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Serosurveys are a key resource for measuring severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
population exposure. A growing body of evidence suggests that asymptomatic and mild infections (together
making up over 95% of all infections) are associated with lower antibody titers than severe infections. Antibody
levels also peak a few weeks after infection and decay gradually. We developed a statistical approach to produce
estimates of cumulative incidence from raw seroprevalence survey results that account for these sources of
spectrum bias. We incorporate data on antibody responses on multiple assays from a postinfection longitudinal
cohort, along with epidemic time series to account for the timing of a serosurvey relative to how recently individuals
may have been infected. We applied this method to produce estimates of cumulative incidence from 5 large-
scale SARS-CoV-2 serosurveys across different settings and study designs. We identified substantial differences
between raw seroprevalence and cumulative incidence of over 2-fold in the results of some surveys, and we
provide a tool for practitioners to generate cumulative incidence estimates with preset or custom parameter
values. While unprecedented efforts have been launched to generate SARS-CoV-2 seroprevalence estimates
over this past year, interpretation of results from these studies requires properly accounting for both population-
level epidemiologic context and individual-level immune dynamics.

cumulative incidence; SARS-CoV-2; seroepidemiology; seroprevalence; spectrum bias

Abbreviations: CrI, credible interval; PCR, polymerase chain reaction; SARS-CoV-2, severe acute respiratory syndrome
coronavirus 2.

Numerous severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2) seroprevalence surveys (“serosurveys”)
have been conducted to measure population exposure to
this novel pathogen (1, 2). The need to consider basic assay
performance characteristics (i.e., sensitivity and specificity)
to accurately estimate seroprevalence (i.e., the proportion of
the population that has antibodies) has been well-established
(3–5). Accurate estimation of cumulative incidence (i.e., the
proportion of the population that has ever experienced infec-
tion) relies on adequate characterization of assay sensitivity
to detect prior infections in the general population. However,
for most commercially available assays, manufacturer-
reported performance characteristics are usually applicable
only to early convalescent samples from hospitalized pa-

tients; notably, antibody responses in these individuals are
not representative of antibody responses in the general pop-
ulation. Sufficiently accounting for SARS-CoV-2 antibody
responses varying as a function of disease severity (6, 7) and
waning over time (8, 9) is necessary to correctly estimate
cumulative incidence from serosurveys performed using
these assays.

Relying on validation samples that do not represent the
spectrum or distribution of severity and time since infection
in a study population can introduce what is commonly
known as “spectrum bias” into cumulative incidence estima-
tion, whereby assay performance characteristics determined
from the validation samples do not reflect assay perfor-
mance in the study population (10, 11). Various modeling
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Weighted Assay
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Probability of severe or asymptomatic infection by age
Time from symptom onset to reporting of case, hospitalization, and death
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Sensitivity by disease severity
Sensitivity by time since infection

Population of Interest

Recency of infection in that locale
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Figure 1. Schematic of the cumulative-incidence estimation framework for unbiased estimation of cumulative incidence. Each of the 4 boxes
on the perimeter details its contributions to the target output of weighted assay sensitivity (center).

approaches have been proposed to reduce the effects of
spectrum bias stemming from antibody waning over time
and seroreversion on serological platforms (12–16). A key
advance of our approach is the ability to parametrize serore-
version using longitudinal antibody kinetic data generated
from the same assays used in large-scale serosurveys. To
our knowledge, differential antibody responses by disease
severity (and factors associated with severity such as age
(17)) have not yet been incorporated alongside these tem-
poral considerations into a unified framework to accurately
estimate cumulative incidence from serosurveys. Failing to
account for factors that reduce assay sensitivity will typically
underestimate the cumulative incidence of SARS-CoV-2 in
the population (11).

We present a flexible statistical approach to produce
cumulative incidence estimates from seroprevalence data,
considering assay-specific test performance characteristics
by severity and time (Figure 1). To inform parametrization
of the magnitude and kinetics of SARS-CoV-2 immune
responses, we used data from a postinfection cohort study
with some of the commercial serological platforms that have
been most widely used throughout the pandemic (18). We
applied this approach to reanalyze large-scale serosurveys
from 5 locales: Italy, Spain, the United States, Manaus
(Brazil), and Japan. Broadly, incorporating variability
in individual-level immune dynamics into population-
level epidemiologic estimates allows for more accurate
estimation of cumulative incidence, which opens the way
for more accurate characterization of population exposure,
transmission dynamics, and infection-fatality ratios.

METHODS

Estimating time-varying, severity-specific assay
sensitivities

To estimate time-varying, severity-specific assay sensitiv-
ities (i.e., the probability of testing positive in a serosurvey,
given prior infection), we used longitudinal antibody

response data collected from a cohort of participants with
polymerase chain reaction (PCR)-confirmed SARS-CoV-2
through the University of California, San Francisco–based
Long-term Impact of Infection with Novel Coronavirus
(LIINC) natural history study (NCT04357821). Extensive
descriptions of the cohort and laboratory results, including
antibody responses on 14 commercial and research-
use assays, are available elsewhere (18–20). Briefly, we
reanalyzed data published in Peluso et al. (18) to estimate
assay sensitivity as a function of disease severity and time
since symptom onset (Web Table 1, available at https://
doi.org/10.1093/aje/kwad106). As in Peluso et al. (18),
we calibrated the time metric from days since symptom
onset (or days since positive PCR test, for asymptomatic
individuals) to days since expected seroconversion by
adding 21 days to the former (21). For parsimony, we
equated having had severe disease with having required
hospitalization (17, 22).

Building off of the approach in Peluso et al. (18), indi-
viduals were partitioned into 2 severity groups depending
on whether they were hospitalized for their SARS-CoV-
2 infection. We modeled log-transformed signal-to-cutoff
(S/C) or cutoff-index (COI) values using Bayesian linear
mixed-effects models (Figure 2; see Web Appendix 1) (23).
We estimated sensitivity by severity group and assay contin-
uously for up to 1 year following expected seroconversion
(Web Table 2). In sensitivity analyses, we further partitioned
nonhospitalized individuals into separate severity groups by
asymptomatic and symptomatic. We also extended these
methods to estimate bivariate test performance characteris-
tics from data where every sample was tested on two assays
for which results may be correlated (see Web Appendix 2).

SARS-CoV-2 serosurveys included for application of
adjustment framework

The published large-scale serosurveys reanalyzed here
were conducted in 5 locales (24–31). As outlined in Table 1,
multiple differences exist between these serosurveys in
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Figure 2. Longitudinal severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibody kinetics and estimated assay sensitivities
according to time and hospitalization status. Days since symptom onset (offset by 21 days) is shown on the x-axis versus the log-transformed
antibody response for each of the Abbott (Abbott Park, Illinois) ARCHITECT (A), Roche (Indianapolis, Indiana) Elecsys (B), and Ortho
(Raritan, New Jersey) VITROS IgG (C) assays, stratified by hospitalization status (empty circle indicates nonhospitalized; filled circle indicates
hospitalized). For asymptomatic individuals, the time since the first positive PCR test (offset by 21 days) was used. This time metric is referred
to as “time since seroconversion” hereafter. Longitudinal samples are connected by thin lines. The dashed horizontal line indicates the cutoff
value for positivity on that assay. The dashed vertical line indicates the maximum observed time (x = 136 days). The key is shared across panels
A–C. Estimated sensitivity for each of the Abbott ARCHITECT (D), Roche Elecsys (E), and Ortho VITROS IgG (F) assays (showing posterior
median estimates and 95% credible intervals), stratified by hospitalization status (light gray with dotted line indicates nonhospitalized; dark gray
with solid line indicates hospitalized), from 0 to 365 days after seroconversion. The key is shared across panels D–F. S/C, signal-to-cutoff value.

terms of study design, timing, spatial scale, and testing
strategies. We included large-scale serosurveys performed
using assays with demonstrable heterogeneities in antibody
responses, as they would be most affected by issues of
spectrum bias (11).

Reconstructing time series of symptom-onset dates in
the locations of selected serosurveys

As assay sensitivity is estimated as a function of time
since symptom onset; the distribution of potential times
since symptom onset in each study population must be
known or estimated, relative to the timing of the serosurvey.

Various data sources can be used as a proxy for population
exposure, including time series counts of symptom onsets,
positive tests, hospitalizations, and deaths (32). We obtained
publicly available time series for each serosurvey locale
(Table 2) and used symptom onsets as the time metric for
both assay sensitivity and epidemic time series. Where only
reporting dates—but not date of symptom onset—was avail-
able (i.e., United States, Manaus, and Japan), we applied
a back-calculation procedure to reconstruct time series of
daily symptom onsets using the EpiNow2 software package
(33) and parameter estimates for the relevant time delay
distributions (34–36) (see Web Appendix 3; Web Table 3).
Back-calculation was not necessary for the Italy and Spain
time series, as they directly report case counts by date of

Am J Epidemiol. 2023;192(9):1562–1575
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Table 2. SARS-CoV-2 Epidemic Time Series Data Sets Included From Italy, Spain, United States, Manaus (Brazil), and Japan, 2020–2021

Population
Data Type

(Frequency)

Time Delay
Distribution(s)

Needed to Obtain
Symptom Onset

Time Series

Date of First
Available Data

Point

Spatial
Resolution

Reference

Italy Reported symptom
onsets (daily)a

N/A January 28, 2020 Region Istituto Superiore di Sanità,
EpiCentro (54, 55)

Spain Reported symptom
onsets (daily)

N/A January 1, 2020 Province Gobierno de España, Centro
Nacional de Epidemiología
(56)

United States Reported cases and
deaths (daily)

Case/death report to
symptom onset

January 21, 2020 State New York Times (57)

Manaus, Brazil Reported
hospitalizations
(daily)

Hospitalization
report to symptom
onset

March 16, 2020 Single city Fundação de Vigilância em
Saúde do
Amazonas—FVS/AM (58,
59)

Japan Reported cases and
deaths (daily)

Case/death report to
symptom onset

January 16, 2020 Prefecture National-level data sets from
the Ministry of Health,
Labour, and Welfare (60,
61) Prefectural and
prefectural-level data sets
from prefectural ministries
of health (62–66)

Abbreviations: N/A, not available; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2.
a Region-level data are of positive tests and are available from February 24, 2020, onward.

symptom onset. We also shifted the (reconstructed) time
series of symptom onsets forward by 21 days to account for
the time between symptom onset and seroconversion.

Subnational time series in Italy, Spain, and Japan were
generally congruent to national time series during waves of
infection included here, so we used a single national-level
time series to represent recency of infection for these sero-
surveys (Web Figures 1–3). Assay-specific seroprevalence
data in the United States were available only at the census-
division level, so we aggregated state-level time series to the
census division using weights derived from the number of
samples tested by state and by survey round (Web Figure 4).
As available, we compared results of symptom onset recon-
struction from multiple sources of data (Web Figures 5–6).

Joint framework for obtaining estimates of cumulative
incidence from seroprevalence data

For each serosurvey, we first calculated a single time-
varying assay sensitivity, obtained as the average of the
severity-specific, time-varying sensitivities, weighted by the
expected distribution of disease severities among the sero-
survey population. We considered the age distribution of par-
ticipants in the serosurvey and combined this with published
estimates on age-specific weights for the expected propor-
tions of asymptomatic, nonhospitalized, and hospitalized
infections (Web Tables 4–8, Web Figure 7, Web Appendix
4). Although a degree of variation in population age struc-
ture exists across the included serosurveys, the resulting

distribution of severities was, on average, 5% hospitalized
(severe), 45% symptomatic and not hospitalized, and 50%
asymptomatic.

To obtain an estimate of the expected sensitivity of the
assay at the time of a serosurvey, we calculated the dot prod-
uct of the severity-weighted time-varying assay sensitivity
and the difference between the reconstructed time series
of symptom onsets and the date of the serosurvey. Using
the posterior distribution of this single weighted sensitivity
that accounts for both severity and time, along with the
manufacturer-reported point estimates of specificity for each
assay (Web Table 2), we obtained estimates of cumula-
tive incidence and 95% credible intervals using the Rogan-
Gladen estimator (3) or a binomial model (4); a multinomial
model (37, 38) was used for the 2-assay scenario (see Web
Appendix 5–6). We used the R statistical software (version
3.5.3; R Foundation for Statistical Computing, Vienna, Aus-
tria), EpiNow2 R package (version 1.2.1) (33), and the Stan
programming language (versions 2.19.3 and 2.21.2; Stan
Development Team, https://mc-stan.org) for all analyses.

RESULTS

Kinetics of antibody responses and time-varying,
severity-specific assay sensitivity

Across each of the 3 assays included here (ARCHITECT,
Abbott Core Laboratory, Abbott Park, Illinois; Elecsys,
Roche Diagnostics, Indianapolis, Indiana; and VITROS
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IgG, Ortho Clinical Diagnostics, Raritan, New Jersey),
average antibody responses in hospitalized individuals
were consistently higher than those in nonhospitalized
individuals, and thus sensitivity estimates were higher in
this group (Figure 2). Antibody responses in nonhospi-
talized individuals were strikingly heterogeneous: Some
individuals had high responses on par with hospitalized
individuals, while others had distinctly lower responses.
Antibody responses and estimated sensitivities on the
Abbott ARCHITECT assay and, to a lesser extent, the
Ortho VITROS IgG assay decayed over time, while they
remained stable on the Roche Elecsys assay. Additional
time points tested suggest that these trends persisted over
subsequent months (Web Figure 8). Although limited by
a small sample size in our study, assay sensitivity for
asymptomatic individuals may be substantially lower than
that for nonhospitalized, symptomatic individuals (Web
Figure 9). We identified similar antibody waning rates on the
Abbott ARCHITECT assay in longitudinal samples from the
blood-donor population in Manaus used for SARS-CoV-2
serosurveillance (Web Figure 10).

Since the serosurveys in Japan performed parallel testing
on the Abbott ARCHITECT and Roche Elecsys assays, we
jointly modeled the probability of testing positive on both
assays, given prior infection. We found that this was highest
in the earliest times since infection; the probability of testing
negative on Abbott and positive on Roche increased over
time, consistent with relatively rapid declines in sensitivity
over time on the Abbott assay and consistently high sensi-
tivity of the Roche assay (Web Figure 11). Parameter values
for all fitted antibody kinetics models are provided in Web
Tables 9–11.

Overall impacts of serosurvey timing and demography
on expected assay sensitivity

Timings of serosurveys relative to the local epidemic
curve varied. In some settings, serosurveys were conducted
a few months after the first peak, while others were during
or after periods of ongoing transmission. Figure 3 shows
reconstructed daily numbers of symptom onsets relative
to the timing of each serosurvey locale. These are based
on the reported time series identified in Table 2 and delay
distributions identified in Web Table 3.

Estimates of expected assay sensitivity that account for
local epidemic recency, antibody waning, and disease sever-
ity differed considerably from manufacturer-reported sen-
sitivity values (Table 3). Expected sensitivity was lower
when surveys were performed in locations where infections
occurred longer ago, particularly for serosurveys using the
Abbott assay. The serosurvey in Italy, the serosurvey rounds
in Spain, and the June 2020 round of the serosurvey in
Manaus were all conducted at similarly recent times relative
to their local epidemics, resulting in similar expected sensi-
tivities of around 70% based on the 2-severity-group model.
In contrast, serosurveys conducted longer ago relative to
their local epidemic had lower expected sensitivities (e.g.,
the estimate was as low as 45% for the December 2020 round
of the serosurvey in Manaus). Expected sensitivity was also
strongly influenced by our choice of model, and in particular

whether asymptomatic individuals were included with other
nonhospitalized individuals or classified in a separate group
(Web Figure 12).

Cumulative incidence estimates and degree of potential
spectrum bias by survey

Italy. The raw national seroprevalence result of this
population-based serosurvey, conducted between May 25
and July 15, 2020, was 2.5% using the Abbott ARCHITECT
assay. Based on our 2-severity-group model, we estimated
cumulative incidence to be 3.0% (95% credible interval
(CrI): 2.7%, 3.4%). Based on our 3-severity-group model,
cumulative incidence increased to 3.7% (95% CrI: 3.0%,
4.7%). As identified in the original serosurvey report, north-
ern regions of the country were particularly affected during
the first wave of infection (Web Figure 13A). As we set
the weighted assay sensitivities to be equal across regions,
the ratio of cumulative incidence to raw seroprevalence
scaled with raw seroprevalence: In the Lombardy region
(orange on Web Figure 13A), which had the highest raw
seroprevalence at 7.5% in this survey, cumulative incidence
was estimated to be 1.35-fold greater (95% CrI: 1.20, 1.55)
than reported (Figure 4A; Web Figure 14). Ratios below 1
represent regions with extremely low raw seroprevalence,
accounting for expected test performance (i.e., false positive
results due to imperfect specificity).

Spain. The raw national seroprevalence results for this
population-based serosurvey, conducted in 2 rounds, were
5.0% (round 1: April 27 through May 11, 2020) and 5.2%
(round 2: May 18 through June 1, 2020), using a rapid sero-
logical test, and 4.6% (round 1) and 4.5% (round 2) using
the Abbott ARCHITECT assay. Point estimates of cumu-
lative incidence were generally consistent within provinces
between rounds (Web Figure 13B; Web Figure 15), which
may be explained by their close temporal spacing (early
May and late May 2020). Based on our 2-severity-group
model with the Abbott ARCHITECT data, we estimated
cumulative incidence to be 5.8% (95% CrI: 5.2%, 6.5%)
in round 1 and 5.7% (95% CrI: 5.2%, 6.5%) in round 2.
The ratio of cumulative incidence to raw seroprevalence
within a province and serosurvey was similar to in Italy,
reaching a high of 1.35-fold increase (95% CrI: 1.21, 1.54)
over the reported value in the Cuenca province (dark orange
on Web Figure 13B) (Figure 4B–C). For additional context,
the cumulative incidence estimates in round 2 here, using
the 3-severity-group model, were as high as the raw sero-
prevalence measured (using a rapid test) during round 4 of
the survey (7.1%), which was conducted from November 16
to 29, 2020 (39).

United States. The first 4 rounds of the US Centers for
Disease Control and Prevention Nationwide Commercial
Laboratory Seroprevalence Survey were conducted between
July and September 2020, and tests were performed on
multiple serological assay platforms at the census-division
level (Web Figures 16–19) (28, 40). Point estimates of
cumulative incidence at the census-division level from round
1 and round 4 using our 2-severity-group model are provided
in Web Figure 13C, and estimates from the other rounds
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Figure 3. Reported epidemic time series from serosurvey locales, reconstructed symptom onsets, and serosurvey timing. Serosurvey dates
are shown by the light gray bar (range) and black × symbol (midpoint) on the bottom of each panel. For reconstructed symptom onset curves,
reported data are shown as the thin curve, and posterior median estimates and 95% credible intervals are shown in the thick curve and shaded
regions. A) Reported daily symptom onsets in Italy, January to July 2020. B) Reported daily symptom onsets in Spain, January to June 2020. Daily
symptom onsets by census division in the United States, reconstructed from death reports, February to September 2020, according to census
division: C) East North Central, D) East South Central, E) Middle Atlantic, F) Mountain, G) New England, H) Pacific, I) South Atlantic and Puerto
Rico, J) West North Central, and K) West South Central. L) Daily symptom onsets in Manaus, Brazil, reconstructed from hospitalization reports,
March 2020 to January 2021. M) Daily symptom onsets in Japan, reconstructed from death reports, January to December 2020. Reconstructed
symptom onsets from death reports precede deaths by approximately 3 weeks, while reconstructed symptom onsets from hospitalization reports
precede hospitalizations by approximately 10 days.
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Figure 4 Continues

are available in Web Figure 20. Compared with the raw
seroprevalence results, cumulative incidence estimates were
up to 2-fold greater (Figure 4D–L; Web Figures 21–22).
Aggregation of data from multiple serological assay plat-
forms complicates interpretation of the raw seroprevalence
results. For instance, in the Mountain census division, which
comprises 8 states, all 3 assays were used; without further
information, it is not possible to know which states used
which combinations of the 3 assays. On the other hand,
all of the data from the Middle Atlantic states (New York,
New Jersey, and Pennsylvania) were from the Roche Elecsys
assay (which exhibited the most stable antibody responses
over time of the 3 assays), and thus the biases in cumulative

incidence estimation in this census division are the lowest in
the United States.

To further explore the relative effects of time and assay
choice on weighted sensitivity, we simulated serosurveys
at various times at the census-division level using different
proportions of tests conducted on the Abbott ARCHITECT
assay (i.e., decreasing responses over time), assuming that
the rest of the tests were done on the Roche Elecsys assay
(i.e., stable responses over time) (Web Figure 23). In general,
we found that a greater proportion of tests performed on the
Abbott assay led to a lower weighted sensitivity. However,
even if a serosurvey was performed exclusively with the
same assay, and serosurveys were conducted at the same
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Figure 4. Relative bias in cumulative incidence estimation. For each panel, the raw seroprevalence result (praw) is shown on the x-axis and the
ratio of the estimated cumulative incidence (CI) to raw seroprevalence is shown on the y-axis (median and 95% credible interval; plotted using
a log2 scale). The ratio equaling 1 (i.e., no bias) is shown in the dashed horizontal line. All panels are generated under the primary scenario of
classifying disease severity into 2 groups, nonhospitalized and hospitalized. A) Italy, where each point represents a region. Spain, where each
point represents a province: B) round 1; C) round 2. The 9 census divisions of the United States, where the shape of the point represents the
survey round (legend provided in panel D): D) East North Central, E) East South Central, F) Middle Atlantic, G) Mountain, H) New England,
I) Pacific, J) South Atlantic and Puerto Rico, K) West North Central, and L) West South Central. M) Manaus, Brazil, where each point represents a
month. For the United States and Manaus, Brazil, the cumulative incidence estimates are weighted by population demography and age-specific
disease severity. N) Japan, where each point represents a prefecture. The scenario considered here is the case of using the results of the 2
assays.

time in all census divisions, expected assay sensitivity in the
general population will differ considerably between census
divisions due to the differential timings of the epidemic
in the population. For example, a serosurvey conducted
in February 2021 in the Middle Atlantic census division
using exclusively the Abbott assay would have an expected
sensitivity of 32%, while a serosurvey in the West North
Central census division at the same time using the same
assay would have an expected sensitivity of 59%.

Manaus, Brazil. Seroprevalence in Manaus, Brazil, has
been measured monthly since April 2020 in cross-sectional
samples from blood donors using the Abbott ARCHITECT
assay. Manaus experienced a particularly large first wave
of the SARS-CoV-2 pandemic in Spring 2020, followed by
a relative trough period (Figure 3L). Both raw seropreva-
lence and cumulative incidence peaked in June 2020 (raw

seroprevalence of 47.5% and cumulative incidence of 61.9%
(95% CrI: 56.5%, 67.5%) using the 2-severity-group model)
and then declined thereafter (Web Figure 24A). Temporal
changes in the ratio of cumulative incidence to raw sero-
prevalence echo the epidemic dynamics in Manaus, where
the degree of bias increased over time from 1.28-fold (95%
CrI: 1.16, 1.42) in May 2020 to 2.50-fold (95% CrI: 2.15,
2.88) in January 2021 (Figure 4M; Web Figure 25).

Japan. In the convenience sampling–based serosurveys in
5 prefectures in Japan conducted in December 2020, each
sample was tested on both the Abbott ARCHITECT and
the Roche Elecsys platforms (31). The raw seroprevalence
values varied considerably between the univariate (single
assay) and bivariate interpretations (in the latter, a sample
had to be positive on both assays to be deemed a positive).
We found cumulative incidence estimates to be generally
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comparable between the univariate and bivariate models,
but using either only Roche Elecsys or both assays led
to lower uncertainty than using the Abbott ARCHITECT
assay alone (Web Figure 24B). Based on our bivariate model
with 2 severity groups, the ratio of cumulative incidence
to raw seroprevalence ranged from 1.50-fold (95% CrI:
0.90, 2.25) in Osaka prefecture to 2.23-fold (95% CrI: 1.04,
3.94) in Fukuoka prefecture (Figure 4N; Web Figure 26).
Importantly, having all samples in this serosurvey tested on
2 assays, along with validation samples also being tested
on both assays, provided the opportunity to estimate the
correlation between assays (37) and to incorporate this into
estimation of cumulative incidence.

DISCUSSION

Differences in antibody responses as a function of dis-
ease severity and time since infection complicate inference
from population-level serological data because they can
substantially affect expected assay sensitivity. In the sero-
surveys evaluated here, we found that estimated cumulative
incidence was up to 2.5-fold greater than measured raw
seroprevalence. Leveraging data on the kinetics of antibody
responses measured by 3 of the most widely used serological
assays, we present a unified methodological framework to
estimate SARS-CoV-2 cumulative incidence that accounts
for these factors, and we provide a toolkit for practitioners
to generate cumulative incidence estimates with either preset
or custom parameter values.

We found that the degree of bias depended on the assay
used, the timing of the serosurvey relative to the course
of the epidemic locally, and the age distribution of the
population and age-dependent probability of severe disease.
The serosurvey in Italy and the 2 serosurvey rounds in
Spain were conducted relatively early with respect to the
local epidemic, resulting in expected sensitivities of around
70%. In the United States, the serosurveys included occurred
during the first and second waves of the pandemic and used
different assays in different census divisions, affecting the
magnitude of the bias in estimated cumulative incidence. In
the Middle Atlantic census division, the magnitude of the
bias was attenuated due to the exclusive use of the Roche
assay; in the New England census division, which used the
Abbott assay exclusively, the magnitude of the bias was
greater. In Japan, the serosurvey was conducted almost a
year after the first case of COVID-19 was reported (41).
While the absolute magnitudes of both raw seroprevalence
and cumulative incidence were low (under 2%), expected
sensitivity on the Abbott assay for this serosurvey was as
low as 54%.

In Manaus, the magnitude of the bias increased con-
tinuously from 1.28-fold in May 2020 to 2.50-fold in
January 2021, revealing the footprint of the first wave of the
pandemic in early 2020. These results corroborate findings
that cumulative incidence was likely already high prior to
the subsequent resurgence of SARS-CoV-2 infection in
late 2020 (16, 30). The decrease in cumulative incidence
estimates after June 2020 suggest that these adjustments
for severity and time may be insufficient, as cumulative

incidence is monotonically increasing by definition. This
discrepancy could be attributable to issues of sampling,
age-patterns not adequately captured in this framework,
or higher waning rates. The framework developed here
provides an alternative to a previously developed approach
(16). Our framework does not impose assumptions on
cumulative incidence estimates monotonically increasing at
each month, but rather assumes that reported case counts (in
this instance, hospitalizations) are an accurate reflection of
temporal trends in transmission. Our framework implicitly
assumes temporal homogeneity in the case-fatality ratio,
case-hospitalization ratio, and the case-reporting ratio.
Known deviations from this assumption through estimation
of time-varying metrics could be incorporated to improve
the accuracy of estimates (e.g., potential decreases in the
case-fatality ratio over time (42)).

This approach is broadly applicable beyond the assays and
serosurveys included. We previously presented cohort data
to estimate time-varying sensitivity of 11 additional assays
(18), and numerous studies have also studied longitudinal
antibody responses on an array of platforms (43–45). A key
methodological development here is in providing a frame-
work to use these data to adjust for time since infection,
as informed by the local epidemic in a population of inter-
est, allowing comparisons within and between locales. This
framework incorporates setting-specific scenarios, including
the availability of different types of reported epidemio-
logic data, population representativeness of the serosurvey
and necessary adjustments for weights, spatial scale, study
design, and testing strategy.

Two assays included here, the Abbott ARCHITECT and
Ortho VITROS IgG, have considerable waning over the first
5 months following infection. Persistence of these trends
will lead to further decreases in assay sensitivity. Over time,
antibody waning will be increasingly important to account
for in estimating cumulative incidence from seroprevalence
data, as more individuals will have been infected longer ago
and with greater variability. These considerations will be
important for interpreting subsequent rounds of serosurveys
included here (e.g., Spain (39) and the United States (40))
and others not included (e.g., India (46)). These considera-
tions underscore the need for continued longitudinal follow-
up of individuals with confirmed SARS-CoV-2 infection
(and various strains), as antibody kinetics often follow more
complex dynamics of boosting and waning over time beyond
linear changes (47). Assays demonstrating more waning
may be better suited for other use-cases such as identifying
recent infections. An additional consideration for designing
a serosurvey in places where mRNA vaccines are used is
using assays measuring antibodies to nonspike proteins,
which will play a role in distinguishing immune responses
to infection versus vaccine-elicited immune responses to the
spike protein alone.

There are a number of caveats associated with this analy-
sis. The accuracy of this approach hinges on the accuracy
of symptom onset curves reconstructed from the selected
reported time series. This limitation is not unique to esti-
mation of cumulative incidence; downstream metrics such
as the time-varying reproduction number similarly rely on
the robustness of these data streams over time (33, 48).
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Estimation will also be sensitive to the data type chosen;
for example, hospitalizations and deaths are generally more
robust to temporal trends in under-ascertainment than cases,
but this may be context-specific.

A key consideration is the small sample size for asymp-
tomatically infected individuals, who potentially comprise a
majority of all SARS-CoV-2 infections (49, 50). While the
distinction between asymptomatic versus minimally symp-
tomatic may be difficult to define, it is imperative to better
understand the magnitude and kinetics of antibody responses
in this group of individuals to better understand the extent
of bias in cumulative incidence estimates. The decision to
model asymptomatic individuals as their own severity group
or aggregated with the other nonhospitalized individuals
has a major effect on overall cumulative incidence. Our
framework accounts for differences in assay sensitivity by
disease severity and time but does not explicitly incorporate
other potentially important sources of variation, such as age
and sex, which could have additional effects on antibody
responses (17, 51, 52). Last, our focus has been on sensi-
tivity, and we do not allow for specificity to vary over time.

This work provides a broadly applicable framework incor-
porating individual-level immune dynamics into epidemi-
ologic models to produce unbiased cumulative incidence
estimates for a number of serosurvey-specific scenarios. The
methodology has been made publicly available for broad
public use. More accurate seroprevalence estimates will
allow for better understanding of the proportion that has been
exposed to date, and for various applications including inte-
gration into downstream mechanistic transmission models.
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