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ABSTRACT OF THE THESIS

Torchestra : Reducing interactive traffic delays over Tor

by

Deepika Gopal

Master of Science in Computer Science

University of California, San Diego, 2012

Professor Hovav Shacham, Chair

Tor is an onion routing network that protects users’ privacy by relaying

traffic through a series of nodes that run Tor software. As a consequence of the

anonymity that it provides, Tor is used for many purposes on the internet including

interactive traffic as well as for bulk file downloads. Such bulk downloads cause

delays for interactive traffic as all traffic between a pair of Tor nodes goes over

a single connection. The resulting delays discourage people from using Tor for

normal web activity.

We propose a potential solution to this problem called Torchestra which

separates interactive and bulk traffic onto two separate TCP connections between

any pair of nodes. We classify a circuit as carrying either type of traffic based on

the Exponentially Weighted Moving Average of its number of cells. We evaluate

ix



our proposal by simulating traffic using several methods and show that Torchestra

provides up to 32% reduction in delays for interactive traffic compared to the Tor

traffic prioritization scheme of Tang and Goldberg [9] and up to 40% decrease in

delays when compared to unprioritized Tor.
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Chapter 1

Introduction

Tor is an anonymizing network designed by Dingledine, Mathewson and

Syverson in 2004 [12] that provides privacy and anonymity to users all over the

world. Traffic from clients is relayed through three Onion Routers (ORs) before

being forwarded to the destination. On any circuit, each Onion Router knows the

address of the node before and after it but not of any other node along the path

between the source and destination thus preserving anonymity. In simple terms,

Tor’s goal is to prevent an attacker from linking together the source and destination

IP addresses of clients and learning their browsing habits. Tor has been designed

to protect against a non-global adversary i.e., an adversary who does not have

control over both exit and entrance nodes of a circuit.

Since Tor relays are run by users, bandwidth is limited to how much a user is

willing to allocate for Tor’s usage. Thus when Tor is used for bulk file downloads

(such as Bittorrent [26]), delays on interactive traffic (such as web traffic, ssh)

increases as explained by Dingledine and Murdoch in [1]. This dissuades people

from using Tor on a regular basis - when privacy is not essential. Since the level

of anonymization improves with the number of people using it [31], reduction in

delays for interactive traffic would definitely be an incentive to get more people to

use Tor on a regular basis.

Tor is known to suffer from some performance issues as described by Din-

gledine and Murdoch in [1]. In this thesis we focus on two issues that occur due to

traffic from all circuits going over a single connection between any pair of nodes.

1
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In 2008, McCoy et al. [6] showed that interactive traffic makes up only 30% of the

overall traffic. The first potential issue (explained by Dingledine in [5]) is that it is

likely that interactive traffic will be queued behind a large amount of bulk traffic

in socket buffers or on Tor’s output buffers (the data structure on every connection

on which Tor stores cells before pushing them out on the socket) and will thus lose

a lot of time. The second problem (explained by Reardon and Goldberg in [7])

is that when TCP’s congestion control is triggered on a connection due to bulk

traffic, interactive traffic on that connection will also get unfairly slowed down.

In this thesis we investigate whether Tor’s performance for interactive traffic can

be improved by separating it from bulk traffic on two separate TCP connections.

Throughout the rest of the thesis, we will refer to interactive traffic as light traffic

and bulk traffic as heavy traffic.

The approach we have adopted, which we call “Torchestra”, is to create a

separate connection each for interactive traffic and bulk traffic between any pair

of nodes. We use a heuristic used for a related scheme by Tang and Goldberg

in 2009 [9] to find the exponentially weighted moving average (EWMA) for the

number of cells sent on a circuit. EWMA provides a way to calculate the moving

average of the number of cells sent on a circuit while giving priority to recent values.

Our implementation continuously updates the EWMA value for each circuit and

transfers a circuit to the appropriate connection as dictated by the traffic flow. As

explained later, moving a circuit between connections does not add any additional

latency. We have attempted to ensure that the security properties of Tor are

preserved. We discuss this further in Section 4.5.4 after we have explained our

algorithm in more detail.

We evaluate our proposal using several experiments: simulating simple traf-

fic patterns, replaying dummy traffic using timing patterns collected on a public,

non-exit Tor node and replaying our own web and ssh traffic. We compare Torches-

tra to Normal Tor and the Prioritized Tor scheme of Tang and Goldberg [9] using

the Tor emulator Experimentor, created by Bauer et al. [11]. When simulating

the timing patterns of traffic collected on a non-exit Tor node, we found between

a 2% to 25% decrease in the delays with Torchestra compared to Prioritized Tor
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and a 4% to 40% decrease in delays when compared to Normal Tor. We replayed

ssh and http traffic collected from our own normal usage and found between 8% to

32% reduction in delays with Torchestra compared to Prioritized Tor and a 13%

to 36% reduction in delays when compared to Normal Tor.

In the forthcoming sections of the Introduction, we summarize who the

users of Tor are, some of the problems Tor faces and the issues we intend to solve.

The related work section is in Chapter 2. In Chapter 3 we discuss the prelimnaries

and the Tor architecture. The algorithm and protocol used to decide when to

switch between connections is explained in Chapter 4. In Chapter 5 we describe

our experimental setup, the experiments we performed and our results. Lastly, in

Chapter 6 we discuss future work and summarize our results.

1.1 Who uses Tor?

There are different reasons why people want their privacy to be protected.

Since Tor prevents the source and destination IP addresses from being linked to-

gether, any scheme which requires the cloak of anonymity is benefitted by Tor. As

described by Dingledine in [4], some of these reasons are

• People should be able to express their views freely and give their opinions

without fear of retribution. Bloggers and journalists come under this cate-

gory. It is also useful in any online voting scheme where it is important that

the identity of the voter does not leak out.

• In countries where internet traffic is monitored and websites are blocked, Tor

provides a way to circumvent this tracking and overcome censorship.

• Normal users would like to maintain their privacy and access websites of

their liking without fear of being profiled and in the worst case, without fear

of being blackmailed.

• Any situation that allows websites to unfairly differentiate between users

based on their geophysical location (source IP), can be prevented by Tor.

Since Tor traffic goes through many relays scattered all across the globe, the
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IP address the website sees is the exit node’s IP address. Thus the website

cannot be sure whether the IP address seen is that of the source or of the

last node on an anonymizing network, encouraging it to provide fair service.

1.2 Motivation

We describe here some of Tor’s performance issues and the motivation be-

hind our work.

1.2.1 Why Tor is slow

Dingledine and Murdoch explain in [1] that the Tor network is slow and we sum-

marize the main reasons below:

1. Unfair slowing down of interactive traffic

As described by Reardon and Goldberg [7] since all circuits between a pair of

nodes go over a single connection, heavy circuits that trigger TCP’s conges-

tion control directly affect light circuits which are using the same connection.

Thus light circuits suffer delays through no fault of their own.

2. Interactive traffic stuck behind bulk traffic

As described by Dingledine in the Tor project blog [5], one of the main

problems with Tor today is that some users use it for high-volume transfers.

On a connection, Tor sends cells out from different circuits in round–robin

order and so if all circuits had similar traffic patterns and user expectations,

there would be no problem. In reality, there is a lot of disparity between

the rates at which different circuits send data. With bulk traffic downloads,

there is data going over a circuit for long periods of time and in this case,

response time is not important to the user. With interactive traffic, a much

smaller file like a website needs to be downloaded and the user expects almost

instantaneous responses. The issue is that when a user wants to download

a web page, these cells are stuck behind the bulk traffic cells on the socket
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buffer or Tor’s output buffer. Thus when there is heavy load on the network,

light traffic can experience very high delays.

3. Disproportionate bandwidth usage

Some clients use more bandwidth than they contribute leading to reduction

in quality of user-experience for clients whose usage pattern is fairer [1].

4. Directory download overhead

Too much network overhead is spent in downloading directory information.

This especially affects low-bandwidth users [1].

5. Imperfect path selection

Sometimes, Tor’s path selection algorithm does not distribute loads fairly

amongst different relays leading to some relays being underloaded and some

being overloaded [1].

6. Not enough capacity

As Tor has many users compared to the number of relays, the overall band-

width itself is sometimes not enough, leading to delays [1].

In this thesis we focus on the first and second issues as explained in the next

section.

1.2.2 Issues Torchestra tackles

The main idea behind Torchestra is to separate heavy traffic from light

traffic and thus prevent bulk traffic from increasing delays for interactive traffic.

To achieve this, we create a separate connection for each type of traffic and decide

which connection a circuit should belong to using the Exponentially Weighted

Moving Average metric. We investigate whether this will lead to improvements in

the first two issues mentioned in Section 1.2.1.

Both the problems mentioned are due to light traffic and heavy traffic going

over the same connection. Let us consider how having separate connections might
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help solve each of the two problems. For the first issue, if the two types of traffic

are separated onto different connections, when TCP’s congestion control algorithm

is triggered due to heavy traffic, light circuits will not get affected. Regarding the

second problem, light traffic will no longer be stuck behind heavy traffic since the

socket buffers and Tor output buffers for the two types of traffic will no longer be the

same. Thus we see that having separate connections should lead to improvement

in Tor’s performance for light traffic.



Chapter 2

Related Work

In this chapter we discuss the work that has been done previously to reduce

delays for interactive traffic in Tor and other work that is related to the thesis.

In 2009, Reardon and Goldberg [7] were the first to propose a scheme to

improve Tor’s performance for interactive traffic. As explained in Section 3.1.2,

congestion control of TCP that is triggered due to heavy traffic unfairly affects

light traffic. They addressed this problem by creating a separate socket for every

client using user-level TCP and a DTLS/ UDP tunnel between every pair of nodes.

In this manner, a heavy circuit can affect only itself - not other heavy circuits or

light circuits. While this is an ideal solution, Dingledine explains in [1] that it has

not yet been implemented due to licensing issues on most high quality user–level

TCP stacks.

Tang and Goldberg in 2009 [9] proposed a scheme Prioritized Tor where they

aim to reduce the delay of light circuits by giving higher priority to interactive

circuits. They did this by using the Exponentially Weighted Moving Average

(EWMA) to calculate the recent activity of a circuit - circuits that have a lower

EWMA value and hence lower activity are given higher priority over other circuits

that have cells ready to transmit. According to Dingledine [5], the problem with

this approach is that since all circuits are using the same connection to send data

to the next node, if there is already a lot of data queued up on the socket buffer

or Tor’s output buffer, interactive circuits will still face high delays. Also, light

circuits will face the effects of congestion control triggered by heavy circuits.

7
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Another option available for Tor nodes to control traffic is to use the Per-

ConnBWRate and PerConnBWBurst configuration options described by Dingle-

dine in the Tor project blog entry [5]. Both these options are used to do separate

rate-limiting for every connection from a non-relay. In this way, heavy clients

which are not relays can be throttled at the entrance router itself. The issue with

this approach as mentioned in Tschorsch and Scheuermann [2] is that since this

form of configuration is static, it does not take care of the current load and state

of the network and even if there is bandwidth available, clients will be unneces-

sarily throttled. Also, clients who run relays and use more bandwidth than they

contribute will still cause problems for interactive traffic.

Chowdhury et al. [13] manage network bandwidth in a map-reduce system

by opening a number of TCP connections proportional to the amount of data to be

transferred across the network in order to reduce the average job completion time.

The node that has more data to transfer will open more connections and due to

TCP’s max-min algorithm, will get a greater share of the bandwidth. Originally

this was our inspiration to increase the number of connections for light circuits

to ensure that they get a greater assured share of bandwidth. On further study

we understood that Tor is already implementing the max-min algorithm to ensure

that bandwidth is divided equally amongst connections as well as sending out cells

in round–robin order for the different circuits on a connection. It turns out that

using separate connections for light and heavy circuits improves Tor’s performance

for reasons described in Section 1.2.2. Since Orchestra was our original inspiration,

we have named our project “Torchestra”.

In the paper by by Tschorsch and Scheuermann in 2011 [2] the authors ex-

plain how division of bandwidth between circuits is not fair. User configured band-

width is divided equally amongst connections and each connection’s bandwidth is

divided equally amongst its circuits. The authors observe that the circuits that

exist on connections that have very few circuits, get a larger slice of the bandwidth.

They implement a solution that achieves max-min fairness between circuits and

uses a N23 congestion feedback scheme to better utilize bandwidth and prevent

congestion. Later in the thesis, we explain why we have chosen one connection
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each for light and heavy circuits. According to Damon et. al [6], the percentage

of circuits carrying interactive traffic is around 90% while percentage of circuits

carrying heavy traffic is 10%. Thus the light connection will have much larger

number of circuits and the bandwidth available to a light circuit in Torchestra will

be less than the bandwidth available to it in Normal Tor. Using an experiment,

we show that only in less than 10% of the cases do light circuits get affected by

the reduction of bandwidth available to them. Once the feature presented in [2]

is integrated with Tor, even 10% of the light circuits should not get affected as

bandwidth will be divided equally amongst circuits irrespective of the connection

they are on.

McCoy, Bauer, Grunwald, Kohno, Sicker in 2008 [6] have done a study of the

real Tor network by looking at exit node traffic and have measured the percentage

of light and heavy circuits as well as the percentage of light and heavy traffic. We

use the results published in this paper to design some of our experiments and hence

we mention the statistics here. They found that the percentage of circuits that

carry web traffic is around 90% and the percentage of heavy circuits is around 10%.

Regarding traffic, the percentage of light traffic is around 30% and the percentage

of heavy traffic is about 70%. We will refer to these statistics throughout the

thesis.



Chapter 3

Preliminaries

In this chapter we give an overview of TCP, Tor’s architecture, Tor’s algo-

rithm to divide bandwidth and De-anonymization attacks on Tor.

3.1 Transmission Control Protocol (TCP)

The Transmission Control Protocol [20] is a connection-oriented, end-to-

end protocol which provides reliable communication. It is the transport layer of

the TCP/IP suite and lies between the Application and IP layers. Before any

data is sent between two hosts, a connection needs to be set up end to end. TCP

guarantees that all packets are received in-order, takes care of resending dropped

packets and helps prevent network congestion. It is also responsible for dividing

the available bandwidth fairly between connections using the max-min algorithm.

In the sections that follow we describe TCP’s congestion control algorithms and

its max-min algorithm.

3.1.1 TCP’s slow-start algorithm

We begin by discussing TCP’s slow-start algorithm as detailed in RFC 5681

[19]. In order to prevent network congestion, TCP uses the slow start algorithm

to start with a single segment which is the Maximum Segment Size initialized by

the receiver in the connection establishment phase. It exponentially increases the

10
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number of packets it sends. Slow-start uses a window on the sender side called

the congestion window cwnd. After a TCP connection is established with another

host, cwnd is initialized to a single segment which is sent to the host. Once an

acknowledgment is received from the host, the sender increments cwnd by a single

segment. The next two segments get sent and once the two acks are received,

cwnd becomes four and thus the cwnd exponentially increases. The sender can

transmit up to the minimum of the congestion window and the advertised window

which is the number of bytes the receiver advertises that it is ready to receive.

This flow control is done to prevent socket buffer overflows at the receiver. If flow

control does not kick in and packets are dropped due to discarding of packets at

an intermediate router, this is a hint to the sender that cwnd is too large and

congestion avoidance algorithm takes over.

3.1.2 TCP’s Congestion avoidance algorithm

Congestion avoidance is used along with the slow start algorithm. While

congestion avoidance slows down the rate of packets to avoid congestion, slow start

helps in getting the process started again.

Two variables are used with both these algorithms, congestion window cwnd

as mentioned previously and a slow start threshold size ssthresh initialized to

65535 bytes. When a new connection is created, the slow start algorithm begins

as described above. This continues until size of the receiver’s advertised window

size is reached or till there is packet loss. Let us consider the case of packet loss.

Packet loss is indicated by duplicate ACKs or timeouts. If duplicate acks are seen,

one-half of the current window size is saved in ssthresh. If there is a timeout,

cwnd is set to 1 segment which effectively enables slow start again. When new data

is acknowledged by the other side, we could either be in slow start mode (cwnd is

lesser than ssthresh) or congestion avoidance mode. If we are in slow start mode

then slow start continues till ssthresh is reached after which congestion avoidance

takes over.

If we are in congestion avoidance mode, cwnd is incremented more slowly

by a single segment for each RTT.
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When there is a single circuit that causes congestion on a connection,

congestion-control will slow down the rate at which the circuit is sending cells.

But in Tor, since all circuits that span a pair of nodes go over the same connec-

tion, even if one of the circuits cause congestion, all traffic on that connection

and hence all circuits get slowed down. This is especially unfair to light circuits –

circuits that are not sending much data.

3.1.3 TCP’s max-min fairness

We give an overview of the max-min algorithm TCP uses to divide band-

width between connections. The max-min fairness algorithm ensures that all con-

nections get the same share of a bottleneck. If a connection does not completely

use its share, the excess capacity is shared fairly amongst the remaining connec-

tions. In other words, a source that is not able to use more than one Nth of the

bottleneck’s bandwidth will always be able to send at its maximum rate [23].

In Figure 3.1, we see there are 4 TCP flows – flow x starts at Node 1 and

ends at Node 3, flow w and y start at node 1 and end at 2 and flow z starts at

node 2 and ends at node 3. Let the bandwidth of the links between nodes be 10

mbps. In this example let us assume that if any host could send at a faster rate,

it would. Between nodes 1 and 2, flows w, x and y would get a rate of 3.3 mbps.

Between nodes 2 and 3, flows x and z should get a rate of 5 mbps. But since x

cannot send faster than 3.3 mbps, the extra 1.7 mbps of its share gets allocated to

z. Hence z can send at a maximum rate of 6.7 mbps instead of 5 mbps. This way,

all the bandwidth is allocated fairly and no bandwidth is left unutilized.

3.2 Tor Architecture

Tor stands for “The Onion Router” and is a distributed, low latency, anonymiz-

ing network designed by Dingledine, Mathewson and Syverson in 2004 [12] that

provides privacy to its users. As described by McCoy et al. in [6], it is primarily

used for web browsing, peer to peer traffic like Bittorrent [26], instant messaging,

e–mail, Telnet and FTP.
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Figure 3.1: TCP max-min fairness example. Every pair of nodes has equal
bandwidth links between them. Between Node1 and Node2, flows w, x and y
get one-third of the bandwidth. Between Node2 and Node3, since x can only use
one-third of the bandwidth, z can use up to two-third of the bandwidth.

Tor is able to provide this anonymity by sending data between the source

and destination clients through a series of nodes running Tor software called relays

or Onion Routers (ORs). Anyone can contribute to the system by acting as a relay.

As of today there are more than 2000 relays forwarding Tor traffic.

Every client runs an Onion Proxy (OP) locally to accept TCP requests and

send them through the Tor network. Before traffic can be sent out, a path to

the destination needs to be created through 3 nodes called a circuit. As shown in

Figure 3.2, a circuit has been created that links the Source client to the Destination

client through the entrance, middle and exit nodes. The entrance node is the one

that has a connection to the source client. The exit node has a connection to the

destination client and the middle node sits between the entrance and exit nodes.

Between every pair of nodes, a TLS connection is set up.

The creation of the circuit is done by the Onion Proxy on the client. Only

the client is aware of all nodes along the circuit. It decides which nodes should be

the entrance, middle and exit nodes through information received from directory

servers. Directory servers are a group of trusted, well-known Tor nodes that keep

track of the current network and node state. They maintain a list of active nodes

and the clients can download this list. Once the client has decided on the three

nodes, it sets up a connection with the entrance node and negotiates a secret key.

Negotiation of the secret key between the client and each of the nodes is done



14

Figure 3.2: When a cell comes in on a node in the outwards direction (from the
source to the destination), decryption is done once and passed on to the next node.
The exit decrypts the last layer to obtain the original data. This is then sent to
the destination.

Figure 3.3: When a cell comes in on a node in the inwards direction (from the
destination to the source), encryption is done once and passed on to the next node.
The client receives the cell that has been sequentially encrypted by each of the Tor
nodes. It then uses the secret keys it shares with each of the nodes to decrypt the
cell thrice and obtains the original data

using the Diffie-Hellman algorithm [28]. In order to extend the connection to the

middle node, the Onion Proxy sends an extend message to the entrance node with

the middle router’s address. The entrance router then sets up a connection to the

middle router and the secret key negotiation between the client and the middle

node is done through the entrance. In this way, the middle node is ignorant of

the address of the client. The extension of the circuit to the exit node is done

in a similar manner – the middle node creates a connection to the exit and the

secret key is negotiated through the entrance and middle nodes. At the end of the

creation of the circuit, the client has shared secret keys with each of the nodes.

Data is sent through the Tor network using fixed sized chunks of data of

512 bytes called cells. Each of these cells has a header that contains the circuit



15

id. When a cell arrives at a node, this incoming circuit id is used to look up

the output connection on which it is to be forwarded and it is replaced with the

outgoing circuit id. In this manner, each of these nodes know of the previous node

and the next node but do not have knowledge of any of the other nodes. The three

hop design ensures that a node that is connected to one of the hosts does not even

know of the node connected to the host at the other end.

As seen in Figure 3.2, the cell which is moving in the outwards direction

from the source client to the destination is encrypted thrice by the Onion Proxy

with each of the three secret keys it shares with each node. Every node decrypts

the cell once before passing it on to the next node. The exit node decrypts the

last layer to obtain the original data which it then forwards to the destination

client. The destination has no knowledge that data has travelled through the Tor

network. If a secure protocol like https is not being used, the exit node is in a

position to look at the unencrypted data passing through it. Thus we see that

since each node peels away a layer of encryption, this is called Onion Routing.

As seen in Figure 3.3, when traffic is travelling in the inwards direction

towards the source client, one layer of encryption is added by every node. Since

the Onion Proxy on the client has all the three shared keys, it decrypts the cell

three times to obtain the original data.

Tor uses special control cells for different purposes as described in the Tor

specification [21] like creating or destroying a circuit, flow control, etc. Any cell,

be it control or data contain the following fields – the circuit id of the circuit, a

command field specifying the type of cell, a length field which specifies the length

of the payload and finally the payload itself. The structure of the cell is shown

in Figure 3.4. For instance, to create a new circuit, the Onion Proxy sends a

CREATE cell to the entrance node. The command would be “CREATE” and the

payload would contain the first half of the Diffie-Hellman handshake. The length

and circuit id fields would contain values as specified above.
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Figure 3.4: Structure of a Tor cell

3.3 Tor’s algorithm to divide bandwidth

There are configuration options available to specify the bandwidth Tor is

allowed to use of the node’s bandwidth. Tor divides this user-configured bandwidth

equally amongst all connections and implements a max-min algorithm so that if

any of the connections are not making use of their fair share, the extra bandwidth

can be used by connections that need it.

For different circuits sharing the same connection, a similar max-min scheme

is followed where cells from different circuits are pushed out on the connection using

round-robin scheduling. Thus all circuits that have data to send get equal share

of the connection’s bandwidth and effectively, bandwidth that would have gone to

inactive circuits gets redistributed amongst the active circuits.

3.4 De-anonymization Attacks

Tor’s goal is to provide complete anonymity to internet users. Without an

anonymity network, even if the data is encrypted, an attacker who can monitor

network traffic can keep track of the websites a client is accessing as the source

and destination IP is in the clear. This can lead to de-anonymization of users. By

sending data through a series of three relays that only know about the previous

and next nodes, Tor overcomes these issues and provides anonymity against a non-

omnipotent adversary. But there are still certain attacks that can be performed

that break Tor’s anonymity. We mention two of them here.

The first kind of attack discussed here is the cell-counting attack. If an

adversary has control over all three Tor nodes that a circuit passes through, then
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the client can easily be de-anonymized. The Tor threat model therefore assumes

that the adversary does not have a universal view of all traffic. A slightly more

subtle attack is possible if the adversary controls the entrance and exit nodes that

a circuit passes through. The way Tor works is to send data over TCP in fixed

sized cells of 512 bytes. If data less than the cell size is available, extra bytes are

padded to the cell size and sent over the network. As in other mix networks such

as Mix-Net [15] and Mix-Master [16], Tor does not send dummy cells to fool an

adversary nor does it intentionally add any delays before sending out a cell. Due

to this reason, Tor is vulnerable to packet counting attacks if the adversary has

control over the exit and entrance nodes. Such packet counting attacks have been

discussed by Serjantov et al. in [29]. Since the number of cells leaving the exit

node is equal to the number of cells entering the entrance node, if an adversary

has control over more than one node, he can with very high probability recognize

when a circuit uses both his nodes as an exit and an entrance. Since the exit node

knows the destination and the entrance node knows the source, the anonymity

of the client will be compromised. We did a simple packet-counting experiment

over Experimentor on our local network where different clients download files from

different destinations over Tor. In each of these cases we were able to match

source and destination clients with 100% success. In order to prevent this type of

attack, Tor will need to add delays or dummy cells. But this would add delays to

interactive traffic and since Tor is a low-latency system, it does not protect against

such a global adversary.

Another type of attack as shown by Murdoch and Danezis [17] uses the

property that if high-volume traffic is pumped through a server, latency of all other

traffic going through that server increases. Using a non-global adversary colluding

with a malicious server, the adversary can, with high probability correctly guess

which nodes a circuit passes through. The way this works is that the server sends

data in a certain pattern and the adversary polls Tor nodes to check which nodes’

traffic patterns match that of the server’s. The nodes that match are most probably

the ones used by the circuit. Though anonymity decreases, this kind of attack does

not identify the source client.
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Though there are a couple of attacks possible, Tor makes a trade-off between

performance and latency and is one of the most widely used anonymity networks

today.



Chapter 4

Our Algorithm

In this chapter, we describe the algorithm used to classify a circuit as light

or heavy and the protocol used to move it from a light connection to a heavy

connection or vice-versa. Between every pair of Tor nodes, we maintain two con-

nections, one for light circuits and the other for heavy circuits. We classify a circuit

as light or heavy based on the Exponentially Weighted Moving Average (EWMA)

of the number of cells on the circuit. When the EWMA value crosses a certain

threshold, the circuit is moved to the appropriate connection.

4.1 Classifying a circuit

The classification of a circuit as light or heavy is done by the exit node.

This is because a node can identify when it is running as an exit for a circuit

without any ambiguity and we want only one node to be responsible for switching

a circuit.

For a chosen window of time of two seconds, statistics are collected about

the number of cells sent on a connection as well as the number of cells sent on each

individual circuit. Only circuits using this node as an exit node are considered.

As in Tang and Goldberg [9] we want to maintain a metric for “how many cells a

circuit and the connection have sent recently” and we use the EWMA metric they

chose for this purpose. We now give an overview of EWMA and then a description

of how we classify circuits as light or heavy.
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4.1.1 Exponentially Weighted Moving Average (EWMA)

EWMA is a statistic used to calculate the average value over a number of

periods T while giving more weightage to recent data. This has been established

by Roberts, 1959 [22]. The choice of the multiplier will determine to what extent

changes in recent data affect the average value. The formula used to calculate the

EWMA value at time t is given by:

EWMA(t) = α.Y (t) + (1 − α).EWMA(t− 1)

where EWMA(t) is the EWMA value at time t, Y (t) is the data observation at

time t and α is the multiplier that determines the depth of memory of EWMA, it

lies between 0 and 1.

There is a direct correlation between the number of periods T over which the

moving average is calculated and the multiplier α value. This is given by the

formula:

α =
2

T + 1

When period T = 1, α will also be 1 and hence EWMA(t) will be set to the most

recent value. The higher the multiplier, the larger the influence Y (t) has on the

EWMA value. Hence, in order to smooth out the effects of bursts of data, a lower

multiplier value is chosen.

Initially, the Simple Moving Average (SMA) is calculated over the first T periods.

The Simple Moving Average refers to the average calculated over a certain number

of periods T , where every value has equal weight. From period T + 1, the EWMA

value is calculated by applying the above formula. Consider an example where we

want to find the EWMA for the number of cells a circuit is sending over a number

of time periods. Let the number of periods T = 3.

1. First we calculate the multiplier α = 2
3+1

= 2
4

= 0.5

2. Next we find the Simple moving average at the third period

3. From the 4th period onwards, the EWMA value is calculated using the above

formula
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Figure 4.1: Comparison between, SMA and EWMA with different multipliers.
EWMA with T = 3 is more sensitive to changes in bandwidth compared to SMA
with the same T . EWMA with T = 10 smoothes the bandwidth variations.

Figure 4.1 illustrates the Simple Moving Average and EWMA for different

parameters on a sample function [33]. We show the corresponding EWMA values

with T = 3 or α = 0.5 and T = 10 or α = 0.18. The Simple Moving Average

values are calculated with T = 3. Since the Simple Moving Average gives equal

weightage to all values, we see that it changes much slower with fluctuations in

bandwidth compared to the corresponding EWMA values with T = 3. When T is

10 we see that the changes in bandwidth are smoothed out.

4.1.2 Circuit classification algorithm

We now describe our algorithm which is used to decide whether a circuit

should be classified as light or heavy.

Let the cells that have come in on the connection during a time window be

Nconn and the cells that have come in on the circuit during the same time window

be Ncirc. Let the old and new EWMA values on the connection be EWMAoldconn
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and EWMAnewconn and let the old and new EWMA values on the circuit be

EWMAoldcirc and EWMAnewcirc. When the time window expires, the EWMA on

the connection is calculated as follows:

EWMAnewconn = α.Nconn + (1 − α).EWMAoldconn

Similarly, for every circuit belonging to this connection, the EWMA on the circuit

is calculated as follows:

EWMAnewcirc = α.Ncirc + (1 − α).EWMAoldcirc

If every circuit on the connection were contributing equally towards the number

of cells on the connection, then suppose there are ‘n’ circuits, every EWMAnewcirc

should approximately be 1
n
(EWMAnewconn).

We classify a circuit as heavy when the circuit’s EWMAnewcirc is greater

than 1
n
(EWMAnewconn) and crosses a certain threshold i.e., it is sending that many

more cells than it should be sending. We call this threshold Threshlight.

Similarly, for circuits on the heavy connection, we classify a circuit as light

when its EWMAnewcirc is less than 1
n
(EWMAnewconn) and is lower than a certain

threshold. We call this threshold Threshheavy.

In order to prevent continuous switching of a circuit between a light and

heavy connection, a check is done before switching to make sure the EWMAnewcirc

is not too low for the heavy connection or not too high for the light connection. If

these checks do not pass, the circuit is not switched.

On a light connection, if a circuit is very light, i.e., its EWMAnewcirc is

much lower than than 1
n
(EWMAnewconn), then it is not counted towards the total

number of circuits on that connection. If a circuit is unnecessarily counted as

active even when it is not sending any cells, the other active circuits will appear

heavier than they are and an attempt will be made to move them to the heavy

connection. We call this threshold Threshverylight.

Even when a circuit stops sending, since the EWMA for every circuit is

calculated on a connection when the time window expires, the EWMA of a circuit

will keep dropping, until it is removed from the total circuit count as explained in

the preceding paragraph. In order to expedite this process a higher multiplier β is
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used when a circuit does not send any cells in a time interval,. This is again done to

prevent unnecessarily counting a circuit in the total circuit count. The algorithm

will work the same way for cells going in the inwards and outwards direction.

4.2 Protocol to switch a circuit

Once a decision has been made on the exit node that a circuit needs to be

switched, the protocol for the switch is started. When a circuit is being switched

from a light connection to a heavy connection, a SWITCH cell is first sent out on

the light connection indicating that further cells belonging to this circuit will come

in on the heavy connection. The first cell sent on the heavy connection for this

circuit is a SWITCHED CONN cell followed by the rest of the cells. Once the middle

node has received both these control cells, it starts sending cells to the exit on

the heavy connection after sending a SWITCHED cell on the light connection. This

SWITCHED cell informs the exit that the middle node has completely switched to

the heavy connection and that the exit can also complete the switch. We will

now go through each of the steps in more detail when a circuit is to be switched

from a light connection to a heavy connection. The protocol is demonstrated in

Figures 4.2 and 4.3.

1. A check is done to see whether a connection marked as heavy exists from the

exit router to the middle router. If not, a new connection is created.

2. Once the heavy connection has been set up, the exit sends a SWITCH cell on

the light connection which informs the middle node that no more cells for

this circuit will be coming in on this connection. The payload in the SWITCH

cell contains a flag which the exit node sets, to inform the middle node that

it needs to extend the heavy connection towards the entrance

3. The exit then sends a SWITCHED CONN cell on the the heavy connection fol-

lowed by the circuit’s cells. The reason a SWITCHED CONN cell is required is

because cells on the heavy connection may arrive before all the remaining

cells on the light connection have been processed and this will lead to cells
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being processed out of order and dropping of cells. One thing to note is

that the exit continues to receive cells from the middle node on the light

connection.

4. Once the middle router has received both the control cells, it sends a SWITCHED

cell on the light connection and only then does it start processing the cir-

cuit’s cells from the heavy connection. The cells that have arrived on the

heavy connection on the middle node before the SWITCH cell arrived on the

light connection are saved in a queue and these cells are processed once both

the control cells are processed. Thus the circuit has completely switched

connections on the middle node.

5. When the exit node receives the SWITCHED cell on the light connection, this

is its cue that no more cells for this circuit will be coming from the middle

node on this connection. It completely switches the circuit to the heavy

connection. The cells that have arrived on the heavy connection before the

SWITCHED cell arrived on the light connection are saved in a queue and these

cells are processed once the SWITCHED cell has been processed. Thus cells are

processed in the correct order.

The middle node follows the same procedure to create a heavy connection to the

entrance node and switch the circuit. The middle node does not set the flag in the

SWITCH cell and hence the entrance node does not create any extra connections to

the client. A similar procedure is followed when a circuit is to be switched from a

heavy connection to a light connection.

Thus we see that while doing the switch, at no point is traffic stopped.

Suppose the middle node does not support Torchestra, the SWITCH control cell

received from the exit will be dropped. A flag is set for the circuit on the exit so it

does not attempt to switch again. Thus, a maximum of one extra cell per circuit

will get sent. This is only in 10% of the circuits as these many circuits have been

found to carry bulk traffic.
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Figure 4.2: This depicts the Torchestra protocol when cells are travelling in the
inwards direction from the destination to the source or in this figure, from the exit
node to the middle node. No more cells are sent on the light connection after the
SWITCH cell has been sent. The circuit is then switched to the heavy connection –
a SWITCHED CONN cell is sent on this connection followed by further cells.

Figure 4.3: This depicts the Torchestra protocol when cells are travelling in the
outwards direction from the source to the destination or in this figure, from the
middle node to the exit node. No more cells are sent on the light connection after
SWITCHED cell has been sent. The circuit is then switched to the heavy connection
and further cells are sent on this connection.



26

4.3 Structure of control cells

The header in each of these control cells is no different from the cell header

structure described in 3.2. SWITCHED CONN and SWITCHED cells have no payload.

The SWITCH cell’s payload contains a flag that indicates whether the switch has to

be extended to the previous node in the inwards direction. When the exit sends

the SWITCH cell, this flag is set implying that the middle node needs to create a

new connection to the entrance if one does not exists and then switch the circuit

appropriately. But when the middle node sends the SWITCH cell to the entrance,

the flag is not set ensuring that the entrance does not create a new connection or

switch any circuit on the connection going to the client.

4.4 Tuning different parameters

When deciding on whether a circuit should be classified as light or heavy,

the following parameters can be tuned. We explain what each of these values are:

The multiplier α (0 <= α <= 1)

This value is the multiplier used for the calculation of EWMA for circuits

and connections. If this value is very high, bursts of cells will cause light

circuits to unnecessarily be moved to the heavy connection. On the other

hand, the lower the value, the longer it takes to move a heavy circuit to the

heavy connection. We have chosen a relatively low value since we do not

want to unnecessarily move a light circuit to a heavy connection. Even if a

light circuit does prematurely switch, eventually it will get moved back. But

we want to avoid unnecessary switches because during the period the light

circuit is on the heavy connection, its delays will be high. With this value,

even though a circuit takes longer to be moved to the heavy connection, once

it is moved, there is a higher probability that it is truly a heavy circuit.

The multiplier β (0 <= β <= 1)

This value is the multiplier used for the calculation of EWMA for light circuits

that do not receive any cells in a time interval. The rationale behind choosing
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a different value from α is that, we want to more quickly decrease the EWMA

value of circuits that are no longer sending any cells, so that their EWMA

value drops below Threshverylight which is the threshold for counting a circuit

as active. If a circuit is unnecessarily counted as active even when it is not

sending any cells, the other active circuits will appear heavier than they are

and an attempt will be made to move them to the heavy connection.

Time Window

After a period of time expires, the EWMA values for the connection and all

the circuits on it are calculated. We have selected this to be 2 seconds.

Threshlight(0 < Threshlight <= 100)

When the ratio of a circuit’s EWMA value and the connection’s EWMA

value is Threshlight percent greater than what it should be, the circuit is

moved to the heavy connection. We have set this value to be 70.

Threshheavy(0 < Threshheavy <= 100)

When the ratio of a circuit’s EWMA value and the connection’s EWMA

value is Threshheavy percent lesser than what it should be, the circuit is

moved to the light connection. We have set this value to be 70.

Threshverylight(0 < Threshverylight <= 100)

When the ratio of a circuit’s EWMA value and the connection’s EWMA

value is Threshverylight percent smaller than expected, the circuit is no longer

counted as active. The reason we have this threshold is that if a circuit is

unnecessarily counted as active even when it is not sending any cells, the

other active circuits will appear heavier than they are and an attempt will

be made to move them to the heavy connection. We have set this value to

be 90.

4.5 Performance Considerations

In the following subsections we discuss performance and security concerns

that need to be considered in Torchestra’s design. We explain the reasoning behind
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our design decisions and the trade-offs involved.

4.5.1 Bandwidth sharing for different traffic patterns

Between a pair of nodes, it may so happen that there are only light or

heavy circuits. In this case, no circuits need to be switched and hence no extra

connection will get created. Due to TCP’s and Torchestra’s max-min algorithm,

the bandwidth between a node that has a single connection with a second node

will be half of the bandwidth this node shares with a third node when it has two

connections to it. It may appear that the circuits in the latter case enjoy more

bandwidth compared to the circuit in the former. But even in the case with two

connections, the bandwidth available to any circuit going between the two nodes

is limited to the bandwidth of the connection it is on. Thus we see that the

bandwidth available to circuits does not get affected even when there is only a

single connection between two nodes.

4.5.2 How many light connections should we open?

We get benefits from opening a single connection for light circuits. It is

natural to ask whether we can achieve further benefit from opening even more

light connections to decrease the share of bandwidth for bulk traffic. One might

also ask whether having a single connection reduces bandwidth available for light

circuits. As described by McCoy et al. in [6], the percentage of circuits that carry

web traffic is around 90% and the percentage of circuits that carry Bittorrent traffic

is around 10%. Hence one might expect the greatest improvement for light traffic

to be obtained if the ratio of the number of light connections to the number of

heavy connections is 9:1. This would ensure that light circuits continue to enjoy

bandwidth in proportion to the number of circuits.

The issue is that instead of having only one socket open to each of the

other Tor nodes it is connected to, every node will now have ten connections to

the aforementioned nodes and hence the total number of connections increases

ten times. As explained in Reardon and Goldberg’s paper [7], certain versions
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of Windows have a limit on the number of connections allowed. According to

[30] and Microsoft forums [32], OS versions before Microsoft Vista support up to

3977 outbound concurrent connections for each IP address. On Vista and further

versions, 16384 outbound connections are supported. We measured the number of

Tor connections over five different 15-minute intervals and we found the maximum

number of sockets to be 171. Increasing this by 10 times is almost half of the

maximum number of connections supported on versions before Vista and such a

solution may not be scalable going forward. We did a study to determine what the

ratio of light connections and heavy connections should be so that light circuits do

not suffer, as well as to ensure that minimum number of connections are opened.

Over a period of time according to McCoy et al. [6], light traffic makes

up around 30% of overall data and heavy traffic makes up around 70% of overall

data. When we consider a single connection each for light and heavy circuits, the

bandwidth available to light circuits is reduced by 50%. But previously, on average

since the light circuits were using only 30% of the bandwidth, they should still have

more bandwidth than required.

The one case light circuits may have less bandwidth in Torchestra is when

the number of light circuits exceed the number of heavy circuits. Tor sends out

cells from different circuits on a connection in round–robin order. If there are N

active circuits on a connection, each circuit will get 1
N

th of the bandwidth. When

a connection each is used for light and heavy circuits, the bandwidth available to

each connection is reduced. So suppose there are bursts of time when the number of

light circuits is greater than the number of heavy circuits, in Torchestra this would

mean that number of circuits on the light connection is greater than the number

of circuits on the heavy connection. As explained by Tschorsch and Scheuermann

[2] this would lead to less bandwidth per circuit on the light connection which will

affect interactive traffic.

In order to check for how often there are bursts of time when number of light

circuits is greater than the number of heavy circuits, we carried out the experiment

described in Section 5.2.1. Our results show that this situation occurs less than

10% of the time. Keeping in mind scalability issues and the advantages circuits
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obtain when a separate light connection is used, we have decided to use a single

connection each for light and heavy circuits.

4.5.3 Backward Compatibility

The method we have suggested in this paper will be backwards compatible

with Tor nodes using older versions of the software. When an attempt is made to

switch a circuit to the heavy connection, the exit sends a SWITCH control cell to the

middle node (described in 4.2). If the middle node does not support Torchestra,

the cell will be dropped and the exit will not try to switch the circuit again. As

and when nodes’ software is upgraded to a version that supports Torchestra, this

method will automatically start working. In order to get any benefits, the entrance,

middle and exit nodes should all be running versions that support Torchestra

otherwise the behavior will be same as before. Thus Torchestra is backwards-

compatible but no benefits will be seen unless it is supported on all nodes the

circuit passes through.

4.5.4 Does Torchestra compromise security?

In Torchestra, circuits are divided between light and heavy connections

based on the EWMA of their number of cells. Since the cells are TLS encrypted

before they are sent out on a link, the circuit id is not in the clear and hence an

adversary who is not a Tor node but is merely sniffing the link will not know when

a circuit switches to a different connection, except for when a new connection is

created and a switch happens for the first time. A concern may be that an attacker

who is in control of the entrance and exit nodes of a circuit can de-anonymize it if

a switch occurs on both nodes within a certain interval of time. But if an attacker

has control over both entrance and exit nodes for a circuit, a packet-counting attack

would work just as well and so Torchestra should not worsen the situation.

With Torchestra, when a switch happens the entrance node can come to

certain conclusions regarding the traffic going through the exit node. Since the

threshold is static and the entrance node knows the number of cells on the circuit
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that has switched connections, it can calculate the number of cells on the exit for

the connection the circuit was previously on. Though we are not aware of any

attacks this may cause, we mention this here for completeness.

In general, having fewer connections might reduce the security to that of a

smaller Tor network. This needs to be studied further, but as most of the attacks

this enables are equivalent to packet counting, it poses an interesting tradeoff.



Chapter 5

Experimental Setup and Results

In the following sections we explain our experimental setup, the experiments

we run and our results.

5.1 Experimental Setup

In this section we describe our experiment’s physical setup, our data col-

lection methodology on the public Tor node and our method for replaying traffic.

5.1.1 Physical setup

We evaluate Torchestra using the Experimentor framework by Bauer et al.

[11] which is a Tor emulation toolkit and testbed. Experimentor is built on top of

Modelnet by Yokum et al. [14] and uses commodity hardware to simulate an entire

network. Modelnet emulates distributed systems by allowing virtual nodes to be

setup on one or more physical machines. It allows bandwidth, queuing, propagation

delay and drop rate to be configured on the links between these virtual nodes to

give realistic effects of the network. One machine is designated as the emulator

and traffic between any two virtual nodes is forced to pass through it.

Our Experimentor setup consists of two machines as shown in Figure 5.1.

The first machine is an edge node which runs the routers and clients as different

virtual nodes by running them as separate processes and the second machine is

32
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the emulator – traffic between any two virtual nodes is forced to pass through it.

Once all the virtual routers and clients are configured, Experimentor behaves as if

each router and client is a separate node as shown in Figure 5.2.

In our experiments, the edge node has a 2.8Ghz, Intel(R) Core(TM) pro-

cessor and runs Ubuntu 11.04. The emulator has a 2.5 GHz, Intel(R) Core(TM)

processor and runs Ubuntu 10.04.

Figure 5.1: Experimentor Physical setup. Routers and clients are run as virtual
nodes on the Edge Node and all traffic between these virtual nodes are forced to
pass through the Emulator.

Figure 5.2: Experimentor Virtual setup

Though Experimentor allows simulation of the real network, our setup con-
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sists of 3 relays (which also act as directory servers) and multiple clients. Since we

will be comparing interactive traffic delays with different features switched on, we

have ensured that the setup is identical between runs.

5.1.2 Data Collection Methodology

In order to investigate the performance of our system on the real Tor net-

work, we wanted to test it on more realistic data. To this end, we collected timing

information from a non-exit Tor node and used this to simulate traffic during our

experiments. We ran our machine as a public, non-exit Tor node for more than a

week before we started collecting data in order to ensure that our node had stabi-

lized. We set the bandwidth on the node to be 5mbps. We took steps to ensure

that no traffic is de-anonymized and no non-metadata is collected. We collected

only the circuit id of the cell, the socket number of the connection on which cells

left our node so we know which circuits belonged to a particular connection and

the time at which the cells arrived at our node. Since we have collected logs only

on a non-exit node, all transmitted data was encrypted and thus illegible to us; we

did not examine or log the contents of these encrypted packets. When we replay

traffic, we use timing information in the logs to send dummy data with the same

time patterns and circuit distributions. After we finished plotting our graphs we

have made sure that all logs have been securely deleted.

5.1.3 Method for replaying traffic

In two of our experiments – “Simulating real traffic” and “Simulating web

and ssh traffic from the author’s computer” we simulate traffic patterns by sending

data out at the same time intervals as the collected logs. Here are the steps we

use to perform this simulation:

1. The time intervals that we want to simulate is fed to our java process.

2. A separate thread is created for every circuit id in the logs. Each of these

threads is created with a different IP address and listens on different sockets.
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3. The source clients created through Experimentor connect to each of these

threads’ sockets through Tor.

4. Every thread maintains a table for when a cell needs to be sent. After sending

a cell consisting of dummy data, the thread sleeps for an interval equal to

the current timestamp and the next timestamp in the table.

5. Here a cell consists of 498 bytes of dummy data. Tor adds 14 bytes of header

information and a 512 bytes cell gets sent through the network.

6. Thus, every thread is sending data at time intervals relative to the real Tor

network.

7. We measured the time it takes to switch between threads on our machine

and it took 2.7 microseconds. Thus, the overhead due to switching between

threads is negligible.

8. The time at which a thread sends a cell’s worth of data and the time at which

the source client receives a cell’s worth of data is recorded

9. For every cell, the difference between these two time values is calculated -

this gives the amount of time the cell took to travel through the network.

10. The difference calculated for all the cells is added up to get the overall delay

for all cells and then the average delay per cell is calculated.

11. We compare this average delay across different modes.

5.2 Experiments

In this section we first describe the experiment we carried out to find the

percentage of cases where the number of light circuits is greater than the num-

ber of heavy circuits explained in Section 4.5.2. We then run different types of

experiments to compare interactive traffic delays on Torchestra, Normal Tor and

Prioritized Tor by Tang and Goldberg [9].
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5.2.1 Experiment to measure how many light connections

we should open

Description

As we described in Section 4.5.2, when we use a single connection each for

light and heavy circuits, there is a possibility that bandwidth available to light

circuits is reduced if there are bursts of time when the number of active light

circuits is greater than the number of heavy circuits. In the following experiment,

we measure how often this happens. Our experiment consists of the following

steps:

1. Timing information was collected on the non-exit Tor node as described in

Section 5.1.2.

2. For every connection, circuits that send more than 70% of the total cells are

labeled as heavy while the rest are labeled as light.

3. Overlapping subintervals (bursts) of 50msec, 70msec, 80msec and 100msec

are considered in the 15 minute interval.

4. In each of these sub-intervals, we checked whether the number of light circuits

is greater than the number of heavy circuits when there is at least one heavy

circuit. This is calculated as a percentage of all cases when there is at least

one light cell.

Results

We considered 15 minute windows of time at 12am, 12pm, 6am and 6pm

for different overlapping burst lengths (50msec, 70msec, 80msec,100msec). Traffic

distribution for light and heavy circuits for the interval starting at 12pm is shown

in Figure 5.3. In the 6am interval the percentage of cases where number of light

circuits is greater than the number of heavy circuits is 3%. In the 6pm, 12am

and 12pm intervals, the percentage of cases are 6.9%, 0.79% and 4.68%. Thus the

fraction of cases where bandwidth may be decreased for light circuits was between
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Figure 5.3: Graph depicting the traffic pattern at 12pm.

0.79% to 6.9% in our experiment. As shown in the following sections, even with

this tradeoff the scheme still showed an improvement with only one connection

each.

5.2.2 Simple files download experiment

Description

In this experiment, we simulate traffic by continuously downloading files of

fixed size. All our experiments have been carried out on Experimentor as described

in the previous section. In this experiment, we use 3 routers and 13 clients. Seven

of these clients are heavy clients and each of them continuously downloads a huge

file of 100MB through the course of the experiment which runs for 10 minutes. The

other six clients are light clients each of which downloads a small file of 300KB

with about 50 seconds of gap between each download. We have chosen this ratio

of heavy clients and light clients in order to ensure that traffic from light clients is

less than the traffic from heavy clients.

We compare between three modes – Normal Tor, Prioritized Tor and Torches-

tra. For light clients, in each of the modes, we compare the time it takes to down-

load files as well as the time it takes to download the first byte. We have run each

of the experiments 10 times and have taken the average. Parameters for each of
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the 3 modes are:

• In Normal Tor, we have not made any changes.

• For Prioritized Tor we have used H = 66 as done in [9].

• For Torchestra, we have tuned the following parameters -

– α - 0.18

– β - 0.18

– LIGHT PERCENT UPPER BOUND - 0.4

– HEAVY PERCENT LOWER BOUND – 0.7

– Number of light clients - 6

– Number of heavy clients – 7

– Each light client downloads two 300KB files during the length of the

experiment

• Between every pair of routers, the bandwidth has been rate-limited to 3mbps.

For all other links, bandwidth has been rate-limited to 1 mbps.

Results

A graph of the light and heavy traffic patterns is shown in Figure 5.4 in (a).

From the stacked bar graph in Figure 5.4 in (b) we observe that the average time to

download a kilobyte is lower in Prioritized circuits. But we also see that the time to

download the first byte is lower in Torchestra. This can also be seen in Figure 5.5

which is a plot of the cumulative sum of delays between cells on the source client.

The reason this could be happening is that the initial packets required to start the

download are stuck behind heavy cells and hence delays will be initially high. But

once the download starts, since a light circuit will take up as much bandwidth as

a heavy circuit and since light cells will be given higher priority in Prioritized Tor,

every cell will get sent faster.
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(a) Graph depicting traffic pattern of heavy

and light traffic

(b) Graph depicting time to download first

byte and average download time per KB for

light circuits. Average download time is lowest

for Prioritized Tor but time to download the

first byte is lowest for Torchestra.

Figure 5.4: Simple files download experiment

Figure 5.5: Graph depicting cumulative sum of delays between cells on a
light client in the Simple files download experiment. Initial delay is lowest for
Torchestra.
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Figure 5.6: Graph depicting average delay per cell when deliberate delays are
introduced in the Simple files download experiment. With up to 32 msec of delib-
erate delay, Prioritized Tor does better. For greater deliberate delays, Torchestra
does better.

In order to test this, we carried out an experiment where we deliberately

put varying delays from 4 msec to 128 msec in powers of 2 between sending for

light circuits. We then found the average delay per cell to reach the source client

from the destination. As seen in Figure 5.6, with deliberate delays of up to 32

msec between cells, Prioritized Tor does better but with greater delays, Torchestra

does better.

5.2.3 Simulating web and ssh traffic from the author’s com-

puter

Description

The aim of this experiment is to use the web and ssh traffic patterns we

generated using our own traffic as light traffic and compare the results between

different modes. We performed this experiment in order to use more realistic light

traffic in our experiments. Since http and ssh traffic are known to be interactive

traffic, we wanted to see the kind of delays it would face in the presence of bulk

traffic that we simulate using wget.
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We recorded http and ssh traffic on our laptops using Wireshark which is

a network protocol analyser [27]. We then ran the experiment as described in the

Experimental Setup, Section 5.1 and we replayed the captured Wireshark traffic

for four representative intervals of 10 minutes each. The replayed traffic repre-

sents light traffic and 4 clients continuously downloading 100MB files represents

heavy traffic. We compared the results between Normal Tor, Prioritized Tor and

Torchestra.

Results

In each of the four cases shown in Figures 5.7 and 5.8 we see that the average

delay per cell in Torchestra is the least. Comparing Torchestra with Prioritized

Tor, in each of the samples there is a 32.87%, 8.68%, 28.97%, 25.14% decrease in

average delay respectively. Comparing Torchestra with Normal Tor we see that in

each of the samples there is a 36.36%, 13.17%, 30.48%, 33.9% decrease in average

delay respectively.
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Figure 5.7: Replaying web and ssh traffic collected on the laptop for the first
two samples. The left graphs show the traffic distribution and the right graphs
show the average delay per cell. In each case average delay per cell is the least for
Torchestra.
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Figure 5.8: Replaying web and ssh traffic collected on the laptop for the next
two samples. The left graphs show the traffic distribution and the right graphs
show the average delay per cell. In each case average delay per cell is the least for
Torchestra.
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5.2.4 Simulating real traffic

Description

In both the “Simple files download” and “Simulating web and ssh traffic

from the author’s computer” experiments, some part of the traffic is created artifi-

cially using wget. These traffic patterns may not match those of the real network.

In order to get a true comparison, we collected timing information over a

period of 15 minutes on the real Tor network. We then simulated this traffic in

our test setup by sending dummy data with the same timing patterns using the

steps described in the Experimental Setup, Section 5.1. This way, traffic simulated

will be much closer to traffic on the real Tor network. Time windows of 15 minute

intervals are considered during different parts of the day at 6am, 6pm, 12am and

12pm. From each time interval we chose the connection with the largest number

of cells and circuits to replay.

Parameters for each of the 3 modes are -

• In Normal Tor, we have not made any changes.

• For Prioritized Tor we have used H = 66 as done in [9].

• For Torchestra, we have tuned the following parameters

– α - 0.18

– β - 0.36

– LIGHT PERCENT UPPER BOUND - 0.7

– HEAVY PERCENT LOWER BOUND – 0.7

Results

In each of the experiments run at at 6am, 6pm, 12am and 12pm we show

the traffic patterns for light and heavy traffic as well as the average delay per

cell in Figures 5.9, 5.10, 5.11 and 5.12. We see that Torchestra does better than

Prioritized Tor and Normal Tor in each of the experiments. In the 6am case, there
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(a) Graph depicting the traffic pattern on Tor

network at 6am.

(b) Bar Graph depicting the average delay per

cell in each of the modes at 6am. Average delay

per cell for light circuits is lowest for Torches-

tra.

Figure 5.9: Simulating traffic from 6am

(a) Graph depicting the traffic pattern on Tor

network at 6pm.

(b) Bar Graph depicting the average delay per

cell in each of the modes at 6pm. Average delay

per cell for light circuits is lowest for Torches-

tra.

Figure 5.10: Simulating traffic from 6pm
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(a) Graph depicting the traffic pattern on Tor

network at 12am

(b) Bar Graph depicting the average delay per

cell in each of the modes at 12am. Average

delay per cell for light circuits is lowest for

Torchestra.

Figure 5.11: Simulating traffic from 12am

(a) Graph depicting the traffic pattern on Tor

network at 12pm

(b) Bar Graph depicting the average delay per

cell in each of the modes at 12pm. Average

delay per cell for light circuits is lowest for

Torchestra.

Figure 5.12: Simulating traffic from 12pm
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is an 25% decrease in average delay from the Prioritized case and 40% decrease

from the normal case. In the 6pm, 12am and 12pm cases there is a 7.43%, 2.2%

and 8.41% decrease in average delay from the Prioritized case and 17.9%, 4.83%

and 8.93% decrease from the normal case.



Chapter 6

Future Work and Conclusion

6.1 Future Work

In Section 5.2.1 we showed that in less than 10% of the cases the number

of light circuits is greater than the number of heavy circuits and in these cases

light circuits will have reduced bandwidth. As future work we would like to eval-

uate whether increasing the number of light connections makes any difference to

interactive traffic.

6.2 Conclusion

In this thesis we investigated whether Tor’s performance on interactive traf-

fic could be improved by separating light traffic from heavy traffic. We classified

circuits as light or heavy using the exponentially weighted moving average of the

number of cells on a circuit. In our experiments we measured the average delays

for interactive traffic and used a variety of experiments – simple file downloads,

replaying traffic with the same timing patterns as in the real Tor network and

replaying ssh and http traffic collected on our personal machines. With simple file

downloads we found that the average delay per kilobyte is the least with Prioritized

Tor but the time to download the first byte is the least with Torchestra. When

we simulated traffic patterns using the real Tor network, we found between a 2%

to 25% decrease in the delays with Torchestra compared to Prioritized Tor and a

48
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4% to 40% decrease in delays when compared to Normal Tor. Replaying the http

and ssh traffic collected on our laptops, we found between 8% to 32% reduction in

delays with Torchestra compared to Prioritized Tor and a 13% to 36% reduction

in delays when compared to Normal Tor. Torchestra is backwards compatible with

versions that do not support it but in order for interactive traffic to see reduction

in delays, all three nodes along the circuit should support it.
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