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ABSTRACT OF THE DISSERTATION

Functional Data Analysis Tools for the

Analysis of High-Dimensional Brain Imaging Data

by

Joanna Marie Boland

Doctor of Philosophy in Biostatistics

University of California, Los Angeles, 2022

Professor Damla Şentürk, Chair

This dissertation develops methodology and presents applications of functional data analysis

tools used in high-dimensional functional data settings. In particular, the tools detailed

were intended for use when analyzing electroencephalography (EEG) measurements, which

records spontaneous electrical activity in the brain at electrodes placed across the scalp,

resulting in rich multidimensional functional data. EEG data is typically analyzed in either

the time and/or frequency domains depending on the application: resting-state experiments

are typically analyzed in the frequency domain, and task-related experiments are typically

analyzed in the time domain. In the first chapter, we develop an algorithm for analyzing

EEG data jointly in both the time and frequency and results in a method for analyzing high-

dimensional EEG data that adds an additional level of specificity to our data application

than is available in single-domain analysis alone. The second chapter of this dissertation

showcases a Bayesian functional principal component analysis (BFPCA) model applied to a

resting-state EEG experiment analyzed in the frequency domain. We develop a fully data-

driven tool that relies on functional depth, a method to order a set of functional observations
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from the center outwards, to flexibly visualize uncertainty in the estimated posterior samples.

The final chapter extends this visualization tool from use in BFPCA to Bayesian longitudinal

FPCA (B-LFPCA) for analysis of longitudinal functional data, which is conceptualized as

functional datum measured repeatedly over a set of longitudinal time points. We apply our

flexible depth-based visualization tool in the higher-dimensional setting to an event-related

EEG experiment analyzed in the time domain.
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CHAPTER 1

A study of longitudinal trends in time-frequency

transformations of EEG data during a learning

experiment

Abstract

EEG experiments yield high-dimensional event-related potential (ERP) data in response to

repeatedly presented stimuli throughout the experiment. Changes in the high-dimensional

ERP signal throughout the duration of an experiment (longitudinally) is the main quantity

of interest in learning paradigms, where they represent the learning dynamics. Typical analy-

sis, which can be performed in the time or the frequency domain, average the ERP waveform

across all trials, leading to the loss of the potentially valuable longitudinal information in

the data. Longitudinal time-frequency transformation of ERP (LTFT-ERP) is proposed to

retain information from both the time and frequency domains, offering distinct but com-

plementary information on the underlying cognitive processes evoked, while still retaining

the longitudinal dynamics in the ERP waveforms. LTFT-ERP begins by time-frequency

transformations of the ERP data, collected across subjects, electrodes, conditions and trials

throughout the duration of the experiment, followed by a data driven multidimensional prin-

cipal components analysis (PCA) approach for dimension reduction. Following projection of

the data onto leading directions of variation in the time and frequency domains, longitudinal

learning dynamics are modeled within a mixed effects modeling framework. Applications to

a learning paradigm in autism depict distinct learning patterns throughout the experiment
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among children diagnosed with Autism Spectrum Disorder and their typically developing

peers. LTFT-ERP time-frequency joint transformations are shown to bring an additional

level of specificity to interpretations of the longitudinal learning patterns related to under-

lying cognitive processes, which is lacking in single domain analysis (in the time or the

frequency domain only). Simulation studies show the efficacy of the proposed methodology.
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1.1 Introduction

Autism spectrum disorder (ASD) is a heterogeneous neurodevelopmental disorder charac-

terized by social interaction and communication impairments. Our motivating study was

conducted at UCLA by our collaborator Dr. Shafali Jeste on implicit learning of children

with ASD and their typically developing (TD) peers (Jeste et al. (2015)). Implicit learning

is defined by the detection of irregularities in one’s environment without a conscious aware-

ness or intention to learn. Children two to five years old were shown a continuous stream

of colored geometrical shapes on a computer screen (see Figure 1.1(a)). The shapes were

presented in pairs and the children were expected to learn the order within the shape pairs

as the experiment progressed. This constituted implicit learning, providing insights into core

cognitive deficits and social behavior of the children in the two diagnostic groups (ASD vs.

TD). As learning was expected to take place over the course of the experiment, in response

to the repeated presentation of stimuli (colored geometrical shapes), referred to as trials,

capturing longitudinal changes in electroencephalography (EEG) signals over trials was one

of the main goals of the experiment.

EEG is a non-invasive and widely-available (low cost) brain imaging modality which

records electrical activity in the brain. An event-related potential (ERP) is defined as the

EEG waveform measured in response to presentation of each stimulus (e.g. a colored geo-

metrical shape) in an EEG experiment. Analysis of EEG and ERP data date back to 1950’s

in a wide spectrum of biomedical applications including epilepsy, sleep disorders, multiple

sclerosis, brain tumors, lesions, major affective disorder, schizophrenia, alcoholism, bipolar

mood disorder, assessment of surgical outcomes, confirmation of brain death, and clinical

trials for drug development (Gasser and Molinari (1996); Tierney et al. (2012)). Typical

analysis of ERP data averages the ERP signal over all the trials of the experiment, enhanc-

ing the signal-to-noise ratio (SNR) (Gasser and Molinari (1996); Delorme and Makeig (2004);

Tierney et al. (2012)). While this common technique is effective in increasing the SNR of the
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(a)

(b)

(c)

Frontal Scalp Section

Posterior Scalp 
Section

unexpected

expected

unexpected

expected

unexpected

expected

Figure 1.1: (a) Visualization of the implicit learning paradigm. The continuous stream of
six-colored shapes are organized into three familiar pairs. The “expected” condition is de-
fined as the transition between shapes within a shape pair, and the “unexpected” condition
is defined as the transition between shape pairs. (b) The 24 electrodes of interest analyzed
in the implicit learning paradigm in six total scalp regions (each containing four electrodes)
within two scalp sections (frontal and posterior). (c) A depiction of the ERP phasic compo-
nents P3 and N1 in the implicit learning paradigm.
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ERP data, it collapses information gained during the course of the experiment. This longitu-

dinal information is important, especially in learning experiments, where it characterizes the

learning trends across the study participants, including speed of learning. Previous works

have been proposed to study the longitudinal changes over the course of a learning experi-

ment. Hasenstab et al. (2015) proposed the moving average preprocessed ERP (MAP-ERP)

which averages ERPs over trials in a sliding-window to retain the inherent longitudinal infor-

mation. Fiecas and Ombao (2016) proposed to study the longitudinal evolution of learning

via the use of time-varying spectral densities in the frequency domain. Additional frequency

domain approaches include Motta and Ombao (2012) using evolutionary factor analysis to

study the multi-channel EEG dynamics across trials of a motor-visual task. For frequency

domain analysis of EEG data from multiple subjects, see Krafty et al. (2011) and Krafty

et al. (2017), where covariate effects on the power spectra of multiple time series are modeled

in sleep studies.

The two previously proposed approaches of Hasenstab et al. (2015) and Ombao et al.

(Fiecas and Ombao (2016); Ombao and Ho (2006)) for studying longitudinal trends in EEG

experiments analyze ERP in different domains; in the time domain and the frequency domain,

respectively. While the time domain analysis of ERP data concentrates on interpretations of

the commonly studied ERP phasic components, such as the P3 as shown in Figure 1.1(c), the

frequency domain analysis concentrates on interpretations of power from different frequency

bands: delta (1-4 Hz), theta (4-8 Hz), alpha (8-16 Hz), beta(16-32 Hz) and gamma (over 32

Hz). In our motivating implicit learning paradigm, N1 and P3 are the phasic components

typically observed in the ERP waveforms. The N1 dip, with a short latency (time-delay), is

thought to be related to early category recognition, while the P3 peak, with a long latency,

is traditionally related to cognitive processes such as signal matching, decision making and

memory updating (Bugli and Lambert (2006); Jeste et al. (2015)). In the frequency do-

main, frequencies in the delta and theta bands have been reported to contribute to a P3

phasic component where frequencies in the delta band are associated with evaluative cogni-
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tive processing, and in the theta band are associated with the orienting response to novel

stimuli (Bernat et al. (2007); Harper et al. (2014)). Since both time and frequency domain

analysis of ERP data carry different but complimentary information about the observed

signal, we consider a time-frequency decomposition of the ERP data, targeting even richer

information than is available in single domain analysis. We propose the longitudinal time-

frequency transformation of ERP (LTFT-ERP) method, where a wavelet transformation is

applied to the ERPs. LTFT-ERP, not only targets richer information in the signal through

time-frequency transformations, it also allows modeling of longitudinal changes in the signal

over trials throughout the learning experiment, adding an additional dimension for analysis

(referred to as the longitudinal dimension).

Bernat et al. (2005, 2007) proposed time-frequency transformations (TFTs) of ERP data

via wavelets and further included dimension reduction of the high dimensional time-frequency

power surfaces through principal components analysis (PCA). To capture the longitudinal

changes throughout the learning experiment, the resulting data from the proposed LTFT-

ERP is even higher dimensional in our applications since the TFTs are repeated over multiple

trials of the experiment. To adopt a data-driven approach to dimension reduction, similar to

Bernat et al. (2005), we employ a multidimensional principal component analysis (MDPCA).

We characterize vectorized TFT power surfaces as the functional dimension of the data and

repetitions over trials as the longitudinal dimension. Under the simplifying assumption that

the direction of variation in the functional dimension of the data stays the same for fixed slices

along the longitudinal dimension, the eigenvectors in the functional dimension are obtained.

Projections of the data onto the leading eigenvectors in the functional dimension allow us to

study longitudinal changes in the resulting PCA scores via a mixed effects model. Finally,

diagnostic-group level inference on longitudinal trends, representing learning dynamics, is

derived via mixed effects modeling machinery.

This chapter is organized as follows. Section 1.2 outlines the proposed LTFT-ERP ap-

proach, including dimension reduction via MDPCA following the multidimensional TFT
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decompositions and modeling of the longitudinal trends via a mixed effects model. Simula-

tion studies to study the efficacy of the LTFT-ERP in modeling of longitudinal trends in the

MDPCA scores are outlined in Section 1.3, followed by applications to the implicit learning

paradigm in Section 1.4. We conclude with a brief discussion given in Section 1.5.

1.2 The proposed longitudinal time-frequency transformation of

ERP data (LTFT-ERP)

The proposed longitudinal time-frequency transformation (LTFT-ERP) starts with transfor-

mation of the ERP waveforms from each trial into the time-frequency (TFT) power surfaces

using the wavelet transformation. Dimension reduction of the resulting trial specific time-

frequency power surfaces is achieved by the data driven MDPCA in the third step. TFT

power surfaces are first reshaped into two continuous dimensions (functional and longitudi-

nal) before the application of MDPCA. The functional dimension represents wavelet power

vectorized over ERP time and frequency within a trial and longitudinal dimension represents

the repeatedly obtained TFT power surfaces over trials, providing the progression of the high-

dimensional process throughout the experiment. Projection of the two-dimensional process

onto the leading functional principal component vectors leads to the longitudinally estimated

PCA scores which summarize changes in the signal over the course of the experiment. In

a final step, longitudinal trends in the PCA scores are compared across participants in the

two diagnostic groups (ASD vs. TD), leading to insights in speed and nature of learning.

The main steps

Step 1: Multidimensional time-frequency transformation (MTFT-ERP) utilizing wavelets,

Step 2: Reshaping of TFT power surfaces into vectors,

Step 3: Dimension reduction via multidimensional PCA (MDPCA),

Step 4: Modeling of longitudinal trends in MDPCA scores via mixed effects modeling,
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Figure 1.2: A flowchart of the LTFT-ERP algorithm. For each subject i, electrode j, on
trial s and condition ℓ, Step 1 transforms the ERP waveform Wijsℓpuq into the TFT power

surface rXijsℓpa, bq using the wavelet transformation. Step 2 reshapes the TFT power surface
rXijsℓpa, bq into a vector Xijsℓ in t where t denotes the functional dimension of ERP time ˆ

frequency. The longitudinal dimension is trials s, where Step 3 performs dimension reduction
via MDPCA to target the hth leading eigenvector ϕh in the functional dimension. The final
step models the MDPCA scores as a function of trials (s) via mixed effects modeling.

of LTFT-ERP are depicted in Figure 1.2. We further expand on each step of the proposed

LTFT-ERP algorithm in the following subsections.

1.2.1 MTFT-ERP utilizing wavelets

The ERPs waveforms are transformed into TFT power surfaces in the first step using the

wavelet function which is a simple oscillating amplitude waveform that is localized in time.

Let Wijsℓpuq denote the micro-voltage of the ERP for subject i, i “ 1, . . . ,N, from electrode

j, j “ 1, . . . , J, on trial s, s P Si, in condition ℓ (expected/unexpected), ℓ P Lis, observed at

time u, u “ 1, . . . ,U, where N, J, U denote the total number of subjects, electrodes, time

points within a trial, respectively, and Si and Lis denote the sets of non-missing trials and

conditions at trial s for subject i, respectively. The maximum number of conditions per trial,

denoted by L, equals two in our application (expected vs. unexpected). The minimum and

8



maximum possible number of trials per subject are denoted by smin and S, respectively. In

addition, subjects may be partitioned into multiple diagnostic groups (e.g. TD vs. ASD),

but we omit additional subscripts denoting diagnostic groups for simplicity of notation.

For the wavelet transformation, a general form of the wavelet function is selected and is

referred to as the mother wavelet. The mother wavelet is then systematically stretched and

contracted in time with a set of “daughter wavelets” (Bernat et al. (2005)). The daughter

wavelets are generated by the mother wavelet through scaling (frequency) and translation

(time) parameters. The continuous and complex-valued Morlet wavelet,

ψpuq “ π´1{4eiωue´u2{2, (1.1)

commonly-used in the decomposition of ERP waveforms, is selected as the mother wavelet

(Torrence and Compo (1998)). The “angular frequency”, denoted by ω in (1.1), is set to

6, following previous literature (Farge (1992)). For a given scale/frequency a ą 0 and

translation/time parameter b P R, the resulting augmented daughter wavelet used in trans-

formations is equal to ψtpu ´ bq{au. The wavelet transformation is then given as:

Cijsℓpa, bq “
1

?
a

ż 8

´8

Wijsℓpuqψ̄
´u ´ b

a

¯

du,

where Cijsℓpa, bq denotes the wavelet coefficients which are continuous and complex, and

ψ̄tpu ´ bq{au is the complex conjugate of the daughter wavelet. The power, denoted by

rXijsℓpa, bq, is calculated as the squared magnitude of the wavelet coefficients, i.e. rXijsℓpa, bq “

|Cijsℓpa, bq|2.

For a selected grid of scale/frequency af , f “ 1, . . . , F , and translation/time parame-

ters bd, for d “ 1, . . . , D, the TFT power surfaces, rXijsℓ, F ˆ D matrices with elements,
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rXijsℓpaf , bdq, are vectorized into

Xijsℓ ” Vec
`

rXT
ijsℓ

˘

“ t rXijsℓpa1, b1q, . . . , rXijsℓpa1, bDq, . . . , rXijsℓpaF , b1q, . . . , rXijsℓpaF , bDqu
T,

“ tXijsℓpt1q, . . . , Xijsℓptmqu
T,

where the indices t1, . . . , tm are interpreted as the “functional” dimension of the resulting

process, encompassing both ERP time and frequency components (m “ F ˆ D). The TFT

power surfaces, vectorized in Xijsℓ, are observed repeatedly over trials s. Interpreting s as

a coarse time scale, we refer to it as the “longitudinal” dimension. Hence we conceptualize

the TFT dynamic of the original signal as a set of random quantities varying over both a

functional and a longitudinal dimension. In the next section we outline how this random

object is further reduced in dimensionality through data-driven MDPCA.

Note that the tuning parameters F and D utilized in the wavelet transformations de-

termine the resolution of the time-frequency transformation. While larger values of F and

D allow for a higher resolution decomposition in frequency and time, respectively, these

values are bounded by considerations of the total number of available EEG (over subjects,

electrodes, conditions and trials) for the MDPCA decompositions. More specific guidance

is provided between the ratio of the number of TFT power surfaces included in estimation

of the trial-specific covariances and m “ F ˆ D, to ensure stability of the proposed PCA

decompositions, in the next section.

1.2.2 Dimension reduction via MDPCA

For dimension reduction of the TFT power surfaces obtained in the previous section, we

borrow ideas from marginal functional PCA (FPCA) (Park and Staicu (2015)). Marginal

FPCA of longitudinally observed functional data relies on the assumption that the direction

of variation, not the covariance itself, in the functional dimension of the data stays the same

for fixed slices along the longitudinal dimension. This assumption, if assumed along both
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functional and longitudinal directions, called weak-separability (Chen and Müller (2012);

Chen et al. (2017)), is weaker than the commonly assumed strong separability in high-

dimensional data settings, which implies constant covariance along one dimension for fixed

values of the other dimensions of the data. When applied to our two-dimensional TFT

power surfaces, the assumption of constant direction of variation implies that the direction

of variation along the functional dimension of ERP time and frequency (denoted by t) in

the TFT power surfaces, stays the same across trials in the longitudinal dimension, denoted

by s. This leads to the construction of a marginal covariance in the functional dimension,

evaluated as an average of all functional covariances obtained at fixed trials, in estimation

of the common functional directions of variation, captured by the functional eigenvectors.

For each trial s, we define the trial-specific functional covariance as Σs :“ CovpXijsℓq P

Rmˆm. Estimation of this quantity hinges on a moving window estimator, borrowing infor-

mation across adjacent trials. Let As represent overlapping sets of trials of varying lengths

for trials s “ smin, . . . , S, with the maximum number of trials within a set denoted by k,

As “

$

’

’

’

’

’

&

’

’

’

’

’

%

rsmin, 2s ´ smins, s ă k
2

rs ´ k
2

` 1, s ` k
2
s, k

2
ď s ď S ´ k

2

r2s ´ S, Ss, s ą S ´ k
2
.

For a specific trial s, the estimator of Σs pools all vectors Xijs1ℓ, s.t. s
1 P As. This set of TFT

power vectors is then centered by subtracting a mean vector Xs P Rm, obtained averaging

across subjects i, electrodes j, conditions ℓ and trials in As. We denote the mean centered

vectors as Xc
ijs1ℓ :“ Xijs1ℓ ´ Xs. The ensuing estimator for the trial-specific covariance is

defined as:

Σ̂s “
1

Ns ´ m

N
ÿ

i“1

J
ÿ

j“1

ÿ

s1PAs

ÿ

ℓPLis1

Xc
ijs1ℓX

cT
ijs1ℓ. (1.2)
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Note that in the formulation above, TFTs are merged across diagnostic groups, scalp

sections and conditions, in targeting trial-specific covariances. This merge requires that the

direction of variation (captured by the estimated eigenvectors of the subsequent marginal

covariance) are similar across different grouping of TFTs (determined by diagnostic groups,

conditions and scalp sections). Appendix A.1 Figures A.1-A.12 display the similarity across

eigenvectors of marginal covariances targeted within the eight subgroups of subjects (two

diagnostic groups, two conditions and two scalp sections) in our data application, justifying

the merging of TFTs used in trial-specific covariances. Hence, the total number of TFT

power vectors included in estimation of Σs is Ns “ J ˆ p
ř

i Lis1q ˆ |As|, where |As| denotes

the number of elements in set As. The moving window parameters smin, S and k, defining

the number of trials included in each sliding window in As (ranging from 1 to k), are selected

to maintain a 5:1 ratio between the number of TFT power surfaces included in estimation

of Σs and m “ F ˆ D. This procedure is recommended to ensure stability of the proposed

PCA decompositions.

Given trial-specific covariances Σ̂s, an estimator, Σ̂, of the functional marginal covariance,

is targeted by a method of moments approach by averaging all trial-specific covariances at

s “ smin, . . . , S. Note that when the number of trials gets large, trial-specific covariances from

a smaller set of trials (than the entire trial set) may be averaged in targeting the functional

marginal covariance for computational feasibility. In this setting, the invariant directions

of functional variation across trials, are targeted by the estimated m by 1 eigenvectors, ϕh,

h “ 1, . . . ,m, of the m by m functional marginal covariance matrix,

Σ̂ “

m
ÿ

h“1

λhϕhϕ
T
h ,

with λ1 ě . . . ě λm denoting the ordered eigenvalues (Greven et al. (2010); Di et al. (2009)).

The decomposition is typically truncated to include the first H, H ă m, leading eigencom-

ponents in applications. H is selected using the elbow in the fraction of variance explained
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where all components are selected before a relative flattening in the plot. Figures 4 and 5

display the relative flattening in the fraction of variance explained plots in our data applica-

tion. The mean centered TFT power vectors Xijsℓ ´ X, where X denotes the overall mean

TFT power vector (averaged over all conditions, subjects, electrodes, and trials), are then

projected onto the H estimated leading functional eigenvectors, to obtain the longitudinal

MDPCA scores:

Y h
ijℓpsq “ă Xijsℓ ´ X, ϕh ą,

where ă ¨, ¨ ą denotes the inner product. We allude to the longitudinal modeling of the

MDPCA scores that is outlined in the next section by representing the estimated MDPCA

scores as functions of the longitudinal argument s, representing trials.

Formulation of the functional marginal covariance from trial-specific covariances utilizes

the constant direction of functional variation assumption across trials in the longitudinal

dimension. This assumption can be assessed via checking the degree of similarity between

eigenvectors of trial-specific covariances across trials. Plots of the estimated six leading

eigenvectors from trial-specific covariances evaluated at trials 20, 40 and 60 are given in

Appendix A.2 Figures A.13-A.18 in our data application. Plots display sufficient similarity

across trials, signaling no violation of the assumption of constant variation across trials.

1.2.3 Modeling of longitudinal trends in MDPCA scores

We model the longitudinal trends in the MDPCA scores, Y h
ijℓpsq, corresponding to the leading

H functional eigenvectors, across trials via a linear mixed effects model. Multilevel random

effects at the subject, i “ 1, . . . ,N, and electrode region, r “ 1, . . . ,R, levels are utilized to

model the dependency of the data within subjects and electrodes within a scalp region (3

scalp regions containing 4 electrodes are depicted in Figure 1.1(b) for our data application,

within the frontal and posterior scalp sections) where spatial correlation between electrodes

may exist. Additionally, we employ spline basis functions in modeling both the fixed and
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random effects to represent changes in the MDPCA scores longitudinally across trials.

Let Y h
ijprqℓpsq denote the hth leading MDPCA score for subject i, electrode j within

region r, and condition ℓ, targeted as a function of the longitudinal index, trials (s). We

model the MDPCA scores using fixed effects and a two-level random effects structure for

subject and region. In our data application, the fixed effects parameters include an intercept,

trial (represented by a natural cubic B-spline with four knots), group (ASD vs. TD), scalp

section (frontal vs. posterior), condition (expected vs. unexpected), as well as higher order

interactions (two- to four-way) between the main effects. This leads to a total of 40 fixed

effects components. Let βh denote the 40ˆ 1 column vector of fixed effects parameters, and

let 5 ˆ 1 vectors bhi and bhir represent subject and region-level random effects, respectively.

Further, let qijsℓ denote the 1ˆ40 row vector of the fixed effects matrix Qi, corresponding to

trial s, electrode j, and condition ℓ, and qijprqs be the 1 ˆ 5 row vector of the random effects

matrix Qijprq corresponding to trial s and electrode j in region r. We model Yh
ijprqℓpsq by

Y h
ijprqℓpsq “ qijsℓβ

h
` qijprqsb

h
i ` qijprqsb

h
ir ` ϵhijprqsℓ,

bhi „ MVNp0, D1h
5ˆ5q,

bhir „ MVNp0, D2h
5ˆ5q,

ϵhijprqsℓ „ Np0, σ2
hq,

whereD1h andD2h represent the random effects covariance matrices at the subject and region

levels, respectively (Greven et al. (2010); Di et al. (2009)). In addition, ϵhijprqsℓ represents

the error term for the hth principal component with variance σ2
h. This multi-level mixed

effects model leads to the following covariance structure assuming the random level effects
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are independent of the error term

VartY h
ijprqℓpsqu “ qijprqsD

1hq1
ijprqs ` qijprqsD

2hq1
ijprqs ` σ2

h,

covtY h
ijprqℓpsq, Y

h
ijprqℓps

1
qu “ qijprqsD

1hq1
ijprqs1 ` qijprqsD

2hq1
ijprqs1 , @i, jprq, s ‰ s1,

covtY h
ijprqℓpsq, Y

h
ij1prqℓpsqu “ qijprqsD

1hq1
ij1prqs ` qijprqsD

2hq1
ij1prqs, @i, jprq ‰ j1

prq, s,

for within region correlation and

covtY h
ijprqℓpsq, Y

h
ij1pr1qℓpsqu “ qijprqsD

1hq1
ij1pr1qk, @i, jprq ‰ j1

pr1
q, s,

for within subject across region correlation.

We use the same design matrix for both the subject and region random effects to reduce

the complexity of the model, but these two matrices can be taken to be different. In addi-

tion, the model framework can be extended to accommodate additional covariates that can

model the dependency structure of the data in further detail. The number of equispaced

knots for the cubic B-splines is chosen using AIC criteria in order to obtain a sufficient de-

gree of smoothness in the modeling of the MDPCA scores (Shi et al. (1996); Rice and Wu

(2001)). The model parameters are estimated using restricted maximum likelihood (REML).

See Appendix A.3 Figure A.19 for histograms of the modeled eigenscores, displaying rela-

tively symmetric distributions in our data applications, signaling no violation of the assumed

normality assumption.

1.3 Simulation studies

1.3.1 Simulation setup

We conduct simulations to study the efficacy of the LTFT-ERP algorithm in modeling the

longitudinal trends of the MDPCA scores. For data generation, we utilize the mixed effects
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fits in modeling the leading six MDPCA scores from the delta frequency band in our data

application, since the leading six eigencomponents explained a higher proportion (approx-

imately 90%) of the variation in the data from the delta frequency band than the theta

band. In assessing the efficacy of the LTFT-ERP algorithm, we utilize mean error (ME) in

estimation of the TFT mean power vector and functional eigenvector, in addition to group,

condition and scalp section-specific mean longitudinal trajectories of the MDPCA scores and

utilize prediction error (PE) in prediction of subject and region-specific longitudinal trajecto-

ries of MDPCA scores. We consider multiple simulation scenarios at varying signal-to-noise

ratios (SNR “ 0.4, 0.8 and 1.6) and sample sizes (N “ 80, 160 and 320), where results are

reported based on 200 Monte Carlo runs.

The data fits in modeling the six leading MDPCA score trajectories and the estimated

functional eigenfunctions from the delta frequency band are utilized to simulate the un-

derlying TFT power vectors, denoted by Xsignal
ijsℓ . Additional error is added directly to the

simulated TFT vectors, to avoid performing back wavelet transformations to target raw

ERPs, which requires additional phase information. In order to simulate the six leading

longitudinal MDPCA score trajectories, Y h
ijprqℓpsq, h=1, . . . ,6, we first simulate subject and

region-specific random effects, bhi „ MVNp0, D1hq and bhir „ MVNp0, D2hq, where the vari-

ance components, D1h and D2h, estimated in our data from the delta frequency band, are

multiplied by 0.15 to reduce variability in the score trajectories to guarantee positivity of

the generated TFT power vectors. Once the random effects are simulated, we generate MD-

PCA score trajectories via Y h
ijprqℓpsq “ qijsℓβ

h ` qijprqsb
h
i ` qijprqsb

h
ir, for i “ 1, . . . ,N subjects,

j “ 1, . . . , 24 electrodes, s “ 5, . . . , 80 trials and ℓ P t1, 2u (expected/unexpected) condi-

tions, mimicking our data analysis. The design matrices for the fixed and random effects are

utilized as described in Section 1.2.3, with half of the sample designated as belonging to the

ASD sample and the other half to the TD sample and the fixed effects parameter vectors,

βh, are taken as estimated from the data fits from the delta frequency band.

The simulated true TFT power vectors are obtained via Xsignal
ijsℓ “ X `

ř6
h“1 Y

h
ijprqℓpsqϕh,
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utilizing the six leading eigencomponents, where ϕh denotes the estimated functional eigen-

vectors and X denotes the estimated TFT mean power vector in the delta frequency band.

Additional error is added directly to the power vectors, to obtain the simulated TFT power

vectors, Xijsℓ “ Xsignal
ijsℓ `Xnoise

ijsℓ . The error, Xnoise
ijsℓ , is obtained as the TFT power vector (via

a wavelet transformation, corresponding to the squared radius in the polar coordinates) of

the Euclidean vector pX, Y q, where coordinates X and Y are both generated from a Np0, c2q

distribution. Since r2{c will follow a χ2
2 distribution, c is chosen to correspond to varying

SNR ratios, SNR “ 0.4, 0.8, and 1.6, where SNR is defined as the ratio of the standard

deviation of Xsignal
ijsℓ to the standard deviation of Xnoise

ijsℓ (which equals 2c). Finally, missing-

ness is induced by randomly removing a fraction of the generated TFT power vectors by

sampling with replacement from the missingess profiles of the subjects in our data set from

the implicit learning paradigm.

LTFT-ERP algorithm is applied to the simulated TFT power vectors to first target the

estimated TFT mean power vector, pX (averaged over all conditions, subjects, electrodes, and

trials), and the leading functional eigenvector, pϕ1. Projections onto the leading eigenvector,

yield the estimated leading MDPCA scores, pY 1
ijprqℓpsq, where the group, condition and scalp

section-specific true and estimated mean trajectories are denoted by ErY 1
ijprqℓpsqs “ qijsℓβ

1

and {ErY 1
ijprqℓpsqs “ qijsℓpβ

1, respectively, where β1 is estimated from the implicit learning

paradigm data fits in the delta frequency band and used in data generation and pβ1 is esti-

mated from the mixed effects modeling of the simulated MDPCA scores, pY 1
ijprqℓpsq. To mimic

our data application mean trajectories over trials are considered in eight subgroups (g “

1, . . . , 8) determined by two diagnostic groups (TD vs. ASD), two conditions (expected vs.

unexpected) and two scalp sections (frontal vs. posterior). The true and estimated subject

and region-specific predictions are denoted by ErY 1
ijprqℓpsq|b1i , b

1
irs “ qijsℓβ

1`qijprqsb
1
i `qijprqsb

1
ir

and {ErY 1
ijprqℓpsq|b1i , b

1
irs “ qijsℓpβ

1 ` qijprqs
pb1i ` qijprqs

pb1ir, where b
1
i and b1ir are the true random

effects values simulated from the above specified normal distributions in data generation

and pβ1, pb1i , and
pb1ir are estimated based on simulated data. Note that run times for a single
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simulation are approximately 20, 10, and 5 minutes at sample sizes N “ 320, 160, and 80,

respectively.

The mean errors (ME) in estimation of the TFT mean power vector and the leading

functional eigenvector are defined by

ME “

m
ř

p“1

∣∣∣Xptpq ´
pXptpq

∣∣∣
m
ř

p“1

∣∣Xptpq
∣∣ , and ME “

m
ř

p“1

∣∣∣ϕ1ptpq ´ pϕ1ptpq

∣∣∣
m
ř

p“1

|ϕ1ptpq|
,

respectively, for m “ F ˆ D “ 1764 (with D “ 63 and F “ 28), similar to our data

application. The ME in estimation of MDPCA mean trajectories for subjects (in two di-

agnostic groups: TD vs. ASD), electrodes (in two scalp regions frontal vs. posterior) and

conditions (expected vs. unexpected) from a total of eight unique subgroup trajectories

(ti, j, ℓu P g “ 1, . . . , 8), summed over trials s “ 5, . . . 80, similar to our data application, is

defined as

ME “

8
ř

g“1

80
ř

s“5

∣∣∣ErY 1
ijprqℓpsqs ´ {ErY 1

ijprqℓpsqs

∣∣∣
8
ř

g“1

80
ř

s“5

∣∣∣ErY 1
ijprqℓpsqs

∣∣∣ .

The PE in prediction of the subject and region-specific MDPCA score trajectories is defined

as

PE “

ř

i,j,s,ℓ

∣∣∣ErY 1
ijprqℓpsq|bi, birs ´ {ErY 1

ijprqℓpsq|bi, birs
∣∣∣

ř

i,j,s,ℓ

∣∣∣ErY 1
ijprqℓpsq|bi, birs

∣∣∣ ,

where i “ 1, . . . ,N denotes subjects, j “ 1, . . . , 24 denotes electrodes from six scalp regions,

s “ 5, . . . , 80 denotes trials, and ℓ P t1, 2u denotes the two conditions (expected/unexpected).
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Table 1.1: Medians and (10th, 90th) percentiles of simulation performance metrics (ME and
PE) from 200 Monte Carlo runs at varying SNRs (SNR “ 0.4, 0.8, and 1.6) and sample sizes
(N “ 80, 160, and 320).

Mean Power Eigenvector MDPCA Scores

N SNR ME ME ME PE

0.4 0.81460 (0.80966, 0.82040) 0.89373 (0.88256, 0.90372) 0.376 (0.324, 0.497) 0.564 (0.534, 0.621)
80 0.8 0.40759 (0.40359, 0.41065) 0.69500 (0.65928, 0.72499) 0.293 (0.228, 0.415) 0.426 (0.380, 0.498)

1.6 0.20421 (0.20144, 0.20652) 0.32873 (0.28398, 0.37164) 0.255 (0.184, 0.554) 0.272 (0.221, 0.728)

0.4 0.81453 (0.81069, 0.81836) 0.89293 (0.88269, 0.90094) 0.344 (0.309, 0.389) 0.561 (0.532, 0.590)
160 0.8 0.40756 (0.40489, 0.41020) 0.69260 (0.67283, 0.71025) 0.245 (0.203, 0.345) 0.418 (0.388, 0.507)

1.6 0.20394 (0.20169, 0.20564) 0.32145 (0.28761, 0.35842) 0.206 (0.146, 0.422) 0.265 (0.224, 0.510)

0.4 0.81462 (0.81215, 0.81717) 0.89206 (0.88639, 0.89865) 0.333 (0.300, 0.429) 0.566 (0.544, 0.670)
320 0.8 0.40766 (0.40579, 0.40918) 0.68958 (0.67272, 0.70487) 0.236 (0.198, 0.356) 0.418 (0.394, 0.599)

1.6 0.20382 (0.20255, 0.20522) 0.32116 (0.29401, 0.34458) 0.182 (0.140, 0.376) 0.270 (0.237, 0.573)

1.3.2 Simulation results

The medians, 10th and 90th percentiles of the ME in estimation of the TFT mean power

vector and functional eigenvector, in addition to group, condition and scalp section-specific

mean longitudinal trajectories of the MDPCA scores and of the PE in prediction of subject

and region-specific longitudinal trajectories of MDPCA scores are given in Table 1.1 at three

SNRs (SNR “ 0.4, 0.8, and 1.6) and three sample sizes (N “ 80, 160, and 320). Tables 1.2

and 1.3 report the ME and PE, respectively, of the MDPCA score trajectories separately

within the eight subgroups, determined by the two diagnostic groups (TD vs. ASD), two

conditions (expected vs. unexpected) and the two scalp sections (frontal vs. posterior). This

provides a better understanding of the subgroup variability in these measures. In addition,

Figure 1.3 displays the estimated fixed effects means of the MDPCA scores from the run with

the median ME value for one of the eight subgroups, ASD expected posterior, at varying

SNRs and sample sizes.

Table 1.1 shows a clear and expected trend in the ME and PE with varying SNR values,

where both metrics decrease with increasing SNR values. Note that this trend is present

at all three sample sizes. For estimation of the MDPCA trajectories, ME values for the
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Table 1.2: Medians and (10th, 90th) percentiles of ME from 200 Monte Carlo runs at varying
SNRs (SNR “ 0.4, 0.8, and 1.6) and sample sizes (N “ 80, 160, and 320) for each of the
eight subgroups determined by diagnostic group, condition and scalp section.

ME of MDPCA Scores
Frontal Posterior

Group N SNR Expected Unexpected Expected Unexpected
0.4 0.547 (0.281, 0.882) 0.567 (0.377, 0.876) 0.348 (0.252, 0.452) 0.235 (0.171, 0.395)

80 0.8 0.387 (0.232, 0.769) 0.402 (0.241, 0.721) 0.265 (0.169, 0.375) 0.167 (0.105, 0.319)
1.6 0.384 (0.195, 0.853) 0.382 (0.214, 0.835) 0.242 (0.126, 0.513) 0.202 (0.107, 0.505)

0.4 0.488 (0.272, 0.738) 0.507 (0.332, 0.734) 0.314 (0.253, 0.401) 0.219 (0.160, 0.279)
ASD 160 0.8 0.331 (0.214, 0.602) 0.352 (0.234, 0.579) 0.224 (0.151, 0.312) 0.130 (0.077, 0.237)

1.6 0.242 (0.133, 0.664) 0.245 (0.132, 0.636) 0.189 (0.115, 0.367) 0.171 (0.093, 0.349)

0.4 0.463 (0.293, 0.728) 0.501 (0.362, 0.691) 0.311 (0.242, 0.389) 0.209 (0.156, 0.301)
320 0.8 0.345 (0.205, 0.566) 0.328 (0.224, 0.506) 0.205 (0.145, 0.293) 0.120 (0.080, 0.229)

1.6 0.230 (0.108, 0.480) 0.228 (0.122, 0.459) 0.166 (0.103, 0.322) 0.155 (0.077, 0.296)

0.4 0.266 (0.178, 0.465) 0.284 (0.162, 0.523) 0.632 (0.484, 0.798) 0.679 (0.422, 0.989)
80 0.8 0.202 (0.107, 0.340) 0.235 (0.127, 0.439) 0.431 (0.279, 0.649) 0.653 (0.400, 0.949)

1.6 0.142 (0.070, 0.564) 0.174 (0.098, 0.571) 0.330 (0.191, 0.726) 0.595 (0.345, 1.137)

0.4 0.238 (0.175, 0.336) 0.258 (0.171, 0.382) 0.580 (0.445, 0.682) 0.594 (0.413, 0.805)
TD 160 0.8 0.178 (0.112, 0.300) 0.206 (0.134, 0.351) 0.377 (0.265, 0.542) 0.551 (0.402, 0.776)

1.6 0.115 (0.063, 0.349) 0.129 (0.075, 0.405) 0.289 (0.153, 0.546) 0.514 (0.285, 0.844)

0.4 0.237 (0.188, 0.388) 0.267 (0.187, 0.420) 0.571 (0.464, 0.683) 0.561 (0.402, 0.729)
320 0.8 0.165 (0.115, 0.336) 0.206 (0.134, 0.367) 0.356 (0.266, 0.512) 0.526 (0.400, 0.710)

1.6 0.093 (0.053, 0.393) 0.115 (0.072, 0.414) 0.266 (0.171, 0.495) 0.466 (0.309, 0.753)
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Table 1.3: Medians and (10th, 90th) percentiles of PE from 200 Monte Carlo runs at varying
SNRs (SNR “ 0.4, 0.8, and 1.6) and sample sizes (N “ 80, 160, and 320) for each of the
eight subgroups determined by diagnostic group, condition and scalp section.

PE of MDPCA Scores
Frontal Posterior

Group N SNR Expected Unexpected Expected Unexpected
0.4 0.617 (0.564, 0.699) 0.625 (0.572, 0.709) 0.561 (0.503, 0.662) 0.519 (0.471, 0.618)

80 0.8 0.464 (0.406, 0.541) 0.466 (0.407, 0.542) 0.418 (0.359, 0.517) 0.387 (0.327, 0.495)
1.6 0.285 (0.228, 0.751) 0.290 (0.229, 0.751) 0.272 (0.204, 0.725) 0.257 (0.193, 0.682)

0.4 0.607 (0.558, 0.664) 0.613 (0.570, 0.667) 0.551 (0.510, 0.602) 0.511 (0.472, 0.563)
ASD 160 0.8 0.454 (0.416, 0.544) 0.456 (0.416, 0.539) 0.414 (0.374, 0.519) 0.381 (0.344, 0.486)

1.6 0.283 (0.239, 0.540) 0.286 (0.239, 0.539) 0.258 (0.215, 0.557) 0.245 (0.199, 0.525)

0.4 0.612 (0.580, 0.712) 0.619 (0.584, 0.711) 0.554 (0.528, 0.647) 0.516 (0.488, 0.606)
320 0.8 0.455 (0.421, 0.653) 0.457 (0.426, 0.645) 0.410 (0.380, 0.606) 0.379 (0.352, 0.569)

1.6 0.289 (0.254, 0.591) 0.291 (0.255, 0.584) 0.267 (0.225, 0.594) 0.256 (0.215, 0.560)

0.4 0.505 (0.458, 0.584) 0.524 (0.477, 0.612) 0.615 (0.563, 0.715) 0.611 (0.556, 0.710)
80 0.8 0.378 (0.326, 0.465) 0.398 (0.342, 0.476) 0.451 (0.390, 0.537) 0.466 (0.400, 0.550)

1.6 0.235 (0.185, 0.667) 0.248 (0.198, 0.692) 0.298 (0.230, 0.734) 0.312 (0.238, 0.698)

0.4 0.501 (0.458, 0.555) 0.522 (0.477, 0.569) 0.610 (0.570, 0.664) 0.608 (0.566, 0.653)
TD 160 0.8 0.375 (0.341, 0.442) 0.395 (0.358, 0.458) 0.453 (0.411, 0.559) 0.469 (0.421, 0.560)

1.6 0.231 (0.196, 0.486) 0.244 (0.209, 0.504) 0.279 (0.234, 0.540) 0.296 (0.244, 0.558)

0.4 0.505 (0.473, 0.630) 0.525 (0.492, 0.648) 0.614 (0.583, 0.722) 0.613 (0.575, 0.718)
320 0.8 0.375 (0.349, 0.544) 0.394 (0.364, 0.554) 0.450 (0.417, 0.595) 0.466 (0.429, 0.597)

1.6 0.234 (0.206, 0.533) 0.250 (0.219, 0.540) 0.289 (0.253, 0.563) 0.306 (0.264, 0.571)
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Figure 1.3: True (solid) and estimated (dotted) fixed effects mean trajectories from the run
with the median ME value for the MDPCA scores of the subgroup ASD expected posterior,
at varying SNRs (rows) and sample sizes (columns).

mean longitudinal trajectories are smaller than the PE values for subject and region-specific

predictions, as expected, since it is harder to predict record-specific trajectories than recover

group means in a mixed effects model. In addition, there is a subtle trend of decreasing ME

with increasing sample size in estimation of the mean longitudinal trajectories, as expected.

The ME values reported are largely stable across the three sample sizes for mean power and

eigenvector estimation, perhaps due to the large total number of ERPs observed even for the
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lower sample size at N “ 80, due to repetitions over electrodes and conditions. (The lower

sample size at N “ 80 is selected not only to mimic the sample size in our data application,

but also to guarantee stable MDPCA decompositions.)

Tables 1.2 and 1.3 highlight the variability in the above outlined trends across the eight

subgroups. More specifically while the decreasing trend with increasing SNR is pronounced

for the PE values consistently across all eight subgroups, they are not consistently observed

across all the subgroups in the ME values (the trends with increasing SNR are stronger for

ME in some subgroups, such as both the TD and ASD groups in the unexpected condition

from the frontal scalp section). This is again due to the comparatively higher PE values for

the harder task of prediction compared to estimation of the group means, reflected through

the ME metric. In addition, there are subtle differences in the trends observed across across

scalp sections in two diagnostic groups. While ME values are larger in the ASD group in

the frontal section (compared to the posterior section), they are larger in the TD group

in the posterior section. Note that these differences are due to the different mixed effects

coefficients used in data generation (based on fits to the original data). For example, the

targeted contrasts are closer to zero in the ASD group in the frontal section (compared to

posterior) and the TD group in the posterior section (compared to frontal), leading to larger

ME values due to the standardization by a smaller integrand in the denominator. Figure 1.3

displays that the group mean estimates get closer to the true mean with increasing SNR

and sample size for the MDPCA scores from the ASD group in the expected condition in

the posterior scalp section. Results confirm that even at lower SNR values, where higher

ME values are observed in the estimation of the mean power and eigenvector, group mean

trajectories of the MDPCA scores are effectively recovered through the efficient mixed effects

modeling proposed.
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1.4 Data analysis

1.4.1 The implicit learning paradigm

The implicit learning paradigm included 27 children with Autism Spectrum Disorder (ASD)

and 34 typically developing (TD) peers ranging in age from 2-5 years old. Children were

presented with a continuous stream of six-colored shapes (pink squares, blue crosses, yel-

low circles, turquoise diamonds, gray triangles, and red octagons) which were grouped into

three pairs. Presentation of each shape was a trial, resulting in an ERP waveform. The

order within the paired shapes stayed the same throughout the experiment and hence could

be learned as the experiment progressed, while the order across shape pairs was random.

Therefore, the transition within a shape pair corresponded to the “expected” condition of the

experiment and across shape pairs corresponded to the “unexpected” condition (L “ 2, see

Figure 1.1(a)). Implicit learning was detected through the difference in the ERP waveforms

between the expected and unexpected conditions, and the rate of change in these differences

reflected the evolution of implicit learning in the different diagnostic groups (ASD vs. TD)

throughout the experiment.

There were 120 shapes presented in each condition, corresponding to the 120 trials of the

experiment. EEG was recorded at J “ 24 electrodes located in three regions (left, central,

right) within two scalp sections (frontal and posterior) (see Figure 1.1(b)). In addition,

EEG was sampled at 250 Hz, producing a total of U “ 250 ERP time points per waveform

spanning 1000ms. For further details on the preprocessing steps of the data, the readers are

deferred to Hasenstab et al. (2015). In addition to the preprocessing steps, ERP data with

no variability in ERP time have been removed from 3 ASD and 2 TD children (0.13% of the

total ERP records have been removed before analysis).
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1.4.2 Data analysis and interpretations

The implicit learning paradigm lead to two well-known ERP components: N1, related to

early category recognition, and P3, related to cognitive processes such as signal matching,

decision making and memory updating (Bugli and Lambert (2006); Jeste et al. (2015)).

In our analysis, we concentrate on modeling power in the delta (.5 to 4 Hz) and theta (4

to 8 Hz) frequency bands, specifically in the way they contribute to the P3 phasic peak.

Contributions of power from these two frequency bands to P3 in learning paradigms have

been associated with cognitive processing (delta), and to orienting to a novel stimulus (theta)

in previous works (Bernat et al. (2005, 2007); Harper et al. (2014)). A two-step filtering

process was applied to the individual pre-processed ERP waveforms that were down-sampled

at every fourth-time point (leading to a total of D “ 63 translation parameters in the TFT

decompositions). First, a 3rd order high-pass Butterworth filter at 1.25 Hz was applied to

separate the true signal from the direct current (DC) shift observed in the data. The DC

shift is a well-known phenomenon in which the electrode system measures additional voltage

around 1 Hz alongside the EEG signal due to chemical reactions between the metallic surface

of the electrode and the conductive gel applied to the scalp. Then, we applied high-pass and

low-pass 3rd order Butterworth filters at 4 Hz to the previously filtered signal to separate

the delta (.5 to 4 Hz) and theta (4 to 8 Hz) frequency bands.

Hasenstab et al. (2015) which only modeled P3 amplitudes during the paradigm showed

that implicit learning (signaled by the differences in the P3 peak amplitudes between the

expected and unexpected conditions) took place between trials 5 and 80, with maximal

condition differentiation occurring around trial s “ 30. Hence, we considered modeling lon-

gitudinal trends within this trial range, smin “ 5 to S “ 80, with k “ 30 maximal trials used

in sliding windows As in estimation of trial-specific functional covariances. For computa-

tional efficiency, trial-specific functional covariances from every third trial were averaged in

targeting the marginal functional covariance. These choices guaranteed enough total number

of TFT power surfaces for stable PCA decomposition of the marginal functional covariance,
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where TFT decompositions involved a total of m “ DˆF “ 63ˆ28 “ 1764 total parameters

(total scale parameters in frequency were F “ 28). A sensitivity analysis to the choice of the

total number of trials in the sliding windows As was carried out on the final mixed effects

modeling results of the derived MDPCA scores, where k values within the range [20, 40] lead

to similar results.

Before obtaining the leading eigenvectors in the functional domain, we assessed whether

data from different diagnostic groups, conditions, scalp regions or frequency bands can be

merged in estimation of the functional marginal covariances, as well as assessing the assump-

tion of constant direction of functional variance across trials, leading to estimation of the

marginal functional covariance. While the eigenvectors showed similar directions of vari-

ation within frequency bands across the diagnostic groups, conditions and scalp sections,

they were sufficiently different between the two frequency bands considered, as expected due

to initial filtering of ERPs (Appendix A.1 Figures A.1-A.12). This observation led us to

consider two separate functional marginal covariances and eventually two separate longitu-

dinal analysis of the MDPCA scores in the two frequency bands, which enabled the study of

group differences across the two experimental conditions (expected vs. unexpected) within

each frequency band. In addition, similarity of the directions of variation, captured by the

eigenvectors of trial-specific functional covariances Σs for trials s P t20, 40, 60u, signaled no

violation of the constant direction of functional variation assumption for the data, leading to

estimation of the functional marginal covariance within each frequency band (Appendix A.2

Figures A.13-A.18).

The estimated six leading eigenvectors ϕh, h “ 1, . . . , 6, of the functional marginal covari-

ances explained approximately 60% and 90% of the total functional variation in the theta

and delta frequency bands, respectively, where all six MDPCA scores associated with the six

leading functional eigenvectors were modeled through the proposed mixed effects modeling

framework. The mixed effects modeling for both the delta and theta frequency bands used

four knots for the spline fits for the trial effect, selected by AIC. Multilevel random effects
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were considered at the subject and region levels, where the lme function in the R package

nlme was used to fit the models.

The estimated six leading eigenvectors of the functional marginal covariance for the

delta and theta frequency bands are displayed in Figures 1.4 and 1.5, respectively, where

bounds for the P3 component, expected in the time window of [190, 350] ms, are depicted

with vertical dashed horizontal lines. While the eigenvectors for the delta frequency band

(Figure 1.4) span longer time intervals and do not isolate to the P3 expected time window

that would allow interpretations for power contributions directly to the P3, the estimated

first and third leading eigenvectors for the theta frequency band (Figure 1.5) highlight power

contributions directly to the P3 component from lower theta (4-6 Hz) and higher theta (5-8

Hz) frequency intervals, respectively. Figures 1.4 and 1.5 also display contrasts for ((ASD

expected - ASD unexpected) - (TD expected - TD unexpected)), based on the mixed effects

modeling of the MDPCA scores, obtained by projecting data onto the estimated functional

eigenvectors. More specifically, the estimated contrasts along with their the associated 95%

bootstrap pointwise intervals (CIs), based on resampling from subjects with replacement,

are given in solid black, while the 95% pointwise CIs based directly on the mixed effects

modeling are shaded in gray. Note that while the mixed effects modeling based CIs only

incorporate model based uncertainty, pointwise bootstrap CIs incorporate uncertainty from

the entire LTFT-ERP algorithm including the MTFT and MDPCA decompositions, hence

are wider as a result.

Also provided in Figures 1.4 and 1.5 are the 95% simultaneous bootstrap intervals (dashed

black). Simultaneous CIs are based on a double bootstrap procedure, where the standard de-

viation of the estimated contrast is targeted by the first layer of bootstrap and the unknown

constant c0.95 multiplying the standard deviation is obtained from the second layer. The

unknown constant c0.95 is chosen as the 95th percentile of the distribution of the supremum

of the normalized deviation of the bootstrap contrast estimate from the original contrast es-

timate in the data (normalized by the standard deviation of the bootstrap contrast targeted
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by the second layer of bootstrap) (See Dong et al. (2016) for additional details). Simul-

taneous confidence bands can help test for group differences in the longitudinal trends in

the MDPCA scores (in the entire contrast as a function of trials) and provide insight into

trials that contribute to the detected group differences. We base the interpretations below

on significance of group differences in condition differentiation based on the simultaneous

bootstrap CIs, which are the most conservative among the three sets of CIs provided.

Building on the interpretations from the first leading eigenvector for the theta band that

relatively isolate contributions to P3 from lower theta frequencies, inference on longitudinal

trends of MDPCA scores from simultaneous bootstrap CIs identify significant group differ-

ences for the ((ASD expected - ASD unexpected) - (TD expected - TD unexpected)) contrast

in the posterior scalp section ((Figure 1.5(b)). More specifically, for the leading MDPCA

scores, signaling power from lower theta frequencies, the group condition differentiation con-

trast is significant in the posterior scalp section, where the simultaneous bootstrap CIs do

not contain zero at trials 48 through 54. Note that positive scores on PC1 signal higher theta

power contributions to P3, when multiplied by a positive leading eigenvector. Figure 1.6 (b)

and (d) further display the fitted leading score trajectories in the two conditions for the

two diagnostic groups, respectively. The condition differentiation is larger in the ASD group

(higher theta power contributions to P3 in the unexpected condition) in the posterior section

trials 48-54 in PC1 (where simultaneous bootstrap CI for the group condition differentiation

contrast does not contain zero). Hence the significant group condition differentiation is tied

to the larger condition difference in this range in the ASD group. Condition differentiation

in theta power contributions to P3 in the posterior scalp sections are typically associated

with sensory and visual processing where the significant group condition contrast can be

interpreted as the ASD group displays signs of visual processing in the later parts of the

experiment.

Note that in the frontal scalp section, the TD group displays larger condition differenti-

ation with higher theta power contribution to P3 in the unexpected condition (compared to
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the expected condition) for later parts of the experiment, after trial 60 (Figure 1.6(a)), where

condition differentiation typically signals orienting to the novel stimulus when observed in

the frontal scalp section. However while the pointwise CIs do not contain zero at trials 63

and 64 for the group condition differentiation in the frontal scalp section, the simultaneous

bootstrap CIs do contain zero and do not signal significant group differences in the front

scalp section (Figure 1.5(a)).

1.4.3 Comparison of results to analysis from the time and frequency domains

The LTFT-ERP analysis, not only allows us to study dynamic trends related to learning

throughout the experiment, it also allows for added interpretation from the associated time-

frequency transformations, where power contributions to specific ERP components from

different frequency bands carry different interpretations related to underlying cognitive pro-

cesses. To highlight the specific added interpretations gained from the LTFT-ERP with the

time-frequency joint transformations, we review in this section results from the time domain

only and frequency domain only analysis.

Note that the prior longitudinal modeling of the implicit learning paradigm by Hasenstab

et al. (2015) is carried out strictly in the ERP time domain, where differences in the the

longitudinal trends of the amplitude of the P3 component across trials in the frontal scalp

region is depicted via a mixed effects model. Hasenstab et al. (2015) detected condition

differentiation in both diagnostic groups around trial 30 of the experiment with different

directions of differentiation. More specifically, while the ASD group exhibited higher P3

amplitude in the expected condition, the TD group exhibited higher P3 amplitude in the

unexpected condition (results based on pointwise bootstrap CIs). In a parallel analysis of

longitudinal trends in the frequency domain, we found that relative delta and theta power

stay relatively constant across trials and do not display differences across conditions for both

diagnostic groups.

While the time domain only analysis of Hasenstab et al. (2015) was able to connect to
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learning trends across the two diagnostic groups based on condition differentiation (in the

P3 amplitudes), the analysis could not connect results to specific underlying cognitive pro-

cesses. Note that in the time-frequency joint analysis, we are able to utilize time-frequency

specific information along with scalp section, to connect results to specific processes. More

specifically theta power contributions to P3 in the posterior scalp section are typically as-

sociated with sensory and visual processing, while theta power contributions to P3 in the

frontal scalp section are typically associated with orienting to novel stimulus (Bernat et al.

(2007)). Hence the time-frequency joint analysis brings an additional level of specificity to

interpretations which is lacking in time domain only or frequency domain only analysis.

1.5 Discussion

We have proposed LTFT-ERP to model the longitudinal trends in the ERP signal over

trials/duration of an EEG experiment. Longitudinal changes during the course of an experi-

ment may be the main interest in some studies exemplified by the implicit learning paradigm,

where longitudinal trends capture speed and nature of learning among TD and ASD chil-

dren. LTFT-ERP utilizes time-frequency transformations to retain valuable information

from both the time and frequency domains, enhancing interpretability of the findings. In

addition, under the assumption of constant direction of variation in the functional domain,

the algorithm borrows information across trials (i.e. the longitudinal dimension) in identi-

fying the leading eigenvectors in the functional domain (carrying both time and frequency

information) through the proposed MDPCA. This is a major stabilization tool for the pro-

posed algorithm as it enhances the signal and enables further modeling of the longitudinal

trends in the longitudinal MDPCA scores, obtained through projections of the signal onto

the leading functional eigenvectors. Application to the implicit learning paradigm uncovers

distinct learning patterns throughout the experiment among children diagnosed with ASD

and their typically developing peers.
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Figure 1.4: Summary of results from the proposed LTFT-ERP algorithm from the delta
frequency band. The six estimated leading functional eigenvectors and their corresponding
percent of variance explained are depicted. Contrasts for ((ASD expected - ASD unexpected)
- (TD expected - TD unexpected)), based on the mixed effects modeling of the MDPCA
scores, are also depicted. The contrasts and the associated 95% pointwise and simultaneous
bootstrap intervals, based on resampling from subjects with replacement, are given in solid
black and dashed black, respectively, while the 95% pointwise confidence intervals based on
the mixed effects modeling are shaded in gray. A blue horizontal line at zero is included for
ease of interpretation.
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Figure 1.5: Summary of results from the proposed LTFT-ERP algorithm from the theta
frequency band. The six estimated leading functional eigenvectors and their corresponding
percent of variance explained are depicted. Contrasts for ((ASD expected - ASD unexpected)
- (TD expected - TD unexpected)), based on the mixed effects modeling of the MDPCA
scores, are also depicted. The contrasts and the associated 95% pointwise and simultaneous
bootstrap intervals, based on resampling from subjects with replacement, are given in solid
black and dashed black, respectively, while the 95% pointwise confidence intervals based on
the mixed effects modeling are shaded in gray. A blue horizontal line at zero is included for
ease of interpretation.
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Figure 1.6: Estimated mean trajectories of the MDPCA scores for the leading first eigencom-
ponent in the theta frequency band for each group, scalp section, and condition (expected
solid and unexpected dashed). A grey horizontal line at zero is included for ease of interpre-
tation.
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CHAPTER 2

Central posterior envelopes for Bayesian functional

principal component analysis

Abstract

Bayesian methods provide direct inference in functional data analysis applications without

reliance on bootstrap techniques. A major tool in functional data applications is the func-

tional principal component analysis which decomposes the data around a common mean

function and identifies leading directions of variation. Bayesian functional principal com-

ponents analysis (BFPCA) provides uncertainty quantification on the estimated functional

model components via the posterior samples obtained. We propose central posterior en-

velopes (CPEs) for BFPCA based on functional depth as a descriptive visualization tool

to summarize variation in the posterior samples of the estimated functional model compo-

nents, contributing to uncertainty quantification in BFPCA. The proposed BFPCA relies

on a latent factor model and targets model parameters within a mixed effects modeling

framework using modified multiplicative gamma process shrinkage priors on the variance

components. Functional depth provides a center-outward order to a sample of functions. We

utilize modified band depth and modified volume depth for ordering of a sample of functions

and surfaces, respectively, to derive at CPEs of the mean and eigenfunctions within the

BFPCA framework. The proposed CPEs are showcased in extensive simulations. Finally,

the proposed CPEs are applied to the analysis of a sample of power spectral densities (PSD)

from resting state electroencephalography (EEG) where they lead to novel insights on diag-

nostic group differences among children diagnosed with autism spectrum disorder and their
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typically developing peers across age.
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2.1 Introduction

The literature on functional data analysis (FDA) has seen rapid growth in the past two

decades in the analysis of data where the basic unit of measurement is a high-dimensional

object such as a curve, surface or an image (Ramsay and Silverman (2005)). The wide

spectrum of application areas include neuroscience, engineering, medicine, economics and

geosciences. A major tool for dimension reduction is the functional principal component

analysis (FPCA) for modeling functional variability in the data in lower dimensions (Wang

et al. (2016); Yao et al. (2012); Cardot (2007)). Recent literature on FPCA models complex

dependencies among the functional observations that are observed in close proximity with

respect to time or space (Chen and Müller (2012); Greven et al. (2010); Crainiceanu et al.

(2009); Di et al. (2009); Hasenstab et al. (2017); Scheffler et al. (2020); Campos et al. (2022);

Zipunnikov et al. (2011); Baladandayuthapani et al. (2008); Staicu et al. (2010)). Bayesian

FPCA (BFPCA) offers uncertainty quantification on the functional model components, in-

cluding the mean and eigenfunctions, via credible intervals, without the need for bootstrap.

Developments are typically based on expansion of the functional observation or the func-

tional model components on a set of basis functions, followed by dimension reduction. Suarez

and Ghosal (2017) expanded functional model components on a basis set and modeled the

covariance function via an approximate spectral decomposition, while Montagna et al. (2012)

proposed a Bayesian latent factor regression model (BLFRM) that expands each functional

observation as a linear combination of a high-dimensional basis set and placed a latent factor

model on the basis coefficients. Effective basis selection is achieved in the latter approach

via the multiplicative gamma process shrinkage (MGPS) prior of Bhattacharya and Dunson

(2011) placed on the factor loadings. Traditional data summaries for uncertainty in the

Bayesian setting rely on parametric assumptions or the use of pointwise quantiles. Paramet-

ric credible intervals employed in Crainiceanu et al. (2007) assume approximate posterior

normality to form pointwise or simultaneous credible intervals through estimation of point-

wise variation in the posterior sample. Krivobokova et al. (2010) proposed quantile credible
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intervals using the estimated posterior pointwise quantiles, and extended developments to

simultaneous quantile credible intervals by rescaling of the bounds of the pointwise credible

intervals by a common factor.

The parametric and quantile credible intervals, used to describe uncertainty of the func-

tional posterior estimates, have some drawbacks. Parametric credible intervals are by-design

symmetric around the pointwise mean and are dependent on distributional assumptions that

may not hold when modeling assumptions are violated. Quantile credible intervals allow for

asymmetry using a rank-based approach, however they rely on pointwise ranks while ap-

proximating the ordering of a posterior sample of functions. To address these drawbacks,

we propose central posterior envelopes (CPEs), which are not credible intervals, but are

descriptive visualization tools to summarize the variation in the posterior summaries of the

functional model components, contributing to uncertainty quantification in BFPCA. The

proposed CPEs do not have to be symmetric around the estimated mean and are based on

functional depth in ordering of a posterior sample of curves, rather than pointwise quantiles.

Additionally, CPEs are formed using envelopes delineated by subsets of the posterior func-

tional sample, and hence are fully data-driven, summarizing the variation in the posterior

sample without any parametric assumptions.

Functional depth has been proposed to generalize order statistics to functional data, pro-

viding a center-outward order to a sample of functions (López-Pintado and Romo (2009); Sun

et al. (2012)) and have been extended in a variety of FDA applications including construction

of the median or a trimmed mean function, functional boxplots (Sun and Genton (2012)),

surface boxplots (Genton et al. (2014)), outlier detection via the outliergram (Arribas-Gil

and Romo (2014)), robust rank, permutation and location tests for distributional and dis-

persion differences in two-sample functional data groups (López-Pintado and Wrobel (2017);

López-Pintado and Qian (2020)). López-Pintado and Romo (2009) introduced the notion

of modified band depth (MBD), extending the definition of band depth based on a graph-

based approach, by measuring the proportion of time that a curve lies in the band delimited
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by a subsample of curves. Sun et al. (2012) derived a computationally efficient algorithm

for calculating MBD that can rank millions of curves in seconds. Genton et al. (2014) fur-

ther extended MBD to higher dimensional functional data through modified volume depth

(MVD). We utilize both MBD and MVD to propose functional depth based CPEs for the

mean function and eigenfunctions in BFPCA. MBD-CPEs are formed by ranking the pos-

terior estimates and forming an envelope of a subset of the posterior estimates with the

largest depth values. MVD-CPEs for eigenfunctions are formed via ranking of the posterior

covariance surfaces.

The chapter is organized as follows. The BFPCA model considered is introduced in Sec-

tion 2.2 along with an outline of the traditional posterior summaries for the BFPCA model

components. The considered BFPCA is a simplification of previous formulations in liter-

ature, where a Bayesian estimation for model components is followed by derivation of the

estimated mean and eigenfunctions through singular value decomposition of the estimated

covariance surfaces. The proposed model uses a latent factor model to represent the func-

tional observations where the mean function and latent factors are further expanded on a

basis set. A normal-inverse gamma prior is placed on the coefficients of the mean function,

and a modified multiplicative gamma process shrinkage (MMGPS) prior is placed on the

factor loadings to induce sparsity in basis selection similar to BLFRM. A computationally

efficient estimation procedure is proposed for the considered BFPCA via fully conjugate

priors that leads to implementation through a Gibbs sampler. The proposed CPEs based

on functional depth are outlined in Section 2.3, followed by simulation studies to show-

case their finite sample performance in the presence of different types of functional outliers

(Section 2.4). Section 2.5 outlines application of CPEs to analysis of a sample of power

spectral densities (PSD) from resting state electroencephalography (EEG). Novel insights

are provided on diagnostic group differences in the evolution of PSD across age among chil-

dren diagnosed with autism spectrum disorder and their typically developing peers. A brief

discussion is included in Section2.6.
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2.2 Bayesian functional principal component analysis

2.2.1 Model specification

Let Yiptq “ fiptq ` ϵiptq denote the observed noisy response measurements for subject i,

i “ 1, . . . , n, represented as a sum of a smooth underlying function fiptq, and measurement

error ϵiptq. The measurement error ϵiptq is assumed to be i.i.d. with mean zero and variance

σ2
ϵ . The smooth function fiptq is assumed to be square integrable with mean µptq and covari-

ance Cps, tq “ Covtfipsq, fiptqu “
ř8

k“1 ρkψkpsqψkptq, where ρ1 ě ρ2 ě . . . denote the ordered

nonnegative eigenvalues, and ψ1ptq, ψ2ptq, . . . denote the corresponding eigenfunctions. While

the eigenfunctions describe direction of leading modes of variation in the functional data, the

eigenvalues quantify the amount of variation explained by the different modes of variation.

The Karhunen-Loève (KL) expansion of fiptq is then given by fiptq « µptq `
ř8

k“1 ξikψkptq,

where ξik “
ş

t
tfiptq ´ µptquψkptqdt denotes the kth subject-specific FPCA score with mean

zero and variance ρk. In practice, the expansion is truncated to include K eigencompo-

nents, fiptq « µptq `
řK

k“1 ξikψkptq, based on fraction of variance explained (FVE), where

the covariance is approximated by Cps, tq «
řK

k“1 ρkψkpsqψkptq. A total of K “ 2 or 3

eigencomponents are typically retained in most applications (explaining more than 80% of

the total variation), achieving effective dimension reduction.

The BFPCA model considered is based on a latent factor model constructed for fiptq “

µptq `
řL

ℓ“1 ηiℓϕℓptq, where ϕℓptq, ℓ “ 1, . . . , L, denote the L latent components and ηiℓ „

Np0, 1q, ℓ “ 1, . . . , L, denote the corresponding uncorrelated subject-specific scores. Next,

the mean function and latent components are expanded on a set of R B-spline basis functions

(b1ptq, . . . , bRptq), µptq “
řR

r“1 βrbrptq and ϕℓptq “
řR

r“1 λrℓbrptq, where βr and λrℓ denote the

mean coefficients and factor loadings, respectively. This leads to the following expansion of

fiptq “
řR

r“1rβr `
řL

ℓ“1 ηiℓλrℓsbrptq, which in vector form can be written as the mixed effects
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model

Y i “ f i ` ϵi “ Bpβ ` Ληiq ` ϵi, (2.1)

ηi „ NLp0L, ILq, ϵi „ NT p0T , σ
2
ϵ IT q, i “ 1, . . . , n,

where Y i “ tYipt1q, . . . , YiptT quJ denotes the response observed at a total of T time points,

f i “ tfipt1q, . . . , fiptT quJ denotes the T ˆ 1 vector of underlying smooth functions and

ϵi “ tϵipt1q, . . . , ϵiptT quJ denotes the T ˆ 1 vector of measurement error. Furthermore, in

(2.1), B “ pb1, . . . ,bRq denotes the T ˆ R matrix of B-spline basis functions with br “

tbrpt1q, . . . , brptT quJ, β “ pβ1, . . . , βRqJ denotes the R ˆ 1 vector of mean coefficients, Λ “

pλ1, . . . ,λLq denotes the R ˆ L factor loading matrix with λℓ “ pλiℓ, . . . , λRℓq
J and ηi “

pηi1, . . . , ηiLqJ denotes the L ˆ 1 vector of subject-specific scores. Finally, 0L and 0T are

used to denote the Lˆ 1 and T ˆ 1 vectors of zeros, respectively, and IL and IT are used to

denote the L ˆ L and T ˆ T identity matrices.

Note that in the BFPCA formulation in (2.1), the total number of latent components L

are typically larger thanK, the number of eigencomponents retained in the FPCA expansion.

Based on empirical studies, Shamshoian et al. (2022) report that the estimation of the mean

function and the covariance surface is robust to different choices of R, the total number

of basis functions used in the expansion, provided L is large. Following guidance from

Shamshoian et al. (2022), R is selected to be a fraction of the total number of time points

T , R “ tT {2u, to provide adequate smoothing of fiptq, and L is selected to be a fraction

of R, L “ maxp6, tR{4uq. Fully conditional conjugate priors on the variance components

are selected to achieve efficient posterior estimation in BFPCA. More specifically, using

Gaussian priors for the mean coefficients β and factor loadings λℓ, noninformative prior for

the error variance σ2
ϵ (proportional to a constant c), gamma prior for the variance of the

mean coefficients σ2
β and a modified multiplicative gamma process shrinkage (MMGPS) prior
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for the variance components of the factor loading matrix σ2
λrℓ

,

β „ NR

˜

0R,
1

σ2
β

Ω´1

¸

, σ2
β „ Gamma

´aβ
2
,
aβ
2

¯

,
1

σ2
ϵ

9c (2.2)

λℓ „ NR p0R,Σλℓ
q , Σλℓ

“ diagpσ2
λ1ℓ
, . . . , σ2

λRℓ
q, σ2

λrℓ
“ φ´1

rℓ τ
´1
ℓ , φrℓ „ Gamma

´ν

2
,
ν

2

¯

τℓ “

ℓ
ź

h“1

δh, δ1 „ Gammapa1, 1q, δh „ Gammapa2, 1qIpδh ą 1q, h ě 2.

we target the posterior distributions in model (2.1) using a Gibbs sampler (posterior distribu-

tions and details on choice of hyperparameters, aβ, ν, a1, a2, are deferred to Appendix B.1).

In (2.2), 0R denotes an Rˆ 1 vector of zeros, Ω is a positive-definite RˆR penalty matrix,

Σλℓ
is a RˆR diagonal matrix comprised of the variance components, σ2

λ1ℓ
, . . . , σ2

λRℓ
, for the

the ℓth factor loading λℓ, and Ip¨q denotes the indicator function. The variance components

of the factor loading matrix, denoted by σ2
λrℓ

, are given a MMGPS prior adapted from Bhat-

tacharya and Dunson (2011), where φrℓ and τℓ denote the element-wise and column-wise

precisions, respectively. The column-wise precision τℓ is the cumulative product of gamma

distributed δh for h “ 1, . . . , ℓ. The truncation of δh to be larger than one when h ě 2

guarantees that τℓ increases with ℓ, forcing columns of Λ, λℓ, to get stochastically smaller as

ℓ increases. Note that this mimics the estimation of eigenfunctions in FPCA with ordered

(decreasing) eigenvalues and results in effective basis selection (Montagna et al. (2012)).

2.2.2 Traditional posterior summaries for BFPCA components

Posterior estimates of the mean coefficient vector βpmq
“ pβ

pmq

1 , . . . , β
pmq

R qJ and factor load-

ing matrix Λpmq “ pλ
pmq

1 , . . . ,λ
pmq

L q, with λ
pmq

ℓ “ pλ
pmq

1ℓ , . . . , λ
pmq

Rℓ qJ, where the superscript m,

m “ 1, . . . ,M , is used to index the posterior estimates obtained from the MCMC sampler

after burn-in and thinning, leads to the posterior estimates of the mean function, µpmqptq “

řR
r“1 β

pmq
r brptq, and the covariance Cpmqps, tq “

řR
r“1

řR
r1“1

řL
ℓ“1 λ

pmq

rℓ λ
pmq

r1ℓ brpsqbr1ptq. In an

attempt to recover the additional interpretations offered by the lower dimensional representa-
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tion of FPCA (where eigenfunctions describe the leading modes of variation in the functional

data), we consider the singular value decomposition of Cpmqps, tq «
řK

k“1 ρ
pmq

k ψ
pmq

k psqψ
pmq

k ptq,

targeting the posterior estimates of the eigenfunctions, ψ
pmq

k ptq, and eigenvalues, ρ
pmq

k . The

total number of eigencomponents retained, K, is chosen by the mean or the median FVE

calculated across the posterior samples. Since the sign of the eigenfunctions are not identifi-

able, we implement an additional alignment step in obtaining the posterior estimates of the

eigenfunctions (see Appendix B.2 for further details).

The mean estimate is obtained by averaging the posterior estimates, pµptq “ p1{Mq
řM

m“1

µpmqptq. The eigenfunctions and eigenvalues can be targeted in two ways. The first approach

is to average the posterior estimates, pψkptq “ p1{Mq
řM

m“1 ψ
pmq

k ptq, pρk “ p1{Mq
řM

m“1 ρ
pmq

k ,

k “ 1, . . . , K, similar to the mean estimate. An alternative approach is to first target the

mean of the posterior covariances, rCps, tq “ p1{Mq
řM

m“1C
pmqps, tq, followed by SVD of

rCps, tq «
řK

k“1 rρk
rψkpsq rψkptq, leading to the eigenfunction and eigenvalue estimates obtained

via covariance estimation, denoted by rψkptq and rρk, respectively. While we evaluate the

finite sample performance of both point estimates for the eigenfunctions and eigenvalues

via simulations, we center the traditional credible intervals for these quantities around the

posterior average estimates.

A main advantage of BFPCA is the readily available inference provided for the FPCA

components based on the posterior sample. While credible intervals can be constructed

for the scalar components (including eigenvalues or FVE) using the standard deviation or

percentiles obtained from the posterior sample, we center our discussion mainly on inference

for the functional components, which is the focus of the proposed functional depth based

approach. For the functional components of FPCA, i.e. the mean and eigenfunctions,

traditional posterior summaries include pointwise and simultaneous, parametric and quantile

credible intervals. In the formulations below, parametric and quantile credible intervals will

be denoted by capital ‘P’ and ‘Q’, respectively, for ease of notation, while pointwise and

simultaneous credible intervals will be distinguished by the superscripts ‘p’ and ‘s’. While
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the parametric intervals are based on variance of the estimates in the posterior sample, the

quantile intervals leverage pointwise quantiles obtained from the posterior sample. Let gptq

denote either the mean or eigenfunction of interest, observed at time points tj, j “ 1, . . . , T ,

and let pgptjq and V ar
Ź

tgptjqu denote the sample mean and variance of gptjq calculated from

the M MCMC samples gpmqptq. The p1 ´ αq100% pointwise parametric credible interval

for gptq is given by rpgptjq ˘ zα

b

V ar
Ź

tgptjqu; j “ 1, . . . , T s (denoted as P p
1´αtgptqu), where

zα “ Φ´1p1 ´ α{2q with Φ denoting the CDF of the standard normal distribution. For

defining the simultaneous parametric credible intervals, let cα denote the p1 ´ αq sample

quantile of maxj“1,...,T | tgpmqptjq ´ pgptjqu{

b

V ar
Ź

tgptjqu | over the M posterior samples.

Then the p1´αq100% simultaneous parametric credible interval for gptq is given by rpgptjq ˘

cα

b

V ar
Ź

tgptjqu; j “ 1, . . . , T s (denoted as P s
1´αtgptqu) (Crainiceanu et al. (2007)).

For the pointwise and simultaneous quantile credible intervals, let gα{2ptjq and g1´α{2ptjq

denote the pointwise α{2 and p1 ´ α{2q sample quantiles of gpmqptq, m “ 1, . . . ,M at t “ tj,

respectively. Then p1 ´ αq100% pointwise quantile credible interval for gptq is given by

rtgα{2ptjq, g1´α{2ptjqu; j “ 1, . . . , T s (denoted as Qp
1´αtgptqu). The p1 ´ αq100% simultaneous

quantile credible interval for gptq is given by rpgptjq ` qtgα{2ptjq ´pgptjqu, pgptjq ` qtg1´α{2ptjq ´

pgptjqu; j “ 1, . . . , T s (denoted as Qs
1´αtgptqu), where q is a common factor that rescales

the upper and lower bounds until p1 ´ αq100% of the posterior estimates are contained

inside the credible interval (Krivobokova et al. (2010)). Note that the factor q is common

across all time points tj in the above formulation and that both pointwise and simultaneous

quantile credible intervals rely on pointwise quantiles while trying to quantify uncertainty

in estimation of a functional component. The proposed central posterior envelopes based on

functional depth consider ranking of the entire functional estimates in the posterior sample,

rather than relying on pointwise quantiles. The code for implementation of the quantile

credible intervals can be found in the R package acid. The notations used for the traditional

posterior summaries outlined above, as well as the functional depth based intervals proposed

in the next section, are summarized for the readers reference in Table 2.1.
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2.3 Proposed functional depth based CPEs for BFPCA compo-

nents

The traditional posterior summaries outlined in Section 2.2.2 have potential pitfalls when de-

scribing posterior distributions of functional data. The parametric credible intervals rely on

distributional assumptions, which may be violated under deviation from modeling assump-

tions. In addition, the parametric credible intervals are symmetric around the pointwise

mean, which is restrictive when capturing potential asymmetry in posterior distributions

in the presence of highly variable and/or skewed posterior samples. Although the quantile

credible intervals are data-driven and more flexible with potential asymmetry, their con-

struction relies on pointwise quantiles. In particular, instead of treating posterior samples

as functional data, the quantile credible intervals are estimated by ranking of the posterior

samples at each time point. Furthermore, scaling the pointwise quantiles by a common fac-

tor q across all time points in construction of the simultaneous quantile credible intervals

may be too restrictive in modeling the spread in the functional posterior samples. In order

to circumvent these issues, the use of functional depth is proposed to rank the functional

posterior estimates to obtain fully data-driven CPEs that capture uncertainty in a flexible

way.

Functional depth is a measure that provides a center-outward ordering of a sample of

functional observations. In particular, functional depth ranks a sample of functions from

the ‘deepest’ curve with the highest functional depth value, defined as the median curve,

to the most outlying curve with the lowest functional depth value. Although there are a

number of functional depth measures that have been proposed in the literature (see Zuo

and Serfling (2000) and Gijbels and Nagy (2017)), modified band depth based on a graph-

based approach has been quite popular in applications López-Pintado and Romo (2009). Let

gp1qptq, . . . , gpMqptq, t P I, denote a sample of M functional posterior estimates, either for

the mean or eigenfunctions, defined on a compact interval I, where I P R. The band in R2
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delineated by a subset of u, 2 ď u ď M , posterior estimates, gpm1qptq, . . . , gpmuqptq, drawn

from the full posterior sample tgp1qptq, . . . , gpMqptqu is given by

B
␣

gpm1q
ptq, . . . , gpmuq

ptq
(

“

„

tt, gptqu : t P I, min
v“m1,...,mu

gpvq
ptq ď gptq ď max

v“m1,...,mu

gpvq
ptq

ȷ

.

Appendix Figures B.1(a) and (b) represent two bands B
␣

gp1qptq, gp2qptq
(

and B
␣

gp3qptq, gp4qptq
(

,

delimited by two curves, where in the first figure the entire graph of gpmqptq and in the

second a proportion of it is included in the band. Band depth of López-Pintado and

Romo (2009) considers the proportion of bands B
␣

gpm1qptq, . . . , gpmuqptq
(

determined by u

different curves gpm1qptq, . . . , gpmuqptq containing the graph of gptq. Modified band depth

(MBD) extends band depth, such that rather than the proportion of bands that con-

tain the entire graph of gptq, MBD considers the proportion of time that the graph of

gptq lies inside the bands. More specifically, let Autgpmqptq; gpm1qptq, . . . , gpmuqptqu “ tt P

I : minv“m1,...,mu g
pvqptq ď gpmqptq ď maxv“m1,...,mu g

pvqptqu denote the set in the inter-

val I where the function gpmqptq lies inside the band Btgpm1qptq, . . . , gpmuqptqu. Further

let A˚
utgpmqptq; gpm1qptq, . . . , gpmuqptqu “ θrAutgpmqptq; gpm1qptq, . . . , gpmuqptqus{θpIq denote the

proportion of time that the curve gpmqptq lies inside the band Btgpm1qptq, . . . , gpmuqptqu, where

θp¨q denotes the Lebesgue measure on I. If 2 ď U ď M denotes a fixed total number of

curves used to delineate a band, then the modified band depth (MBD) for the curve gpmqptq

in gp1qptq, . . . , gpMqptq given U is

MBDM,U

␣

gpmq
ptq

(

“

U
ÿ

u“2

«

ˆ

M

2

˙´1
ÿ

1ďm1ăm2ă...ămuďM

A˚
u

␣

gpmq
ptq; gpm1q

ptq, . . . , gpmuq
ptq

(

ff

.

MBD ranks each curve in the sample gp1qptq, . . . , gpMqptq as the sum ofA˚
utgpmqptq; gpm1qptq, . . . ,

gpmuqptqu over all possible combinations of bands delineated by 2 ď U ď M total curves that

can be formed. Functions where a higher proportion of the curve lies in a higher number of

bands get a higher MBD value, representing curves that are closer to the center of the sample.

Those curves with lower MBD values have a lower proportion of the curve lying in a lower
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proportion of bands, representing outlying observations, resulting in an effective ranking of

the sample. We follow common practice and set U “ 2 in applications for computational effi-

ciency (and drop U from the MBD notation), where bands delineated by all combinations of

two curves are considered in the MBD definition (i.e. MBDMtgpmqptqu ” MBDM,2tgpmqptqu).

MBD of the posterior estimates are utilized to obtain point estimates (i.e. MBD median)

and functional band depth central posterior envelopes (i.e. MBD-CPEs for the BFPCA

functional components (µptq and ψkptq). While the MBD median equals the functional

median of the posterior sample, the p1´αq100% MBD-CPE is formed by the band delineated

by the 1 ´ α deepest posterior estimates in the sample. The MBD median and p1 ´ αq100%

MBD-CPE formed for the functional BFPCA component gptq, denoted by pmtgptqu and

D1´αtgptqu, respectively, are targeted via Algorithm 1. Note that similar to functional depth

based central envelopes proposed for functional data, CPEs are not credible intervals, but they

rather are descriptive visualization tools that help summarize the variation in the posterior

sample. When plotted for a grid of α values, CPEs display the central envelopes allowing for

visualization of the most central regions of the functional posterior distributions.

Algorithm 1: MBD Median and MBD-CPE for gptq ” µptq or gptq ” ψkptq

Step 1: Calculate the MBD of the posterior samples: MBDMtgp1qptqu, . . . ,MBDMtgpMqptqu.
Step 2: Order the MBD values of the posterior sample from the smallest to the largest and
denote the corresponding ordered samples as gr1sptq, . . . , grMsptq.

Step 3: Calculate the p1 ´ αq100% MBD-CPE as

D1´αtgptqu “ B
␣

grtαMu`1s
ptq, . . . , grMs

ptq
(

,

and the MBD median as pmtgptqu “ grMsptq.

An alternative way for obtaining point estimates and CPEs for the eigenfunctions ψkptq,

k “ 1, . . . , K, is to rank the posterior covariance surfaces using modified volume depth

(MVD). MBD has been extended to surface data as MVD to provide a way to rank two-

dimensional functional data (Sun et al. (2012); Genton et al. (2014)) (for extensions to higher-

dimensional functional data, see López-Pintado andWrobel (2017)). Let Cp1qps, tq, . . . , CpMqps, tq,
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ps, tq P S, denote a sample of M posterior covariance estimates, defined on S P R2. Fur-

ther let AutCpmqps, tq;Cpm1qps, tq, . . . , Cpmuqps, tqu “ tps, tq P S : minv“m1,...,mu C
pvqps, tq ď

Cpmqps, tq ď maxv“m1,...,mu C
pvqps, tqu denote the region in S where the covariance Cpmqps, tq

lies inside the simplex delineated by the covariances Cpm1qps, tq, . . . , Cpmuqps, tq. In addition,

A˚
utCpmqps, tq;

Cpm1qps, tq, . . . , Cpmuqps, tqu “ ϑrAutCpmqps, tq;Cpm1qps, tq, . . . , Cpmuqps, tqus{ϑpSq is used to

denote the proportion of time that the covariance Cpmqps, tq lies inside the simplex formed

by the covariances Cpm1qps, tq, . . . , Cpmuqps, tq, where ϑp¨q denotes the Lebesgue measure ex-

tended to R2. Considering U “ 2 total covariances to delineate a simplex (similar to the

definition of MBD), MVD for the covariance Cpmqps, tq in Cp1qps, tq, . . . , CpMqps, tq is given as

MVDM

␣

Cpmq
ps, tq

(

“

ˆ

M

2

˙´1
ÿ

1ďm1ăm2ďM

A˚
2

␣

Cpmq
ps, tq;Cpm1q

ps, tq, Cpm2q
ps, tq

(

.

MVD of the posterior covariance estimates are utilized to obtain point estimates (i.e. MVD

median) and functional volume depth CPEs (i.e. MVD-CPEs) for ψkptq, k “ 1, . . . , K.

The MVD median and p1 ´ αq100% MVD-CPE formed for ψkptq, denoted by rmtψkptqu and

D‹
1´αtψkptqu, respectively, are targeted via Algorithm 2. The algorithm starts with ranking

the posterior covariances using MVD and obtaining their corresponding eigenfunctions. The

MVD median for ψkptq equals the functional median of the posterior eigenfunctions, while

the p1 ´ αq100% MBD-CPE for ψkptq is formed by the band delineated by the 1 ´ α deep-

est eigenfunction estimates in the sample, where the eigenfunction estimates are ordered

according to MVD of their corresponding posterior covariances.

Functional depth based medians proposed above (pmtµptqu, pmtψkptqu and rmtψkptqu) es-

timate the central tendency in the posterior distributions of the mean and eigenfunctions

and provide a realistic estimate equal to one of the observed functional posterior samples

rather than relying on pointwise averages as is done in most of the traditional posterior sum-

maries. In addition, the proposed functional depth based CPEs (denoted by D1´αtgptqu and
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Algorithm 2: MVD Median and MVD-CPE for ψkptq

Step 1: Calculate the MVD of the posterior covariances:

MVDMtCp1q
ps, tqu, . . . ,MV DMtCpMq

ps, tqu.

Step 2: Order the MVD values of the posterior sample from smallest to largest and denote
the corresponding covariances as Cr1sps, tq, . . . , CrMsps, tq.

Step 3: The SVD of the ordered covariances lead to their corresponding ordered eigenfunc-
tions ψ

r1s

k ptq, . . . , ψ
rMs

k ptq.
Step 4: Calculate the p1 ´ αq100% MVD-CPE as

D‹
1´αtψkptqu “ B

!

ψ
rtαMu`1s

k ptq, . . . , ψ
rMs

k ptq
)

,

and the MVD median as rmtψkptqu “ ψ
rMs

k ptq.

D‹
1´αtψkptqu, corresponding to MBD and MVD based summaries, respectively), are formed

from a band delineated from the 1 ´ α deepest subset of the functional posterior estimates.

Hence, the proposed methods use functional depth measures to construct fully data-driven

summaries that capture the uncertainty in the posterior estimates in a flexible way. Nota-

tions used for point estimates and credible intervals both in the traditional summaries and

in the proposals are summarized in Table 2.1.

2.4 Simulation Studies

We consider five simulation scenarios to display the use of CPEs in describing the variation

in the posterior samples in the presence of functional outliers. We also study the finite

sample properties of the traditional summaries from Section 2.2.2 under different simulation

scenarios. More specifically five simulation scenarios are proposed: Case 1 – no outliers,

Case 2 – magnitude outlier, Case 3 – amount of variation outlier, Case 4 – time-shifted

eigenfunction outlier, Case 5 – higher-frequency eigenfunction outlier. Magnitude outliers

are generated by adding a constant deviation (with a random sign) to µptq for t ě Ti, where

Ti „ Unifr0, 1s. This adds constant variation to randomly selected portions of the unit time
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domain in r0, 1s, where more of the variation is added to the latter part of the domain.

Amount of variation outliers are generated using larger eigenvalues ρk, which result in added

variation throughout the unit interval. Finally, eigenfunction outliers are generated from

time-shifted (Case 4) or higher frequency (Case 5) eigenfunctions, where additional variation

is added along the direction of the time-shifted or higher frequency eigenfunctions used.

Results are reported for outliers generated as q “ 10 and 20% of the sample (n “ 50), where

details of data generation under the five simulation scenarios are deferred to Appendix B.3.

The BFPCA model is fitted using R “ 20 B-spline basis functions with equidistant knots

in r0, 1s and L “ 6 latent factors, for functional data observed at a uniform grid of 40 time

points. Results are reported based on a total of 200 Monte Carlo runs with 25, 000 MCMC

iterations (5, 000 for burn-in and thinning at every 5th iteration), and M “ 4, 000 posterior

estimates for each Monte Carlo run. Finite sample performance of point estimates of the

functional model components (i.e. mean and eigenfunctions) and scalar model components

(i.e. eigenvalues) are assessed via the standardized integrated mean squared error (IMSE),

IMSE
pgptq “ r

ş

t
tpgptq ´ gptqu2dts{

ş

t
g2ptqdt, and the standardized mean squared error (MSE),

MSE
xρk “ ppρk ´ ρkq2{ρ2k, respectively. The mean IMSE and MSE values from 200 Monte

Carlo runs for the five simulation scenarios are summarized in Table 2.2. The traditional

and proposed point estimates for the mean function and the leading two eigenfunctions from

the Monte Carlo run with the median IMSE are given in Appendix Figure B.2, Figure 2.1

and Figure 2.2, respectively.

Appendix Figure B.3 and Figures 2.3 and 2.4 display CPEs from α cutoffs ranging from

0.05 to 0.95 for the mean function and the leading two eigenfunctions, respectively, from a

single Monte Carlo run overlaying M “ 4, 000 posterior estimates (given in gray) for the five

simulation scenarios (for outlier percentage equal to q “ 20% in Figures 2.3 and 2.4). CPEs

from increasing α cutoffs help visualize regions with the most central functional posterior

observations in the sample. Note that while MBD-CPEs for the eigenfunctions are nested in

each other for increasing α values, MVD-CPEs are not necessarily nested since they are based
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Table 2.2: The mean standardized integrated mean squared error (IMSE) and standard-
ized mean squared error (MSE) for both the traditional and functional depth-based point
estimates from the 200 Monte Carlo runs. The five simulation cases correspond to: Case
1 – no outliers, Case 2 – magnitude outlier, Case 3 – amount of variation outlier, Case 4
– time-shifted eigenfunction outlier, Case 5 – higher-frequency eigenfunction outlier with
q “ t10, 20u% outliers.

q “ 10% q “ 20%
Point Estimate Case 1 Case 2 Case 3 Case 4 Case 5 Case 2 Case 3 Case 4 Case 5

IMSE IMSE IMSE
pµptq 0.0033 0.0077 0.0042 0.0040 0.0039 0.0117 0.0047 0.0037 0.0042
pmtµptqu 0.0036 0.0080 0.0045 0.0042 0.0042 0.0122 0.0048 0.0040 0.0045
pψ1ptq 0.0303 0.4723 0.0441 0.0549 0.0320 0.8975 0.0693 0.0894 0.0395
rψ1ptq 0.0308 0.5104 0.0445 0.0568 0.0320 0.9375 0.0713 0.0903 0.0398
pmtψ1ptqu 0.0344 0.5223 0.0481 0.0603 0.0358 0.9525 0.0768 0.0956 0.0442
rmtψ1ptqu 0.0367 0.4955 0.0481 0.0606 0.0400 0.9303 0.0723 0.0972 0.0518
pψ2ptq 0.0482 1.1887 0.0565 0.0670 0.1187 1.3740 0.0790 0.1017 0.5130
rψ2ptq 0.0477 1.3365 0.0554 0.0672 0.1290 1.4922 0.0786 0.0971 0.5951
pmtψ2ptqu 0.0559 1.3476 0.0644 0.0746 0.1424 1.4891 0.0869 0.1101 0.6284
rmtψ2ptqu 0.0676 1.3488 0.0682 0.0812 0.1364 1.4796 0.0867 0.1106 0.6197

MSE MSE MSE
pρ1 0.0303 0.4723 0.0441 0.0549 0.0320 0.8975 0.0693 0.0894 0.0395
rρ1 0.0308 0.5104 0.0445 0.0568 0.0320 0.9375 0.0713 0.0903 0.0398
pρ2 0.0482 1.1887 0.0565 0.0670 0.1187 1.3740 0.0790 0.1017 0.5130
rρ2 0.0477 1.3365 0.0554 0.0672 0.1290 1.4922 0.0786 0.0971 0.5951

51



on the functional depth rankings of the posterior covariance surfaces, rather than posterior

eigenfunctions. This is also the reason why MVD-CPEs are typically wider than MBD-CPEs,

incorporating variation from the entire covariance process, rather than only eigenfunction-

specific variation. More specifically, the first simulation scenario of no outliers shows that the

traditional point estimates ( pψkptq and rψkptq) perform quite well (yielding small IMSE and

MSE values) compared to their depth based counter parts (pmtψkptqu and rmtψkptqu) in the

absence of outliers (Table 2.2). The magnitude outliers in the second simulation scenario add

a constant deviation from the mean function over a random portion of the time domain (t P

rTi, 1s) with a random sign. Due to the random sign of the constant deviation, rather than

biasing the mean function, they increase the variation in the mean function estimation (IMSE

values for mean estimation are higher for Case 2 than other simulation scenarios in Table 2.2).

The addition of the constant deviation also leads to identifiability issues in eigenfunction

estimation, where CPEs of the first eigenfunction portray the constant variation, especially

in the second half of the unit time domain. MBD-CPEs up to α “ 0.95 and MVD-CPEs

up to α “ 0.50 are constant in the second half of the unit interval (Figure 2.3). CPEs of

the second eigenfunction capture variation along the first eigenfunction as the second major

direction of variation (following the constant variation in the second half of the unit time

interval) (Figure 2.4). This leads to higher IMSE values in eigenfunction estimation for Case

2 compared to other simulation cases. Note that the traditional point estimate pψkptq has

the smallest IMSE values for Case 2, possibly due to the cancellation of the effects of the

constant deviation with a random sign while averaging over the posterior samples.

Case 3 generates outliers with larger eigenvalues, which increase the variation along the

eigenfunctions. Due to the shapes of the two eigenfunctions considered this adds variation

across the entire unit interval, as is detected through the CPEs in Figures 2.3 and 2.4. While

this additional variation does not bias the point estimates (except for ρk), the IMSE in esti-

mation of the eigenfunctions are slightly higher than Case 1 with no outliers. Finally, Cases

4 and 5 consider direction of variation outliers where the functional data is generated under
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altered eigenfunctions: in Case 4 eigenfunctions are shifted in time, in Case 5 the frequency

of the eigenfunctions is increased. Both cases lead to added variation in estimation of the

eigenfunctions (consistent with higher IMSE values for targeting ψkptq compared to Case 1

in Table 2.2). More specifically, while the time shift in both eigenfunctions adds variation

to eigenfunction estimation throughout the unit interval in Case 4, the added variation due

to outliers with higher frequency eigenfunctions is apparent especially in Figures 2.4 (i) and

(j) with higher frequency posterior estimates of ψ2ptq captured in the α “ 0.95 MBD-CPEs

and α “ 0.25 MVD-CPEs.

We also assess how well the traditional credible intervals reflect variation in the posterior

sample under the five simulation scenarios. Appendix Figures B.4, B.5 and B.6 display

the 95% parametric and quantile credible intervals and 95% CPEs for reference, for the

mean function and the leading two eigenfunctions, respectively, from a single Monte Carlo

run overlaying M “ 4, 000 posterior estimates for the five simulation scenarios (for outlier

percentage equal to q “ 20%). The added variation in the posterior estimates of especially

the eigenfunctions really help portray the shortcomings of the symmetry restrictions and

constant multipliers used in enlarging of the simultaneous parametric and quantile credible

intervals, respectively. Appendix Figures B.5 and B.6 (d), (g), (j) and (m) show that the

symmetry restriction (around the pointwise mean) of the parametric credible intervals force

the credible intervals to be too wide in one bound and too narrow in the other, especially

when the variation in the posterior sample is not symmetric. While the quantile credible

intervals perform better relative to their parametric counter parts, they also include regions

that do not represent posterior sample variation, perhaps due to the restrictive enlargement

of the credible intervals by a constant multiplier that is kept the same over the entire time

domain. The latter point is best observed in Table 2.3, reporting two metrics: negative

area ratio (NAR) and area ratio (AR). NAR and AR capture the ratio of the area of the

credible interval or CPE that lies outside and inside of posterior sample (proportional to

the area of the posterior sample), respectively. Hence, while higher AR values (AR P r0, 1s)
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correspond to a more realistic portrayal of the variation in the posterior sample estimates in

the presence of functional outliers, NAR values greater than zero can signal problems with

the credible intervals (i.e. via inclusion of regions that do not represent the posterior sample),

possibly due to symmetry constraints. Similar to previous sections, let gp1qptq, . . . , gpMqptq

denote theM MCMC samples, where gptq ” µptq or ψkptq. In addition, denote the pointwise

lower and upper bounds of the posterior sample by gminptjq “ minm“1,...,Mtgpmqptjqu and

gmaxptjq “ maxm“1,...,Mtgpmqptjqu, respectively, at a total of T grid points tj, j “ 1, . . . , T .

Finally denote the pointwise lower and upper bounds of the discretized p1´αq100% credible

interval H1´αtgptqu by H1´αtgptjqu “ rLptjq, Uptjqs for tj, j “ 1, . . . , T . Then NAR and AR

are given as follows

NARrH1´αtgptqus “

řT
j“1rtUptjq ´ gmaxptjquItUptjq ą gmaxptjqus

řT
j“1tgmaxptjq ´ gminptjqu

`

řT
j“1rtgminptjq ´ LptjquItgminptjq ą Lptjqus

řT
j“1tgmaxptjq ´ gminptjqu

ARrH1´αtgptqus “

řT
j“1rmintUptjq, gmaxptjqu ´ maxtLptjq, gminptjqus

řT
j“1tgmaxptjq ´ gminptjqu

.

For the proposed CPEs and pointwise quantile credible intervals, NAR always equals zero,

since these summaries are based on pointwise or functional ordering of the data and therefore

have to lie within the posterior sample. However the simultaneous quantile credible intervals

may have NAR values larger than zero, since the bounds of the pointwise quantile intervals

are rescaled by a common factor that is constant across tj. The mean NAR and AR values

based on the 200 Monte Carlo runs across the five simulation scenarios are summarized

in Table 2.3. In summary, simultaneous credible intervals lead to higher AR values than

their pointwise counterparts (parametric and quantile), as expected, and have nonzero NAR

values except for pointwise quantile credible intervals. This also confirms that they can

cover regions not representing posterior sample variation as is observed from the figures.

The CPEs have AR values equal to or larger than all traditional credible intervals and have
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NAR equal to zero by definition. Hence, CPEs provide a more flexible representation of the

shape and spread of the posterior sample in the presence of functional outliers (or added

variability in estimation due to violation of modeling assumptions) and can contribute to

the visualization of the functional posterior sample in applications.

2.5 Data Application

We use CPEs in the analysis of EEG power spectral densities obtained on a sample of 58

children with autism spectrum disorder (ASD) and 39 of their typically developed (TD)

peers at resting state (Dickinson et al. (2018)). The goal of the study was to characterize the

shift in the peak alpha frequency (PAF), a neurological biomarker defined as the location

of a single prominent peak in the alpha frequency band (6-14Hz) of the spectral density,

across development. It was of particular interest to compare ASD and TD groups in their

evolution of the alpha peak across chronological age. PAF has been shown to shift from

lower to higher frequencies as children grow older in the TD group (Somsen et al. (1997);

Stroganova et al. (1999); Dustman et al. (1999); Chiang et al. (2011); Cragg et al. (2011);

Miskovic et al. (2015)), however previous research has suggested that this chronological shift

in the location of the PAF may be delayed or absent in children with ASD (Edgar et al.

(2015)). In our motivating study, electroencephalogram (EEG) data was sampled at 500Hz

for 2 minutes using a 128-channel HydroCel Geodesic Sensor Net during an “eyes-open”

resting-state paradigm in which bubbles were presented on a screen in a sound-attenuated

room. The participants in the two diagnostic groups were age-matched with ages ranging

from 25 to 146 months old with a median age of 66 and 65.8 months in the TD and ASD

groups, respectively. To more generally capture the shape of the PSD in the alpha frequency

band and to avoid the challenges involved in identifying a unique PAF for each subject,

we consider scalp-averaged relative PSD from the alpha frequency band as our sample of

functional data observed over T “ 33 equidistant frequencies within 6-14Hz. The BFPCA
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Table 2.3: The mean AR and NAR values for traditional and functional-depth based
95% credible intervals and CPEs over 200 Monte Carlo runs for all simulation cases with
q “ t10, 20u% outliers. P p

1´αtgptqu, P s
1´αtgptqu, Qp

1´αtgptqu, Qs
1´αtgptqu, D1´αtgptqu and

D‹
1´αtgptqu denote the pointwise parametric and simultaneous credible intervals, quantile

pointwise and simultaneous credible intervals, and MBD and MVD-CPEs, respectively.
AR NAR

gptq q Case P p
1´αtgptqu P s

1´αtgptqu Qp
1´αtgptqu Qs

1´αtgptqu D1´αtgptqu D‹
1´αtgptqu P p

1´αtgptqu P s
1´αtgptqu Qs

1´αtgptqu

µptq

- Case 1 0.522 0.795 0.523 0.796 0.870 - 0.000 0.000 0.000

10%

Case 2 0.524 0.788 0.525 0.790 0.907 - 0.000 0.000 0.000
Case 3 0.524 0.794 0.525 0.796 0.867 - 0.000 0.000 0.000
Case 4 0.524 0.798 0.525 0.799 0.875 - 0.000 0.000 0.000
Case 5 0.523 0.802 0.524 0.803 0.889 - 0.000 0.000 0.000

20%

Case 2 0.526 0.782 0.527 0.784 0.910 - 0.000 0.000 0.000
Case 3 0.524 0.790 0.525 0.791 0.859 - 0.000 0.000 0.000
Case 4 0.522 0.792 0.523 0.793 0.868 - 0.000 0.000 0.000
Case 5 0.523 0.807 0.524 0.808 0.904 - 0.000 0.000 0.000

ψ1ptq

- Case 1 0.431 0.668 0.432 0.669 0.688 0.838 0.000 0.008 0.000

10%

Case 2 0.469 0.690 0.477 0.700 0.736 0.928 0.006 0.065 0.007
Case 3 0.428 0.644 0.429 0.650 0.656 0.836 0.001 0.019 0.000
Case 4 0.428 0.634 0.430 0.641 0.642 0.859 0.002 0.034 0.001
Case 5 0.436 0.679 0.437 0.680 0.721 0.874 0.000 0.011 0.000

20%

Case 2 0.426 0.639 0.430 0.645 0.666 0.878 0.002 0.032 0.003
Case 3 0.444 0.645 0.448 0.654 0.648 0.846 0.005 0.047 0.001
Case 4 0.481 0.684 0.490 0.697 0.691 0.900 0.008 0.086 0.002
Case 5 0.430 0.675 0.432 0.676 0.727 0.904 0.000 0.014 0.001

ψ2ptq

- Case 1 0.483 0.757 0.483 0.760 0.815 0.902 0.000 0.007 0.001

10%

Case 2 0.548 0.780 0.555 0.787 0.841 0.972 0.008 0.101 0.009
Case 3 0.472 0.722 0.472 0.729 0.761 0.888 0.001 0.017 0.001
Case 4 0.470 0.706 0.472 0.716 0.733 0.899 0.001 0.031 0.002
Case 5 0.487 0.746 0.488 0.750 0.803 0.955 0.001 0.038 0.003

20%

Case 2 0.507 0.736 0.513 0.743 0.792 0.965 0.005 0.071 0.005
Case 3 0.482 0.711 0.485 0.723 0.731 0.887 0.004 0.044 0.003
Case 4 0.514 0.734 0.521 0.751 0.745 0.923 0.007 0.082 0.006
Case 5 0.589 0.842 0.583 0.844 0.915 0.988 0.004 0.111 0.010
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model was estimated using R “ 16 B-spline basis functions and L “ 6 latent components,

leading to M “ 4000 posterior samples for each model component. Further information on

pre-processing of the EEG data and the experiment are deferred to Appendix B.4.

Figures 2.5 (a) and (b) display a sample of the data obtained on 10 subjects from the

TD and ASD diagnostic groups, respectively. Note that the data is quite noisy, where PAF

is distinctly visible in only a subset of the subjects, where there is considerable variation in

PAF and the amplitude of the alpha peak. Our goal is to summarize the mean and variation

trends in the data using the BFPCA model and to characterize the variability in the posterior

estimates of the model components using CPEs in both diagnostic groups. Also given in

Figure 2.5 are the MBD median and 95% MBD-CPEs for the mean function estimated in

both diagnostic groups (Figure 2.5 (c)) and in age-based subgroups within the TD and ASD

samples (Figures 2.5 (d) and (e), respectively). The age-based subgroups were obtained

within each diagnostic group by using the group-specific median age. While the PAF on

the estimated overall means are similar across the two diagnostic groups (at 9 and 9.5Hz in

TD and ASD, respectively), the trend in PAF across age-based subgroups is quite different

within the TD and the ASD samples. While a clear developmental shift is observed in the

TD sample (with PAF at 8.75 and 10.25Hz for young and old TD groups, respectively),

the PAF in the ASD sample is quite similar across the two age-groups (observed around

9.5Hz). These results are consistent with previous literature and findings from our own work

(Scheffler et al. (2019) and Scheffler et al. (2022)).

The CPEs from α cutoffs ranging from 0.05 to 0.95 for the leading two eigenfunctions

for both diagnostic groups, overlaying M “ 4, 000 posterior estimates in gray, are given in

Figure 2.6. The two leading eigencomponents explain more than 60% of the total variation

in both groups (median and (2.5th, 97.5th) percentiles of FVE at 66.5% (59.5%, 73.4%) and

63.0% (57.8%, 68.7%) in the TD and ASD groups, respectively). The CPEs of the third and

fourth leading eigenfunctions, explaining 14.9% (10.7%, 20.2%) and 10.2% (7.3%, 12.8%)

FVE in the TD group and 15.6% (12.5%, 19.1%) and 11.7% (8.9%, 14.6%) FVE in the ASD
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group, respectively, are deferred to Appendix Figure B.8. While the leading eigenfunction

mostly captures variation in PAF (location of the prominent alpha peak) especially in the TD

group, the second leading eigenfunction captures variation in the magnitude of the alpha peak

(Figures 2.6 (a), (b), (e) and (f)). The PAF varies between 8.75-10.25Hz in the TD group

and over a slightly larger range between 7-9.75Hz in the ASD group (Figures 2.6 (a), (b), (c)

and (d)). Note that posterior estimates of the leading eigenfunction are more variable in the

TD group than the ASD group, where CPE-MVD envelopes are wider at lower alpha levels

up to 0.35, similar to the observations from our simulation study. The variation difference

between groups is perhaps due to the stronger developmental shift in PAF from lower to

higher frequencies as children grow older in the TD group. The leading eigenfunction signals

combination of variation in PAF and some variation in the magnitude of the alpha peak in

the ASD group. The second leading eigenfunction capturing variation in the amplitude of

the prominent alpha peak, signals variation around 9.25Hz in the TD group and at 7.25Hz

and 9.25Hz in the ASD group (Figure 2.6 (e), (f), (g) and (h)). In the second leading

eigenfunction, signaling variation in the amplitude of the prominent alpha peak, there is more

variation in the ASD group compared to the TD group. For the readers reference CPEs for

the third and fourth leading eigenfunctions, capturing remaining variation in the concavity

of the PSD in the alpha frequency band and 95% parametric and quantile credible intervals

along with 95% CPEs are deferred to Appendix Figures B.7, B.8 and B.9. Consistent with

results from the simulation section, simultaneous parametric credible intervals include regions

that do not represent variation in the posterior sample.

2.6 Discussion

We propose a descriptive tool to visualize the variation in the posterior sample of the func-

tional model components of BFPCA. The BFPCA modeling considered relies on a latent

factor model and MMGPS priors on the variance components, leading to an easy to im-
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plement estimation framework and a direct way for inference on the model components.

We recover the highly interpretable mean and eigenfunctions following Bayesian estimation

and propose functional depth based summaries for these quantities. The novel summaries

proposed are shown to lead to a data-driven approach in portraying the variability of the

functional model components. Traditional summaries rely on distributional assumptions or

suboptimal symmetry constraints, and fail to treat the posterior sample as functional data.

In contrast, the proposed summaries are based on ranking of the posterior sample for the

functional components using functional depth. Two functional depth based summaries are

considered, one based on direct ranking of the entire posterior functional sample and another

through ranking of the associated covariance surfaces. Both approaches have been shown to

lead to flexible modeling of the variation in the posterior sample, where the second leads to

wider CPEs as expected, incorporating variation from the entire covariance process, rather

than a single eigenfunction.

Extensions of the proposed methodology to higher dimensional functional data would be

of interest, especially in EEG applications. EEG data is collected across the scalp, creating

spatially indexed functional data. In addition, data are collected across multiple trials time

locked to presentation of a sequence of stimuli in stimulus-based experiments and across

time in resting state paradigms. When changes across experimental time are of interest,

these repetitions can be viewed as an additional dimension of the observed data (i.e. as

longitudinally observed functional data) and be part of analysis rather than collapsed via

averaging. FPCA modeling has been considered for high-dimensional functional data, espe-

cially in EEG data applications involving a spatial or a longitudinal dimension (Shamshoian

et al. (2022); Li et al. (2020); Campos et al. (2022); Scheffler et al. (2019, 2020); Hasenstab

et al. (2017)). Developments rely on simplifying assumptions on the higher dimensional

covariance via strong or weak separability. Extension of functional depth based central pos-

terior envelopes to BFPCA for higher-dimensional functional data is an interesting direction

for future research.
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Figure 2.1: Point estimates of ψ1ptq for each simulation case with q “ 10 and q “ 20%
outliers from runs with 50th percentile IMSE values. Eigenfunction estimates, eigenfunctions
estimates via covariance estimation, MBD median and MVD median are given in solid blue,
dashed blue, solid yellow and dashed yellow, overlaying the true function given in solid black.
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Figure 2.2: Point estimates of ψ2ptq for each simulation case with q “ 10 and q “ 20%
outliers from runs with 50th percentile IMSE values. Eigenfunction estimates, eigenfunctions
estimates via covariance estimation, MBD median and MVD median are given in solid blue,
dashed blue, solid yellow and dashed yellow, overlaying the true function given in solid black.
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Figure 2.3: CPE contours of ψ1ptq for each simulation case with q “ 20% outliers. The
light grey solid lines, overlaying the true function in solid black, represent the sample of
M “ 4000 posterior estimates. The left and right hand columns display the MBD and
MVD-CPEs, denoted by D1´αtψ1ptqu and D‹

1´αtψ1ptqu, respectively, at a grid of α levels
marked by varying contour colors.
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Figure 2.4: CPE contours of ψ2ptq for each simulation case with q “ 20% outliers. The
light grey solid lines, overlaying the true function in solid black, represent the sample of
M “ 4000 posterior estimates. The left and right hand columns display the MBD and
MVD-CPEs, denoted by D1´αtψ1ptqu and D‹

1´αtψ1ptqu, respectively, at a grid of α levels
marked by varying contour colors.
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Figure 2.5: The left-hand columns display a sample of relative PSD obtained on 10 subjects
from the TD (a) and ASD (b) diagnostic groups. The right-hand columns display the
estimated MBD medians (solid or dashed black lines) and 95% MBD-CPEs (colored area)
for the mean function in the TD and ASD groups (c), TD young and old groups (d), and
ASD young and old groups (e).
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Figure 2.6: CPE contours of the two leading eigenfunctions for both ASD and TD groups
in our data application, overlaying the posterior estimates given in gray. The left and right
hand columns display the MBD and MVD-CPEs, denoted by D1´αtψ1ptqu and D‹

1´αtψ1ptqu,
respectively, at a grid of α levels marked by varying contour colors. The estimated MBD
and MVD median are given in solid black in the right and left columns, respectively.
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CHAPTER 3

Central posterior envelopes for Bayesian longitudinal

functional principal component analysis

Abstract

Longitudinal functional data emerge in situations where functional observations for a sub-

ject are repeatedly measured over a set of time points. Bayesian longitudinal functional

principal component analysis (B-LFPCA) decomposes this data into highly interpretable

low-dimensional features under the assumption weak separability of the longitudinal and

functional dimensions. Weak separability implies that the direction of variation along one

of the dimensions stays constant across fixed slices of the other dimension, and vice versa,

motivating the construction of the marginal longitudinal and functional covariances. The

tensor product of the resulting marginal directions of variation along the longitudinal and

functional dimensions provides a factorization of the signal into its longitudinal and func-

tional components. The Bayesian modeling approach leads to readily available inference

and data exploration via the posterior samples, and we propose central posterior envelopes

(CPEs) to capture uncertainty in the low-dimensional features and mean function. CPEs

are fully data-driven descriptive visualization tool that display the most-central regions of

a posterior sample at specified α-level percentile contours obtained via functional depth.

Functional depth is a measure that provides a center-outward ordering of a sample of curves

and extends order statistics to functional data. The efficacy of the proposed CPEs under

violations of weak separability and in the presence of outliers is demonstrated in extensive

simulations. The B-LFPCA model and proposed CPEs are further showcased in an analysis
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of longitudinally observed event-related potentials (ERPs) during an implicit learning exper-

iment among children with autism spectrum disorder (ASD) and typically developed (TD)

controls. Application of the CPEs leads to novel insights in diagnostic group differences not

observed using traditional methods of uncertainty quantification in the Bayesian framework.
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3.1 Introduction

Multidimensional functional data in the form of longitudinal functional data consist of high-

dimensional functional observations such as curves, surfaces, or images, repeatedly measured

over a set of longitudinally observed time points. A typical set of longitudinal functional data

for subjects, i “ 1, . . . , n, is comprised of observations Yips, tq obtained at longitudinal time

s (e.g. hospital visit), where each time point resulted in a functional datum with argument

t (e.g. electrocardiogram measurement). Due to the close proximity of longitudinal time

points, the correlation structure between functional observations for a given subject i is

typically non-trivial and may be an important focus for a study. In electroencephalography

(EEG) experiments, spontaneous electrical activity is recorded at multiple electrodes placed

across the scalp and results in rich multidimensional functional data. Our motivating implicit

learning study in children with autism spectrum disorder (ASD) (Jeste et al. (2015)) involved

measuring EEG in response to visual stimulus, resulting in an event-related potential (ERP),

over multiple trials in which the visual stimuli were repeatedly presented. Therefore, our

study resulted in functional ERP data collected longitudinally over trials, and since learning

was expected to occur over the duration of the experiment, appropriate modeling of the

longitudinal trends was of particular interest.

Over the past two decades, an abundance of literature on functional data analysis (FDA)

has been published (Ramsay and Silverman (2005)), and both frequentist and Bayesian

approaches for modeling longitudinal functional data are a well-developed area of FDA.

These methods often rely on dimension reduction techniques for capturing variability in a

low-dimensional and easily interpretable form. A common tool employed for this is func-

tional principal component analysis (FPCA) which decomposes the covariance structure of

a signal into its primary directions of variations, commonly referred to as eigenfunctions.

Previous work has utilized multidimensional or multilevel FPCA often in combination with

mixed effects modeling to capture hierarchical dependencies (Chen and Müller (2012); Di
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et al. (2009); Wang et al. (2016); Greven et al. (2010); Yao et al. (2012); Suarez and Ghosal

(2017); Montagna et al. (2012)) and has been developed for brain imaging studies such as

our motivating study described previously (Hasenstab et al. (2017); Campos et al. (2022);

Scheffler et al. (2020); Shamshoian et al. (2022)). Important generalizations have been

made in multidimensional FPCA via the assumption of weak separability, in which one as-

sumes that the leading directions of variation of the longitudinal (functional) dimension stay

constant across fixed slices of the functional (longitudinal) dimension. This property mo-

tivates the construction of the marginal longitudinal and functional covariances, obtained

by integrating the full covariance kernel of both dimensions over the functional and longi-

tudinal dimensions, respectively (Chen et al. (2017); Park and Staicu (2015); Lynch and

Chen (2018)). Projection of the mean-centered longitudinal functional data onto the tensor

product of the resulting marginal longitudinal and functional directions of variation leads

to product scores that are uncorrelated over the longitudinal and functional dimensions.

Thus, an appealing decomposition of the multidimensional signal into the product scores

and highly interpretable one-dimensional directions of variation along the longitudinal and

functional dimensions (separately) is achieved under the assumption of weak separability. In

this chapter, Bayesian longitudinal functional principal component analysis (B-LFPCA) un-

der the assumption of weak separability is implemented following the data-adaptive Bayesian

modeling approach for longitudinal functional data that was proposed in Shamshoian et al.

(2022). An advantage of using a Bayesian modeling framework is uncertainty quantifica-

tion via summaries of posterior samples obtained in estimation, which avoids the need for

bootstrapping.

In this chapter, we propose the use of central posterior envelopes (CPEs) to capture un-

certainty in the posterior samples of the marginal longitudinal and functional eigenfunctions

and mean function estimated using the B-LFPCA model. A traditional method for uncer-

tainty quantification utilized in Shamshoian et al. (2022) is the p1 ´ αq100% simultaneous

parametric credible interval, which is determined via pointwise estimates of the mean and
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standard deviation of a posterior sample (Crainiceanu et al. (2007); Baladandayuthapani

et al. (2005)). Although straightforward, simultaneous parametric credible intervals have

disadvantages: they rely on the distributional assumption of normality, and the bounds of

the credible intervals formed are symmetric around the mean and calculated via pointwise

estimates, requiring discretization of the functional observations. The proposed CPEs pro-

vide a flexible and alternative way to capture uncertainty in a posterior sample that avoids

these disadvantages. In particular, CPEs delineated by subsets of a posterior sample at

specified α-level contours are employed as a descriptive visualization tool to capture vari-

ation in the posterior sample. These subsets are obtained via the use of functional depth,

which provides a center-outward ordering of a sample of functions, extending order statistics

and percentiles to functional data. Functional depth has been utilized in a wide variety of

other applications including visual aids as well as point estimates in FDA. Some examples

include the construction of a median or trimmed mean function, functional boxplots (Sun

and Genton (2012)), surface boxplots (Genton et al. (2014)), outlier detection via the out-

liergram (Arribas-Gil and Romo (2014)), robust rank, and permutation and location tests

for distributional and dispersion differences in two-sample functional data groups (López-

Pintado and Wrobel (2017); López-Pintado and Qian (2020)). López-Pintado and Romo

(2009) introduced the notion of modified band depth (MBD), extending the definition of

band depth based on a graph-based approach, by measuring the proportion of time that

a curve lies in the band delimited by a subsample of curves. Sun et al. (2012) derived a

computationally efficient algorithm for calculating MBD that can rank millions of curves in

seconds. Genton et al. (2014) further extended MBD to higher dimensional functional data

through modified volume depth (MVD). Recently, the use of depth has been explored for

non-Euclidean object data in Dai et al. (2022) and random objects residing in finite- and

infinite-dimensional manifolds in Dubey et al. (2022). We utilize both MBD and MVD to

obtain point estimates and functional depth based CPEs for the marginal longitudinal and

functional eigenfunctions and mean function obtained from the B-LFPCA model. By ex-
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tending MVD to order posterior samples of the marginal covariances and covariance kernel,

we are able to obtain point estimates of these model components and marginal eigenfunc-

tions as well as CPEs of the latter that capture increasing levels of variation in the model.

It is important to note that CPEs are not tools for inference but are fully data-driven visual

aids for capturing uncertainty in a sample of functional posterior estimates.

The chapter is organized as follows. The B-LFPCA model considered is introduced in

Section 3.2 based on the Bayesian multidimensional functional model that was shown to ex-

hibit computational feasibility, data-adaptive behavior, and good operating characteristics

proposed in Shamshoian et al. (2022). B-LFPCA utilizes a random tensor product basis

expansion of the longitudinal functional data followed by modeling the basis coefficients

from the expansion with a latent factor model. Through the use of multiplicative gamma

process shrinkage priors (Bhattacharya and Dunson (2011); Montagna et al. (2012)) placed

on the factor loadings, posterior estimation of the low-dimensional features and mean func-

tion is achieved. This is followed by an outline of the traditional posterior summaries for

the B-LFPCA model components. The proposed CPEs and point estimates based on func-

tional depth are outlined in Section 3.3, followed by simulation studies to highlight their

finite sample performance under violations of key model assumptions and in the presence

of different types of functional outliers (Section 3.4). Section 3.5 details an application of

CPEs to the analysis of ERPs captured during our motivating visual implicit learning ex-

periment. Further, the credible interval method employed in Shamshoian et al. (2022) for

uncertainty quantification is compared to the proposed CPE method in our analysis. Fi-

nally, a brief discussion summarizing key findings and future avenues of research is included

in Section 3.6.
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3.2 Bayesian longitudinal functional principal component analysis

3.2.1 Model specification

Let Yips, tq “ fips, tq ` ϵips, tq denote the observed noisy response for subject i, i “ 1, . . . , n,

at longitudinal time s P S and functional time t P T , where S and T are compact subspaces

in R, represented as a sum of a smooth underlying function fips, tq, and measurement error

ϵips, tq. The measurement error ϵips, tq is assumed to be i.i.d. with mean zero and variance σ2
ϵ .

The smooth function fips, tq is assumed to exist in the space of square integrable functions

L2pS ˆT q with mean µps, tq and covariance kernel Ktps, tq, ps1, t1qu “ Covtfips, tq, fips
1, t1qu.

The multidimensional Karhunen-Loève (KL) expansion of fips, tq detailed in Ramsay and

Silverman (2005) is defined as

fips, tq “ µps, tq `

8
ÿ

h“1

Zihςhps, tq, (3.1)

where Zih “
ş

S

ş

T tfips, tq ´ µps, tquςhps, tqdsdt denotes the hth uncorrelated subject-specific

score with mean zero and variance ρh, and ςhps, tq are the orthonormal eigenfunctions of

Ktps, tq, ps1, t1qu that form a basis of L2pS ˆT q. The first H terms in expansion (3.1) form a

H-dimensional approximation of fips, tq with the optimality property that when compared

to any other H-dimensional orthonormal basis, reconstructing fips, tq using the eigenfunc-

tions results in an approximation of fips, tq that explains the most variation. Due to the

complexities involved in modeling the four-dimensional covariance kernel Ktps, tq, ps1, t1qu

and characterizing the two-dimensional eigenfunctions ςhps, tq. Chen et al. (2017) proposed

product functional principal component analysis (FPCA) which achieves dimension reduc-

tion through factorization of fips, tq into its longitudinal and functional components under

the assumption of weak separability of the longitudinal and functional dimensions. Weak

separability implies that the direction of variation in the functional dimension of the data

stays the same for fixed slices along the longitudinal dimension, and vice versa. This as-
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sumption is weaker than the commonly assumed strong separability, which implies constant

covariance along one dimension for fixed values of the other dimensions of the data. Due to

this property, weak separability motivates the concept of the marginal longitudinal and func-

tional covariance, which are obtained by integrating the covariance kernel over the functional

and longitudinal dimensions, respectively. Let the marginal longitudinal and functional co-

variance functions of fips, tq, denoted KSps, s1q and KT pt, t1q, respectively, be defined as

KSps, s1
q “

ż

T
Ktps, tq, ps1, tqudt “

8
ÿ

j“1

τjψjpsqψjps
1
q,

and

KT pt, t1q “

ż

S
Ktps, tq, ps, t1quds “

8
ÿ

k“1

ϑkϕkptqϕkpt1q,

where τ1 ě τ2 ě . . . denote the ordered nonnegative longitudinal eigenvalues corresponding

to longitudinal eigenfunctions ψ1ptq, ψ2ptq, . . . of KSps, s1q that form an orthonormal basis in

L2pSq, and ϑ1 ě ϑ2 ě . . . denote the ordered nonnegative functional eigenvalues correspond-

ing to functional eigenfunctions ϕ1ptq, ϕ2ptq, . . . of KT pt, t1q that form an orthonormal basis in

L2pT q. Then, let χijk “
ş

S

ş

T tfips, tq´µps, tquψjpsqϕkptqdsdt be the subject-specific product

score from the projection of the mean-centered smooth underlying function onto the tensor

product of the jth longitudinal and kth functional eigenfunctions, denoted ψjpsq b ϕkptq,

with mean zero and variance Varpχijkq “ vjk. Under the assumption of weak separability,

the product scores are uncorrelated over the longitudinal and functional dimensions, or more

specifically Covpχijk, χij1k1q “ 0 when j ‰ j1 or k ‰ k1. The product KL expansion of fips, tq

is then given by

fips, tq “ µps, tq `

8
ÿ

j“1

8
ÿ

k“1

χijkψjpsqϕkptq. (3.2)

Further under weak separability, the longitudinal and functional eigenvalues are given as

τj “
ř8

k“1 vjk and ϑk “
ř8

j“1 vjk, respectively. Properties of weak separability were further

explored in Lynch and Chen (2018), which showed that if weak separability holds the co-
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variance kernel Ktps, tq, ps1, t1qu can be written as the tensor product of the longitudinal and

functional eigenfunctions ψjpsq b ϕkptq as

Ktps, tq, ps1, t1qu “

8
ÿ

j“1

8
ÿ

k“1

vjkψjpsqψjps
1
qϕkptqϕkpt1q. (3.3)

In practice, the product KL expansion is truncated to include J and K longitudinal and

functional eigencomponents, fips, tq « µps, tq `
řJ

j“1

řK
k“1 χijkψjpsqϕkptq, based on fraction

of variance explained (FVE) of the respective longitudinal and functional marginal covari-

ances. The covariance kernel is then approximated by Ktps, tq, ps1, t1qu «
řJ

j“1

řK
k“1 vjkψjpsq

ψjps
1qϕkptqϕkpt1q, and the marginal covariances are approximated byKSps, s1q «

řJ
j“1 τjψjpsq

ψjps
1q and KT pt, t1q «

řK
k“1 ϑkϕkptqϕkpt1q. A total of J “ 2 and K “ 2 or 3 longitudinal

and functional eigencomponents are typically retained in most applications (explaining more

than 80% of the total variation in the longitudinal and functional marginal covariances sepa-

rately), thus achieving effective dimension reduction with the smallest amount of unexplained

variation.

The Bayesian longitudinal functional principal component analysis (B-LFPCA) model

considered is adapted from the probability model for longitudinal functional data given

in Shamshoian et al. (2022). The B-LFPCA approach starts with the expansion of the

smooth underlying function fips, tq on a set of p1 B-spline basis functions tb
p1q

1 psq, . . . , b
p1q
p1 psqu

and p2 B-spline basis functions tb
p2q

1 ptq, . . . , b
p2q
p2 ptqu in the longitudinal and functional di-

mensions, respectively. Using a random tensor product, the expansion is constructed as

fips, tq “
řp1

ℓ“1

řp2
m“1 θiℓmb

p1q

ℓ psqb
p2q
m ptq, where θiℓm denote the subject-specific random basis

coefficients, and p1 and p2 are chosen to be large enough to ensure adequate smoothing of

fips, tq. Next for ℓ “ 1, . . . , p1, m “ 1, . . . , p2, a latent factor model is assumed for the

subject-specific random basis coefficients as θiℓm “
řq1

j“1

řq2
k“1 ηijkγℓjλmk ` ζiℓm, where ηijk,

j “ 1, . . . , q1, pq1 ă p1q, k “ 1, . . . , q2, pq2 ă p2q, denote the Gaussian-distributed subject-

specific latent scores corresponding to γℓj, the jth longitudinal factor loading for b
p1q

ℓ psq,
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and λmk, the kth functional factor loading for b
p2q
m ptq, and ζiℓm „ Np0, σ2

ζℓm
q denote the

uncorrelated subject-specific reconstruction errors. This leads to the following expansion of

fips, tq “

p1
ÿ

ℓ“1

p2
ÿ

m“1

θiℓmb
p1q

ℓ psqbp2q
m ptq,

“

p1
ÿ

ℓ“1

p2
ÿ

m“1

˜

q1
ÿ

j“1

q2
ÿ

k“1

ηijkγℓjλmk ` ζiℓm

¸

b
p1q

ℓ psqbp2q
m ptq, (3.4)

“

q1
ÿ

j“1

q2
ÿ

k“1

ηijk :ψjpsq:ϕkptq ` rips, tq, (3.5)

where :ψjpsq “
řp1

ℓ“1 γℓjb
p1q

ℓ psq, j “ 1, . . . , q1, denote the data-adaptive longitudinal basis

functions, :ϕkptq “
řp2

m“1 λmkb
p2q
m ptq, k “ 1, . . . , q2, denote the data-adaptive functional basis

functions, and rips, tq “
řp1

ℓ“1

řp2
m“1 b

p1q

ℓ psqb
p2q
m ptqζiℓm denotes the uncorrelated subject-specific

reconstruction error. Therefore, the expansion (3.5) models fips, tq as a random tensor

product of q1 and q2 data-adaptive basis functions corresponding to Gaussian-distribution

latent scores ηijk, and any residual variability in the expansion given q1 and q2 is captured

in rips, tq. It is further assumed that ηijk „ Npβjk, σ
2
ηjk

q, where βjk is the mean coefficient

and σ2
ηjk

variance of is the variance of the latent scores for j “ 1, . . . , q1, k “ 1, . . . , q2.

Marginalizing over θiℓm, the mean function is determined as

µps, tq “

q1
ÿ

j“1

q2
ÿ

k“1

βjk :ψjpsq:ϕkptq.

Structural assumptions of the covariance process in the B-LFPCA model are formed based

on the covariance of the latent scores. In particular, weak separability of the longitudinal and

functional dimensions in this expansion is induced when it is assumed that Covpηijk, ηij1k1q “
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0 when j ‰ j1 or k ‰ k1. Thus, the covariance kernel is determined as

K tps, tq, ps1, t1qu “

q1
ÿ

j“1

q2
ÿ

k“1

σ2
ηjk

:ψjpsq :ψjps
1
q:ϕkptq:ϕkpt1q

`

p1
ÿ

ℓ“1

p2
ÿ

m“1

σ2
ζℓm
b

p1q

ℓ psqb
p1q

ℓ ps1
qbp2q

m ptqbp2q
m pt1q.

The first term in the above equation is analogous to the covariance kernel under the assump-

tion weak separability of the product FPCA model given in (3.3) with additional variation

added along the diagonal in the second term that captures residual variation not captured

by the q1 and q2 data-adaptive basis functions, constituting the B-LFPCA model along with

the expansion (3.5). Similarly, if :ψjpsq and :ϕkptq were chosen to be the eigenfunctions of the

marginal longitudinal and function covariances ψjpsq and ϕkptq, respectively, the expansion

(3.5) is reminiscent of the KL product expansion (3.2) when truncated to J and K eigencom-

ponents. Therefore, the reconstruction error rips, tq would capture any residual variation not

explained by the J ˆ K tensor products of the longitudinal and functional eigenfunctions,

while the latent scores ηijk would model the mean function and covariance process under the

structural assumption of weak separability.

A mixed effects model for posterior estimation can be formulated by representing the

latent factor model given in (3.4) in vector form. Let Γ “ pγ1, . . . ,γp1qJ denote the p1 ˆ q1

longitudinal factor loading matrix with γℓ “ pγℓ1, . . . , γℓq1qJ, and Λ “ pλ1, . . . ,λp2qJ denote

the p2 ˆ q2 functional factor loading matrix with λm “ pλm1, . . . , λmq2qJ. Further, if ηi

denotes the q1 ˆ q2 subject-specific latent score matrix where ηijk is the element in the jth

row and kth column of ηi, then ηi “ vecpηiq is the q1q2 ˆ 1 vector of the subject-specific

latent scores obtained from the vecp¨q operator, which stacks the columns of a given matrix.

Similarly, let ζi denote the p1 ˆ p2 subject-specific reconstruction error matrix where ζiℓm is

the element in the ℓth row and mth column of ζi, and ζi “ vecpζiq be the resulting p1p2 ˆ 1

vector. If b represents the Kronecker product, the full mixed effects model can be written
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in vector form as

Y i “ f i ` ϵi “ pB1 b B2q tpΛ b Γqηi ` ζiu ` ϵi, (3.6)

ηi „ Nq1q2pβ,Σηq, ζi „ Np1p2p0p1p2 ,Σζq,

ϵi „ Nnsntp0nsnt , σ
2
ϵ Insntq, i “ 1, . . . , n,

where Y i “ tYips1, t1q, . . . , Yips1, tntq, . . . , Yipsns , t1q, . . . , Yipsns , tntquJ denotes the response

observed at a total of ns longitudinal and nt functional time points, f i “ tfips1, t1q, . . . ,

fips1, tntq, . . . , fipsns , t1q, . . . , fipsns , tntquJ denotes the nsnt ˆ1 vector of underlying smooth

functions, and ϵi “ tϵips1, t1q, . . . , ϵips1, tntq, . . . , ϵipsns , t1q, . . . , ϵipsns , tntquJ denotes the nsntˆ

1 vector of measurement error. Moreover, in (3.6), B1 “ pb1
1, . . . ,b

1
p1

q denotes the ns ˆ p1

matrix of B-spline longitudinal basis functions with b1
ℓ “ tb

p1q

ℓ ps1q, . . . , b
p1q

ℓ psnsquJ, B2 “

pb2
1, . . . ,b

2
p2

q denotes the nt ˆ p2 matrix of B-spline functional basis functions with b2
m “

tb
p2q
m pt1q, . . . , b

p2q
m ptntquJ. The vector of subject-specific latent scores ηi is q1q2-variate nor-

mally distributed with q1q2 ˆ 1 vector of mean coefficients β “ pβ11, . . . , β1q2 , . . . , βq11, . . . ,

βq1q2qJ and q1q2 ˆ q1q2 diagonal covariance Ση “ diagpσ2
η11
, . . . , σ2

η1q2
, . . . , σ2

ηq11
, . . . , σ2

ηq1q2
q.

The vector of subject-specific reconstruction errors ζi is p1p2-variate normally distributed

with mean 0p1p2 , denoting the p1p2 ˆ 1 vector of zeros, and p1p2 ˆ p1p2 diagonal covariance

Σζ “ diagpσ2
ζ11
, . . . , σ2

ζ1p2
, . . . , σ2

ζp11
, . . . , σ2

ζp1p2
q. Lastly, 0nsnt is used to denote the nsnt ˆ 1

vector of zeros, and Insnt is used to denote the nsnt ˆ nsnt identity matrix used in defin-

ing the nsnt-variate normal distribution of the measurement errors ϵi. After selection of

an appropriate number of B-spline basis functions p1 and p2 as well as a sufficiently large

enough number of latent factors q1 ă p1 and q2 ă p2, conditionally conjugate priors allow

for efficient posterior estimation of through the use Markov chain Monte Carlo (MCMC).

The priors distributions for the B-LFPCA model and subsequent posterior distributions and

MCMC sampling algorithm are detailed in Appendix C.1.
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3.2.2 Traditional posterior summaries for B-LFPCA components

Posterior estimates of longitudinal factor loadings γ
pmq

ℓj , ℓ “ 1, . . . , p1, j “ 1, . . . , q1, where

the superscript m, m “ 1, . . . ,M , is used to index the posterior estimates obtained from

the MCMC sampler after burn-in and thinning, lead to the posterior estimates of the

longitudinal and functional data-adaptive basis functions :ψ
pmq

j psq “
řp1

ℓ“1 γ
pmq

ℓj b
p1q

ℓ psq, j “

1, . . . , q1. Similarly, posterior estimates of functional factor loadings λ
pmq

mk , m “ 1, . . . , p2,

k “ 1, . . . , q2, leads to the posterior estimates of the functional data-adaptive basis func-

tions :ϕ
pmq

k ptq “
řp2

m“1 λ
pmq

mk b
p2q
m ptq, k “ 1, . . . , q2. Then, the posterior estimates of the data-

adaptive basis functions and the mean coefficient vector βpmq
“ pβ

pmq

11 , . . . , β
pmq
q1q2qJ lead to

the posterior estimates of the mean function as µpmqps, tq “
řq1

j“1

řq2
k“1 β

pmq

jk
:ψ

pmq

j psq:ϕ
pmq

k ptq.

Further, the posterior estimates of the variance of the latent factors σ
2pmq
ηjk , j “ 1, . . . , q1,

k “ 1, . . . , q2, and variance of the reconstruction errors σ
2pmq

ζℓm
, ℓ “ 1, . . . , p1, m “ 1, . . . , p2,

are used to obtain the posterior estimates of the covariance kernel as Kpmqtps, tq, ps1, t1qu “

řq1
j“1

řq2
k“1 σ

2pmq
ηjk

:ψ
pmq

j psq :ψ
pmq

j ps1q:ϕ
pmq

k ptq:ϕ
pmq

k pt1q`
řp1

ℓ“1

řp2
m“1 σ

2pmq

ζℓm
b

p1q

ℓ psqb
p1q

ℓ ps1qb
p2q
m ptqb

p2q
m pt1q. Di-

rect computation of the posterior estimates of the longitudinal marginal covariance, which

has better scalability than integrating over the posterior estimates of the covariance kernel,

is employed as

K
pmq

S ps, s1
q “

q1
ÿ

j“1

:ψ
pmq

j psq :ψ
pmq

j ps1
q

q2
ÿ

k“1

σ2pmq
ηjk

ω
pmq

k `

p1
ÿ

ℓ“1

b
p1q

ℓ psqb
p1q

ℓ ps1
q

p2
ÿ

m“1

σ
2pmq

ζℓm
Ωm,

where ω
pmq

k “
ş

T
:ϕ

pmq

k ptq:ϕ
pmq

k ptqdt and Ωm “
ş

T b
p2q
m ptqb

p2q
m ptqdt. Similarly, the posterior esti-

mates of the functional marginal covariance are determined as

K
pmq

T pt, t1q “

q2
ÿ

k“1

:ϕ
pmq

k ptq:ϕ
pmq

k pt1q
q1
ÿ

j“1

σ2pmq
ηjk

ω
pmq

j `

p2
ÿ

m“1

bp2q
m ptqbp2q

m pt1q
p1
ÿ

ℓ“1

σ
2pmq

ζℓm
Ωℓ,

where ω
pmq

j “
ş

S
:ψ

pmq

j psq :ψ
pmq

j psqds and Ωℓ “
ş

S b
p1q

ℓ psqb
p1q

ℓ psqds. The proof for the formula-

tions of the posterior estimates of the longitudinal and functional marginal covariance using
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direct computation over integration is provided in Appendix C.2. We consider the singular

value decomposition (SVD) of the posterior estimates of the marginal covariances to re-

cover the lower dimensional interpretations of the longitudinal and functional eigenfunctions

provided in the product FPCA decomposition. The posterior estimates of the longitudinal

components are obtained via SVD as K
pmq

S ps, s1q «
řJ

j“1 τ
pmq

j ψ
pmq

j psqψ
pmq

j ps1q, where ψ
pmq

j psq

and τ
pmq

j are the posterior estimates of the longitudinal eigenfunctions and eigenvalues, re-

spectively. Similarly, the SVD of K
pmq

T pt, t1q «
řK

k“1 ϑ
pmq

k ϕ
pmq

k ptqϕ
pmq

k pt1q, targets the posterior

estimates of the functional eigenfunctions, ϕ
pmq

k ptq, and functional eigenvalues, ϑ
pmq

k . The

SVD of the posterior estimates of the discretized marginal covariances are obtained, and the

resulting posterior estimates of the eigencomponents are appropriately standardized (Capra

and Müller (1997)). The mean or median FVE calculated across the M posterior samples

is used to choose the total number of eigencomponents retained in the longitudinal and

functional dimensions, J and K, respectively. Lastly, an additional alignment step is imple-

mented to obtain the signs of the longitudinal and functional eigenfunctions and detailed in

Appendix C.2.

Following estimation, the traditional point estimates for the B-LFPCA components are

obtained through averaging of the posterior estimates. The mean estimate is obtained as

pµps, tq “ p1{Mq
řM

m“1 µ
pmqps, tq. The longitudinal and functional marginal covariance es-

timates are obtained as rKSps, s1q “ p1{Mq
řM

m“1K
pmq

S ps, s1q and rKT pt, t1q “ p1{Mq
řM

m“1

K
pmq

T pt, t1q, respectively. Then the covariance kernel estimate is targeted asKtps, tq, ps1, t1qu “

p1{Mq
řM

m“1K
pmqtps, tq, ps1, t1qu. The longitudinal and functional eigenfunctions and eigen-

values can be targeted in two ways. The first approach is to average the posterior esti-

mates, pψjpsq “ p1{Mq
řM

m“1 ψ
pmq

j psq, pτj “ p1{Mq
řM

m“1 τ
pmq

j , j “ 1, . . . , J , and pϕkptq “

p1{Mq
řM

m“1 ϕ
pmq

k ptq, pϑk “ p1{Mq
řM

m“1 ϑ
pmq

k , k “ 1, . . . , K. The second approach is to per-

form SVD on the longitudinal marginal covariance estimate as rKSps, s1q «
řJ

j“1 rτj
rψjpsq rψjps

1q

followed by appropriate standardization of the eigencomponent estimates leading to the longi-

tudinal eigenfunction and eigenvalue estimates obtained via marginal covariance estimation,
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denoted by rψjpsq and rτj, respectively. Similarly, the functional eigenfunction and eigenvalue

estimates obtained via marginal covariance estimation, denoted by rϕkptq and rϑk, respec-

tively, are calculated as rKT pt, t1q «
řK

k“1
rϑk
rϕkptqrϕkpt1q followed by appropriate standardiza-

tion. The finite sample performance of the point estimates is evaluated via simulations in

Section 3.4.

Traditional Bayesian analysis relies on p1´αq100% credible intervals as a posterior sum-

mary of spread in the posterior distribution. In the functional data setting in Shamshoian

et al. (2022), simultaneous parametric credible intervals under the assumption of normality

were employed following the methodology detailed in Crainiceanu et al. (2007) and Baladan-

dayuthapani et al. (2005). These credible intervals are formed using symmetric bounds from

estimates of the pointwise mean and variance obtained from a functional posterior sample.

Pitfalls arise when using simultaneous parametric intervals due to the symmetric bounds

that may be too restrictive in cases of highly skewed posterior samples as well as distribu-

tional assumptions that may not hold under violations of modeling assumptions. Another

method for obtaining credible intervals is detailed in Krivobokova et al. (2010) and relies on

pointwise estimates of the sample quantiles to form the bounds. In this chapter, the use of

functional depth-based central posterior envelopes (CPEs) are proposed for the B-LFPCA

functional model components and further detailed in Section 3.3. Rather than forming a

single p1 ´ αq100% credible interval, CPEs are a descriptive visual approach for capturing

the spread of a functional posterior distribution through the use of multiple CPE contours

plotted for a grid of α values. Due to the properties of functional depth, this results in a

visualization of the most central regions of the posterior distribution and provides a flexible

nonparametric tool for capturing variation in a posterior sample. The notations used for

the traditional and depth based posterior summaries outlined above and in Section 3.3 are

summarized for the reader’s reference in Table 3.1.
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3.3 Proposed functional depth based CPEs for B-LFPCA compo-

nents

Functional depth orders a sample of functions from the center-outward such that the ‘deep-

est’ curve, with the highest functional depth value, is defined as the median curve to the

most outlying curve, with the lowest functional depth value. There are multiple functional

depth measures that have been detailed in the current literature (see Zuo and Serfling

(2000) and Gijbels and Nagy (2017)), but we center our focus on modified band depth,

a popular graph-based measure of functional depth introduced in López-Pintado and Romo

(2009). Let gp1qpuq, . . . , gpMqpuq, u P I, denote a sample of M posterior curves defined on

a compact interval I P R. A band in R2 delineated by r, 2 ď r ď M , posterior esti-

mates, gpm1qpuq, . . . , gpmrqpuq, constituting a subset of r curves from the full posterior sample

tgp1qpuq, . . . , gpMqpuqu is defined as

B
␣

gpm1q
puq, . . . , gpmrq

puq
(

“

„

tu, gpuqu : u P I, min
w“m1,...,mu

gpwq
puq ď gpuq ď max

w“m1,...,mu

gpwq
puq

ȷ

.

Band depth of López-Pintado and Romo (2009) considers the proportion of bands Btgpm1qpuq

, . . . , gpmrqpuqu determined by r different curves gpm1qpuq, . . . , gpmrqpuq containing the graph

of gpuq. Rather than the proportion of bands that contain the entire graph of gpuq, modified

band depth (MBD) extends band depth to consider the proportion of time that the graph of

gpuq lies inside the bands. More specifically, let the set in the interval I where the function

gpmqpuq lies inside the band Btgpm1qpuq, . . . , gpmrqpuqu be denoted as Artg
pmqpuq; gpm1qpuq, . . . ,

gpmrqpuqu “ tu P I : minw“m1,...,mr g
pwqpuq ď gpmqpuq ď maxw“m1,...,mu g

pwpuqu. Further, if

Lp¨q denotes the Lebesgue measure on I P R, then proportion of time that the curve gpmqpuq

lies inside the band Btgpm1qpuq, . . . , gpmrqpuqu is defined asA˚
rtgpmqpuq; gpm1qpuq, . . . , gpmrqpuqu “

LrArtg
pmqpuq; gpm1qpuq, . . . , gpmrqpuqus{LpIq. The modified band depth (MBD) for the curve

gpmqpuq in gp1qpuq, . . . , gpMqpuq given R, where 2 ď R ď M denotes a fixed total number of
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curves used to delineate a band, is

MBDM,R

␣

gpmq
puq

(

“

R
ÿ

r“2

«

ˆ

M

2

˙´1
ÿ

1ďm1ăm2ă...ămrďM

A˚
r

␣

gpmq
puq; gpm1q

puq, . . . , gpmrq
puq

(

ff

.

MBD ranks each curve gpmqpuq as the sum of A˚
rtgpmqpuq; gpm1qpuq, . . . , gpmrqpuqu over all

possible combinations of bands delineated by 2 ď R ď M total curves that can be formed

from the sample of M total curves. The higher the MBD value for a curve means there is

a larger proportion of bands that the curve lies in and translates to a curve closer to the

center of the sample. Similarly, the lower the MBD value for a curve means there is a smaller

proportion of bands that the curve lies in which translates to a more outlying observation.

Therefore, MBD results in an effective ordering of the sample from the center outward. We

follow common practice and set R “ 2 in applications for computational efficiency (and drop

R from the MBD notation), where bands delineated by all combinations of two curves are

considered in the MBD definition (i.e. MBDMtgpmqpuqu ” MBDM,2tg
pmqpuqu).

MBD of the posterior estimates of the longitudinal eigenfunctions ψjpsq and functional

eigenfunctions ϕkptq, which are both denoted as gpuq ” tψjpsq, ϕkptqu, are utilized to obtain

point estimates (i.e. MBD median) and functional band depth central posterior envelopes

(i.e. MBD-CPEs). While the MBD median, denoted by pmtgpuqu, equals the curve with

the largest MBD value in the posterior sample, the p1 ´ αq100% MBD-CPE, denoted by

D1´αtgpuqu, is formed by the band delineated by the p1´αq100% deepest posterior estimates

in the sample. Both the MBD median and MBD-CPEs for gpuq are targeted via Algorithm

3.

Point estimates and CPEs can also be formed based on the ranking of a posterior

sample of d-dimensional surfaces through the use of modified volume depth (MVD). Let

gp1qpuq, . . . , gpMqpuq, u P D, denote a sample of M d-dimensional posterior surfaces that is

defined on D P Rd. Further let Artg
pmqpuq; gpm1qpuq, . . . , gpmrqpuqu “ tu P D : minw“m1,...,mr

gpwqpuq ď gpmqpuq ď maxw“m1,...,mr g
pwqpuqu denote the region in D where the d-dimensional
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Algorithm 3: MBD Median pmtgpuqu and MBD-CPE D1´αtgpuqu for gpuq ”

tψjpsq, ϕkptqu

Step 1: Calculate the MBD of the posterior samples:

MBDMtgp1q
ptqu, . . . ,MBDMtgpMq

puqu.

Step 2: Order the MBD values of the posterior sample from the smallest to the largest and
denote the corresponding ordered samples as gr1spuq, . . . , grMspuq.

Step 3: Calculate the p1 ´ αq100% MBD-CPE as

D1´αtgpuqu “ B
␣

grtαMu`1s
puq, . . . , grMs

puq
(

,

and the MBD median as pmtgpuqu “ grMspuq.

surface gpmqpuq lies inside the simplex delineated by the d-dimensional surfaces gpm1qpuq, . . . ,

gpmrqpuq. If Ldp¨q denotes the Lebesgue measure extended to Rd, then A˚
rtgpmqpuq; gpm1qpuq,

. . . , gpmrqpuqu “ LdrArtg
pmqpuq; gpm1qpuq, . . . , gpmrqpuqus{LdpDq is used to denote the pro-

portion of time that the d-dimensional surface gpmqpuq lies inside the simplex formed by the

d-dimensional surfaces gpm1qpuq, . . . , gpmrqpuq. Using R “ 2 total d-dimensional surfaces to

delineate a simplex (similar to the definition of MBD), MVD for the d-dimensional surface

gpmqpuq in gp1qpuq, . . . , gpMqpuq, is given as

MVDM,d

␣

gpmq
puq

(

“

ˆ

M

2

˙´1
ÿ

1ďm1ăm2ďM

A˚
2

␣

gpmq
puq; gpm1q

puq, gpm2q
puq

(

.

When d “ 2, MVD is used to order either the posterior estimates of the mean func-

tion, longitudinal marginal covariance, or functional marginal covariance (i.e. gpuq ”

tµps, tq, KSps, s1q, KT pt, t1qu) to obtain the MVD median, denoted by rmtgpuqu. Addition-

ally, an alternative way for obtaining point estimates and CPEs for gpuq “ tψjpsq, ϕkptqu is

through the ranking of the posterior sample of gpuq ” tKSps, s1q, KT pt, t1qu based on MVD.

The MVD median and p1 ´ αq100% MVD-CPEs formed for gpuq are denoted by rmtgpuqu

and D‹
1´αtgpuqu, respectively. By first ordering the posterior sample of respective marginal

covariances, the ordered corresponding posterior sample of eigenfunctions is obtained and
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used to calculate the MVD median and MVD-CPEs. The MVD median equals the func-

tional MVD median of gpuq, while the p1´αq100% MVD-CPE for gpuq is formed by the band

delineated by the Mp1 ´ αq100% deepest longitudinal or functional eigenfunction estimates

in the sample, where the estimates are ordered according to MVD of their respective and

corresponding posterior marginal covariances. The p1 ´ αq100% MVD-CPEs can also be

obtained for the mean function, denoted by D‹
1´αtµps, tqu, by calculating the bands formed

from the p1 ´ αq100% deepest mean functions via MVD at fixed slices across s P S and/or

t P T (i.e. µpt|sq and µps|tq). When d “ 4, the posterior estimates of the covariance kernel

(i.e. gpuq ” Ktps, tq, ps1, t1qu) are ordered using MVD to obtain the kernel MVD median,

denoted by mtgpuqu. This ordering based on the MVD of the posterior covariance kernels

can also be used to order the longitudinal and functional covariances to obtain the kernel

MVD medians denoted by mtg˚puqu for g˚puq ” tKSps, s1q, KT pt, t1qu. Similar to the pro-

cedure described above, the ordering of the respective marginal covariances via the MVD of

the covariance kernels results in an ordering of the corresponding posterior eigenfunctions to

obtain the kernel MVD median and p1´αq100% kernel MVD-CPEs denoted by mtgpuqu and

D:

1´αtgpuqu, respectively, for gpuq “ tψjpsq, ϕkptqu. The point estimates and CPEs based on

the ordering of high-dimensional surfaces via MVD are targeted in Algorithm 4.
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Algorithm 4: MVD and Kernel MVD Median trmp¨q,mp¨qu and MVD-CPE and
Kernel MVD-CPE tD‹

1´αp¨q, D:

1´αp¨qu

Step 1: Calculate the MVD of the posterior d-dimensional surfaces:
MVDM,dtgp1qpuqu, . . . ,MBDM,dtgpMqpuqu.

Step 2: Order the MVD values of the posterior sample from the smallest to the largest and
denote the corresponding ordered posterior sample as gr1spuq, . . . , grMspuq.

When d “ 2 and gpuq ” µps, tq:
Step 3: Calculate the MVD median as rmtgpuqu “ grMspuq.
Step 4: Calculate the p1 ´ αq100% MVD-CPEs across fixed slices of s P S as

D‹
1´αtµps, tqu “

“

s P S : B
␣

µrtαMu`1s
pt|sq, . . . , µrMs

pt|sq
(‰

,

and/or across fixed slices of t P T as

D‹
1´αtµps, tqu “

“

t P T : B
␣

µrtαMu`1s
ps|tq, . . . , µrMs

ps|tq
(‰

.

When d “ 2 and gpuq ” tKSps, s1q, KT pt, t1qu:
Step 3: Calculate the MVD median as rmtgpuqu “ grMspuq.
Step 4: The SVD of the ordered gr1spuq, . . . , grMspuq lead to their corresponding ordered
gr1spuq, . . . , grMspuq for gpuq “ tψjpsq, ϕkptqu.
Step 5: Calculate the p1 ´ αq100% MVD-CPE

D‹
1´αtgpuqu “ B

␣

grtαMu`1s
puq, . . . , grMs

puq
(

,

and the MVD median as rmtgpuqu “ grMspuq.
When d “ 4 and gpuq ” Ktps, tq, ps1, t1qu:

Step 3: Calculate the kernel MVD median as mtgpuqu “ grMspuq.
Step 4: Based on ordering from Step 2: m “ 1, . . . ,M ÞÑ m “ r1s, . . . , rM s, order the
sample g˚r1spuq, . . . , g˚rMspuq for g˚puq ” tKSps, s1q, KT pt, t1qu.
Step 5: Obtain the kernel MVD medians as mtg˚puqu “ g˚rMspuq.
Step 6: The SVD of the ordered g˚r1spuq, . . . , g˚rMspuq lead to their corresponding
ordered gr1spuq, . . . , grMspuq for gpuq “ tψjpsq, ϕkptqu.
Step 7: Calculate the p1 ´ αq100% kernel MVD-CPE

D:

1´αtgpuqu “ B
␣

grtαMu`1s
puq, . . . , grMs

puq
(

,

and the kernel MVD median as mtgpuqu “ grMspuq.

Functional depth-based medians proposed above (pmp¨q, rmp¨q and mp¨q) estimate the cen-

tral tendency in the posterior distributions of the B-LFPCA components and provide a real-

istic estimate equal to one of the observed functional posterior samples rather than relying
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on pointwise averages as is done in most of the traditional posterior summaries. In addi-

tion, the proposed functional depth based CPEs (denoted by D1´αp¨q D‹
1´αp¨q, and D:

1´αp¨q,

corresponding to MBD, MVD, and kernel-MVD based summaries, respectively), are formed

from a band delineated from the 1 ´ α deepest subset of the functional posterior estimates.

Hence, the proposed methods use functional depth measures to construct fully data-driven

summaries that capture the uncertainty in the posterior estimates in a flexible way. It is

important to note that CPEs are not credible intervals and, at the present, are not intended

to be utilized for inference. Instead, CPEs provide a descriptive visualization tool for captur-

ing the variation in the posterior sample, and when plotted for a grid of α values, allow for

visualization of the most central regions of the functional posterior distributions. Notations

used for point estimates and CPEs for both the traditional and proposed functional depth

summaries based are summarized in Table 3.1.

3.4 Simulation Studies

Eight simulation scenarios are showcased to display the use of CPEs in describing the varia-

tion in the posterior samples under violation of the weak separability assumption and in the

presence of functional outliers. Additionally, finite sample properties of the traditional and

depth based point estimates from Section 3.2.2 and Section 3.3, respectively, are studied un-

der the different simulation scenarios. The eight simulation scenarios proposed are: Case 1 –

no outliers, Case 2 – violation of weak separability assumption, Case 3 – magnitude outlier,

Case 4 – amount of variation outlier, Case 5 – time-shifted longitudinal eigenfunction outlier,

Case 6 – higher-frequency longitudinal eigenfunction outlier, Case 7 – time-shifted functional

eigenfunction outlier, and Case 8 – higher-frequency functional eigenfunction outlier. In Case

1, we generate data using the product FPCA model (3.2) with added measurement error for

s P r0, 1s and t P r0, 1s observed at a uniform grid of ns “ 20 longitudinal and nt “ 20

functional time points. The performance of the posterior summaries is evaluated in Case 2
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when the assumption of weak separability is violated through generation of observations such

that the product scores χjk are correlated over the functional and longitudinal dimensions.

Magnitude outliers are generated by adding a constant deviation (with a random sign) to

µps, tq for t ě Ti and s ě Si, where Ti „ Unifr0, 1s and Si „ Unifr0, 1s. This adds constant

variation to a randomly selected portion of the unit time domain in both the functional and

longitudinal dimensions, with greater variation added when s ą 1{2 and t ą 1{2. Amount

of variation outliers are generated using larger variances of the product scores vjk, which re-

sult in added variation throughout the unit interval in both the longitudinal and functional

dimensions. Longitudinal eigenfunction outliers are generated from time-shifted (Case 5) or

higher frequency (Case 6) longitudinal eigenfunctions, where additional variation is added

along the direction of the time-shifted or higher frequency longitudinal eigenfunctions used

to generate the outliers. Similarly, functional eigenfunction outliers are generated from time-

shifted (Case 7) or higher frequency (Case 8) functional eigenfunctions. Results are reported

for outliers generated as q “ 10 and 20% of the sample (n “ 30) for cases 3-8, where de-

tails of data generation under the eight simulation scenarios are deferred to Appendix C.3.

The B-LFPCA model is fit using p1 “ 11 and p2 “ 11 B-spline basis functions in both

longitudinal and functional dimensions with knots at s “ p1{8, 1{4, 3{8, 1{2, 5{8, 3{4, 7{8q

and t “ p1{8, 1{4, 3{8, 1{2, 5{8, 3{4, 7{8q using a total of q1 “ 4 and q2 “ 4 longitudinal and

functional latent factors. Previous work of Boland et al. (2023) using a similar Bayesian

functional principal component analysis (BFPCA) model suggested selecting the number

of basis functions as half the number of functional time points (e.g. p1 “ tns{2u) and

the number of latent factors as a fraction of the number of selected basis functions (e.g.

q1 “ maxp6, tp1{4uq). The B-LFPCA model may require fewer basis functions and latent

factors as needed to avoid overfitting for interpretability of the CPEs. An example of this

in practice is given in our data application in Section 3.5. Results are reported based on a

total of 200 Monte Carlo with 10, 000 MCMC iterations (2, 500 for burn-in and thinning at

every 5th iteration) of four independent Markov chains, and M “ 6, 000 posterior estimates
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for each Monte Carlo run.

Finite sample performance of functional-valued point estimates containing a longitudi-

nal and/or functional argument (e.g. longitudinal eigenfunctions and covariance kernel)

are assessed via the standardized integrated mean squared error (IMSE), IMSE
pgpuq “

r
ş

u
tpgpuq ´ gpuqu2dus{

ş

u
g2puqdu, where u P D can be multidimensional. Point estimates

of scalars (e.g. longitudinal eigenvalues) are assessed via the standardized mean squared er-

ror (MSE),MSE
pρ “ ppρ´ρq2{ρ2, where ρ is a scalar value. The mean IMSE and MSE values

from 200 Monte Carlo runs for the eight simulation scenarios are summarized in Tables 3.2

and 3.3, respectively, when the number of outliers is q “ 20% and in Appendix Tables C.1

and C.2, respectively, when q “ 10%. The traditional and proposed point estimates for

the longitudinal and functional eigenfunctions from the Monte Carlo run with the median

IMSE are given in Figure 3.1 for Cases 1 and 2, and, respectively, in Figures C.1 and C.2

for Cases 3 through 8. Violation of the weak separability assumption in Case 2 leads to

bias in the eigenfunctions as observed in Table 3.2 with larger IMSE values as compared to

Case 1 and results in bias of the marginal longitudinal and functional covariances. In Case

3, the magnitude outliers lead to eigenfunction misspecification as the constant deviation

is estimated as both the first longitudinal and functional eigenfunctions, leading to bias in

every point estimate except for the mean function. The increase in IMSE for the mean

function (Table 3.2) is instead due to increased variation in mean function estimation. The

use of larger longitudinal and functional eigenvalues clearly results in bias of these estimates

(Table 3.3) in Case 4 as well as estimates of the marginal covariances and covariance kernel

(Table 3.2). Although it does not bias eigenfunction estimation, there is a slight increase

in the IMSE of the eigenfunction estimates due to increased variation in eigenfunction esti-

mation. Higher IMSE values of the marginal longitudinal eigenfunctions and covariance in

Case 5 and marginal functional eigenfunctions and covariance in Case 7 are due to the added

time-shifted eigenfunction outliers, leading to more variation in eigenfunction estimation in

the longitudinal and functional time intervals in Cases 5 and 7, respectively. Bias in the
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second longitudinal and functional eigenfunctions in Cases 6 and 8, respectively, is a result

of eigenfunction misspecification as the higher-frequency outlier eigenfunctions are estimated

as the second leading direction of variations. In effect, this leads to bias in the estimation

of the marginal longitudinal and functional covariances in Cases 6 and 8, respectively. In

general, there does not appear to be an advantage for the traditional over the proposed

depth-based point estimates given the similar IMSE and MSE values in Tables 3.2, 3.3, C.1,

and C.2 in most of the simulation cases. This similar performance is potentially due to the

data-adaptive behavior, capturing the effects of outliers and violations of model assump-

tions, of the B-LFPCA model reported in Shamshoian et al. (2022). Further in-depth and

case-specific results for the effects the generated outliers have on the performance of the

point estimates and CPEs for Cases 3-8 are deferred to Appendix C.3.

Figures 3.2 and 3.3 display CPEs for the two leading longitudinal and functional eigen-

functions, respectively, from a single Monte Carlo run overlaying M “ 6, 000 posterior esti-

mates (given in gray) from α cutoffs ranging from 0.05 to 0.95 for Cases 1 and 2. Similar plots

containing CPEs in outlier Cases 3 to 8 (when outlier percentage is equal to q “ 20%) for the

longitudinal eigenfunctions, ψ1psq and ψ2psq, are given in Appendix Figures C.5 and C.6, re-

spectively, and functional eigenfunctions, ϕ1ptq and ϕ2ptq, in Appendix Figures C.7 and C.8,

respectively. Additionally, the MVD-CPEs of the mean function for Cases 1 and 3 (q “ 20%)

are given in Appendix Figures C.3 and C.4, respectively. CPEs from increasing α cutoffs

help visualize regions with the most central functional posterior observations in the sam-

ple. Note that while MBD-CPEs of the marginal eigenfunctions, which directly order the

posterior longitudinal and functional eigenfunctions, are nested in each other for increasing

α values, MVD-CPEs and kernel MVD-CPEs are not necessarily nested. The MVD-CPEs

and kernel MVD-CPEs are based on the functional depth rankings of the posterior longitu-

dinal and functional marginal covariances and covariance kernels, respectively, which may

not result in a nested ordering of the longitudinal and functional eigenfunctions. This is also

the reason why MVD-CPEs are typically wider than MBD-CPEs, incorporating variation
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Table 3.2: The mean standardized integrated mean squared error (IMSE) for both the traditional

and functional depth-based point estimates from the 200 Monte Carlo runs. The eight simulation

cases correspond to: Case 1 – no outliers, Case 2 – violation of weak separability, Case 3 – magnitude

outlier, Case 4 – amount of variation outlier, Case 5/6 – time-shifted/higher-frequency longitudinal

eigenfunction outlier, Case 7/8 – time-shifted/higher-frequency functional eigenfunction outlier,

with q “ 20% outliers.

q “ 20%
Point Estimate Case 1 Case 2* Case 3 Case 4 Case 5 Case 6 Case 7 Case 8

IMSE IMSE
pµptq 0.0003 0.0005 0.0023 0.0006 0.0004 0.0004 0.0005 0.0004
rmtµptqu 0.0003 0.0005 0.0024 0.0007 0.0004 0.0005 0.0005 0.0005

pψ1psq 0.0129 0.1555 1.9079 0.0627 0.0346 0.0215 0.0236 0.0174
rψ1psq 0.0128 0.1587 1.9199 0.0632 0.0344 0.0198 0.0238 0.0174
pmtψ1psqu 0.0129 0.1593 1.9190 0.0655 0.0348 0.0207 0.0241 0.0177
rmtψ1psqu 0.0137 0.1604 1.9182 0.0631 0.0363 0.0208 0.0246 0.0190
mtψ1psqu 0.0138 0.1602 1.8988 0.0667 0.0364 0.0220 0.0250 0.0185

pψ2psq 0.0258 0.1669 1.5821 0.0639 0.0427 0.7630 0.0362 0.0313
rψ2psq 0.0163 0.1613 1.6241 0.0643 0.0371 0.9557 0.0260 0.0213
pmtψ2psqu 0.0172 0.1640 1.6326 0.0643 0.0385 0.9119 0.0275 0.0225
rmtψ2psqu 0.0205 0.1670 1.6280 0.0652 0.0414 0.9112 0.0292 0.0263
mtψ2psqu 0.0211 0.1671 1.6273 0.0697 0.0420 0.8879 0.0329 0.0269

pϕ1ptq 0.0078 0.1087 1.7919 0.0401 0.0070 0.0089 0.0287 0.0136
rϕ1ptq 0.0077 0.1099 1.8021 0.0407 0.0070 0.0089 0.0283 0.0118
pmtϕ1ptqu 0.0080 0.1112 1.8009 0.0415 0.0071 0.0092 0.0291 0.0125
rmtϕ1ptqu 0.0083 0.1110 1.8040 0.0417 0.0078 0.0095 0.0289 0.0130
mtϕ1ptqu 0.0086 0.1107 1.8010 0.0420 0.0081 0.0102 0.0309 0.0157

pϕ2ptq 0.0343 0.1328 1.9319 0.0422 0.0321 0.0332 0.0397 1.0371
rϕ2ptq 0.0295 0.1292 1.9872 0.0426 0.0263 0.0304 0.0358 1.3491
pmtϕ2ptqu 0.0197 0.1222 1.9843 0.0424 0.0191 0.0209 0.0343 1.2572
rmtϕ2ptqu 0.0291 0.1305 1.9801 0.0449 0.0269 0.0299 0.0376 1.3828
mtϕ1ptqu 0.0286 0.1268 1.9842 0.0463 0.0260 0.0305 0.0395 1.5042

rKSps, s1q 0.0627 0.2083 17.684 0.5173 0.0873 0.1501 0.0711 0.0685
rmtKSps, s1qu 0.0656 0.2058 16.648 0.4575 0.0913 0.1511 0.0716 0.0698
mtKSps, s1qu 0.0690 0.2089 15.966 0.4626 0.0948 0.1570 0.0746 0.0767

rKT pt, t1q 0.0571 0.1765 16.075 0.4544 0.0598 0.0605 0.0947 0.1589
rmtKT pt, t1qu 0.0603 0.1775 15.083 0.4049 0.0623 0.0630 0.0991 0.1635
mtKT pt, t1qu 0.0650 0.1803 14.551 0.4053 0.0672 0.0721 0.1052 0.1696

Ktps, tq, ps1, t1qu 0.1005 0.1922 17.182 0.5114 0.1354 0.1841 0.1246 0.2007
mrKtps, tq, ps1, t1qus 0.1076 0.2054 15.740 0.4831 0.1437 0.1949 0.1349 0.2126

*IMSE for point estimates of Ktps, tq, ps1, t1qu are calculated in comparison to the covariance kernel

used for data generation in Case 2 (Appendix C.3).
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Table 3.3: The mean standardized integrated mean squared error (IMSE) and standardized
mean squared error (MSE) for both the traditional and functional depth-based point esti-
mates from the 200 Monte Carlo runs. The eight simulation cases correspond to: Case 1 –
no outliers, Case 2 – violation of weak separability, Case 3 – magnitude outlier, Case 4 –
amount of variation outlier, Case 5 – time-shifted longitudinal eigenfunction outlier, Case 6
– higher-frequency longitudinal eigenfunction outlier, Case 7 – time-shifted functional eigen-
function outlier, Case 8 – higher-frequency functional eigenfunction outlier with q “ 20%
outliers.

q “ 20%
Point Estimate Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8

MSE MSE
pτ1 0.0488 0.0591 15.495 0.6121 0.0499 0.0577 0.0545 0.0510
rτ1 0.0487 0.0592 15.315 0.5838 0.0510 0.0632 0.0541 0.0509

pτ2 0.0378 0.0535 9.0287 1.4118 0.0510 0.0375 0.0363 0.0439
rτ2 0.0426 0.0632 9.0209 1.6163 0.0596 0.0649 0.0420 0.0502

pϑ1 0.0424 0.0494 12.937 0.5113 0.0484 0.0466 0.0450 0.0683
rϑ1 0.0424 0.0499 12.806 0.5838 0.0484 0.0465 0.0466 0.0733

pϑ2 0.0333 0.0377 18.493 2.9308 0.0356 0.0356 0.2399 0.1281
rϑ2 0.0403 0.0417 18.287 3.1965 0.0413 0.0412 0.2571 0.1106
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Figure 3.1: Point estimates of ψ1psq, ψ2psq, ϕ1ptq, and ϕ2ptq in the are displayed from the
top to bottom rows for simulation Cases 1 and 2 from runs with 50th percentile IMSE val-
ues. Longitudinal/functional eigenfunction estimates, longitudinal/functional eigenfunctions
estimates via longitudinal/functional marginal covariance estimation, MBD median, MVD
median, and kernel MVD median are given in solid blue, solid yellow, dashed blue, dashed
yellow, and dashed red overlaying the true function given in solid black.
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from the marginal longitudinal/functional covariance processes rather than only longitudi-

nal/functional eigenfunction-specific variation. Similarly, this is also the reason why gener-

ally the kernel MVD-CPEs are often even wider than MVD-CPEs, incorporating variation

from the entire covariance process across both the longitudinal and functional dimensions

rather than only the longitudinal or functional level variation captured in the respective

marginal covariances. This is particularly apparent in Cases 3-8, where added variation due

to functional outliers leads to additional contamination of the covariance kernel. CPEs uti-

lized in B-LFPCA appear to provide a flexible representation of the shape and spread of the

posterior samples even in the presence of functional outliers and can capture increasing lev-

els of variation across multiple dimensions, contributing to the visualization of the posterior

samples.

While MVD-CPEs are typically more narrow than kernel MVD-CPEs in most of the

simulation cases, the kernel MVD-CPEs in Case 2, which generates functional observations

using product scores that violate the key model assumption of weak separability, often be-

have in the opposite manner. In Figure 3.2(k), the posterior sample space covered by the

MVD-CPE up to α “ 0.45 is approximately the same covered by the kernel MVD-CPE up

to α “ 0.75 in Figure 3.2(ℓ). Similarly, in Figure 3.3(k), the posterior sample space covered

by the MVD-CPE up to α “ 0.65 is covered up to α “ 0.85 by the kernel MVE-CPE in

Figure 3.2(ℓ), while the kernel MVD-CPE contour up to α “ 0.05 in Case 1 (Figure 3.3(i))

is much wider than the corresponding MVD-CPE contour (Figure 3.3(h)). Narrower kernel

MVD-CPE contours compared to the MVD-CPE contours observed in Case 2 are potentially

a consequence of the generated functional data violating the assumption of weak separability.

To recall, under the assumption of weak separability the covariance kernel, Ktps, tq, ps1, t1qu,

can be written as a linear combination of the variance of the product scores, vjk, and eigen-

functions of the longitudinal and functional marginal covariances, ψjpsq and ϕkptq. When

this assumption is violated, the covariance kernel can still be estimated, but integration over

the functional/longitudinal dimension to obtain the functional/longitudinal marginal covari-
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ance does not result in the functional/longitudinal eigenfunctions used to generate the data

when SVD is applied. This is observed in the inflated IMSE values in Table 3.2 as compared

to Case 1 for these estimates, and Figure 3.1 indicates that, although the eigenfunctions

retain their general shape, they become warped and stretched across the unit time interval

in both longitudinal and functional dimensions. Hence, the ordering and visualization of the

eigenfunctions given by the kernel MVD-CPEs rather than the MVD-CPEs can lead to a

more conservative representation of uncertainty in a posterior sample when weak separability

is violated due to the unreliability of the posterior marginal covariances and is a potentially

useful tool worth the added computational burden if suspected.

3.5 Data application

3.5.1 Implicit learning experiment

Our motivating study was conducted at UCLA by our collaborator Dr. Shafali Jeste on

neural correlates of implicit learning for children with autism spectrum disorder (ASD), a

heterogeneous neurodevelopmental disorder characterized by social interaction and commu-

nication impairments (Lord et al. (2000); Jeste et al. (2015)). Implicit learning is charac-

terized as the detection of irregularities in one’s environment without conscious awareness

or intention to learn and is thought to play a role in language and social behavior, which

can provide insights into non-verbal cognition and adaptive social functioning in ASD (Jeste

et al. (2015)). A group of 37 children with a prior diagnosis of ASD aged two to five years

old and 34 age-matched typically developing (TD) peers participated in the visual implicit

learning study during which electroencephalography (EEG) signals measured spontaneous

electrical activity across the scalp.

During the experiment, the participants were shown a continuous stream of six-colored

geometric shapes (pink squares, blue crosses, yellow circles, turquoise diamonds, gray tri-

angles, and red octagons), grouped into three shape pairs that were presented in a random
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order on a computer screen (see Figure 3.4(a)). Presentation of a single shape constituted an

experimental trial and resulted in an event-related potential (ERP) waveform recorded as a

time-locked EEG signal in response to the visual stimuli at electrodes placed across the scalp.

As the experiment progressed, transitions within a shape pair stayed fixed, and hence the

within-pair ordering could be learned forming the “expected” condition, while the between-

pair transitions were random and unpredictable forming the “unexpected” condition. Shape

pairs were presented 120 times resulting in ERP waveforms recorded for 120 trials for both

the expected and unexpected conditions. Implicit learning was detected as condition differ-

ences in the recorded ERP waveforms between the expected and unexpected conditions. As

learning was anticipated to occur over trials, capturing the longitudinal trends in condition

differences was a key goal to reflect the evolution of implicit learning for comparison between

diagnostic groups (ASD vs. TD).

In studies such as the one described above, recorded ERPs result in functional data with

commonly studied paradigm-specific components. The implicit learning paradigm leads to

two well-known ERP components thought to be related to cognitive processes and early

category recognition: the P3 peak and N1 dip (see Figure 3.4(c)) (Jeste et al. (2015)). Using

the same pre-processed ERP data studied in Hasenstab et al. (2015, 2017) and Shamshoian

et al. (2022), our analysis focuses on the condition difference (expected - unexpected) of the

ERP waveforms. Due to the low SNR of the pre-processed ERP, the meta-preprocessing

procedure (MAP-ERP) detailed in Hasenstab et al. (2015) is applied to the pre-processed

ERPs to boost the SNR. MAP-ERP allows for the P3 peak locations to be identified while

still retaining the longitudinal information in the ERPs (common to collapse the longitudinal

dimension to boost SNR by averaging ERP over trials). For each subject, electrode, and

condition, MAP-ERP averages the ERP waveforms in a sliding window of overlapping sets

of trials with a maximum number of 30 trials within a set and applies a peak detection

algorithm (Jeste et al. (2015)) to the averaged ERPs to identify the P3 peak location for a

given trial. Once the P3 locations are obtained, the averaged ERPs are centered around the
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Frontal Scalp Section

Posterior Scalp 
Section

unexpected

expected

unexpected

expected

unexpected

expected

(b)

(c)(a)

Figure 3.4: (a) Visualization of the implicit learning paradigm. The continuous stream of
six-colored shapes is organized into three shape pairs. The “expected” condition is defined as
the transition between shapes within a shape pair, and the “unexpected” condition is defined
as the transition between shape pairs. (b) The four electrodes located in the right frontal
portion of the scalp of interest are denoted by the dark blue stars in the labeled frontal scalp
section. (c) A depiction of the ERP phasic components P3 and N1 in the implicit learning
paradigm.
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P3 peak by examining a 144 ms symmetric window around the P3 peak (i.e., t P r´72 ms,

72 mss). This results in ERP curves with nt “ 37 functional time points and an enhanced

SNR that are aligned by the P3 peak across all subjects, trials, electrodes, and conditions

at t “ 0. Since our interest lies in characterizing implicit learning, the condition differences

are obtained by subtracting the meta-preprocessed ERP corresponding to the unexpected

condition from the expected condition for each subject, trial, and electrode. Lastly, the

condition differences are averaged across the four electrodes in the right frontal region of

the scalp (see Figure 3.4(b)) and constitute our functional dimension with nt “ 37 time

points for each subject observed over ns “ 56 longitudinal trials s P r5, 60s, where maximal

condition differentiation was detected in previous studies (Hasenstab et al. (2015)). Four

ASD subjects and two TD subjects were removed prior to analysis due to their trial-level

missingness profiles, and all other missing trial-level observations are imputed as an update in

the MCMC algorithm. Further details on pre-processing of the ERP data, subject removal

due to missingness, imputation of missing data, and hyperparameters used in fitting the

B-LFPCA model are deferred to Appendix C.4. The B-LFPCA model was fit separately

for the ASD and TD groups with pp1, p2q “ p10, 10q B-spline basis functions and pq1, q2q “

p5, 5q latent factors, which was a fewer amount of basis functions than the rule of thumb

discussed in Section 3.4 but avoided overfitting and led to interpretable CPEs. Additionally,

the 95% simultaneous parametric credible intervals (Krivobokova et al. (2010); Crainiceanu

et al. (2007)) were calculated for the posterior samples of the longitudinal and functional

eigenfunctions to highlight our visualization approach via the proposed CPEs in comparison

to traditional methods for uncertainty quantification.

3.5.2 Data analysis results

Figure 3.5 displays a three-dimensional visualization of the estimated mean of the condition

difference for ASD and TD groups across ERP time and trials. Additionally, the MVD-CPEs

of the mean function at α contours ranging from 0.05 to 0.95 given at fixed slices of the lon-
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Figure 3.5: Point estimates of the mean condition differentiation pµps, tq for ASD and TD

gitudinal dimension s “ p5, 35, 60q (rows 1 and 3) and fixed slices of the functional dimension

t “ p´40, 0, 40q (rows 3 and 4) for both diagnostic groups, overlaying M “ 6, 000 posterior

estimates in gray, are displayed in Figure C.9. Similar to the results seen in Shamshoian

et al. (2022), the ASD group tends to have positive condition differentiation between trials 23

to 50 with maximum positive condition differentiation at trial 29 (Figure 3.5(a)). Whilst the

TD group tends to have positive condition differentiation at earlier trials of the experiment

compared to the ASD group (Figure 3.5(b)). As positive condition differentiation is believed

to be indicative of implicit learning, these findings suggest that the TD group may be dif-

ferentiating between the expected and unexpected conditions earlier than the ASD group.

However, further exploration into the covariance structure can provide further insight into

condition differentiation between the ASD and TD groups.

MBD-CPEs from α contours ranging from 0.05 to 0.95 for the leading three longitudinal

(rows 1 and 2) and functional (row 3 and 4) eigenfunctions for both diagnostic groups,

overlayingM “ 6, 000 posterior estimates in gray, in Figure 3.6. The MVD-CPEs and kernel
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MVD-CPEs of the leading three longitudinal eigenfunctions for both diagnostic groups are

deferred to Appendix Figures C.10 and C.11, respectively, and both are wider than the

MBD-CPEs as expected. Decomposition of the longitudinal marginal covariance over trials

provides insight into how implicit learning evolved through the experiment and the differences

between the ASD and TD groups. The three leading longitudinal eigencomponents explain

more than 80% of the total variation in both groups (median and (2.5th, 97.5th) percentiles

of FVE at 80.2% (75.7%, 84.3%) and 84.1% (80.8%, 87.2%) in the ASD and TD groups,

respectively). The leading longitudinal eigenfunction in the ASD (FVE: 37.1% (30.9%,

46.8%)) and TD (FVE: 40.5% (35.0%, 48.4%)) groups are flat across trials, representing

the overall variability in condition differentiation trial-to-trial (Figure 3.6(a) and (d)). The

second leading longitudinal eigenfunction in the ASD (FVE: 24.9% (19.8%, 30.4%)) and

TD (FVE: 29.3% (23.3%, 34.5%)) groups represents boundary variation (Figures 3.6(b) and

(e)). This is in part due to the MAP-ERP pre-processing step as the number of trials

contained in the overlapping sets of trials in the sliding window shrinks linearly towards one

at the boundaries. Trial 5 contains the smallest number of trials within its sliding window

which results in increased variability, but variation at the boundaries can also be a result

of difficulties in modeling trials located at the boundaries (i.e. trial 60). This is consistent

with the wider MVD-CPEs mean functions displayed in Figure C.9(a) and (g) for trial 5

and Figure C.9(c) and (i) where the ASD group has more variability at trial 60 than the

TD group. Finally, the third longitudinal eigenfunction represents variation in condition

differentiation in both ASD (FVE: 17.6% (13.6%, 21.9%)) and TD (FVE: 14.0% (10.3%,

18.7%)) groups around trials 25 to 30 (Figures 3.6(c) and (f)). In particular, there is a larger

sample space covered by the CPEs for the ASD group compared to the TD group, indicating

more heterogeneity between subjects in the variability of condition differentiation within the

ASD group as compared to the TD group.

Decomposition of the functional marginal covariance over ERP time provides insight into

within-trial P3 peak differences between the ASD and TD groups. The three leading func-
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tional eigencomponents explain more than 90% of the total variation in both groups (median

and (2.5th, 97.5th) percentiles of FVE at 91.4% (89.6%, 93.2%) and 90.2% (88.2%, 92.2%)

in the ASD and TD groups, respectively). For both the ASD and TD groups, the leading

functional eigenfunction captures overall variability around the P3 peak (Figure 3.6(g) and

(j)). The second leading functional eigenfunction represents variation in the P3 peak ampli-

tude (Figure 3.6(h) and (k)). Lastly, the third leading functional eigenfunction characterizes

variation in the shape of the P3 peak around 70ms before and after (Figure 3.6(i) and (ℓ)).

Figure C.12 displays the 95% simultaneous parametric credible interval given as dashed

black lines and pointwise mean as the solid black line for the leading three longitudinal

(rows 1 and 2) and functional (row 3 and 4) eigenfunctions for both diagnostic groups in

Figure 3.6. For the longitudinal eigenfunctions, the 95% credible intervals are slightly wider

than the 95% MBD-CPEs (Figures C.12(a)-(e)). Additionally, the MBD-CPEs aid in the

interpretation of the longitudinal eigenfunctions by adding a more precise look into the

posterior distributions based on the contours that is lacking in the 95% credible intervals.

The 95% credible intervals of the functional eigenfunctions appear to cover around the same

area as the 95% α-level contours of the MBD-CPEs, likely due to smaller variation in the

posterior samples, and both lead to the same interpretation of the functional eigenfunctions.

Overall the CPEs provide a more granular look at the behavior of the eigenfunctions due to

the grid of α-level contours as only a single 95% credible interval is typically reported. If

instead the p1 ´ αq% credible intervals were reported at a grid of α-level contours similar

to the CPEs, they would be fully nested within each other but with no variation in shape,

unlike the CPEs which more flexibly capture shape differences at varying contours.

3.6 Discussion

We expand upon the descriptive tools to visualize variation in the posterior samples pro-

posed in Boland et al. (2023) to a higher multidimensional framework for longitudinal and
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functional model components in B-LFPCA. Relying on the work in Shamshoian et al. (2022)

for the development of the computationally efficient, accurate, and data-adaptive model

for B-LFPCA, we obtain an estimation framework for direct inference on model compo-

nents under the assumption of weak separability of the longitudinal and functional dimen-

sions. Through the implementation of B-LFPCA, we recover highly interpretable marginal

eigenfunctions as well as the mean surface, marginal covariances, and covariance kernel and

propose depth-based summaries for these quantities. The proposed summaries lead to a

data-driven approach in capturing variability in the longitudinal and functional model com-

ponents, particularly the marginal eigenfunctions, without applying symmetry constraints

or relying on estimation methods that fail to treat the posterior samples as truly functional

data. In particular, the proposed summaries are based on the rankings of the posterior sam-

ples using functional depth for single-dimensional functions as well as extensions of functional

depth up to four-dimensional surfaces. Three functional depth-based summaries are consid-

ered: one based on the direct ranking of the entire sample of longitudinal and functional

eigenfunctions, another through the ranking of the associated two-dimensional longitudinal

and functional marginal covariances, and lastly through the ranking of the four-dimensional

covariance kernels. All three approaches were shown to lead to flexible modeling of the

variation in the posterior samples, with increasingly conservative/wider CPEs when more

variation is incorporated. More specifically, capturing variation from a sample of a single

marginal eigenfunction (MBD-CPEs) to greater variation captured in covariance processes

a single dimension (MVD-CPEs) to incorporating variation from both functional and longi-

tudinal dimensions (kernel MVD-CPEs). Although, it was shown in simulations that if the

assumption of weak separability is violated, this trend of increasingly wider CPEs may not

be consistent.

CPEs in the multidimensional setting in application to EEG experiments appear to be

a useful tool in visualizing uncertainty in the posterior estimates of the data in FPCA-

based models, where the weak separability of the dimensions is assumed and holds. Adding
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the use of CPEs in the implicit learning paradigm enriched the results of the analysis and

lead to more flexible and detailed visual representations of learning trends between the

two groups that were not captured using solely traditional credible intervals for uncertainty

quantification. Given the utility of CPEs based on our analysis, further research into applying

depth measures for more complicated object data, such as the work by Dai et al. (2022), is

of interest, particularly for higher dimensional objects and surfaces. In our proposed CPEs,

we faced limitations when visualizing the MVD-CPEs of the mean surface, and as a solution

discretized either the longitudinal or functional dimensions and obtained two-dimensional

representations of a three-dimensional surface, which does not treat the surface as a truly

functional estimate. Therefore, a visualization tool in higher dimensions is needed and an

interesting open problem for future research.
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APPENDIX A

Chapter 1: Appendices

A.1 Eigenvectors of marginal covariances from subgroups

To justify merging of TFT vectors (across diagnostic groups, conditions and scalp regions)

in obtaining trial-specific covariances, leading the the marginal covariance defined in Section

2.3, we assessed whether eigenvectors of the marginal covariances from the eight subgroups

were sufficiently similar. The leading six eigenvectors are displayed in Figures A.1-A.6 for

the delta frequency band and Figures A.7-A.12 for the theta frequency band. We find that

the estimated eigenvectors (i.e. directions of variation) are sufficiently similar across the

eight TFT groupings, which justifies estimation of the marginal covariance by merging data

in our data application.

A.2 Eigenvectors of trial-specific covariances

To assess the constant direction of functional variation across trials of the longitudinal dimen-

sion (an assumption needed in defining the marginal covariance as an average of trial-specific

covariances in Section 2.3), we include plots of the estimated six leading eigenvectors from

trial-specific covariances defined at trials 20, 40 and 60 for analysis of the delta and theta

frequency bands in Figures A.13-A.18. Similarity of eigenvectors signal no violation of the

assumption of constant variation across trials in our data application.
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A.3 Histograms of MDPCA scores

For mixed effects modeling of the eigenscores, we provide in Figure A.19 the histograms of the

eigenscores, displaying relatively symmetric distributions in our data application, signaling

no violation of the normality assumption.

Figure A.1: Estimated PC1 for the marginal covariances in the delta frequency band in two
diagnostic groups (ASD, TD), two conditions (expected (E), unexpected (U)) and two scalp
sections (frontal (F) and (posterior (P)).
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Figure A.2: Estimated PC2 for the marginal covariances in the delta frequency band in two
diagnostic groups (ASD, TD), two conditions (expected (E), unexpected (U)) and two scalp
sections (frontal (F) and (posterior (P)).

Figure A.3: Estimated PC3 for the marginal covariances in the delta frequency band in two
diagnostic groups (ASD, TD), two conditions (expected (E), unexpected (U)) and two scalp
sections (frontal (F) and (posterior (P)).
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Figure A.4: Estimated PC4 for the marginal covariances in the delta frequency band in two
diagnostic groups (ASD, TD), two conditions (expected (E), unexpected (U)) and two scalp
sections (frontal (F) and (posterior (P)).

Figure A.5: Estimated PC5 for the marginal covariances in the delta frequency band in two
diagnostic groups (ASD, TD), two conditions (expected (E), unexpected (U)) and two scalp
sections (frontal (F) and (posterior (P)).
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Figure A.6: Estimated PC6 for the marginal covariances in the delta frequency band in two
diagnostic groups (ASD, TD), two conditions (expected (E), unexpected (U)) and two scalp
sections (frontal (F) and (posterior (P)).

Figure A.7: Estimated PC1 for the marginal covariances in the theta frequency band in two
diagnostic groups (ASD, TD), two conditions (expected (E), unexpected (U)) and two scalp
sections (frontal (F) and (posterior (P)).
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Figure A.8: Estimated PC2 for the marginal covariances in the theta frequency band in two
diagnostic groups (ASD, TD), two conditions (expected (E), unexpected (U)) and two scalp
sections (frontal (F) and (posterior (P)).

Figure A.9: Estimated PC3 for the marginal covariances in the theta frequency band in two
diagnostic groups (ASD, TD), two conditions (expected (E), unexpected (U)) and two scalp
sections (frontal (F) and (posterior (P)).
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Figure A.10: Estimated PC4 for the marginal covariances in the theta frequency band in
two diagnostic groups (ASD, TD), two conditions (expected (E), unexpected (U)) and two
scalp sections (frontal (F) and (posterior (P)).

Figure A.11: Estimated PC5 for the marginal covariances in the theta frequency band in
two diagnostic groups (ASD, TD), two conditions (expected (E), unexpected (U)) and two
scalp sections (frontal (F) and (posterior (P)).

113



Figure A.12: Estimated PC6 for the marginal covariances in the theta frequency band in
two diagnostic groups (ASD, TD), two conditions (expected (E), unexpected (U)) and two
scalp sections (frontal (F) and (posterior (P)).

Figure A.13: The estimated PC1 of trial-specific covariances for both the delta and theta
frequency bands at trials s “ 20, 40, and 60.
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Figure A.14: The estimated PC2 of trial-specific covariances for both the delta and theta
frequency bands at trials s “ 20, 40, and 60.
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Figure A.15: The estimated PC3 of trial-specific covariances for both the delta and theta
frequency bands at trials s “ 20, 40, and 60.
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Figure A.16: The estimated PC4 of trial-specific covariances for both the delta and theta
frequency bands at trials s “ 20, 40, and 60.
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Figure A.17: The estimated PC5 of trial-specific covariances for both the delta and theta
frequency bands at trials s “ 20, 40, and 60.
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Figure A.18: The estimated PC6 of trial-specific covariances for both the delta and theta
frequency bands at trials s “ 20, 40, and 60.
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Figure A.19: Histograms of the estimated MDPCA scores corresponding to the leading six
eigencomponents for analysis in the delta and theta frequency bands in the top two rows
and bottom two rows, respectively.
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APPENDIX B

Chapter 2 Appendices

B.1 Posterior Distributions for BFPCA

Using Gaussian priors for the mean coefficients β and factor loadings λℓ, noninformative

prior for the error variance σ2
ϵ (proportional to a constant c), gamma prior for the variance

of the mean coefficients σ2
β and a modified multiplicative gamma process shrinkage (MMGPS)

prior for the variance components of the factor loading matrix σ2
λrℓ

, the model can be given

in matrix form as:

Y i “ f i ` ϵi “ Bpβ ` Ληiq ` ϵi,

ηi „ NLp0L, ILq, ϵi „ NT p0T , σ
2
ϵ IT q, i “ 1, . . . , n,

β „ NR

˜

0R,
1

σ2
β

Ω´1

¸

, σ2
β „ Gamma

´aβ
2
,
aβ
2

¯

,
1

σ2
ϵ

9c

λℓ „ NR p0R,Σλℓ
q , Σλℓ

“ diagpσ2
λ1ℓ
, . . . , σ2

λRℓ
q, σ2

λrℓ
“ φ´1

rℓ τ
´1
ℓ ,

φrℓ „ Gamma
´ν

2
,
ν

2

¯

, τℓ “

ℓ
ź

h“1

δh, δ1 „ Gammapa1, 1q,

δh „ Gammapa2, 1qIpδh ą 1q, h ě 2.

Let rΛ “ VecpΛq be the RL ˆ 1 vector stacking the L columns of Λ and Hϵ “ 1{σ2
ϵ . The

full conditional distributions are as follows:

1. β|others „ NRpµpost
β , vpostβ q where vpostβ “ p1{nqtBJΣ´1

y B` pσ2
β{nqΩu´1, µpost

β “ vpostβ ˆ
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nBJΣ´1
y Y , where Σ´1

y “ BΛΛJBJ ` σ2
ϵ IT and Y “ 1

n

řn
i“1 Y i.

2. rΛ|others „ NRLpµpost
Λ , vpostΛ q where vpostΛ “ σ2

ϵ tp
řn

i“1 ηiη
J
i q bBJB`σ2

ϵΣ
´1
Λ u´1, µpost

Λ “

vpostΛ ˆ p1{σ2
ϵ q
řn

i“1pη
J
i b BqJY c

i , where b is the Kronecker product, ΣΛ is a diago-

nal matrix, denoted as ΣΛ “ diagpφ´1
11 τ

´1
1 , . . . , φ´1

R1τ
´1
1 , . . . , φ´1

1Lτ
´1
L , . . . , φ´1

RLτ
´1
L q, and

Y c
i “ Y i ´ Bβ.

3. Hϵ|others „ Gammapapostσ2
ϵ
, bpostσ2

ϵ
q, where apostσ2

ϵ
“ pnT q{2, bpostσ2

ϵ
“ RSS{2, and RSS “

řn
i“1tY i ´ Bpβ ` ΛηiquJtY i ´ Bpβ ` Ληiqu.

4. ηi|others „ NLpµpost
ηi

, vpostηi
q, where vpostηi

“ σ2
ϵ pΛJBJBΛ ` σ2

ϵ ILq´1, µpost
ηi

“ vpostηi
ˆ

p1{σ2
ϵ qΛJBJpY i ´ Bβq, for i “ 1, . . . , n.

5. σ2
β|others „ Gammapapost

σ2
β
, bpost

σ2
β

q, where apost
σ2
β

“ pR ` aβq{2, bpost
σ2
β

“ paβ ` βJΩβq{2

6. φrℓ|others „ Gammapapostφrℓ
, bpostφrℓ

q, where apostφrℓ
“ pν ` 1q{2, bpostφrℓ

“ pν ` τℓλ
2
rℓq{2.

7. τℓ|others “
śℓ

h“1 δh|others

(a) δ1|others „ Gammapapostδ1
, bpostδ1

q, where apostδ1
“ a1 ` p1{2qRL, bpostδ1

“ 1 ` pγ1 `

řL
ℓ“2 ζ

p1q

ℓ γℓq{2, where ζ
p1q

ℓ “
śℓ

h“2 δh and γℓ “
řR

r“1 φrℓλ
2
rℓ.

(b) δh|others „ Gammapapostδh
, bpostδh

qI pδh ě 1q, h ě 2, where apostδh
“ a2`RpL´h`1q{2,

bpostδh
“ 1 ` pγh `

řL
ℓ“ph`1q

ζ
phq

ℓ γℓq{2, and ζ
phq

ℓ “
ś

h1‰h δh1 .

A Gibbs sampler is used to sample from the posterior distributions given above. For the

variance component σ2
β, the hyperparameter for the prior is set to aβ “ 2. For the factor

loading matrix, the hyperparameter of the prior for φrℓ is set to ν “ 10, and the hyperpa-

rameters of the priors for τℓ are set to a1 “ 1 and a2 “ 2. A small constant ς “ 0.00001 is

added to the diagonal elements of the penalty matrix Ω to guarantee positive-definiteness,
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where Ω is an R ˆ R matrix with elements

Ω “

»

—

—

—

—

—

—

—

—

—

—

—

—

–

1 ´1 0 . . . . . . 0

´1 2 ´1 0 . . . 0

0 ´1 2 ´1 . . . 0
...

. . . . . . . . . . . .
...

0 . . . 0 ´1 2 ´1

0 . . . . . . 0 ´1 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

` ςIR,

and IR denotes the R ˆ R identity matrix.

B.2 Alignment of Eigenfunction Estimates

Let ψ
pmq

k ptq denote the mth posterior sample, m “ 1, . . . ,M , of the kth eigenfunction,

ψkptq, k “ 1, . . . , K. To align the sign of the eigenfunction estimates across the MCMC

samples, we utilize the below alignment algorithm. In the proposed alignment algorithm,

tψ
p1q‹

k ptq, . . . , ψ
pMq‹

k ptqu denotes the aligned posterior sample with ψ
pmq‹

k ptq “ apmqψ
pmq

k ptq and

apmq P t´1, 1u, and ψ
pmq

k ptq “ p1{mq
řm

j“1 ψ
pjq‹

k ptq denotes the ergodic mean of the aligned

sample.
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Algorithm 5 Alignment of the posterior eigenfunctions

Step 1: Set ap1q “ 1 and ψ
p1q‹

k “ ψ
p1q

k .
Step 2: For m “ 2, . . . ,M ;

a. Calculate the aligned ergodic mean ψ
pm´1q

k ptq and compute

d
pmq

` :“

ż

ˇ

ˇ

ˇ
ψ

pm´1q

k ptq ´ ψ
pmq

k ptq
ˇ

ˇ

ˇ
dt,

and

d
pmq

´ :“

ż

ˇ

ˇ

ˇ
ψ

pm´1q

k ptq ` ψ
pmq

k ptq
ˇ

ˇ

ˇ
dt.

b. Set
apmq

“ I
´

d
pmq

` ď d
pmq

´

¯

´ I
´

d
pmq

` ą d
pmq

´

¯

,

and ψ
pmq‹

k ptq “ apmqψ
pmq

k ptq, where Ip¨q denotes the indicator function.

B.3 Simulation Cases

Five simulation scenarios are considered to display the use of CPEs in describing the variation

in the posterior samples in the presence of functional outliers (results given in main chapter

Section 2.4).

Case 1 (no outliers): For case 1 with no outliers, a sample of functional data are generated

according to the FPCA model with K “ 2 eigencomponents. More specifically, functional

data is generated according to Yiptjq “ µptjq `
řK

k“1 ξikψkptjq ` ϵiptjq, for i “ 1, . . . , n “ 50

subjects at an equidistant grid of j “ 1, . . . , T “ 40 time points in the unit interval 0

to 1. The mean function and the two mutually orthonormal eigenfunctions equal µptq “

10
a

1 ´ 2pt ´ 0.5q2, ψ1ptq “
?
2 sinp2πtq and ψ2ptq “

?
2 cosp2πtq, respectively. The subject-

specific FPCA scores, pξi1, ξi2qJ, are generated from independent normal distributions with

mean zero and variances ρ1 “ 15 and ρ2 “ 5, respectively. Lastly, the measurement error,

ϵiptjq, is generated independently from Np0, σ2
ϵ ) with σ

2
ϵ “ 15.

Case 2 (magnitude outlier): Case 3 generates magnitude outliers by adding a constant

deviation to the mean function (with a random sign): Ziptq “ Yiptq ` ωiW ptq for t ą Ti and

124



Ziptq “ Yiptq for t ă Ti, where Ti „ Unifr0, 1s, W ptq “ 20, t P r0, 1s, and ωi is generated as a

discrete variable with values ´1 or 1 with probability 1{2.

Case 3 (amount of variation outlier): Case 3 generates amount of variation outliers by

using larger eigenvalues: Ziptq “ µptq `
ř2

k“1 ζikψkptq ` ϵiptq, where ζi1 and ζi2 are generated

independently from Np0, 30q and Np0, 20q, respectively.

Case 4 (time-shifted eigenfunction outlier): Case 4 generates time-shifted eigenfunction

outliers: Ziptq “ µptq `
ř2

k“1 ξikκkptq ` ϵiptq, where κ1ptq “
?
2 sint2πpt´ 0.25qu and κ2ptq “

?
2 cost2πpt ´ 0.25qu.

Case 5 (higher-frequency eigenfunction outlier): For case 5, higher-frequency eigen-

function outliers are generated according to Ziptq “ µptq `
ř2

k“1 ξikκkptq ` ϵiptq, where

κ1ptq “
?
2 sint4πtu and κ2ptq “

?
2 cost4πtu.

In cases 2 through 5, the percent of outliers generated equal q “ 10 or 20% of the

functional sample.

B.4 EEG Data

Our motivating study collected electroencephalogram (EEG) data sampled at 500Hz for

2 minutes using a 128-channel HydroCel Geodesic Sensor Net on 58 children with autism

spectrum disorder (ASD) and 39 of their typically developed (TD) peers. Four electrodes

near the eyes were removed prior to recording to improve the comfort of the participants.

The data was then interpolated to the international 10-20 system 25 channel montage via

spherical interpolation, and independent component analysis (ICA) was used for identifi-

cation of artifacts. Specifically, the EEG signals were reconstructed without components

attributed to nonneural sources of the signals, such as the electromyogram (EMG) or other

non-stereotyped artifacts, and then re-referenced to an average of all channels. The first 38

seconds of the artifact-free EEG data was used for each subject for spectral power analysis

as the 38 seconds of the recordings represented the minimum amount of artifact-free data
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available across all participants and was deemed an appropriate minimum threshold to gain

reliable estimates of the signals following previous literature. Spectral density estimates of

the 38 second EEG recordings were obtained using Welch’s method by dividing the data into

2-second Hanning windows with 50% overlap and transforming into the frequency domain via

a fast Fourier transformation (FFT). For each electrode, the spectral densities were averaged

at each overlapping segment, resulting in electrode-specific estimates of the spectral density,

which were then averaged across the 25 electrodes to obtain scalp-wide spectral densities for

each participant.
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Figure B.1: The bands given, B
␣

gp1qptq, gp2qptq
(

and B
␣

gp3qptq, gp4qptq
(

, are repre-

sented as the blue shaded region. The proportion of the curve gpmqptq that lies
within the respective bands is given in red, where A˚

2

␣

gpmqptq; gp1qptq, gp2qptq
(

“ 1 and

A˚
2

␣

gpmqptq; gp3qptq, gp4qptq
(

“ 0.253.
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Figure B.2: Point estimates of µptq for each simulation case with q “ 10 and q “ 20% outliers
from runs with 50th percentile IMSE values. Mean estimate and MBD median are given in
blue and solid yellow, respectively, overlaying the true function given in black.
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Figure B.3: MBD-CPE contours of µptq, denoted by D1´αtµptqu, for each simulation case,
overlaying the posterior estimates and the true function given in gray and black, respectively.
The left and right hand columns (excluding the first row) display the MBD-CPEs for q “ 10%
and q “ 20% outliers, respectively, at a grid of α levels marked by varying contour colors.
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Figure B.4: 95% parametric and quantile credible intervals along with 95% CPEs for µptq
from a single Monte Carlo run for all simulation cases with q “ 20% outliers. The light grey
solid lines represent the sample of M “ 4000 posterior estimates. The blue, red, and yel-
low shaded regions represent P p

.95tµptqu, Qp
.95tµptqu, and D.95tµptqu, respectively. The black

dashed lines in the left and middle columns represent P s
.95tµptqu and Qs

.95tµptqu, respectively,
while the true function is given in solid black.

130



Figure B.5: 95% parametric and quantile credible intervals along with 95% CPEs for ψ1ptq
from a single Monte Carlo run for all simulation cases with q “ 20% outliers. The light
grey solid lines represent the sample of M “ 4000 posterior estimates. The blue, red, and
yellow shaded regions represent P p

.95tψ1ptqu, Qp
.95tψ1ptqu, and D.95tψ1ptqu, respectively. The

black dashed lines in the left, middle and right columns represent P s
.95tψ1ptqu, Qs

.95tψ1ptqu,
and D‹

.95tψ1ptqu, respectively, while the true function is given in solid black.

131



Figure B.6: 95% parametric and quantile credible intervals along with 95% CPEs for ψ2ptq
from a single Monte Carlo run for all simulation cases with q “ 20% outliers. The light
grey solid lines represent the sample of M “ 4000 posterior estimates. The blue, red, and
yellow shaded regions represent P p

.95tψ2ptqu, Qp
.95tψ2ptqu, and D.95tψ2ptqu, respectively. The

black dashed lines in the left, middle and right columns represent P s
.95tψ2ptqu, Qs

.95tψ2ptqu,
and D‹

.95tψ2ptqu, respectively, while the true function is given in solid black.
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Figure B.7: CPE contours of the third and fourth leading eigenfunctions for both ASD and
TD groups in our data application, overlaying the posterior estimates given in gray. The
left and right hand columns display the MBD and MVD-CPEs, denoted by D1´αtψ1ptqu

and D‹
1´αtψ1ptqu, respectively, at a grid of α levels marked by varying contour colors. The

estimated MBD and MVD median are given in solid black in the right and left columns,
respectively.
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Figure B.8: 95% parametric and quantile credible intervals along with 95% CPEs for the
leading two eigenfunctions in our data application. The light grey solid lines represent the
sample of M “ 4000 posterior estimates. The blue, red, and yellow shaded regions represent
P p
.95tψkptqu, Qp

.95tψkptqu, and D.95tψkptqu, respectively. The black dashed lines in the left,
middle and right columns represent P s

.95tψ1ptqu, Qs
.95tψkptqu, and D‹

.95tψkptqu, respectively,
while the estimated eigenfunctions (eigenfunction estimate and MBD median) are given in
solid black.
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Figure B.9: 95% parametric and quantile credible intervals along with 95% CPEs for the
leading third and fourth eigenfunctions in our data application. The light grey solid lines
represent the sample of M “ 4000 posterior estimates. The blue, red, and yellow shaded
regions represent P p

.95tψkptqu, Qp
.95tψkptqu, and D.95tψkptqu, respectively. The black dashed

lines in the left, middle and right columns represent P s
.95tψkptqu, Qs

.95tψkptqu, andD‹
.95tψkptqu,

respectively, while the estimated eigenfunctions (eigenfunction estimate and MBD median)
are given in solid black.
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APPENDIX C

Chapter 3 Appendices

C.1 Prior and Posterior Distributions and Gibbs Sampling for B-

LFPCA

To recall, posterior estimation for the BLFPCA model is achieved by first specifying a mixed

effects model as:

Y i “ f i ` ϵi “ pB1 b B2q tpΛ b Γqηi ` ζiu ` ϵi,

ηi „ Nq1q2pβ,Σηq, ζi „ Np1p2p0p1p2 ,Σζq,

ϵi „ Nnsntp0nsnt , σ
2
ϵ Insntq, i “ 1, . . . , n.

Conditionally conjugate priors provide efficient posterior estimation of the mean coefficients

and variance components through the use of Markov chain Monte Carlo (MCMC). More

specifically, Gaussian priors for the longitudinal factor loadings γℓ (ℓth row of Γ) and func-

tional factor loadings λm (mth row of Λ) are employed. This is followed by an adaptive

regularization approach for the variance components of the longitudinal factor loadings σ2
γℓj

and functional factor loadings σ2
λmk

, where the number of latent factors q1 and q2 are chosen

to be sufficiently large and a modified multiplicative gamma process shrinkage (MMGPS)

prior Bhattacharya and Dunson (2011); Shamshoian et al. (2022) is employed. The prior for
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the longitudinal factor loadings γℓ, ℓ “ 1, . . . , p1, is

γℓ „ Nq1 p0q1 ,Σγℓq , Σγℓ “ diag
´

σ2
γℓ1
, . . . , σ2

γℓq1

¯

, σ2
γℓj

“ φ´1
1ℓjπ

´1
1j ,

φ1ℓj „ Gamma
´ν1
2
,
ν1
2

¯

, π1j “

j
ź

h“1

δ1v,

δ11 „ Gamma pa11, 1q , δ1h „ Gamma pa12, 1q I pδ1h ą 1q , h ě 2,

a11 „ Gamma pr1, 1q , a12 „ Gamma pr2, 1q ,

where Σγℓ is a q1 ˆ q1 diagonal matrix comprised of the variance components, σ2
γℓ1
, . . . , σ2

γℓq1
,

for the the ℓth longitudinal factor loading γℓ, and Ip¨q denotes the indicator function. Adap-

tive shrinkage is induced through the gamma hyper-priors placed on a11 and a12, and for more

details on the prior formulation and mechanics defer the reader to Section 3 of Shamshoian

et al. Shamshoian et al. (2022). Similarly, the prior for the functional factor loadings λm,

m “ 1, . . . , p2, is

λm „ Nq2 p0q2 ,Σλmq , Σλm “ diag
´

σ2
λm1

, . . . , σ2
λmq1

¯

, σ2
λmk

“ φ´1
2mkπ

´1
2k ,

φ2mk „ Gamma
´ν2
2
,

ν2
2

¯

, π2k “

k
ź

h“1

δ2h,

δ21 „ Gamma pa21, 1q , δ2h „ Gamma pa22, 1q I pδ2h ą 1q , h ě 2,

a21 „ Gamma pr1, 1q , a22 „ Gamma pr2, 1q ,

where Σλm is a q2ˆq2 diagonal matrix comprised of the variance components, σ2
λm1

, . . . , σ2
λmq2

,

for the mth functional factor loading λm. The priors for the B-LFPCA model are completed

by employing a Gaussian prior for the mean coefficients β and gamma priors for the variance

of the mean coefficients σ2
βjk

, variance of the latent factors σ2
ηjk

, variance of the reconstruction
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errors σ2
ζℓm

, and variance of the measurement error σ2
ϵ . Specifically, we assume

β „ Nq1q2 p0q1q2 ,Σβq , Σβ “ diag
´

σ2
β11
, . . . , σ2

βq1q2

¯

,
1

σ2
βjk

„ Gamma

ˆ

1

2
,
1

2

˙

,

where Σβ is a q1q2 ˆ q1q2 diagonal matrix comprised of the variance components, σ2
β11
, . . . ,

σ2
βq1q2

, and for ℓ “ 1, . . . , p1, m “ 1, . . . , p2, j “ 1, . . . , q1, k “ 1, . . . , q2,

1

σ2
ηjk

„ Gamma paη, bηq ,
1

σ2
ζℓm

„ Gamma paζ , bζq ,
1

σ2
ϵ

„ Gamma paϵ, bϵq .

We target the posterior distributions in model (3.6) using a Gibbs sampler with the excep-

tion of the shrinkage parameters a11, a12, a21, and a22, which are updated via a Metropolis-

Hastings step. In what follows, let Θi “ pθi1, . . . ,θip1qJ “ pθ˚
i1, . . . ,θ

˚
ip2

q denote the p1 ˆ p2

matrix of subject-specific basis coefficients with ℓth row θiℓ “ pθiℓ1, . . . , θiℓp2qJ and mth col-

umn θ˚
im “ pθi1m, . . . , θip1mqJ, and let Θi “ V ecpΘiq be the p1p2 ˆ 1 vector obtained from

stacking the columns of Θi. Further, let Gamma˚ denote the rate parameterization of the

Gamma probability density function (i.e., if a „ Gammapb, cq, then Eras “ bc), and Φp.q

denote the standard normal cumulative density function. The steps of the MCMC chain are

as follows:

1. γℓ|others „ Nq1pµpost
γℓ

, vpostγℓ
q where vpostγℓ

“ p
řn

i“1 ηiΛ
JΣ´1

ζℓ
ΛηJ

i `Σ´1
γℓ

q´1, µpost
γℓ

“ vpostγℓ
ˆ

řn
i“1 ηiΛ

JΣ´1
ζℓ
θiℓ, where Σ

´1
ζℓ

is a p2ˆp2 diagonal matrix denoted as Σ´1
ζℓ

“ diagpσ´2
ζℓ1
, . . . ,

σ´2
ζℓp2

q, for ℓ “ 1, . . . , p1.

2. φ1ℓj|others „ Gammapapostφ1ℓj
, bpostφ1ℓj

q, where apostφ1ℓj
“ pν1 ` 1q{2, bpostφ1ℓj

“ pν1 ` π1jγ
2
ℓjq{2, for

ℓ “ 1, . . . , p1, j “ 1, . . . , q1.

3. π1j|others “
śj

h“1 δ1h|others, for j “ 1, . . . , q1.

(a) δ11|others „ Gammapapostδ11
, bpostδ1h

q, where apostδ11
“ a11`pp1q1q{2, bpostδ11

“ 1`p
řq1

j“1 π
p1q

1j

řp1
ℓ“1 φ1ℓjγ

2
ℓjq{2, where π

p1q

1j “
śj

h“2 δ1h.
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(b) δ1h|others „ Gammapapostδ1h
, bpostδ1h

q, where apostδ1h
“ a12 ` p1pq1 ´ h ` 1q{2, bpostδ1h

“

1 ` p
řq1

j“ph`1q
π

phq

1j

řp1
ℓ“1 φ1ℓjγ

2
ℓjq{2, where π

phq

1j “
ś

h1‰h δ1h1 .

4. Sample a11:

(a) Sample u „ Uniformp0, 1q.

(b) Sample x „ Np0, 1qIpx ` a11 ą 0q, where Ip.q is the indicator function, and set

the proposal value of a11 to a˚
11 “ x ` a11.

(c) Compute

A “
Gamma˚

pδ11, a
˚
11, 1qGamma˚

pa˚
11, r1, 1qΦpa11q

Gamma˚
pδ11, a11, 1qGamma˚

pa11, r1, 1qΦpa˚
11q
.

(d) If A ą u, then set the new value of a11 to a
˚
11. Otherwise, keep the previous value

of a11.

5. Sample a12:

(a) Sample u „ Uniformp0, 1q.

(b) Sample x „ Np0, 1qIpx`a12 ą 0q, and set the proposal value of a12 to a
˚
12 “ x`a12.

(c) Compute

A “
Gamma˚

pa˚
12, r2, 1q

śq1
h“2Gamma˚

pδ1h, a
˚
12, 1qΦpa12q

Gamma˚
pa12, r2, 1q

śq1
h“2Gamma˚

pδ1h, a12, 1qΦpa˚
12q
.

(d) If A ą u, then set the new value of a12 to a
˚
12. Otherwise, keep the previous value

of a12.

6. λm|others „ Nq2pµpost
λm

, vpostλm
q, where vpostλm

“ p
řn

i“1 ηiΓ
JΣ´1

ζm
ΓηJ

i `Σ´1
λm

q´1, where Σ´1
ζm

“

diagpσ´2
ζ1m
, . . . , σ´2

ζp1m
q, µpost

λm
“ vpostλm

ˆ
řn

i“1 ηiΓ
JΣ´1

ζm
θ˚
im, where Σ

´1
ζm

is a p1 ˆ p1 diagonal

matrix denoted as Σ´1
ζm

“ diagpσ´2
ζ1m
, . . . , σ´2

ζp1m
q, for m “ 1, . . . , p2.

7. φ2mk|others „ Gammapapostφ2mk
, bpostφ2mk

q, where apostφ2mk
“ pν2`1q{2, bpostφ2mk

“ pν2`π2kλ
2
mkq{2,

for m “ 1, . . . , p2, k “ 1, . . . , q2.
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8. π2k|others “
śk

h“1 δ2h|others, for k “ 1, . . . , q2.

(a) δ21|others „ Gammapapostδ21
, bpostδ21

q, where apostδ21
“ a21`pp2q2q{2, bpostδ21

“ 1`p
řq2

k“1 π
p1q

2k

řp2
m“1 φ2mkλ

2
mkq{2, where π

p1q

2k “
śk

h“2 δ2h.

(b) δ2h|others „ Gammapapostδ2h
, bpostδ2h

q, where apostδ2h
“ a22 ` p2pq2 ´ h ` 1q{2, bpostδ2h

“

1 ` p
řq2

k“ph`1q
π

phq

2k

řp2
m“1 φ2mkλ

2
mkq{2, where π

phq

2k “
ś

h1‰h δ2h1 .

9. Sample a21:

(a) Sample u „ Uniformp0, 1q.

(b) Sample x „ Np0, 1qIpx`a21 ą 0q, and set the proposal value of a21 to a
˚
21 “ x`a21.

(c) Compute

A “
Gamma˚

pδ21, a
˚
21, 1qGamma˚

pa˚
21, r1, 1qΦpa21q

Gamma˚
pδ21, a21, 1qGamma˚

pa21, r1, 1qΦpa˚
21q
.

(d) If A ą u, then set the new value of a21 to a
˚
21. Otherwise, keep the previous value

of a21.

10. Sample a22:

(a) Sample u „ Uniformp0, 1q.

(b) Sample x „ Np0, 1qIpx`a22 ą 0q, and set the proposal value of a22 to a
˚
22 “ x`a22.

(c) Compute

A “
Gamma˚

pa˚
22, r2, 1q

śq2
h“2Gamma˚

pδ2h, a
˚
22, 1qΦpa22q

Gamma˚
pa22, r2, 1q

śq2
h“2Gamma˚

pδ2h, a22, 1qΦpa˚
22q
.

(d) If A ą u, then set the new value of a22 to a
˚
22. Otherwise, keep the previous value

of a22.

11. σ2
ζℓm

|others „ Gammapapost
σ2
ζℓm

, bpost
σ2
ζℓm

q, where apost
σ2
ζℓm

“ aζ`n{2, bpost
σ2
ζℓm

“ bζ`p1{2q
řn

i“1pθiℓm´

γJ
ℓ ηiλmq2, for ℓ “ 1, . . . , p1, m “ 1, . . . , p2.
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12. σ2
ϵ |others „ Gammapapostσ2

ϵ
, bpostσ2

ϵ
q, where apostσ2

ϵ
“ aϵ `ntot{2, b

post
σ2
ϵ

“ bϵ ` p1{2q
řn

i“1tY i ´

pB1 b B2qΘiu
JtY i ´ pB1 b B2qΘiu, where ntot is the total number of non-missing

observed time points across the longitudinal and functional dimensions (ntot “ ns ˆ

nt ˆ n when there is no sparsity in Yips, tq).

13. ηi|others „ Nq1q2pµpost
ηi

, vpostηi
q, where vpostηi

“ tpΛJ b ΓJqΣ´1
ζ pΛ b Γqu´1, µpost

ηi
“ vpostηi

ˆ

pΛJ b ΓJqΣ´1
ζ Θi, for i “ 1, . . . , n.

14. Θi|others „ Np1p2pµpost
θi

, vpostθi
q, where vpostθi

“ tσ´2
ϵ pBJ

1 B1 b BJ
2 B2q ` Σ´1

ζ u´1, µpost
θi

“

vpostθi
ˆ tσ2

ϵ pB1 b B2qY i ` Σ´1
ζ pΛ b Γqηiu, for i “ 1, . . . , n.

15. σ2
ηjk

|others „ Gammapapostσ2
ηjk

, bpostσ2
ηjk

q, where apostσ2
ηjk

“ aη ` n{2, bpostσ2
ηjk

“ bη ` p1{2q `

řn
i“1pηijk ´ βjkq2, for j “ 1, . . . , q1, k “ 1, . . . , q2.

16. β|others „ Npµpost
β , vpostβ q, where vpostβ “ tnΣ´1

η Iq1q2`Σ´1
β u´1, µpost

β “ vpostβ ˆΣ´1
η

řn
i“1 ηi,

where Iq1q2 is the q1q2 ˆ q1q2 identity matrix.

17. σ2
βjk

|others „ Gammapapost
σ2
βjk

, bpost
σ2
βjk

q, where apost
σ2
βjk

“ 1, bpost
σ2
βjk

“ p1 ` β2
jkq{2, for j “

1, . . . , q1, k “ 1, . . . , q2.

Gibbs sampler updates, as well as Metropolis-Hastings steps, are employed to obtain

posterior samples of the above parameters. For the variance components of the element-

wise precisions of the longitudinal and functional factor loading matrices φ1ℓj and φ2mk,

respectively, the hyperparameters for the priors are set to ν1 “ 5 and ν2 “ 5. For the

adaptive shrinkage parameters a11, a12, a21 and a22, the hyperparameters of the priors are

set to r1 “ 1 and r2 “ 2. For the variance component of the latent factors, σ2
ηjk

, the

hyperparameters of the prior are set to aη “ 1 and bη “ 1. For the variance component

of the reconstruction errors, σ2
ζℓm

, the hyperparameters of the prior are set to aζ “ 0.5 and

bζ “ 0.25. For the variance component of the measurement error, the hyperparameters of

the prior are set to aϵ “ 0.0001 and bϵ “ 0.0001. Modifications of these hyperparameters for

the data application (Section 3.5) are detailed in Appendix C.4.
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C.2 Post-processing of MCMC Samples

In this appendix, we give details on the post-processing of the posterior estimates of the

longitudinal and functional eigenfunctions detailed in Section 3.2.2. First, we provide the

proof for the direct computation of the functional and longitudinal marginal covariances,

KSps, s1q and KT pt, t1q, respectively. Recall the covariance kernel Ktps, tq, ps1, t1qu can be

expressed as

Ktps, tq, ps1, t1qu “

q1
ÿ

j“1

q2
ÿ

k“1

σ2
ηjk

:ψjpsq :ψjps
1
q:ϕkptq:ϕkpt1q `

p1
ÿ

ℓ“1

p2
ÿ

m“1

σ2
ζℓm
b

p1q

ℓ psqb
p1q

ℓ ps1
qbp2q

m ptqbp2q
m pt1q.

Direction computation of the posterior longitudinal marginal covariance function KSps, s1q

yields

KSps, s1
q “

ż

T
Ktps, tq, ps1, tqudt

“

ż

T

#

q1
ÿ

j“1

q2
ÿ

k“1

σ2
ηjk

:ψjpsq :ψjps
1
q:ϕkptq:ϕkptq `

p1
ÿ

ℓ“1

p2
ÿ

m“1

σ2
ζℓm
b

p1q

ℓ psqb
p1q

ℓ ps1
qbp2q

m ptqbp2q
m ptq

+

dt

“

q1
ÿ

j“1

:ψjpsq :ψjps
1
q

q2
ÿ

k“1

σ2
ηjk

ż

T

:ϕkptq:ϕkptqdt `

p1
ÿ

ℓ“1

b
p1q

ℓ psqb
p1q

ℓ ps1
q

p2
ÿ

m“1

σ2
ζℓm

ż

T
bp2q
m ptqbp2q

m ptqdt

“

q1
ÿ

j“1

:ψjpsq :ψjps
1
q

q2
ÿ

k“1

σ2
ηjk
ωk `

p1
ÿ

ℓ“1

b
p1q

ℓ psqb
p1q

ℓ ps1
q

p2
ÿ

m“1

σ2
ζℓm

Ωm,

where ωk “
ş

T
:ϕkptq:ϕkptqdt and Ωm “

ş

T b
p2q
m ptqb

p2q
m ptqdt. A similar expression for the func-

tional marginal covariance function KT pt, t1q is derived as
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KT pt, t1q “

ż

S
Ktps, tq, ps, t1quds

“

ż

S

#

q1
ÿ

j“1

q2
ÿ

k“1

σ2
ηjk

:ψjpsq :ψjpsq:ϕkptq:ϕkpt1q `

p1
ÿ

ℓ“1

p2
ÿ

m“1

σ2
ζℓm
b

p1q

ℓ psqb
p1q

ℓ psqbp2q
m ptqbp2q

m pt1q

+

ds

“

q2
ÿ

k“1

:ϕkptq:ϕkpt1q
q1
ÿ

j“1

σ2
ηjk

ż

S

:ψjpsq :ψjpsqds `

p2
ÿ

m“1

bp2q
m ptqbp2q

m pt1q
p1
ÿ

ℓ“1

σ2
ζℓm

ż

S
b

p1q

ℓ psqb
p1q

ℓ psqds

“

q2
ÿ

k“1

:ϕkptq:ϕkpt1q
q1
ÿ

j“1

σ2
ηjk
ωj `

p2
ÿ

m“1

bp2q
m ptqbp2q

m pt1q
p1
ÿ

ℓ“1

σ2
ζℓm

Ωℓ,

where ωj “
ş

S
:ψjpsq :ψjpsqds and Ωℓ “

ş

S b
p1q

ℓ psqb
p1q

ℓ psqds. Computing the marginal covariance

functions using the above expressions has much better scalability than first calculating the

covariance kernel Ktps, tq, ps1, t1qu and computing the required integrals
ş

T Ktps, tq, ps1, tqudt

and
ş

S Ktps, tq, ps, t1quds. The ’trapz’ function the R package ’pracma’ is used to numerically

approximate ωm, ωj, Ωm, and Ωℓ.

Next, we detail the alignment algorithm for the posterior longitudinal and functional

eigenfunctions. Let gpmqpuq denote the mth posterior sample, m “ 1, . . . ,M , of either

the jth longitudinal or kth functional eigenfunction, ψjpsq, j “ 1, . . . , J , or ϕkptq, k “

1, . . . , K, respectively. To align the sign of the longitudinal and functional eigenfunction

estimates across the MCMC samples, we utilize the below alignment algorithm. In the

proposed alignment algorithm, tgp1q‹

puq, . . . , gpMq‹

puqu denotes the aligned posterior sample

with gpmq‹puq “ apmqgpmqpuq and apmq P t´1, 1u, and gpmqpuq “ p1{mq
řm

j“1 g
pjq‹

puq denotes

the ergodic mean of the aligned sample.
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Algorithm 6 Alignment of the posterior longitudinal and functional eigenfunctions

Step 1: Set ap1q “ 1 and gp1q‹

puq “ gp1qpuq.
Step 2: For m “ 2, . . . ,M ;

a. Calculate the aligned ergodic mean gpm´1qpuq and compute

d
pmq

` :“

"
ż

`

gpm´1q
puq ´ gpmq

puq
˘2
du

*1{2

,

and

d
pmq

´ :“

"
ż

`

gpm´1q
puq ` gpmq

puq
˘2
du

*1{2

.

b. Set
apmq

“ I
´

d
pmq

` ď d
pmq

´

¯

´ I
´

d
pmq

` ą d
pmq

´

¯

,

and gpmq‹

puq “ apmqgpmqpuq, where Ip¨q denotes the indicator function.

C.3 Simulation Details and Outlier Results

Eight simulation scenarios are considered to display the use of CPEs in describing the vari-

ation in the posterior samples in the presence of functional outliers and violation of the

assumption of weak separability (results given in Section 3.4). In cases 3 through 8, the

percent of outliers generated equal q “ 10 or 20% of the functional sample.

Case 1 (no outliers): For case 1 with no outliers, a sample of functional data are gen-

erated according to the product FPCA model with J “ 2 and K “ 2 longitudinal and

functional eigencomponents, respectively. More specifically, functional data is generated ac-

cording to Yipsu, tvq “ µpsu, tvq`
řJ

j“1

řK
k“1 χijkψjpsuqϕkptvq`ϵipsu, tvq, for i “ 1, . . . , n “ 30

subjects at an equidistant grid of u “ 1, . . . , ns “ 20, and v “ 1, . . . , nt “ 20, longitudinal

and functional time points, respectively, in the unit interval 0 to 1. The mean function is

equal to µps, tq “ 20
a

1 ´ ps ´ 0.5q2 ´ pt ´ 0.5q2. The two mutually orthonormal longitu-

dinal eigenfunctions are equal to ψ1psq “ ´
?
2 cosp2πsq and ψ2psq “

?
2 sinp2πtq, and the

two mutually orthonormal functional eigenfunctions are equal to ϕ1ptq “ ´
?
2 cosp3πsq and

ϕ2ptq “ ´
?
2 sinp3πtq. The subject-specific product scores, pχi11, χi12, χi21, χi22q

J, are gener-
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ated from multivariate normal distributions with mean zero and covariance V1 “ diagpv11 “

2.557, v12 “ 0.770, v21 “ 0.516, v22 “ 0.156q. Lastly, the measurement error, ϵipsu, tvq, is

generated independently from Np0, σ2
ϵ ) with σ

2
ϵ “ 5.

Case 2 (violation of weak separability): For case 2, functional observations are generated

that violate the assumption of weak separability as Zips, tq “ µps, tq `
ř2

j“1

ř2
k“1tχ

˚
ijkψjpsq

ϕkptqu ` ϵips, tq, where subject-specific product scores, pχ˚
i11, χ

˚
i12, χ

˚
i21, χ

˚
i22q

J, are generated

from multivariate normal distributions with mean zero and covariance matrix

V2 “

»

—

—

—

—

—

—

–

2.604 0.829 0.616 ´0.033

0.829 0.912 ´0.264 0.175

0.616 ´0.264 0.666 0.072

´0.033 0.175 0.072 0.283

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

The covariance matrix V2 violates the assumption of weak separability as the product scores

generated are correlated across the longitudinal and functional dimensions.

Case 3 (magnitude outlier): Case 3 generates magnitude outliers by adding a constant

deviation to the mean function (with a random sign): Zips, tq “ Yips, tq ` ωiW psqW ptq for

s ą Si and t ą Ti and Zips, tq “ Yips, tq otherwise, where Si „ Unifr0, 1s, Ti „ Unifr0, 1s,

W psq “
?
20, s P r0, 1s, W ptq “

?
20, t P r0, 1s, and ωi is generated as a discrete variable

with values ´1 or 1 with probability 1{2.

Case 4 (amount of variation outlier): Case 4 generates amount of variation outliers by

using larger variance of the product scores: Zips, tq “ µps, tq `
ř2

j“1

ř2
k“1 ξiikψjpsqϕkptq `

ϵips, tq, where pξi11, ξi12, ξi21, ξi22q
J are generated from a multivariate normal distribution with

mean 0 and covariance V3 “ diagpv11 “ 8.959, v12 “ 5.434, v21 “ 4.917, v22 “ 2.982q.

Case 5 (time-shifted longitudinal eigenfunction outlier): Case 5 generates time-shifted

longitudinal eigenfunction outliers: Zips, tq “ µps, tq `
ř2

j“1

ř2
k“1 χijkκjpsqϕkptq ` ϵips, tq,

where κ1psq “ ´
?
2 cost2πps ´ 1{8qu and κ2psq “

?
2 sint2πps ´ 1{8qu.
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Case 6 (higher-frequency longitudinal eigenfunction outlier): For case 6, higher-frequency

longitudinal eigenfunction outliers are generated according to Zips, tq “ µps, tq`
ř2

j“1

ř2
k“1tχijk

κjpsqϕkptu ` ϵips, tq, where κ1psq “ ´
?
2 cosp4πsq and κ2psq “

?
2 sinp4πsq.

Case 7 (time-shifted functional eigenfunction outlier): Case 7 generates time-shifted

functional eigenfunction outliers: Zips, tq “ µps, tq`
ř2

j“1

ř2
k“1 χijkψjpsqκkptq`ϵips, tq, where

κ1ptq “ ´
?
2 cost3πpt ´ 1{9qu and κ2ptq “ ´

?
2 sint3πpt ´ 1{9qu.

Case 8 (higher-frequency functional eigenfunction outlier): For case 8, higher-frequency

functional eigenfunction outliers are generated according to Zips, tq “ µps, tq`
ř2

j“1

ř2
k“1tχijk

ψjpsqκkptqu ` ϵips, tq, where κ1ptq “ ´
?
2 cosp5πtq and κ2ptq “ ´

?
2 sinp5πtq.

The magnitude outliers in the third simulation scenario add a constant deviation from the

mean function over a random portion of the longitudinal and functional time domains (s P

rSi, 1s and t P rTi, 1s) with a random sign. Due to the random sign of the constant deviation,

rather than biasing the mean function, they increase the variation in the mean function

estimation (IMSE values for mean estimation are higher for Case 3 than other simulation

scenarios in Table 3.2 and C.1). This can also be seen in the MVD-CPEs of the mean function

in Figure C.4 compared to the MVD-CPES for Case 1 in Figure C.3 as there is greater

variation in the posterior samples when t ą 1{2 that increases in severity as we go across

the fixed slices of s, particularly so after s ą 1{2. The addition of the constant deviation

also leads to identifiability issues in longitudinal and functional eigenfunction estimation,

where CPEs of both the first longitudinal and functional eigenfunctions portray the constant

variation, especially in the second half of the unit time domain. MBD-CPEs up to α “ 0.65,

MVD-CPEs up to α “ 0.45, and kernel MVD-CPEs up to α “ 0.05 are constant in the second

half of the unit interval for the first longitudinal eigenfunction in Figure C.5. Similarly, MBD-

CPEs up to α “ 0.65 and MVD-CPEs and kernel MVD-CPEs up to α “ 0.05 are constant

in the second half of the unit interval for the first functional eigenfunction in Figure C.7.

CPEs of the second longitudinal and functional eigenfunctions capture variation along the

first longitudinal and functional eigenfunction as the second major direction of variation
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(following the constant variation in the second half of the unit time interval) (Figure C.5

and C.8). This leads to higher IMSE values in both longitudinal and functional eigenfunction

estimation for Case 3 compared to other simulation cases. Note that the traditional point

estimates pψjpsq and pϕkptq have the smallest IMSE values for Case 3, possibly due to the

cancellation of the effects of the constant deviation with a random sign while averaging over

the posterior samples.

Case 4 generates outliers with larger longitudinal and functional eigenvalues, which in-

crease the variation along the longitudinal and functional eigenfunctions. Due to the shapes

of the four eigenfunctions considered, this adds variation across the entire unit interval in

both longitudinal and functional dimensions, as is detected through the CPEs in Figures C.5

and C.6(d)-(f) and wider CPEs in C.7 and C.8(d)-(f). While this additional variation does

not bias the point estimates of the longitudinal and functional eigenfunctions as can be seen

in point estimates given in Figures C.1 and C.2, respectively, the IMSE in estimation of the

eigenfunctions are higher than Case 1 with no outliers due to the added variation. Tables

3.3 and C.2 show that the added variation leads to bias in the eigenvalues, τj and ϑk, and,

as a consequence, bias in the marginal covariances, KSps, s1q and KT pt, t1q, and covariance

kernel, Ktps, tq, ps1, t1qu, with larger IMSE values compared to Case 1.

Cases 5 and 7 consider the direction of variation outliers in which the functional data are

generated under either longitudinal (Case 5) or functional (Case 7) eigenfunctions shifted in

time. Case 5 leads to added variation in the estimation of the longitudinal eigenfunctions,

ψjpsq, throughout the longitudinal unit time interval (Figures C.5 and C.6(g)-(i)) and im-

pacts estimation of the longitudinal marginal covariance, KSps, s1q. Case 7 leads to added

variation in the estimation of the functional eigenfunctions, ϕkptq, throughout the functional

unit time interval (Figures C.7 and C.8(m)-(o)) and impacts estimation of the functional

marginal covariance, KT pt, t1q. This is consistent with higher IMSE for the longitudinal

eigenfunctions and marginal covariance point estimates in Case 5 and functional eigenfunc-

tions and marginal covariance point estimates in Case 7 compared to Case 1 in Table 3.2

147



and C.1. Finally, direction of variation outliers in which the frequency of the longitudinal

and functional eigenfunctions is increased are considered for Cases 6 and 8, respectively. The

added variation due to the outliers with higher frequency particularly impacts the estimation

of the second eigenfunctions ψ2psq (Case 6) and ϕ2ptq (Case 8) seen in the noticeably larger

IMSE values as compared to Case 1. This is apparent in Figure C.6 for Case 6 with higher

frequency posterior estimates of ψ2psq captured in the α “ 0.75 MBD-CPES and α “ 0.05

MVD-CPES and kernel MVD-CPEs. Similarly, this is apparent in Figure C.8 for Case 8

with higher frequency posterior estimates of ϕ2ptq captured in also the α “ 0.75 MBD-CPES

and α “ 0.05 MVD-CPES and kernel MVD-CPEs.

C.4 Data Analysis

The visual implicit learning experiment recorded EEG for 120 trials per expected and unex-

pected condition for each subject in the ASD (n = 37) and TD (n = 34) groups. The EEGs

were measured over 128-electrode Geodesic Sensor Net at 250Hz resulting in 250 within-

trial time points per ERP over 1000ms and preprocessed using NetStation 4.4.5 software

(Electrical Geodesics, Inc.). Further details on artifact detection, bad channel replacement,

referencing, filtering, smoothing, and base-line corrections can be found in Hasenstab et al.

(2015). Prior to fitting the B-LFPCA model for the ASD and TD groups separately, 4

ASD subjects and 2 TD subjects were removed. Subjects with more than 25% of their

longitudinal observations missing were removed leading to leading to 3 ASD subjects and 1

TD subject. Then, subjects, where more than 50% of the longitudinal data were at least

2 standard deviations away from the group-level mean condition differences, were removed

leading to 1 ASD and 1 TD subject. After the removal of the 6 subjects, there were a total

of 27 missing longitudinal observations across 6 subjects in the ASD group and 24 missing

longitudinal observations across 9 subjects in the TD group. The missing observations were

imputed as an update in the MCMC chain and treated as observed data in the Gibbs sam-
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pler, further details of which can be found in Shamshoian et al. (2022). The MCMC chain

is employed for the ASD and TD groups with 50,000 posterior draws, 20,000 of which are

used for burn-in and thinning at every 5th iteration leading to M “ 6000 posterior samples.

The hyperparameters are selected as ν1 “ ν2 “ 1, r1 “ r2 “ 1, aη “ bη “ 1, aζ “ bζ “ 0.5,

and aϵ “ bϵ “ 10, 000.

C.5 Tables and Figures
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Table C.1: The mean standardized integrated mean squared error (IMSE) for the point estimates

from the 200 Monte Carlo runs. The eight simulation cases correspond to: Case 1 – no outliers,

Case 2 – violation of weak separability, Case 3 – magnitude outlier, Case 4 – amount of variation

outlier, Case 5/6 – time-shifted/higher-frequency longitudinal eigenfunction outlier, Case 7/8 –

time-shifted/higher-frequency functional eigenfunction outlier, with q “ 10% outliers.

q “ 10%
Point Estimate Case 1 Case 2* Case 3 Case 4 Case 5 Case 6 Case 7 Case 8

IMSE IMSE
pµptq 0.0003 0.0005 0.0012 0.0005 0.0004 0.0004 0.0003 0.0004
rmtµptqu 0.0003 0.0005 0.0012 0.0005 0.0004 0.0004 0.0004 0.0005

pψ1psq 0.0129 0.1555 1.3119 0.0451 0.0179 0.0141 0.0148 0.0185
rψ1psq 0.0128 0.1587 1.3602 0.0459 0.0178 0.0124 0.0147 0.0185
pmtψ1psqu 0.0129 0.1593 1.3564 0.0467 0.0182 0.0128 0.0151 0.0190
rmtψ1psqu 0.0137 0.1604 1.3534 0.0466 0.0188 0.0135 0.0155 0.0195
mtψ1psqu 0.0138 0.1602 1.3652 0.0461 0.0199 0.0146 0.0161 0.0211

pψ2psq 0.0258 0.1669 2.0145 0.0489 0.0292 0.1732 0.0289 0.0326
rψ2psq 0.0163 0.1613 2.1153 0.0478 0.0211 0.1387 0.0182 0.0223
pmtψ2psqu 0.0172 0.1640 2.1084 0.0480 0.0220 0.1460 0.0192 0.0240
rmtψ2psqu 0.0205 0.1670 2.1328 0.0503 0.0253 0.1605 0.0225 0.0263
mtψ2psqu 0.0211 0.1671 2.1180 0.0500 0.0266 0.1174 0.0237 0.0295

pϕ1ptq 0.0078 0.1087 1.3375 0.0224 0.0072 0.0100 0.0105 0.0082
rϕ1ptq 0.0077 0.1099 1.3727 0.0219 0.0072 0.0101 0.0105 0.0078
pmtϕ1ptqu 0.0080 0.1112 1.3520 0.0222 0.0076 0.0104 0.0107 0.0083
rmtϕ1ptqu 0.0083 0.1110 1.3572 0.0217 0.0079 0.0109 0.0113 0.0092
mtϕ1ptqu 0.0086 0.1107 1.3688 0.0245 0.0084 0.0118 0.0122 0.0098

pϕ2ptq 0.0343 0.1328 1.8349 0.0305 0.0364 0.0357 0.0289 0.2372
rϕ2ptq 0.0295 0.1292 1.9154 0.0279 0.0327 0.0314 0.0249 0.3223
pmtϕ2ptqu 0.0197 0.1222 1.9095 0.0268 0.0202 0.0227 0.0198 0.2248
rmtϕ2ptqu 0.0291 0.1305 1.9102 0.0295 0.0295 0.0304 0.0261 0.3195
mtϕ1ptqu 0.0286 0.1268 1.9389 0.0318 0.0309 0.0361 0.0251 0.3329

rKSps, s1q 0.0627 0.2083 5.0570 0.2467 0.0712 0.0907 0.0622 0.0688
rmtKSps, s1qu 0.0656 0.2058 4.7407 0.2178 0.0744 0.0898 0.0646 0.0715
mtKSps, s1qu 0.0690 0.2089 4.5832 0.2078 0.0780 0.0950 0.0685 0.0789

rKT pt, t1q 0.0571 0.1765 4.6149 0.1963 0.0592 0.0563 0.0679 0.0904
rmtKT pt, t1qu 0.0603 0.1775 4.3438 0.1705 0.0623 0.0582 0.0725 0.0964
mtKT pt, t1qu 0.0650 0.1803 4.1864 0.1643 0.0663 0.0654 0.0783 0.1011

Ktps, tq, ps1, t1qu 0.1005 0.1922 5.2699 0.2936 0.1149 0.1282 0.1013 0.1386
mrKtps, tq, ps1, t1qus 0.1076 0.2054 4.8858 0.2664 0.1230 0.1351 0.1114 0.1503

*IMSE for point estimates of Ktps, tq, ps1, t1qu are calculated in comparison to the covariance

kernel used for data generation in Case 2 (see Appendix C.3).
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Table C.2: The mean standardized mean squared error (MSE) for the scalar point esti-
mates from the 200 Monte Carlo runs. The eight simulation cases correspond to: Case 1 –
no outliers, Case 2 – violation of weak separability, Case 3 – magnitude outlier, Case 4 –
amount of variation outlier, Case 5 – time-shifted longitudinal eigenfunction outlier, Case 6
– higher-frequency longitudinal eigenfunction outlier, Case 7 – time-shifted functional eigen-
function outlier, Case 8 – higher-frequency functional eigenfunction outlier with q “ 10%
outliers.

q “ 10%
Point Estimate Case 1 Case 2* Case 3 Case 4 Case 5 Case 6 Case 7 Case 8

MSE MSE
pτ1 0.0488 0.0591 3.2820 0.3081 0.0469 0.0452 0.0467 0.0439
rτ1 0.0487 0.0592 3.2236 0.2977 0.0474 0.0472 0.0464 0.0444

pτ2 0.0378 0.0535 4.9695 0.3635 0.0377 0.0360 0.0447 0.0455
rτ2 0.0426 0.0632 5.1648 0.4121 0.0427 0.0574 0.0498 0.0530

pϑ1 0.0424 0.0494 2.6322 0.2355 0.0454 0.0449 0.0414 0.0433
rϑ1 0.0424 0.0499 2.5882 0.2282 0.0454 0.0446 0.0421 0.0452

pϑ2 0.0333 0.0377 12.535 0.9638 0.0350 0.0435 0.1001 0.0352
rϑ2 0.0403 0.0417 13.114 1.0527 0.0420 0.0490 0.1053 0.0456
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Figure C.1: Point estimates of ψ1psq and ψ2psq in the first and section columns, respectively,
for simulation Cases 3 through 8 with q “ 20% outliers from runs with 50th percentile
IMSE values. Longitudinal eigenfunction estimates, longitudinal eigenfunctions estimates
via longitudinal marginal covariance estimation, MBD median, MVD median, and kernel
MVD median are given in solid blue, solid yellow, dashed blue, dashed yellow, and dashed
red overlaying the true function given in solid black.
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Figure C.2: Point estimates of ϕ1ptq and ϕ2ptq in the first and section columns, respectively,
for simulation Cases 3 through 8 with q “ 20% outliers from runs with 50th percentile
IMSE values. Functional eigenfunction estimates, functional eigenfunctions estimates via
functional marginal covariance estimation, MBD median, MVD median, and kernel MVD
median are given in solid blue, solid yellow, dashed blue, dashed yellow, and dashed red
overlaying the true function given in solid black.
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Figure C.5: CPE contours of ψ1psq for simulation Case 3–8 with q “ 20% outliers. The light
grey solid lines, overlaying the true function in solid black, represent the sample ofM “ 6000
posterior estimates. The left- to right-hand columns display the MBD, MVD-CPES, and
kernel MVD-CPEs, denoted by D1´αtψ1psqu, D‹

1´αtψ1psqu, and D:

1´αtψ1psqu, respectively,
at a grid of α levels marked by varying contour colors.
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Figure C.6: CPE contours of ψ2psq for simulation Case 3–8 with q “ 20% outliers. The light
grey solid lines, overlaying the true function in solid black, represent the sample ofM “ 6000
posterior estimates. The left- to right-hand columns display the MBD, MVD-CPES, and
kernel MVD-CPEs, denoted by D1´αtψ2psqu, D‹

1´αtψ2psqu, and D:

1´αtψ2psqu, respectively,
at a grid of α levels marked by varying contour colors.
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Figure C.7: CPE contours of ϕ1ptq for simulation Case 3–8 with q “ 20% outliers. The light
grey solid lines, overlaying the true function in solid black, represent the sample ofM “ 6000
posterior estimates. The left- to right-hand columns display the MBD, MVD-CPES, and
kernel MVD-CPEs, denoted by D1´αtϕ1ptqu, D‹

1´αtϕ1ptqu, and D:

1´αtϕ1ptqu, respectively, at
a grid of α levels marked by varying contour colors.
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Figure C.8: CPE contours of ϕ2ptq for simulation Case 3–8 with q “ 20% outliers. The light
grey solid lines, overlaying the true function in solid black, represent the sample ofM “ 6000
posterior estimates. The left- to right-hand columns display the MBD, MVD-CPES, and
kernel MVD-CPEs, denoted by D1´αtϕ2ptqu, D‹

1´αtϕ2ptqu, and D:

1´αtϕ2ptqu, respectively, at
a grid of α levels marked by varying contour colors.
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D. (2017). A multidimensional functional principal component analysis of EEG data.

Biometrics, 73(3):999–1009.

Hasenstab, K., Sugar, C. A., Telesca, D., Mcevoy, K., Jeste, S. S., and Şentürk, D. (2015).
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