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ABSTRACT OF THE DISSERTATION

Functional Data Analysis Tools for the

Analysis of High-Dimensional Brain Imaging Data

by

Joanna Marie Boland
Doctor of Philosophy in Biostatistics
University of California, Los Angeles, 2022

Professor Damla Sentiirk, Chair

This dissertation develops methodology and presents applications of functional data analysis
tools used in high-dimensional functional data settings. In particular, the tools detailed
were intended for use when analyzing electroencephalography (EEG) measurements, which
records spontaneous electrical activity in the brain at electrodes placed across the scalp,
resulting in rich multidimensional functional data. EEG data is typically analyzed in either
the time and/or frequency domains depending on the application: resting-state experiments
are typically analyzed in the frequency domain, and task-related experiments are typically
analyzed in the time domain. In the first chapter, we develop an algorithm for analyzing
EEG data jointly in both the time and frequency and results in a method for analyzing high-
dimensional EEG data that adds an additional level of specificity to our data application
than is available in single-domain analysis alone. The second chapter of this dissertation
showcases a Bayesian functional principal component analysis (BFPCA) model applied to a
resting-state EEG experiment analyzed in the frequency domain. We develop a fully data-

driven tool that relies on functional depth, a method to order a set of functional observations
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from the center outwards, to flexibly visualize uncertainty in the estimated posterior samples.
The final chapter extends this visualization tool from use in BFPCA to Bayesian longitudinal
FPCA (B-LFPCA) for analysis of longitudinal functional data, which is conceptualized as
functional datum measured repeatedly over a set of longitudinal time points. We apply our
flexible depth-based visualization tool in the higher-dimensional setting to an event-related

EEG experiment analyzed in the time domain.
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CHAPTER 1

A study of longitudinal trends in time-frequency
transformations of EEG data during a learning

experiment

Abstract

EEG experiments yield high-dimensional event-related potential (ERP) data in response to
repeatedly presented stimuli throughout the experiment. Changes in the high-dimensional
ERP signal throughout the duration of an experiment (longitudinally) is the main quantity
of interest in learning paradigms, where they represent the learning dynamics. Typical analy-
sis, which can be performed in the time or the frequency domain, average the ERP waveform
across all trials, leading to the loss of the potentially valuable longitudinal information in
the data. Longitudinal time-frequency transformation of ERP (LTFT-ERP) is proposed to
retain information from both the time and frequency domains, offering distinct but com-
plementary information on the underlying cognitive processes evoked, while still retaining
the longitudinal dynamics in the ERP waveforms. LTFT-ERP begins by time-frequency
transformations of the ERP data, collected across subjects, electrodes, conditions and trials
throughout the duration of the experiment, followed by a data driven multidimensional prin-
cipal components analysis (PCA) approach for dimension reduction. Following projection of
the data onto leading directions of variation in the time and frequency domains, longitudinal
learning dynamics are modeled within a mixed effects modeling framework. Applications to

a learning paradigm in autism depict distinct learning patterns throughout the experiment



among children diagnosed with Autism Spectrum Disorder and their typically developing
peers. LTFT-ERP time-frequency joint transformations are shown to bring an additional
level of specificity to interpretations of the longitudinal learning patterns related to under-
lying cognitive processes, which is lacking in single domain analysis (in the time or the

frequency domain only). Simulation studies show the efficacy of the proposed methodology.



1.1 Introduction

Autism spectrum disorder (ASD) is a heterogeneous neurodevelopmental disorder charac-
terized by social interaction and communication impairments. Our motivating study was
conducted at UCLA by our collaborator Dr. Shafali Jeste on implicit learning of children
with ASD and their typically developing (TD) peers (Jeste et al.| (2015)). Implicit learning
is defined by the detection of irregularities in one’s environment without a conscious aware-
ness or intention to learn. Children two to five years old were shown a continuous stream
of colored geometrical shapes on a computer screen (see Figure [I.1[(a)). The shapes were
presented in pairs and the children were expected to learn the order within the shape pairs
as the experiment progressed. This constituted implicit learning, providing insights into core
cognitive deficits and social behavior of the children in the two diagnostic groups (ASD vs.
TD). As learning was expected to take place over the course of the experiment, in response
to the repeated presentation of stimuli (colored geometrical shapes), referred to as trials,
capturing longitudinal changes in electroencephalography (EEG) signals over trials was one

of the main goals of the experiment.

EEG is a non-invasive and widely-available (low cost) brain imaging modality which
records electrical activity in the brain. An event-related potential (ERP) is defined as the
EEG waveform measured in response to presentation of each stimulus (e.g. a colored geo-
metrical shape) in an EEG experiment. Analysis of EEG and ERP data date back to 1950’s
in a wide spectrum of biomedical applications including epilepsy, sleep disorders, multiple
sclerosis, brain tumors, lesions, major affective disorder, schizophrenia, alcoholism, bipolar
mood disorder, assessment of surgical outcomes, confirmation of brain death, and clinical
trials for drug development (Gasser and Molinari (1996); Tierney et al.| (2012)). Typical
analysis of ERP data averages the ERP signal over all the trials of the experiment, enhanc-
ing the signal-to-noise ratio (SNR) (Gasser and Molinari (1996); |[Delorme and Makeig| (2004));
Tierney et al.| (2012)). While this common technique is effective in increasing the SNR of the
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Figure 1.1: (a) Visualization of the implicit learning paradigm. The continuous stream of
six-colored shapes are organized into three familiar pairs. The “expected” condition is de-
fined as the transition between shapes within a shape pair, and the “unexpected” condition
is defined as the transition between shape pairs. (b) The 24 electrodes of interest analyzed
in the implicit learning paradigm in six total scalp regions (each containing four electrodes)
within two scalp sections (frontal and posterior). (¢) A depiction of the ERP phasic compo-
nents P3 and N1 in the implicit learning paradigm.



ERP data, it collapses information gained during the course of the experiment. This longitu-
dinal information is important, especially in learning experiments, where it characterizes the
learning trends across the study participants, including speed of learning. Previous works
have been proposed to study the longitudinal changes over the course of a learning experi-
ment. Hasenstab et al|(2015) proposed the moving average preprocessed ERP (MAP-ERP)
which averages ERPs over trials in a sliding-window to retain the inherent longitudinal infor-
mation. Fiecas and Ombao| (2016 proposed to study the longitudinal evolution of learning
via the use of time-varying spectral densities in the frequency domain. Additional frequency
domain approaches include Motta and Ombao| (2012) using evolutionary factor analysis to
study the multi-channel EEG dynamics across trials of a motor-visual task. For frequency
domain analysis of EEG data from multiple subjects, see |[Krafty et al| (2011) and Krafty
et al.| (2017)), where covariate effects on the power spectra of multiple time series are modeled

in sleep studies.

The two previously proposed approaches of [Hasenstab et al. (2015) and Ombao et al.
(Fiecas and Ombao| (2016); Ombao and Ho| (2006)) for studying longitudinal trends in EEG
experiments analyze ERP in different domains; in the time domain and the frequency domain,
respectively. While the time domain analysis of ERP data concentrates on interpretations of
the commonly studied ERP phasic components, such as the P3 as shown in Figure (c), the
frequency domain analysis concentrates on interpretations of power from different frequency
bands: delta (1-4 Hz), theta (4-8 Hz), alpha (8-16 Hz), beta(16-32 Hz) and gamma (over 32
Hz). In our motivating implicit learning paradigm, N1 and P3 are the phasic components
typically observed in the ERP waveforms. The N1 dip, with a short latency (time-delay), is
thought to be related to early category recognition, while the P3 peak, with a long latency,
is traditionally related to cognitive processes such as signal matching, decision making and
memory updating (Bugli and Lambert| (2006); Jeste et al.| (2015)). In the frequency do-
main, frequencies in the delta and theta bands have been reported to contribute to a P3

phasic component where frequencies in the delta band are associated with evaluative cogni-



tive processing, and in the theta band are associated with the orienting response to novel
stimuli (Bernat et al.| (2007); [Harper et al.| (2014)). Since both time and frequency domain
analysis of ERP data carry different but complimentary information about the observed
signal, we consider a time-frequency decomposition of the ERP data, targeting even richer
information than is available in single domain analysis. We propose the longitudinal time-
frequency transformation of ERP (LTFT-ERP) method, where a wavelet transformation is
applied to the ERPs. LTFT-ERP, not only targets richer information in the signal through
time-frequency transformations, it also allows modeling of longitudinal changes in the signal
over trials throughout the learning experiment, adding an additional dimension for analysis

(referred to as the longitudinal dimension).

Bernat et al.| (2005, 2007) proposed time-frequency transformations (TFTs) of ERP data
via wavelets and further included dimension reduction of the high dimensional time-frequency
power surfaces through principal components analysis (PCA). To capture the longitudinal
changes throughout the learning experiment, the resulting data from the proposed LTFT-
ERP is even higher dimensional in our applications since the TF'T's are repeated over multiple
trials of the experiment. To adopt a data-driven approach to dimension reduction, similar to
Bernat et al.| (2005)), we employ a multidimensional principal component analysis (MDPCA).
We characterize vectorized TFT power surfaces as the functional dimension of the data and
repetitions over trials as the longitudinal dimension. Under the simplifying assumption that
the direction of variation in the functional dimension of the data stays the same for fixed slices
along the longitudinal dimension, the eigenvectors in the functional dimension are obtained.
Projections of the data onto the leading eigenvectors in the functional dimension allow us to
study longitudinal changes in the resulting PCA scores via a mixed effects model. Finally,
diagnostic-group level inference on longitudinal trends, representing learning dynamics, is

derived via mixed effects modeling machinery.

This chapter is organized as follows. Section outlines the proposed LTFT-ERP ap-

proach, including dimension reduction via MDPCA following the multidimensional TF'T



decompositions and modeling of the longitudinal trends via a mixed effects model. Simula-
tion studies to study the efficacy of the LTFT-ERP in modeling of longitudinal trends in the
MDPCA scores are outlined in Section [1.3] followed by applications to the implicit learning
paradigm in Section 1.4, We conclude with a brief discussion given in Section [1.5

1.2 The proposed longitudinal time-frequency transformation of

ERP data (LTFT-ERP)

The proposed longitudinal time-frequency transformation (LTFT-ERP) starts with transfor-
mation of the ERP waveforms from each trial into the time-frequency (TFT) power surfaces
using the wavelet transformation. Dimension reduction of the resulting trial specific time-
frequency power surfaces is achieved by the data driven MDPCA in the third step. TFT
power surfaces are first reshaped into two continuous dimensions (functional and longitudi-
nal) before the application of MDPCA. The functional dimension represents wavelet power
vectorized over ERP time and frequency within a trial and longitudinal dimension represents
the repeatedly obtained TFT power surfaces over trials, providing the progression of the high-
dimensional process throughout the experiment. Projection of the two-dimensional process
onto the leading functional principal component vectors leads to the longitudinally estimated
PCA scores which summarize changes in the signal over the course of the experiment. In
a final step, longitudinal trends in the PCA scores are compared across participants in the
two diagnostic groups (ASD vs. TD), leading to insights in speed and nature of learning.

The main steps

Step 1: Multidimensional time-frequency transformation (MTFT-ERP) utilizing wavelets,
Step 2: Reshaping of TFT power surfaces into vectors,

Step 3: Dimension reduction via multidimensional PCA (MDPCA),

Step 4: Modeling of longitudinal trends in MDPCA scores via mixed effects modeling,

7
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Figure 1.2: A flowchart of the LTFT-ERP algorithm. For each subject i, electrode j, on
trial s and condition ¢, Step 1 transforms the ERP waveform W;;,(u) into the TFT power
surface )?ijs@(a, b) using the wavelet transformation. Step 2 reshapes the TFT power surface
)?Z-jsg(a, b) into a vector X in ¢ where ¢ denotes the functional dimension of ERP time x
frequency. The longitudinal dimension is trials s, where Step 3 performs dimension reduction
via MDPCA to target the h'" leading eigenvector ¢, in the functional dimension. The final
step models the MDPCA scores as a function of trials (s) via mixed effects modeling.

of LTFT-ERP are depicted in Figure [1.2, We further expand on each step of the proposed
LTFT-ERP algorithm in the following subsections.

1.2.1 MTFT-ERP utilizing wavelets

The ERPs waveforms are transformed into TF'T power surfaces in the first step using the
wavelet function which is a simple oscillating amplitude waveform that is localized in time.
Let W5 (u) denote the micro-voltage of the ERP for subject i, ¢ = 1,...,N, from electrode
J,j=1,...,J, on trial s, s € S;, in condition ¢ (expected/unexpected), ¢ € Li, observed at
time uw, u = 1,...,U, where N, J, U denote the total number of subjects, electrodes, time
points within a trial, respectively, and S; and Li; denote the sets of non-missing trials and
conditions at trial s for subject 7, respectively. The maximum number of conditions per trial,

denoted by L, equals two in our application (expected vs. unexpected). The minimum and



maximum possible number of trials per subject are denoted by s,,;, and S, respectively. In
addition, subjects may be partitioned into multiple diagnostic groups (e.g. TD vs. ASD),

but we omit additional subscripts denoting diagnostic groups for simplicity of notation.

For the wavelet transformation, a general form of the wavelet function is selected and is
referred to as the mother wavelet. The mother wavelet is then systematically stretched and
contracted in time with a set of “daughter wavelets” (Bernat et al. (2005)). The daughter
wavelets are generated by the mother wavelet through scaling (frequency) and translation

(time) parameters. The continuous and complex-valued Morlet wavelet,
w<u) _ 7T71/4eiwu€7u2/2’ (11)

commonly-used in the decomposition of ERP waveforms, is selected as the mother wavelet
(Torrence and Compo| (1998)). The “angular frequency”, denoted by w in , is set to
6, following previous literature (Farge (1992)). For a given scale/frequency a > 0 and
translation/time parameter b € R, the resulting augmented daughter wavelet used in trans-

formations is equal to ¥{(u — b)/a}. The wavelet transformation is then given as:

a

Coatast) = = [ Wi (),

where Cjjse(a,b) denotes the wavelet coefficients which are continuous and complex, and
Y{(u — b)/a} is the complex conjugate of the daughter wavelet. The power, denoted by
)N(Z-jsg(a, b), is calculated as the squared magnitude of the wavelet coefficients, i.e. )N(ijsg(a, b) =
|Cijse(a, b)|*.

For a selected grid of scale/frequency ay, f = 1,...,F, and translation/time parame-

ters by, for d = 1,...,D, the TFT power surfaces, )N(,-jsg, F x D matrices with elements,



)N(ijsg(af, ba), are vectorized into

Xz‘jse = VeC()?gsg) = {)?ijsz(aly b1>, e 7)?1']'35(@17 bD), cee 75{1]'35(@}?7 b1)7 cee 7)?ijs€(aF7 bD)}T>

{Xijse(t1), - -, Xigst(tm)}

where the indices tq,...,t,, are interpreted as the “functional” dimension of the resulting
process, encompassing both ERP time and frequency components (m = F' x D). The TFT
power surfaces, vectorized in X;;s, are observed repeatedly over trials s. Interpreting s as
a coarse time scale, we refer to it as the “longitudinal” dimension. Hence we conceptualize
the TFT dynamic of the original signal as a set of random quantities varying over both a
functional and a longitudinal dimension. In the next section we outline how this random

object is further reduced in dimensionality through data-driven MDPCA.

Note that the tuning parameters F' and D utilized in the wavelet transformations de-
termine the resolution of the time-frequency transformation. While larger values of F' and
D allow for a higher resolution decomposition in frequency and time, respectively, these
values are bounded by considerations of the total number of available EEG (over subjects,
electrodes, conditions and trials) for the MDPCA decompositions. More specific guidance
is provided between the ratio of the number of TEFT power surfaces included in estimation
of the trial-specific covariances and m = F' x D, to ensure stability of the proposed PCA

decompositions, in the next section.

1.2.2 Dimension reduction via MDPCA

For dimension reduction of the TFT power surfaces obtained in the previous section, we
borrow ideas from marginal functional PCA (FPCA) (Park and Staicu (2015)). Marginal
FPCA of longitudinally observed functional data relies on the assumption that the direction
of variation, not the covariance itself, in the functional dimension of the data stays the same

for fixed slices along the longitudinal dimension. This assumption, if assumed along both
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functional and longitudinal directions, called weak-separability (Chen and Miiller| (2012]);
Chen et al| (2017))), is weaker than the commonly assumed strong separability in high-
dimensional data settings, which implies constant covariance along one dimension for fixed
values of the other dimensions of the data. When applied to our two-dimensional TFT
power surfaces, the assumption of constant direction of variation implies that the direction
of variation along the functional dimension of ERP time and frequency (denoted by t) in
the TFT power surfaces, stays the same across trials in the longitudinal dimension, denoted
by s. This leads to the construction of a marginal covariance in the functional dimension,
evaluated as an average of all functional covariances obtained at fixed trials, in estimation

of the common functional directions of variation, captured by the functional eigenvectors.

For each trial s, we define the trial-specific functional covariance as ¥y := Cov(Xj) €
R™> ™ Estimation of this quantity hinges on a moving window estimator, borrowing infor-
mation across adjacent trials. Let Ag represent overlapping sets of trials of varying lengths

for trials s = sy, - .-, S5, with the maximum number of trials within a set denoted by k,

’
k

[smina 23 - Smin]a s < b

As=qls—f+1s+%], b<s<S-14

k[2&>’—S,S], s>9— 1%

For a specific trial s, the estimator of 3 pools all vectors X;js¢, s.t. s" € A;. This set of TFT
power vectors is then centered by subtracting a mean vector X, € R™, obtained averaging
across subjects 7, electrodes j, conditions ¢ and trials in A;,. We denote the mean centered
vectors as X¢. ., = Xjjsr — X,. The ensuing estimator for the trial-specific covariance is

ijs'l
defined as:
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Note that in the formulation above, TFTs are merged across diagnostic groups, scalp
sections and conditions, in targeting trial-specific covariances. This merge requires that the
direction of variation (captured by the estimated eigenvectors of the subsequent marginal
covariance) are similar across different grouping of TFTs (determined by diagnostic groups,
conditions and scalp sections). Appendix Figures display the similarity across
eigenvectors of marginal covariances targeted within the eight subgroups of subjects (two
diagnostic groups, two conditions and two scalp sections) in our data application, justifying
the merging of TFTs used in trial-specific covariances. Hence, the total number of TFT
power vectors included in estimation of ¥, is Ny = J x (3, Liy) x |A4|, where |A;| denotes
the number of elements in set A,. The moving window parameters s,,;,, S and k, defining
the number of trials included in each sliding window in Ay (ranging from 1 to k), are selected
to maintain a 5:1 ratio between the number of TF'T power surfaces included in estimation
of X3 and m = F x D. This procedure is recommended to ensure stability of the proposed

PCA decompositions.

Given trial-specific covariances f]s, an estimator, f], of the functional marginal covariance,
is targeted by a method of moments approach by averaging all trial-specific covariances at
S = Smin, - - - , 5. Note that when the number of trials gets large, trial-specific covariances from
a smaller set of trials (than the entire trial set) may be averaged in targeting the functional
marginal covariance for computational feasibility. In this setting, the invariant directions
of functional variation across trials, are targeted by the estimated m by 1 eigenvectors, ¢y,

h=1,...,m, of the m by m functional marginal covariance matrix,
m
Y= Z )\hthqs'}f’
h=1

with Ay = ... = A, denoting the ordered eigenvalues (Greven et al.| (2010)); |Di et al.| (2009)).
The decomposition is typically truncated to include the first H, H < m, leading eigencom-

ponents in applications. H is selected using the elbow in the fraction of variance explained
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where all components are selected before a relative flattening in the plot. Figures 4 and 5
display the relative flattening in the fraction of variance explained plots in our data applica-
tion. The mean centered TEF'T power vectors X;;sp — X, where X denotes the overall mean
TFT power vector (averaged over all conditions, subjects, electrodes, and trials), are then
projected onto the H estimated leading functional eigenvectors, to obtain the longitudinal
MDPCA scores:

Vi (s) =< Xijer — X, >,

ije
where < -,- > denotes the inner product. We allude to the longitudinal modeling of the

MDPCA scores that is outlined in the next section by representing the estimated MDPCA

scores as functions of the longitudinal argument s, representing trials.

Formulation of the functional marginal covariance from trial-specific covariances utilizes
the constant direction of functional variation assumption across trials in the longitudinal
dimension. This assumption can be assessed via checking the degree of similarity between
eigenvectors of trial-specific covariances across trials. Plots of the estimated six leading
eigenvectors from trial-specific covariances evaluated at trials 20,40 and 60 are given in

Appendix Figures in our data application. Plots display sufficient similarity

across trials, signaling no violation of the assumption of constant variation across trials.

1.2.3 Modeling of longitudinal trends in MDPCA scores

We model the longitudinal trends in the MDPCA scores, Yi?g(s), corresponding to the leading
H functional eigenvectors, across trials via a linear mixed effects model. Multilevel random
effects at the subject, i = 1,...,N, and electrode region, r = 1,..., R, levels are utilized to
model the dependency of the data within subjects and electrodes within a scalp region (3
scalp regions containing 4 electrodes are depicted in Figure [1.1(b) for our data application,

within the frontal and posterior scalp sections) where spatial correlation between electrodes

may exist. Additionally, we employ spline basis functions in modeling both the fixed and
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random effects to represent changes in the MDPCA scores longitudinally across trials.

Let Yl.?(r)e(s) denote the hth leading MDPCA score for subject i, electrode j within
region r, and condition ¢, targeted as a function of the longitudinal index, trials (s). We
model the MDPCA scores using fixed effects and a two-level random effects structure for
subject and region. In our data application, the fixed effects parameters include an intercept,
trial (represented by a natural cubic B-spline with four knots), group (ASD vs. TD), scalp
section (frontal vs. posterior), condition (expected vs. unexpected), as well as higher order
interactions (two- to four-way) between the main effects. This leads to a total of 40 fixed
effects components. Let 5" denote the 40 x 1 column vector of fixed effects parameters, and
let 5 x 1 vectors b and bl represent subject and region-level random effects, respectively.
Further, let ¢;;5 denote the 1 x 40 row vector of the fixed effects matrix @);, corresponding to
trial s, electrode j, and condition ¢, and g;;)s be the 1 x 5 row vector of the random effects

matrix ;) corresponding to trial s and electrode j in region r. We model Yzhj(r) /(s) by

Y;?(T)Z(S) = Qijsfﬁh + qZJ(r)sb? + Qij(r)sb?r + elhj(r)sg;
B~ MVN(0,DI),
by ~ MVN(0,D3s),

G?j(r)sé ~ N(07Uf2L)7

where D' and D?" represent the random effects covariance matrices at the subject and region
levels, respectively (Greven et al. (2010); |Di et al. (2009))). In addition, e?j(r)se represents
the error term for the hth principal component with variance o7. This multi-level mixed

effects model leads to the following covariance structure assuming the random level effects
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are independent of the error term

/

Var{}/;?(r)é(s)} = qij("’)lehqgj(r)s + qij("’)SD2hqij(r)s + O-i2n
cov{Y ] o(s), V() = @i D Gjme + Gii)s D e Vi 5(r), s # 8

cov{Yme(8), Yiime(s)} = @iis D" dijpirys + Gij)s D" diyrryar - Vi 5(r) # 5'(1), s,

for within region correlation and

cov{Ye(8), Yini(s)y = GijwsD" Gy, Vi3 (r) # §'(r7), s,

for within subject across region correlation.

We use the same design matrix for both the subject and region random effects to reduce
the complexity of the model, but these two matrices can be taken to be different. In addi-
tion, the model framework can be extended to accommodate additional covariates that can
model the dependency structure of the data in further detail. The number of equispaced
knots for the cubic B-splines is chosen using AIC criteria in order to obtain a sufficient de-
gree of smoothness in the modeling of the MDPCA scores (Shi et al. (1996); |[Rice and Wu
(2001))). The model parameters are estimated using restricted maximum likelihood (REML).
See Appendix Figure for histograms of the modeled eigenscores, displaying rela-
tively symmetric distributions in our data applications, signaling no violation of the assumed

normality assumption.

1.3 Simulation studies

1.3.1 Simulation setup

We conduct simulations to study the efficacy of the LTFT-ERP algorithm in modeling the

longitudinal trends of the MDPCA scores. For data generation, we utilize the mixed effects
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fits in modeling the leading six MDPCA scores from the delta frequency band in our data
application, since the leading six eigencomponents explained a higher proportion (approx-
imately 90%) of the variation in the data from the delta frequency band than the theta
band. In assessing the efficacy of the LTFT-ERP algorithm, we utilize mean error (ME) in
estimation of the TFT mean power vector and functional eigenvector, in addition to group,
condition and scalp section-specific mean longitudinal trajectories of the MDPCA scores and
utilize prediction error (PE) in prediction of subject and region-specific longitudinal trajecto-
ries of MDPCA scores. We consider multiple simulation scenarios at varying signal-to-noise
ratios (SNR = 0.4,0.8 and 1.6) and sample sizes (N = 80, 160 and 320), where results are

reported based on 200 Monte Carlo runs.

The data fits in modeling the six leading MDPCA score trajectories and the estimated
functional eigenfunctions from the delta frequency band are utilized to simulate the un-
derlying TFT power vectors, denoted by Xf;ggal. Additional error is added directly to the
simulated TFT vectors, to avoid performing back wavelet transformations to target raw
ERPs, which requires additional phase information. In order to simulate the six leading
longitudinal MDPCA score trajectories, Y;;.L(T)Z(s), h=1, ...,6, we first simulate subject and
region-specific random effects, b ~ MV N(0, D) and b2 ~ MV N(0, D**), where the vari-
ance components, D' and D?"  estimated in our data from the delta frequency band, are
multiplied by 0.15 to reduce variability in the score trajectories to guarantee positivity of
the generated TFT power vectors. Once the random effects are simulated, we generate MD-
PCA score trajectories via Y;'?(r)f(3> = qijseB" + ql-j(T)sb? + qij(r)sb?r, for 2 =1,...,N subjects,
j =1,...,24 electrodes, s = 5,...,80 trials and ¢ € {1,2} (expected/unexpected) condi-
tions, mimicking our data analysis. The design matrices for the fixed and random effects are
utilized as described in Section [1.2.3] with half of the sample designated as belonging to the
ASD sample and the other half to the TD sample and the fixed effects parameter vectors,

B", are taken as estimated from the data fits from the delta frequency band.

The simulated true TFT power vectors are obtained via ijfj;‘“l =X+, Y e (8)dn,
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utilizing the six leading eigencomponents, where ¢; denotes the estimated functional eigen-
vectors and X denotes the estimated TFT mean power vector in the delta frequency band.
Additional error is added directly to the power vectors, to obtain the simulated TFT power
vectors, Xjs = Xf;ggal —|—X%fje. The error, X%"S’;e, is obtained as the TFT power vector (via
a wavelet transformation, corresponding to the squared radius in the polar coordinates) of
the Euclidean vector (X,Y), where coordinates X and Y are both generated from a N (0, ¢?)
distribution. Since r?/c will follow a x3 distribution, ¢ is chosen to correspond to varying
SNR ratios, SNR = 0.4,0.8, and 1.6, where SNR is defined as the ratio of the standard
deviation of Xf;‘s’?al to the standard deviation of X7 (which equals 2¢). Finally, missing-
ness is induced by randomly removing a fraction of the generated TF'T power vectors by

sampling with replacement from the missingess profiles of the subjects in our data set from

the implicit learning paradigm.

LTFT-ERP algorithm is applied to the simulated TFT power vectors to first target the
estimated TFT mean power vector, i (averaged over all conditions, subjects, electrodes, and
trials), and the leading functional eigenvector, qgl. Projections onto the leading eigenvector,
yield the estimated leading MDPCA scores, }Afi}(r) ,(s), where the group, condition and scalp
section-specific true and estimated mean trajectories are denoted by F [1/;}(7.)[(3)] = qijsef!
and £ [%(s)] = qijsggl, respectively, where 8! is estimated from the implicit learning

paradigm data fits in the delta frequency band and used in data generation and 31 is esti-

mated from the mixed effects modeling of the simulated MDPCA scores, vl

ii(rye(s). To mimic

our data application mean trajectories over trials are considered in eight subgroups (¢ =
1,...,8) determined by two diagnostic groups (TD vs. ASD), two conditions (expected vs.
unexpected) and two scalp sections (frontal vs. posterior). The true and estimated subject
and region-specific predictions are denoted by E[Y},(5)[0, b, ] = dijseB' +ij(r)sDi +dijir)sbiy

and E[Y,,(s)[b7,0},.] = GijotBY + Gijrysb! + Gij(rysbl., where bl and bl are the true random

effects values simulated from the above specified normal distributions in data generation

and B L g}, and Ellr are estimated based on simulated data. Note that run times for a single
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simulation are approximately 20, 10, and 5 minutes at sample sizes N = 320, 160, and 80,

respectively.

The mean errors (ME) in estimation of the TFT mean power vector and the leading

functional eigenvector are defined by

> [X(t,) - X(t,) 3, [onty) — (1)
ME = 2L , and ME = = :
X [X(t) 3 lonlty)

respectively, for m = F x D = 1764 (with D = 63 and F' = 28), similar to our data
application. The ME in estimation of MDPCA mean trajectories for subjects (in two di-
agnostic groups: TD vs. ASD), electrodes (in two scalp regions frontal vs. posterior) and

conditions (expected vs. unexpected) from a total of eight unique subgroup trajectories

({i,j,¢} € g =1,...,8), summed over trials s = 5,...80, similar to our data application, is
defined as
8 80 ) —
3 3 | EYels)] = ElYia(s)]
ME = g=1s=5
o 8 80 .
33 | BV (9)]
g=1s5=5

The PE in prediction of the subject and region-specific MDPCA score trajectories is defined

as
Z E[Y;;(T)E(S)’bu bzr] - E[}/;;(T)K(S)‘blv bzr]
PE — 4,5,5,0
1]2818 E[K}(T)K(S)U)Za bzr]
where ¢ = 1,..., N denotes subjects, j = 1,...,24 denotes electrodes from six scalp regions,

s =5,...,80 denotes trials, and ¢ € {1, 2} denotes the two conditions (expected /unexpected).
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Table 1.1: Medians and (10th, 90th) percentiles of simulation performance metrics (ME and
PE) from 200 Monte Carlo runs at varying SNRs (SNR = 0.4,0.8, and 1.6) and sample sizes
(N = 80,160, and 320).

Mean Power Eigenvector MDPCA Scores
N SNR ME ME ME PE
0.4 0.81460 (0.80966, 0.82040) 0.89373 (0.88256, 0.90372) 0.376 (0.324, 0.497) 0.564 (0.534, 0.621)
80 0.8 0.40759 (0.40359, 0.41065) 0.69500 (0.65928, 0.72499) 0.293 (0.228, 0.415) 0.426 (0.380, 0.498)
1.6 0.20421 (0.20144, 0.20652) 0.32873 (0.28398, 0.37164) 0.255 (0.184, 0.554) 0.272 (0.221, 0.728)
04 0.81453 (0.81069, 0.81836)  0.89293 (0.88269, 0.90094)  0.344 (0.309, 0.389)  0.561 (0.532, 0.590)
160 0.8 0.40756 (0.40489, 0.41020)  0.69260 (0.67283, 0.71025)  0.245 (0.203, 0.345)  0.418 (0.388, 0.507)
1.6 0.20394 (0.20169, 0.20564) 0.32145 (0.28761, 0.35842) 0.206 (0.146, 0.422) 0.265 (0.224, 0.510)
0.4 0.81462 (0.81215, 0.81717) 0.89206 (0.88639, 0.89865) 0.333 (0.300, 0.429) 0.566 (0.544, 0.670)
320 0.8 0.40766 (0.40579, 0.40918) 0.68958 (0.67272, 0.70487) 0.236 (0.198, 0.356) 0.418 (0.394, 0.599)
1.6 0.20382 (0.20255, 0.20522) 0.32116 (0.29401, 0.34458) 0.182 (0.140, 0.376) 0.270 (0.237, 0.573)

1.3.2 Simulation results

The medians, 10th and 90th percentiles of the ME in estimation of the TFT mean power
vector and functional eigenvector, in addition to group, condition and scalp section-specific
mean longitudinal trajectories of the MDPCA scores and of the PE in prediction of subject
and region-specific longitudinal trajectories of MDPCA scores are given in Table at three
SNRs (SNR = 0.4,0.8, and 1.6) and three sample sizes (N = 80, 160, and 320). Tables
and report the ME and PE, respectively, of the MDPCA score trajectories separately
within the eight subgroups, determined by the two diagnostic groups (TD vs. ASD), two
conditions (expected vs. unexpected) and the two scalp sections (frontal vs. posterior). This
provides a better understanding of the subgroup variability in these measures. In addition,
Figure displays the estimated fixed effects means of the MDPCA scores from the run with
the median ME value for one of the eight subgroups, ASD expected posterior, at varying

SNRs and sample sizes.

Table [1.1] shows a clear and expected trend in the ME and PE with varying SNR values,
where both metrics decrease with increasing SNR values. Note that this trend is present

at all three sample sizes. For estimation of the MDPCA trajectories, ME values for the
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Table 1.2: Medians and (10th, 90th) percentiles of ME from 200 Monte Carlo runs at varying

SNRs (SNR = 0.4,0.8, and 1.6) and sample sizes (N = 80,160, and 320) for each of the
eight subgroups determined by diagnostic group, condition and scalp section.

ME of MDPCA Scores

Group

N

SNR

Frontal

Posterior

Expected

Unexpected

Expected

Unexpected

ASD

TD

80

160

320

0.4
0.8
1.6

0.4
0.8
1.6

0.4
0.8
1.6

0.547 (0.281, 0.882)
0.387 (0.232, 0.769)
0.384 (0.195, 0.853)

0.488 (0.272, 0.738)
0.331 (0.214, 0.602)
0.242 (0.133, 0.664)

0.463 (0.293, 0.728)
0.345 (0.205, 0.566)
0.230 (0.108, 0.480)

0.567 (0.377, 0.876)
0.402 (0.241, 0.721)
0.382 (0.214, 0.835)

0.507 (0.332, 0.734)
0.352 (0.234, 0.579)
0.245 (0.132, 0.636)

0.501 (0.362, 0.691)
0.328 (0.224, 0.506)
0.228 (0.122, 0.459)

0.348 (0.252, 0.452)
0.265 (0.169, 0.375)
0.242 (0.126, 0.513)

0.314 (0.253, 0.401)
0.224 (0.151, 0.312)
0.189 (0.115, 0.367)

0.311 (0.242, 0.389)
0.205 (0.145, 0.293)
0.166 (0.103, 0.322)

0.235 (0.171, 0.395)
0.167 (0.105, 0.319)
0.202 (0.107, 0.505)

0.219 (0.160, 0.279)
0.130 (0.077, 0.237)
0.171 (0.093, 0.349)

0.209 (0.156, 0.301)
0.120 (0.080, 0.229)
0.155 (0.077, 0.296)

80

160

320

0.4
0.8
1.6

0.4
0.8
1.6

0.4
0.8
1.6

0.266 (0.178, 0.465)
0.202 (0.107, 0.340)
0.142 (0.070, 0.564)

0.238 (0.175, 0.336)
0.178 (0.112, 0.300)
0.115 (0.063, 0.349)

0.237 (0.188, 0.388)
0.165 (0.115, 0.336)
0.093 (0.053, 0.393)

0.284 (0.162, 0.523)
0.235 (0.127, 0.439)
0.174 (0.098, 0.571)

0.258 (0.171, 0.382)
0.206 (0.134, 0.351)
0.129 (0.075, 0.405)

0.267 (0.187, 0.420)
0.206 (0.134, 0.367)
0.115 (0.072, 0.414)

0.632 (0.484, 0.798)
0.431 (0.279, 0.649)
0.330 (0.191, 0.726)

0.580 (0.445, 0.682)
0.377 (0.265, 0.542)
0.289 (0.153, 0.546)

0.571 (0.464, 0.683)
0.356 (0.266, 0.512)
0.266 (0.171, 0.495)

0.679 (0.422, 0.989)
0.653 (0.400, 0.949)
0.595 (0.345, 1.137)

0.594 (0.413, 0.805)
0.551 (0.402, 0.776)
0.514 (0.285, 0.844)

0.561 (0.402, 0.729)
0.526 (0.400, 0.710)
0.466 (0.309, 0.753)
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Table 1.3: Medians and (10th, 90th) percentiles of PE from 200 Monte Carlo runs at varying

SNRs (SNR = 0.4,0.8, and 1.6) and sample sizes (N = 80,160, and 320) for each of the
eight subgroups determined by diagnostic group, condition and scalp section.

PE of MDPCA Scores

Group

N

SNR

Frontal

Posterior

Expected

Unexpected

Expected

Unexpected

ASD

TD

80

160

320

0.4
0.8
1.6

0.4
0.8
1.6

0.4
0.8
1.6

0.617 (0.564, 0.699)
0.464 (0.406, 0.541)
0.285 (0.228, 0.751)

0.607 (0.558, 0.664)
0.454 (0.416, 0.544)
0.283 (0.239, 0.540)

0.612 (0.580, 0.712)
0.455 (0.421, 0.653)
0.289 (0.254, 0.591)

0.625 (0.572, 0.709)
0.466 (0.407, 0.542)
0.290 (0.229, 0.751)

0.613 (0.570, 0.667)
0.456 (0.416, 0.539)
0.286 (0.239, 0.539)

0.619 (0.584, 0.711)
0.457 (0.426, 0.645)
0.291 (0.255, 0.584)

0.561 (0.503, 0.662)
0.418 (0.359, 0.517)
0.272 (0.204, 0.725)

0.551 (0.510, 0.602)
0.414 (0.374, 0.519)
0.258 (0.215, 0.557)

0.554 (0.528, 0.647)
0.410 (0.380, 0.606)
0.267 (0.225, 0.594)

0.519 (0.471, 0.618)
0.387 (0.327, 0.495)
0.257 (0.193, 0.682)

0.511 (0.472, 0.563)
0.381 (0.344, 0.486)
0.245 (0.199, 0.525)

0.516 (0.488, 0.606)
0.379 (0.352, 0.569)
0.256 (0.215, 0.560)

80

160

320

0.4
0.8
1.6

0.4
0.8
1.6

0.4
0.8
1.6

0.505 (0.458, 0.584)
0.378 (0.326, 0.465)
0.235 (0.185, 0.667)

0.501 (0.458, 0.555)
0.375 (0.341, 0.442)
0.231 (0.196, 0.486)

0.505 (0.473, 0.630)
0.375 (0.349, 0.544)
0.234 (0.206, 0.533)

0.524 (0.477, 0.612)
0.398 (0.342, 0.476)
0.248 (0.198, 0.692)

0.522 (0.477, 0.569)
0.395 (0.358, 0.458)
0.244 (0.209, 0.504)

0.525 (0.492, 0.648)
0.394 (0.364, 0.554)
0.250 (0.219, 0.540)

0.615 (0.563, 0.715)
0.451 (0.390, 0.537)
0.298 (0.230, 0.734)

0.610 (0.570, 0.664)
0.453 (0.411, 0.559)
0.279 (0.234, 0.540)

0.614 (0.583, 0.722)
0.450 (0.417, 0.595)
0.289 (0.253, 0.563)

0.611 (0.556, 0.710)
0.466 (0.400, 0.550)
0.312 (0.238, 0.693)

0.608 (0.566, 0.653)
0.469 (0.421, 0.560)
0.296 (0.244, 0.558)

0.613 (0.575, 0.718)
0.466 (0.429, 0.597)
0.306 (0.264, 0.571)
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Figure 1.3: True (solid) and estimated (dotted) fixed effects mean trajectories from the run
with the median ME value for the MDPCA scores of the subgroup ASD expected posterior,
at varying SNRs (rows) and sample sizes (columns).

mean longitudinal trajectories are smaller than the PE values for subject and region-specific

predictions, as expected, since it is harder to predict record-specific trajectories than recover

group means in a mixed effects model. In addition, there is a subtle trend of decreasing ME

with increasing sample size in estimation of the mean longitudinal trajectories, as expected.

The ME values reported are largely stable across the three sample sizes for mean power and

eigenvector estimation, perhaps due to the large total number of ERPs observed even for the
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lower sample size at N = 80, due to repetitions over electrodes and conditions. (The lower
sample size at N = 80 is selected not only to mimic the sample size in our data application,

but also to guarantee stable MDPCA decompositions.)

Tables and highlight the variability in the above outlined trends across the eight
subgroups. More specifically while the decreasing trend with increasing SNR is pronounced
for the PE values consistently across all eight subgroups, they are not consistently observed
across all the subgroups in the ME values (the trends with increasing SNR are stronger for
ME in some subgroups, such as both the TD and ASD groups in the unexpected condition
from the frontal scalp section). This is again due to the comparatively higher PE values for
the harder task of prediction compared to estimation of the group means, reflected through
the ME metric. In addition, there are subtle differences in the trends observed across across
scalp sections in two diagnostic groups. While ME values are larger in the ASD group in
the frontal section (compared to the posterior section), they are larger in the TD group
in the posterior section. Note that these differences are due to the different mixed effects
coefficients used in data generation (based on fits to the original data). For example, the
targeted contrasts are closer to zero in the ASD group in the frontal section (compared to
posterior) and the TD group in the posterior section (compared to frontal), leading to larger
ME values due to the standardization by a smaller integrand in the denominator. Figure(l.3
displays that the group mean estimates get closer to the true mean with increasing SNR
and sample size for the MDPCA scores from the ASD group in the expected condition in
the posterior scalp section. Results confirm that even at lower SNR values, where higher
ME values are observed in the estimation of the mean power and eigenvector, group mean
trajectories of the MDPCA scores are effectively recovered through the efficient mixed effects

modeling proposed.
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1.4 Data analysis

1.4.1 The implicit learning paradigm

The implicit learning paradigm included 27 children with Autism Spectrum Disorder (ASD)
and 34 typically developing (TD) peers ranging in age from 2-5 years old. Children were
presented with a continuous stream of six-colored shapes (pink squares, blue crosses, yel-
low circles, turquoise diamonds, gray triangles, and red octagons) which were grouped into
three pairs. Presentation of each shape was a trial, resulting in an ERP waveform. The
order within the paired shapes stayed the same throughout the experiment and hence could
be learned as the experiment progressed, while the order across shape pairs was random.
Therefore, the transition within a shape pair corresponded to the “expected” condition of the
experiment and across shape pairs corresponded to the “unexpected” condition (L = 2, see
Figure|1.1{(a)). Implicit learning was detected through the difference in the ERP waveforms
between the expected and unexpected conditions, and the rate of change in these differences
reflected the evolution of implicit learning in the different diagnostic groups (ASD vs. TD)

throughout the experiment.

There were 120 shapes presented in each condition, corresponding to the 120 trials of the
experiment. EEG was recorded at J = 24 electrodes located in three regions (left, central,
right) within two scalp sections (frontal and posterior) (see Figure [I.I(b)). In addition,
EEG was sampled at 250 Hz, producing a total of U = 250 ERP time points per waveform
spanning 1000ms. For further details on the preprocessing steps of the data, the readers are
deferred to |Hasenstab et al. (2015). In addition to the preprocessing steps, ERP data with
no variability in ERP time have been removed from 3 ASD and 2 TD children (0.13% of the

total ERP records have been removed before analysis).
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1.4.2 Data analysis and interpretations

The implicit learning paradigm lead to two well-known ERP components: N1, related to
early category recognition, and P3, related to cognitive processes such as signal matching,
decision making and memory updating (Bugli and Lambert| (2006); |Jeste et al. (2015))).
In our analysis, we concentrate on modeling power in the delta (.5 to 4 Hz) and theta (4
to 8 Hz) frequency bands, specifically in the way they contribute to the P3 phasic peak.
Contributions of power from these two frequency bands to P3 in learning paradigms have
been associated with cognitive processing (delta), and to orienting to a novel stimulus (theta)
in previous works (Bernat et al.| (2005, 2007); [Harper et al.| (2014)). A two-step filtering
process was applied to the individual pre-processed ERP waveforms that were down-sampled
at every fourth-time point (leading to a total of D = 63 translation parameters in the TFT
decompositions). First, a 3rd order high-pass Butterworth filter at 1.25 Hz was applied to
separate the true signal from the direct current (DC) shift observed in the data. The DC
shift is a well-known phenomenon in which the electrode system measures additional voltage
around 1 Hz alongside the EEG signal due to chemical reactions between the metallic surface
of the electrode and the conductive gel applied to the scalp. Then, we applied high-pass and
low-pass 3rd order Butterworth filters at 4 Hz to the previously filtered signal to separate
the delta (.5 to 4 Hz) and theta (4 to 8 Hz) frequency bands.

Hasenstab et al.| (2015) which only modeled P3 amplitudes during the paradigm showed
that implicit learning (signaled by the differences in the P3 peak amplitudes between the
expected and unexpected conditions) took place between trials 5 and 80, with maximal
condition differentiation occurring around trial s = 30. Hence, we considered modeling lon-
gitudinal trends within this trial range, s,,;, = 5 to S = 80, with £ = 30 maximal trials used
in sliding windows A, in estimation of trial-specific functional covariances. For computa-
tional efficiency, trial-specific functional covariances from every third trial were averaged in
targeting the marginal functional covariance. These choices guaranteed enough total number

of TF'T power surfaces for stable PCA decomposition of the marginal functional covariance,
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where TFT decompositions involved a total of m = D x F' = 63 x 28 = 1764 total parameters
(total scale parameters in frequency were F' = 28). A sensitivity analysis to the choice of the
total number of trials in the sliding windows A, was carried out on the final mixed effects
modeling results of the derived MDPCA scores, where k values within the range [20, 40] lead

to similar results.

Before obtaining the leading eigenvectors in the functional domain, we assessed whether
data from different diagnostic groups, conditions, scalp regions or frequency bands can be
merged in estimation of the functional marginal covariances, as well as assessing the assump-
tion of constant direction of functional variance across trials, leading to estimation of the
marginal functional covariance. While the eigenvectors showed similar directions of vari-
ation within frequency bands across the diagnostic groups, conditions and scalp sections,
they were sufficiently different between the two frequency bands considered, as expected due
to initial filtering of ERPs (Appendix Figures . This observation led us to
consider two separate functional marginal covariances and eventually two separate longitu-
dinal analysis of the MDPCA scores in the two frequency bands, which enabled the study of
group differences across the two experimental conditions (expected vs. unexpected) within
each frequency band. In addition, similarity of the directions of variation, captured by the
eigenvectors of trial-specific functional covariances 3, for trials s € {20, 40, 60}, signaled no
violation of the constant direction of functional variation assumption for the data, leading to

estimation of the functional marginal covariance within each frequency band (Appendix

Figures A.18)).

The estimated six leading eigenvectors ¢y, h = 1, ..., 6, of the functional marginal covari-
ances explained approximately 60% and 90% of the total functional variation in the theta
and delta frequency bands, respectively, where all six MDPCA scores associated with the six
leading functional eigenvectors were modeled through the proposed mixed effects modeling
framework. The mixed effects modeling for both the delta and theta frequency bands used

four knots for the spline fits for the trial effect, selected by AIC. Multilevel random effects
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were considered at the subject and region levels, where the lme function in the R package

nlme was used to fit the models.

The estimated six leading eigenvectors of the functional marginal covariance for the
delta and theta frequency bands are displayed in Figures and [L.5] respectively, where
bounds for the P3 component, expected in the time window of [190, 350] ms, are depicted
with vertical dashed horizontal lines. While the eigenvectors for the delta frequency band
(Figure span longer time intervals and do not isolate to the P3 expected time window
that would allow interpretations for power contributions directly to the P3, the estimated
first and third leading eigenvectors for the theta frequency band (Figure highlight power
contributions directly to the P3 component from lower theta (4-6 Hz) and higher theta (5-8
Hz) frequency intervals, respectively. Figures and also display contrasts for ((ASD
expected - ASD unexpected) - (TD expected - TD unexpected)), based on the mixed effects
modeling of the MDPCA scores, obtained by projecting data onto the estimated functional
eigenvectors. More specifically, the estimated contrasts along with their the associated 95%
bootstrap pointwise intervals (Cls), based on resampling from subjects with replacement,
are given in solid black, while the 95% pointwise Cls based directly on the mixed effects
modeling are shaded in gray. Note that while the mixed effects modeling based Cls only
incorporate model based uncertainty, pointwise bootstrap Cls incorporate uncertainty from
the entire LTFT-ERP algorithm including the MTFT and MDPCA decompositions, hence

are wider as a result.

Also provided in Figures[l.4]and[L.5are the 95% simultaneous bootstrap intervals (dashed
black). Simultaneous CIs are based on a double bootstrap procedure, where the standard de-
viation of the estimated contrast is targeted by the first layer of bootstrap and the unknown
constant cg g5 multiplying the standard deviation is obtained from the second layer. The
unknown constant cg g5 is chosen as the 95th percentile of the distribution of the supremum
of the normalized deviation of the bootstrap contrast estimate from the original contrast es-

timate in the data (normalized by the standard deviation of the bootstrap contrast targeted
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by the second layer of bootstrap) (See Dong et al. (2016) for additional details). Simul-
taneous confidence bands can help test for group differences in the longitudinal trends in
the MDPCA scores (in the entire contrast as a function of trials) and provide insight into
trials that contribute to the detected group differences. We base the interpretations below
on significance of group differences in condition differentiation based on the simultaneous

bootstrap CIs, which are the most conservative among the three sets of Cls provided.

Building on the interpretations from the first leading eigenvector for the theta band that
relatively isolate contributions to P3 from lower theta frequencies, inference on longitudinal
trends of MDPCA scores from simultaneous bootstrap Cls identify significant group differ-
ences for the ((ASD expected - ASD unexpected) - (TD expected - TD unexpected)) contrast
in the posterior scalp section ((Figure [L.5[b)). More specifically, for the leading MDPCA
scores, signaling power from lower theta frequencies, the group condition differentiation con-
trast is significant in the posterior scalp section, where the simultaneous bootstrap Cls do
not contain zero at trials 48 through 54. Note that positive scores on PC1 signal higher theta
power contributions to P3, when multiplied by a positive leading eigenvector. Figure (b)
and (d) further display the fitted leading score trajectories in the two conditions for the
two diagnostic groups, respectively. The condition differentiation is larger in the ASD group
(higher theta power contributions to P3 in the unexpected condition) in the posterior section
trials 48-54 in PC1 (where simultaneous bootstrap CI for the group condition differentiation
contrast does not contain zero). Hence the significant group condition differentiation is tied
to the larger condition difference in this range in the ASD group. Condition differentiation
in theta power contributions to P3 in the posterior scalp sections are typically associated
with sensory and visual processing where the significant group condition contrast can be
interpreted as the ASD group displays signs of visual processing in the later parts of the

experiment.

Note that in the frontal scalp section, the TD group displays larger condition differenti-

ation with higher theta power contribution to P3 in the unexpected condition (compared to
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the expected condition) for later parts of the experiment, after trial 60 (Figure[l.6[a)), where
condition differentiation typically signals orienting to the novel stimulus when observed in
the frontal scalp section. However while the pointwise Cls do not contain zero at trials 63
and 64 for the group condition differentiation in the frontal scalp section, the simultaneous

bootstrap Cls do contain zero and do not signal significant group differences in the front

scalp section (Figure [L.5[a)).

1.4.3 Comparison of results to analysis from the time and frequency domains

The LTFT-ERP analysis, not only allows us to study dynamic trends related to learning
throughout the experiment, it also allows for added interpretation from the associated time-
frequency transformations, where power contributions to specific ERP components from
different frequency bands carry different interpretations related to underlying cognitive pro-
cesses. To highlight the specific added interpretations gained from the LTFT-ERP with the
time-frequency joint transformations, we review in this section results from the time domain

only and frequency domain only analysis.

Note that the prior longitudinal modeling of the implicit learning paradigm by |Hasenstab
et al| (2015)) is carried out strictly in the ERP time domain, where differences in the the
longitudinal trends of the amplitude of the P3 component across trials in the frontal scalp
region is depicted via a mixed effects model. Hasenstab et al. (2015) detected condition
differentiation in both diagnostic groups around trial 30 of the experiment with different
directions of differentiation. More specifically, while the ASD group exhibited higher P3
amplitude in the expected condition, the TD group exhibited higher P3 amplitude in the
unexpected condition (results based on pointwise bootstrap Cls). In a parallel analysis of
longitudinal trends in the frequency domain, we found that relative delta and theta power
stay relatively constant across trials and do not display differences across conditions for both
diagnostic groups.

While the time domain only analysis of [Hasenstab et al.| (2015) was able to connect to
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learning trends across the two diagnostic groups based on condition differentiation (in the
P3 amplitudes), the analysis could not connect results to specific underlying cognitive pro-
cesses. Note that in the time-frequency joint analysis, we are able to utilize time-frequency
specific information along with scalp section, to connect results to specific processes. More
specifically theta power contributions to P3 in the posterior scalp section are typically as-
sociated with sensory and visual processing, while theta power contributions to P3 in the
frontal scalp section are typically associated with orienting to novel stimulus (Bernat et al.
(2007)). Hence the time-frequency joint analysis brings an additional level of specificity to

interpretations which is lacking in time domain only or frequency domain only analysis.

1.5 Discussion

We have proposed LTFT-ERP to model the longitudinal trends in the ERP signal over
trials/duration of an EEG experiment. Longitudinal changes during the course of an experi-
ment may be the main interest in some studies exemplified by the implicit learning paradigm,
where longitudinal trends capture speed and nature of learning among TD and ASD chil-
dren. LTFT-ERP utilizes time-frequency transformations to retain valuable information
from both the time and frequency domains, enhancing interpretability of the findings. In
addition, under the assumption of constant direction of variation in the functional domain,
the algorithm borrows information across trials (i.e. the longitudinal dimension) in identi-
fying the leading eigenvectors in the functional domain (carrying both time and frequency
information) through the proposed MDPCA. This is a major stabilization tool for the pro-
posed algorithm as it enhances the signal and enables further modeling of the longitudinal
trends in the longitudinal MDPCA scores, obtained through projections of the signal onto
the leading functional eigenvectors. Application to the implicit learning paradigm uncovers
distinct learning patterns throughout the experiment among children diagnosed with ASD

and their typically developing peers.
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Figure 1.4: Summary of results from the proposed LTFT-ERP algorithm from the delta
frequency band. The six estimated leading functional eigenvectors and their corresponding
percent of variance explained are depicted. Contrasts for ((ASD expected - ASD unexpected)
- (TD expected - TD unexpected)), based on the mixed effects modeling of the MDPCA
scores, are also depicted. The contrasts and the associated 95% pointwise and simultaneous
bootstrap intervals, based on resampling from subjects with replacement, are given in solid
black and dashed black, respectively, while the 95% pointwise confidence intervals based on
the mixed effects modeling are shaded in gray. A blue horizontal line at zero is included for
ease of interpretation.
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Figure 1.5: Summary of results from the proposed LTFT-ERP algorithm from the theta
frequency band. The six estimated leading functional eigenvectors and their corresponding
percent of variance explained are depicted. Contrasts for ((ASD expected - ASD unexpected)
- (TD expected - TD unexpected)), based on the mixed effects modeling of the MDPCA
scores, are also depicted. The contrasts and the associated 95% pointwise and simultaneous
bootstrap intervals, based on resampling from subjects with replacement, are given in solid
black and dashed black, respectively, while the 95% pointwise confidence intervals based on
the mixed effects modeling are shaded in gray. A blue horizontal line at zero is included for
ease of interpretation.
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CHAPTER 2

Central posterior envelopes for Bayesian functional

principal component analysis

Abstract

Bayesian methods provide direct inference in functional data analysis applications without
reliance on bootstrap techniques. A major tool in functional data applications is the func-
tional principal component analysis which decomposes the data around a common mean
function and identifies leading directions of variation. Bayesian functional principal com-
ponents analysis (BFPCA) provides uncertainty quantification on the estimated functional
model components via the posterior samples obtained. We propose central posterior en-
velopes (CPEs) for BFPCA based on functional depth as a descriptive visualization tool
to summarize variation in the posterior samples of the estimated functional model compo-
nents, contributing to uncertainty quantification in BFPCA. The proposed BFPCA relies
on a latent factor model and targets model parameters within a mixed effects modeling
framework using modified multiplicative gamma process shrinkage priors on the variance
components. Functional depth provides a center-outward order to a sample of functions. We
utilize modified band depth and modified volume depth for ordering of a sample of functions
and surfaces, respectively, to derive at CPEs of the mean and eigenfunctions within the
BFPCA framework. The proposed CPEs are showcased in extensive simulations. Finally,
the proposed CPEs are applied to the analysis of a sample of power spectral densities (PSD)
from resting state electroencephalography (EEG) where they lead to novel insights on diag-

nostic group differences among children diagnosed with autism spectrum disorder and their
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typically developing peers across age.

35



2.1 Introduction

The literature on functional data analysis (FDA) has seen rapid growth in the past two
decades in the analysis of data where the basic unit of measurement is a high-dimensional
object such as a curve, surface or an image (Ramsay and Silverman| (2005)). The wide
spectrum of application areas include neuroscience, engineering, medicine, economics and
geosciences. A major tool for dimension reduction is the functional principal component
analysis (FPCA) for modeling functional variability in the data in lower dimensions (Wang
et al.| (2016)); Yao et al.| (2012)); |Cardot, (2007))). Recent literature on FPCA models complex
dependencies among the functional observations that are observed in close proximity with
respect to time or space (Chen and Miiller| (2012); |Greven et al.| (2010); |Crainiceanu et al.
(2009); D1 et al.| (2009); Hasenstab et al.| (2017)); SchefHler et al.| (2020); Campos et al. (2022);
Zipunnikov et al.| (2011)); Baladandayuthapani et al. (2008)); Staicu et al.| (2010)). Bayesian
FPCA (BFPCA) offers uncertainty quantification on the functional model components, in-
cluding the mean and eigenfunctions, via credible intervals, without the need for bootstrap.
Developments are typically based on expansion of the functional observation or the func-
tional model components on a set of basis functions, followed by dimension reduction. Suarez
and Ghosal (2017) expanded functional model components on a basis set and modeled the
covariance function via an approximate spectral decomposition, while Montagna et al. (2012)
proposed a Bayesian latent factor regression model (BLFRM) that expands each functional
observation as a linear combination of a high-dimensional basis set and placed a latent factor
model on the basis coefficients. Effective basis selection is achieved in the latter approach
via the multiplicative gamma process shrinkage (MGPS) prior of Bhattacharya and Dunson
(2011) placed on the factor loadings. Traditional data summaries for uncertainty in the
Bayesian setting rely on parametric assumptions or the use of pointwise quantiles. Paramet-
ric credible intervals employed in (Crainiceanu et al. (2007) assume approximate posterior
normality to form pointwise or simultaneous credible intervals through estimation of point-

wise variation in the posterior sample. Krivobokova et al.| (2010]) proposed quantile credible
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intervals using the estimated posterior pointwise quantiles, and extended developments to
simultaneous quantile credible intervals by rescaling of the bounds of the pointwise credible

intervals by a common factor.

The parametric and quantile credible intervals, used to describe uncertainty of the func-
tional posterior estimates, have some drawbacks. Parametric credible intervals are by-design
symmetric around the pointwise mean and are dependent on distributional assumptions that
may not hold when modeling assumptions are violated. Quantile credible intervals allow for
asymmetry using a rank-based approach, however they rely on pointwise ranks while ap-
proximating the ordering of a posterior sample of functions. To address these drawbacks,
we propose central posterior envelopes (CPEs), which are not credible intervals, but are
descriptive visualization tools to summarize the variation in the posterior summaries of the
functional model components, contributing to uncertainty quantification in BFPCA. The
proposed CPEs do not have to be symmetric around the estimated mean and are based on
functional depth in ordering of a posterior sample of curves, rather than pointwise quantiles.
Additionally, CPEs are formed using envelopes delineated by subsets of the posterior func-
tional sample, and hence are fully data-driven, summarizing the variation in the posterior

sample without any parametric assumptions.

Functional depth has been proposed to generalize order statistics to functional data, pro-
viding a center-outward order to a sample of functions (Lépez-Pintado and Romo (2009)); [Sun
et al.[(2012)) and have been extended in a variety of FDA applications including construction
of the median or a trimmed mean function, functional boxplots (Sun and Gentonl (2012)),
surface boxplots (Genton et al. (2014))), outlier detection via the outliergram (Arribas-Gil
and Romo (2014))), robust rank, permutation and location tests for distributional and dis-
persion differences in two-sample functional data groups (Lopez-Pintado and Wrobel (2017);
Lépez-Pintado and Qian| (2020)). |Lopez-Pintado and Romo| (2009) introduced the notion
of modified band depth (MBD), extending the definition of band depth based on a graph-

based approach, by measuring the proportion of time that a curve lies in the band delimited
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by a subsample of curves. |Sun et al. (2012) derived a computationally efficient algorithm
for calculating MBD that can rank millions of curves in seconds. (Genton et al.| (2014]) fur-
ther extended MBD to higher dimensional functional data through modified volume depth
(MVD). We utilize both MBD and MVD to propose functional depth based CPEs for the
mean function and eigenfunctions in BFPCA. MBD-CPEs are formed by ranking the pos-
terior estimates and forming an envelope of a subset of the posterior estimates with the
largest depth values. MVD-CPEs for eigenfunctions are formed via ranking of the posterior

covariance surfaces.

The chapter is organized as follows. The BFPCA model considered is introduced in Sec-
tion [2.2 along with an outline of the traditional posterior summaries for the BFPCA model
components. The considered BFPCA is a simplification of previous formulations in liter-
ature, where a Bayesian estimation for model components is followed by derivation of the
estimated mean and eigenfunctions through singular value decomposition of the estimated
covariance surfaces. The proposed model uses a latent factor model to represent the func-
tional observations where the mean function and latent factors are further expanded on a
basis set. A normal-inverse gamma prior is placed on the coefficients of the mean function,
and a modified multiplicative gamma process shrinkage (MMGPS) prior is placed on the
factor loadings to induce sparsity in basis selection similar to BLFRM. A computationally
efficient estimation procedure is proposed for the considered BFPCA via fully conjugate
priors that leads to implementation through a Gibbs sampler. The proposed CPEs based
on functional depth are outlined in Section followed by simulation studies to show-
case their finite sample performance in the presence of different types of functional outliers
(Section . Section outlines application of CPEs to analysis of a sample of power
spectral densities (PSD) from resting state electroencephalography (EEG). Novel insights
are provided on diagnostic group differences in the evolution of PSD across age among chil-
dren diagnosed with autism spectrum disorder and their typically developing peers. A brief

discussion is included in Section2.6]
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2.2 Bayesian functional principal component analysis

2.2.1 Model specification

Let Y;(t) = fi(t) + €(t) denote the observed noisy response measurements for subject i,
i=1,...,n, represented as a sum of a smooth underlying function f;(¢), and measurement
error ¢;(t). The measurement error ¢;(t) is assumed to be i.i.d. with mean zero and variance
o2. The smooth function f;(t) is assumed to be square integrable with mean y(¢) and covari-
ance C(s,t) = Cov{fi(s), fi(t)} = 2pr; pri(s)Vr(t), where p; = ps > ... denote the ordered
nonnegative eigenvalues, and ¢ (t), ¥ (), . . . denote the corresponding eigenfunctions. While
the eigenfunctions describe direction of leading modes of variation in the functional data, the
eigenvalues quantify the amount of variation explained by the different modes of variation.
The Karhunen-Loe¢ve (KL) expansion of f;(¢) is then given by fi(t) ~ u(t) + >, Eatn(t),
where &, = § {fi(t) — ()} (t)dt denotes the kth subject-specific FPCA score with mean
zero and variance pg. In practice, the expansion is truncated to include K eigencompo-
nents, fi(t) ~ u(t) + Sn | Exibi(t), based on fraction of variance explained (FVE), where
the covariance is approximated by C(s,t) ~ Zle Per($)Yk(t). A total of K = 2 or 3
eigencomponents are typically retained in most applications (explaining more than 80% of

the total variation), achieving effective dimension reduction.

The BFPCA model considered is based on a latent factor model constructed for f;(t) =
pu(t) + S0, mie(t), where ¢y(t), £ = 1,..., L, denote the L latent components and 7, ~
N(0,1), £ =1,..., L, denote the corresponding uncorrelated subject-specific scores. Next,
the mean function and latent components are expanded on a set of R B-spline basis functions
(by(t), ..., br(t), u(t) = 5 Bub.(t) and ¢e(t) = 7, Aebr(t), where B, and )¢ denote the
mean coefficients and factor loadings, respectively. This leads to the following expansion of

£it) = 35 B, + 30 miehee]by (), which in vector form can be written as the mixed effects
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model

Y;=f,+e=DB(B+An) + €, (2.1)

’l’]l-NNL(OL,IL), GiNNT(OT,O'?IT), = 1,...,n,

where Y; = {Yi(t1),...,Yi(tr)}T denotes the response observed at a total of T' time points,
fi = {filty),..., fi(ty)}" denotes the T x 1 vector of underlying smooth functions and
€ = {ei(t1),...,€(ty)}" denotes the T x 1 vector of measurement error. Furthermore, in
, B = (by,...,bg) denotes the T" x R matrix of B-spline basis functions with b, =
{b.(t1),...,b.(t7)}", B = (B1,...,Br)" denotes the R x 1 vector of mean coefficients, A =
(A1,...,Ar) denotes the R x L factor loading matrix with Ay = (Aig, ..., Age)| and m, =
(i1, .- -,mir) " denotes the L x 1 vector of subject-specific scores. Finally, 0 and Op are
used to denote the L x 1 and T x 1 vectors of zeros, respectively, and I;, and I are used to

denote the L x L and T x T identity matrices.

Note that in the BFPCA formulation in , the total number of latent components L
are typically larger than K, the number of eigencomponents retained in the FPCA expansion.
Based on empirical studies, |[Shamshoian et al| (2022) report that the estimation of the mean
function and the covariance surface is robust to different choices of R, the total number
of basis functions used in the expansion, provided L is large. Following guidance from
Shamshoian et al. (2022)), R is selected to be a fraction of the total number of time points
T, R = |T/2], to provide adequate smoothing of f;(¢), and L is selected to be a fraction
of R, L = max(6,|R/4]). Fully conditional conjugate priors on the variance components
are selected to achieve efficient posterior estimation in BFPCA. More specifically, using
Gaussian priors for the mean coefficients 8 and factor loadings A, noninformative prior for
the error variance o2 (proportional to a constant c), gamma prior for the variance of the

mean coefficients cr% and a modified multiplicative gamma process shrinkage (MMGPS) prior
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for the variance components of the factor loading matrix a/Q\M,

1 1
B ~ Npg (03, FQI> , aé ~ Gamma (%3, %3) ., —oC (2.2)

2
3 g¢

. 1 v v
Ar ~ N (0g, Xy,), X, = dlag(aiu, . ,0'/2\R£>, aire =o', o~ Gamma (5, 5)

¢
To = H(Sh, 01 ~ Gamma(a, 1), 0, ~ Gamma(as, 1)I(0p, > 1), h = 2.
h=1
we target the posterior distributions in model using a Gibbs sampler (posterior distribu-
tions and details on choice of hyperparameters, ag, v, a1, as, are deferred to Appendix .
In (2.2), Or denotes an R x 1 vector of zeros, €2 is a positive-definite R x R penalty matrix,
¥ is a R x R diagonal matrix comprised of the variance components, o3 ,...,03  , for the
the ¢th factor loading A, and I(-) denotes the indicator function. The variance components
of the factor loading matrix, denoted by afw, are given a MMGPS prior adapted from Bhat-
tacharya and Dunson (2011), where ¢,, and 7, denote the element-wise and column-wise
precisions, respectively. The column-wise precision 7, is the cumulative product of gamma
distributed 9, for A = 1,...,¢. The truncation of d, to be larger than one when h > 2
guarantees that 7, increases with ¢, forcing columns of A, A;, to get stochastically smaller as
¢ increases. Note that this mimics the estimation of eigenfunctions in FPCA with ordered

(decreasing) eigenvalues and results in effective basis selection (Montagna et al. (2012)).

2.2.2 Traditional posterior summaries for BFPCA components

Posterior estimates of the mean coefficient vector 3™ = (BY”), ce ](_{”))T and factor load-
ing matrix A = (}\(lm), o ,)\(Lm)), with )\ém) = ()\Y;), - ,)\%))T, where the superscript m,
m =1,..., M, is used to index the posterior estimates obtained from the MCMC sampler
after burn-in and thinning, leads to the posterior estimates of the mean function, u(™ (t) =
SR B™b,(t), and the covariance C™ (s, ¢) = Y5 S 5L AN (5)b,(t). In an

attempt to recover the additional interpretations offered by the lower dimensional representa-
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tion of FPCA (where eigenfunctions describe the leading modes of variation in the functional
data), we consider the singular value decomposition of C™ (s, ) ~ S5 pi™p(m ()™ (1),
targeting the posterior estimates of the eigenfunctions, w}gm) (), and eigenvalues, p,gm). The
total number of eigencomponents retained, K, is chosen by the mean or the median FVE
calculated across the posterior samples. Since the sign of the eigenfunctions are not identifi-
able, we implement an additional alignment step in obtaining the posterior estimates of the

eigenfunctions (see Appendix for further details).

M
m=1

The mean estimate is obtained by averaging the posterior estimates, ji(t) = (1/M) >,
p™ (t). The eigenfunctions and eigenvalues can be targeted in two ways. The first approach
is to average the posterior estimates, ¥y (t) = (1/M) XM ™ (1), o = (1/M) XM pim™),
k=1,...,K, similar to the mean estimate. An alternative approach is to first target the
mean of the posterior covariances, C(s,t) = (1/M) M Cm(s,t), followed by SVD of
C(s,t) ~ S Dt (s)¥n(t), leading to the eigenfunction and eigenvalue estimates obtained
via covariance estimation, denoted by zzk(t) and py, respectively. While we evaluate the
finite sample performance of both point estimates for the eigenfunctions and eigenvalues

via simulations, we center the traditional credible intervals for these quantities around the

posterior average estimates.

A main advantage of BFPCA is the readily available inference provided for the FPCA
components based on the posterior sample. While credible intervals can be constructed
for the scalar components (including eigenvalues or FVE) using the standard deviation or
percentiles obtained from the posterior sample, we center our discussion mainly on inference
for the functional components, which is the focus of the proposed functional depth based
approach. For the functional components of FPCA, i.e. the mean and eigenfunctions,
traditional posterior summaries include pointwise and simultaneous, parametric and quantile
credible intervals. In the formulations below, parametric and quantile credible intervals will
be denoted by capital ‘P’ and ‘Q’, respectively, for ease of notation, while pointwise and

simultaneous credible intervals will be distinguished by the superscripts ‘p” and ‘s’. While
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the parametric intervals are based on variance of the estimates in the posterior sample, the
quantile intervals leverage pointwise quantiles obtained from the posterior sample. Let g(t)
denote either the mean or eigenfunction of interest, observed at time points ¢;, j = 1,..., T,
and let g(t¢;) and @{g(tj)} denote the sample mean and variance of g(t;) calculated from
the M MCMC samples g™ (t). The (1 — «)100% pointwise parametric credible interval
for g(t) is given by [g(t;) £ za m{g(tj)};j = 1,...,T] (denoted as P/ _{g(t)}), where
2o = ®71(1 — a/2) with ® denoting the CDF of the standard normal distribution. For
defining the simultaneous parametric credible intervals, let ¢, denote the (1 — «) sample
quantile of max;_, _r | {g"™(t;) — 3(t;)}/ @{g(tj)} | over the M posterior samples.
Then the (1 — «)100% simultaneous parametric credible interval for g(t) is given by [g(t;)

cay/va\r{g(tj)};j =1,...,T] (denoted as P} {g(t)}) (Crainiceanu et al.| (2007)).

For the pointwise and simultaneous quantile credible intervals, let go/2(t;) and gi—q/2(t;)
denote the pointwise a/2 and (1 — a/2) sample quantiles of g™ (¢), m =1,..., M at t = t;,
respectively. Then (1 — «)100% pointwise quantile credible interval for g(¢) is given by
{ga2(t;)s g1—ap(t;)};j = 1,...,T] (denoted as Q7_,{g(t)}). The (1 —)100% simultaneous
quantile credible interval for g(t) is given by [g(t;) + q{gas2(t;) —9(t;)}, 9(t;) + ¢{g1-as2(t;) —
g(tj)};7 = 1,...,T] (denoted as Q;_,{g(t)}), where ¢ is a common factor that rescales
the upper and lower bounds until (1 — «)100% of the posterior estimates are contained
inside the credible interval (Krivobokova et al. (2010)). Note that the factor ¢ is common
across all time points ¢; in the above formulation and that both pointwise and simultaneous
quantile credible intervals rely on pointwise quantiles while trying to quantify uncertainty
in estimation of a functional component. The proposed central posterior envelopes based on
functional depth consider ranking of the entire functional estimates in the posterior sample,
rather than relying on pointwise quantiles. The code for implementation of the quantile
credible intervals can be found in the R package acid. The notations used for the traditional
posterior summaries outlined above, as well as the functional depth based intervals proposed

in the next section, are summarized for the readers reference in Table 2.1]
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2.3 Proposed functional depth based CPEs for BFPCA compo-

nents

The traditional posterior summaries outlined in Section [2.2.2 have potential pitfalls when de-
scribing posterior distributions of functional data. The parametric credible intervals rely on
distributional assumptions, which may be violated under deviation from modeling assump-
tions. In addition, the parametric credible intervals are symmetric around the pointwise
mean, which is restrictive when capturing potential asymmetry in posterior distributions
in the presence of highly variable and/or skewed posterior samples. Although the quantile
credible intervals are data-driven and more flexible with potential asymmetry, their con-
struction relies on pointwise quantiles. In particular, instead of treating posterior samples
as functional data, the quantile credible intervals are estimated by ranking of the posterior
samples at each time point. Furthermore, scaling the pointwise quantiles by a common fac-
tor g across all time points in construction of the simultaneous quantile credible intervals
may be too restrictive in modeling the spread in the functional posterior samples. In order
to circumvent these issues, the use of functional depth is proposed to rank the functional
posterior estimates to obtain fully data-driven CPEs that capture uncertainty in a flexible
way.

Functional depth is a measure that provides a center-outward ordering of a sample of
functional observations. In particular, functional depth ranks a sample of functions from
the ‘deepest’ curve with the highest functional depth value, defined as the median curve,
to the most outlying curve with the lowest functional depth value. Although there are a
number of functional depth measures that have been proposed in the literature (see [Zuo
and Serfling (2000) and |Gijbels and Nagy| (2017))), modified band depth based on a graph-
based approach has been quite popular in applications |Lépez-Pintado and Romo (2009)). Let
gV (@), ...,g™M(t), t € I, denote a sample of M functional posterior estimates, either for

the mean or eigenfunctions, defined on a compact interval Z, where Z € R. The band in R?
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delineated by a subset of u, 2 < u < M, posterior estimates, g™ (t),..., g™ (t), drawn

from the full posterior sample {g™M(¢),...,g™)(¢)} is given by

B{g(ml)(t)7 . ’g(m“)(t)} - [{t,g(t)} tel, U:nllnin gV (t) < g(t) < max g(v)(t)] .

Appendix Figures (a) and (b) represent two bands B {g")(t), g (¢)} and B {g®)(t), gV (¢)},
delimited by two curves, where in the first figure the entire graph of ¢™(¢) and in the
second a proportion of it is included in the band. Band depth of [Lépez-Pintado and
Romol (2009) considers the proportion of bands B {g™)(¢),..., g™ (t)} determined by u
different curves g(™V(t), ..., ¢g"™)(t) containing the graph of g(t). Modified band depth
(MBD) extends band depth, such that rather than the proportion of bands that con-
tain the entire graph of g(t), MBD considers the proportion of time that the graph of
g(t) lies inside the bands. More specifically, let A,{g™ (¢); g™ (t),..., g )(t)} = {t €
T : ming_p, m, 90 < ¢™() < maXy—pm,.. m, 9 (t)} denote the set in the inter-
val T where the function ¢™(t) lies inside the band B{g™)(t),...,¢")(t)}. Further
let A%{gU™ (t); g™ (1), ..., g™ (1)} = O[Au{g"™ (1); g"V(1), ..., g (t)}]/0(T) denote the

proportion of time that the curve g™ (t) lies inside the band B{g™)(¢), ..., g™ (t)}, where

.....

() denotes the Lebesgue measure on Z. If 2 < U < M denotes a fixed total number of
curves used to delineate a band, then the modified band depth (MBD) for the curve g™ (t)
in gV(t),..., g (t) given U is

U -1
MBDuy {s™(®)} = [(ﬂj ) S A0 g 0)
u=2 1<mi<ma<..<my <M
MBD ranks each curve in the sample g™ (2), ..., g™)(t) as the sum of A*{g™(¢); g™ (1), . ..,
g™ (t)} over all possible combinations of bands delineated by 2 < U < M total curves that
can be formed. Functions where a higher proportion of the curve lies in a higher number of
bands get a higher MBD value, representing curves that are closer to the center of the sample.

Those curves with lower MBD values have a lower proportion of the curve lying in a lower

45



proportion of bands, representing outlying observations, resulting in an effective ranking of
the sample. We follow common practice and set U = 2 in applications for computational effi-
ciency (and drop U from the MBD notation), where bands delineated by all combinations of
two curves are considered in the MBD definition (i.e. MBDy{g"™ (t)} = MBDy2{g"™ (t)}).

MBD of the posterior estimates are utilized to obtain point estimates (i.e. MBD median)
and functional band depth central posterior envelopes (i.e. MBD-CPEs for the BFPCA
functional components (u(t) and ¥x(t)). While the MBD median equals the functional
median of the posterior sample, the (1—a)100% MBD-CPE is formed by the band delineated
by the 1 — a deepest posterior estimates in the sample. The MBD median and (1 — «)100%
MBD-CPE formed for the functional BFPCA component g(t), denoted by m{g(t)} and
Dy_,{g(t)}, respectively, are targeted via Algorithm 1. Note that similar to functional depth
based central envelopes proposed for functional data, CPEs are not credible intervals, but they
rather are descriptive visualization tools that help summarize the variation in the posterior
sample. When plotted for a grid of a values, CPEs display the central envelopes allowing for

visualization of the most central regions of the functional posterior distributions.

Algorithm 1: MBD Median and MBD-CPE for g(t) = u(t) or g(t) = ()

Step 1: Calculate the MBD of the posterior samples: M BDy{g™M (t)}, ..., MBDy{g™)(t)}.
Step 2: Order the MBD values of the posterior sample from the smallest to the largest and

denote the corresponding ordered samples as gl (t),. .., gM(¢t).
Step 3: Calculate the (1 — a)100% MBD-CPE as

Di-afg(t)} = B{g*"* (), ..., 4™ (1)},

and the MBD median as m{g(t)} = g!M(t).

An alternative way for obtaining point estimates and CPEs for the eigenfunctions (),
k = 1,...,K, is to rank the posterior covariance surfaces using modified volume depth
(MVD). MBD has been extended to surface data as MVD to provide a way to rank two-
dimensional functional data (Sun et al.| (2012);|Genton et al. (2014))) (for extensions to higher-
dimensional functional data, see|Lépez-Pintado and Wrobel (2017)). Let C™M (s, t),. .., CM) (s, 1),
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(s,t) € S, denote a sample of M posterior covariance estimates, defined on S € R2. Fur-
ther let A, {C™ (s,1); C™)(s,1),...,CM)(s,4)} = {(5,) € S : MiNy—py,...m, CV(s,t) <

C™(5,1) < MaXy—_p,...m, C(s,1)} denote the region in S where the covariance C'™ (s, t)

.....

.....

lies inside the simplex delineated by the covariances C(™) (s, 1), ..., C™)(s,¢). In addition,
A (O (s,1);

Cm)(s,t),...,C0m)(s,4)} = I[ASC™ (s,1); O™ (s,),...,0M (s 1)}]/9(S) is used to
denote the proportion of time that the covariance C'™(s,t) lies inside the simplex formed
by the covariances C(™) (s, t),...,C™)(s,t), where 9(-) denotes the Lebesgue measure ex-
tended to R?. Considering U = 2 total covariances to delineate a simplex (similar to the

definition of MBD), MVD for the covariance C™ (s, t) in O (s, t),...,C™M)(s 1) is given as

MV Dy {C™(s,)} = (Aj) B Z Az {C) (s,); Cm) (s, 1), Cm2) (s, t)}.

1<mi<mo<M

MVD of the posterior covariance estimates are utilized to obtain point estimates (i.e. MVD
median) and functional volume depth CPEs (i.e. MVD-CPEs) for ¢ (t), k = 1,..., K.
The MVD median and (1 — a)100% MVD-CPE formed for ¢y (t), denoted by m{iy(¢)} and
D1 {vx(t)}, respectively, are targeted via Algorithm 2. The algorithm starts with ranking
the posterior covariances using MVD and obtaining their corresponding eigenfunctions. The
MVD median for ¢ (t) equals the functional median of the posterior eigenfunctions, while
the (1 — «)100% MBD-CPE for ¢y (t) is formed by the band delineated by the 1 — a deep-
est eigenfunction estimates in the sample, where the eigenfunction estimates are ordered

according to MVD of their corresponding posterior covariances.

Functional depth based medians proposed above (m{u(t)}, m{v(t)} and m{yy(t)}) es-
timate the central tendency in the posterior distributions of the mean and eigenfunctions
and provide a realistic estimate equal to one of the observed functional posterior samples
rather than relying on pointwise averages as is done in most of the traditional posterior sum-

maries. In addition, the proposed functional depth based CPEs (denoted by D;_,{g(t)} and
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Algorithm 2: MVD Median and MVD-CPE for vy(t)
Step 1: Calculate the MVD of the posterior covariances:

MV Dy {CW (s,1)},..., MV Dy {C™M(s,1)}.

Step 2: Order the MVD values of the posterior sample from smallest to largest and denote
the corresponding covariances as Cl1(s,t),..., CMI(s t).

Step 3: The SVD of the ordered covariances lead to their corresponding ordered eigenfunc-
t; [1] 4 [M] 4
ions ¢(t), ..., wl ().

Step 4: Calculate the (1 — «)100% MVD-CPE as

Di_ofn(®)} = B {uf*" ), . )}

and the MVD median as m{y(t)} = w"(t).

Di_ {x(t)}, corresponding to MBD and MVD based summaries, respectively), are formed
from a band delineated from the 1 — « deepest subset of the functional posterior estimates.
Hence, the proposed methods use functional depth measures to construct fully data-driven
summaries that capture the uncertainty in the posterior estimates in a flexible way. Nota-
tions used for point estimates and credible intervals both in the traditional summaries and

in the proposals are summarized in Table [2.1]

2.4 Simulation Studies

We consider five simulation scenarios to display the use of CPEs in describing the variation
in the posterior samples in the presence of functional outliers. We also study the finite
sample properties of the traditional summaries from Section under different simulation
scenarios. More specifically five simulation scenarios are proposed: Case 1 — no outliers,
Case 2 — magnitude outlier, Case 3 — amount of variation outlier, Case 4 — time-shifted
eigenfunction outlier, Case 5 — higher-frequency eigenfunction outlier. Magnitude outliers
are generated by adding a constant deviation (with a random sign) to u(t) for t > T;, where

T; ~ Unif[0, 1]. This adds constant variation to randomly selected portions of the unit time
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domain in [0, 1], where more of the variation is added to the latter part of the domain.
Amount of variation outliers are generated using larger eigenvalues py, which result in added
variation throughout the unit interval. Finally, eigenfunction outliers are generated from
time-shifted (Case 4) or higher frequency (Case 5) eigenfunctions, where additional variation
is added along the direction of the time-shifted or higher frequency eigenfunctions used.
Results are reported for outliers generated as ¢ = 10 and 20% of the sample (n = 50), where

details of data generation under the five simulation scenarios are deferred to Appendix [B.3|

The BFPCA model is fitted using R = 20 B-spline basis functions with equidistant knots
in [0,1] and L = 6 latent factors, for functional data observed at a uniform grid of 40 time
points. Results are reported based on a total of 200 Monte Carlo runs with 25,000 MCMC
iterations (5,000 for burn-in and thinning at every 5th iteration), and M = 4,000 posterior
estimates for each Monte Carlo run. Finite sample performance of point estimates of the
functional model components (i.e. mean and eigenfunctions) and scalar model components
(i.e. eigenvalues) are assessed via the standardized integrated mean squared error (IMSE),
IMSE;q = [§,{9(t) — g(t)}?dt]/ §, g°(t)dt, and the standardized mean squared error (MSE),
MSEz; = (pr — pr)?/pi, respectively. The mean IMSE and MSE values from 200 Monte
Carlo runs for the five simulation scenarios are summarized in Table 2.2l The traditional
and proposed point estimates for the mean function and the leading two eigenfunctions from
the Monte Carlo run with the median IMSE are given in Appendix Figure [B.2] Figure 2.1
and Figure [2.2] respectively.

Appendix Figure and Figures [2.3] and [2.4] display CPEs from « cutoffs ranging from
0.05 to 0.95 for the mean function and the leading two eigenfunctions, respectively, from a
single Monte Carlo run overlaying M = 4,000 posterior estimates (given in gray) for the five
simulation scenarios (for outlier percentage equal to ¢ = 20% in Figures and . CPEs
from increasing « cutoffs help visualize regions with the most central functional posterior
observations in the sample. Note that while MBD-CPEs for the eigenfunctions are nested in

each other for increasing o values, MVD-CPEs are not necessarily nested since they are based
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Table 2.2: The mean standardized integrated mean squared error (IMSE) and standard-
ized mean squared error (MSE) for both the traditional and functional depth-based point
estimates from the 200 Monte Carlo runs. The five simulation cases correspond to: Case
1 — no outliers, Case 2 — magnitude outlier, Case 3 — amount of variation outlier, Case 4
— time-shifted eigenfunction outlier, Case 5 — higher-frequency eigenfunction outlier with
q = {10,20}% outliers.

qg=10% q=20%
Point Estimate Case 1 Case 2 Case3d Case4 Caseb Case 2 Case3 Case4 Caseb
IMSE IMSE IMSE
() 0.0033 0.0077 0.0042 0.0040 0.0039 0.0117 0.0047 0.0037 0.0042
m{u(t)} 0.0036 0.0080 0.0045 0.0042 0.0042 0.0122 0.0048 0.0040 0.0045
zzl(t) 0.0303 0.4723 0.0441 0.0549 0.0320 0.8975 0.0693 0.0894 0.0395
Jl(t) 0.0308 0.5104 0.0445 0.0568 0.0320 0.9375 0.0713 0.0903 0.0398
m{w(t)} 0.0344 0.5223 0.0481 0.0603 0.0358 0.9525 0.0768 0.0956 0.0442
mf{r(t)} 0.0367 0.4955 0.0481 0.0606 0.0400 0.9303 0.0723 0.0972 0.0518
Jg(t) 0.0482 1.1887 0.0565 0.0670 0.1187 1.3740 0.0790 0.1017 0.5130
@Zg(t) 0.0477 1.3365 0.0554 0.0672 0.1290 1.4922 0.0786 0.0971 0.5951
m{ws(t)} 0.0559 1.3476 0.0644 0.0746 0.1424 1.4891 0.0869 0.1101 0.6284
m{ws(t)} 0.0676 1.3488 0.0682 0.0812 0.1364 1.4796 0.0867 0.1106 0.6197
MSE MSE MSE
D1 0.0303 0.4723 0.0441 0.0549 0.0320 0.8975 0.0693 0.0894 0.0395
1 0.0308 0.5104 0.0445 0.0568 0.0320 0.9375 0.0713 0.0903 0.0398
Do 0.0482 1.1887 0.0565 0.0670 0.1187 1.3740 0.0790 0.1017 0.5130
Do 0.0477 1.3365 0.0554 0.0672 0.1290 1.4922 0.0786 0.0971 0.5951
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on the functional depth rankings of the posterior covariance surfaces, rather than posterior
eigenfunctions. This is also the reason why MVD-CPEs are typically wider than MBD-CPEs,
incorporating variation from the entire covariance process, rather than only eigenfunction-
specific variation. More specifically, the first simulation scenario of no outliers shows that the
traditional point estimates (?Ek(t) and () perform quite well (yielding small IMSE and
MSE values) compared to their depth based counter parts (m{yy(t)} and m{yx(t)}) in the
absence of outliers (Table . The magnitude outliers in the second simulation scenario add
a constant deviation from the mean function over a random portion of the time domain (¢ €
[T;,1]) with a random sign. Due to the random sign of the constant deviation, rather than
biasing the mean function, they increase the variation in the mean function estimation (IMSE
values for mean estimation are higher for Case 2 than other simulation scenarios in Table .
The addition of the constant deviation also leads to identifiability issues in eigenfunction
estimation, where CPEs of the first eigenfunction portray the constant variation, especially
in the second half of the unit time domain. MBD-CPEs up to a = 0.95 and MVD-CPEs
up to a = 0.50 are constant in the second half of the unit interval (Figure 2.3). CPEs of
the second eigenfunction capture variation along the first eigenfunction as the second major
direction of variation (following the constant variation in the second half of the unit time
interval) (Figure[2.4). This leads to higher IMSE values in eigenfunction estimation for Case
2 compared to other simulation cases. Note that the traditional point estimate zzk(t) has
the smallest IMSE values for Case 2, possibly due to the cancellation of the effects of the

constant deviation with a random sign while averaging over the posterior samples.

Case 3 generates outliers with larger eigenvalues, which increase the variation along the
eigenfunctions. Due to the shapes of the two eigenfunctions considered this adds variation
across the entire unit interval, as is detected through the CPEs in Figures[2.3|and 2.4 While
this additional variation does not bias the point estimates (except for py), the IMSE in esti-
mation of the eigenfunctions are slightly higher than Case 1 with no outliers. Finally, Cases

4 and 5 consider direction of variation outliers where the functional data is generated under
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altered eigenfunctions: in Case 4 eigenfunctions are shifted in time, in Case 5 the frequency
of the eigenfunctions is increased. Both cases lead to added variation in estimation of the
eigenfunctions (consistent with higher IMSE values for targeting ¢ (¢) compared to Case 1
in Table . More specifically, while the time shift in both eigenfunctions adds variation
to eigenfunction estimation throughout the unit interval in Case 4, the added variation due
to outliers with higher frequency eigenfunctions is apparent especially in Figures (i) and
(j) with higher frequency posterior estimates of 15(t) captured in the a = 0.95 MBD-CPEs
and a = 0.25 MVD-CPEs.

We also assess how well the traditional credible intervals reflect variation in the posterior
sample under the five simulation scenarios. Appendix Figures [B.4] and display
the 95% parametric and quantile credible intervals and 95% CPEs for reference, for the
mean function and the leading two eigenfunctions, respectively, from a single Monte Carlo
run overlaying M = 4,000 posterior estimates for the five simulation scenarios (for outlier
percentage equal to ¢ = 20%). The added variation in the posterior estimates of especially
the eigenfunctions really help portray the shortcomings of the symmetry restrictions and
constant multipliers used in enlarging of the simultaneous parametric and quantile credible
intervals, respectively. Appendix Figures and (d), (g), (j) and (m) show that the
symmetry restriction (around the pointwise mean) of the parametric credible intervals force
the credible intervals to be too wide in one bound and too narrow in the other, especially
when the variation in the posterior sample is not symmetric. While the quantile credible
intervals perform better relative to their parametric counter parts, they also include regions
that do not represent posterior sample variation, perhaps due to the restrictive enlargement
of the credible intervals by a constant multiplier that is kept the same over the entire time
domain. The latter point is best observed in Table [2.3] reporting two metrics: negative
area ratio (NAR) and area ratio (AR). NAR and AR capture the ratio of the area of the
credible interval or CPE that lies outside and inside of posterior sample (proportional to

the area of the posterior sample), respectively. Hence, while higher AR values (AR € [0, 1])
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correspond to a more realistic portrayal of the variation in the posterior sample estimates in
the presence of functional outliers, NAR values greater than zero can signal problems with
the credible intervals (i.e. via inclusion of regions that do not represent the posterior sample),
possibly due to symmetry constraints. Similar to previous sections, let gV (¢),..., g (t)
denote the M MCMC samples, where g(t) = u(t) or ¢(t). In addition, denote the pointwise
lower and upper bounds of the posterior sample by gmin(t;) = min,—; mi{g™ (t;)} and
Imax(t;) = max,,—1 {9 (t;)}, respectively, at a total of T grid points t;, j = 1,...,T.
Finally denote the pointwise lower and upper bounds of the discretized (1 — «)100% credible
interval Hy_{g(t)} by Hi_o{g(t;)} = [L(t;),U(t;)] for t;, 7 =1,...,T. Then NAR and AR

are given as follows

21 U () = gmax (0)HAU (1)) > ganax(5)}]
> e {9max(t) = Gmin(t;)}

i [{gmin(t5) = L&) {gmin(t;) > L(t;)}]
> et {max(t) = Gmin(t)}

NAR[H\—o{g(t)}] =

_l’_

o1 min{U (), gmax(t;)} — max{L(t;), gmin(t;)}]
o1 {gmax(t) = guin ()} '

For the proposed CPEs and pointwise quantile credible intervals, NAR always equals zero,

AR[H,o{g(1)}] =

since these summaries are based on pointwise or functional ordering of the data and therefore
have to lie within the posterior sample. However the simultaneous quantile credible intervals
may have NAR values larger than zero, since the bounds of the pointwise quantile intervals
are rescaled by a common factor that is constant across ¢;. The mean NAR and AR values
based on the 200 Monte Carlo runs across the five simulation scenarios are summarized
in Table In summary, simultaneous credible intervals lead to higher AR values than
their pointwise counterparts (parametric and quantile), as expected, and have nonzero NAR
values except for pointwise quantile credible intervals. This also confirms that they can
cover regions not representing posterior sample variation as is observed from the figures.

The CPEs have AR values equal to or larger than all traditional credible intervals and have
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NAR equal to zero by definition. Hence, CPEs provide a more flexible representation of the
shape and spread of the posterior sample in the presence of functional outliers (or added
variability in estimation due to violation of modeling assumptions) and can contribute to

the visualization of the functional posterior sample in applications.

2.5 Data Application

We use CPEs in the analysis of EEG power spectral densities obtained on a sample of 58
children with autism spectrum disorder (ASD) and 39 of their typically developed (TD)
peers at resting state (Dickinson et al.| (2018))). The goal of the study was to characterize the
shift in the peak alpha frequency (PAF), a neurological biomarker defined as the location
of a single prominent peak in the alpha frequency band (6-14Hz) of the spectral density,
across development. It was of particular interest to compare ASD and TD groups in their
evolution of the alpha peak across chronological age. PAF has been shown to shift from
lower to higher frequencies as children grow older in the TD group (Somsen et al.| (1997);
Stroganova et al. (1999); Dustman et al.| (1999)); Chiang et al. (2011)); |Cragg et al.| (2011);
Miskovic et al. (2015])), however previous research has suggested that this chronological shift
in the location of the PAF may be delayed or absent in children with ASD (Edgar et al.
(2015)). In our motivating study, electroencephalogram (EEG) data was sampled at 500Hz
for 2 minutes using a 128-channel HydroCel Geodesic Sensor Net during an “eyes-open”
resting-state paradigm in which bubbles were presented on a screen in a sound-attenuated
room. The participants in the two diagnostic groups were age-matched with ages ranging
from 25 to 146 months old with a median age of 66 and 65.8 months in the TD and ASD
groups, respectively. To more generally capture the shape of the PSD in the alpha frequency
band and to avoid the challenges involved in identifying a unique PAF for each subject,
we consider scalp-averaged relative PSD from the alpha frequency band as our sample of

functional data observed over T' = 33 equidistant frequencies within 6-14Hz. The BFPCA
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Table 2.3: The mean AR and NAR values for traditional and functional-depth based
95% credible intervals and CPEs over 200 Monte Carlo runs for all simulation cases with
q = {10,20}% outliers. Py {g(t)}, P7 {g(t)}, Qi o{g(t)}, Qi o{9(D)}, Di—a{g(t)} and
T o19(t)} denote the pointwise parametric and simultaneous credible intervals, quantile
pointwise and simultaneous credible intervals, and MBD and MVD-CPEs, respectively.

AR NAR
9() g Case P g} P {9} QT {9} Qi {9()} Dia{g(t)} Diofg()} P 9@} P {o@)} Qi {9®)}
- Casel 0.522 0.795 0.523 0.796 0.870 - 0.000 0.000 0.000
Case 2 0.524 0.788 0.525 0.790 0.907 - 0.000 0.000 0.000
10% Case 3 0.524 0.794 0.525 0.796 0.867 - 0.000 0.000 0.000
 Casc4 0.524 0.798 0.525 0.799 0.875 - 0.000 0.000 0.000
u(t) Case 5 0.523 0.802 0.524 0.803 0.889 - 0.000 0.000 0.000
Case 2 0.526 0.782 0.527 0.784 0.910 - 0.000 0.000 0.000
20% Case 3 0.524 0.790 0.525 0.791 0.859 - 0.000 0.000 0.000
 Casc4 0.522 0.792 0.523 0.793 0.868 - 0.000 0.000 0.000
Case 5 0.523 0.807 0.524 0.808 0.904 - 0.000 0.000 0.000
- Casel 0.431 0.668 0.432 0.669 0.688 0.838 0.000 0.008 0.000
Case 2 0.469 0.690 0.477 0.700 0.736 0.928 0.006 0.065 0.007
10% Case 3 0.428 0.644 0.429 0.650 0.656 0.836 0.001 0.019 0.000
° Casc 4 0.428 0.634 0.430 0.641 0.642 0.859 0.002 0.034 0.001
Py (t) Case 5 0.436 0.679 0.437 0.680 0.721 0.874 0.000 0.011 0.000
Case 2 0.426 0.639 0.430 0.645 0.666 0.878 0.002 0.032 0.003
20% Case 3 0.444 0.645 0.448 0.654 0.648 0.846 0.005 0.047 0.001
 Casc4 0.481 0.684 0.490 0.697 0.691 0.900 0.008 0.086 0.002
Case 5 0.430 0.675 0.432 0.676 0.727 0.904 0.000 0.014 0.001
- Casel 0.483 0.757 0.483 0.760 0.815 0.902 0.000 0.007 0.001
Case 2 0.548 0.780 0.555 0.787 0.841 0.972 0.008 0.101 0.009
10% Case 3 0.472 0.722 0.472 0.729 0.761 0.888 0.001 0.017 0.001
° Case 4 0.470 0.706 0.472 0.716 0.733 0.899 0.001 0.031 0.002
Yy(t) Case 5 0.487 0.746 0.488 0.750 0.803 0.955 0.001 0.038 0.003
Case 2 0.507 0.736 0.513 0.743 0.792 0.965 0.005 0.071 0.005
20% Case 3 0.482 0.711 0.485 0.723 0.731 0.887 0.004 0.044 0.003
° Casc 4 0.514 0.734 0.521 0.751 0.745 0.923 0.007 0.082 0.006
Case 5 0.589 0.842 0.583 0.844 0.915 0.988 0.004 0.111 0.010
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model was estimated using R = 16 B-spline basis functions and L = 6 latent components,
leading to M = 4000 posterior samples for each model component. Further information on

pre-processing of the EEG data and the experiment are deferred to Appendix [B.4]

Figures (a) and (b) display a sample of the data obtained on 10 subjects from the
TD and ASD diagnostic groups, respectively. Note that the data is quite noisy, where PAF
is distinctly visible in only a subset of the subjects, where there is considerable variation in
PAF and the amplitude of the alpha peak. Our goal is to summarize the mean and variation
trends in the data using the BFPCA model and to characterize the variability in the posterior
estimates of the model components using CPEs in both diagnostic groups. Also given in
Figure are the MBD median and 95% MBD-CPEs for the mean function estimated in
both diagnostic groups (Figure (c)) and in age-based subgroups within the TD and ASD
samples (Figures (d) and (e), respectively). The age-based subgroups were obtained
within each diagnostic group by using the group-specific median age. While the PAF on
the estimated overall means are similar across the two diagnostic groups (at 9 and 9.5Hz in
TD and ASD, respectively), the trend in PAF across age-based subgroups is quite different
within the TD and the ASD samples. While a clear developmental shift is observed in the
TD sample (with PAF at 8.75 and 10.25Hz for young and old TD groups, respectively),
the PAF in the ASD sample is quite similar across the two age-groups (observed around
9.5Hz). These results are consistent with previous literature and findings from our own work

(Scheffler et al.| (2019) and Scheffler et al.| (2022)).

The CPEs from «a cutoffs ranging from 0.05 to 0.95 for the leading two eigenfunctions
for both diagnostic groups, overlaying M = 4,000 posterior estimates in gray, are given in
Figure 2.6 The two leading eigencomponents explain more than 60% of the total variation
in both groups (median and (2.5th, 97.5th) percentiles of FVE at 66.5% (59.5%, 73.4%) and
63.0% (57.8%, 68.7%) in the TD and ASD groups, respectively). The CPEs of the third and
fourth leading eigenfunctions, explaining 14.9% (10.7%, 20.2%) and 10.2% (7.3%, 12.8%)
FVE in the TD group and 15.6% (12.5%, 19.1%) and 11.7% (8.9%, 14.6%) FVE in the ASD
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group, respectively, are deferred to Appendix Figure [B.8 While the leading eigenfunction
mostly captures variation in PAF (location of the prominent alpha peak) especially in the TD
group, the second leading eigenfunction captures variation in the magnitude of the alpha peak
(Figures (a), (b), (e) and (f)). The PAF varies between 8.75-10.25Hz in the TD group
and over a slightly larger range between 7-9.75Hz in the ASD group (Figures[2.6|(a), (b), (c)
and (d)). Note that posterior estimates of the leading eigenfunction are more variable in the
TD group than the ASD group, where CPE-MVD envelopes are wider at lower alpha levels
up to 0.35, similar to the observations from our simulation study. The variation difference
between groups is perhaps due to the stronger developmental shift in PAF from lower to
higher frequencies as children grow older in the TD group. The leading eigenfunction signals
combination of variation in PAF and some variation in the magnitude of the alpha peak in
the ASD group. The second leading eigenfunction capturing variation in the amplitude of
the prominent alpha peak, signals variation around 9.25Hz in the TD group and at 7.25Hz
and 9.25Hz in the ASD group (Figure (e), (f), (g) and (h)). In the second leading
eigenfunction, signaling variation in the amplitude of the prominent alpha peak, there is more
variation in the ASD group compared to the TD group. For the readers reference CPEs for
the third and fourth leading eigenfunctions, capturing remaining variation in the concavity

of the PSD in the alpha frequency band and 95% parametric and quantile credible intervals

along with 95% CPEs are deferred to Appendix Figures |B.7, |B.8 and [B.9, Consistent with

results from the simulation section, simultaneous parametric credible intervals include regions

that do not represent variation in the posterior sample.

2.6 Discussion

We propose a descriptive tool to visualize the variation in the posterior sample of the func-
tional model components of BFPCA. The BFPCA modeling considered relies on a latent

factor model and MMGPS priors on the variance components, leading to an easy to im-
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plement estimation framework and a direct way for inference on the model components.
We recover the highly interpretable mean and eigenfunctions following Bayesian estimation
and propose functional depth based summaries for these quantities. The novel summaries
proposed are shown to lead to a data-driven approach in portraying the variability of the
functional model components. Traditional summaries rely on distributional assumptions or
suboptimal symmetry constraints, and fail to treat the posterior sample as functional data.
In contrast, the proposed summaries are based on ranking of the posterior sample for the
functional components using functional depth. Two functional depth based summaries are
considered, one based on direct ranking of the entire posterior functional sample and another
through ranking of the associated covariance surfaces. Both approaches have been shown to
lead to flexible modeling of the variation in the posterior sample, where the second leads to
wider CPEs as expected, incorporating variation from the entire covariance process, rather

than a single eigenfunction.

Extensions of the proposed methodology to higher dimensional functional data would be
of interest, especially in EEG applications. EEG data is collected across the scalp, creating
spatially indexed functional data. In addition, data are collected across multiple trials time
locked to presentation of a sequence of stimuli in stimulus-based experiments and across
time in resting state paradigms. When changes across experimental time are of interest,
these repetitions can be viewed as an additional dimension of the observed data (i.e. as
longitudinally observed functional data) and be part of analysis rather than collapsed via
averaging. FPCA modeling has been considered for high-dimensional functional data, espe-
cially in EEG data applications involving a spatial or a longitudinal dimension (Shamshoian
et al.| (2022); [Li et al.| (2020)); |Campos et al.| (2022)); Scheffler et al. (2019, 2020); Hasenstab
et al| (2017)). Developments rely on simplifying assumptions on the higher dimensional
covariance via strong or weak separability. Extension of functional depth based central pos-
terior envelopes to BFPCA for higher-dimensional functional data is an interesting direction

for future research.
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CHAPTER 3

Central posterior envelopes for Bayesian longitudinal

functional principal component analysis

Abstract

Longitudinal functional data emerge in situations where functional observations for a sub-
ject are repeatedly measured over a set of time points. Bayesian longitudinal functional
principal component analysis (B-LFPCA) decomposes this data into highly interpretable
low-dimensional features under the assumption weak separability of the longitudinal and
functional dimensions. Weak separability implies that the direction of variation along one
of the dimensions stays constant across fixed slices of the other dimension, and vice versa,
motivating the construction of the marginal longitudinal and functional covariances. The
tensor product of the resulting marginal directions of variation along the longitudinal and
functional dimensions provides a factorization of the signal into its longitudinal and func-
tional components. The Bayesian modeling approach leads to readily available inference
and data exploration via the posterior samples, and we propose central posterior envelopes
(CPEs) to capture uncertainty in the low-dimensional features and mean function. CPEs
are fully data-driven descriptive visualization tool that display the most-central regions of
a posterior sample at specified a-level percentile contours obtained via functional depth.
Functional depth is a measure that provides a center-outward ordering of a sample of curves
and extends order statistics to functional data. The efficacy of the proposed CPEs under
violations of weak separability and in the presence of outliers is demonstrated in extensive

simulations. The B-LFPCA model and proposed CPEs are further showcased in an analysis
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of longitudinally observed event-related potentials (ERPs) during an implicit learning exper-
iment among children with autism spectrum disorder (ASD) and typically developed (TD)
controls. Application of the CPEs leads to novel insights in diagnostic group differences not

observed using traditional methods of uncertainty quantification in the Bayesian framework.
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3.1 Introduction

Multidimensional functional data in the form of longitudinal functional data consist of high-
dimensional functional observations such as curves, surfaces, or images, repeatedly measured
over a set of longitudinally observed time points. A typical set of longitudinal functional data
for subjects, i = 1,...,n, is comprised of observations Y;(s,t) obtained at longitudinal time
s (e.g. hospital visit), where each time point resulted in a functional datum with argument
t (e.g. electrocardiogram measurement). Due to the close proximity of longitudinal time
points, the correlation structure between functional observations for a given subject i is
typically non-trivial and may be an important focus for a study. In electroencephalography
(EEG) experiments, spontaneous electrical activity is recorded at multiple electrodes placed
across the scalp and results in rich multidimensional functional data. Our motivating implicit
learning study in children with autism spectrum disorder (ASD) (Jeste et al.| (2015])) involved
measuring EEG in response to visual stimulus, resulting in an event-related potential (ERP),
over multiple trials in which the visual stimuli were repeatedly presented. Therefore, our
study resulted in functional ERP data collected longitudinally over trials, and since learning
was expected to occur over the duration of the experiment, appropriate modeling of the

longitudinal trends was of particular interest.

Over the past two decades, an abundance of literature on functional data analysis (FDA)
has been published (Ramsay and Silverman (2005)), and both frequentist and Bayesian
approaches for modeling longitudinal functional data are a well-developed area of FDA.
These methods often rely on dimension reduction techniques for capturing variability in a
low-dimensional and easily interpretable form. A common tool employed for this is func-
tional principal component analysis (FPCA) which decomposes the covariance structure of
a signal into its primary directions of variations, commonly referred to as eigenfunctions.
Previous work has utilized multidimensional or multilevel FPCA often in combination with

mixed effects modeling to capture hierarchical dependencies (Chen and Miller| (2012)); Di
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et al.| (2009); Wang et al.| (2016); Greven et al.| (2010); [Yao et al. (2012); Suarez and Ghosal
(2017); Montagna et al.| (2012)) and has been developed for brain imaging studies such as
our motivating study described previously (Hasenstab et al. (2017); |Campos et al.| (2022);
Scheffler et al.| (2020)); [Shamshoian et al. (2022)). Important generalizations have been
made in multidimensional FPCA via the assumption of weak separability, in which one as-
sumes that the leading directions of variation of the longitudinal (functional) dimension stay
constant across fixed slices of the functional (longitudinal) dimension. This property mo-
tivates the construction of the marginal longitudinal and functional covariances, obtained
by integrating the full covariance kernel of both dimensions over the functional and longi-
tudinal dimensions, respectively (Chen et al. (2017); |Park and Staicu (2015)); Lynch and
Chen| (2018)). Projection of the mean-centered longitudinal functional data onto the tensor
product of the resulting marginal longitudinal and functional directions of variation leads
to product scores that are uncorrelated over the longitudinal and functional dimensions.
Thus, an appealing decomposition of the multidimensional signal into the product scores
and highly interpretable one-dimensional directions of variation along the longitudinal and
functional dimensions (separately) is achieved under the assumption of weak separability. In
this chapter, Bayesian longitudinal functional principal component analysis (B-LFPCA) un-
der the assumption of weak separability is implemented following the data-adaptive Bayesian
modeling approach for longitudinal functional data that was proposed in Shamshoian et al.
(2022). An advantage of using a Bayesian modeling framework is uncertainty quantifica-
tion via summaries of posterior samples obtained in estimation, which avoids the need for

bootstrapping.

In this chapter, we propose the use of central posterior envelopes (CPEs) to capture un-
certainty in the posterior samples of the marginal longitudinal and functional eigenfunctions
and mean function estimated using the B-LFPCA model. A traditional method for uncer-
tainty quantification utilized in Shamshoian et al.| (2022)) is the (1 — «)100% simultaneous

parametric credible interval, which is determined via pointwise estimates of the mean and
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standard deviation of a posterior sample (Crainiceanu et al.| (2007); Baladandayuthapani
et al.| (2005)). Although straightforward, simultaneous parametric credible intervals have
disadvantages: they rely on the distributional assumption of normality, and the bounds of
the credible intervals formed are symmetric around the mean and calculated via pointwise
estimates, requiring discretization of the functional observations. The proposed CPEs pro-
vide a flexible and alternative way to capture uncertainty in a posterior sample that avoids
these disadvantages. In particular, CPEs delineated by subsets of a posterior sample at
specified a-level contours are employed as a descriptive visualization tool to capture vari-
ation in the posterior sample. These subsets are obtained via the use of functional depth,
which provides a center-outward ordering of a sample of functions, extending order statistics
and percentiles to functional data. Functional depth has been utilized in a wide variety of
other applications including visual aids as well as point estimates in FDA. Some examples
include the construction of a median or trimmed mean function, functional boxplots (Sun
and Genton (2012))), surface boxplots (Genton et al.| (2014))), outlier detection via the out-
liergram (Arribas-Gil and Romol (2014)), robust rank, and permutation and location tests
for distributional and dispersion differences in two-sample functional data groups (Lopez-
Pintado and Wrobel (2017)); Lopez-Pintado and Qian| (2020)). Lépez-Pintado and Romo
(2009) introduced the notion of modified band depth (MBD), extending the definition of
band depth based on a graph-based approach, by measuring the proportion of time that
a curve lies in the band delimited by a subsample of curves. Sun et al. (2012) derived a
computationally efficient algorithm for calculating MBD that can rank millions of curves in
seconds. |Genton et al. (2014) further extended MBD to higher dimensional functional data
through modified volume depth (MVD). Recently, the use of depth has been explored for
non-Euclidean object data in Dai et al. (2022) and random objects residing in finite- and
infinite-dimensional manifolds in |Dubey et al.| (2022). We utilize both MBD and MVD to
obtain point estimates and functional depth based CPEs for the marginal longitudinal and

functional eigenfunctions and mean function obtained from the B-LFPCA model. By ex-

70



tending MVD to order posterior samples of the marginal covariances and covariance kernel,
we are able to obtain point estimates of these model components and marginal eigenfunc-
tions as well as CPEs of the latter that capture increasing levels of variation in the model.
It is important to note that CPEs are not tools for inference but are fully data-driven visual

aids for capturing uncertainty in a sample of functional posterior estimates.

The chapter is organized as follows. The B-LFPCA model considered is introduced in
Section [3.2 based on the Bayesian multidimensional functional model that was shown to ex-
hibit computational feasibility, data-adaptive behavior, and good operating characteristics
proposed in [Shamshoian et al.| (2022)). B-LFPCA utilizes a random tensor product basis
expansion of the longitudinal functional data followed by modeling the basis coefficients
from the expansion with a latent factor model. Through the use of multiplicative gamma
process shrinkage priors (Bhattacharya and Dunson (2011); [ Montagna et al.| (2012)) placed
on the factor loadings, posterior estimation of the low-dimensional features and mean func-
tion is achieved. This is followed by an outline of the traditional posterior summaries for
the B-LFPCA model components. The proposed CPEs and point estimates based on func-
tional depth are outlined in Section [3.3] followed by simulation studies to highlight their
finite sample performance under violations of key model assumptions and in the presence
of different types of functional outliers (Section [.4)). Section details an application of
CPEs to the analysis of ERPs captured during our motivating visual implicit learning ex-
periment. Further, the credible interval method employed in Shamshoian et al.,| (2022) for
uncertainty quantification is compared to the proposed CPE method in our analysis. Fi-

nally, a brief discussion summarizing key findings and future avenues of research is included

in Section 3.6
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3.2 Bayesian longitudinal functional principal component analysis

3.2.1 Model specification

Let Y;(s,t) = fi(s,t) + €;(s,t) denote the observed noisy response for subject 7,7 = 1,...,n,
at longitudinal time s € S and functional time ¢ € 7, where S and 7 are compact subspaces

in R, represented as a sum of a smooth underlying function f;(s,t), and measurement error

2

€

€;(s,t). The measurement error ¢;(s, t) is assumed to be i.i.d. with mean zero and variance o
The smooth function f;(s,t) is assumed to exist in the space of square integrable functions
L*(S x T) with mean pu(s,t) and covariance kernel K{(s,t), (s',t')} = Cov{fi(s,t), f;(s',t')}.
The multidimensional Karhunen-Loeve (KL) expansion of f;(s,t) detailed in Ramsay and

Silverman| (2005) is defined as

e

fils.t) = u(s,t) + > Zinsa(s, ), (3.1)

h=1

where Zi, = §g §-{fi(s,t) — pu(s,t)}sn(s, t)dsdt denotes the hth uncorrelated subject-specific
score with mean zero and variance pp, and ¢,(s,t) are the orthonormal eigenfunctions of
K{(s,t),(s',t')} that form a basis of L?(S x T'). The first H terms in expansion form a
H-dimensional approximation of f;(s,t) with the optimality property that when compared
to any other H-dimensional orthonormal basis, reconstructing f;(s,¢) using the eigenfunc-
tions results in an approximation of f;(s,t) that explains the most variation. Due to the
complexities involved in modeling the four-dimensional covariance kernel K{(s,t), (s',t')}
and characterizing the two-dimensional eigenfunctions ¢,(s,t). (Chen et al.| (2017)) proposed
product functional principal component analysis (FPCA) which achieves dimension reduc-
tion through factorization of f;(s,t) into its longitudinal and functional components under
the assumption of weak separability of the longitudinal and functional dimensions. Weak
separability implies that the direction of variation in the functional dimension of the data

stays the same for fixed slices along the longitudinal dimension, and vice versa. This as-
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sumption is weaker than the commonly assumed strong separability, which implies constant
covariance along one dimension for fixed values of the other dimensions of the data. Due to
this property, weak separability motivates the concept of the marginal longitudinal and func-
tional covariance, which are obtained by integrating the covariance kernel over the functional
and longitudinal dimensions, respectively. Let the marginal longitudinal and functional co-

variance functions of f;(s,t), denoted Ks(s,s') and K7(t,t'), respectively, be defined as
0
Ks(s, ) = L K{(s,0), (', 0}t = 3 75055(5)5(s),
j=1

and

Kr(t.6) = | K0, (5.0)}s = 3 dunlt)on)

where 71 > 7 > ... denote the ordered nonnegative longitudinal eigenvalues corresponding
to longitudinal eigenfunctions 11 (t), s (%), ... of Ks(s,s’) that form an orthonormal basis in
L3(S), and ¥; = U5 > ... denote the ordered nonnegative functional eigenvalues correspond-
ing to functional eigenfunctions ¢ (t), pa(t), ... of K7 (t,t') that form an orthonormal basis in
L*(T). Then, let xin = §g §Afi(s,t) = u(s, t)}40;(s)¢r(t)dsdt be the subject-specific product
score from the projection of the mean-centered smooth underlying function onto the tensor
product of the jth longitudinal and kth functional eigenfunctions, denoted ;(s) ® ¢x(t),
with mean zero and variance Var(x;jz) = vjr. Under the assumption of weak separability,
the product scores are uncorrelated over the longitudinal and functional dimensions, or more
specifically Cov(xijk, Xijw) = 0 when j # 5 or k # k’. The product KL expansion of f;(s,t)

is then given by

fi(s,t) Z Z Xijk;(8) P (). (3.2)

Further under weak separability, the longitudinal and functional eigenvalues are given as
Tj = Yoy Uk and Uy = > i—1Ujk, respectively. Properties of weak separability were further

explored in [Lynch and Chen| (2018), which showed that if weak separability holds the co-
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variance kernel K{(s,t), (s',t')} can be written as the tensor product of the longitudinal and

functional eigenfunctions 1;(s) ® ¢x(t) as

K{(s,1), Z Z ki (8)1; (") Pr () P (). (3.3)

In practice, the product KL expansion is truncated to include J and K longitudinal and
functional eigencomponents, f;(s,t) ~ u(s,t) + ijl S Xk (s)or(t), based on fraction
of variance explained (FVE) of the respective longitudinal and functional marginal covari-
ances. The covariance kernel is then approximated by K{(s,?), (s',t')} ~ Z}]:1 S v (s)
1;(s")pr(t)dr(t'), and the marginal covariances are approximated by Ks(s,s’) ~ Z}]:l T;1;(5)
Y;(s") and Kr(t,t') ~ Ziil Urdr(t)or(t’). A total of J = 2 and K = 2 or 3 longitudinal
and functional eigencomponents are typically retained in most applications (explaining more
than 80% of the total variation in the longitudinal and functional marginal covariances sepa-
rately), thus achieving effective dimension reduction with the smallest amount of unexplained

variation.

The Bayesian longitudinal functional principal component analysis (B-LFPCA) model
considered is adapted from the probability model for longitudinal functional data given
in |[Shamshoian et al.| (2022). The B-LFPCA approach starts with the expansion of the
smooth underlying function f;(s,?) on a set of p; B-spline basis functions {bgl)(s), ce bz(gll)(s)}
and p, B-spline basis functions {b\®(¢),...,b52(¢)} in the longitudinal and functional di-
mensions, respectively. Using a random tensor product, the expansion is constructed as
fi(s,t) = DL, >F Hzgmb ( )b(Q)( t), where 6, denote the subject-specific random basis
coefficients, and p; and py are chosen to be large enough to ensure adequate smoothing of
fi(s,t). Next for £ = 1,...,p;, m = 1,...,ps, a latent factor model is assumed for the
subject-specific random basis coefficients as 0;4,,, = ;1.1:1 D MijkYej Amk + Giem, where 1,
j=1....q,(¢1 <p1), k=1,...,q,(q2 < p2), denote the Gaussian-distributed subject-

specific latent scores corresponding to <., the jth longitudinal factor loading for bgl)(s),
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and Az, the kth functional factor loading for bgg)(t), and Gy ~ N (O,J?M) denote the

uncorrelated subject-specific reconstruction errors. This leads to the following expansion of

p1 P2

£) =2 25 bumby ().

f=1m=1
P1 P2 q1 g2 .

=55 (B8 w2 (3.4
—1m=1 \j=1k=1
q1 Q2 . .

= 2 Z nzjkwj(5)¢k(t> + Ti<57t)7 (35)
j=1k=1

where 1/13(3) = Zil’)/gjbél)(S), j = 1,...,q, denote the data-adaptive longitudinal basis

functions, gzﬁk(t) =>yr )\mkb@)( t), k=1,...,q, denote the data-adaptive functional basis

m=1

functions, and r;(s,t) = 1, b(1 (s )bg) (t)Ciem denotes the uncorrelated subject-specific

reconstruction error. Therefore, the expansion (3.5) models f;(s,t) as a random tensor
product of ¢; and ¢» data-adaptive basis functions corresponding to Gaussian-distribution
latent scores 7;;,, and any residual variability in the expansion given ¢; and ¢, is captured

in r;(s,t). It is further assumed that 7, ~ N(Bjk, 0 where (3;;, is the mean coefficient

77 k>’
and Ufm variance of is the variance of the latent scores for j = 1,....q1, k = 1,...,¢s.

Marginalizing over 6;4,,, the mean function is determined as

t):ZZ kaj )

Structural assumptions of the covariance process in the B-LFPCA model are formed based
on the covariance of the latent scores. In particular, weak separability of the longitudinal and

functional dimensions in this expansion is induced when it is assumed that Cov(n;jk, ijir) =

5



0 when j # j’ or k # k’. Thus, the covariance kernel is determined as

K A{(s,). (50} = 3 3 70, () () (1)
+ pZ pZ o2 b ()b (516D ()P (t).

The first term in the above equation is analogous to the covariance kernel under the assump-
tion weak separability of the product FPCA model given in with additional variation
added along the diagonal in the second term that captures residual variation not captured
by the ¢; and ¢» data-adaptive basis functions, constituting the B-LFPCA model along with
the expansion . Similarly, if wj(s) and ¢k(t) were chosen to be the eigenfunctions of the
marginal longitudinal and function covariances ;(s) and ¢(t), respectively, the expansion
is reminiscent of the KL product expansion (3.2 when truncated to J and K eigencom-
ponents. Therefore, the reconstruction error 7;(s,t) would capture any residual variation not
explained by the J x K tensor products of the longitudinal and functional eigenfunctions,
while the latent scores 7;;; would model the mean function and covariance process under the

structural assumption of weak separability.

A mixed effects model for posterior estimation can be formulated by representing the
latent factor model given in (3.4) in vector form. Let I' = (7, ... ,'ypl)T denote the p; x ¢q
longitudinal factor loading matrix with v, = (Y1, ..., %), and A = (Aq,...,A,,)" denote
the py x go functional factor loading matrix with X, = (An1,. .., Amg,) ' Further, if 7;
denotes the g; x g subject-specific latent score matrix where 7, is the element in the jth
row and kth column of 7;, then n, = vec(n;) is the ¢1q2 x 1 vector of the subject-specific
latent scores obtained from the vec(-) operator, which stacks the columns of a given matrix.
Similarly, let (; denote the p; x ps subject-specific reconstruction error matrix where (4, is
the element in the ¢th row and mth column of (;, and {; = vec((;) be the resulting p;ps x 1

vector. If ® represents the Kronecker product, the full mixed effects model can be written
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in vector form as

Yi=f +e=(B1@B){(A®D)n, +(;} + €, (3.6)

n;, ~ Nq1q2(/67 Zn)7 Ci ~ Npyps <0p1p27 24)7

2 .
€ ~ Npon, 0oy, 0210 0y), 1=1,...,n,

where Y; = {Yi(s1,t1), ..., Yi(s1,tn,)s -+, Yi(Snast1), - -+, Yi(Sn., tn,)} | denotes the response
observed at a total of n, longitudinal and n; functional time points, f, = {fi(s1,t1),...,
fi(s1,tn)s s fi(Snas 1), - o, fi(Snastn,)} T denotes the ngn; x1 vector of underlying smooth
functions, and €; = {€;(s1,t1), .., €(S1,tn, )y €(Snart1)s - -5 €i(Snystn, )} denotes the ngn, x
1 vector of measurement error. Moreover, in , By = (by,...,b, ) denotes the n, x p

matrix of B-spline longitudinal basis functions with b} = {bgl)(sl), . ,bgl)(sns)}T, By =

(b1,...,b2,) denotes the n; x p, matrix of B-spline functional basis functions with b, =
{bg) (t1),... b (tn,)}T. The vector of subject-specific latent scores 7, is qigo-variate nor-

mally distributed with ¢1ga x 1 vector of mean coefficients 8 = (511, .-, Bigas - - Buts - -

Baq.)' and qiga X q1go diagonal covariance ¥, = diag(a7 ;... ,07271%, . ,agqll, . 7‘7727q1q2)'
The vector of subject-specific reconstruction errors ¢, is pyps-variate normally distributed
with mean 0,,,,, denoting the pips x 1 vector of zeros, and p;ps x p1p, diagonal covariance
¥ = diag(aZ,, ... ,aglm, . ,agpll, . ,Jgpm). Lastly, 0,.,, is used to denote the nyn; x 1
vector of zeros, and I,,_,, is used to denote the ngn; x ngn; identity matrix used in defin-
ing the n,n;-variate normal distribution of the measurement errors €;. After selection of
an appropriate number of B-spline basis functions p; and p, as well as a sufficiently large
enough number of latent factors ¢; < p; and ¢o < ps, conditionally conjugate priors allow
for efficient posterior estimation of through the use Markov chain Monte Carlo (MCMC).
The priors distributions for the B-LFPCA model and subsequent posterior distributions and

MCMC sampling algorithm are detailed in Appendix [C.1}
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3.2.2 Traditional posterior summaries for B-LFPCA components

Posterior estimates of longitudinal factor loadings fyg.n), C=1,....p1,7 =1,...,q, where
the superscript m, m = 1,..., M, is used to index the posterior estimates obtained from

the MCMC sampler after burn-in and thinning, lead to the posterior estimates of the

longitudinal and functional data-adaptive basis functions @E(-m)(s) = >, %S?)b,gl)(s), j =
1,...,q;. Similarly, posterior estimates of functional factor loadings )\mk, m = 1,...,ps,
k =1,...,q, leads to the posterior estimates of the functional data-adaptive basis func-
tions qb;gm) (t) =X, /\(m)b(2 (t), k = 1,...,q2. Then, the posterior estimates of the data-
adaptive basis functions and the mean coefficient vector g™ = ( YT), cee SEQ)T lead to
the posterior estimates of the mean function as ™ (s,t) = 311, Y8 | j;n wjm)(s)g.zg,(gm) (1).
Further, the posterior estimates of the variance of the latent factors 0727](.:1), Jg=1,...,q,
k=1,...,q, and variance of the reconstruction errors (TQ A=1,....p1,m=1,...,pa,

are used to obtain the posterior estimates of the covariance kernel as K™ {(s,t), (s',#')} =

2(m) 7 (m (1 1 2 2 .
1y S oy ()0 ()0 (06" (1) + 30 Sy ot by ()6 (1) (6)033 (1) Di-
rect computation of the posterior estimates of the longitudinal marginal covariance, which

has better scalability than integrating over the posterior estimates of the covariance kernel,

is employed as

q2

p1 D2
m m "m m m 1 1 2(m
8 0.0) = S0 Bt S 3
(=1 m=1

k=1

where w!™ = STqﬁ (™) ()t and €, = ST b (t)dt. Similarly, the posterior esti-

mates of the functional marginal covariance are determined as

K(m (t,t") Z gb Z 02(’" )+ Z b2 (t) Z 02(m Qy,

where w = Ss ™ (s)ds and € = Ss $)bi"(s)ds. The proof for the formula-

tions of the posterior estimates of the longltudlnal and functional marginal covariance using
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direct computation over integration is provided in Appendix We consider the singular
value decomposition (SVD) of the posterior estimates of the marginal covariances to re-
cover the lower dimensional interpretations of the longitudinal and functional eigenfunctions
provided in the product FPCA decomposition. The posterior estimates of the longitudinal
components are obtained via SVD as K3 (s, s') ~ Z‘j]:l T}m)wj(-m)(s)w](-m)(s’ ), where wj(-m)(s)
and Tj(m) are the posterior estimates of the longitudinal eigenfunctions and eigenvalues, re-
spectively. Similarly, the SVD of Kf(rm) (t,t) ~ 3 ﬁ,gm)qbém) (t)(b;m) ('), targets the posterior
estimates of the functional eigenfunctions, qb,gm) (t), and functional eigenvalues, 195;"). The
SVD of the posterior estimates of the discretized marginal covariances are obtained, and the
resulting posterior estimates of the eigencomponents are appropriately standardized (Capra
and Miller| (1997)). The mean or median FVE calculated across the M posterior samples
is used to choose the total number of eigencomponents retained in the longitudinal and

functional dimensions, J and K, respectively. Lastly, an additional alignment step is imple-

mented to obtain the signs of the longitudinal and functional eigenfunctions and detailed in
Appendix [C.2]

Following estimation, the traditional point estimates for the B-LFPCA components are
obtained through averaging of the posterior estimates. The mean estimate is obtained as
(s, t) = (1/M) Z%Zl 1™ (s,t). The longitudinal and functional marginal covariance es-
timates are obtained as Kg(s,s') = (1/M) M Kém)(s,s') and Kr(t,t') = (1/M) M
K(Tm) (t,1'), respectively. Then the covariance kernel estimate is targeted as K{(s,t), (s',¢')} =
(1/M) XM K™{(s,1),(s',t")}. The longitudinal and functional eigenfunctions and eigen-
values can be targeted in two ways. The first approach is to average the posterior esti-
mates, ;(s) = (1/M)SM w™(s), 7 = A/ M)SY_ 7™ 5 = 1,...,J, and ¢ (1) =
(/MM @), 0 = (1/M)SM 9™k =1,..., K. The second approach is to per-
form SVD on the longitudinal marginal covariance estimate as Ks(s, s') ~ ijl ?jﬁj(s)%(s’ )
followed by appropriate standardization of the eigencomponent estimates leading to the longi-

tudinal eigenfunction and eigenvalue estimates obtained via marginal covariance estimation,
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denoted by zzj(s) and 7;, respectively. Similarly, the functional eigenfunction and eigenvalue
estimates obtained via marginal covariance estimation, denoted by gzNSk(t) and 1%, respec-
tively, are calculated as IN(T(t, t') ~ Zszl 5kq~5k(t)qz~5k(t’ ) followed by appropriate standardiza-
tion. The finite sample performance of the point estimates is evaluated via simulations in

Section [3.4]

Traditional Bayesian analysis relies on (1 —«)100% credible intervals as a posterior sum-
mary of spread in the posterior distribution. In the functional data setting in [Shamshoian
et al.| (2022), simultaneous parametric credible intervals under the assumption of normality
were employed following the methodology detailed in |Crainiceanu et al.| (2007) and [Baladan-
dayuthapani et al. (2005]). These credible intervals are formed using symmetric bounds from
estimates of the pointwise mean and variance obtained from a functional posterior sample.
Pitfalls arise when using simultaneous parametric intervals due to the symmetric bounds
that may be too restrictive in cases of highly skewed posterior samples as well as distribu-
tional assumptions that may not hold under violations of modeling assumptions. Another
method for obtaining credible intervals is detailed in Krivobokova et al.| (2010)) and relies on
pointwise estimates of the sample quantiles to form the bounds. In this chapter, the use of
functional depth-based central posterior envelopes (CPEs) are proposed for the B-LFPCA
functional model components and further detailed in Section 3.3} Rather than forming a
single (1 — «)100% credible interval, CPEs are a descriptive visual approach for capturing
the spread of a functional posterior distribution through the use of multiple CPE contours
plotted for a grid of « values. Due to the properties of functional depth, this results in a
visualization of the most central regions of the posterior distribution and provides a flexible
nonparametric tool for capturing variation in a posterior sample. The notations used for
the traditional and depth based posterior summaries outlined above and in Section [3.3| are

summarized for the reader’s reference in Table B.11
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3.3 Proposed functional depth based CPEs for B-LFPCA compo-

nents

Functional depth orders a sample of functions from the center-outward such that the ‘deep-
est’ curve, with the highest functional depth value, is defined as the median curve to the
most outlying curve, with the lowest functional depth value. There are multiple functional
depth measures that have been detailed in the current literature (see [Zuo and Serfling
(2000) and |Gijbels and Nagy| (2017)), but we center our focus on modified band depth,
a popular graph-based measure of functional depth introduced in Lopez-Pintado and Romo
(2009). Let gM(u),..., g™ (u), u € T, denote a sample of M posterior curves defined on
a compact interval Z € R. A band in R? delineated by r, 2 < r < M, posterior esti-
mates, g™ (u), ..., g™ (u), constituting a subset of r curves from the full posterior sample

{gW(w), ..., g™ (u)} is defined as

B{g"(u),...,g"(u)} = [{u,g@} rueZ, min g™(u) <g(u) < max g(w)(U)} :

Band depth of |Lépez-Pintado and Romo| (2009)) considers the proportion of bands B{g™) (u)
v, g (u)} determined by 7 different curves g™V (u), ..., g (u) containing the graph
of g(u). Rather than the proportion of bands that contain the entire graph of g(u), modified
band depth (MBD) extends band depth to consider the proportion of time that the graph of
g(u) lies inside the bands. More specifically, let the set in the interval Z where the function
g™ (u) lies inside the band B{g™)(u), ..., g™ (u)} be denoted as A,{g™ (u); g™ (u),...,
g (w)} = {u € T : ming_m, _m, 9 (1) < g™ (u) < maxy—m, . m, 9% (u)}. Further, if

LL(-) denotes the Lebesgue measure on Z € R, then proportion of time that the curve g™ (u)

lies inside the band B{g(™V) (u), ..., g™ (u)} is defined as A*{g™ (u); g™ (u), ..., g™ (u)} =
L[A{g"™ (u); g™ (u), ..., g™ (u)}]/I(Z). The modified band depth (MBD) for the curve

g™ (u) in gM(u),..., g™ (u) given R, where 2 < R < M denotes a fixed total number of
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curves used to delineate a band, is

R -1
MBDur {g" (u)} = )] [(f) > A g™ (u); g (u), .., g™ (u) }
r=2 1<mi<mo<...<m,<M
MBD ranks each curve g™ (u) as the sum of A*{g™ (u); g™V (u),...,g"™)(u)} over all
possible combinations of bands delineated by 2 < R < M total curves that can be formed
from the sample of M total curves. The higher the MBD value for a curve means there is
a larger proportion of bands that the curve lies in and translates to a curve closer to the
center of the sample. Similarly, the lower the MBD value for a curve means there is a smaller
proportion of bands that the curve lies in which translates to a more outlying observation.
Therefore, MBD results in an effective ordering of the sample from the center outward. We
follow common practice and set R = 2 in applications for computational efficiency (and drop

R from the MBD notation), where bands delineated by all combinations of two curves are

considered in the MBD definition (i.e. MBDy{g"™ (u)} = MBDy2{g™ (u)}).

MBD of the posterior estimates of the longitudinal eigenfunctions ;(s) and functional
eigenfunctions ¢ (), which are both denoted as g(u) = {¢;(s), ¢x(t)}, are utilized to obtain
point estimates (i.e. MBD median) and functional band depth central posterior envelopes
(i.,e. MBD-CPEs). While the MBD median, denoted by m{g(u)}, equals the curve with
the largest MBD value in the posterior sample, the (1 — «)100% MBD-CPE, denoted by
Dy_o{g(u)}, is formed by the band delineated by the (1—a)100% deepest posterior estimates
in the sample. Both the MBD median and MBD-CPEs for g(u) are targeted via Algorithm
3.

Point estimates and CPEs can also be formed based on the ranking of a posterior
sample of d-dimensional surfaces through the use of modified volume depth (MVD). Let
g (u),...,g™(u), u € D, denote a sample of M d-dimensional posterior surfaces that is
defined on D € R?. Further let A,{g"™ (u); g™ (u),...,g" ) (u)} = {u e D : ming_m,. m,

g™ (u) < g™ (u) < maxy—m, .. m, g (u)} denote the region in D where the d-dimensional
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Algorithm 3: MBD Median m{g(u)} and MBD-CPE D, ,{g(u)} for g(u) =

{1(s), ou(t)}
Step 1: Calculate the MBD of the posterior samples:

MBD{gV )}, ..., MBDy{g""(u)}.

Step 2: Order the MBD values of the posterior sample from the smallest to the largest and
denote the corresponding ordered samples as g (u), ..., g™ (u).
Step 3: Calculate the (1 — a)100% MBD-CPE as

Di_o{g(u)} = B {gl*M (), ... g™ (u)},

and the MBD median as m{g(u)} = g™ (u).

surface g™ (u) lies inside the simplex delineated by the d-dimensional surfaces g™ (u), .. .,
g™ (u). If Ly(-) denotes the Lebesgue measure extended to R?, then A*{g™ (u); g™ (u),

g (u)} = Ly[A{g™ (u); g™ (u),...,g"™)(u)}]/Ly¢(D) is used to denote the pro-
portion of time that the d-dimensional surface g™ (u) lies inside the simplex formed by the
d-dimensional surfaces g™ (u),...,g™)(u). Using R = 2 total d-dimensional surfaces to
delineate a simplex (similar to the definition of MBD), MVD for the d-dimensional surface

g™ (u) in gW(u),...,g™ (u), is given as

-1
wuida™ @l - () X A e g ). g ).
1<my <mo<M

When d = 2, MVD is used to order either the posterior estimates of the mean func-
tion, longitudinal marginal covariance, or functional marginal covariance (i.e. g(u) =
{u(s,t), Ks(s,s"), Kr(t,t')}) to obtain the MVD median, denoted by m{g(u)}. Addition-
ally, an alternative way for obtaining point estimates and CPEs for g(u) = {¢;(s), ¢x(t)} is
through the ranking of the posterior sample of g(u) = {Ks(s, '), K7(t,t')} based on MVD.
The MVD median and (1 — «)100% MVD-CPEs formed for g(u) are denoted by m{g(u)}
and Dj__{g(u)}, respectively. By first ordering the posterior sample of respective marginal

covariances, the ordered corresponding posterior sample of eigenfunctions is obtained and
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used to calculate the MVD median and MVD-CPEs. The MVD median equals the func-
tional MVD median of g(u), while the (1—a)100% MVD-CPE for g(u) is formed by the band
delineated by the M (1 — «)100% deepest longitudinal or functional eigenfunction estimates
in the sample, where the estimates are ordered according to MVD of their respective and
corresponding posterior marginal covariances. The (1 — «)100% MVD-CPEs can also be
obtained for the mean function, denoted by Dj__{u(s,t)}, by calculating the bands formed
from the (1 — «)100% deepest mean functions via MVD at fixed slices across s € S and/or
teT (ie p(tls) and u(s|t)). When d = 4, the posterior estimates of the covariance kernel
(i.e. g(u) = K{(s,t),(s,t')}) are ordered using MVD to obtain the kernel MVD median,
denoted by m{g(w)}. This ordering based on the MVD of the posterior covariance kernels
can also be used to order the longitudinal and functional covariances to obtain the kernel
MVD medians denoted by m{g*(u)} for g*(u) = {Ks(s,s), Kr(t,t')}. Similar to the pro-
cedure described above, the ordering of the respective marginal covariances via the MVD of
the covariance kernels results in an ordering of the corresponding posterior eigenfunctions to
obtain the kernel MVD median and (1 —«a)100% kernel MVD-CPEs denoted by m{g(u)} and
D! {g(u)}, respectively, for g(u) = {1;(s), o (t)}. The point estimates and CPEs based on

the ordering of high-dimensional surfaces via MVD are targeted in Algorithm 4.

85



Algorithm 4: MVD and Kernel MVD Median {m(-),m(-)} and MVD-CPE and
Kernel MVD-CPE {D;__(-),D! ()}
Step 1: Calculate the MVD of  the posterior d-dimensional surfaces:
MV Dyra{g®(w)}, ..., MBDy4{g")(u)}.
Step 2: Order the MVD values of the posterior sample from the smallest to the largest and
denote the corresponding ordered posterior sample as gl!(u), ..., g™ (u).
When d = 2 and g(u) = pu(s, t):
Step 3: Calculate the MVD median as m{g(u)} = g™l (u).
Step 4: Calculate the (1 — «)100% MVD-CPEs across fixed slices of s € S as

Di_{u(s,t)} = [s€ S B{ull™H(t]s), .. ulM(t]s)}],
and /or across fixed slices of t € T as
Di_fuls,t)} = [te T : B{ulleMH(s)t), . ulM(s]t)}].

When d = 2 and g(u) = {Ks(s,s'), Ky (t,t')}:
Step 3: Calculate the MVD median as m{g(u)} = g (u).
Step 4: The SVD of the ordered gl'l(u), ..., gl (u) lead to their corresponding ordered
(), ..., g™ () for g(u) = {5(s), Gx(0)}
Step 5: Calculate the (1 — «)100% MVD-CPE

Di_ {g(w)} = B{gl*M(u), ... gM(u)},

and the MVD median as m{g(u)} = g™ (u).
When d =4 and g(u) = K{(s,t), (s, t')}:
Step 3: Calculate the kernel MVD median as m{g(u)} = g™ (u).
Step 4: Based on ordering from Step 2: m = 1,..., M — m = [1],...,[M], order the
sample g*M(w), ..., g*'M(u) for g*(u) = {Ks(s,s'), Kr(t,t)}.
Step 5: Obtain the kernel MVD medians as m{g*(u)} = g*[M(u).
Step 6: The SVD of the ordered g*(u),..., g*™l(u) lead to their corresponding
ordered gl (u), ..., g™ (u) for g(u) = {¥;(s), Pr(t)}.
Step 7: Calculate the (1 — «)100% kernel MVD-CPE

D}_{g(w)} = B{gl*"*(w), ... g™ ()},

and the kernel MVD median as m{g(u)} = g™ (u).

Functional depth-based medians proposed above (m(-), m(-) and m(-)) estimate the cen-
tral tendency in the posterior distributions of the B-LFPCA components and provide a real-

istic estimate equal to one of the observed functional posterior samples rather than relying

86



on pointwise averages as is done in most of the traditional posterior summaries. In addi-
tion, the proposed functional depth based CPEs (denoted by Dy_o(-) Di_(-), and D]__ ("),
corresponding to MBD, MVD, and kernel-MVD based summaries, respectively), are formed
from a band delineated from the 1 — « deepest subset of the functional posterior estimates.
Hence, the proposed methods use functional depth measures to construct fully data-driven
summaries that capture the uncertainty in the posterior estimates in a flexible way. It is
important to note that CPFEs are not credible intervals and, at the present, are not intended
to be utilized for inference. Instead, CPFEs provide a descriptive visualization tool for captur-
ing the variation in the posterior sample, and when plotted for a grid of o values, allow for
visualization of the most central regions of the functional posterior distributions. Notations
used for point estimates and CPEs for both the traditional and proposed functional depth

summaries based are summarized in Table 3.1

3.4 Simulation Studies

Eight simulation scenarios are showcased to display the use of CPEs in describing the varia-
tion in the posterior samples under violation of the weak separability assumption and in the
presence of functional outliers. Additionally, finite sample properties of the traditional and
depth based point estimates from Section [3.2.2] and Section [3.3] respectively, are studied un-
der the different simulation scenarios. The eight simulation scenarios proposed are: Case 1 —
no outliers, Case 2 — violation of weak separability assumption, Case 3 — magnitude outlier,
Case 4 — amount of variation outlier, Case 5 — time-shifted longitudinal eigenfunction outlier,
Case 6 — higher-frequency longitudinal eigenfunction outlier, Case 7 — time-shifted functional
eigenfunction outlier, and Case 8 — higher-frequency functional eigenfunction outlier. In Case
1, we generate data using the product FPCA model with added measurement error for
s € [0,1] and t € [0, 1] observed at a uniform grid of ny = 20 longitudinal and n; = 20

functional time points. The performance of the posterior summaries is evaluated in Case 2
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when the assumption of weak separability is violated through generation of observations such
that the product scores x,j are correlated over the functional and longitudinal dimensions.
Magnitude outliers are generated by adding a constant deviation (with a random sign) to
w(s,t) for t = T; and s > S;, where T; ~ Unif[0, 1] and S; ~ Unif[0, 1]. This adds constant
variation to a randomly selected portion of the unit time domain in both the functional and
longitudinal dimensions, with greater variation added when s > 1/2 and ¢ > 1/2. Amount
of variation outliers are generated using larger variances of the product scores v;j, which re-
sult in added variation throughout the unit interval in both the longitudinal and functional
dimensions. Longitudinal eigenfunction outliers are generated from time-shifted (Case 5) or
higher frequency (Case 6) longitudinal eigenfunctions, where additional variation is added
along the direction of the time-shifted or higher frequency longitudinal eigenfunctions used
to generate the outliers. Similarly, functional eigenfunction outliers are generated from time-
shifted (Case 7) or higher frequency (Case 8) functional eigenfunctions. Results are reported
for outliers generated as ¢ = 10 and 20% of the sample (n = 30) for cases 3-8, where de-
tails of data generation under the eight simulation scenarios are deferred to Appendix [C.3|
The B-LFPCA model is fit using p; = 11 and p; = 11 B-spline basis functions in both
longitudinal and functional dimensions with knots at s = (1/8,1/4,3/8,1/2,5/8,3/4,7/8)
and t = (1/8,1/4,3/8,1/2,5/8,3/4,7/8) using a total of ¢; = 4 and ¢ = 4 longitudinal and
functional latent factors. Previous work of Boland et al. (2023)) using a similar Bayesian
functional principal component analysis (BFPCA) model suggested selecting the number
of basis functions as half the number of functional time points (e.g. p1 = |ns/2]) and
the number of latent factors as a fraction of the number of selected basis functions (e.g.
¢ = max(6,|p1/4])). The B-LFPCA model may require fewer basis functions and latent
factors as needed to avoid overfitting for interpretability of the CPEs. An example of this
in practice is given in our data application in Section Results are reported based on a
total of 200 Monte Carlo with 10,000 MCMC iterations (2,500 for burn-in and thinning at

every 5th iteration) of four independent Markov chains, and M = 6,000 posterior estimates
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for each Monte Carlo run.

Finite sample performance of functional-valued point estimates containing a longitudi-
nal and/or functional argument (e.g. longitudinal eigenfunctions and covariance kernel)
are assessed via the standardized integrated mean squared error (IMSE), IMSEj;.) =
[§,{9(u) — g(u)}?du]/§, g*(w)du, where u € D can be multidimensional. Point estimates
of scalars (e.g. longitudinal eigenvalues) are assessed via the standardized mean squared er-
ror (MSE), MSE; = (p—p)?/p*, where p is a scalar value. The mean IMSE and MSE values
from 200 Monte Carlo runs for the eight simulation scenarios are summarized in Tables [3.2]
and 3.3 respectively, when the number of outliers is ¢ = 20% and in Appendix Tables
and [C.2] respectively, when ¢ = 10%. The traditional and proposed point estimates for
the longitudinal and functional eigenfunctions from the Monte Carlo run with the median
IMSE are given in Figure for Cases 1 and 2, and, respectively, in Figures and
for Cases 3 through 8. Violation of the weak separability assumption in Case 2 leads to
bias in the eigenfunctions as observed in Table with larger IMSE values as compared to
Case 1 and results in bias of the marginal longitudinal and functional covariances. In Case
3, the magnitude outliers lead to eigenfunction misspecification as the constant deviation
is estimated as both the first longitudinal and functional eigenfunctions, leading to bias in
every point estimate except for the mean function. The increase in IMSE for the mean
function (Table is instead due to increased variation in mean function estimation. The
use of larger longitudinal and functional eigenvalues clearly results in bias of these estimates
(Table in Case 4 as well as estimates of the marginal covariances and covariance kernel
(Table . Although it does not bias eigenfunction estimation, there is a slight increase
in the IMSE of the eigenfunction estimates due to increased variation in eigenfunction esti-
mation. Higher IMSE values of the marginal longitudinal eigenfunctions and covariance in
Case 5 and marginal functional eigenfunctions and covariance in Case 7 are due to the added
time-shifted eigenfunction outliers, leading to more variation in eigenfunction estimation in

the longitudinal and functional time intervals in Cases 5 and 7, respectively. Bias in the
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second longitudinal and functional eigenfunctions in Cases 6 and 8, respectively, is a result
of eigenfunction misspecification as the higher-frequency outlier eigenfunctions are estimated
as the second leading direction of variations. In effect, this leads to bias in the estimation
of the marginal longitudinal and functional covariances in Cases 6 and 8, respectively. In
general, there does not appear to be an advantage for the traditional over the proposed
depth-based point estimates given the similar IMSE and MSE values in Tables 3.3, [C.1]
and in most of the simulation cases. This similar performance is potentially due to the
data-adaptive behavior, capturing the effects of outliers and violations of model assump-
tions, of the B-LFPCA model reported in [Shamshoian et al.| (2022)). Further in-depth and
case-specific results for the effects the generated outliers have on the performance of the

point estimates and CPEs for Cases 3-8 are deferred to Appendix [C.3|

Figures 3.2 and display CPEs for the two leading longitudinal and functional eigen-
functions, respectively, from a single Monte Carlo run overlaying M = 6,000 posterior esti-
mates (given in gray) from « cutoffs ranging from 0.05 to 0.95 for Cases 1 and 2. Similar plots
containing CPEs in outlier Cases 3 to 8 (when outlier percentage is equal to ¢ = 20%) for the
longitudinal eigenfunctions, ¥4 (s) and 1s(s), are given in Appendix Figures and [C.6] re-
spectively, and functional eigenfunctions, ¢;(t) and ¢(t), in Appendix Figures and [C.8]
respectively. Additionally, the MVD-CPEs of the mean function for Cases 1 and 3 (¢ = 20%)
are given in Appendix Figures and [C.4] respectively. CPEs from increasing a cutoffs
help visualize regions with the most central functional posterior observations in the sam-
ple. Note that while MBD-CPEs of the marginal eigenfunctions, which directly order the
posterior longitudinal and functional eigenfunctions, are nested in each other for increasing
a values, MVD-CPEs and kernel MVD-CPEs are not necessarily nested. The MVD-CPEs
and kernel MVD-CPEs are based on the functional depth rankings of the posterior longitu-
dinal and functional marginal covariances and covariance kernels, respectively, which may
not result in a nested ordering of the longitudinal and functional eigenfunctions. This is also

the reason why MVD-CPEs are typically wider than MBD-CPEs, incorporating variation
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Table 3.2: The mean standardized integrated mean squared error (IMSE) for both the traditional
and functional depth-based point estimates from the 200 Monte Carlo runs. The eight simulation
cases correspond to: Case 1 —no outliers, Case 2 — violation of weak separability, Case 3 — magnitude
outlier, Case 4 — amount of variation outlier, Case 5/6 — time-shifted /higher-frequency longitudinal
eigenfunction outlier, Case 7/8 — time-shifted/higher-frequency functional eigenfunction outlier,
with ¢ = 20% outliers.

q = 20%
Point Estimate Case 1 Case 2" Case3 Case4 Caseb Case6 Case7 Case8
IMSE IMSE
n(t) 0.0003 0.0005 0.0023 0.0006 0.0004 0.0004 0.0005 0.0004
m{u(t)} 0.0003 0.0005 0.0024 0.0007 0.0004 0.0005 0.0005 0.0005
121 (s) 0.0129 0.1555 1.9079 0.0627 0.0346 0.0215 0.0236 0.0174
P1(s) 0.0128 0.1587 1.9199 0.0632 0.0344 0.0198 0.0238 0.0174
m{w1(s)} 0.0129 0.1593 1.9190 0.0655 0.0348 0.0207 0.0241 0.0177
m{y1(s)} 0.0137 0.1604 1.9182 0.0631 0.0363 0.0208 0.0246 0.0190
m{yi(s)} 0.0138 0.1602 1.8988 0.0667 0.0364 0.0220 0.0250 0.0185
122(5) 0.0258 0.1669 1.5821 0.0639 0.0427 0.7630 0.0362 0.0313
ha(s) 0.0163 0.1613 1.6241 0.0643 0.0371 0.9557 0.0260 0.0213
m{wa(s)} 0.0172 0.1640 1.6326 0.0643 0.0385 0.9119 0.0275 0.0225
m{ya(s)} 0.0205 0.1670 1.6280 0.0652 0.0414 0.9112 0.0292 0.0263
m{ya(s)} 0.0211 0.1671 1.6273 0.0697 0.0420 0.8879 0.0329 0.0269
$1 (t) 0.0078 0.1087 1.7919 0.0401 0.0070 0.0089 0.0287 0.0136
b1(t) 0.0077 0.1099 1.8021 0.0407 0.0070 0.0089 0.0283 0.0118
m{p1(t)} 0.0080 0.1112 1.8009 0.0415 0.0071 0.0092 0.0291 0.0125
m{p1(t)} 0.0083 0.1110 1.8040 0.0417 0.0078 0.0095 0.0289 0.0130
m{p1(t)} 0.0086 0.1107 1.8010 0.0420 0.0081 0.0102 0.0309 0.0157
$2(t) 0.0343 0.1328 1.9319 0.0422 0.0321 0.0332 0.0397 1.0371
b2 (t) 0.0295 0.1292 1.9872 0.0426 0.0263 0.0304 0.0358 1.3491
m{p2(t)} 0.0197 0.1222 1.9843 0.0424 0.0191 0.0209 0.0343 1.2572
m{pa(t)} 0.0291 0.1305 1.9801 0.0449 0.0269 0.0299 0.0376 1.3828
m{p1(t)} 0.0286 0.1268 1.9842 0.0463 0.0260 0.0305 0.0395 1.5042
IN(S(S, s) 0.0627 0.2083 17.684 0.5173 0.0873 0.1501 0.0711 0.0685
m{Ks(s,s')} 0.0656 0.2058 16.648 0.4575 0.0913 0.1511 0.0716 0.0698
m{Ks(s,s)} 0.0690 0.2089 15.966 0.4626 0.0948 0.1570 0.0746 0.0767
[w(T(t, t') 0.0571 0.1765 16.075 0.4544 0.0598 0.0605 0.0947 0.1589
m{Kr(t,t)} 0.0603 0.1775 15.083 0.4049 0.0623 0.0630 0.0991 0.1635
m{K+(t,t')} 0.0650 0.1803 14.551 0.4053 0.0672 0.0721 0.1052 0.1696
?{(s,t), (s’,t')} 0.1005 0.1922 17.182 0.5114 0.1354 0.1841 0.1246 0.2007
m[K{(s,t), (s, t')}] 0.1076 0.2054 15.740 0.4831 0.1437 0.1949 0.1349 0.2126

*IMSE for point estimates of K{(s,t), (s',t')} are calculated in comparison to the covariance kernel
used for data generation in Case 2 (Appendix [C.3]).
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Table 3.3: The mean standardized integrated mean squared error (IMSE) and standardized
mean squared error (MSE) for both the traditional and functional depth-based point esti-
mates from the 200 Monte Carlo runs. The eight simulation cases correspond to: Case 1 —
no outliers, Case 2 — violation of weak separability, Case 3 — magnitude outlier, Case 4 —
amount of variation outlier, Case 5 — time-shifted longitudinal eigenfunction outlier, Case 6
— higher-frequency longitudinal eigenfunction outlier, Case 7 — time-shifted functional eigen-
function outlier, Case 8 — higher-frequency functional eigenfunction outlier with ¢ = 20%
outliers.

q=20%
Point Estimate Case 1 Case 2 Case3 Case4d Caseb Case6 Case7 Case8

MSE MSE
71 0.0488 0.0591 15.495 0.6121 0.0499 0.0577 0.0545 0.0510
T1 0.0487 0.0592 15.315 0.5838 0.0510 0.0632 0.0541 0.0509
T2 0.0378 0.0535 9.0287 1.4118 0.0510 0.0375 0.0363 0.0439
T 0.0426 0.0632 9.0209 1.6163 0.0596 0.0649 0.0420 0.0502
0 0.0424 0.0494 12.937 0.5113 0.0484 0.0466 0.0450 0.0683
a1 0.0424 0.0499 12.806 0.5838 0.0484 0.0465 0.0466 0.0733
s 0.0333 0.0377 18.493 2.9308 0.0356 0.0356 0.2399 0.1281
Uy 0.0403 0.0417 18.287 3.1965 0.0413 0.0412 0.2571 0.1106
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Figure 3.1: Point estimates of 11 (s), 1¥2(s), ¢1(t), and ¢o(t) in the are displayed from the
top to bottom rows for simulation Cases 1 and 2 from runs with 50th percentile IMSE val-
ues. Longitudinal /functional eigenfunction estimates, longitudinal /functional eigenfunctions
estimates via longitudinal /functional marginal covariance estimation, MBD median, MVD
median, and kernel MVD median are given in solid blue, solid yellow, dashed blue, dashed
yellow, and dashed red overlaying the true function given in solid black.
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from the marginal longitudinal /functional covariance processes rather than only longitudi-
nal/functional eigenfunction-specific variation. Similarly, this is also the reason why gener-
ally the kernel MVD-CPEs are often even wider than MVD-CPEs, incorporating variation
from the entire covariance process across both the longitudinal and functional dimensions
rather than only the longitudinal or functional level variation captured in the respective
marginal covariances. This is particularly apparent in Cases 3-8, where added variation due
to functional outliers leads to additional contamination of the covariance kernel. CPEs uti-
lized in B-LFPCA appear to provide a flexible representation of the shape and spread of the
posterior samples even in the presence of functional outliers and can capture increasing lev-
els of variation across multiple dimensions, contributing to the visualization of the posterior

samples.

While MVD-CPEs are typically more narrow than kernel MVD-CPEs in most of the
simulation cases, the kernel MVD-CPEs in Case 2, which generates functional observations
using product scores that violate the key model assumption of weak separability, often be-
have in the opposite manner. In Figure (k), the posterior sample space covered by the
MVD-CPE up to a = 0.45 is approximately the same covered by the kernel MVD-CPE up
to a = 0.75 in Figure (ﬁ) Similarly, in Figure (k), the posterior sample space covered
by the MVD-CPE up to a = 0.65 is covered up to a = 0.85 by the kernel MVE-CPE in
Figure [3.2(¢), while the kernel MVD-CPE contour up to a = 0.05 in Case 1 (Figure [3.3(1))
is much wider than the corresponding MVD-CPE contour (Figure [3.3|(h)). Narrower kernel
MVD-CPE contours compared to the MVD-CPE contours observed in Case 2 are potentially
a consequence of the generated functional data violating the assumption of weak separability.
To recall, under the assumption of weak separability the covariance kernel, K{(s,t), (s',t')},
can be written as a linear combination of the variance of the product scores, v;;, and eigen-
functions of the longitudinal and functional marginal covariances, 1;(s) and ¢ (¢). When
this assumption is violated, the covariance kernel can still be estimated, but integration over

the functional/longitudinal dimension to obtain the functional /longitudinal marginal covari-
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ance does not result in the functional/longitudinal eigenfunctions used to generate the data
when SVD is applied. This is observed in the inflated IMSE values in Table |3.2| as compared
to Case 1 for these estimates, and Figure indicates that, although the eigenfunctions
retain their general shape, they become warped and stretched across the unit time interval
in both longitudinal and functional dimensions. Hence, the ordering and visualization of the
eigenfunctions given by the kernel MVD-CPEs rather than the MVD-CPEs can lead to a
more conservative representation of uncertainty in a posterior sample when weak separability
is violated due to the unreliability of the posterior marginal covariances and is a potentially

useful tool worth the added computational burden if suspected.

3.5 Data application

3.5.1 Implicit learning experiment

Our motivating study was conducted at UCLA by our collaborator Dr. Shafali Jeste on
neural correlates of implicit learning for children with autism spectrum disorder (ASD), a
heterogeneous neurodevelopmental disorder characterized by social interaction and commu-
nication impairments (Lord et al. (2000); Jeste et al. (2015)). Implicit learning is charac-
terized as the detection of irregularities in one’s environment without conscious awareness
or intention to learn and is thought to play a role in language and social behavior, which
can provide insights into non-verbal cognition and adaptive social functioning in ASD (Jeste
et al| (2015))). A group of 37 children with a prior diagnosis of ASD aged two to five years
old and 34 age-matched typically developing (TD) peers participated in the visual implicit
learning study during which electroencephalography (EEG) signals measured spontaneous

electrical activity across the scalp.

During the experiment, the participants were shown a continuous stream of six-colored
geometric shapes (pink squares, blue crosses, yellow circles, turquoise diamonds, gray tri-

angles, and red octagons), grouped into three shape pairs that were presented in a random
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order on a computer screen (see Figure[3.4[a)). Presentation of a single shape constituted an
experimental trial and resulted in an event-related potential (ERP) waveform recorded as a
time-locked EEG signal in response to the visual stimuli at electrodes placed across the scalp.
As the experiment progressed, transitions within a shape pair stayed fixed, and hence the
within-pair ordering could be learned forming the “expected” condition, while the between-
pair transitions were random and unpredictable forming the “unexpected” condition. Shape
pairs were presented 120 times resulting in ERP waveforms recorded for 120 trials for both
the expected and unexpected conditions. Implicit learning was detected as condition differ-
ences in the recorded ERP waveforms between the expected and unexpected conditions. As
learning was anticipated to occur over trials, capturing the longitudinal trends in condition
differences was a key goal to reflect the evolution of implicit learning for comparison between

diagnostic groups (ASD vs. TD).

In studies such as the one described above, recorded ERPs result in functional data with
commonly studied paradigm-specific components. The implicit learning paradigm leads to
two well-known ERP components thought to be related to cognitive processes and early
category recognition: the P3 peak and N1 dip (see Figure[3.4](c)) (Jeste et al] (2015)). Using
the same pre-processed ERP data studied in [Hasenstab et al.| (2015, 2017)) and Shamshoian
et al.| (2022)), our analysis focuses on the condition difference (expected - unexpected) of the
ERP waveforms. Due to the low SNR of the pre-processed ERP, the meta-preprocessing
procedure (MAP-ERP) detailed in [Hasenstab et al. (2015) is applied to the pre-processed
ERPs to boost the SNR. MAP-ERP allows for the P3 peak locations to be identified while
still retaining the longitudinal information in the ERPs (common to collapse the longitudinal
dimension to boost SNR by averaging ERP over trials). For each subject, electrode, and
condition, MAP-ERP averages the ERP waveforms in a sliding window of overlapping sets
of trials with a maximum number of 30 trials within a set and applies a peak detection
algorithm (Jeste et al.| (2015])) to the averaged ERPs to identify the P3 peak location for a

given trial. Once the P3 locations are obtained, the averaged ERPs are centered around the
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Figure 3.4: (a) Visualization of the implicit learning paradigm. The continuous stream of
six-colored shapes is organized into three shape pairs. The “expected” condition is defined as
the transition between shapes within a shape pair, and the “unexpected” condition is defined
as the transition between shape pairs. (b) The four electrodes located in the right frontal
portion of the scalp of interest are denoted by the dark blue stars in the labeled frontal scalp
section. (c) A depiction of the ERP phasic components P3 and N1 in the implicit learning

paradigm.
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P3 peak by examining a 144 ms symmetric window around the P3 peak (i.e., t € [—-72 ms,
72 ms]). This results in ERP curves with n; = 37 functional time points and an enhanced
SNR that are aligned by the P3 peak across all subjects, trials, electrodes, and conditions
at t = 0. Since our interest lies in characterizing implicit learning, the condition differences
are obtained by subtracting the meta-preprocessed ERP corresponding to the unexpected
condition from the expected condition for each subject, trial, and electrode. Lastly, the
condition differences are averaged across the four electrodes in the right frontal region of
the scalp (see Figure [3.4[(b)) and constitute our functional dimension with n; = 37 time
points for each subject observed over ny, = 56 longitudinal trials s € [5,60], where maximal
condition differentiation was detected in previous studies (Hasenstab et al. (2015)). Four
ASD subjects and two TD subjects were removed prior to analysis due to their trial-level
missingness profiles, and all other missing trial-level observations are imputed as an update in
the MCMC algorithm. Further details on pre-processing of the ERP data, subject removal
due to missingness, imputation of missing data, and hyperparameters used in fitting the
B-LFPCA model are deferred to Appendix [C.4, The B-LFPCA model was fit separately
for the ASD and TD groups with (p1,p2) = (10, 10) B-spline basis functions and (¢, ¢2) =
(5,5) latent factors, which was a fewer amount of basis functions than the rule of thumb
discussed in Section but avoided overfitting and led to interpretable CPEs. Additionally,
the 95% simultaneous parametric credible intervals (Krivobokova et al. (2010); Crainiceanu
et al.| (2007))) were calculated for the posterior samples of the longitudinal and functional
eigenfunctions to highlight our visualization approach via the proposed CPEs in comparison

to traditional methods for uncertainty quantification.

3.5.2 Data analysis results

Figure [3.5| displays a three-dimensional visualization of the estimated mean of the condition
difference for ASD and TD groups across ERP time and trials. Additionally, the MVD-CPEs

of the mean function at o contours ranging from 0.05 to 0.95 given at fixed slices of the lon-
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(a) ASD, (s, ?) (b) TD, (s, 1)

Figure 3.5: Point estimates of the mean condition differentiation fi(s,t) for ASD and TD

gitudinal dimension s = (5, 35,60) (rows 1 and 3) and fixed slices of the functional dimension
t = (—40,0,40) (rows 3 and 4) for both diagnostic groups, overlaying M = 6,000 posterior
estimates in gray, are displayed in Figure [C.9 Similar to the results seen in
, the ASD group tends to have positive condition differentiation between trials 23
to 50 with maximum positive condition differentiation at trial 29 (Figure [3.5(a)). Whilst the
TD group tends to have positive condition differentiation at earlier trials of the experiment
compared to the ASD group (Figure b)) As positive condition differentiation is believed
to be indicative of implicit learning, these findings suggest that the TD group may be dif-
ferentiating between the expected and unexpected conditions earlier than the ASD group.
However, further exploration into the covariance structure can provide further insight into

condition differentiation between the ASD and TD groups.

MBD-CPEs from « contours ranging from 0.05 to 0.95 for the leading three longitudinal
(rows 1 and 2) and functional (row 3 and 4) eigenfunctions for both diagnostic groups,

overlaying M = 6,000 posterior estimates in gray, in Figure|3.6l The MVD-CPEs and kernel
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MVD-CPEs of the leading three longitudinal eigenfunctions for both diagnostic groups are
deferred to Appendix Figures [C.10] and [C.11], respectively, and both are wider than the

MBD-CPEs as expected. Decomposition of the longitudinal marginal covariance over trials
provides insight into how implicit learning evolved through the experiment and the differences
between the ASD and TD groups. The three leading longitudinal eigencomponents explain
more than 80% of the total variation in both groups (median and (2.5th, 97.5th) percentiles
of FVE at 80.2% (75.7%, 84.3%) and 84.1% (80.8%, 87.2%) in the ASD and TD groups,
respectively). The leading longitudinal eigenfunction in the ASD (FVE: 37.1% (30.9%,
46.8%)) and TD (FVE: 40.5% (35.0%, 48.4%)) groups are flat across trials, representing
the overall variability in condition differentiation trial-to-trial (Figure [3.6(a) and (d)). The
second leading longitudinal eigenfunction in the ASD (FVE: 24.9% (19.8%, 30.4%)) and
TD (FVE: 29.3% (23.3%, 34.5%)) groups represents boundary variation (Figures[3.6(b) and
(e)). This is in part due to the MAP-ERP pre-processing step as the number of trials
contained in the overlapping sets of trials in the sliding window shrinks linearly towards one
at the boundaries. Trial 5 contains the smallest number of trials within its sliding window
which results in increased variability, but variation at the boundaries can also be a result
of difficulties in modeling trials located at the boundaries (i.e. trial 60). This is consistent
with the wider MVD-CPEs mean functions displayed in Figure [C.9(a) and (g) for trial 5
and Figure [C.9(c) and (i) where the ASD group has more variability at trial 60 than the
TD group. Finally, the third longitudinal eigenfunction represents variation in condition
differentiation in both ASD (FVE: 17.6% (13.6%, 21.9%)) and TD (FVE: 14.0% (10.3%,
18.7%)) groups around trials 25 to 30 (Figures[3.6(c) and (f)). In particular, there is a larger
sample space covered by the CPEs for the ASD group compared to the TD group, indicating
more heterogeneity between subjects in the variability of condition differentiation within the

ASD group as compared to the TD group.

Decomposition of the functional marginal covariance over ERP time provides insight into

within-trial P3 peak differences between the ASD and TD groups. The three leading func-
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tional eigencomponents explain more than 90% of the total variation in both groups (median
and (2.5th, 97.5th) percentiles of FVE at 91.4% (89.6%, 93.2%) and 90.2% (88.2%, 92.2%)
in the ASD and TD groups, respectively). For both the ASD and TD groups, the leading
functional eigenfunction captures overall variability around the P3 peak (Figure (g) and
(j)). The second leading functional eigenfunction represents variation in the P3 peak ampli-
tude (Figure|3.6(h) and (k)). Lastly, the third leading functional eigenfunction characterizes
variation in the shape of the P3 peak around 70ms before and after (Figure [3.6(i) and (¢)).

Figure displays the 95% simultaneous parametric credible interval given as dashed
black lines and pointwise mean as the solid black line for the leading three longitudinal
(rows 1 and 2) and functional (row 3 and 4) eigenfunctions for both diagnostic groups in
Figure|3.6, For the longitudinal eigenfunctions, the 95% credible intervals are slightly wider
than the 95% MBD-CPEs (Figures [C.12(a)-(e)). Additionally, the MBD-CPEs aid in the
interpretation of the longitudinal eigenfunctions by adding a more precise look into the
posterior distributions based on the contours that is lacking in the 95% credible intervals.
The 95% credible intervals of the functional eigenfunctions appear to cover around the same
area as the 95% a-level contours of the MBD-CPEs, likely due to smaller variation in the
posterior samples, and both lead to the same interpretation of the functional eigenfunctions.
Overall the CPEs provide a more granular look at the behavior of the eigenfunctions due to
the grid of a-level contours as only a single 95% credible interval is typically reported. If
instead the (1 — «)% credible intervals were reported at a grid of a-level contours similar
to the CPEs, they would be fully nested within each other but with no variation in shape,

unlike the CPEs which more flexibly capture shape differences at varying contours.

3.6 Discussion

We expand upon the descriptive tools to visualize variation in the posterior samples pro-

posed in |Boland et al. (2023)) to a higher multidimensional framework for longitudinal and
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functional model components in B-LFPCA. Relying on the work in |Shamshoian et al.| (2022)
for the development of the computationally efficient, accurate, and data-adaptive model
for B-LFPCA, we obtain an estimation framework for direct inference on model compo-
nents under the assumption of weak separability of the longitudinal and functional dimen-
sions. Through the implementation of B-LFPCA, we recover highly interpretable marginal
eigenfunctions as well as the mean surface, marginal covariances, and covariance kernel and
propose depth-based summaries for these quantities. The proposed summaries lead to a
data-driven approach in capturing variability in the longitudinal and functional model com-
ponents, particularly the marginal eigenfunctions, without applying symmetry constraints
or relying on estimation methods that fail to treat the posterior samples as truly functional
data. In particular, the proposed summaries are based on the rankings of the posterior sam-
ples using functional depth for single-dimensional functions as well as extensions of functional
depth up to four-dimensional surfaces. Three functional depth-based summaries are consid-
ered: one based on the direct ranking of the entire sample of longitudinal and functional
eigenfunctions, another through the ranking of the associated two-dimensional longitudinal
and functional marginal covariances, and lastly through the ranking of the four-dimensional
covariance kernels. All three approaches were shown to lead to flexible modeling of the
variation in the posterior samples, with increasingly conservative/wider CPEs when more
variation is incorporated. More specifically, capturing variation from a sample of a single
marginal eigenfunction (MBD-CPEs) to greater variation captured in covariance processes
a single dimension (MVD-CPEs) to incorporating variation from both functional and longi-
tudinal dimensions (kernel MVD-CPEs). Although, it was shown in simulations that if the
assumption of weak separability is violated, this trend of increasingly wider CPEs may not

be consistent.

CPEs in the multidimensional setting in application to EEG experiments appear to be
a useful tool in visualizing uncertainty in the posterior estimates of the data in FPCA-

based models, where the weak separability of the dimensions is assumed and holds. Adding
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the use of CPEs in the implicit learning paradigm enriched the results of the analysis and
lead to more flexible and detailed visual representations of learning trends between the
two groups that were not captured using solely traditional credible intervals for uncertainty
quantification. Given the utility of CPEs based on our analysis, further research into applying
depth measures for more complicated object data, such as the work by [Dai et al.| (2022), is
of interest, particularly for higher dimensional objects and surfaces. In our proposed CPEs,
we faced limitations when visualizing the MVD-CPEs of the mean surface, and as a solution
discretized either the longitudinal or functional dimensions and obtained two-dimensional
representations of a three-dimensional surface, which does not treat the surface as a truly
functional estimate. Therefore, a visualization tool in higher dimensions is needed and an

interesting open problem for future research.
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APPENDIX A

Chapter 1: Appendices

A.1 Eigenvectors of marginal covariances from subgroups

To justify merging of TFT vectors (across diagnostic groups, conditions and scalp regions)
in obtaining trial-specific covariances, leading the the marginal covariance defined in Section
2.3, we assessed whether eigenvectors of the marginal covariances from the eight subgroups
were sufficiently similar. The leading six eigenvectors are displayed in Figures for
the delta frequency band and Figures for the theta frequency band. We find that
the estimated eigenvectors (i.e. directions of variation) are sufficiently similar across the
eight TFT groupings, which justifies estimation of the marginal covariance by merging data

in our data application.

A.2 Eigenvectors of trial-specific covariances

To assess the constant direction of functional variation across trials of the longitudinal dimen-
sion (an assumption needed in defining the marginal covariance as an average of trial-specific
covariances in Section 2.3), we include plots of the estimated six leading eigenvectors from
trial-specific covariances defined at trials 20,40 and 60 for analysis of the delta and theta
frequency bands in Figures [A.I3HA.1§8 Similarity of eigenvectors signal no violation of the

assumption of constant variation across trials in our data application.

107



A.3 Histograms of MDPCA scores

For mixed effects modeling of the eigenscores, we provide in Figure[A.19|the histograms of the

eigenscores, displaying relatively symmetric distributions in our data application, signaling

0.02
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-0.06

Figure A.1: Estimated PC1 for the marginal covariances in the delta frequency band in two

diagnostic groups (ASD, TD), two conditions (expected (E), unexpected (U)) and two scalp
sections (frontal (F) and (posterior (P)).

no violation of the normality assumption.
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Figure A.2: Estimated PC2 for the marginal covariances in the delta frequency band in two

diagnostic groups (ASD, TD), two conditions (expected (E), unexpected (U)) and two scalp
sections (frontal (F) and (posterior (P)).

ASDEF ASDUF ASDEP ASDUP

0 200 400 800 800 0 200 400 600 80O 0 200 400 ©00 800 0 200 400 600 800

TDEF TDUF TDEP TDUP 002

-0.04

-0.06

-0.08

0 200 400 600 800 0 200 400 600 800 0 200 400 600 800 0 200 400 600 800

Figure A.3: Estimated PC3 for the marginal covariances in the delta frequency band in two

diagnostic groups (ASD, TD), two conditions (expected (E), unexpected (U)) and two scalp
sections (frontal (F) and (posterior (P)).
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Figure A.4: Estimated PC4 for the marginal covariances in the delta frequency band in two
diagnostic groups (ASD, TD), two conditions (expected (E), unexpected (U)) and two scalp
sections (frontal (F) and (posterior (P)).
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Figure A.5: Estimated PC5 for the marginal covariances in the delta frequency band in two
diagnostic groups (ASD, TD), two conditions (expected (E), unexpected (U)) and two scalp
sections (frontal (F) and (posterior (P)).
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Figure A.6: Estimated PC6 for the marginal covariances in the delta frequency band in two
diagnostic groups (ASD, TD), two conditions (expected (E), unexpected (U)) and two scalp
sections (frontal (F) and (posterior (P)).
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Figure A.7: Estimated PC1 for the marginal covariances in the theta frequency band in two
diagnostic groups (ASD, TD), two conditions (expected (E), unexpected (U)) and two scalp
sections (frontal (F) and (posterior (P)).
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Figure A.8: Estimated PC2 for the marginal covariances in the theta frequency band in two
diagnostic groups (ASD, TD), two conditions (expected (E), unexpected (U)) and two scalp
sections (frontal (F) and (posterior (P)).
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Figure A.9: Estimated PC3 for the marginal covariances in the theta frequency band in two
diagnostic groups (ASD, TD), two conditions (expected (E), unexpected (U)) and two scalp
sections (frontal (F) and (posterior (P)).

112



ASDEF ASDUF ASDEP ASDUP

0 200 400 600 800 0 200 400 60O 8OO 0 200 400 600 800 0 200 400 60O 800
TDEF TDUF TDEP TDUP

-0.05

0 200 400 600 800 0 200 400 600 800 0 200 400 600 800 0 200 400 600 800

Figure A.10: Estimated PC4 for the marginal covariances in the theta frequency band in
two diagnostic groups (ASD, TD), two conditions (expected (E), unexpected (U)) and two
scalp sections (frontal (F) and (posterior (P)).
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Figure A.11: Estimated PC5 for the marginal covariances in the theta frequency band in
two diagnostic groups (ASD, TD), two conditions (expected (E), unexpected (U)) and two
scalp sections (frontal (F) and (posterior (P)).
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Figure A.12: Estimated PC6 for the marginal covariances in the theta frequency band in

two diagnostic groups (ASD, TD), two conditions (expected (E), unexpected (U)) and two
scalp sections (frontal (F) and (posterior (P)).
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Figure A.13: The estimated PC1 of trial-specific covariances for both the delta and theta
frequency bands at trials s = 20,40, and 60.
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Figure A.14: The estimated PC2 of trial-specific covariances for both the delta and theta
frequency bands at trials s = 20,40, and 60.
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Figure A.15: The estimated PC3 of trial-specific covariances for both the delta and theta
frequency bands at trials s = 20,40, and 60.
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Figure A.16: The estimated PC4 of trial-specific covariances for both the delta and theta
frequency bands at trials s = 20,40, and 60.
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Figure A.17: The estimated PC5 of trial-specific covariances for both the delta and theta
frequency bands at trials s = 20,40, and 60.
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Figure A.18: The estimated PC6 of trial-specific covariances for both the delta and theta
frequency bands at trials s = 20,40, and 60.
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Figure A.19: Histograms of the estimated MDPCA scores corresponding to the leading six
eigencomponents for analysis in the delta and theta frequency bands in the top two rows
and bottom two rows, respectively.
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APPENDIX B

Chapter 2 Appendices

B.1 Posterior Distributions for BFPCA

Using Gaussian priors for the mean coefficients 3 and factor loadings Ay, noninformative

prior for the error variance 2 (proportional to a constant ¢), gamma prior for the variance

of the mean coefficients ag and a modified multiplicative gamma process shrinkage (MMGPS)
2

prior for the variance components of the factor loading matrix o3 , the model can be given

in matrix form as:

Y,=f,+e=DB(B+An) +e,
'I']i ~ NL(OL,IL), €; ~ NT(OT,O'?IT), 2 = 1, oy,

1 1
B ~ Ng (OR, —QQ_1> , O'Z ~ Gamma <a_57 a—ﬁ) , —=occ
o3 2° 2

AgNNR(OR,E)\Z), 2)\2 :diag(a?\w,...,a?\m), O-Are =@ Ty

¢
v ~ Gamma (K, K) , T = H on, 01 ~ Gamma(as, 1),
22 pliet

On ~ Gammal(ag, 1)I(6, > 1), h=>=2.

Let A = Vec(A) be the RL x 1 vector stacking the L columns of A and H, = 1/02. The

full conditional distributions are as follows:

1. Blothers ~ Ng(pf™, v5™") where v§" = (1/n){BTS,'B + (a3/n)Q} 7!, pf™" = o™ x
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nBTS'Y, where $' = BAANTBT + 02lp and Y = L3 Y,

2. Alothers ~ Npp, (2, v2°") where 08 = o2{(3" 9] )@ BTB + 0251} 1, ! =
R x (1/02) 30 (n] ® B)TY?, where ® is the Kronecker product, ¥, is a diago-

nal matrix, denoted as X5 = diag(pim ..., goR}Tfl, T ,go;irgl), and

Y=Y, - Bg.

3. H.|others ~ Gamma(apgSt,bpgSt), where apOSt = (nT)/2, 5" = RSS/2, and RSS =
2ie{Yi = B(B+ Any)}{Y, — B(B + An,)}-

4. mylothers ~ Np(ubos, vPo*"), where vP°" = o2(ATBTBA + o21,)7", pbot = vbos x
(1/c> )ATBT(Y; — BB), fori=1,...,n

5. o3lothers ~ Gamma(apZSt,bPOSt) where ap'::t = (R + ag)/2, bi’%“ — (a5 + B7QB)/2

6. @pelothers ~ Gamma(al?®, b2°%), where ab?" = (v +1)/2, B = (v + 7 \%) /2.

7. miothers = []._, du|others

(a) & |others ~ Gamma(a}?™, b5"), where a}* = a; + (1/2)RL, bj*" = 1+ (p +
25:2 ngl)’Y@)/Q, where Cz = Hh:2 0p and 7y, = Zle PreXy.

(b) dx|others ~ Gamma(a(;m b’mt) (0, = 1), h = 2, where a§:St = ay+R(L—h+1)/2,
bg:St =1+ (m+ Zé:(h-H) Ce ")/2, and Cegh) = [Tz On

A Gibbs sampler is used to sample from the posterior distributions given above. For the
variance component Jg, the hyperparameter for the prior is set to ag = 2. For the factor
loading matrix, the hyperparameter of the prior for ¢,, is set to v = 10, and the hyperpa-
rameters of the priors for 7, are set to a; = 1 and ay = 2. A small constant ¢ = 0.00001 is

added to the diagonal elements of the penalty matrix ) to guarantee positive-definiteness,
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where ) is an R x R matrix with elements

(1 -1 0 0]
1 2 -1 0 0
o |0 12 Oy
0 0 -1 2 -1
0 0 -1 1

and Iy denotes the R x R identity matrix.

B.2 Alignment of Eigenfunction Estimates

Let w,gm) (t) denote the mth posterior sample, m = 1,..., M, of the kth eigenfunction,
Ur(t), k = 1,..., K. To align the sign of the eigenfunction estimates across the MCMC
samples, we utilize the below alignment algorithm. In the proposed alignment algorithm,
(W (@), ..., M (1)} denotes the aligned posterior sample with /™" (£) = a™y™ () and
a'™ e {~1,1}, and E,(ﬂm) (t) = (1/m) 20, w,(fj)*(t) denotes the ergodic mean of the aligned

sample.
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Algorithm 5 Alignment of the posterior eigenfunctions

Step 1: Set a® = 1 and " = (V.
Step 2: Form =2,..., M;

a. Calculate the aligned ergodic mean @,(Cm

- (t) and compute

- [0 - vt o] e

and

ﬂw t)+yy" ()‘

b. Set
0t =1 (d < d®™) 1 (d > d™),

and ™" (t) = a™1p\™ (1), where I(-) denotes the indicator function.

B.3 Simulation Cases

Five simulation scenarios are considered to display the use of CPEs in describing the variation

in the posterior samples in the presence of functional outliers (results given in main chapter

Section [2.4)).

Case 1 (no outliers): For case 1 with no outliers, a sample of functional data are generated
according to the FPCA model with K = 2 eigencomponents. More specifically, functional
data is generated according to Y;(t;) = u(t;) + e, Eatu(t;) + €(t;), for i = 1,....n = 50
subjects at an equidistant grid of j = 1,...,7 = 40 time points in the unit interval 0

to 1. The mean function and the two mutually orthonormal eigenfunctions equal u(t) =

104/1 —2(t — 0.5)2, ¥y (t) = v/2sin(2mt) and 15 (t) = /2 cos(2nt), respectively. The subject-

specific FPCA scores, (§;1,&2)", are generated from independent normal distributions with
mean zero and variances p; = 15 and py = 5, respectively. Lastly, the measurement error,

€i(t;), is generated independently from N (0, c?) with o2 = 15.

Case 2 (magnitude outlier): Case 3 generates magnitude outliers by adding a constant

deviation to the mean function (with a random sign): Z;(t) = Y;(t) + w;W (t) for t > T; and
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Zi(t) = Yi(t) for t < T;, where T; ~ Unif[0, 1], W(¢) = 20,¢ € [0,1], and w; is generated as a

discrete variable with values —1 or 1 with probability 1/2.

Case 3 (amount of variation outlier): Case 3 generates amount of variation outliers by
using larger eigenvalues: Z;(t) = pu(t) + .a_, Cuthn(t) + €i(t), where ¢y and (G are generated
independently from N(0,30) and N(0,20), respectively.

Case 4 (time-shifted eigenfunction outlier): Case 4 generates time-shifted eigenfunction
outliers: Z;(t) = pu(t) + Yo, Exkinlt) + €;(t), where k1 (t) = v/2sin{27(t —0.25)} and ky(t) =
V2 cos{2n(t — 0.25)}.

Case 5 (higher-frequency eigenfunction outlier): For case 5, higher-frequency eigen-
function outliers are generated according to Zi(t) = u(t) + So_, Ewkn(t) + (t), where
k1(t) = /2sin{4nt} and ko(t) = \/2 cos{4rt}.

In cases 2 through 5, the percent of outliers generated equal ¢ = 10 or 20% of the

functional sample.

B.4 EEG Data

Our motivating study collected electroencephalogram (EEG) data sampled at 500Hz for
2 minutes using a 128-channel HydroCel Geodesic Sensor Net on 58 children with autism
spectrum disorder (ASD) and 39 of their typically developed (TD) peers. Four electrodes
near the eyes were removed prior to recording to improve the comfort of the participants.
The data was then interpolated to the international 10-20 system 25 channel montage via
spherical interpolation, and independent component analysis (ICA) was used for identifi-
cation of artifacts. Specifically, the EEG signals were reconstructed without components
attributed to nonneural sources of the signals, such as the electromyogram (EMG) or other
non-stereotyped artifacts, and then re-referenced to an average of all channels. The first 38
seconds of the artifact-free EEG data was used for each subject for spectral power analysis

as the 38 seconds of the recordings represented the minimum amount of artifact-free data
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available across all participants and was deemed an appropriate minimum threshold to gain
reliable estimates of the signals following previous literature. Spectral density estimates of
the 38 second EEG recordings were obtained using Welch’s method by dividing the data into
2-second Hanning windows with 50% overlap and transforming into the frequency domain via
a fast Fourier transformation (FFT). For each electrode, the spectral densities were averaged
at each overlapping segment, resulting in electrode-specific estimates of the spectral density,
which were then averaged across the 25 electrodes to obtain scalp-wide spectral densities for

each participant.
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Figure B.1: The bands given, B{gW(t),g®@ ()} and B{g®(t),g"(t)}, are repre-
sented as the blue shaded region. The proportion of the curve ¢(™(t) that lies
within the respective bands is given in red, where A3 {g™(t); gV (t),¢@(¢)} = 1 and
A {9 (1): g (1), g9(1)} = 0.253.
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Figure B.2: Point estimates of p(t) for each simulation case with ¢ = 10 and ¢ = 20% outliers
from runs with 50th percentile IMSE values. Mean estimate and MBD median are given in
blue and solid yellow, respectively, overlaying the true function given in black.
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(a) Case 1, MBD-CPEs
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Figure B.3: MBD-CPE contours of p(t), denoted by D;_,{u(t)}, for each simulation case,
overlaying the posterior estimates and the true function given in gray and black, respectively.
The left and right hand columns (excluding the first row) display the MBD-CPEs for ¢ = 10%
and ¢ = 20% outliers, respectively, at a grid of a levels marked by varying contour colors.
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Figure B.4: 95% parametric and quantile credible intervals along with 95% CPEs for p(t)
from a single Monte Carlo run for all simulation cases with ¢ = 20% outliers. The light grey
solid lines represent the sample of M = 4000 posterior estimates. The blue, red, and yel-
low shaded regions represent Py {u(t)}, Q%:{u(t)}, and D g5{u(t)}, respectively. The black
dashed lines in the left and middle columns represent P {u(t)} and Q%s{u(t)}, respectively,
while the true function is given in solid black.
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Figure B.5: 95% parametric and quantile credible intervals along with 95% CPEs for ¢ (¢)
from a single Monte Carlo run for all simulation cases with ¢ = 20% outliers. The light
grey solid lines represent the sample of M = 4000 posterior estimates. The blue, red, and
vellow shaded regions represent Ph-{11(t)}, Q%s{11(t)}, and D g5{1)1(¢)}, respectively. The
black dashed lines in the left, middle and right columns represent P-{1:(t)}, Q%s{t1(t)},
and D {11(t)}, respectively, while the true function is given in solid black.
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Figure B.6: 95% parametric and quantile credible intervals along with 95% CPEs for (%)
from a single Monte Carlo run for all simulation cases with ¢ = 20% outliers. The light
grey solid lines represent the sample of M = 4000 posterior estimates. The blue, red, and
vellow shaded regions represent P {1s(t)}, Q%s{102(t)}, and D g5{1)2(t)}, respectively. The
black dashed lines in the left, middle and right columns represent P {12(t)}, Q%s{t2(t)},
and D7 {1s(t)}, respectively, while the true function is given in solid black.
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Figure B.7: CPE contours of the third and fourth leading eigenfunctions for both ASD and
TD groups in our data application, overlaying the posterior estimates given in gray. The
left and right hand columns display the MBD and MVD-CPEs, denoted by Di_,{¢1(t)}
and D1 __ {11 (t)}, respectively, at a grid of « levels marked by varying contour colors. The
estimated MBD and MVD median are given in solid black in the right and left columns,
respectively.
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Figure B.8: 95% parametric and quantile credible intervals along with 95% CPEs for the
leading two eigenfunctions in our data application. The light grey solid lines represent the
sample of M = 4000 posterior estimates. The blue, red, and yellow shaded regions represent
Pos{vk(t)}, Q%s{r(t)}, and D gs{wy(t)}, respectively. The black dashed lines in the left,
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while the estimated eigenfunctions (eigenfunction estimate and MBD median) are given in
solid black.



(1)

(1)

TAQ)

(1)

0.5+

0.0

-0.5 L

-1.04

0.54

0.0

-0.54

0.4

0.0

-0.4

0.5

0.0

—-0.5 1

(a) TD Parametric (k = 3)

A

N / .
N/ \Y/
ﬁ\_

SN
e g N/ 7= -
AN
O S
Credible Interval

Pointwise
- - Simultaneous

6 8

10 12 14
Frequency (Hz)

(d) ASD Parametric (k = 3)

RNERN

-

6 8

0 12
Frequency (Hz)
(g) TD Parametric (k = 4)

N \

’
N / \

14

S~

\ \/

'Q,\’

6 8

\/ \/r'-"

~
\l

10 12 14

Frequency (Hz)
(j) ASD Parametric (k = 4)

6 8

10 12 14

Frequency (Hz)

represent the sample of M =

(1)

wa(1)

wa(t)

wa(t)

0.51

0-0 ~/ \_/ Lol
- s\
05 A ~ N /
Credible Interval
-1.04 Pointwise
- - Simultaneous
6 8 10 12

0.5

0.0

-0.51

0.4 4

0.0

0.4+

0.5

0.0

-0.54

4000 posterior estimates.

(b) TD Quantile (k = 3)

N ,._—-,\

> I

= -

Frequency (Hz)
(e) ASD Quantile (k = 3)

14

\,\~/\\_.

~
N\ —~

S

\ VA
4 \"-
4

6 8

10 12
Frequency (Hz)

(h) TD Quantile (k = 4)

14

N
S N\

/7
~
N7 M\

-~

\/ =

S~

6 8

ﬁ
i e 4

1I0 1I2
Frequency (Hz)
(k) ASD Quantile (k = 4)

14

IR T

—

N 2

6 8

~ .-
Y W
4

1I0 1I2
Frequency (Hz)

135

14

ws(t)

w(t)

llf4(t)

wu(t)

0.5+

0.0

-0.5

0.5+

0.0

-0.54

0.4

0.0

044 7 S~
0.4,

0.5

0.0

—0.5-,

(c) TD Depth (k = 3)

\ -—“\

/\/'\—

v

,V_\’/_, <

Central Posterior
Envelope
MBD

6 8 10 12
Frequency (Hz)
(f) ASD Depth (k = 3)

14

8 10 12
Frequency (Hz)
(i) TD Depth (k = 4)

14

[}

N .

-~ /
- ~

N

ALS

N\ ~—
\/ﬂ\/,,——

6 8 10 12 14
Frequency (Hz)

(I) ASD Parametric (k = 4)

\,/\\/ L —

,

\

-

6 é 1IO 1I2 14

Frequency (Hz)

Figure B.9: 95% parametric and quantile credible intervals along with 95% CPEs for the
leading third and fourth eigenfunctions in our data application. The light grey solid lines
The blue, red, and yellow shaded
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are given in solid black.



APPENDIX C

Chapter 3 Appendices

C.1 Prior and Posterior Distributions and Gibbs Sampling for B-
LFPCA

To recall, posterior estimation for the BLEFPCA model is achieved by first specifying a mixed

effects model as:

Yi=f,+te=(Bi1®B){(A®@TD)n; + {;} + €,

n;, ~ Nqu]z(ﬂ? 277)7 Cz ~ NP1P2 (OP1P27 24)7

2 .
€ ~ Npon, 0oy 0210 0,), i=1,...,n.

Conditionally conjugate priors provide efficient posterior estimation of the mean coefficients
and variance components through the use of Markov chain Monte Carlo (MCMC). More
specifically, Gaussian priors for the longitudinal factor loadings -y, (¢th row of I') and func-
tional factor loadings A, (mth row of A) are employed. This is followed by an adaptive
regularization approach for the variance components of the longitudinal factor loadings O',ZY .
and functional factor loadings af\mk, where the number of latent factors ¢; and ¢o are chosen
to be sufficiently large and a modified multiplicative gamma process shrinkage (MMGPS)
prior [Bhattacharya and Dunson| (2011)); Shamshoian et al.| (2022)) is employed. The prior for
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the longitudinal factor loadings ~,, £ = 1,...,py, is

2 2 -1
Yo~ NCI1 (Oth? E’Yz) ’ ZW - dlag ( le ce 70-7&11) ’ O-w] 9016171-13 )

v
105 ~ Gamma < 21 5 ) H 010,

511 ~ Gamma (0,11, 1), 61h ~ Gamma (0,12, 1) I (61h > 1) s h = 2,

a;; ~ Gamma (r1,1), ajp ~ Gamma (rg, 1),

0.2

where X, is a ¢; x ¢; diagonal matrix comprised of the variance components, %1’ s O
1

for the the ¢th longitudinal factor loading -,, and I(-) denotes the indicator function. Adap-
tive shrinkage is induced through the gamma hyper-priors placed on a;; and a2, and for more
details on the prior formulation and mechanics defer the reader to Section 3 of Shamshoian

et al. Shamshoian et al.| (2022)). Similarly, the prior for the functional factor loadings A,

m=1,...,pg, 18

q: 2 2 2 —1
Am ~ NQQ (0(127 EA'm) ) EAm - dlag (O-/\mp s 70Amq1> v Ok 902mk:7r2k )

k

v v

©omk ~ Gamma ( 22, f) , Tk = H52h7
h=1

do1 ~ Gamma (agq, 1), oy ~ Gamma (age, 1) I (dop > 1), h = 2,

ag ~ Gamma (r1,1), ag ~ Gamma (r9,1),

2

where Y, is a g2 X g2 diagonal matrix comprised of the variance components, aiml, s O3
2

for the mth functional factor loading A,,. The priors for the B-LFPCA model are completed
by employing a Gaussian prior for the mean coefficients 8 and gamma priors for the variance

of the mean coefficients aéjk, variance of the latent factors a%j .» variance of the reconstruction
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errors ag and variance of the measurement error o2. Specifically, we assume

) 1 11
B ~ Ngg, (04,0, 23), 2 = diag (Uéu, . ,UEMQ> , g ~ Gamma (2 2)
jk

where X5 is a g1g2 X q1g2 diagonal matrix comprised of the variance components, agu, .

U%qlqz,andf0r€=1,...,p1,m=1,...,p2,j=1,...,q1,k=1,...,q2,

1

—— ~ Gamma (a,,b,), —— ~ Gamma (ac,b;), = Gamma (ac, b,) .

Njk Cem €
We target the posterior distributions in model using a Gibbs sampler with the excep-
tion of the shrinkage parameters a1, a2, as1, and age, which are updated via a Metropolis-
Hastings step. In what follows, let ©; = (61,...,05,)" = (0}},...,6;,,) denote the p; x p
matrix of subject-specific basis coefficients with ¢th row 8, = (61, . . . ,Higm)T and mth col-
umn 0%, = (G, 0ipym) ', and let ©; = Vec(©;) be the pips x 1 vector obtained from
stacking the columns of ©;. Further, let Gamma®* denote the rate parameterization of the
Gamma probability density function (i.e., if @ ~ Gamma(b, c), then Ela] = bc), and @(.)
denote the standard normal cumulative density function. The steps of the MCMC chain are
as follows:
1. ~elothers ~ Ny, (20", vE0%") where 07t = (337 | nATS T AnT +571) 71, pbost = wpost x
Dy niATEC_Z 0,,, where EE«. is a py X po diagonal matrix denoted as 2&1 = diag(a&l, o
0&22), ford=1,...,m

2. puylothers ~ Gamma(al?y, b5 ), where aly = (11 +1)/2, 2% = (v1 + m77;)/2, for

621,...,]91,]': 1,...,(]1.
3. m;|others = H{L:l dyplothers, for j =1,...,¢.

(a) O11]others ~ Gamma(agoft, bgfit) where agfft = an+(p1q1)/2, bgfft = (qu ) 7T1J

Z?il 801@%?]')/27 where 7T1j) = i:z O1h-
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(b) d1p|others ~ Gamma(agf:t,bpo‘”), where af;mt = a2 + pi(qn — h +1)/2, bf;lo:t -

d1n

h
L+ (Z;Z'l:(h.l,_l) 7753-) =1 <P1éﬂg]>/2 where 7T1J [ Tren Oun-
4. Sample aq1:

(a) Sample u ~ Uniform(0, 1).
(b) Sample z ~ N(0,1)I(x 4+ a;; > 0), where I(.) is the indicator function, and set

the proposal value of ay; to aj; =  + aq;.

(¢) Compute
Gamma*(d11, aj;, 1)Gamma* (af;, 71, 1)P(a11)

A=

Gamma®* (011, ary, 1)Gamma* (aq1, 71, 1)®(af;)

(d) If A > u, then set the new value of a1; to af,. Otherwise, keep the previous value

of ai.-
5. Sample aqs:

(a) Sample u ~ Uniform(0, 1).
(b) Sample x ~ N(0,1)I(x+aj2 > 0), and set the proposal value of a12 to afy = x+ais.

(¢) Compute

Gamma®(af,, 2, 1) [ [f-, Gamma* (815, afy, 1)P(a12)

A=

Gamma® (a9, 72, 1) [ [f-, Gamma* (15, a1z, 1)®(af,)

(d) If A > u, then set the new value of a5 to af,. Otherwise, keep the previous value

of ai12.

6. Amlothers ~ Ny, (p5", v8%"), where o§°" = (37 ;IS 'yl + 531 ) 7!, where S =
diag(ac_li, cees Cmm) ,uﬁ"St = pOSt X3 mI‘TE 19;"m, where Eg_ml is a p; x p; diagonal

matrix denoted as Ecm = d1ag(aglm, - ,a;jm), form=1,...,ps.

7. Pamk|others ~ Gamma(aP?st | bPo5t ) where aP?! = (15+1)/2, b5 = (g +mopA2,)/2,

P2mk’ T P2mk P2mk ? T Pomk

form=1,...,p, k=1,...,¢.
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8. morjothers = []5_, danlothers, for k =1,..., g

(a) 61 |others ~ Gamma(al™, b52"), where b2 = asi+(pago)/2, U5 = 1+(31, Wé}c)
izt P2mkAmy,)/2, Where 75? = HZ=2 O2n
(b) dap|others ~ Gamma(ag, post prSt), where a’g“t = a9 + p2(qp — h + 1)/2, bf;;’it —

1+ (Ziium 7T2k) D 902mk)‘mk)/2 where 77% = [ Len G-

9. Sample ao:
(a) Sample u ~ Uniform(0, 1).
(b) Sample z ~ N(0,1)I(x+ag; > 0), and set the proposal value of as; to al;, = x+as;.

(c) Compute
Gamma®™ (091, a3y, 1)Gamma* (a3, 1, 1)®(ag;)

A=

Gamma® (da1, asr, 1)Gamma* (agy, r1, 1)P(ad;)

(d) If A > u, then set the new value of ay; to a3;. Otherwise, keep the previous value

of asy.
10. Sample ags:

(a) Sample u ~ Uniform(0, 1).
(b) Sample x ~ N(0,1)I(x+ag > 0), and set the proposal value of asy to ajy, = T+ass.

(c) Compute

Gamma®(aly, 2, 1) [ [, Gamma® (dop, a3y, 1) P (ag2)

A= .
Gamma® (ag, 72, 1) [ [, Gamma™ (o, ase, 1)P(a,)
(d) If A > u, then set the new value of as to aj,. Otherwise, keep the previous value

of a99.

11. o7, |others ~ Gamma(a” post prSt) where apZSt = ac+n/2, b’;%“ =be+(1/2) X3 (Giom—
m

CEm Cﬁm

m

Yo nidm)?, for £ =1,...,p;,m=1,... ps.
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12. o%|others ~ Gamma(a”ZSt, JZSt) where a?5” = ac + nyy/2, 75" = b+ (1/2) 3 {Y —
(B ® B2)O;}{Y; — (B ® By)O,}, where Nt 18 the total number of non-missing
observed time points across the longitudinal and functional dimensions (n;,; = ns x

ny X n when there is no sparsity in Y;(s,1)).

13. m;lothers ~ Ny, q, (b2, v8%"), where 07" = {(AT@ T TS (A@T)} !, pubost = vbost x
(AT ® FT)Egl@i, fori=1,...,n

14. ©;lothers ~ Nplm(ugm gOSt), where vaSt = {0.%(B{ B1 ® B) By) + £} 71, NgOSt —
pOSt x {02(B1® B2)Y; + X YA®D)n,), fori=1,...,n

15. o5 |others ~ Gamma(a POt BP9, where ap‘;St = a, + n/2, bi%sz = b, + (1/2) +
J

n]k ngk Njk
Z?:l(nijk - ﬁjk)za for j = 17 < g, k= 17 ceey g2
16. Blothers ~ N (pf™", v5™"), where vf™" = {n¥ 11,0, +55"} 71, pl™ = o™ xS 30

where I,,,, is the ¢1¢2 X q1¢o identity matrix.

17. a%jk|0thers ~ Gamma(al3™" 075" ), where af3™ = 1, 79 = (1 + B3.)/2, for j =
Bjk

5]k 531@ ﬁ]k

1,...,q1,k’=1,...,QQ.

Gibbs sampler updates, as well as Metropolis-Hastings steps, are employed to obtain
posterior samples of the above parameters. For the variance components of the element-
wise precisions of the longitudinal and functional factor loading matrices w14 and @omk,
respectively, the hyperparameters for the priors are set to v; = 5 and 5 = 5. For the
adaptive shrinkage parameters ai1, a2, as; and agy, the hyperparameters of the priors are
set to r1 = 1 and r, = 2. For the variance component of the latent factors, a%jk, the
hyperparameters of the prior are set to a, = 1 and b, = 1. For the variance component
of the reconstruction errors, agem, the hyperparameters of the prior are set to a; = 0.5 and
be = 0.25. For the variance component of the measurement error, the hyperparameters of

the prior are set to a, = 0.0001 and b, = 0.0001. Modifications of these hyperparameters for
the data application (Section are detailed in Appendix .
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C.2 Post-processing of MCMC Samples

In this appendix, we give details on the post-processing of the posterior estimates of the
longitudinal and functional eigenfunctions detailed in Section [3.2.2] First, we provide the
proof for the direct computation of the functional and longitudinal marginal covariances,
Ks(s,s') and K7 (t,t'), respectively. Recall the covariance kernel K{(s,t),(s',t')} can be

expressed as

q1 g2 P1 p2
KA{(s,), (s, #)} = D 02 ()b’ () + 3 2] 02,7 ()0 (D (B2 (1),
j=1k=1 {=1m=1

Direction computation of the posterior longitudinal marginal covariance function Kg(s, s’)

yields

Ks(s,s') = fT K{(s,t), (s t)}dt

L {2 i 783 (9)05(5) )+ Zl: i e (s (¢ )bﬁ)(t)} o

j=1k=1 =1m=1

_Z% $)5 (s Z%kfm )i (1) dt+2b” J@) )t

—Zw] $)Uy (s’ Zonwzb gagmgm,

m=1

where wy, = {- o () dp(t)dt and Q,, = §r b2 ()65 (t)dt. A similar expression for the func-

tional marginal covariance function K7 (¢,t") is derived as
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Kr(t,t') = L K{(s,t), (s,t')}ds
J‘S {Zl 22 O’n]ki/)] 1/)]( ¢k Qbk + 21 22 b(l) S)bg) (t)bg) (t/)} ds

j=1k=1 ¢=1m=1

= Z () on (! Z%k f bi(8)4y(s)ds + Z b2 (1) (¢ Z% J bV ()60 (s)ds
- Z Bu0B(0) Y0+ Z IR Y02, 0,
= j=1 =1

where w; = Ss ¢] ;(s)ds and Qp = Ss b(l) (s)ds. Computing the marginal covariance
functions using the above expressions has much better scalability than first calculating the
covariance kernel K{(s,t), (s',#)} and computing the required integrals §- K{(s, ), (s',t)}dt
and {4 K{(s,t), (s,t')}ds. The ’trapz’ function the R package ’pracma’ is used to numerically

approximate wy,, wj, {1, and .

Next, we detail the alignment algorithm for the posterior longitudinal and functional
eigenfunctions. Let ¢ (u) denote the mth posterior sample, m = 1,..., M, of either
the jth longitudinal or kth functional eigenfunction, v;(s), j = 1,...,J, or ¢x(t), k
1,..., K, respectively. To align the sign of the longitudinal and functional eigenfunction
estimates across the MCMC samples, we utilize the below alignment algorithm. In the
proposed alignment algorithm, {g™" (u),...,¢®™)"(u)} denotes the aligned posterior sample
with g(m)*(u) = a"™g(m)(u) and a™ € {—1,1}, and g™ (u) = (1/m) pIV g9 (u) denotes

the ergodic mean of the aligned sample.

143



Algorithm 6 Alignment of the posterior longitudinal and functional eigenfunctions
Step 1: Set a®™ =1 and g™ (u) = g™ (u).
Step 2: Form =2,..., M,

a. Calculate the ahgned ergodic mean g™ (u) and compute

4= 4 [ @ =5 ) du}%,

and

d™ = { f (@™ (u) + g(m)(u))2du}1/z.

0t = 1 (d < d™) 1 (d > d™),

and g™ (u) = a™ g™ (u), where I(-) denotes the indicator function.

C.3 Simulation Details and Outlier Results

Eight simulation scenarios are considered to display the use of CPEs in describing the vari-
ation in the posterior samples in the presence of functional outliers and violation of the
assumption of weak separability (results given in Section [3.4). In cases 3 through 8, the

percent of outliers generated equal ¢ = 10 or 20% of the functional sample.

Case 1 (no outliers): For case 1 with no outliers, a sample of functional data are gen-
erated according to the product FPCA model with J = 2 and K = 2 longitudinal and
functional eigencomponents, respectively. More specifically, functional data is generated ac-
cording t0 Y;(sy, ty) = p(Sy,t )+2j S Xkt (5u) B (t) €S0, ty), fori = 1,...,n = 30
subjects at an equidistant grid of u = 1,...,n, = 20, and v = 1,...,n; = 20, longitudinal

and functional time points, respectively, in the unit interval 0 to 1. The mean function is

equal to u(s,t) = 204/1— (s —0.5)2 — (t — 0.5)2. The two mutually orthonormal longitu-
dinal eigenfunctions are equal to v;(s) = —+/2cos(2ms) and 1)5(s) = v/2sin(27t), and the
two mutually orthonormal functional eigenfunctions are equal to ¢;(t) = —+/2 cos(37s) and

$2(t) = —+/2sin(37t). The subject-specific product scores, (Xi11, Xi12, Xi21, Xi22) |, are gener-
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ated from multivariate normal distributions with mean zero and covariance V; = diag(vy; =
2.557,v19 = 0.770,v9; = 0.516,v99 = 0.156). Lastly, the measurement error, €;(s,,t,), is

generated independently from N (0, 0?) with o2 = 5.

Case 2 (violation of weak separability): For case 2, functional observations are generated
that violate the assumption of weak separability as Z;(s,t) = u(s,t) + 2521 Zizl{)(;"jkz/)j(s)
(1)} + €(s,t), where subject-specific product scores, (Y&, X5, Xia1s Xiaz) |, are generated

from multivariate normal distributions with mean zero and covariance matrix

[ 2604 0.829 0.616 —0.033_
0.829 0912 -0.264 0.175
0.616 —0.264 0.666  0.072

| —0.033 0175 0.072  0.283 |

The covariance matrix V5 violates the assumption of weak separability as the product scores

generated are correlated across the longitudinal and functional dimensions.

Case 3 (magnitude outlier): Case 3 generates magnitude outliers by adding a constant
deviation to the mean function (with a random sign): Z;(s,t) = Yi(s,t) + w;W(s)W (t) for
s > S; and t > T; and Z;(s,t) = Yi(s,t) otherwise, where S; ~ Unif[0, 1], 7; ~ Unif[0, 1],
W(s) = /20,5 € [0,1], W(t) = +/20,t € [0,1], and w; is generated as a discrete variable
with values —1 or 1 with probability 1/2.

Case 4 (amount of variation outlier): Case 4 generates amount of variation outliers by
using larger variance of the product scores: Z;(s,t) = pu(s,t) + Z§=1 S &ith(s)w(t) +
€i(s, 1), where (§11, &2, Ein1, Eino) T are generated from a multivariate normal distribution with

mean 0 and covariance V3 = diag(vy; = 8.959, v19 = 5.434, v9; = 4.917, v95 = 2.982).

Case 5 (time-shifted longitudinal eigenfunction outlier): Case 5 generates time-shifted
longitudinal eigenfunction outliers: Z;(s,t) = u(s,t) + 2321 S Xijkhi(8) 6k (t) + €(s, 1),
where £ (s) = —v/2cos{27(s — 1/8)} and ky(s) = v/2sin{27(s — 1/8)}.
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Case 6 (higher-frequency longitudinal eigenfunction outlier): For case 6, higher-frequency
longitudinal eigenfunction outliers are generated according to Z;(s, t) = u(s, t)—i—Z?:l 32 A
k(8)k(t} + (s, 1), where k1 (s) = —+/2cos(4ms) and ky(s) = /2 sin(4rs).

Case 7 (time-shifted functional eigenfunction outlier): Case 7 generates time-shifted
functional eigenfunction outliers: Z;(s,t) = u(s, t)+2j2-:1 S Xkt (s)kk(t)+ei(s, t), where
ki(t) = —v2cos{3n(t —1/9)} and ky(t) = —/2sin{3x(t — 1/9)}.

Case 8 (higher-frequency functional eigenfunction outlier): For case 8, higher-frequency
functional eigenfunction outliers are generated according to Z;(s,t) = u(s, t)—I—Z?;l 32 A
Vi (8)kR(t)} + €i(s,t), where k1(t) = —v/2 cos(5nt) and ky(t) = —+/2sin(5mt).

The magnitude outliers in the third simulation scenario add a constant deviation from the
mean function over a random portion of the longitudinal and functional time domains (s €
[S;,1] and ¢t € [T}, 1]) with a random sign. Due to the random sign of the constant deviation,
rather than biasing the mean function, they increase the variation in the mean function
estimation (IMSE values for mean estimation are higher for Case 3 than other simulation
scenarios in Table and. This can also be seen in the MVD-CPEs of the mean function
in Figure compared to the MVD-CPES for Case 1 in Figure as there is greater
variation in the posterior samples when ¢ > 1/2 that increases in severity as we go across
the fixed slices of s, particularly so after s > 1/2. The addition of the constant deviation
also leads to identifiability issues in longitudinal and functional eigenfunction estimation,
where CPEs of both the first longitudinal and functional eigenfunctions portray the constant
variation, especially in the second half of the unit time domain. MBD-CPEs up to a = 0.65,
MVD-CPEs up to a = 0.45, and kernel MVD-CPEs up to a = 0.05 are constant in the second
half of the unit interval for the first longitudinal eigenfunction in Figure[C.5] Similarly, MBD-
CPEs up to a = 0.65 and MVD-CPEs and kernel MVD-CPEs up to a = 0.05 are constant
in the second half of the unit interval for the first functional eigenfunction in Figure [C.7]
CPEs of the second longitudinal and functional eigenfunctions capture variation along the

first longitudinal and functional eigenfunction as the second major direction of variation
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(following the constant variation in the second half of the unit time interval) (Figure
and[C.§)). This leads to higher IMSE values in both longitudinal and functional eigenfunction
estimation for Case 3 compared to other simulation cases. Note that the traditional point
estimates 1@-(3) and $k(t) have the smallest IMSE values for Case 3, possibly due to the
cancellation of the effects of the constant deviation with a random sign while averaging over

the posterior samples.

Case 4 generates outliers with larger longitudinal and functional eigenvalues, which in-
crease the variation along the longitudinal and functional eigenfunctions. Due to the shapes
of the four eigenfunctions considered, this adds variation across the entire unit interval in
both longitudinal and functional dimensions, as is detected through the CPEs in Figures
and [C.6{(d)-(f) and wider CPEs in and [C.§|(d)-(f). While this additional variation does
not bias the point estimates of the longitudinal and functional eigenfunctions as can be seen
in point estimates given in Figures and [C.2] respectively, the IMSE in estimation of the
eigenfunctions are higher than Case 1 with no outliers due to the added variation. Tables
and show that the added variation leads to bias in the eigenvalues, 7; and ¥, and,
as a consequence, bias in the marginal covariances, Ks(s,s’) and K7 (¢,t'), and covariance

kernel, K{(s,t),(s',t')}, with larger IMSE values compared to Case 1.

Cases b and 7 consider the direction of variation outliers in which the functional data are
generated under either longitudinal (Case 5) or functional (Case 7) eigenfunctions shifted in
time. Case 5 leads to added variation in the estimation of the longitudinal eigenfunctions,
¥;(s), throughout the longitudinal unit time interval (Figures and [C.6(g)-(i)) and im-
pacts estimation of the longitudinal marginal covariance, Ks(s,s’). Case 7 leads to added
variation in the estimation of the functional eigenfunctions, ¢ (), throughout the functional
unit time interval (Figures and [C.§(m)-(0)) and impacts estimation of the functional
marginal covariance, K (t,t'). This is consistent with higher IMSE for the longitudinal
eigenfunctions and marginal covariance point estimates in Case 5 and functional eigenfunc-

tions and marginal covariance point estimates in Case 7 compared to Case 1 in Table
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and [C.1] Finally, direction of variation outliers in which the frequency of the longitudinal
and functional eigenfunctions is increased are considered for Cases 6 and 8, respectively. The
added variation due to the outliers with higher frequency particularly impacts the estimation
of the second eigenfunctions 19(s) (Case 6) and ¢o(t) (Case 8) seen in the noticeably larger
IMSE values as compared to Case 1. This is apparent in Figure for Case 6 with higher
frequency posterior estimates of 95(s) captured in the a = 0.75 MBD-CPES and o = 0.05
MVD-CPES and kernel MVD-CPEs. Similarly, this is apparent in Figure for Case 8
with higher frequency posterior estimates of ¢5(t) captured in also the a = 0.75 MBD-CPES
and o = 0.05 MVD-CPES and kernel MVD-CPEs.

C.4 Data Analysis

The visual implicit learning experiment recorded EEG for 120 trials per expected and unex-
pected condition for each subject in the ASD (n = 37) and TD (n = 34) groups. The EEGs
were measured over 128-electrode Geodesic Sensor Net at 250Hz resulting in 250 within-
trial time points per ERP over 1000ms and preprocessed using NetStation 4.4.5 software
(Electrical Geodesics, Inc.). Further details on artifact detection, bad channel replacement,
referencing, filtering, smoothing, and base-line corrections can be found in [Hasenstab et al.
(2015)). Prior to fitting the B-LFPCA model for the ASD and TD groups separately, 4
ASD subjects and 2 TD subjects were removed. Subjects with more than 25% of their
longitudinal observations missing were removed leading to leading to 3 ASD subjects and 1
TD subject. Then, subjects, where more than 50% of the longitudinal data were at least
2 standard deviations away from the group-level mean condition differences, were removed
leading to 1 ASD and 1 TD subject. After the removal of the 6 subjects, there were a total
of 27 missing longitudinal observations across 6 subjects in the ASD group and 24 missing
longitudinal observations across 9 subjects in the TD group. The missing observations were

imputed as an update in the MCMC chain and treated as observed data in the Gibbs sam-
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pler, further details of which can be found in |[Shamshoian et al. (2022). The MCMC chain
is employed for the ASD and TD groups with 50,000 posterior draws, 20,000 of which are
used for burn-in and thinning at every 5th iteration leading to M = 6000 posterior samples.
The hyperparameters are selected as vy = v, = 1,11 =19 =1, ay, = b, = 1, a¢c = bc = 0.5,

and a, = b, = 10, 000.

C.5 Tables and Figures
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Table C.1: The mean standardized integrated mean squared error (IMSE) for the point estimates
from the 200 Monte Carlo runs. The eight simulation cases correspond to: Case 1 — no outliers,
Case 2 — violation of weak separability, Case 3 — magnitude outlier, Case 4 — amount of variation
outlier, Case 5/6 — time-shifted/higher-frequency longitudinal eigenfunction outlier, Case 7/8 —
time-shifted /higher-frequency functional eigenfunction outlier, with ¢ = 10% outliers.

qg = 10%
Point Estimate Case 1 Case 27 Case3 Case4 Caseb Case6 Case7 CaseS8
IMSE IMSE
(t) 0.0003 0.0005 0.0012 0.0005 0.0004 0.0004 0.0003 0.0004
m{p(t)} 0.0003 0.0005 0.0012 0.0005 0.0004 0.0004 0.0004 0.0005
121(3) 0.0129 0.1555 1.3119 0.0451 0.0179 0.0141 0.0148 0.0185
1(s) 0.0128 0.1587 1.3602 0.0459 0.0178 0.0124 0.0147 0.0185
m{yi(s)} 0.0129 0.1593 1.3564 0.0467 0.0182 0.0128 0.0151 0.0190
m{y1(s)} 0.0137 0.1604 1.3534 0.0466 0.0188 0.0135 0.0155 0.0195
m{y(s)} 0.0138  0.1602 1.3652 0.0461 0.0199 0.0146 0.0161 0.0211
zzz(s) 0.0258 0.1669 2.0145 0.0489 0.0292 0.1732 0.0289 0.0326
o (s) 0.0163 0.1613 2.1153 0.0478 0.0211 0.1387 0.0182 0.0223
m{ya(s)} 0.0172 0.1640 2.1084 0.0480 0.0220 0.1460 0.0192 0.0240
m{ya(s)} 0.0205 0.1670 2.1328 0.0503 0.0253 0.1605 0.0225 0.0263
m{a(s)} 0.0211 0.1671 2.1180 0.0500 0.0266 0.1174 0.0237 0.0295
g/gl (t) 0.0078 0.1087 1.3375 0.0224 0.0072 0.0100 0.0105 0.0082
b1(t) 0.0077 0.1099 1.3727 0.0219 0.0072 0.0101 0.0105 0.0078
m{p1(t)} 0.0080 0.1112 1.3520 0.0222 0.0076 0.0104 0.0107 0.0083
m{p1(t)} 0.0083 0.1110 1.3572 0.0217 0.0079 0.0109 0.0113 0.0092
m{o1(t)} 0.0086 0.1107 1.3688 0.0245 0.0084 0.0118 0.0122 0.0098
(52(75) 0.0343 0.1328 1.8349 0.0305 0.0364 0.0357 0.0289 0.2372
ha(t) 0.0295 0.1292 1.9154 0.0279 0.0327 0.0314 0.0249 0.3223
m{pa(t)} 0.0197 0.1222 1.9095 0.0268 0.0202 0.0227 0.0198 0.2248
m{oa(t)} 0.0291 0.1305 1.9102 0.0295 0.0295 0.0304 0.0261 0.3195
m{p1(t)} 0.0286  0.1268 1.9389 0.0318 0.0309 0.0361 0.0251 0.3329
[N(S(s, s) 0.0627 0.2083 5.0570 0.2467 0.0712 0.0907 0.0622 0.0688
m{Ks(s,s')} 0.0656 0.2058 4.7407 0.2178 0.0744 0.0898 0.0646 0.0715
m{Ks(s,s')} 0.0690 0.2089 4.5832 0.2078 0.0780 0.0950 0.0685 0.0789
IN(T(t, t') 0.0571 0.1765 4.6149 0.1963 0.0592 0.0563 0.0679 0.0904
m{K+(t,t)} 0.0603 0.1775 4.3438 0.1705 0.0623 0.0582 0.0725 0.0964
m{Kr(t,t')} 0.0650 0.1803 4.1864 0.1643 0.0663 0.0654 0.0783 0.1011
K{(s,t),(s,t)} 0.1005 0.1922 5.2699 0.2936 0.1149 0.1282 0.1013 0.1386
m[K{(s,t), (s, t)}] 0.1076 0.2054 4.8858 0.2664 0.1230 0.1351 0.1114 0.1503

“IMSE for point estimates of K{(s,t),(s’,#')} are calculated in comparison to the covariance
kernel used for data generation in Case 2 (see Appendix [C.3)).
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Table C.2: The mean standardized mean squared error (MSE) for the scalar point esti-
mates from the 200 Monte Carlo runs. The eight simulation cases correspond to: Case 1 —
no outliers, Case 2 — violation of weak separability, Case 3 — magnitude outlier, Case 4 —
amount of variation outlier, Case 5 — time-shifted longitudinal eigenfunction outlier, Case 6
— higher-frequency longitudinal eigenfunction outlier, Case 7 — time-shifted functional eigen-
function outlier, Case 8 — higher-frequency functional eigenfunction outlier with ¢ = 10%
outliers.

q = 10%
Point Estimate Case 1 Case 2" Case 3 Case4d Caseb Case6 Case7 Case8
MSE MSE
T 0.0488 0.0591 3.2820 0.3081 0.0469 0.0452 0.0467 0.0439
T 0.0487 0.0592 3.2236  0.2977 0.0474 0.0472 0.0464 0.0444
To 0.0378 0.0535 4.9695 0.3635 0.0377 0.0360 0.0447 0.0455
To 0.0426 0.0632 5.1648 0.4121 0.0427 0.0574 0.0498 0.0530
51 0.0424 0.0494 2.6322 0.2355 0.0454 0.0449 0.0414 0.0433
Al 0.0424 0.0499 2.5882 0.2282 0.0454 0.0446 0.0421 0.0452
52 0.0333 0.0377 12.535 0.9638 0.0350 0.0435 0.1001 0.0352
Uy 0.0403 0.0417 13.114 1.0527 0.0420 0.0490 0.1053 0.0456
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Figure C.1: Point estimates of 11 (s) and 1,(s) in the first and section columns, respectively,
for simulation Cases 3 through 8 with ¢ = 20% outliers from runs with 50th percentile
IMSE values. Longitudinal eigenfunction estimates, longitudinal eigenfunctions estimates
via longitudinal marginal covariance estimation, MBD median, MVD median, and kernel
MVD median are given in solid blue, solid yellow, dashed blue, dashed yellow, and dashed
red overlaying the true function given in solid black.
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Figure C.2: Point estimates of ¢;(t) and ¢9(t) in the first and section columns, respectively,
for simulation Cases 3 through 8 with ¢ = 20% outliers from runs with 50th percentile
IMSE values. Functional eigenfunction estimates, functional eigenfunctions estimates via
functional marginal covariance estimation, MBD median, MVD median, and kernel MVD
median are given in solid blue, solid yellow, dashed blue, dashed yellow, and dashed red
overlaying the true function given in solid black.
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Figure C.5: CPE contours of ¢ (s) for simulation Case 3-8 with ¢ = 20% outliers. The light

grey solid lines, overlaying the true function in solid black, represent the sample of M = 6000
posterior estimates. The left- to right-hand columns display the MBD, MVD-CPES, and
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kernel MVD-CPEs, denoted by Dy_o{u1(s)}, D {i1(s)}, and DI__ {11(s)}, respectively,
at a grid of a levels marked by varying contour colors.
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Figure C.6: CPE contours of ¢5(s) for simulation Case 3-8 with ¢ = 20% outliers. The light

grey solid lines, overlaying the true function in solid black, represent the sample of M = 6000

posterior estimates. The left- to right-hand columns display the MBD, MVD-CPES, and
kernel MVD-CPEs, denoted by Dy_o{ws(s)}, D {ibs(s)}, and DI__ {1y(s)}, respectively,

at a grid of a levels marked by varying contour colors.
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Figure C.7: CPE contours of ¢ (t) for simulation Case 3-8 with ¢ = 20% outliers. The light
grey solid lines, overlaying the true function in solid black, represent the sample of M = 6000
posterior estimates. The left- to right-hand columns display the MBD, MVD-CPES, and
kernel MVD-CPEs, denoted by Dy_o{¢:(t)}, D {¢1(t)}, and DI __{¢1 (1)}, respectively, at

a grid of « levels marked by varying contour colors.
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Figure C.8: CPE contours of ¢,(t) for simulation Case 3-8 with ¢ = 20% outliers. The light
grey solid lines, overlaying the true function in solid black, represent the sample of M = 6000
posterior estimates. The left- to right-hand columns display the MBD, MVD-CPES, and
kernel MVD-CPEs, denoted by Dy_o{¢2(t)}, Dr_ {¢2(t)}, and DI __{¢s(t)}, respectively, at

a grid of « levels marked by varying contour colors.
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