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A Simple Model for the Evolution of a Lexicon

Edgar E. Vallejo*
Computer Science Department
Tecnolégico de Monterrey
Campus Estado de México
Atizapan, Estado de México 52926

Abstract

This paper explores the evolution of communication in
a community of agents. Experimental results show that
agents are capable of evolving a shared lexicon describing
robot behavior. Categorization of perceptions arises as an
emergent property of the imitative interaction of agents.

1 introduction

The origin and evolution of language is an excellent
domain for studying fundamental questions of artifi-
cial life research. Previous work by Arita[l], Steels[2],
Hasimoto and Ikegami[3], and Kirby[4], among others,
have shown that we are able to explore important is-
sues such as emergence, self-organization and cultural
evolution within this framework.

The emergence of symbolic communication is one
of the most significant transitions in the evolution of
language and at the core of what is desired for adaptive
robotics. This implies the ability to acquire concepts,
to ground symbols into concepts, and to propagate
those symbols in a community of other agents

Previous work on evolving symbolic communication
systems was largely based on the approach proposed
by Hurford[5]. The core of this model is a pair of lexi-
cal matrices in which a fixed collection of symbols and
meanings are probabilistically correlated. An under-
lying one-to-one correspondence between symbols and
meanings is assumed. The categorization and general-
ization capabilities of agents are limited to a few cases
of synonymy and homonymy. Most work based on lexi-
cal matrices have focused on the evolutionary behavior
of communicative strategies [6][7]. We believe that for
a symbolic communication system to properly work it
must adequately capture patterns of categorization.

McLennan [8] has demostrated that finite state ma-
chines (FSMs) can be used to evolve a highly coor-
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dinated symbolic communication system. This holds
much promise. For example, Lee et al[9] found that
FSMs can be used as appropriate models for symbol
grounding. Moreover, these models can readily dis-
criminate a potentially infinite collection of inputs.

This paper extendes the study of Lee et al [9] from
a single agent to the emergence of symbolic communi-
cation in a population of agents. In our model, agents
communicate by producing an utterance in response
to a sensory stimulation. The communicative behav-
ior of agents is produced by finite state transducers.
We assume that communication is an evolutionary be-
havior: agents who communicate well produce more
offspring. Agents achieve lexicon formation by imita-
tion: the communicative success of an agent depends
on his imitative ability.

Experimental results show that our model is capa-
ble of producing an emergent lexicon describing robot
behavior in a population of agents. Furthermore, we
show that meaningful categories of robot behaviors
emerge in our model without any explicit selective
pressure for categorization.

2 The model

The experiments were conducted by using the
methodology proposed by Steels[10], inspired by the
language game of Wittgenstein[11]. Under this frame-
work, an experiment in artificial language evolution
always has the following ingredients: (1) an interac-
tion protocol for the agents, (2) an agent architecture,
(3) an environment, and (4) a set of measures for suc-
cess in communication.

2.1 Interaction protocol
The model considers a population of communicat-

ing agents. During the simulation, an agent interacts
with a subpopulation of randomly selected agents by



using a simple pairwise imitation game: the agent
attempts to match the utterance produced by other
agents in response to a particular sensory stimulation.

2.2 Agent architecture

The communicative behavior of agents is produced
by finite state transducers (FSTs) [12]. An extension
of the Mealy machine model was formulated for this
purpose as follows. A one-symbol output Mealy ma-
chine is a 6-tuple (Q,%,T,4, ¢, q), where

1. @ is a finite set of states,

2. ¥ is the input alphabet,

3. T is the output alphabet,

4. §:Q x ¥ — (@ is the transition function,
5. ¢:@Q x X — I'is the output function,

6. qo € @ is the start state.

Let M = (Q,%,T,6,¢,q0) be a one-symbol output
Mealy machine and w = wyjws - - - w, be a string over
the input alphabet ¥. The machine M produces the
output symbol u from the output alphabet I' in re-
sponse to input w, M(w) = u, if a sequence of states

T0,T1,-- .,y €xists in @ with the following conditions:
1. ro =qo
2. §(ri,wip1) =rip1 fori=0,...,n—1, and

3. d(rn_1,wn) =u

The output symbol u in M(w) = wu is viewed as
the utterance that is produced by the agent described
by M to verbalize the situation encoded by the input
string w. The lexicon of a population of agents P for
a set of perceptions W, L(P, W), is defined as the col-
lection of all different output symbols u € I" produced
by all agents a € P, in response to all inputs w € W.

At each step of the simulation, two agents are
selected according to their communicative efficiency.
These agents produce a new offspring by means of ge-
netic operators. One-point recombination and point
mutation operate on a linear representation of agents.
M is represented as linearly by:

q0,0%0,090,1U0,1 "~ * q1,0U1,091,1U1,1 " " * 4|Q|,|=| U|Q|,|=|

where ¢; ; € Q indicates the table entry at row ¢ and

column j of the tabular version of 6, u; ; € I indicates
the table entry at row ¢ and column j of the tabular
version of ¢. |@Q| and |X| are the cardinalities of the
set of states and the input alphabet, respectively.

Sensor A Sensor F

——< Sensor B Sensor E —]

Sensor D

Figure 1: A robot wandering around a room

| Behavior | Sensor array data |

Wall following 1 CDFACDFACDFA

Wall following 2 CDFACDFACDFACDFA

Random walking 1 | AEFFFDDFCAADBAAAE
CCCCCCCCCCEACCAEC
ADDEC

Random walking 2 | CCAAAABBCFFEAADFE
ACFBBFEACEDDDDDFF
FFFFFFFFFFFBCFFEA
ADDEFDECCEECCCAEC

Table 1: Robot movement data set

2.3 Environment

The proposed model was used explore the evolu-
tion of a lexicon describing robot behavior. Figure 1
shows a robot wandering in a room containing a dis-
tributed array of sensors. A robot activates the sensor
in the area it occupies. Table 1 shows a data set that
describes the movement of a robot at discrete time
steps, kindly provided to us by Richard Brooks and
David Friedlander. (See [13] for further details).

2.4 Measure of communicative success

The communicative success of agents was defined
as the ability to imitate the communicative behavior
of other agents. Let a € P be an agent and S C P
a non empty collection of agents. The communicative
efficiency of a with respect to S and input string w,
E(a, S,w), is defined as

ZSES e(a’ 8, w)

E(a,S,w) = 5]

where e(a,s,w) = 1 if a and s produce the same



Parameter | Value |

Simulation steps 1000-2000
Number of agents in P 128-512
Number of agents in S 4-32
Number of states in Q 4-16
Number of symbols in X 6
Number of symbols in T" 4-16
Recombination probability p, 0.6-0.7
Mutation probability pm, 0.001-0.01

Table 2: Parameters for simulations

output symbol w in response to input w, and 0 oth-
erwise; |S| is the cardinality of S. The generaliza-
tion of this measure to a collection of perceptions W,
E(a, S,W), is straightforward.

Experiments were conducted to investigate whether
a population of imitative agents perceiving the above
environment is likely to arrive to a shared lexicon de-
scribing robot behavior. The conducted simulations
are described by the following algorithm:

1. Create an initial random population P of agents

2. Do until number simulation steps N is met

(a) For each agent a € P do

i. Select a subpopulation S C P of agents at ran-
dom

ii. Measure the imitative success E(a, S, W) for a
set of perceptions W

End for
(b) Select two individuals a1 € P and a2 € P for repro-
duction based on their communicative efficiency

(c) Produce an offspring anew from a; and a2 using one-
point recombination and point mutation, with prob-
abilities p, and p,,, respectively

(d) Select a random individual a,;q € P
(e) Replace ao1q by anew

End do

3 Results

Several simulations were conducted using different
combinations of parameter values as shown in table 3.
The following were the major results:

1. Agents arrived to a shared lexicon describing
robot behavior. However, simulations showed
that there exists a threshold condition on the
number of interactions required to achieve con-
vergence in communication. Figure 2 shows the
results of the simulations for different sizes of S
at the proximity of the threshold value.

Results

1 T

16 interactions
8 interactions -------
4 interactions --------

Efficiency in communication

0 L L L
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Figure 2: Simulation results

| Behavior | Output |
Wall following 1 D
Wall following 2 D
Random walking 1 B
Random walking 2 B

Table 3: Results

2. The same communicative behavior of the agents
was achieved by means of several different ma-
chines. In general, results showed that machine
convergence is not a necessary condition for con-
vergence in communication.

3. Agents produced a meaningful emergent catego-
rization of robot behaviors. Moreover, agents pro-
duce a meaningful generalization of perceptions
when providing them with additional inputs. Ta-
ble 2 shows the lexicon evolved in a typical simu-
lation.

4. The communicative behavior of agents is pro-
duced by compact machines. In general, agents
prefer machines with fewer states than the maxi-
mum number of states allowed in the simulations.

4 Discussion

The overall results indicate that given a sufficient
number of interactions, a community of imitating
agents is capable of evolving a shared lexicon describ-
ing robot behavior. Surprisingly, a meaningful cate-
gorization of perceptions emerges as a side effect of



the imitative interaction of agents. Moreover, the use
of FSTs allow agents to perceive a potentially infinite
number of inputs and to capture regularities in per-
ceptions.

4.1 Why imitation works

From the evolutionary perspective, how good is im-
itation for evolving a shared lexicon? Could an alter-
native communicative strategy invade a population of
imitating agents?

Maynard-Smith[14] has demostrated that game the-
ory can be used as a framework to explain the evolu-
tion of most phenotypic traits in situations in which
fitness of a trait depend on what others are doing.
He has also provided the notion of evolutionary stable
strategy (ESS). An ESS is a phenotype such that, if
almost all individuals have that phenotype, no alter-
native phenotype can invade the population.

In our model, success in imitation depends on the
particular utterances produced by others. Further-
more, we have verified that imitation is an ESS in our
model. However, further research is required to inves-
tigate the conditions under which imitation would fail.
Previous studies have provided some insights [15][7].

4.2 Why categorization emerges

In general, experimental results showed that there is
an evolutionary preference for agents which underlying
FSTs have fewer states. These machines can capture
regularities of inputs in an efficient way. Moreover,
previous studies on language evolution have suggested
a plausible relationship between compression and gen-
eralization in language evolution [16].

However, finite state machines can not capture all
interesting robot behaviors in our model. In effect, it
is theoretically imposible to learn any arbitrary class
of languages [17]. Nevertheless, we believe that the
consideration of more powerful computational models,
(e.g. Push-down automata), will allow us to capture
less restricted and more interesting patterns of robot
behavior.
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