomistic, 

coarse-grained, etc.) approaches and incorporating it such large-scale methods show great promise. 

One such approach is particle-based reaction-diffusion (RD) simulations. By combining MD-

based MSMs with RD simulations in a technique called MSM/RD, processes such as drug-protein 

binding can be modeled at large time and length scales, while conserving atomistic details.28 More 

specifically, MSM/RD can be used to model intracellular dynamics and describe diffusion, 

association, and dissociation on the cellular scale. Dibak et al. demonstrate the utility of MSM/RD 

approaches for biomolecular systems by application to carbon monoxide diffusion into the heme 

cavity of myoglobin.28 Extensions of this methodology that incorporate more complex cellular 

environments have the potential to become a powerful tool for studying off-target effects of drug 

molecules. The MSM/RD framework is also highly generalizable, with the potential to be 

incorporated into many of the existing powerful RD tools.54–58  

At larger length and time scales, continuum approaches that utilize partial differential 

equations to model diffusing substrates can be employed. Here, recent developments in 

computational geometric meshing algorithms and software have facilitated the incorporation of 

high-resolution reconstructions of experimentally realistic cellular and organelle geometries for 

biophysical simulation.59 Such meshing software allows the seamless connection of particle-based 

(RD, BD, MD, QM methods) with continuum approaches that utilize numerical techniques such 

as finite element methods in realistic (not highly idealized) geometries. This methodology has 

recently been used to model calcium dynamics in realistic geometries of a dendritic spine59 and a 

cardiac calcium release unit,60 demonstrating a cohesive workflow for mesh generation and 

refinement. Using a different approach, cardiac thin filament activation has been modeled using a 

combination of coarse-grained molecular scale BD simulations and filament level stochastic 
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Langevin dynamics to investigate muscle contraction.61 BD simulations of the association of 

individual tropomyosin and actin molecules were used to generate an interaction energy landscape 

that was then coupled to mathematical models for sarcomere-level activation dynamics. Finally, 

linkage to mesoscale models for receptor dynamics is also evolving as a viable strategy,62,63 with 

much potential.  

 

1.7 Conclusions and Outlook 

Multiscale biomolecular simulation methods are emerging and developing rapidly,64 

promising increasing insight and impact in drug development. Multiscale simulation methods 

connect across two or more scales to investigate, for example, how changes at one level drive or 

are affected by changes at another and, by doing so, will bring a new depth of mechanistic 

understanding and unprecedented level of predictive power to drug discovery. Drug action is 

intrinsically multiscale, and understanding it requires an understanding of how molecular-level 

changes lead to macroscopic changes in biological systems. Small molecule binding to a receptor 

of interest leads to changes at many levels; modelling its effects and how binding is affected by 

the cellular milieu requires tools able to integrate biological and biochemical phenomena across a 

range of scales. While we have primarily focused here on methods for understanding such binding 

and unbinding processes at the molecular level, new developments in meshing seem poised to 

contribute to understanding how drug molecules exert their effects at higher levels of biological 

organization, in realistic, experimentally determined system structures.  

The challenges involved are many and varied, reflecting the complexity of biological 

systems and the dynamics and fluctuating interactions of drug targets. As the examples reviewed 

briefly here show, significant progress has been made in integrating different types of simulation 

methods to link across diverse time- and length- scales. They have provided insight into factors 
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determining drug association rates and residence times, and the causes of drug resistance. Together 

with more expansive studies carried out on larger datasets, continued improvements to force fields 

with better connections to quantum mechanical methods, and treatment of complex biological 

environments, the scope and power of multiscale simulation will certainly increase. To access 

cellular time- and length scales, much remains to be done at the intersection of particle and 

continuum approaches. Ongoing challenges include making the transition between representations 

more seamless and routine, and the simulation of meshes that deform and reshape or remodel due 

to biological forces. Detailed comparison with experiment is essential in developing and testing 

such methods, which in turn will inform experimental design and analysis, and data engineering. 

Furthermore, additional potential will be realized through the incorporation of experimental and 

genetic data in fully integrative biological simulation methods.  
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SEEKR: Simulation Enabled Estimation of 

Kinetic Rates, A Computational Tool to 

Estimate Molecular Kinetics and Its 

Application to Trypsin–Benzamidine Binding 

2.1 Abstract 

We present the Simulation Enabled Estimation of Kinetic Rates (SEEKR) package, a suite 

of open-source scripts and tools designed to enable researchers to perform multi-scale computation 

of the kinetics of molecular binding, unbinding, and transport using a combination of molecular 

dynamics, Brownian dynamics, and milestoning theory. To demonstrate its utility, we compute the 

kon, koff, and ∆Gbind for the protein trypsin with its noncovalent binder, benzamidine, and examine 

the kinetics and other results generated in the context of the new software, and compare our 

findings to previous studies performed on the same system. We compute a kon estimate of 

2.1±0.3•107 M-1s-1, a koff estimate of 83±14 s-1, and a ∆Gbind of -7.4±0.2 kcal•mol-1, all of which 

compare closely to the experimentally measured values of 2.9•107 M-1s-1, 600±300 s-1, and -6.7 

kcal•mol-1, respectively. 
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2.2 Introduction 

Elucidating the kinetics and thermodynamics of binding and unbinding processes between 

a biomolecule and a substrate remains an important challenge in the field of molecular biophysics. 

Countless processes within the cell involve the association of a biomolecule with a 

metabolite, signaling molecule, toxin, drug, or another biomolecule.65,66 Many of these interactions 

have important kinetic considerations: for instance, the speed of reactions or the residence time of 

an intermolecular encounter.66 

Significant effort has been expended to accurately estimate the thermodynamics of binding 

using a variety of methods, particularly in the field of drug discovery, where the identification of 

a tight binder is an integral step towards obtaining a potential drug molecule that would accomplish 

a desired medical result.22,35,67–69 While the thermodynamics of binding, encapsulated in the 

quantity of the free energy ∆Gbind of receptor-ligand complex formation, is an important factor in 

the binding process, a comprehensive understanding of the binding process requires consideration 

of binding kinetics and reaction rates. 

Many theoretical approaches and simulation methods have been used to estimate both the 

thermodynamics and kinetics of binding. For instance, specialized machinery and long molecular 

dynamics (MD) simulations can be used in a ‘brute force’ approach, although it is relatively costly 

compared to other methods.70–73 Markov models74–80 can also be used to investigate the kinetics of 

binding,31,44,81 as can milestoning.35 Additional clever methodologies can be used to speed the 

computation using MD.22,69,82–84 Brownian dynamics (BD) can also be used to approach the 

problem of binding kinetics,68,85–88 as can Smoluchowski equation solvers.89 

Our past work50,90,91 has focused on using a multi-scale combination of MD and BD, 

unified through the theoretical framework of milestoning. In our previous study, we presented a 



 19 

hybrid MD/BD/milestoning methodology to conduct our investigations into the kinetics of binding 

between superoxide dismutase and its natural substrate, the superoxide anion, and between 

troponin C and its natural substrate, the calcium ion.50 Here, we make available a software package, 

SEEKR, that implements this method with significant improvements in automation, usability, and 

analysis. We demonstrate the utility of SEEKR by applying it to estimate the kon, the koff, and ∆Gbind 

between the serine protease trypsin and its ligand, benzamidine. In addition to the SEEKR software 

to perform milestoning calculations on any receptor-ligand system, we also make available a user 

guide, tutorial, and workflow to allow users to repeat our simulations and analysis for the trypsin-

benzamidine system, and compute kinetics and thermodynamics for additional receptor-ligand 

systems. 

 

2.3 Theory 

The rationale and methodology behind our usage of milestoning to estimate kinetics using 

both MD and BD has been described recently in detail50 for multiple applications. Our 

implementation to the trypsin-benzamidine receptor-ligand system in this study was adapted with 

few changes, the majority consisting of improvements in software efficiency. 

In the case of bimolecular association, the kinetics of binding and unbinding can be 

represented respectively by two quantities, kon and koff, which are frequently depicted according to 

the following equation: 

 
𝑨 + 𝑩

𝒌𝒐𝒏

⇄
𝒌𝒐𝒇𝒇

𝑨𝑩 (2. 1)
 

 

 

Which is shorthand for specifying that the values kon and koff function as parameters within the 

following differential equations: 
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 𝑑[𝐴𝐵]

𝑑𝑡
= 𝑘𝑜𝑛[𝐴][𝐵] − 𝑘𝑜𝑓𝑓[𝐴𝐵] (2. 2) 

𝑑[𝐴]

𝑑𝑡
= 𝑘𝑜𝑓𝑓[𝐴𝐵] − 𝑘𝑜𝑛[𝐴][𝐵] (2. 3) 

𝑑[𝐵]

𝑑𝑡
= 𝑘𝑜𝑓𝑓[𝐴𝐵] − 𝑘𝑜𝑛[𝐴][𝐵] (2. 4) 

 

 

 

 

Where [A], [B], and [AB] represent the concentrations of chemical species A, B, and their complex 

AB. The kon and koff relate to the dissociation constant KD, and by extension, a free energy of 

association ∆Gbind:69 

 𝑘𝑜𝑓𝑓

𝑘𝑜𝑛
= 𝐾𝐷 = 𝐾⊝𝑒

∆𝐺𝑏𝑖𝑛𝑑
𝑅𝑇⁄  (2. 5) 

 

 

Where R is the gas constant, T is temperature, and 𝐾⊝  is a factor equal to one, in units of 

concentration. 

The theory of milestoning has been formulated to compute kinetic and thermodynamic 

details of a process if the states of that process are represented as carefully chosen surfaces in phase 

space. These surfaces are known as “milestones”.92 In this study, the milestones are represented as 

concentric spherical shells (Figure 2.1) that encapsulate the binding site of the receptor. These 

spherical milestones are used for the computation of kon, koff, and ∆Gbind. Milestoning theory allows 

us to approach the problem of kinetics by utilizing a multi-scale strategy. We use highly-detailed, 

but computationally expensive MD simulations to observe transitions between milestones closer 

to the binding site so that molecular flexibility will be a component of the transitions between 

milestones. We then use BD for the larger and more widely-spaced milestones far from the binding 

site, where fast sampling of long trajectories is required and rigid body dynamics and implicit 

solvent are adequate44,87,93 to model transition times and probabilities. In this way, we take 
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advantage of fully flexible MD where molecular flexibility is required, and also take advantage of 

the computation efficiency of BD where molecular flexibility is less important. Milestoning is the 

theory that combines the MD and BD components, by allowing statistics to be obtained in each 

regime independently, and then unifying the statistics through a rigorous theory that is agnostic to 

the method that was used to obtain them. Since the statistics of each milestone are obtained 

independently from the others, and since milestoning theory is a robust framework that can utilize 

information obtained by either Brownian or Newtonian dynamics,94 we can choose whichever 

simulation method is most appropriate and convenient for that milestone. 

 

Figure 2.1 A cartoon schematic of trypsin (grey shape) with the concentric spherical milestones (orange and 

blue circular curves) surrounding the binding site.  

Also, the b- and q-surfaces are represented as the outer blue and dashed green curves, respectively, that sit away from 

the molecule. Blue arrows represent BD trajectories, and orange arrows represent MD trajectories. Any surface with 

a blue arrow coming from or going to it represents the starting or ending surface for BD trajectories, respectively. 

Similarly, a surface with an orange arrow coming from or going to it represents the starting or ending surface for MD 

simulations, respectively. 
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By sampling transition statistics and times between the milestones using numerous short 

simulations, one can construct a transition kernel K that represents the transition probabilities and 

an incubation time vector 〈𝒕〉  that represents the average times of a system traversing the 

milestones.95,96 The transition kernel K is a square matrix whose elements are constructed 

according to the following formula: 

𝐾𝑖𝑗 =
𝑛𝑖→𝑗

∑ 𝑛𝑖→𝑘𝑘
⁄ (2. 6) 

 

Where 𝑛𝑖→𝑗 is the number of trajectories that begin at a given milestone i and end at an adjacent 

milestone j. And the incubation time vector 〈𝒕〉 has elements that are constructed according to the 

following formula: 

〈𝒕〉𝒊 =
∑ 𝒕𝒍𝒍

∑ 𝒏𝒊→𝒌𝒌
⁄ (2. 7) 

 

Where tl is the time of the l’th successful forward trajectory starting at milestone i, and 𝑛𝑖→𝑘, as 

before, is the number of trajectories beginning at milestone i and ending at milestone k. Therefore, 

〈𝑡〉𝑖 represents the average time spent by the system after crossing i and before crossing any other 

milestone. 

In order to compute a free energy profile along the milestones, we must first obtain the 

stationary flux vector qstat along the milestones by computing the principle eigenvector of K. 

𝐊 ∙ 𝐪𝐬𝐭𝐚𝐭 = 𝐪𝐬𝐭𝐚𝐭 (2. 8) 

Then qstat must be multiplied elementwise by 〈𝒕〉 to find the stationary probability vector pstat. 

𝑝𝑠𝑡𝑎𝑡,𝑖 = 𝑞𝑠𝑡𝑎𝑡,𝑖 ∙ 〈𝑡〉𝑖 (2. 9) 

Finally, pstat,i relates to the relative free energy ∆Gi at milestone i according to the following: 

∆𝐺𝑖 = −𝑅𝑇 ln(𝑝𝑠𝑡𝑎𝑡,𝑖 𝑝𝑠𝑡𝑎𝑡,𝑟𝑒𝑓⁄ ) (2. 10) 
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Where the index of pstat,ref is any reference state, such as the lowest energy, bound state. The value 

of pstat,ref is found by applying equation 2.9 to the chosen reference state. 

To compute the kon, we utilize the formula that is also used in BD theory:85 

𝑘𝑜𝑛 = 𝑘(𝑏)𝛽 (2. 11) 

 

Where k(b) is computed using the following formula: 

𝒌(𝒃) = [∫
𝒆

𝑾(𝒓)
𝒌𝑩𝑻⁄

𝟒𝝅𝒓𝟐𝑫(𝒓)
𝒅𝒓

∞

𝒃

]

−𝟏

(2. 12) 

 

The value k(b) represents the rate constant at which the ligand particles are crossing the b-surface, 

W(r) and D(r) are the potential of mean force and diffusion coefficient, respectively, that the ligand 

experiences at a distance r from the center of the receptor beyond the b-surface.85 D(r) is computed 

by generating a Rotne-Prager diffusion tensor to approximate the hydrodynamics of a two body 

interaction in a viscous medium.97 The value k(b) is computed automatically in BrownDye. 

To find β, which represents the proportion of ligands crossing the b-surface that continue 

on to bind to the receptor, a starting probability vector q0 must be obtained in BD simulations by 

running a large number of conventional BD simulations where ligand molecules are started on a 

b-surface surrounding a receptor molecule. As the simulations run, and the proportion of 

trajectories that touch the outermost milestone(s) that encompasses a binding site on the 

biomolecule, rather than escaping to an infinite distance, are counted. In this case, q0 becomes: 

𝐪𝟎 = [0, … , 0, 𝑞0,𝑖 , 0, … , 0, 𝑞0,𝑗 , 0, … ,0, 𝑞0,∞, 0, … ,0]
𝑇

(2. 13) 

 

Where i and j are the indices of one or more of these outermost site-encompassing milestones, q0,i, 

q0,j, are the probabilities that a BD trajectory started on the b-surface descend and touch these 

milestones, and q0,∞ is the probability that a trajectory diffuses away to an infinite distance. All the 
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entries in q0 must be normalized such that their sum equals a value of one. An “infinity” state in 

both vector q0 and in matrix K, represents the condition in which the ligand has escaped to an 

infinite distance from the receptor. 

Next the transition matrix K must be modified to a new matrix 𝐊̂ such that the milestones 

representing the bound and “infinity” states are sink states. That is, they all must have a probability 

of one that they transition only to themselves, and a zero probability to transition to anything else.  

𝑲̂𝒊𝒊 = 𝟏 𝒊𝒇 𝒊 𝐢𝐬 𝐚 𝐛𝐨𝐮𝐧𝐝 𝐬𝐭𝐚𝐭𝐞, 𝐨𝐫 𝐭𝐡𝐞 “𝐢𝐧𝐟𝐢𝐧𝐢𝐭𝐲” 𝐬𝐭𝐚𝐭𝐞 (2. 14) 

 

𝑲̂𝒊𝒋 = 𝟎 𝐢𝐟 𝐚𝐥𝐬𝐨 𝒊 ≠  𝒋 (2. 15) 

Once 𝐊̂ and q0 are properly defined, we compute the static flux vector q∞.44 

𝐪∞ = 𝐥𝐢𝐦
𝒂→∞

𝐊̂𝒂 ∙ 𝐪𝟎 (2. 16) 

Finally, we obtain β: 

𝜷 = ∑ 𝒒∞,𝒊
𝒊

(2. 17) 

 

Where i is the index of one of the bound states. 

To compute the koff, we must return to the initial definition of matrix K as specified in 

equation 2.6. But it must be modified by introducing a “draining” state i by changing K into a 

draining matrix 𝐊̃ according to the following: 

𝑲̃𝒊𝒋 = 𝟎, ∀𝒋 (2. 18) 

 

That is, once we have decided that i is the draining state, we set that entire column of the matrix 𝐊̃ 

to zeros, while all other columns are kept the same as they were in K. In the SEEKR 

implementation, the outermost non-infinite milestone is considered to be the draining state. Then, 

we compute a mean first passage time (MFPT) 𝜏:  

𝝉 = 𝐩𝟎(𝐈 − 𝐊̃𝑻)
−𝟏

〈𝐭〉 (2. 19) 

 

Where p0 is a starting distribution of probabilities along each milestone, and 𝐊̃𝑻 is the transpose 

of matrix 𝐊̃. We set p0,i to be 1 if i was a bound state, and set p0,i to be equal to 0 otherwise. The 
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MFTP 𝜏 is equivalent to a residence time of the ligand within the binding site, and can be related 

to the koff according to the following relation: 

𝒌𝒐𝒇𝒇 =
𝟏

𝝉
(2. 20) 

 

 

2.4 Materials and Methods 

2.4.1 Description of the SEEKR package 

SEEKR is a collection of scripts and files designed to automate the preparation and analysis 

of ligand-receptor kinetic calculations that use a multi-scale MD/BD/milestoning framework. 

SEEKR does not run the simulations themselves, but instead relies on the well-established 

NAMD98 and BrownDye99 programs. In this case, SEEKR is more of a specialist interface or tool 

that automates the cumbersome process of preparing, running, and analyzing a particular type of 

multi-scale milestoning calculation so that researchers will be able to run them more easily than if 

the process were done manually.  

SEEKR programs are classified into three general categories: 

1. Preparation: These scripts and modules accept input from the user in order to construct 

all the necessary files needed by both NAMD and BrownDye to run their respective 

simulations. The files are organized into a file tree whose branches represent the 

various independent milestones, which simulation method is being used (MD or BD), 

and the various stages of the calculations. When run, the user will have all the required 

files arranged and poised for simulation and milestoning calculations. 

2. Running: Other scripts aid the user in running the MD and BD simulations locally and 

on supercomputers. For instance, SEEKR contains a script to prepare the submission 

of the computationally-intensive MD simulation jobs to a SLURM supercomputer 

queue, and when the allotted time runs out, the script prepares all the necessary 
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resubmission files for one, some, or all of the milestones with a single command. Other 

scripts use previous BD trajectory output to prepare and run ensembles of BD 

simulations from first hitting point distributions (FHPD). 

3. Analysis: When all the simulations are complete, the user can run an analysis script 

that descends into the file tree, gathering all the simulation output. It then combines 

this information to construct the milestoning model, and performs all the milestoning 

and error calculations, providing the user with kinetic and thermodynamic information, 

including kon, koff, and the free energy profile. It also has the option to perform 

convergence analysis on these values. Additional analysis scripts can be utilized to 

generate a single file containing the ligand equilibrium distribution or FHPD of each 

milestone for easy visualization. 

The Python scripts have been tested using Python 2.7 and can be safely run in any version 

of Python 2 at version 2.7 or later. The remainder of the scripts are written in TCL, particularly 

those interfacing with NAMD, which has a TCL-based interface. SEEKR also uses the Numpy, 

Scipy, and MDAnalysis python libraries. The Adaptive Poisson-Boltzmann Solver (APBS)100 is 

used to generate the electrostatic potential maps for input to BrownDye, and the AmberTools 

program LEaP101 is also used to prepare structures for MD simulation. 

2.4.2 Trypsin structure preparation and SEEKR creation of milestoning structures   

Atomic coordinates of the trypsin-benzamidine system were obtained from the high 

resolution crystal structure PDB ID: 3PTB.102 Hydrogens were added using Molprobity with ring 

flips allowed.103,104 The system was then further prepared using LEaP with the Amber forcefield, 

ff14SB.105 Disulfide bonds were added manually. The appropriate protonation states of ASP, GLU, 

and HIS residues at a pH of 7.7 were determined using PROPKA.106,107 This pH was selected to 
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align with the experimental conditions of Guillian and Thusius.108 The structure was then solvated 

in a truncated octahedron of TIP4Pew109,110 waters and eight Cl- ions were added to neutralize the 

overall charge. The benzamidine ligand was parameterized using Antechamber with the GAFF 

force field.110,111 The total size of the system was approximately 23,000 atoms. To allow for 

relaxation from the crystallographic starting structure, the benzamidine ligand was removed and a 

20 ns simulation of the apo structure was performed at a constant temperature of 298 K using the 

Langevin thermostat and a constant pressure of 1 atm using the Langevin piston with a damping 

coefficient of 5 ps-1. A representative structure from this simulation was then used as the SEEKR 

input structure to generate all the necessary inputs for the MD simulations to be run using NAMD, 

and the BD simulations using Browndye.  

The benzamidine bound-state coordinates were defined from the center of mass of the alpha 

carbons of residues 190, 191, 192, 195, 213, 215, 216, 219, 220, 224, 228 of PDB: 3PTB because 

these residues form the binding pocket in the bound-state crystal structure by manual inspection. 

Spherical milestones were defined with radii of 1, 1.5, 2, 3, 4, 6, 8, 10, 12, 14 Å, with the origin 

being the bound state coordinates defined above. This spacing of the milestones was chosen to 

facilitate the simulation of transitions between milestones while still ensuring the Markov 

assumptions required by formal milestoning theory. Ten copies of the apo structure were generated, 

each with the benzamidine ligand inserted on one of the ten spherical milestones (Figure 2.2A). 

Water molecules that clashed with the ligand structure were removed. The first nine milestones 

correspond to the MD simulation regime, with the innermost milestone (1 Å) representing the 

bound state, as the center of mass of the bound benzamidine ligand falls well within the 1 Å sphere 

that defines this milestone (Figure 2.2B). Furthermore, in a ~170 ns unrestrained MD simulation 

with the ligand in the bound pose, the 1 Å sphere contained the center of mass of the ligand over 
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71% of the simulation.  The tenth and outermost milestone (14 Å) corresponds to the BD 

simulation regime. The distribution along any milestone where BD was started was constructed by 

first running conventional BD simulations and obtaining the distribution of hitting points along 

that milestone. 

 

Figure 2.2 The benzamidine binding site of trypsin 

A) before beginning the simulations, benzamidine has been placed along each of the milestones in gradually increasing 

distances from the center of the binding site on trypsin.  B) The center-of-mass of the benzamidine molecule in the 

trypsin 3PTB crystal structure lies within the lowest 1Å milestone (red sphere), which we define as the bound state 

 

The b-surface is a relatively large spherical shell that encloses the entire receptor molecule, 

with a radius of sufficient size that the entire surface sits well out into the bulk solvent where forces 

between the ligand and receptor would be largely unaffected by molecular orientation, and are 

therefore centrosymmetric. 

2.4.3 MD simulations 

A modified version of NAMD 2.11 was used for all MD calculations. The numerous MD 

inputs, including input files, integrator parameters, boundary conditions, temperature and pressure 

controls, etc. are either defined by the user or set by SEEKR to default values. Relevant settings 

and procedures implemented for each milestone in the MD regime are described here. 
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For each milestone system generated by SEEKR as described above, the solvent molecules 

were allowed to relax around the newly placed benzamidine ligand by minimizing for 5000 steps 

with both the ligand and receptor restrained. The solvent was then further relaxed through a series 

of 2 ps heating simulations, where the temperature was increased from 298 K to 350 K and then 

cooled back to 298 K in 10 K increments, keeping the atoms of the ligand and receptor restrained. 

Following this relaxation of the solvent, an equilibrium distribution of the ligand on the milestone 

surface was obtained from 1 μs of constant volume simulation at a temperature of 298 K where a 

harmonic spring force of 90 kcal•mol-1•Å-2 was imposed to restrain the ligand at the appropriate 

radius from the binding site center for each milestone to generate an equilibrium distribution 

(Figure 2.3A). This is also known as the umbrella sampling stage. From this equilibrium 

distribution, a FHPD (Figure 2.3B) was obtained by selecting 4700 position and velocity 

configurations from times 60 ns – 1 μs of the equilibrium trajectory and allowing them to propagate 

backwards in time by reversing their velocities at constant energy and volume (reverse stage). Any 

trajectories that struck another milestone before re-crossing the milestone from which they 

originated were counted as part of the FHPD. All members of the FHPD were then brought back 

to their original positions and velocities and subsequently allowed to propagate forward in time at 

constant energy and volume (forward stage). When a simulation crossed its starting milestone 

again, it was then monitored for transitions to adjacent milestones and the incubation time for these 

transitions was also recorded. Once a trajectory crossed an adjacent milestone, the simulation was 

terminated. Any trajectories in this forward stage that crossed adjacent milestones before re-

crossing their starting milestone were rejected. The 1, 1.5, 2, 4, and 10 Å milestones produced 

results with significantly fewer transitions than the other milestones. Therefore, to improve the 

robustness of our statistics, we performed additional reverse and forward simulations where 10 
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more trajectories were initiated at random Maxwell-Boltzmann velocities from each equilibrium 

distribution point, in addition to the one described above (a total of 470,000 reversals for each of 

these milestones), increasing the number of transitions observed. For each milestone, successful 

forward stage statistics were inserted into the transition kernel K and incubation time vector 〈𝒕〉. 

 

 

Figure 2.3 Benzamidine conformational sampling during MD simulations 

Panel A: The equilibrium distribution of the center of mass of benzamidine generated along all of the milestones from 

2 Å (red) to 12 Å (green) at the end of the umbrella sampling. No umbrella sampling is performed for the BD stages, 

so there are no points representing the 14 Å milestone. Panel B: The FHPD of benzamidine centers of mass generated 

from the equilibrium distribution that succeeded in the reverse stage. The milestones between 1 Å (red) and 12 Å 

(green) were generated during the MD simulations. In addition, the blue distribution at 14 Å represents the FHPD 

obtained from the BD simulation. This FHPD is used to start forward stage trajectories for generating milestoning 

statistics. 

 

2.4.4 BD simulations 

All BD calculations were conducted with BrownDye, a software package specializing in 

the rigid-body diffusion of two biological molecules in an implicit solvent.99 The electric potential 

map used as input for the BD simulation was calculated with the APBS version 1.4. All BD inputs, 
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as well as the necessary APBS inputs for creation of the electrostatics map, are user defined in the 

SEEKR input file or generated as SEEKR default values.  

In an attempt to recreate the ionic conditions used in the experiment,108 a nonlinear APBS 

calculation was run at 298 K, with a solvent dielectric of 78 and a solute dielectric of 2, with the 

following ions: Ca2+ at a concentration of 0.02 mM with a charge of +2.0 e and a radius of 1.14 Å, 

Cl- at a concentration of 0.10 mM with a charge of -1.0 e and a radius of 1.67 Å, and tris at a 

concentration of 0.06 mM with a charge of +1.0 e and a radius of 4.0 Å.112 At the specified 

concentrations, these ions generate a Debye length of 8 Å, which is used as input to BrownDye. 

Both the b-surface BD simulations and BD trajectories starting from a milestone ran with a solvent 

dielectric 78 and a solute dielectric of 2, at 298 K. We ran three additional sets of BD simulations 

at different ionic concentrations to examine the effect of ionic strength in the BD simulations on 

the kon. Therefore, three additional simulations were run: one with an ion concentration of zero, 

another with half of the ion concentrations of the experimental procedure, and another with double 

the ion concentration of the experimental procedure. Although an electrolyte solution technically 

has a Debye length equal to infinity, we approximated the Debye length with a value of 99 Å in 

the BrownDye program. 

For each kon calculation, we performed 106 BD simulations initiated at random points 

distributed on the b-surface, which were used to construct the vector q0 in equation 2.13. Once 

these simulations completed, the trajectories that successfully reached the outermost milestone 

were used as that milestone’s FHPD. From that FHPD, an additional 106 BD trajectories were run 

until reaching the second-outermost milestone or escaping to the q-surface. These statistics were 

also included in the transition kernel K and incubation time vector 〈𝒕〉. 
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2.4.5 Milestoning calculations 

Using the statistics obtained from all the milestones in both the MD and BD regimes, the 

SEEKR software was used to construct the milestoning model and compute the kon, koff, ∆Gbind, 

and other quantities of interest. Additional scripts used to generate some of the figures and data 

are also included in the SEEKR package. Error estimates were computed according to our 

previously defined procedure.50 

The vast majority of the procedure outlined in the Materials and Methods section is 

automated within the SEEKR software package. 

 

2.5 Results 

Using the MD/BD/milestoning methodology through the SEEKR interface yielded a kon of 

2.1±0.3•107 M-1s-1 for the trypsin-benzamidine system. This value deviates from the 

experimentally measured kon for the same system at 2.9•107 M-1s-1 by a factor of ~1.5 (no 

experimental error margins were reported). We also estimate a koff of 83±14 s-1, which is within an 

order of magnitude of the experimentally determined value of 600 ±300 s-1 though our value is 

slower than expected.  similar phenomenon is observed in other computational koff estimations of 

this system. An examination of the effect of ionic concentration on the kon convergence of the rate 

constants as a function of the length of umbrella sampling performed is provided in the SI. Using 

equation 2.5, we obtain a ∆Gbind estimate of -7.3±0.2 kcal•mol-1 from a Kd of 4.3±1.2•10-6 M 

compared to the experimental ∆Gbind of -6.71±0.05 kcal•mol-1, computed at 298 K using equation 

2.5 and an experimental Kd of 1.2±0.1•10-5 M.108 
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In addition, we obtained a relative free energy at each of the milestones along the binding pathway 

using the vector pstat in combination with equation 2.10. This free energy profile is displayed in 

Figure 2.4.  

Aside from the predicted thermodynamic and kinetic quantities, we used the trajectories 

generated during the SEEKR run to make other observations about the system during the binding 

and unbinding process. 

 

 

Figure 2.4 The free energy profile of benzamidine along each of the milestones leading to the binding site.  

The free energy barrier peaks around the milestone located at 6 Å. 

 

By removing the benzamidine molecule and the solvent, we used POVME255 to provide 

pocket volume measurement and characterization during the course of the MD runs. The same 
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origin and radius of the inclusion region that defined the binding pocket were used for all umbrella 

sampling trajectories. The pocket itself remains relatively rigid when the benzamidine is deep in 

the binding site during the umbrella sampling stage, however, more variation in volume was 

observed when the benzamidine was constrained to a milestone nearer to the entrance of the 

opening of the binding site (Figure 2.5).  

 

Figure 2.5 The volume of the S1 binding site with benzamidine restrained to the milestones as computed using 

the POVME2 program.  

Stabilization of the binding site pocket volume is observed as the ligand moves closer to the binding site. 

 

 

Closer analysis of the umbrella sampling trajectories for the 6, 10, and 12 Å milestones in 

conjunction with the POVME data indicates sampling of multiple conformations of the trypsin S1 

binding pocket (Figure 2.6). The binding pocket conformation is primarily dependent on the 
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motion of two loops; the loop containing TRP215 and the loop containing ASP189, a critical 

residue for benzamidine recognition. The opening and closing of the S1 pocket is greatly 

influenced by the orientation of TRP215 When oriented downward as in Figure 2.6A, the S1 

pocket is open. This is the conformation observed in the crystal structure 3PTB with benzamidine 

bound. When TRP215 rotates upwards as in Figure 2.6B, the binding pocket is closed, and pocket 

volume significantly decreases.  The dramatic change in pocket volume for the 10 Å milestone 

also occurs when TRP215 moves to close the S1 binding site. 

We also observe the formation of an S1* pocket, that results from the motion of these two 

loops. This pocket provides an alternate binding pathway, in which benzamidine can approach 

ASP189 from a different orientation. These observations are in agreement with the study of 

Plattner and Noé31 where these results were observed through several hundred independent MD 

trajectories totaling over 100 µs of aggregate simulation time. 

 

 

Figure 2.6 Dynamics of the apo trypsin S1 binding pocket umbrella sampling simulations.  

Pocket conformations are significantly influenced by the motions of the loop containing TRP215 (violet) and the loop 

containing ASP189 (orange), which is important for benzamidine recognition. Benzamidine is shown in tan.  POVME 

calculated volumes are shown in cyan. A) The open S1 pocket, where TRP215 is pointed in a downward orientation. 

B) Closed conformation of the S1 pocket as a result of TRP215 rotating to an upward pointing conformation. C) 

Formation of the S1* pocket where benzamidine can approach via an alternate pathway and interact with ASP189 

from a different angle. 
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We also observed significant positional and rotational sampling by the benzamidine along 

most of the milestones during the umbrella sampling stages. This information can provide an idea 

for the likelihood of pathways that benzamidine follows on its route to binding. Figure 3A shows 

the equilibrium distribution along each of the milestones, and figure 3B shows the FHPD for each 

of the milestones. Figure 2.7 shows the angle between a vector pointing along the amidine group 

and a vector pointing out from the opening of the binding site as a function of time during the 

equilibrium simulations. Several flips are observed in all but the lowest milestones, where 

benzamidine rotation was restricted because these milestones are located deep within the binding 

pocket. The 10 Å also experiences a decrease in rotational sampling because benzamidine is 

interacting extensively with TRP215 and thus adopts an orientation that favors stacking of the 

aromatic rings. 
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Figure 2.7 The angle of benzamidine along the center-of-mass/amidine axis compared to a vector pointing 

outward from the binding site.  

An angle larger than 90° represents a conformation where the amidine group is pointing toward the binding site. 

Several flips were observed in all milestones above 2 Å, implying that the orientation of the ligand is well sampled 

along all of the milestones except for those deepest in the binding pocket, where the orientation found in the crystal 

structure is preferred, and the amidine group is pointing down into the site. 

 

The crystal structure of the trypsin/benzamidine complex shows the amidine group 

pointing downward toward the binding site (Figure 2.2B). This structural feature is confirmed by 

our own simulations, and a relatively narrow arrangement of ligand orientations are observed along 

the lowest milestone. 

The entire calculation cost approximately 1.4 million CPU hours on the Stampede 

supercomputer and local machines, with a total MD cost of approximately 19 μs of simulation.  
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2.6 Discussion 

Compared to the experimental kon, our estimated kon is slower by about a factor of 1.3, but 

falls well within an order of magnitude. We attempted to closely recreate the experimental ionic 

conditions within our simulations, which has a pronounced effect on the kon (details in the SI). Our 

kon of 2.2±0.3•107 M-1s-1is much closer to the experimental value of 2.9•107 M-1s-1 than the kons 

obtained by Buch et. al.81 (15±2•107 M-1s-1) and comparable to what was obtained by Plattner et. 

al.31 (6.4±1.6•107 M-1s-1), although ours was obtained with significantly less computational 

resources, smaller by an order of magnitude. Our result is also very close to what was obtained by 

Tiwary et. al.84 (1±1•107 M-1s-1). Our estimated koff of 83±14 s-1 is within an order of magnitude of 

the experimental koff, far closer than the value obtained by Buch et. al. (9.5±3.3•104s-1), and 

comparable to the values obtained by Plattner et. al. (131±109 s-1), Teo et. al.83 (260±240 s-1), and 

Tiwary et. al (9.1±2.5 s-1). To our knowledge, this is the first successful estimate of koff using a 

hybrid MD/BD/milestoning model. 

An advantage of our approach is that both koff and kon can be determined from the same 

calculation. We can use our calculated koff and kon values in equation 2.5 to obtain an entirely 

computationally-determined dissociation constant KD of 3.8±0.8•10-6 M, and by extension a free 

energy of binding ∆Gbind estimate of -7.4±0.2 kcal•mol-1. This is in good agreement with the 

experimental KD of 1.2•10-5 M, which when put through equation 2.5 at a temperature of 298 K, 

yields a free energy of -6.7 kcal•mol-1. 

The accurate determination of kinetics using milestoning requires the proper generation of 

equilibrium and FHPD distributions. It is important to ensure adequate sampling in the generation 

of equilibrium distributions. Figure 2.3A shows the equilibrium distribution of benzamidine 

center-of-mass along the 1 Å to 12 Å milestones in the MD regime. The benzamidine appears to 
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have explored all solvent-accessible regions along the milestones. Along with positional sampling, 

the observed diversity of benzamidine orientation in Figure 2.7 indicates that the ligand 

orientational degree of freedom is well-sampled in all but the lowest milestones. In addition to the 

ligand, it is important that receptor conformations that may affect ligand binding are also well 

sampled. By using POVME2, we observed conformational states that have been observed in other 

studies such as the S1* pocket (figure 6).31 We do not however observe any complete binding 

events via the S1* pocket, presumably as a result of our simplified spherical milestoning model. 

This may provide some explanation as to why our calculated rates are somewhat slower than 

experiment, as we do not capture this alternate pathway. However, we may reasonably assume that 

we are capturing most of the effects of slower receptor conformational changes and subsequently, 

that our kinetics predictions are reasonable. 

While, of course, verification of SEEKR as a computational kinetics and thermodynamics 

estimator will need to be performed on additional systems, this similarity between experimental 

and theoretical free energies and rate constants in our accessible and highly parallel framework is 

encouraging. 

 

2.7 Conclusions 

In this work, we use our multi-scale MD/BD/milestoning methodology to examine ligand-

protein binding events with a larger, more complex, and more drug-like ligand than in our previous 

work.  Furthermore, we present the first successful koff calculation to within one order of magnitude 

of experiment using this approach. Using the obtained values of kon and  koff, and entirely 

computational estimate of KD and ∆Gbind in good agreement with experiment were obtained. These 

results are further evidence that the MD/BD/milestoning methodology can be successfully applied 
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to the investigation of binding and unbinding kinetics in receptor-ligand systems. We also present 

the SEEKR software package, which automates much of the preparation, submission, and analysis 

of these types of calculations. We have made SEEKR freely available and open-source on Github, 

and hope that it will be used and improved by the community to run predictive multi-scale 

milestoning calculations. SEEKR downloads, tutorials, and the user guide may be found at 

http://amarolab.ucsd.edu/seekr. 
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2.9 Supporting Information 

2.9.1 Convergence of kon and koff values:  

  

The kon calculation is fairly well converged in the 47000 umbrella sampling frames. 

Although koff is not as well converged within that span of time, fluctuations are less than one order 

of magnitude. 
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Figure 2.8 Convergence of rate constants as a function of umbrella sampling length.  

Fluctuations in the rate constant for the kon are fairly well converged. In contrast, the koff is likely to require additional 

umbrella sampling to fully converge, but both kinetic values seem to have converged to within one order of magnitude 

given the amount of umbrella sampling. 

 

2.9.2 Sensitivity of the system to ionic concentration 

In order to investigate the sensitivity of this system to the ionic concentrations within the 

BD stage simulations, we also computed the kon at various ionic concentrations. The dependences 

of concentration on the kon and koff are listed in table S1. If ionic strength is neglected, then the kon 

decreases by about a factor of three.  
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Table 2.1 The effect of ion concentration on the computed kon and koff. 

Ion 

strength 

factor  

TrisHCl 

concentration 

(M)  

CaCl2 

concentration 

(M)  

Debye  

Length  

(Å)  

kon (M-1s-1)  koff (s-1)  ∆Gbind  

(kcal/mol)  

0  0  0  ∞  6.3±0.8•106  83±14  -6.7±0.1  

0.5  0.03  0.01  12  2.1±0.3•107  83±14  -7.4±0.1  

1  0.06  0.02  8  2.1±0.3•107  83±14  -7.4±0.1  

2  0.12  0.04  6  2.2±0.3•107  83±14  -7.4±0.1  

  

The reason that ionic strength must be accounted for so carefully in this system is that the 

kon between trypsin and benzamidine shows high dependence on ionic strength in our BD 

simulations (table S1). This is likely because the kon is close to the diffusion limit, and electrostatic 

forces are screened by the dissolved ions. One surprising observation, however, is that increased 

ionic strength in the BD simulations (smaller Debye length) actually increases the computed kon. 

This result suggests that the benzamidine experiences repulsive forces during its approach to 

binding with trypsin, likely contributing to the low free energy barrier to entry observed in the 

profile in figure 4 of the main text, and that these repulsive forces are shielded by higher ionic 

strength, and are thus electrostatic in nature. Another possibility is that the high ionic strength is 

shielding attractive hot spots on the surface of trypsin that compete with the active site for binding. 

Electrostatic maps show large regions of positive electrostatic fields surrounding the majority of 

trypsin. These positive fields likely repel the positively charged benzamidine (figure S2). It is clear, 

however, that ion concentration in kinetics calculations of this system must be carefully chosen in 

order to properly reproduce experimentally observed values.  
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Figure 2.9 The electrostatic potentials around trypsin.  

In panel A, the isosurface is drawn in blue at 0.01 kT/e, and in red at -0.01 kT/e. In panel B, the isosurface is drawn 

in blue at 1 kT/e, and in red at -1 kT/e. The large positive field surrounding trypsin provides a reasonable explanation 

for why we observe a faster kon at higher salt concentrations.  
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Quantitative Ranking of Ligand Binding 

Kinetics with a Multiscale Milestoning 

Simulation Approach 

3.1 Abstract 

Efficient prediction and ranking of small molecule binders by their kinetic (kon and koff) 

and thermodynamic (∆G) properties can be a valuable metric for drug lead optimization, as these 

quantities are often indicators of in vivo efficacy. We have previously described a hybrid molecular 

dynamics, Brownian dynamics, and milestoning model, Simulation Enabled Estimation of Kinetic 

Rates (SEEKR), that can predict kon’s, koff’s, and ∆G’s. Here we demonstrate the effectiveness of 

this approach for ranking a series of seven small molecule compounds for the model system, β-

cyclodextrin, based on predicted kon’s and koff’s. We compare our results using SEEKR to 

experimentally determined rates as well as rates calculated using long-timescale molecular 

dynamics simulations and show that SEEKR can effectively rank the compounds by koff and ∆G 

with reduced computational cost. We also provide a discussion of convergence properties and 

sensitivities of calculations with SEEKR to establish “best practices” for its future use. 
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3.2 Main 

Molecular binding processes are ubiquitous in biology and serve as the fundamental basis 

for biological complexity. For the drug discovery community, engineering pharmacologically 

active small molecules is of particular importance. Traditionally, the paradigm for lead 

optimization is to select for leads with the greatest affinity for a protein, or other, target of interest. 

However, recent evidence suggests that the kinetics of binding may also be a useful metric for lead 

selection. It is now thought that both residence times and association rates are key determinants of 

in vivo efficacy for many drugs.66,113–116 Similar to computational predictions of binding 

thermodynamics, molecular simulations can be used to compute binding kinetics.1,5,117 Methods 

such as Brownian Dynamics (BD) have been used effectively for estimating molecular association 

rates.85–87,99 Molecular dynamics (MD) simulations which explicitly represent all atoms and forces, 

can also be used to predict binding kinetics. Due to significantly increased model complexity, MD 

is limited by sampling. Nevertheless, owing to software improvements and the development of 

commodity hardware such as GPUs and specialty hardware such as Anton,118,119 “brute force” 

calculation of binding kinetics with MD is now a possibility.70–72,120,121 To improve upon “brute 

force” sampling statistics, many sampling strategies employ force biases or other statistical 

mechanical techniques to predict both association and dissociation rates of many systems. This 

includes methods such as: Markov State Models,31,81,122,123 metadynamics,84,124,125 

milestoning,29,35,36,126–128 and other techniques.83,129–134 

Our previous work uses a multiscale MD, BD, and Milestoning approach for the calculation 

of both association and dissociation rates of receptor-ligand complexes.50,51 Our implementation, 

“Simulation Enabled Estimation of Kinetic Rates” (SEEKR) is a freely available software 



 46 

package1 that automates the preparation, simulation, and analysis of these multiscale milestoning 

calculations using existing softwares: NAMD98 for MD simulations and BrownDye99 for BD 

simulations. Milestoning theory provides the glue for the multiscale scheme by providing a 

strategy to subdivide, simulate, and subsequently statistically reconnect small regions of 

simulation space called “milestones”29,50,51,92,94,95,135–141 This approach reduces the compute time 

required to simulate transition events, is embarrassingly parallel, and is agnostic to the simulation 

modality used. This allows us to use atomically detailed, yet computationally expensive, fully 

flexible MD simulations in milestones near the binding site where these interactions are critical 

for understanding the binding and unbinding, and BD simulations far from the binding site where 

rigid body dynamics provides a sufficient description at significantly reduced computational cost. 

For a more thorough description of milestoning theory and the calculation of kinetic quantities, 

such as kon and koff, we refer the reader to the existing literature. 29,50,51,92,94,95,135–141 

The effectiveness of the SEEKR scheme for the calculation of kon and koff values has been 

demonstrated for multiple protein-ligand systems.50,51 However, it has not yet been used for rank 

ordering sets of compounds by kinetic (kon and koff) and thermodynamic (∆G) values, as would be 

done in pharmaceutical discovery settings. Here we use SEEKR to estimate kon, koff, and ∆G for a 

model host-guest system, β-cyclodextrin with seven ligands representing diverse chemical groups 

(Figure 3.1), using two forcefields for β-cyclodextrin GAFF110,111 and Q4MD.142 

We compare the SEEKR estimates with previously published “brute force” (long-timescale) 

MD predictions121 and experimental results.143–148 Using this model system we examine both the 

accuracy and efficiency of SEEKR compared to long-timescale MD. We further explore the 

reduction in computational effort required for SEEKR estimates as well as discuss the convergence 

properties and sensitivity of SEEKR calculations to establish “best practices” for its future use. 
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SEEKR calculations and the long timescale MD simulations struggle to reproduce both the 

values and rank ordering of the experimentally determined kon’s (Figure 3.2).  

 

Figure 3.1 Structures for the β-cyclodextrin model system 

a.) β-cyclodextrin with milestones spaced at 1.5 Å increments and b.) the seven ligands used in this study. The top 

four ligands are known to bind more weakly while the bottom three are known to bind more tightly. 

 

However, similar qualitative results are seen with the SEEKR calculations and long 

timescale MD calculations using the same forcefield. On rates calculated using Q4MD are 

approximately one order of magnitude faster than experimental rates, while the GAFF forcefield 

produces rates closer to the experimental values, differing by approximately a factor of 3 or less. 

Both methods fail to effectively order the ligands by increasing kon, as demonstrated 
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Figure 3.2 On rate results 

a) Experimental and calculated on rates for SEEKR GAFF and Q4MD forcefields as well as long timescale MD with 

both forcefields. b) Calculated rank correlation coefficients. Errors are determined with a bootstrapping analysis. 

 

by low or negative Kendall and Spearman rank correlation coefficients. As the values of all the 

experimental rates have limited variability (all within half an order of magnitude), the sensitivity 

of the methods as well as the errors associated with the calculations and experiments makes 

differentiation and ordering challenging. 
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Unlike the experimental kon’s, koff’s for the seven guest molecules span multiple orders of 

magnitude, making them a better target for ranking the compounds with SEEKR. Again, off rates 

calculated with SEEKR are in good agreement with the long timescale MD simulations using the 

same forcefield (Figure 3.3). Rates calculated using the GAFF forcefield are consistently faster 

than experiment by approximately one order of magnitude. This trend is seen in both 

 
Figure 3.3 Off rate results 

a) Experimental and calculated off rates for SEEKR GAFF and Q4MD forcefields as well as long timescale MD with 

both forcefields. b) Calculated rank correlation coefficients. Errors are determined with a bootstrapping analysis. 

 

 

 



 50 

the long timescale MD and SEEKR, but is more pronounced in the SEEKR calculations. The 

Q4MD forcefield, however, more accurately reproduces the magnitude of the experimental values 

with both SEEKR and long timescale MD. SEEKR calculations with both Q4MD and GAFF 

forcefields were effective for ranking the compounds by increasing off rates, as evidenced by high 

rank correlation values. The smaller magnitudes of the Q4MD values potentially contribute to this 

forcefield’s difficulty to differentiate between compounds with similar rates, where the larger 

values associated with the GAFF forcefield allow for more variability in the rate value without 

changing the overall ordering. Both the GAFF and Q4MD forcefields successfully differentiate 

the three tighter binding compounds from the four weaker binding, with the tighter binding 

compounds all having slower off rates and a difference of one order of magnitude between the 

fastest tightly binding compound and the slowest weakly binding compound. This suggests that 

SEEKR could be useful for identifying and separating long residence time ligands from shorter 

residence time ligands and then further discriminating the compounds through ranking by koff. 

An additional benefit of kinetics calculations with SEEKR is that binding free energies can 

also be obtained from the same simulations (Figure 3.4). Binding free energies calculated using 

the rate constants are most heavily influenced by the koff for these ligands, as this value is more 

variable, where the kon’s for all ligands are more similar. Therefore, similar trends are observed 

for the calculated binding free energies as were observed for the off rates. Binding free energies 

can also be calculated using the stationary probabilities for each milestone, rather than the rate 

constants, and produce similar results. The GAFF forcefield consistently underestimates the 

binding free energies in both SEEKR and the long timescale MD, resulting from the consistent 

underestimation of the magnitudes of the koff’s. The magnitudes of the binding free energies 

calculated using Q4MD are in much better agreement with the experimental values, differing by 1 
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kcal or less. SEEKR with both Q4MD and GAFF successfully differentiates the three known 

tighter binding compounds from the four weaker binding compounds. SEEKR can also further 

discriminate ligands by its effective ranking by binding free energies, demonstrated by high rank 

correlation values. 

 
Figure 3.4 Binding free energy results 

a) Experimental and calculated binding free energies for SEEKR GAFF and Q4MD forcefields as well as long 

timescale MD with both forcefields. b) Calculated rank correlation coefficients. Errors are determined with a 

bootstrapping analysis. 

 

A key aspect of future development of the SEEKR software is the systematic development 

of methodological best-practices as well as the elucidation of the sensitivity of calculated kinetic 
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parameters to various SEEKR input conditions. While it is possible to determine the kinetics for 

small systems like β-cyclodextrin using conventional long timescale MD simulations, increasing 

system size soon makes this inefficient or even impossible. The convergence of kon and koff were 

assessed by calculating the rate constants as a function of the reversal trajectory number at 

increasing intervals of 50 reversal numbers (with 10 trajectories initiated for each reversal number). 

The reversal number is a direct measure of the equilibrium simulation length, as reversals are 

initiated from evenly spaced configurations of the equilibrium distribution. In general, both the on 

and off rates appear converged in less than the maximum number of reversals available. 

Approximately half the total reversals (4000 of 8000) were sufficient for obtaining reasonably 

converged rate constants. This suggests that the total simulation cost to obtain a similar result could 

be as little as 2 µs per ligand, rather than 3.8 µs. 

Convergence of the rate constant is a highly complicated quantity dependent on the 

transition probabilities as well as the incubation times obtained from each milestone. Therefore, a 

more detailed analysis of the convergence of these quantities on a per milestone level can provide 

further insight into the overall convergence of a rate calculation within SEEKR. Figure 3.5a,b 

shows the convergence of kon and koff, respectively, as a function of the number of reversals 

launched for the representative system of Q4MD β-cyclodextrin with aspirin. Reversal number is 

directly related to the length of equilibrium sampling, the current bottleneck of a SEEKR 

calculation. While both values appear to converge in fewer than the maximum number of reversals, 

the dramatic change in koff after reversal number 400 is of note. Further analysis of the per-

milestone transition counts (Figure 3.5c) and incubation times (Figure 3.5d) revealed that this 

change in koff was due to poor initial sampling of the -1.5 Å milestone, which once sampled 

decreased the overall koff. 
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This was only observed for the aspirin ligand, one of the bulkiest ligands, where it was 

extremely unlikely to observe transitions outward from the primary face due to steric effects. 

Evaluation of these convergence properties on a per milestone basis is a valuable diagnostic tool; 

identifying which milestones contribute most to the mean first passage time (and therefore kon and 

koff) and milestones where the ligand spends only a short time, providing detailed molecular insight 

into the binding and unbinding processes. Furthermore, this analysis is also useful during the 

simulation process, as the convergence of each milestone can be assessed “on the fly” and 

individual simulations can be terminated or extended accordingly for each milestone.  

We also explore the sensitivity of the calculated rate constants to the milestoning model 

construction. In particular, the appropriate spacing of milestones is critical for the calculation. 

Milestones must not be spaced so close such that the velocity of the system cannot decorrelate 

between transitions.95,139 This assumption is typically valid for molecular dynamics simulations, 

as velocities typically decorrelate on the subpicosecond timescale.46 However, if milestones are 

spaced far apart, transitions will require much longer simulations and milestioning sampling 

efficiency is lost. 
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Figure 3.5 Convergence analysis for a representative ligand, aspirin, and β-cyclodextrin with the Q4MD 

forcefield.  

Convergence of a) kon, b) koff, c) transition counts, and d) incubation times for each milestone are plotted as a function 

of the number of reversals. 
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For our systems, the incubation times of all milestones are on the order of multiple 

picoseconds or greater, which is longer than the sub-picosecond timescale typically necessary for 

decorrelation.95 When the milestone spacing was doubled to 3 Å, simulation efficiency was 

dramatically reduced, such that few to no transitions between milestones were observed, 

precluding the calculation of rate constants. These observations suggest that the 1.5 Å spacing used 

in our simulations was appropriate for the calculation of the desired kinetic parameters. 

Our milestoning model differentiates the two faces of the cyclodextrin ring and therefore 

defines two bound states, corresponding to each face. Investigation into the effect of this on the 

resulting rate constants revealed that it had only minimal effects. When the two bound states were 

combined into a single milestone, only small changes to the rate were observed, within the error 

of both calculations. Furthermore, when the two faces were not differentiated with unique 

milestones, minimal change in the calculated rate constants was observed. 

It is also important to note that our milestoning model did not explicitly resolve the ligand 

orientation in any way, and therefore any ligand orientational sampling was achieved entirely 

through simulation. This resulted in some ligand orientations being unsampled in the deepest 

milestones where the orientation was sterically restricted to the starting conformation on that 

milestone. While this is a limitation that will be addressed in future developments of SEEKR, it 

also highlights that a relatively simplistic model was able effectively calculate kinetic parameters 

with good agreement to experimental values. 

The simplicity of this model has many advantages. The bound state is defined naturally as 

the innermost milestone and all other milestones can be defined at the same time, including what 

defines the unbound state. The long timescale MD employed a more empirical definition of the 

bound state where the ligand was only considered bound when the COM of the ligand was within 
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7.5 Å of the COM of the β-cyclodextrin for at least 1.0 ns. Similarly the ligand was considered 

unbound when it left this 7.5 Å bound state for at least 1.0 ns. With the SEEKR approach, minimal 

prior knowledge of the system is required, as binding and unbinding are determined only from the 

milestone surfaces. No time cutoff is required, as short excursions that do not result in full binding 

and unbinding events are captured naturally in the milestoning model. The simplicity of SEEKR 

milestoning calculation setup, in conjunction with the ability to monitor convergence for each 

milestone and terminate simulations accordingly, makes this approach well-suited for calculations 

with multiple ligands as would be necessary in a drug discovery setting. 

We present the first successful ranking of a set of seven guest molecules with the 

βcyclodextrin host using the SEEKR hybrid MD/BD/Milestoning approach. SEEKR effectively 

reproduces both the magnitudes and rankings of the experimental off rates143–148 and binding free 

energies, two quantities of interest in typical drug discovery campaigns.66,113–115 SEEKR also 

successfully differentiates the known longer residence time and tighter binding compounds from 

the weaker binding compounds. Our results are also in good agreement with previously conducted 

long timescale MD simulations for the same set of ligands.121  In particular SEEKR and long 

timescale MD simulations using the same forcefield (GAFF or Q4MD) exhibited similar 

deviations from the experimental values, with GAFF producing consistently faster off rates than 

experiment and Q4MD producing consistently faster on rates. In general both methods and both 

forcefields struggled to reproduce the experimental on rate ranking, as all ligands had very similar 

kon’s. The SEEKR method requires less simulation time (3.8 µs per ligand) than the long timescale 

MD approach (4.5 - 11 µs per ligand). Furthermore, convergence analysis of the SEEKR 

calculations suggests that comparable results could be achieved with as little as 2 µs per ligand. In 

addition, SEEKR’s milestoning approach makes these calculations highly parallel, as the 
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simulations on each milestone are completely independent from all other milestones. We also 

provide an analysis of the sensitivity of the SEEKR calculations to various factors such as sampling, 

milestone spacing, and the construction of the milestoning model with the intention of putting forth 

“best practices” for the use of SEEKR. SEEKR’s effectiveness at ranking compounds for this small 

model system suggest that it is well suited for ranking compounds of more complex protein-ligand 

and protein-drug systems, where the efficiency and enhanced sampling advantages of our 

multiscale MD/BD/milestoning approach will be more apparent. 
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3.4 Supporting Information 

3.4.1 System Preparation 

GAFF110,111 forcefield parameters for the seven guest molecule along with both GAFF and 

Q4MD-CD142 parameterizations of β-cyclodextrin were obtained from Tang and Chang.121 For 

comparison we use identical structure and parameterizations as those used in their study. These 

initial structures were used by the SEEKR software for preparation of the milestoning simulations. 

The preparation procedure was the same for each of the seven guest molecules and followed 

standard SEEKR protocols.51 All systems were solvated with TIP3P waters.149 

3.4.2 Preparation of milestoning simulations with SEEKR 

The bound state of the host-guest complex was defined as the center of mass (COM) of the 

β-cyclodextrin. The guest molecule was considered to be bound when its COM was within 1.5 Å 

of the bound state coordinates. From this bound state, spherical milestones were defined in 

increasing 1.5 Å increments from 1.5 Å to 13.5 Å. Furthermore, spherical milestones of radius 7.5 

Å and less, were divided into two half-spheres to better capture the asymmetries between the two 

faces. When the ligand is less than 7.5 Å away from the bound state, it is trapped on a particular 

face due to the size of the host molecule. For milestone distances greater than 7.5 Å, the ligand 

was found to freely sample both faces, and therefore a single spherical milestone was sufficient 

for sampling host-guest interactions. In total, 14 unique milestones were defined. In practice, this 

was achieved via post-processing the simulations on each face to identify any trajectories that 

crossed from one face to the other, and modifying the transitions accordingly in the milestoning 

model. In addition, two simulations were conducted for the outermost milestones (one with the 

ligand initiated on each face), and these were then combined into a single milestone (with double 

the sampling) for milestones that were not restricted to a particular face. 
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The first 13 milestones correspond to the MD region, while the 14th and outermost 

milestone corresponds to the BD region. The standard SEEKR preparation protocol51 was then 

used to generate the coordinate, parameter, and simulation files necessary for a milestoning 

calculation. For each of the MD milestones, a copy of the apo β-cyclodextrin structure was 

generated and the guest molecule was then placed at the appropriate radius from the bound state 

coordinates. Any water molecules that clashed with the guest molecule were removed. The guest 

distribution for the BD milestone was constructed by first running a conventional BD simulation 

where trajectories terminated at the appropriate distance for the milestone surface (13.5 Å). 

3.4.3 MD Simulations 

A modified version of NAMD 2.12 was used for all MD simulations.98 For all 13 

milestones in the MD region, the standard SEEKR procedure for minimization, equilibration and 

simulation was followed. First, 5000 steps of minimization were performed to allow for relaxation, 

particularly of solvent, around the newly placed guest molecule. Further relaxation of the solvent 

was achieved by a series of 2 ps heating simulations that gradually increased the temperature from 

298 K to 350 K and then cooled back to 298 K. Host and guest atoms were constrained during 

these heating simulations to ensure that the guest remained on the appropriate milestone surface. 

To obtain the equilibrium distribution of the guest molecule on each milestone, 200 ns of constant 

volume simulation was performed. A 90kcal · mol−1 · Å−2 harmonic restraint was used to hold the 

COM of the guest molecule at the appropriate distance from the binding site. To minimize any 

bias of the arbitrary guest starting conformation, the first 40 ns of each simulation were discarded 

and therefore were not included as part of the equilibrium distribution. From these trajectories, 

position and velocity configurations were selected every 0.2 ns, resulting in a total of 800 

configurations per milestone. To obtain the first hitting point distribution (FHPD) of each 
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milestone, 10 independent and unrestrained simulations were initiated from these equilibrium 

configurations. Each simulation was propagated backwards in time by reversing its velocity at 

constant energy and volume (a total of 8000 reversals for each milestone). Only trajectories that 

struck an adjacent milestone before recrossing the milestone on which they originated were 

included as part of the FHPD for that milestone. To obtain the transition probabilities and times 

necessary for the calculation of kinetic parameters, all members of the FHPD were brought back 

to their starting position and velocity and new unrestrained simulations were then initiated from 

each configuration. These simulations were propagated forward in time at constant energy and 

volume. Once a simulation crossed its starting milestone again, it was monitored for crossing of 

adjacent milestones. When an adjacent milestone was crossed, the simulation was stopped and the 

transition and incubation time were recorded. Although more of the equilibrium simulation 

trajectories could likely have been used without biasing the results based on the starting 

conformation, the 8000 reversal trajectories that resulted from the 160 ns used were more than 

sufficient to sample the transitions between the milestones, resulting in hundreds of observed 

transitions between each milestone. In total, 2.6 µs of equilibrium sampling (160 ns for 16 

milestones) were used and approximately 570 ns of FHPD sampling for a total of 3.2 µs of 

simulation used in the milestoning model. The total cost per ligand (including simulation discarded 

for equilibration) was therefore ∼3.8 µs. 

3.4.4 BD Simulations 

All BD simulations were performed using the BrownDye software package.99 Electrostatic 

potentials of the host and guest molecules used as inputs for the BD simulation were calculated 

with APBS version 1.4.100 To match experimental conditions, APBS calculations and BD 

simulations were carried out with a solvent dielectric of 78, a solute dielectric of 2, and zero ionic 
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concentration. An initial series of simulations were initiated from the b-surface, a sphere that 

encloses the entire host molecule and has sufficient radius for the guest molecule to be situated in 

bulk solvent such that forces between the host and guest are centrosymmetric. 106 independent BD 

simulations were initiated from random points on the b-surface and were propagated until the guest 

either contacted the outermost milestone (13.5 Å) or escaped. Trajectories that successfully 

contacted the 13.5 Å milestone were used as the FHPD for this milestone. Another series of 106 

BD simulations were initiated from the FHPD and propagated until contacting the second-

outermost milestone (12.0 Å) or escaping to the q-surface. This procedure is automated by SEEKR. 

3.4.5 Milestoning Calculations 

Statistics from all milestones in the MD and BD regions were extracted using SEEKR and 

combined to construct a transition kernel as well as an incubation time vector. These are the two 

key quantities for the calculation of kinetic parameters in milestoning theory.94 As described 

previously, a post-simulation analysis was performed to account for ligand transitions between the 

two faces of the β-cyclodextrin ring for milestones of radius 7.5 Å or less. The analysis portion of 

SEEKR was then used to compute the desired kinetic quantities, kon and koff, as well as the free 

energy of binding ∆Gbind. 
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3.4.6 Milestone Convergence Plots 

 

Figure 3.6 1-butanol GAFF per milestone convergence plot 
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Figure 3.7 1-propanol GAFF per milestone convergence plot 
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Figure 3.8 methyl butyrate GAFF per milestone convergence plot 
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Figure 3.9 tert butanol GAFF per milestone convergence plot 
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Figure 3.10 1-naphthyl ethanol GAFF per milestone convergence plot 
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Figure 3.11 2-naphthyl ethanol GAFF per milestone convergence plot 
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Figure 3.12 aspirin GAFF per milestone convergence plot 
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Figure 3.13 1-butanol Q4MD per milestone convergence plot 
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Figure 3.14 1-propanol Q4MD per milestone convergence plot 
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Figure 3.15 methyl butyrate Q4MD per milestone convergence plot 
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Figure 3.16 tert butanol Q4MD per milestone convergence plot 
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Figure 3.17 1-naphthyl ethanol Q4MD per milestone convergence plot 
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Figure 3.18 2-naphthyl ethanol Q4MD per milestone convergence plot 
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Figure 3.19 aspirin Q4MD per milestone convergence plot 
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Predicting Ligand Binding Kinetics Using a 

Markovian Milestoning with Voronoi 

Tessellation Multiscale Approach 

4.1 Abstract 

Accurate and efficient computational predictions of ligand binding kinetics can be useful 

to inform drug discovery campaigns, particularly in the screening and lead optimization phases. 

Simulation Enabled Estimation of Kinetic Rates, SEEKR, is a multiscale molecular dynamics, 

Brownian dynamics, and milestoning simulation approach for calculating receptor-ligand 

association and dissociation rates. Here we present the implementation of a Markovian milestoning 

with Voronoi tessellations approach that significantly reduces the simulation cost of calculations 

as well as further improving their parallelizability. The new approach is applied to a host-guest 

system to assess its effectiveness for rank-ordering compounds by kinetic rates and to the model 

protein system, trypsin, with the noncovalent inhibitor benzamidine. For both applications, we 

demonstrate that the new approach requires up to a factor of 10 less simulation time to achieve 

results with comparable or increased accuracy. 
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4.2 Introduction 

Historically drug discovery campaigns have focused on equilibrium metrics, such and 

binding affinity, to inform screening and lead optimization of prospective compounds. However, 

kinetic parameters of binding, such and the on rate (kon) and the off rate (koff), are receiving 

increased attention as effective predictors of a compound’s in vivo efficacy.113,116 Of particular 

interest is the  residence time (1/koff) of compounds, which accounts for the effects of protein 

conformational flexibility on binding, unbinding, and rebinding as well as other factors.66,114,115,150 

Furthermore, the Kinetics for Drug Discovery Consortium database reports that only 0.4% of 

compounds uploaded with experimentally measured kinetics have diffusion-controlled association 

rate constants, suggesting kon may also be an informative parameter to aid in lead optimization and 

the prediction of efficacy.113  Ligand binding kinetics (kon and koff) are determined by a 

combination of effects such as: protein conformational flexibility, ligand induced receptor 

conformational changes, binding site water rearrangements, and drug rebinding, all of which 

influence the potency as well as selectivity of prospective compounds. Multiple compounds can 

have the same equilibrium binding affinity, yet corresponding values of kon and koff can vary by 

orders of magnitude. The additional level of detail afforded by knowledge of both the association 

and dissociation rate can therefore be critical for rationalizing why some compounds have efficacy, 

while others do not, aiding the lead optimization effort and reducing the high attrition rates 

currently associated with lack of in vivo efficacy .   

Computational binding kinetics predictions have the potential to reduce the time and cost 

associated with experimental synthesis, assay development, and testing of many candidate 

compounds.1,151 In particular, molecular simulation approaches are attractive for the structural, 

dynamical, and mechanistic insights they can provide of the drug binding/unbinding pathways in 
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addition to predicting rate constants.5 Brownian dynamics (BD) simulations are routinely used to 

efficiently estimate protein-ligand association rates and identify binding pathways.42,85,87,93,152  

Atomistic molecular dynamics (MD) simulations can also be used to study ligand binding and 

unbinding, however the increased model complexity necessitated by MD makes it limited by 

sampling. Hardware and software improvements such as exascale computing, the Anton super 

computer, increasingly powerful graphical processing units (GPUs), and volunteer distributed 

computing have made the study of binding kinetics with brute-force type approaches 

possible.8,70,72,73,81,118,119,153  Generally, these approaches are limited to a small number of 

compounds and observe only a few association events and no dissociation events. Brute force MD 

simulations can access timescales on the order of milliseconds; however drug molecules often have 

residence times on the order of seconds, minutes, or even longer. As such, sampling remains the 

foremost limitation for these approaches. Furthermore, for simulation-based techniques to be 

useful in a drug discovery campaign, they must be able to provide predictions for 10s-100s of 

compounds in a reasonable timeframe. To overcome these challenges, many MD-based 

approaches have been developed that utilize biasing forces or other statistical mechanical 

techniques to access the timescales needed to predict binding and unbinding kinetics.5,29 These 

include methods such as Markov State Models (MSMs), 31,76,81,122,123,154 

metadynamics,19,25,84,124,125,155  milestoning,35,36,121,126,127,156 and others.18,83,129–131,157 Additionally, 

multiscale methods exist that integrate MD with other approaches such as quantum mechanics or 

BD, or continuum approaches to better predict kinetic parameters by improving either accuracy or 

scalability.14,45,53,61,117,158,159  

One such multiscale approach is the MD/BD/milestoning methodology “Simulation 

Enabled Estimation of Kinetic Rates” (SEEKR) which we develop and have shown to be effective 
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for the calculation of both kon and koff as well as the rank ordering of compounds by their rates.50–

52 Milestoning theory facilitates the division of simulation space into smaller regions called 

milestones that can be simulated independently and in parallel.94,95,139,160 SEEKR uses atomistic, 

fully flexible MD simulations for milestones close to the binding site where these interactions are 

critical for describing the binding/unbinding process. Rigid body BD simulations are used in 

regions far from the binding site to dramatically reduce the computational cost, while still 

providing a sufficient description of the binding process, which is primarily diffusive in these 

regions. SEEKR is a freely available software package that automates the preparation, simulation 

and analysis of these binding kinetics calculations using the existing software NAMD98 for MD 

simulations and Browndye99 for BD simulations. While the effectiveness of SEEKR was 

previously demonstrated for predicting kinetic rates as well as rank ordering compounds, these 

calculations required a significant computational cost that would make the screening of many 

compounds challenging. It was therefore necessary to develop improvements to this methodology 

to reduce the amount of MD simulation required as well as improve the parallelizability of 

calculations.  

Here we present a new implementation of SEEKR which utilizes the theory of Markovian 

Milestoning with Voronoi Tesselations (MMVT).140,161  This new approach overcomes the primary 

sampling bottleneck associated with our previous implementation; obtaining an equilibrium 

distribution on each milestone. Instead, trajectories are confined to a Voronoi cell with the use of 

a reflective boundary condition. Figure 4.1 shows a general schematic of an MMVT SEEKR model 

which combines MD and BD simulations.  
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Figure 4.1 Cartoon depiction of a MMVT SEEKR rate calculation using spherical milestones representing 

radial distances from the binding site (black circles).  

The blue shaded regions are treated with MD simulations, while the grey shaded region employs computationally less 

expensive BD simulations. MD trajectories (colored lines) are confined to a particular cell with the use of a reflective 

boundary condition when a milestone is touched. Many BD trajectories (blue arrows) efficiently simulate the 

association of the ligand from large distances. Milestoning theory enables the statistics from many independent cells 

and both simulation modalities to be combined for the calculation of binding and unbinding rates. 

 

We test this new implementation on a model host-guest system: β-cyclodextrin with seven 

small molecule ligands, as well as the model protein system: trypsin with the noncovalent inhibitor 

benzamidine. The accuracy and efficiency of the MMVT SEEKR results are directly compared to 

experimentally measured kinetics, the previous SEEKR implementation, and other simulation 

approaches for each system. MMVT SEEKR produces results that are in agreement with 

experimental measurements and comparable to the previous SEEKR implementation for both 

model systems, while benefiting from up to a 10-fold reduction in simulation cost.  Finally, we 

discuss convergence estimates for the sampling of each milestone as a way to further reduce the 

simulation cost by adaptively terminating or extending individual simulations.  
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4.3 Methods 

4.3.1 MMVT SEEKR package 

The MMVT SEEKR package is a series of python scripts (python 3.7 or later), freely 

available on Github, that automates the preparation, running, and analysis of all simulations 

necessary for ligand binding kinetics calculations. MMVT SEEKR utilizes user-defined inputs of 

structures and model parameters to generate all files necessary for a SEEKR calculation. Files are 

organized into a filetree with branches for each independent milestone. MMVT SEEKR uses the 

freely available softwares NAMD98 for MD simulations and Browndye99 for BD simulations and 

generates all necessary input files for running these simulations in the appropriate portions of the 

filetree. MMVT SEEKR uses the Colvars collective variable module of NAMD to define and 

monitor milestones during MD simulation, with any collective variable defined in the module able 

to be used for milestoning in MMVT SEEKR.162 The appropriate colvar input files are created by 

the SEEKR preparation scripts. The SEEKR package also includes an analysis module containing 

functions to extract results from the simulation outputs, calculate rates, assess simulation 

convergence, perform error analysis, and easily plot relevant quantities. The module is designed 

to be imported into a Jupyter notebook, and a sample notebook and tutorial are included in the 

distribution.  

4.3.2 Markovian Milestoning with Voronoi Tessellations: theory and implementation 

Our previous implementation of SEEKR employed a traditional milestoning procedure 

where short trajectories were initiated on each milestone and run only until they touched another 

milestone.50,51,94,95  The primary challenge of this approach is that one must know the correct 

probability distribution from which to reinitialize new trajectories on each milestone, called the 

first hitting point distribution (FHPD). The FHPD is obtained by first running a long, harmonically 
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restrained trajectory to sample the equilibrium distribution on each milestone. Position/velocity 

configurations from this equilibrium distribution are then used to launch new trajectories which 

are propagated backward in time by reversing the velocity of the system. Only equilibrium 

configurations which touch another milestone before touching the milestone on which they started 

are included as part of the FHPD. This procedure is computationally expensive, in particular, long-

timescale (microsecond) trajectories must be run for each milestone in order to adequately sample 

all configurations of the equilibrium distribution. This creates a computational bottleneck for the 

SEEKR method as this portion of the method has limited parallelizability. The MMVT procedure 

proposed by Vanden-Eijnden and Venturoli overcomes this barrier by eliminating the requirement 

of initializing all trajectories from a configuration in the FHPD.140 Instead, milestones are defined 

as the edges of a Voronoi tessellation and trajectories are confined to a Voronoi cell with the use 

of a reflective boundary condition.  Here we will briefly describe the key aspects of this theory 

necessary for our implementation and refer the reader to the original paper for a deeper theoretical 

description and the paper of Maragliano et. al. for an implementation employing restraining 

potentials.140,161  

The central assumption of MMVT is that the evolution of the system through time can be 

described as a continuous-time Markov-jump process between milestone states with the rate matrix, 

Q, having off-diagonal elements qij for i≠j and diagonal elements qii =-Σj≠i qij  where i and j 

correspond to the starting and ending milestone indices. From a maximum likelihood estimation 

of Q, the off-diagonal elements (i≠j) are defined as  

𝑞𝑖𝑗 = {

𝑁𝑖𝑗

𝑅𝑖
     𝑖𝑓 𝑅𝑖 ≠ 0 

0         𝑖𝑓 𝑅𝑖 = 0 

     (4.1) 
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where Nij is the number of transitions between milestone i and milestone j and Ri is the total 

time spent having last touched milestone i. The quantities Nij and Ri can be estimated from 

independent simulations confined to Voronoi cells as described below. 

 

Figure 4.2 Sample Voronoi tessellation from the red generating points, z. 

The edges of the cells define the milestones. Milestone S1 (thick line)  represents the shared boundary between cells 

B1 and B2. The colored lines represent a hypothetical trajectory confined to cell B1 using reflective boundary 

conditions. Changes in color correspond to successful transitions between milestones for a single, continuous 

trajectory. The yellow portion is a transition from milestone S1 to S2 and the red portion from S2 to S3. The same 

simulation procedure is conducted independently in each Voronoi cell. 

 

The definition of the Voronoi cells can be generalized from Cartesian space to collective 

variable space (i.e. bond distances, angles, etc.) with the collective variables denoted as θ(x) =  

(θ1(x),…, θM(x)). A set of generating points,  𝑧α ∈ ℝM, with α = 1,2,…,Ʌ, define a unique partition 

of configuration space, Ω, into Voronoi cells (Figure 4.2). The cell Bα from generating point zα is 

the region   

𝐵𝛼 =  {𝑥 ∈  Ω: ‖𝜃(𝑥) − 𝑧𝛼‖ <  ‖𝜃(𝑥) − 𝑧𝛽‖  for all β ≠  α} (4.2) 

The milestones are therefore defined as the common boundary, or edges, of adjacent cells. 

Independent simulations can then be carried out in each of the cells, propagated by the appropriate 

dynamical integrator, with the addition of a collision rule at the cell boundaries to keeps the 

trajectory confined to the appropriate cell. This collision rule is defined as  
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𝑥𝛼(𝑡 +  ∆𝑡) =  {
𝑥𝛼

∗   

𝑥𝛼(𝑡)  

𝑖𝑓 𝑥𝛼
∗  ∈  𝐵𝛼

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (4.3) 

and  

𝑣𝛼(𝑡 +  ∆𝑡) =  {
𝑣𝛼

∗   

−𝑣𝛼(𝑡)  

𝑖𝑓 𝑥𝛼
∗  ∈  𝐵𝛼

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (4.4) 

These boundary conditions, in essence, result in the velocity of the system being reversed 

whenever a trajectory collides with a boundary in order to keep the system inside the appropriate 

cell. The underlying justification for this rule is that, from time reversibility, every trajectory 

leaving the cell has a statistically indistinguishable trajectory entering the cell at the same point, 

but with its velocity reversed. Therefore, the correct Boltzmann-Gibbs distribution is maintained 

within the cell, as long as some thermal bath ensures that the trajectory does not perfectly retrack 

itself when its velocity is reversed upon collision with a boundary. Importantly, this procedure 

eliminates the need to determine the FHPD and equilibrium distribution on each milestone. 

From the simulations confined to a Voronoi cell, Bα, with edges (or milestone) indices i 

and j, one can obtain the quantities 𝑁𝑖𝑗
𝛼 and 𝑅𝑖

𝛼, where 𝑁𝑖𝑗
𝛼  is the number of times a trajectory 

collides with a milestone after having last touched a different milestone and 𝑅𝑖
𝛼 is the total time 

the simulation spends having last touched milestone i.  These two quantities can be related to the 

quantities Nij and Ri needed for the determination of Q by weighting the cell specific values by the 

equilibrium probability of that cell: 

𝑁𝑖𝑗 = 𝑇 ∑ 𝜋𝛼

𝑁𝑖𝑗
𝛼

𝑇𝛼

Ʌ

𝛼=1

  (4.5) 

𝑅𝑖 = 𝑇 ∑ 𝜋𝛼

𝑅𝑖
𝛼

𝑇𝛼

Ʌ

𝛼=1

  (4.6) 

 



 85 

Here T𝛼 is the total simulation time in cell 𝛼 and T is the reciprocal sum of time spent in all cells, 

which ensures dimensional consistency. The equilibrium probability, 𝜋𝛼, can then be computed by 

solving the system of equations defined by 4.7 and 4.8.163 

∑ 𝜋𝛽𝑘𝛽,𝛼 =

Ʌ

𝛽=1,𝛽≠𝛼  

∑ 𝜋𝛼𝑘𝛼,𝛽

Ʌ

𝛽=1,𝛽≠𝛼

 , (4.7) 

 

∑ 𝜋𝛼 = 1

Ʌ

𝛼=1  

 (4.8) 

Where we assume that the flux in and out of each cell is zero at steady state for the unrestrained 

system. The quantity k𝛼,β is defined as:  

𝑘𝛼,𝛽 =  
𝑁𝛼,𝛽

𝑇𝛼
 (4.9) 

Where N𝛼,β is the total number of collisions with the common boundary of cells B𝛼 and Bβ. It is 

important to note that the key quantities to determine the rate matrix Q are 𝑁𝑖𝑗
𝛼 and 𝑅𝑖

𝛼 , which can 

be obtained independently for each Voronoi cell. This independence facilitates the embarrassingly 

parallel nature of the MMVT SEEKR simulations. Furthermore, the convergence of these key 

quantities can be monitored as an estimate of the convergence of sampling for a particular MMVT 

cell, which will be discussed in further detail in section 4.3.4. The off rate can then be 

approximated as the reciprocal of the mean first passage time (MFPT) from the bound state to the 

outermost milestone using the standard expression for the MFPT in a continuous-time Markov 

chain 

𝑄̂𝑇𝑁 = −𝟏 (4.10) 

𝑄̂ is the N-1 by N-1 matrix obtained by deleting the last row and column of Q and -1 is the unit 

vector in ℝN-1. TN is the a vector with entries 𝑇𝑖
𝑁 that are the MFPTs from milestone i to milestone 
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N. It has been shown that the MFPTs computed from MMVT are exact if optimal milestones are 

used, as is the case for traditional milestoning simulations.95,140 

For SEEKR, the MMVT algorithm is implemented directly in the NAMD configuration 

file using the existing TCL interface. The colvars module is used to monitor the milestones defined 

by existing collective variables (with no biasing force used).162 The existing NAMD TCL 

commands “checkpoint” and “revert” as well as the “rescalevels” command are used to facilitate 

the reflective boundary conditions needed for the MMVT algorithm when the monitored collective 

variable crosses a predefined milestone boundary. To improve calculation efficiency, boundary 

crossings can be checked after a user-defined number of steps, rather than every step of the 

simulation. All transition events are output in the simulation output file for post-processing with 

the SEEKR analysis package. 

 

4.3.3  Incorporating Brownian dynamics simulations to calculate  kon 

BD simulations are extremely useful for efficiently simulating the portion of the 

association process where the ligand is far from the binding site and therefore the atomistic detail 

of MD is not required to obtain an adequate description of the process. Instead, solvent is 

approximated by a dielectric and solute molecules (receptor and ligand) are treated as rigid or 

semi-rigid bodies with dynamics propagated according to the general equation of Brownian motion. 

The Northrup Allison McCammon (NAM) method can be used to estimate kon from BD 

simulations85,152  using the equation 

𝑘𝑜𝑛 = 𝑘𝑏𝛽 (4.11) 

where kb is the rate of diffusion to a spherical surface of radius b (b surface) from the receptor 

calculated by  



 87 

𝑘𝑏 = 4𝜋 [∫
e

(
𝑈(𝑟)
𝑘𝑏𝑇 )

𝑟2𝐷(𝑟)

∞

𝑏

𝑑𝑟]

−1

(4.12) 

Where U(r) is the potential energy between the receptor and ligand at distance r, kbT is the 

Boltzmann constant times temperature, and D(r) is the diffusion coefficient.  β from equation 4.11 

is the probability that a ligand on the b surface will continue on to react, rather than escaping to an 

infinite distance.  In practice,  kb is calculated automatically by the Browndye software used by 

SEEKR for the BD simulations.99 Traditionally the value of β is calculated from many BD 

simulations, however in the SEEKR implementation, we calculate this probability from a 

combination of MD and BD simulations. BD simulations are first conducted from the b surface to 

the outermost milestone. Successful trajectories from this simulation are a FHPD on the outermost 

milestone. Subsequent BD simulations are then carried out from each point in this FHPD until they 

successfully touch the second outermost milestone or escape to infinity. The rate matrix, Q, 

constructed from the MMVT portion of the model can then be converted to a transition probability 

matrix, K, and modified to include the probability of binding/escape determined from the BD 

simulations.  β is then calculated as the stationary flux, qstat, of the bound state milestone by solving 

the equation 

𝑞𝑠𝑡𝑎𝑡 (𝑰 − 𝑲) = 0 (4.13) 

Where I is the identity matrix. The values of kb and β can then be used to calculate  kon with 

equation 4.11.  While the transition probabilities are obtained differently for the MMVT 

implementation, the calculation of kon described here is the same as in the original implementation 

of SEEKR.     
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4.3.4 Error analysis simulation convergence estimates 

The statistical error associated with the calculation of kon and koff was estimated using a 

Markov chain Monte Carlo (MCMC) procedure based on the procedure detailed by Noé in 2008 

that was modified to sample the rate matrix rather than the transition kernel.75 Each nonzero entry 

of the rate matrix, qij is sampled by pulling a new value from the appropriate gamma distribution 

with parameters Nij and 1/Ri which is accepted or rejected based on a Metropolis criteria. The 

standard deviation of the rate constants calculated from many iterations of the MCMC procedure 

is used as an estimate of the statistical error of the calculation. The convergence of the MCMC 

calculated rate constants is monitored to ensure the rate matrix has been sufficiently sampled. 

Finally, it should be noted that the average calculated MCMC rate constant and the maximum 

likelihood estimate described in section 2.2 should converge with sufficient sampling, which can 

also be monitored as a measure of convergence of the simulations. 

The convergence of sampling in each Voronoi cell is essential for determining the amount 

of simulation needed to accurately calculate the rate constants of intertest. As described in section 

2.2, the two key quantities necessary to construct the rate matrix, Q, are 𝑁𝑖𝑗
𝛼/𝑇𝛼 and 𝑅𝑖

𝛼/𝑇𝛼, which 

are independently obtained from simulations in each Voronoi cell. As a result, these two quantities 

can be monitored as a function of simulation time in each cell to estimate the convergence of 

sampling from the simulations. The SEEKR analysis package described in section 2.1 contains 

functions to extract and plot these quantities, providing the user with qualitative, visual estimates 

of the convergence of sampling. A quantitative metric, however, is desirable, as it can then be 

utilized to provide a more rigorous and reproduceable metric for convergence that is transferrable 

between systems. In the SEEKR package, we have implemented a sliding window root mean 

square deviation (RMSD) function to provide such an estimate. The quantities 𝑁𝑖𝑗
𝛼/𝑇𝛼 and 𝑅𝑖

𝛼/𝑇𝛼 
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are calculated for user-defined strided portions of the data. A window of user-defined length is 

then moved through the data, grouping it into samples. For each sample, the RMSD from the 

average value is calculated. A user defined cutoff is specified as a percentage of the magnitude of 

the quantity (i.e 5% of the magnitude of the value). If the RMSD of each quantity remains below 

this cutoff for a user-defined length of simulation (i.e. 100ns) then the sampling in that cell is 

considered converged. Leaving these parameters to be specified by the user allows the 

convergence estimate to be adaptable to the particular application being considered. This allows 

the user to balance strictness of convergence, required level of accuracy, and amount of simulation 

time invested based on the particular question being answered. For example, a rank-ordering 

application may not require the same strictness of convergence as trying to estimate the true value 

of the rate constant within experimental error. By estimating the convergence of each Voronoi cell 

independently, sampling can be adaptively terminated or extended on a cell by cell basis. Allowing 

more simulation time to be devoted to difficult to sample areas, while eliminating excess 

simulation in easier to sample regions. We note that a metric such as this could also be used in the 

future to monitor convergence “on-the-fly” during simulations, rather than after a portion of 

simulation is run. 

 

4.4 Results and Discussion 

4.4.1 Host-guest molecule rank ordering  

We assessed the effectiveness of the our new MMVT SEEKR implementation for rank-

ordering compounds by their binding/unbinding rates. The model host-guest system β-

cyclodextrin with seven different guest molecules was studied (Figure 4.3), as this was the same 

system studied with the original SEEKR implementation. Therefore, it was possible to directly 
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compare the accuracy and efficiency of the new MMVT approach to the previous implementation52 

as well as to brute-force MD simulation calculated rates121 and experimentally measured 

kinetics.143–145,147,148  

 

 

Figure 4.3 Structures of β-cyclodextrin and the seven ligands tested 

 

 

System and simulation details can be found in section S1 of the Supporting Information. A 

one dimensional pseudo-Voronoi tessellation was generated using anchor points that resulted in 

milestones being placed between the center of mass (COM) of the host and the COM of the guest 

from 1.5 Å to 13.5 Å in 1.5 Å increments. Many short (~20-50 ns) MMVT MD simulations were 

carried out for each Voronoi cell for a combined total of ~560 ns of simulation per ligand (exact 

simulation lengths are presented in Table 4.2). Additionally, BD simulations were performed for 

the 13.5 Å milestone as described in section 4.3.3 with additional details in section 4.7.1. Both kon 

and koff  as well as the binding free energy were calculated for each ligand. The convergence 

estimates described in section 4.3.4 were also used to determine the minimum simulation necessary 

to produce a converged result for each cell and the rates were recalculated using only that portion 

of the data. A sliding window of 30 samples was used pulled from the data with a stride of 1 ns  
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after skipping the first 10 ns. Cells were considered converged when values remained less than 5% 

of the average value for 20 windows (20 ns). Rate constants calculated with this minimum RMSD 

cutoff produced results consistent with the data from the full simulations, while benefitting from 

an additional ~20% reduction in simulation time.  The values of the rate constants and binding free 

energies calculated using both methods as well as the brute force MD simulations and experiment 

are presented in Table 4.3 - Table 4.5. Figure 4.4 shows the calculated values for a)  kon and b) koff  

and c) ΔG ordered by increasing magnitude of the experimentally measured value. The values 

calculated with MMVT SEEKR are in good agreement with values calculated from the previous 

SEEKR implementation. The values of kon remain approximately one order of magnitude faster 

than experiment. As in the previous implementation, rank-ordering by kon was not possible due to 

the limited variation in the experimental and computed values which are all near the diffusion 

limit.40 The rank-ordering of ligands by koff was improved with MMVT SEEKR; incorrectly 

ordering only two ligands, rather than three. The koff values calculated with MMVT SEEKR were 

consistently faster than the experimental rates, which was also observed in the original SEEKR 

implementation. In addition, the binding free energy of each ligand can be determined because kon 

and koff are known. Calculated binding free energies are also in good agreement with experiment 

(Figure 4.4c), with only the value for methyl butyrate differing from the experimental value by 

more than 1 kcal/mol. As the on rates for these compounds are similar, the binding free energy is 

primarily dominated by the values of koff. As such the rank-ordering is also similar to that for koff; 

incorrectly ordering methyl butyrate and tert-butanol, but also misordering 2-naphthylethanol as a 

result of a faster kon. The MMVT SEEKR method was able to produce comparable predictions of 

kon and koff and binding free energy to the original SEEKR implementation, with improved rank-

ordering of the ligands by koff and comparable rank-ordering by free energy. Furthermore, MMVT 
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SEEKR benefits from a roughly 10-fold reduction in the amount of simulation used to achieve this 

result. The minimum simulation estimates, which produce nearly identical results to the full 

simulation data, save an additional 20% (~100ns) on the total MMVT simulation cost. 
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Figure 4.4 Comparison of results for cyclodextrin 

Comparison of experimentally measured values143–145,147,148 (black), brute force MD121 (red) original SEEKR 

implementation (green) MMVT SEEKR52 (dark blue) and MMVT SEEKR minimum simulation estimates for  a) kon 

b) koff and c) binding free energy. Compounds are ordered by increasing experimentally measured values. 

 

a 

b 

c 
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4.4.2 Trypsin-benzamidine application 

We also tested the MMVT SEEKR method on the well-studied model system trypsin with 

the noncovalent inhibitor, benzamidine. This system has been used as a benchmark by many 

simulation-based approaches, including the original SEEKR implementation.31,51,81,83,84,130 The 

increased complexity resulting from protein dynamics as well as a koff value multiple orders of 

magnitude slower than those tested in the host-guest systems serve as a test for the efficiency and 

accuracy of the new MMVT SEEKR implementation. Detailed system and simulation details can 

be found in section 4.7.2. The same collective variable representing the distance of the ligand from 

the binding site was used as in the original SEEKR implementation.51 Voronoi Cells were 

generated from anchor points that resulted in milestones with distances of 1.0, 2.0, 3.0, 4.0, 6.0, 

8.0, 10.0, 12.0, and 13.0 Å (Figure 4.5). We note that the MMVT algorithm samples the regions 

between milestones differently than the previous implementation, and therefore the spacing of 

milestones is not identical to the previous implementation to account for sampling challenges 

associated with large energy barriers and to ensure that the Markov assumption remains valid.  

Minimum simulation estimates of kon and koff and binding free energy were obtained using a stride 

of 2 ns after skipping the first 20 ns, an RMSD sample window of 200 ns and a cutoff of 5% for 

at least 100 ns. 
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Figure 4.5 Trypsin milestone depiction 

Structure of trypsin (cartoon) with milestones drawn as colored spheres. The outermost (grey) sphere represents the 

BD simulations from the “b surface” described in section 2.3. Many MD milestones are placed close to the binding 

site, while the BD region covers a much larger portion of the system. 

 

MMVT SEEKR effectively reproduces the experimentally measured on and off rates and 

binding free energy (Table 2.1).108 Using the full 4.4 μs of simulation data, the MMVT SEEKR 

result more closely reproduces experiment than the original SEEKR result, which required 19 μs; 

a ~4-fold reduction in simulation time. Furthermore, the MMVT minimum simulation estimate 

produces a comparable result to the original SEEKR implementation, requiring only 2.9 μs of 

simulation. This minimum simulation estimate saves an additional 35% of simulation from the full 

MMVT data, a ~7 fold reduction in simulation from the original implementation. The enhancement 

in sampling provided by the MMVT SEEKR approach is evident, as it predicts residence times 

that are over 1000 times longer than the simulation time invested. Statistically robust estimates of 

such residence times on the order of a millisecond would likely pose a significant challenge and 

expense for a brute force simulation approach, highlighting the value of the SEEKR approach for 

both its enhancement in sampling as well as parallelism.  
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Table 4.1 Trypsin-benzamidine calculated rates and binding free energies, simulation time, and 

experimentally measured values 

Method koff  (s-1) 
Residence 

Time (μs) 
kon (M-1 s-1) 

ΔG 

(kcal/mol) 

Simulation 

Time (μs) 

Experiment108 600 ± 300 1700 2.9 x 107 -6.7 ± 0.05  

SEEKR51 83 ± 14 12000 (2.1 ± 0.3) x 107 -7.4 ± 0.1 19 

MMVT 

SEEKR 
174 ± 9 5750 (1.2 ± 0.05) x 108  -7.9 ± 0.04 4.4 

MMVT 

SEEKR 

minimum 

simulation 

estimate 

62 ± 6 16000 (1.7 ± 0.1) x 108 -8.8 ± 0.07 2.9 

 

4.5 Conclusion 

We have presented a new MMVT algorithm implemented in the SEEKR package for 

calculating receptor-ligand binding and unbinding rate constants as well as binding free energies. 

The results of the two applications we have described here demonstrate that MMVT SEEKR is 

effective for both rank-ordering compounds by their kinetics as well as reproducing the magnitude 

of experimentally measured kinetics. MMVT SEEKR benefits from a significant reduction in 

simulation cost compared to the previous SEEKR implementation by eliminating the need to 

determine equilibrium distributions and FHPDs for each milestone. We have also described a 

method for estimating the convergence of sampling for each Voronoi cell and adaptively extending 

or terminating simulations accordingly. This convergence estimate was shown to further reduce 

the simulation cost of MMVT SEEKR calculations while retaining accuracy. The MMVT 

algorithm can also be used to construct and simulate models with multiple dimensions of 
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milestones, unlike the one dimensional models used in this study. Additional milestones could be 

useful for improving sampling of other slow degrees of freedom that may exist in a more 

complicated system. This may be particularly important when studying larger drug molecules with 

longer residence times and more complicated binding/unbinding mechanisms. The improvements 

to efficiency, as well as the embarrassingly parallel nature of milestoning simulations, make 

MMVT SEEKR well suited for use in future prospective studies for larger systems of 

pharmaceutical relevance. 
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4.7 Supporting Information 

4.7.1 Host Guest Simulations  

Structures and parameters are the same as those used in our previous study which were 

obtained from the brute force MD study of Tang and Chang.52,121 The cyclodextrin molecule was 

parameterized with the specialized Q4MD-CD forcefield142 and all ligands were parameterized 

with the Generalized Amber forcefield (GAFF).110,111 Systems were solvated with TIP3P waters. 

Milestones were defined using a collective variable measuring the distance between the center of 
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mass of the host and guest molecules. Milestones were placed at 1.5 Å increments from 1.5 to 13.5 

Å, as in the previous study.  The SEEKR software was used to prepare starting structures and 

simulation input files for each milestone. The starting structure for each MMVT anchor was 

obtained by first performing a constant volume MD simulation at 298 K with a Langevin damping 

coefficient of 5/ps and a 2 fs timestep. An 8 Å cutoff and a PME grid spacing of 1.0 Å were used. 

A harmonic restraint of 90 kcal/mol was used to pull the ligand from the bound state starting 

structure to the appropriate distance for that anchor. This simulation was run for 2 ns to allow for 

a short equilibration after the ligand reached the target distance. From this equilibrated structure 

many short (~20 ns) MMVT simulations were carried out. Simulations were conducted using the 

same parameters as the equilibration simulations but without the harmonic restraint. The reflective 

boundary conditions were implemented as described in the main text, with boundary crossings 

checked every 10 steps. A combined total of ~560 ns of simulation from all milestones was 

performed for each of the seven ligands. Total simulation time used as well as minimum simulation 

estimate times are shown in Table 4.2.  

Table 4.2 Total simulation time and minimum estimated simulation time used for each ligand. 

  
total sim time (ns) min sim estimate time (ns) 

1-butanol 560 420 

1-naphthylethanol 560 434 

1-propanol 546 420 

2-naphthylethanol 560 448 

aspirin 562 450 

methyl butyrate 560 420 

tert-butanol 560 420 
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BD simulations were carried out using the Browndye software package.99 Electrostatic 

potentials of the host and guest molecules used as inputs for the BD simulations were calculated 

using the Adaptive Poisson Boltzmann Solver (APBS) version 1.4. Experimental conditions were 

matched in the BD simulations using a solvent dielectric of 78, a solute dielectric of 2, and zero 

ionic concentration. 106 independent simulations were initiated from the b surface (as described in 

section 2.3 of the main text) to generate a FHPD on the 13.5 Å milestone. An additional 106 

simulations were initiated from points in this FHPD to collect transition statistics from the 13.5 Å 

milestone to the 12 Å milestone or the escape state (q surface). Association and dissociation rates 

as well as binding free energies for each ligand are presented in Table 4.3 - Table 4.5. 

 

Table 4.3 Experimental off rates and calculated values using brute force MD and various SEEKR 

approaches. 

 
Experiment143–

145,147,148 
Brute Force MD121 SEEKR52 MMVT SEEKR 

MMVT SEEKR  

Min Sim 

 

koff 

(s-1) 

Error 

(s-1) 

koff 

(s-1) 

Error 

(s-1) 

koff 

(s-1) 

Error 

(s-1) 

koff 

(s-1) 

Error 

(s-1) 

koff 

(s-1) 

Error 

(s-1) 

1-butanol 3.80E+07 6.00E+06 3.30E+07 7.00E+06 7.57E+07 1.04E+07 1.41E+08 6.61E+03 1.40E+08 6.99E+03 

1-

naphthylethanol 
4.80E+05 1.80E+05 1.40E+06 5.00E+05 1.08E+06 3.44E+05 1.97E+06 8.17E+02 2.04E+06 8.13E+02 

1-propanol 1.21E+08 7.00E+06 1.20E+08 2.00E+06 2.55E+08 2.24E+05 6.80E+08 1.78E+04 6.79E+08 1.63E+04 

2-

naphthylethanol 
1.80E+05 7.00E+04 5.00E+05 -- 7.31E+05 2.24E+05 1.44E+06 7.37E+02 1.21E+06 6.64E+02 

aspirin 1.31E+06 3.00E+04 3.10E+06 9.00E+05 7.72E+05 3.45E+05 6.10E+06 1.46E+03 5.93E+06 1.39E+03 

methyl butyrate 1.28E+07 3.00E+05 1.10E+07 1.00E+06 1.54E+07 2.69E+06 2.32E+07 2.75E+03 2.20E+07 2.79E+03 

tert-butanol 8.50E+06 1.00E+05 7.20E+06 1.00E+06 1.96E+07 3.29E+06 8.57E+07 5.48E+03 9.09E+07 5.22E+03 
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Table 4.4 Experimental on rates and calculated values using brute force MD and various SEEKR 

approaches. 

 
Experiment143–

145,147,148 
Brute Force MD121 SEEKR52 MMVT SEEKR 

MMVT SEEKR  

Min Sim 

 

kon 

(M-1 s-1) 

Error 

(M-1 s-1) 

kon 

(M-1 s-1) 

Error 

(M-1 s-1) 

kon 

(M-1 s-1) 

Error 

(M-1 s-1) 

kon 

(M-1 s-1) 

Error 

(M-1 s-1) 

kon 

(M-1 s-1) 

Error 

(M-1 s-1) 

1-butanol 2.80E+08 8.00E+07 1.50E+09 3.00E+07 1.67E+09 1.03E+08 4.02E+09 8.67E+04 4.04E+09 8.77E+04 

1-

naphthylethanol 
4.70E+08 1.90E+08 1.20E+09 5.00E+08 2.55E+09 1.55E+08 3.94E+09 4.14E+05 4.03E+09 3.84E+05 

1-propanol 5.10E+08 7.00E+07 1.20E+09 2.00E+07 1.55E+09 1.04E+08 3.64E+09 5.01E+04 3.72E+09 5.20E+04 

2-

naphthylethanol 
2.90E+08 1.60E+08 3.90E+09 -- 2.38E+09 1.39E+08 4.11E+09 3.97E+05 4.05E+09 4.80E+05 

aspirin 7.21E+08 4.00E+06 3.20E+09 3.00E+08 2.19E+09 1.20E+08 4.29E+09 2.62E+05 4.46E+09 2.27E+05 

methyl butyrate 3.70E+08 3.00E+07 1.60E+09 1.00E+08 1.73E+09 9.59E+07 3.93E+09 1.83E+05 3.95E+09 1.75E+05 

tert-butanol 3.60E+08 1.00E+07 1.10E+09 7.00E+07 1.01E+09 8.23E+07 3.52E+09 1.23E+05 3.57E+09 1.15E+05 

 

Table 4.5 Experimental binding free energy and calculated values using brute force MD and various SEEKR 

approaches. 

 Experiment143–145,147,148 Brute Force MD121 SEEKR52 MMVT SEEKR 

MMVT SEEKR  

Min Sim 

 

ΔG 

(kcal/mol) 

Error 

(kcal/mol)  

ΔG 

(kcal/mol) 

Error 

(kcal/mol)  

ΔG 

(kcal/mol) 

Error 

(kcal/mol)  

ΔG 

(kcal/mol) 

Error 

(kcal/mol)  

ΔG 

(kcal/mol) 

Error 

(kcal/mol)  

1-butanol -1.67 0.19 -2.27 0.02 -1.83 8.90E-02 -1.98 3.05E-05 -1.99 3.22E-05 

1-naphthylethanol -4.08 0.01 -4.01 0.03 -4.60 1.93E-01 -4.50 2.53E-04 -4.49 2.42E-04 

1-propanol -0.88 0.09 -1.37 0.01 -1.07 3.98E-02 -0.99 1.75E-05 -1.01 1.64E-05 

2-naphthylethanol -3.97 0.07 -5.31 -- -4.79 1.84E-01 -4.71 3.08E-04 -4.80 3.32E-04 

aspirin -3.74 0 -4.11 0.05 -4.71 2.67E-01 -3.88 1.46E-04 -3.92 1.42E-04 

methyl butyrate -1.99 0.02 -2.95 0.06 -2.80 1.09E-01 -3.04 7.54E-05 -3.07 7.95E-05 

tert-butanol -2.22 0.01 -3.00 0.07 -2.33 1.11E-01 -2.20 4.31E-05 -2.17 3.90E-05 

 

4.7.2 Trypsin-benzamidine simulations 

The system used in this study was the same as described in our original SEEKR study.51 

Atomic coordinates were obtained from the protein data bank structure 3PTB.102 Hydrogens were 

added using Molprobity with ring flips allowed.103,104 The system was prepared with LEaP using 

the Amber ff14SB forcefield105 with protonation states of titratable residues assigned using the 
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PROPKA package106,107 according to the experimental conditions.108 The system was solvated 

with TIP4Pew waters in a truncated octahedron, as in the previous study.109,110 Chloride anions 

were added to neutralize the system total charge. The benzamidine ligand was parameterized using 

Antechamber and the GAFF forcefield.110,111 The same equilibrated structure from the previous 

study was used as the starting structure for this study. 

Milestones were defined using a collective variable measuring the distance between the 

center of mass of the alpha carbons of residues representing the binding site (190, 191, 192, 195, 

213, 215, 216, 219, 220, 224, and 228 of PDB: 3PTB) and the center of mass of the benzamidine 

ligand. Milestones were placed at distances of 1.0, 2.0, 3.0, 4.0, 6.0, 8.0, 10.0, 12.0, and 13.0 Å. 

The 13.0 Å milestone is also the BD milestone. The SEEKR software was used to prepare starting 

structures and simulation input files for each milestone. The starting structure for each MMVT 

anchor was obtained by first performing a constant volume MD simulation at 298 K with a 

Langevin damping coefficient of 5/ps and a 2 fs timestep. An 8 Å cutoff and a PME grid spacing 

of 1.0 Å were used. A harmonic restraint of 90 kcal/mol was used to pull the ligand from the bound 

state starting structure to the appropriate distance for that anchor. This simulation was run for 2 ns 

to allow for a short equilibration after the ligand reached the target distance. From this equilibrated 

structure many short (~20 ns) MMVT simulations were carried out. Simulations were conducted 

using the same parameters as the equilibration simulations but without the harmonic restraint. The 

reflective boundary conditions were implemented as described in the main text, with boundary 

crossings checked every 10 steps. A combined total of ~4.4 μs of simulation from all milestones 

was performed. Experimental conditions were matched in the BD simulations and APBS 

calculations, using a solvent dielectric of 78, a solute dielectric of 2, Ca2+ ions at a concentration 

of 0.02 mM with a charge of +2.0 e and a radius of 1.14 Å, Cl− ions at a concentration of 0.10 mM 
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with a charge of −1.0 e and a radius of 1.67 Å, and tris at a concentration of 0.06 mM with a charge 

of +1.0 e and a radius of 4.0 Å. 106 independent simulations were initiated from the b surface (as 

described in section 4.3.3) to generate a FHPD on the 13.0 Å milestone. An additional 106 

simulations were initiated from points in this FHPD to collect transition statistics from the 13.0 Å 

milestone to the 12 Å milestone or the escape state (q surface). The BD results were then extracted 

and incorporated with the MD statistics for the calculation of kon. 
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