
UC Santa Barbara
UC Santa Barbara Electronic Theses and Dissertations

Title
Transparent Representation Learning for Graphs and Human-AI Collaboration

Permalink
https://escholarship.org/uc/item/5vw9j8pz

Author
Kosan, Mert

Publication Date
2023

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5vw9j8pz
https://escholarship.org
http://www.cdlib.org/

University of California
Santa Barbara

Transparent Representation Learning for Graphs

and Human-AI Collaboration

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy

in

Computer Science

by

Mert Kosan

Committee in charge:

Professor Ambuj Singh, Chair
Professor Francesco Bullo
Professor Xifeng Yan

June 2023

The Dissertation of Mert Kosan is approved.

Professor Francesco Bullo

Professor Xifeng Yan

Professor Ambuj Singh, Committee Chair

June 2023

Transparent Representation Learning for Graphs and Human-AI Collaboration

Copyright © 2023

by

Mert Kosan

iii

To my family for their unconditional love and support.

iv

Acknowledgements

Throughout my Ph.D. journey at UCSB, I have experienced a wide range of emotions,

from excitement to happiness. I am deeply grateful to all those who have provided me

with support, motivation, and guidance along the way.

I would like to express my sincere gratitude to my Ph.D. advisor, Prof. Ambuj Singh,

who provided me with exceptional mentorship. His vision and wisdom have enabled me to

become the person I always aspired to be. I would also like to extend my appreciation to

Prof. Francesco Bullo and Prof. Xifeng Yan for their expertise and invaluable mentorship

as members of my Ph.D. committee.

I consider myself fortunate to have had the opportunity to collaborate with some

of the most brilliant researchers in the world: Zexi, Sourav, Arlei, Sayan, Marianne,

Kha-Dinh, Saurabh, and Rasta. I am also grateful for having a great group of labmates:

Rachel, Richika, Chandana, Ashwini, Haraldur, Wei, Omid, Hongyuan, Furkan, Yuning,

Sikun, Christos, Danish, Sean, and other collaborators from other labs or universities:

Abed, Anand, Kittiphat, Yibei, Danqing, Antonis, and Aritra.

Special thanks to Zexi Huang, Sourav Medya, and Arlei Silva for being my most

influential mentors and closest friends during my Ph.D. study. I find it difficult to envision

what would have occurred in their absence.

I consider myself very lucky to have received the support and companionship of my

close friends in the US and from Turkey. I witnessed Lionel Messi winning the World

Cup 2022 with them.

Last but not least, I would like to express my heartfelt gratitude to my dear mother

Sevgi, father İlhan, brother Faik Emre, sweet nephew Barış, and all remaining family

members in Turkey for their unwavering love and support throughout my Ph.D. studies.

v

Curriculum Vitæ
Mert Kosan

Education

2023 Ph.D. in Computer Science, University of California, Santa Barbara.

2023 M.S. in Computer Science, University of California, Santa Barbara.

2018 B.S. in Computer Science & Engineering, Sabanci University, Istanbul.

Publications

Peer-reviewed papers:

▷ Mert Kosan, Zexi Huang, Sourav Medya, Sayan Ranu, Ambuj Singh. Global Coun-
terfactual Explainer for Graph Neural Networks. ACM International Conference on
Web Search and Data Mining, WSDM 2023. (Selected among Top 10 in WSDM 2023,
Best Paper Award in MLoG-WSDM 2023)

▷ Mert Kosan, Linyun He, Shubham Agrawal, Hongyi Liu, Chiranjeet Chetia. AI De-
cision Systems with Feedback Loop Active Learner. WSDM 2023 Crowd Science
Workshop on Collaboration of Humans and Learning Algorithms for Data Labeling.

▷ Mert Kosan, Arlei Silva, Sourav Medya, Brian Uzzi, Ambuj Singh. Event Detection on
Dynamic Graphs. Deep Learning on Graphs: Method and Applications, Association
for the Advancement of Artificial Intelligence, DLG-AAAI 2023.

▷ Debajyoti Kar, Mert Kosan, Debmalya Mandal, Sourav Medya, Arlei Silva, Palash
Dey, Swagato Sanyal. Feature-based Individual Fairness in k-Clustering. International
Conference on Autonomous Agents and Multiagent Systems (AAMAS 2023 Extended
Abstract)

Working papers:

▷ Mert Kosan, Arlei Silva, Ambuj Singh. Robust Ante-hoc Graph Explainer with Bilevel
Optimization. 2023.

▷ Zexi Huang, Mert Kosan, Arlei Silva, Ambuj Singh. Link Prediction without Graph
Neural Networks. 2023.

▷ Marianne Arriola, Saurabh Sharma, Mert Kosan, Zexi Huang,, Ambuj Singh. Multi-
scale Anomaly Detection with Graph Autoencoders. 2023.

▷ Danqing Wang, Antonis Antoniades, Kha-Dinh, Mert Kosan, Ambuj Singh. Domain-
constraint Global Counterfactual Explainer. 2023.

▷ Mert Kosan, Zexi Huang, Francesco Bullo, Noah Friedkin, Ambuj Singh. Robustness
of Human Behavior under Risk. 2023.

vi

Research Internships

▷ Machine Learning Scientist, Visa Research Summer 2022
Project: Improving AI Decisions with Feedback Loop Active Learner
Mentors: Linyun He, Chiranjeet Chetia
Outcome: Patent filed, Paper published.

▷ Machine Learning Scientist, Visa Research Summer 2021
Project: Peer Group Analysis with Anomaly Detection
Mentors: Shubham Agrawal, Linyun He, Chiranjeet Chetia
Outcome: Patent filed.

▷ Machine Learning Scientist, Visa Research Summer 2020
Project: Fraud Detection and Profiling
Mentors: Linyun He, Chiranjeet Chetia
Outcome: Patent filed.

Teaching Experience

▷ Teaching Assistant, Data Structures and Algorithms, UCSB Fall 2021
▷ Instructor, LMU/UCSB Nanotech PhD Exchange and Symposium Spring 2019
▷ Teaching Assistant, Data Structures and Algorithms, UCSB Winter 2018
▷ Teaching Assistant, Data Structures and Algorithms, UCSB Fall 2018

Academic Services

▷ Registration Chair: KDD’23
▷ Reviewer: NeurIPS, ICLR, KDD, WebConf, WSDM, ICDM, SDM, AAAI, TIST,

TKDD, TKDE.

vii

Abstract

Transparent Representation Learning for Graphs and Human-AI Collaboration

by

Mert Kosan

Graph data show relationships between entities in a variety of domains including

but not limited to communication, social, and interaction networks. Representation

learning makes graph data easier to use for graph tasks such as graph classification,

link prediction, and clustering. The decisions on graphs depend on complex patterns

combining rich structural and attribute data. Therefore, explaining these decisions made

by representation learning models for high-stakes applications (e.g., anomaly detection

and drug discovery) is critical for increasing transparency and guiding improvements.

Moreover, human expertise can guide machine learning decisions, raising questions about

the interactions between humans and artificial intelligence that require further analysis.

This dissertation focuses on our research on two key topics: transparent representa-

tion learning on graphs and human-AI collaboration. Firstly, we present our proposed

frameworks for graph anomaly detection, which have been developed to enhance accuracy

and transparency. Subsequently, we scrutinize explainability in graph machine learning,

where we discuss our novel post-hoc global counterfactual and robust ante-hoc graph

explainers. Fairness is also a crucial aspect of transparent machine learning, and we pro-

pose a new individual fairness method for clustering. Finally, we investigate the impact

of collaboration between humans and artificial intelligence on decision-making under risk

and feedback loop systems.

viii

Permissions and Attributions

The content of this dissertation includes the part of the previously published or on-

going research. The author asserts their primary contributions to the development of the

research works which have proceedings described below:

▷ The part of Chapter 3 has been previously published as: Zexi Huang, Mert Kosan,

Sourav Medya, Sayan Ranu, Ambuj Singh. Global Counterfactual Explainer for Graph

Neural Networks. Proceedings of the Sixteenth ACM International Conference on Web

Search and Data Mining (WSDM), 2023. DOI: 10.1145/3539597.3570376.

▷ The part of Chapter 6 has been previously published as: Debajyoti Kar, Mert Kosan,

Debmalya Mandal, Sourav Medya, Arlei Silva, Palash Dey, Swagato Sanyal. Feature-

based Individual Fairness in k-Clustering. Proceedings of the 21st International

Conference on Autonomous Agents and Multiagent Systems (AAMAS), 2023. DOI:

10.5555/3545946.3599073.

▷ The part of Chapter 8 has been previously published as: Mert Kosan, Linyun He,

Shubham Agrawal, Hongyi Liu, and Chiranjeet Chetia. AI Decision Systems with

Feedback Loop Active Learner. Proceedings of the 4th Crowd Science Workshop on

Collaboration of Humans and Learning Algorithms for Data Labeling (Crowd Science

WSDM), 2023. CEUR-WS: Vol-3357/2

The ACM Author Rights page (https://authors.acm.org/author-resources/author-

rights) states that authors are permitted to include portions or entire papers of their

own work in a dissertation without any additional fees, provided that they include cita-

tions and DOI links to the Versions of Record in the ACM Digital Library. Additionally,

authors may freely use their own work in classroom teaching and presentations, without

any fee required.

ix

https://dl.acm.org/doi/10.1145/3539597.3570376
https://dl.acm.org/doi/10.5555/3545946.3599073
https://ceur-ws.org/Vol-3357/paper2.pdf
https://authors.acm.org/author-resources/author-rights
https://authors.acm.org/author-resources/author-rights

The CUER-WS Author Rights page (https://ceur-

ws.org/HOWTOSUBMIT.html#AUTHORRIGHTS) states the following: ”The

author has the right to publish a pre-print, post-print or the published version of his

CEUR-WS.org paper on his homepage, an institutional repository, or elsewhere”.

x

https://ceur-ws.org/HOWTOSUBMIT.html#AUTHORRIGHTS
https://ceur-ws.org/HOWTOSUBMIT.html#AUTHORRIGHTS

List of Figures

2.1 (a) Event detection on dynamic graphs based on a generic deep learning
architecture. (b) At the micro scale, the dynamics is captured at node
level using a temporal GNN architecture and then pooled for graph-level
classification. (c) At the macro scale, the dynamics is captured at the
graph level using an RNN over pooled (static) GNN node embeddings.
Our work investigates how the dynamics at different scales affects event
detection performance. 11
(a) Generic architecture for event detection 11
(b) Learning graph embeddings based on micro dynamics 11
(c) Learning graph embeddings based on macro dynamics 11

2.2 Scaled prediction scores ([0, 1]) given by some of the event detection meth-
ods for Hedge Fund. Events are marked as vertical (red) lines. The first
(grey) half covers some of the training events, while the remaining (white)
is in the test set. Some events are annotated for illustration. Hedge Fund
annotations are headlines from CNBC on the day of the event. Our method
DyGED can identify several of the events while keeping the false positive
rate lower. 25

2.3 Top 10 taxi zones (in red) based on various metrics for NYC Cab dataset.
Attention mechanism finds closer taxi zones to the stadiums compared to
some node statistics such as betweenness centrality, clustering coefficient,
and node degree. In other words, DyGED detects more crucial nodes for
Baseball game detection. 27
(a) DyGED Attentions . 27
(b) Betweenness . 27
(c) Clustering . 27
(d) Degree . 27

xi

2.4 Illustration of the attention weights (normalized) of current and previous
three snapshots for all datasets. While in NYC Cab, the current snapshot
has more attention weights than the previous ones, attention weights in
the Hedge Fund and Twitter datasets reveal more about the importance of
temporal information. Results show that history plays a role in predicting
the event. 0th refers to the current snapshot. 28
(a) NYC Cab . 28
(b) Hedge Fund . 28
(c) Twitter Weather . 28

2.5 An illustration of how DyGED graph embeddings support event diagnosis
for three datasets. For each snapshot window Gt−k:t, we assign an event
case (e.g. game at Yankees or Mets stadium for NYC Cab) or None.
Results show that event causes tend to form clusters in the embedding for
all datasets. Thus, events can be automatically diagnosed based on a few
manually diagnosed ones in their embedding neighborhood. Better seen
in color. 29
(a) NYC Cab . 29
(b) Hedge Fund . 29
(c) Twitter Weather . 29

2.6 Spectral energy distributions of normal nodes, node-level anomalies, and
three subgraph-level anomalies at different scales for Cora with injected
anomalies. The spectral energy distributions of anomalous nodes concen-
trate more on the high frequency regions. 34

2.7 Spectral properties of heat kernels and Beta kernels are compared, with
the latter incorporating diverse band-pass filters to enable the detection
of anomalies at multiple scales. 35
(a) Heat Kernels . 35
(b) Beta Kernels . 35

3.1 Formaldehyde (a) is classified by a GNN to be an undesired mutagenic
molecule with its important subgraph found by factual reasoning high-
lighted in red. Formic acid (b) is its non-mutagenic counterfactual exam-
ple obtained by removing one edge and adding one node and two edges.
. 37
(a) Formaldehyde . 37
(b) Formic acid . 37

3.2 Edits between graphs. 41
3.3 Coverage and cost performance comparison between GCFExplainer

and baselines based on different counterfactual summary sizes. GCF-
Explainer consistently outperforms the baselines across different sizes.
. 55

xii

3.4 Recourse coverage comparison between GCFExplainer and baselines
based on different distance threshold values (θ). GCFExplainer consis-
tently outperforms the baselines across different θ. 55

3.5 Illustration of global and local counterfactual explanations for the AIDS
dataset. The global counterfactual graph (c) presents a high-level recourse
rule—changing ketones and ethers into aldehydes (shown in blue)—to com-
bat HIV, while the edge removals (shown in red) recommended by local
counterfactual examples (b) are hard to generalize. 57

3.6 Convergence of VRRW for the Mutagenicity dataset based on recourse
coverage with different summary sizes. VRRW fully converges after M =
50000 iterations. 58

4.1 Explanations generated by our approach (RAGE) in two case studies:
Planted Clique (graphs with and without cliques) and Sunglasses
(headshots with and without sunglasses). RAGE explanations identify
edges in the clique and in the region around the sunglasses for both diffi-
culties. For Planted Clique (a), the heatmap and sizes show node and
edge influences, and the nodes with a thick border are members of the
planted clique. For Sunglasses (b-c), the red dots show the influential
pixel connections to the detection. 65
(a) Planted Clique . 65
(b) Sunglasses - EASY . 65
(c) Sunglasses - HARD . 65

4.2 (a) Post-hoc models generate explanations for a pre-trained GNN classifier
using its predictions. (b) Ante-hoc models, as our approach, learn GNNs
and explanations jointly. This enables ante-hoc models to identify GNNs
that are both explainable and accurate. 68
(a) Post-hoc Models . 68
(b) Ante-hoc Models . 68

4.3 Illustration of an edge-based ante-hoc explainer that uses bilevel optimiza-
tion. Explainer generates an explanation graph from the input graph by
assigning an influence value to each edge. Edge influences are incorporated
to edge weights on the explanation graph, the input of GNN Classifier. The
inner problem optimizes GNN Classifier with T iterations, while the outer
problem updates Explainer using gradients from inner iterations. The dot-
ted edges in the explanation graph show that they do not influence the
classification, while others have different degrees of influence. 71

4.4 Reproducibility comparison between methods for different explanation
sizes (in percentage) using four datasets. RAGE outperforms or has com-
parable results to the baselines across different sizes and datasets. 80

xiii

4.5 Pearson correlation (higher is better) between explanations for Muta-
genicity and MutagenicityNoisyX generated by RAGE and the baselines.
RAGE is significantly more stable than the baselines, with GIB as the best
baseline. 81

4.6 Two examples with different levels of difficulty due to poses from the Sun-
glasses dataset. RAGE is able to detect the edges between the sunglasses
and the human faces, which are the most relevant for the prediction task
(i.e., whether the human is wearing sunglasses) for both examples. . . . 82
(a) Original Image . 82
(b) PGExplainer . 82
(c) GIB . 82
(d) RAGE . 82
(e) Original Image . 82
(f) PGExplainer . 82
(g) GIB . 82
(h) RAGE . 82

4.7 Training and validation loss over iterations of bilevel optimization training
of Mutagenicity dataset. Even though our training process is not unstable,
there is still room for improvement. 85

5.1 GNN incorporates topology into attributes via message-passing, which is
effective for tasks on the topology. Link prediction, however, is a task for
the topology, which motivates the design of Gelato—a novel framework
that leverages graph learning to incorporate attributes into topology. . . 88
(a) Link prediction for

attributed graphs . 88
(b) GNN:

topology → attributes . 88
(c) Gelato:

attributes → topology . 88
5.2 Gelato applies graph learning to incorporate attribute information into

the topology via an MLP. The learned graph is given to a topological
heuristic that predicts edges between node pairs with high Autocovariance
similarity. The parameters of the MLP are optimized end-to-end using the
N-pair loss. Experiments show that Gelato outperforms state-of-the-art
GNN-based link prediction methods. 92

5.3 Link prediction performance in terms of prec@k for varying values of k (as
percentages of test edges). With few exceptions, Gelato outperforms the
baselines across different values of k. 101

5.4 Link prediction performance in terms of hits@k for varying values of k.
With few exceptions, Gelato outperforms the baselines across different
values of k. 102

xiv

5.5 Illustration of the link prediction process of Gelato, AC, and the best
GNN-based approach, Neo-GNN, on a subgraph of Photo. Gelato effec-
tively incorporates node attributes into the graph structure and leverages
topological heuristics to enable state-of-the-art link prediction. 104
(a) Input adjacency matrix . 104
(b) Enhanced adjacency matrix . 104
(c) Attribute Euclidean distance . 104
(d) AC scores . 104
(e) Gelato scores . 104
(f) Neo-GNN predictions . 104
(g) AC predicted edges . 104
(h) Gelato predicted edges . 104
(i) Neo-GNN predicted edges . 104

5.6 Training of Gelato based on different losses and training settings for
Photo with test AP (mean ± std) shown in the titles. Compared with
the cross entropy loss, the N-pair loss with unbiased training is a more
consistent proxy for unbiased testing metrics and leads to better peak per-
formance. 105

5.7 Performance of Gelato with different values of η. 107
(a) Photo performance . 107
(b) Cora performance . 107

5.8 Performance of Gelato with different α and β. 108
(a) Photo AP scores . 108
(b) Photo prec@100% scores . 108
(c) Cora AP scores . 108
(d) Cora prec@100% scores . 108

5.9 Receiver operating characteristic and precision-recall curves for the bad
link prediction model that ranks 1M false positives higher than the 100k
true edges. The model achieves 0.99 in AUC and 0.95 AP under biased
testing, while the more informative performance evaluation metric, Aver-
age Precision (AP) under unbiased testing, is only 0.05. 110
(a) ROC . 110
(b) PR under biased testing . 110
(c) PR under unbiased testing . 110

5.10 Link prediction performance in terms of prec@k (in percentage) for vary-
ing values of k with baselines using unbiased training. While we observe
noticeable improvement for some baselines (e.g., BScNets), Gelato still
consistently and significantly outperform the baselines. 113

5.11 Link prediction performance in terms of hits@k (in percentage) for vary-
ing values of k with baselines using unbiased training. While we observe
noticeable improvement for some baselines (e.g., BScNets), Gelato still
consistently and significantly outperform the baselines. 113

xv

6.1 Cost and fairness results, varying the number of clusters (k) for 30k ran-
dom data points using all datasets and methods (better seen in color).
LP-FAIR outperforms or achieves results comparable to the baselines for
all k. 137

7.1 Overview of our human experiments. The individual phase (IND) in-
volves each participant independently responding to a series of m issues.
Following this, groups are formed and the group phase begins. In the pre-
discussion (PRE) phase, each group member individually answers an issue,
engages in group discussions, and subsequently provides their responses
again in the post-discussion (POST) phase. This cycle of pre-discussion
and post-discussion repeats for a total of n iterations. At the end of each
cycle, each member indicates the perceived influence from other group
members. 146

7.2 An issue example. Each issue contains a choice dilemma of a binary gamble
selection between option A and B. Each option includes gain and loss with
corresponding probabilities. Individuals record their answers by selecting
either option. 147

7.3 Stubbornness level of individuals over group issues. UCSB participants
are more stubborn than FB participants. 156

7.4 Contributions of different features in making predictions in POST choice
for UCSB dataset. 158

7.5 Confusion matrix showing the shift between low and high-risk choices
based on different models. Significant changes occur from IND to POST.
The predictions are based on the PT models. 159
(a) IND→PRE . 159
(b) IND→POST . 159
(c) PRE→POST . 159

7.6 Consensus ratio over groups for all issues. The groups tend to form a
consensus. 160
(a) All Issues . 160
(b) Rolling Average . 160

7.7 Average pairwise distance between individuals in each group for IND, PRE
and POST parameters. For most groups, pairwise IND distances > pair-
wise PRE distances > pairwise POST distance. This shows that the be-
havior of individuals shifts towards consensus in a group setting. 161

7.8 Importance of features in predicting consensus. Explicit and implicit low-
risk influence are effective features. 163

7.9 Importance of features for influence predictions. lambda parameters are
the most effective parameter to decide influence. 165

xvi

7.10 Robustness of groups based on cosine distance between group behavior
with AI agent and group behavior without AI agent. Missing data shows
there are no agents found using grid search to reach a consensus on the
same issues. Group 5 is the least robust and groups 10, 15, 16, 21, 22, 23,
and 24 are the most robust. 166

7.11 Robustness of groups based on cosine distance between group behavior
with AI agent and group behavior without AI agent without considering
influence changes in the group. Missing data shows there are no agents
found using grid search to reach a consensus on the same issues. Group 5
is the least robust and groups 1, 8, 10, 12, 15, 21, 22, 23, 24, and 25 are
the most robust. 167

7.12 VAE Diagram for Generative Model. 169
7.13 Comparison of two agent selection methods in finding optimal AI agent

for attacking the groups. Notably, the grid search method identifies an AI
agent with a more impactful attack for groups. 170

7.14 Comparison of two agent selection methods for finding optimal AI agents
to attack groups, while considering the reduced resolution of the grid
search. The results highlight the generative model’s ability to maintain
continuity and successfully target a larger number of groups (specifically,
Groups 2 and 16) for successful attacks. 171

8.1 A short illustration of Feedback Loop Active Learner. It starts with mul-
tiple entities at which a black box AI system generates decisions. FLAL
uses these decisions and entities to send queries to a human, who eval-
uates them and generates ground truth labels and feedback. FLAL uses
this feedback (including human interest and expertise) in active learning
training and stores the ground truth labels for future updates in the AI
decision system. 176

8.2 Feedback Loop Active Learner steps. (1) It starts with embedding stream
data using pre-trained embedders. (2) User embedding mapper maps the
embedding space into a more personalized space. (3) Feature extractor
generates learned or expert-designed features to tackle the cold-start prob-
lem for recommenders. (4) Generates relevance scores based on AI deci-
sion system and extracted features. It sends queries to users for ground
truth generation. (5) User generates ground truths and relevancy of the
query. They send them back to the framework. Later, FLAL updates its
components using an active learning mechanism and keeps ground truth
information for future updates on the AI decision system. Notice that the
user’s interest (relevancy) in queries can also be inferred using interaction
detectors. 180

xvii

8.3 An illustration of Stream Data Embedder. The pre-trained unsupervised
embedder takes input from all entities’ time series data (up to τ timestamp
history) and embeds them into d dimensional space. This allows a better
and more compact representation of time-series data. 182

8.4 The usefulness example of user embedding mapper. Since the global em-
bedding space will group related entities together and a specific user may
be interested in different types of entities, the user embedding mapper
will learn how to regroup entities. This example shows that the algo-
rithm may detect the anomalies for different reasons: data issues, seasonal
change, and authentication-related. Therefore, if only data issues and
authentication-related anomalies (red entities) are relevant to the user, the
algorithm groups them together to make the embedding space personalized.182

8.5 The example scenario of the user simulation. The user space will be ran-
domly assigned in the embedding space. The entities inside of this space
will be relevant to the user. So user embedding mapper should learn how
to map relevant items to this space based on the answers by the user. This
will allow better ground truth generation by the user. 187

8.6 Test scores for Precision@Q and AveragePrecision@Q. FLAL outperforms
the competing baselines in both metrics and with different Q = {10, 20}.
FLAL’s performance becomes strictly better in around 10-20 steps and
converges around 50 steps. Another active learning mechanism, Random
Forest Active Learner, also generates better performance compared to the
original AI decision system performance. Random recommendation mech-
anism expectedly is the worst. 190

8.7 Ablation study of user embedding mapper. The linear and non-linear
layers have competing performances at both metrics. The linear mapping
converges slowly, and 2 non-linear layers suffer from the lack of available
data points. 191

8.8 Sensitivity analysis of choosing x1,2,3 for our loss terms on the Machine
dataset. The reported blocks show an average of precision@10 across all
steps of active learning. x1 is the most effective term in our loss function
as the absence of it generates much worse performance. x2 and x3 have
similar effects since they aim to narrow between negative and positive
samples. 192

xviii

List of Tables

2.1 Time complexities of our methods: m,n, h, l1, k, l2 denote numbers of
edges, nodes, embedding dimension, layers in GCN, past snapshots, layers
in MLP. We assume the initial node feature dimension for GCN, input,
cell, and output dimension for LSTM equal to embedding dimension h. . 20

2.2 The statistics of the datasets. TW is Twitter Weather. 21
2.3 AUC scores of event detection methods. The highest and second high-

est values for each column are in bold and underlined, respectively. Our
methods, accounting for macro dynamics, achieve the best results, outper-
forming the best baseline (ASTGCN) by 4.5% on average and up to 8.5%
(on Twitter Weather). We performed a paired t-test comparing the best
model against the others (markers ** and * indicate p-value < .01 and <
.05, respectively). 24

2.4 Testing times (in secs.) for all the methods with windows length k+1 set
to 4. DyGED is scalable and up to 206 times faster than the best baseline,
ASTGCN. 31

2.5 AUC scores of DyGED and the best baseline method ASTGCN with
different sets of node features. -S, -D, -SD suffixes are for static-only,
dynamic-only, static+dynamic node features, respectively. TW is the
Twitter Weather dataset. 31

2.6 AUC scores of our event detection method DyGED equipped with different
pooling operators. Attention pooling outperforms mean and max pooling
for all datasets using our method DyGED. TW is the Twitter Weather
data. 32

3.1 The statistics of the datasets. 52
3.2 Accuracy of the GNN graph classifier. 53
3.3 Recourse coverage (θ = 0.1) and median recourse cost comparison between

GCFExplainer and baselines for a 10-graph global explanation. GCF-
Explainer consistently and significantly outperforms all baselines across
different datasets. 54

3.4 Ablation study results based on recourse coverage. 58

xix

3.5 Sensitivity analysis on α, the weight between individual coverage and gain
of coverage in the importance function. 59

3.6 Counterfactual candidates generation time comparison. GCFExplainer
(-S) has competitive running time albeit exploring more counterfactual
graphs. 59

3.7 Fragment-based editing enhances the search efficiency and promotes valid
molecule generation. Despite slightly lower coverage and cost, the validity
of molecules improves due to shared patterns and the efficiency of fragment
utilization. Time is calculated based on minutes. 63

4.1 The statistics of the datasets. 77
4.2 Test scores for graph classification/regression. Best and second-best values

are in bold and underlined for each dataset. RAGE achieves the best
results on average, outperforming the baselines. 79

4.3 Test scores (AUC and MSE) of RAGE and its single-level variant RAGE-
single for all datasets. RAGE outperforms RAGE-single in all datasets.
Nevertheless, RAGE-single still has consistent performance across datasets. 83

4.4 Test scores (AUC and MSE) of RAGE and its without reinitialization
variant RAGE-keep for all datasets. RAGE outperforms RAGE-keep in
all datasets except Planted Clique which has the same performance.
The usefulness of reinitialization is more obvious in larger datasets. . . . 84

5.1 A summary of dataset statistics. 97
5.2 Reference of baseline code repositories. 98
5.3 Link prediction performance comparison (mean ± std AP). Gelato consis-

tently outperforms GNN-based methods, topological heuristics, and two-
stage approaches combining attributes and topology. 101

5.4 Results of the ablation study based on AP scores. Each component of
Gelato plays an important role in enabling state-of-the-art link prediction
performance. 106

5.5 Selected hyperparameters of Gelato. 107
5.6 Training and inference time comparison between supervised link prediction

methods for Photo. Gelato has competitive training time (even under
unbiased training) and is significantly faster than most baselines in terms
of inference, especially compared to the best GNN model, Neo-GNN. . . 109

5.7 Link prediction performance comparison (mean ± std AUC). AUC results
conflict with other evaluation metrics, presenting a misleading view of the
model performance for link prediction. 111

5.8 Link prediction performance comparison (mean ± std AP) with super-
vised link prediction methods using unbiased training. While we observe
noticeable improvement for some baselines (e.g., BScNets), Gelato still
consistently and significantly outperform the baselines. 112

xx

5.9 Training time comparison between supervised link prediction methods for
Photo under unbiased training. Gelato, while achieving the best perfor-
mance, is also the second most efficient method in terms of total training
time, slower only than the vanilla MLP. 114

6.1 Normalized cost and fairness comparison between LP-FAIR (ours) and
competing baselines. The best and second-best values for each column
are in bold and underlined, respectively. Our method outperforms or has
performance comparable to the baselines in terms of the three evaluation
metrics. 136

6.2 The mean and standard deviation of the number of clusters generated by
the methods (with k = 5). Generating fewer clusters generally leads to
higher costs (see Table 6.1). 139

6.3 The mean and standard deviation of cluster imbalance. Imbalanced clus-
ters result in small clusters where the members might not be individually
fair. LP-FAIR generates clusters with lower imbalance compared to the
baselines. 139

6.4 The running times of LP-FAIR and baselines on the Adult dataset. We run
our randomized algorithm ten times, but the best performance is achieved
with at most four trials. 140

6.5 Normalized cost and fairness comparison between LP-FAIR (ours) and
competing baselines with random feature selections. The best and second-
best values for each column are in bold and underlined, respectively. Our
method outperforms or has performance comparable to the baselines in
terms of fairness and cost. 141

6.6 The effect of removing fairness constraint from LP-FAIR. The better per-
formances are in bold. As expected, our algorithm makes the clusters more
costly while having more individually fair clusters. 142

7.1 The statistics of datasets from human experiments. 148
7.2 The average statistics of PT parameters for IND/PRE/POST across all

individuals. 154
7.3 Statistics of influence matrices from human experiments. ∀ denotes every

issue, and ∃ denotes at least one issue. 155
7.4 N-fold cross-validation accuracy results for different models. The best

and second-best models are shown in bold and underlined, respectively.
The PT model performs best. p-values are calculated with paired t-tests
between PT and baselines. The neural net model is closest to PT in terms
of accuracy. 157

xxi

Contents

Curriculum Vitae vi

Abstract viii

Permissions and Attribution ix

List of Figures xi

List of Tables xix

1 Introduction 1

2 Event Detection on Dynamic Graphs 8
2.1 Introduction . 8
2.2 Related Work . 12
2.3 Problem Definition . 14
2.4 Proposed Model: DyGED . 15
2.5 Experiments . 20
2.6 Conclusions . 32
2.7 Future Works - Multi-scale Anomalies [1] 33

3 Global Counterfactual Explainer for Graph Neural Networks 36
3.1 Introduction . 36
3.2 Global Counterfactual Explanations . 39
3.3 Proposed Method: GCFExplainer . 44
3.4 Experiments . 52
3.5 Related Work . 60
3.6 Conclusions . 61

4 Robust Ante-hoc Graph Explainer using Bilevel Optimization 65
4.1 Introduction . 65
4.2 Related Work . 68

xxii

4.3 Methodology . 70
4.4 Experiments . 76
4.5 Preliminary Results . 79
4.6 Ablation Study . 83
4.7 Training Stability . 85
4.8 Conclusions . 85

5 Link Prediction without Graph Neural Networks 87
5.1 Introduction . 87
5.2 Limitations in supervised link prediction evaluation and training 89
5.3 Method . 91
5.4 Experiments . 96
5.5 Related work . 114
5.6 Conclusion . 115

6 Feature-based Individual Fairness in k-Clustering 117
6.1 Introduction . 117
6.2 Preliminaries . 121
6.3 Results . 124
6.4 Experiments . 134
6.5 Running Time . 140
6.6 Additional Experiments . 141
6.7 Conclusions . 142

7 Robustness of Human Decision Making under Risk 143
7.1 Introduction . 143
7.2 Human Experiments . 145
7.3 Preliminaries . 148
7.4 Analysis and Experiments . 153
7.5 Conclusions . 171

8 AI Decision Systems with Feedback Loop Active Learner 175
8.1 Introduction . 175
8.2 Related Works . 178
8.3 Methodology . 179
8.4 Experiments . 187
8.5 Conclusions . 192

9 Conclusions 194

Bibliography 196

xxiii

Chapter 1

Introduction

We inhabit a world that is rapidly propelled by data. With each passing day, we produce

massive volumes of data through our engagements with digital devices, social media plat-

forms, and various technologies. Recent calculations1 indicate that we generate 329.77

billion gigabytes of data every day, and this quantity is increasing exponentially every

year. The vast availability of data has given rise to new areas of research such as data

mining and data science that can be applied to various domains ranging from healthcare

to finance.

In this context, the abundance of data necessitates the extraction of key information

to utilize the data more effectively in downstream tasks, which has led to the emergence of

representation learning. This widely used technique in data science employs deep learning

to identify critical features that are invisible to humans, allowing for more informative

and comprehensive features to be extracted from the data. These features can then be

applied to decision tasks such as credit card applications or molecular property prediction.

One of the biggest challenges with deep learning is its lack of transparency and ex-

plainability. Without understanding how a deep learning model reaches its decisions,

1https://explodingtopics.com/blog/data-generated-per-day

1

Introduction Chapter 1

there can be serious consequences in high-stake application sectors such as healthcare,

finance, and law enforcement. There are multiple recent articles2 discussing that ex-

plainability and transparency should be the main core of deep learning models. This

will build trust between humans and AI, and also ethical problems using AI systems will

not be an issue. A recent article from Nature3 claims that some scientists are already

using chatbots such as ChatGPT as their research assistants. However, the quality and

correctness of these tools are questionable. Therefore, we need to explain these deep

black-box models.

Furthermore, deep learning algorithms may struggle with ambiguous or uncertain sit-

uations, which are often encountered in decision-making tasks in high-stakes applications.

This ”gray area” problem highlights the importance of incorporating human expertise

into AI systems. While AI can make decisions quickly, humans can provide a more nu-

anced understanding of the situation and help improve the accuracy and effectiveness of

AI systems. Conversely, AI can be leveraged to gain a better understanding of human

behavior and improve decision-making in fields such as psychology and sociology. Thus,

it is essential to explore ways in which humans and AI can collaborate and mutually

benefit from each other.

This dissertation focuses on transparent representation learning on graphs and ex-

plores collaborations between humans and AI. Graphs also referred to as networks, are

extensively utilized in modeling various applications such as social networks, molecular

interactions, road networks, and financial transactions. Additionally, graphs can serve

as a representation of diverse data types, including tabular data, images, and text. The

nodes and edges of graphs can possess attributes, which enhance their capability for

effective representation and modeling. Furthermore, graphs can also incorporate a tem-

2https://www.forbes.com/sites/forbestechcouncil/2023/01/23/why-explainability-should-be-the-
core-of-your-ai-application/?sh=16a1493f753f

3https://www.nature.com/articles/d41586-023-00191-1

2

Introduction Chapter 1

poral dimension, enabling the representation of dynamic graphs where nodes, edges, or

attributes change over time. For instance, in social networks, nodes can represent indi-

viduals, each with their specific attributes, while edges capture the relationships between

individuals, featuring attributes associated with those relationships. These relationships

can evolve or new individuals may join the network over time.

As a powerful data structure, graphs are applicable to a range of downstream applica-

tions, including graph classification, node classification, link prediction, and clustering.

Transparent representation learning is essential for encoding the graph in a represen-

tation space while also understanding the model’s decision-making process. However,

representation learning alone may not solve all problems and may require human assis-

tance. Collaborating with AI can lead to even better and more effective models. On

the other hand, fairness is a critical issue in some applications, such as clustering, where

groups should be formed based on the similarity of individuals or the representativeness

of the community.

The rest of the dissertation is organized by our contribution to the advancement

of transparent graph representation learning including explainability and fairness, and

human and AI collaboration, summarized as follows:

▷ Event Detection on Dynamic Graphs [2] (Chapter 2): Event detection is a critical task

for timely decision-making in graph analytics applications. Despite the recent progress

towards deep learning on graphs, event detection on dynamic graphs presents partic-

ular challenges to existing architectures. Real-life events are often associated with

sudden deviations of the normal behavior of the graph. However, existing approaches

for dynamic node embedding are unable to capture the graph-level dynamics related

to events. In this paper, we propose DyGED, a simple yet novel deep learning model

for event detection on dynamic graphs. DyGED learns correlations between the graph

macro dynamics—i.e. a sequence of graph-level representations—and labeled events.

3

Introduction Chapter 1

Moreover, our approach combines structural and temporal self-attention mechanisms

to account for application-specific node and time importances effectively. Our exper-

imental evaluation, using a representative set of datasets, demonstrates that DyGED

outperforms competing solutions in terms of event detection accuracy by up to 8.5%

while being more scalable than the top alternatives. We also present case studies

illustrating key features of our model.

▷ Global Counterfactual Explainer for Graph Neural Networks [3] (Chapter 3): Graph

neural networks (GNNs) find applications in various domains such as computational

biology, natural language processing, and computer security. Owing to their popular-

ity, there is an increasing need to explain GNN predictions since GNNs are black-box

machine learning models. One way to address this is counterfactual reasoning where

the objective is to change the GNN prediction by minimal changes in the input graph.

Existing methods for counterfactual explanation of GNNs are limited to instance-

specific local reasoning. This approach has two major limitations of not being able to

offer global recourse policies and overloading human cognitive ability with too much

information. In this work, we study the global explainability of GNNs through global

counterfactual reasoning. Specifically, we want to find a small set of representative

counterfactual graphs that explains all input graphs. Towards this goal, we propose

GCFExplainer, a novel algorithm powered by vertex-reinforced random walks on

an edit map of graphs with a greedy summary. Extensive experiments on real graph

datasets show that the global explanation from GCFExplainer provides important

high-level insights of the model behavior and achieves a 46.9% gain in recourse cov-

erage and a 9.5% reduction in recourse cost compared to the state-of-the-art local

counterfactual explainers.

▷ Robust Ante-hoc Graph Explainer using Bilevel Optimization [4] (Chapter 4): Ex-

plaining the decisions made by machine learning models for high-stakes applications

4

Introduction Chapter 1

is critical for increasing transparency and guiding improvements to these decisions.

This is particularly true in the case of models for graphs, where decisions often de-

pend on complex patterns combining rich structural and attribute data. While recent

work has focused on designing so-called post-hoc explainers, the question of what

constitutes a good explanation remains open. One intuitive property is that explana-

tions should be sufficiently informative to enable humans to approximately reproduce

the predictions given the data. However, we show that post-hoc explanations do not

achieve this goal as their explanations are highly dependent on fixed model parameters

(e.g., learned GNN weights). To address this challenge, this paper proposes RAGE

(Robust Ante-hoc Graph Explainer), a novel and flexible ante-hoc explainer designed

to discover explanations for a broad class of graph neural networks using bilevel op-

timization. RAGE is able to efficiently identify explanations that contain the full

information needed for prediction while still enabling humans to rank these explana-

tions based on their influence. Our experiments, based on graph classification and

regression, show that RAGE explanations are more robust than existing post-hoc and

ante-hoc approaches and often achieve similar or better accuracy than state-of-the-art

models.

▷ Link Prediction without Graph Neural Networks [5] (Chapter 5): Link prediction,

which consists of predicting edges based on graph features, is a fundamental task

in many graph applications. As for several related problems, Graph Neural Net-

works (GNNs), which are based on an attribute-centric message-passing paradigm,

have become the predominant framework for link prediction. GNNs have consistently

outperformed traditional topology-based heuristics, but what contributes to their per-

formance? Are there simpler approaches that achieve comparable or better results?

To answer these questions, we first identify important limitations in how GNN-based

link prediction methods handle the intrinsic class imbalance of the problem—due to

5

Introduction Chapter 1

the graph sparsity—in their training and evaluation. We then propose Gelato, a novel

topology-centric framework that applies a topological heuristic to a graph enhanced

by attribute information via graph learning. Gelato is more robust to class imbalance

as it requires significantly fewer parameters than the GNN-based alternatives. Our

model is trained end-to-end with an N-pair loss on an unbiased training set to address

the class imbalance. Experiments show that Gelato is 84% more accurate, trains 3

times faster, and infers 10,000 times faster compared to state-of-the-art GNN for link

prediction.

▷ Feature-based Individual Fairness in k-Clustering [6] (Chapter 6): Ensuring fairness

in machine learning algorithms is a challenging and essential task. We consider the

problem of clustering a set of points while satisfying fairness constraints. While there

have been several attempts to capture group fairness in the k-clustering problem, fair-

ness at an individual level is relatively less explored. We introduce a new notion of

individual fairness in k-clustering based on features not necessarily used for clustering.

We show that this problem is NP-hard and does not admit any constant factor approx-

imation. Therefore, we design a randomized algorithm that guarantees approximation

both in terms of minimizing the clustering distance objective and individual fairness

under natural restrictions on the distance metric and fairness constraints. Finally, our

experimental results against six competing baselines validate that our algorithm pro-

duces individually fairer clusters than the fairest baseline by 12.5% on average while

also being less costly in terms of the clustering objective than the best baseline by

34.5% on average.

▷ Robustness of Human Decision Making under Risk [7] (Chapter 7): Prospect Theory

has been extensively studied in the field of decision-making, providing valuable insights

into individual risk preferences. However, the exploration of Group Prospect Theory,

which examines decision-making within a collective context, remains relatively scarce.

6

Introduction Chapter 1

This study highlights the need to investigate Group Prospect Theory and presents hu-

man experiments conducted to understand the dynamics of decision-making in group

settings. Our research includes a comprehensive analysis that specifically aims to mea-

sure the behavioral shifts observed as individuals transition from making decisions in

isolation to making decisions within a group setting. Additionally, the study explores

the robustness of groups, particularly in relation to potential attacks facilitated by

artificial intelligence (AI) with a design of a generative model of human behavior. By

addressing these research questions, this study aims to contribute to a deeper under-

standing of Group Prospect Theory and shed light on the vulnerabilities and potential

impacts of AI on group decision-making processes.

▷ AI Decision Systems with Feedback Loop Active Learner [8] (Chapter 8): Making pre-

cise decisions for high-stakes applications such as finance, health, and self-driving is

critical for increasing the economy of an entity or the quality of life. In most scenarios,

decision quickness is also as essential as accuracy. This is particularly true in the case

of event detection problems, where late detection can cause financial or physical dam-

age. While recent work focuses on combining fast unsupervised AI decision systems

and precise human decisions to solve this problem, the quality of this cooperation

remains questionable. A human can generate ground-truth labels for the AI decision

systems for future improvements. However, having noisy ground truth can worsen the

performance. To address this challenge, this paper proposes FLAL (Feedback Loop

Active Learner), a novel bridge system between the AI decision system and human/s,

designed to understand human expertise and interest using a recommender mecha-

nism and improve AI system performance using an active learning mechanism. FLAL

is able to identify human behavior and makes entity recommendations to users who

can generate better ground-truth labels for these entities. Our experiments show that

FLAL performs better than competing baselines and converges fast.

7

Chapter 2

Event Detection on Dynamic Graphs

2.1 Introduction

Event detection on dynamic graphs is a relevant task for effective decision-making in

many organizations [9, 10]. In graphs, entities and their interactions are represented as

(possibly attributed) nodes and edges, respectively. The graph dynamics, which changes

the interactions and attributes over time, can be represented as a sequence of snapshots.

Events, identified as snapshot labels, are associated with a short-lived deviation from

normal behavior in the graph.

As an example, consider the communication inside an organization, such as instant

messages and phone calls [11]. Can the evolution of communication patterns reveal the

rise of important events—e.g., a crisis, project deadline—within the organization? While

one would expect the content of these communications to be useful for event detection,

this data is highly sensitive and often private. Instead, can events be discovered based

only on structural information (i.e. message participants and their attributes)? For

example, Romero et al. [11] have shown that stock price shocks induce changes (e.g.,

higher clustering) in the structure of a hedge fund communication network. Shortly

8

Event Detection on Dynamic Graphs Chapter 2

after the 2011 earthquake and tsunami, Japanese speakers expanded their network of

communication on Twitter [12].

Given the recent success of deep learning on graphs [13, 14, 15, 16] in node/graph

classification, link prediction, and other tasks, it is natural to ask whether the same

can also be useful for event detection. In particular, such an approach can combine

techniques for graph classification [17, 18] and dynamic representation learning on graphs

[19, 20, 21, 22]. However, a key design question in this setting is whether to detect

events based on the micro (node) or macro (graph) level dynamics. More specifically, the

micro dynamics is captured via the application of a pooling operator to dynamic node

embeddings [19, 21]. For the macro dynamics, static snapshot embeddings are computed

via pooling and their evolution is modeled via a recurrent architecture (e.g. an LSTM)

[20, 22]. Each of these approaches has implicit assumptions about the nature of events

in the data.

Figure 2.1 shows two event detection architectures, one based on micro and another

based on macro dynamics. While they both apply a generic architecture shown in Fig-

ure 2.1a, they differ in the way dynamic representations for each graph snapshot are

generated.

To illustrate the difference between micro and macro dynamics, let us revisit our

organization example. For simplicity, we will assume that the pooling operator is the

average. Dynamic node embeddings are learned (non-linear) functions of the evolution

of an employee’s attributed neighborhood. These local embeddings are expected to be

revealing of an employee’s communication over time. Thus, (pooled) micro embeddings

will capture average dynamic communication patterns within the organization. On the

other hand, by pooling static node embeddings, we learn macro representations for the

communication inside the organization at each timestamp. The recurrent architecture

will then capture dynamic communication patterns at the organization level. Pooling

9

Event Detection on Dynamic Graphs Chapter 2

and the RNN thus act as (spatial/temporal) functions that can be composed in different

ways—e.g. f(g(x)) vs g(f(x))—each encoding specific inductive biases for event detection.

We will show that the choice between micro and macro models has significant implications

for event detection performance.

This paper investigates the event detection problem on dynamic graphs. We propose

DyGED (Dynamic Graph Event Detection), a graph neural network for event detection.

DyGED combines a macro model with structural and temporal self-attention to account

for application-specific node and time importances. To the best of our knowledge, our

work is the first to apply either macro dynamics or self-attention for the event detection

task. Despite its simplicity, differing from more recent approaches based on micro dy-

namics, DyGED outperforms state-of-the-art solutions in three representative datasets.

These findings also have implications for other graph-level analytics tasks on dynamic

graphs, such as anomaly detection, regression, and prediction.

One of the strengths of our study is its extensive experimental evaluation. While

the event detection problem has been studied by a recent paper [23]—based on mi-

cro dynamics—our work provides key insights into some of the challenges and possible

strategies for effective event detection. This is partly due to our representative list of

datasets covering mobility, communication, and user-generated content data. Moreover,

we present a few case studies illustrating the key features of our approach. Our main

contributions are as follows:

▷ We present the first study comparing micro and macro deep learning architectures

for event detection on dynamic graphs, showing the importance of this design choice

for event detection performance;

▷ We propose DyGED, a simple yet novel deep learning architecture for event de-

tection based on macro dynamics. DyGED applies both structural and temporal

10

Event Detection on Dynamic Graphs Chapter 2

Gt-1 Gt Gt+1

node
embeddings

graph
embeddings

predictions

features
pooling

(a) Generic architecture for event detection

micro/node
dynamics

(b) Learning graph embeddings based on mi-
cro dynamics

macro/graph
dynamics

(c) Learning graph embeddings based on
macro dynamics

Figure 2.1: (a) Event detection on dynamic graphs based on a generic deep learning
architecture. (b) At the micro scale, the dynamics is captured at node level using a
temporal GNN architecture and then pooled for graph-level classification. (c) At the
macro scale, the dynamics is captured at the graph level using an RNN over pooled
(static) GNN node embeddings. Our work investigates how the dynamics at different
scales affects event detection performance.

self-attention to enable the effective learning of node and time dependent weights;

▷ We compare DyGED against several baselines—mostly based on a micro model—

using three datasets. Our results show that DyGED outperforms the baselines by

up to 8.5% while being scalable. We also provide case studies illustrating relevant

features of our model (e.g. how its embeddings can be used for diagnosis).

11

Event Detection on Dynamic Graphs Chapter 2

2.2 Related Work

Event detection on graphs: There is a diverse body of work on event detection

using graphs and other types of structured data [24, 25, 26] in the literature. Moreover,

other popular tasks such as anomaly [27, 28], change point [29, 30], and intrusion [31]

detection are related to unsupervised event detection [32, 28, 33]. Here, we focus on

a supervised version of the problem where graph snapshots are labeled depending on

whether an event happened within the snapshot’s time window. We assume that events

are defined based on an external source of information, not being fully identifiable from—

but still being correlated with—the observed data [9, 23]. Some studies distinguish

the event detection from the event forecasting problem, as the second also allows for

predictions of events far into the future [25]. However, such a distinction is less relevant

when events are external to the data [23]. Recently in [34], the authors apply a dynamic

graph to identify events on time series. We focus on the detection of events with graphs

as inputs.

The classical approach for event detection, including in the case of graphs, is to

rely on features designed by experts [35, 36]. A framework for automatically combining

multiple social network metrics, such as modularity and clustering coefficient, as features

for terrorist activity detection using a neural network is introduced in [9]. However, these

metrics, which are based on expert knowledge, may not generalize to many applications,

and they are potentially non-exhaustive—i.e. other relevant metrics might be missing.

Graph kernels: In machine learning, kernel methods, such as Support Vector Ma-

chines, have motivated a long literature on graph kernels [37]. A kernel is a function

that computes the similarity between two objects in a particular application and thus

their design often requires expert-knowledge. In the case of graph kernels, graphs are

compared based on their substructures—e.g., node neighborhoods [38], graphlets [39],

12

Event Detection on Dynamic Graphs Chapter 2

random walks [40]. However, recent studies have shown that such features are often

outperformed by those learned directly from data [17].

Temporal node embeddings: Modeling temporal evolution of nodes based on

their connections over time is a well-studied problem in the literature. The temporal

information can be encoded using temporal point process [41], random walks on temporal

edge orderings [42] or a joint optimization of temporal node embeddings [43]. While these

methods focus on micro embeddings, [44] proposes taking into account macro information

by incorporating the number of modified edges in the graph. However, we notice that [44]

does not apply to our setting since it does not find node embeddings for every timestamp.

Graph neural networks (GNNs) for dynamic graphs: Deep learning on graphs

is an effort to reproduce the success achieved by deep neural networks (e.g. CNNs, RNNs)

on graphs [45, 46]. A key advance was the introduction of Graph Convolutional Net-

works (GCNs) [13], which outperform traditional approaches for semi-supervised learn-

ing. Later, GraphSage [14] and Graph Attention Networks (GATs) [47] were proposed

to increase the scalability and exploit the attention mechanism in GNNs, respectively.

Following the work listed above, there has been an outburst of extensions of GNNs for

dynamic graphs [48]. One approach is to apply standard GNNs to a static graph where

multiple snapshots are represented as a single multi-layered graph [49, 50] with additional

temporal edges. More recently, several studies have combined recursive architectures,

such as LSTMs, with GNNs. This can be achieved via macro models, which stack graph-

level GNN representations as a sequential process [51, 20]. Another alternative are micro

models, which apply the sequential process at the node level to generate dynamic node

embeddings [52, 21, 50].

Dynamic GNNs have been applied mostly for local tasks (e.g. node classification). On

the other hand, the most popular graph-level task for GNNs is graph classification [53,

54, 55], which assumes the input to be static. Our paper is focused on event detection on

13

Event Detection on Dynamic Graphs Chapter 2

dynamic graphs, a challenging graph-level task also studied in [23]—one of our baselines.

Different from their work, DyGED applies self-attention at node and time domains to

capture the macro dynamics correlated with events. Self-attention was also recently

applied in [56] and [52], which were focused on graph classification and link prediction,

respectively. We show that DyGED equipped with self-attention outperforms state-of-

the-art event detection methods.

2.3 Problem Definition

Supervised event detection on dynamic graphs consists of learning how to detect

events based on a few recent graph snapshots using training data (i.e. labeled events).

Definition 1. Dynamic Graph: A dynamic graph G is a sequence of T discrete

snapshots ⟨G1, G2, . . . , GT ⟩ where Gt denotes the graph at timestamp t. Gt is a tuple

(V,Et,Wt, Xt) where V is a fixed set of n vertices, Et is a set of mt undirected edges,

Wt : Et → R+ are edge weights, and Xt : V → Rd gives d features for each node.

In our earlier example regarding an organization, nodes in V represent members of

the organization. An edge is created in Et whenever their associated members exchange a

message during a time interval t and weightsWt might be numbers of messages exchanged.

Finally, features Xt might include an individual’s job position (static) and the total

number of messages received by them during the time interval t (dynamic).

Definition 2. Event Label Function: We define the function ℓ(Gt−k:t) ∈ {0, 1} to be

an event labelling function of order k, where Gt−k:t = ⟨Gt−k, Gt−k+1, . . . , Gt⟩, and such

that:

14

Event Detection on Dynamic Graphs Chapter 2

ℓ(Gt−k:t) =

1, if an event occurs at time t

0, otherwise

Events might depend not only on the current graph snapshot Gt but also on the

k previous snapshots Gt−k, . . . , Gt−1. This allows the function ℓ to model events that

depend on how the graph changes. One can define a similar function ℓ∆ for the early

detection (or forecasting) of events ∆ snapshots into the future.

Definition 3. Event Detection Problem: Given a set of training instances D, com-

posed of pairs (Gt−k:t, ℓ(Gt−k:t)), learn a function ℓ̂ that approximates the true ℓ for unseen

snapshots.

We treat event detection as a classification problem with two classes. To evaluate

the quality of the learned function ℓ̂ we apply a traditional evaluation metric (AUC [57])

from supervised learning. In this paper, we propose ℓ̂ to be a neural network.

2.4 Proposed Model: DyGED

We describe DyGED (Dynamic Graph Event Detection), a simple yet novel deep

learning architecture for event detection on dynamic graphs. DyGED combines a Graph

Convolutional Network and a Recurrent Neural Network to learn the macro (i.e. graph-

level) dynamics correlated with labeled events. This backbone architecture is further

enhanced by self-attention mechanisms in the structural and temporal domains. First,

we introduce the main components of our architecture. Next, we describe DyGED and

some of its variations.

We introduce notations for a few basic operations to describe our architectures in

a compact form. A column-wise concatenation [M1, . . . ,Mt] : Rn×m1 × . . . × Rn×mt →
15

Event Detection on Dynamic Graphs Chapter 2

Rn×(m1+...+mt) maps a sequence of matrices M1, . . . ,Mt to a new matrix M such that

(Mt)i,j =Mi,
∑t−1

r=1 mr+j. Similarly, we denote a row-wise concatenation as [M1; . . . ;Mt] =

[M⊺
1 , . . . ,M

⊺
t]

⊺.

2.4.1 Main Components

We describe the main components of our neural network architecture for event detec-

tion on dynamic graphs (DyGED).

Graph Convolutional Network:

GCNs are neural network architectures that support the learning of h-dimensional

functions GCN(A,X) : Rn×n×Rn×d → Rn×h over vertices based on the graph adjacency

matrix A and features X. For instance, a 2-layer GCN can be defined as follows:

GCN(A,X) = σ
(
Â σ

(
ÂXW (0)

)
W (1)

)
where Â =D̃− 1

2 ÃD̃− 1
2 is the normalized adjacency matrix with D̃ as weighted degree

matrix and Ã=In+A with In being an n×n identity matrix. W (i) is a weight matrix for

the i-th layer to be learned during training, with W (1) ∈ Rd×h′
, W (2) ∈ Rh′×h, and h (h′)

being the embedding size in the output (hidden) layer. Moreover, σ(.) is a non-linear

activation function such as ReLU.

Pooling

The output of the GCN described in the previous section is an embedding matrix Zt

for each graph snapshot Gt. In order to produce an embedding zt for the entire snapshot,

we apply a pooling operator v-Att(Zt) : Rn×h → Rh. In particular, our model applies

the self-attention graph pooling operator proposed in [56]:

16

Event Detection on Dynamic Graphs Chapter 2

zt = v-Att(Zt) = softmax(w.tanh(ΦZT
t))Zt

where Φ ∈ Rh×h and w ∈ Rh are learned attention weights.

Intuitively, v-Att re-weights the node embeddings enabling some nodes to play a larger

role in the detection of events. In our experiments, we will show that these attention

weights can be used to identify the most important nodes for our task.

Recurrent Neural Network

We assume that events are correlated with the graph (i.e. macro) dynamics. Thus,

our model applies an RNN to learn dynamic graph representations. More specifically, we

give the pooled snapshot embeddings zt as input to a standard Long Short-Term Memory

LSTM(z′t−1, zt) : Rh × Rh → Rh to produce dynamic graph representations:

z′t = LSTM(z′t−1, zt)

Notice that z′t is based on a sequence of static embeddings, instead of each node’s

(micro) dynamics. In our experiments, we will compare these two approaches using a

diverse collection of datasets.

Temporal Self-Attention

The RNN component described in the previous section enables our architecture to

capture the graph dynamics via embeddings z′t. However, complex events might not be

correlated only with the current graph representation but a window Z ′
t = [z′t−k; . . . ; z

′
t].

For instance, in mobility-related events (e.g. sports games), changes in the mobility

dynamics will arise a few hours before the event takes place. Moreover, these correlations

17

Event Detection on Dynamic Graphs Chapter 2

might vary within a dataset due to the characteristics of each type of event. Thus, we

propose a self-attention operator t-Att(Z ′
t) : R(k+1)×h → Rh for aggregating multiple

dynamic embeddings:

z′′t = t-Att(Z ′
t) = softmax(w′.tanh(Φ′Z

′T
t))Z ′

t

where Φ′ ∈ Rh×h and w′ ∈ Rh are learned attention weights.

Similar to v-Att (Section 2.4.1), t-Att enables the adaptive aggregation of dynamic

embeddings. To the best of our knowledge, we are the first to apply a similar self-attention

mechanism—which might be of independent interest—in dynamic GNN architectures.

Classifier and Loss Function

The final component our model is a Multi-Layer Perceptron MLP (z′′t) : Rh → R2

that returns (nonlinear) scores for each possible outcome (i.e., event/no event) Yt. Given

training data with event labels ℓ(Gt−k:t), the parameters of our model are learned (end-

to-end) by minimizing the cross-entropy of event predictions Y = {Yk+1, . . . , YT}. Note

that event detection is a highly imbalanced problem—i.e. events are rare. We address

this challenge by weighting our loss function terms with class ratios [58]. As a result,

false negatives are more penalized than false positives.

−
T∑

t=k+1

(1− x)ℓ(Gt−k:t) log (Yt,1) + x(1− ℓ(Gt−k:t)) log (Yt,2)

where ℓ is the event label from Definition 2. Moreover, x and 1 − x positive (i.e.,

events) and negative sample ratios in the training set, respectively.

18

Event Detection on Dynamic Graphs Chapter 2

Algorithm 1 DyGED Forward Algorithm

Require: Sequence of snapshots Gt−k:t, previous dynamic state z′t−k−1

Ensure: Event probability
1: for τ ∈ {t− k, . . . , t} do
2: Zτ ← GCN(Gτ , Xτ)
3: zτ ← v-Att(Zτ)
4: z′τ ← LSTM(z′τ−1, zτ)
5: end for
6: z′′t ← t-Att([z′t−k; . . . ; z

′
t])

7: return MLP (z′′t) =0

2.4.2 DyGED and its Variants

Algorithm 1 provides an overview of the forward steps of DyGED. It receives a

sequence of snapshots Gt−k:t and the previous dynamic (LSTM) state z′t−k−1 as inputs.

The output is the event probability for Gt. Notice that our assumption that macro

dynamics of the graph is correlated with events of interest leads to a simple and

modular model. Steps 3 and 5 correspond to the structural and temporal self-attention,

respectively. In order to evaluate some of the key decisions involved in the design of

DyGED, we also consider the following variations of our model:

▷ DyGED-CT (with contatenation): Replaces the LSTM (step 4) and t-Att (step 5)

operators by a concatenation, with z′′t = ([zt−k, . . . , zt]).

▷ DyGED-NL (no LSTM): Removes the LSTM operator (step 4) from Algorithm 1,

with z′′t = t-Att([zt−k; . . . ; zt]).

▷ DyGED-NA (no attention): Removes the temporal self-attention operator t-Att (step

5), with z′′t = z′t.

19

Event Detection on Dynamic Graphs Chapter 2

Time Complexity

Table 2.1 shows the time complexities for different variations of DyGED discussed

in this section. Our methods are scalable as the time complexities are linear with the

number of vertices (n) and edges (m) in the input graph.

GCN + Pooling LSTM t-Att MLP

DyGED-CT O((mh+ nh2)l1) - - O(kh2 + h2l2)
DyGED-NL O((mh+ nh2)l1) - O(kh2) O(h2l2)
DyGED-NA O((mh+ nh2)l1) O(h2) - O(h2l2)
DyGED O((mh+ nh2)l1) O(h2) O(kh2) O(h2l2)

Table 2.1: Time complexities of our methods: m,n, h, l1, k, l2 denote numbers of edges,
nodes, embedding dimension, layers in GCN, past snapshots, layers in MLP. We as-
sume the initial node feature dimension for GCN, input, cell, and output dimension
for LSTM equal to embedding dimension h.

2.5 Experiments

We evaluate DyGED—which is our approach for event detection on dynamic graphs—

and its variations using a diverse set of datasets. We compare our solutions against

state-of-the-art baselines for event detection, graph classification, and dynamic GNNs in

terms of accuracy (Sec. 2.5.3) and efficiency (Sec. 2.5.7). We also provide a visualization

of prediction scores to give more insight into the results (Sec. 2.5.4. Furthermore, we

present more studies to have a more detailed picture of the effectiveness of DyGED across

representative application scenarios using event embeddings (Sec. 2.5.6), importance

via attention (Sec. 2.5.5), and ablation study including feature and pooling operator

variations (Sec. 2.5.8). The implementation of DyGED and datasets are available online:

https://www.github.com/mertkosan/DyGED.

20

https://www.github.com/mertkosan/DyGED

Event Detection on Dynamic Graphs Chapter 2

NYC Cab Hedge Fund TW TW-Large

#Nodes (avg) 263 330 300 1000
#Edges (avg) 3717 557 1142 10312
#static features 6 5 300 300

#dynamic features 3 3 3 3
#Snapshots 4464 690 2557 2557
Snap. Period hour day day day

#Events 162 55 287 287

Table 2.2: The statistics of the datasets. TW is Twitter Weather.

2.5.1 Datasets

Table 2.2 shows the main statistics of our datasets. The snapshot period is the

interval [timet, timet +∆p) covered by each snapshot Gt, where ∆p denotes the period.

These datasets are representatives of relevant event detection applications. NYC Cab is

an example of a mobility network with geo-tagged mass-gathering events (e.g., concerts,

protests). Hedge Fund is a communication network for decision making in high-risk

environments—as in other business settings and emergency response. Twitter Weather

relates user-generated content with extreme events (e.g., terrorist attacks, earthquakes).

NYC Cab: Dataset based on sports events and hourly numbers of passengers trans-

ported between cab zones in NYC.1 Nodes, edges, and their weights represent cab zones,

inter-zone trips, and numbers of passengers transferred, respectively. Static node features

are lat-long coordinates, boroughs, lengths, areas, and service zones. Dynamic features

are the node degree, betweenness centrality, and clustering coefficient within a snapshot

(i.e. one hour period). Baseball games involving the Yankees or the Mets in NYC are

the events of interest.

Hedge Fund [11]: Dynamic network of employees at a hedge fund and their com-

munications. Stock market shocks between January 2009 and September 2011 are the

events. Nodes, edges, and edge weights represent employees, communications, and the

1https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page

21

https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page

Event Detection on Dynamic Graphs Chapter 2

total number of messages exchanged, respectively. Node features are employee’s personal

information such as company name, hiring time, gender, and position. We consider the

node degree, betweenness centrality, and clustering coefficient as dynamic features. Each

snapshot covers activities in a day, and events are price shocks—unexpected changes

[11]— in the S&P500.

Twitter Weather: Dataset integrating weather-related tweets and significant

weather events in the US from 2012 to 2018. Tweets were extracted from a large corpus

made available by the Internet Archive2. Nodes, edges, and edge weights represent En-

glish words, word co-occurrences, and the number of co-occurrences, respectively. Start-

ing from a small set of weather-related words, we employed an existing algorithm [59] to

expand the set to 300 words. Pre-trained word2vec3 [60] vectors were applied as static

node features, whereas dynamic features are the node degree, betweenness centrality, and

clustering coefficient during a one day interval. Weather events—with monetary damage

of at least $50M—were collected from the US National Climatic Data Center records.4

We also created a larger version of Twitter Weather with 1000 words.

2.5.2 Experimental Settings

Baselines:

We consider recent approaches that either focus on micro (node-level) dynamics [23,

21, 50] or are designed for graph classification [55]. If it is necessary, we apply our v-Att

module (see Section 2.4.1) to get graph embeddings from node embeddings.

▷ DynGCN [23]: State-of-the-art architecture for event detection that combines rep-

resentations from a GCN at each snapshot with a temporal encoder that carries in-

2https://archive.org/details/twitterstream
3https://code.google.com/archive/p/word2vec/
4https://www.ncdc.noaa.gov/stormevents/

22

https://archive.org/details/twitterstream
https://code.google.com/archive/p/word2vec/
https://www.ncdc.noaa.gov/stormevents/

Event Detection on Dynamic Graphs Chapter 2

formation from the past.

▷ EvolveGCN [21]: Combines recurrent and graph convolutional neural networks to

generate dynamic node embeddings.

▷ ASTGCN [50]: Graph convolutional network originally proposed for traffic predic-

tion. It combines spatial and temporal-attention mechanisms. We adapt ASTGCN

to our problem setting by considering k previous time dependencies instead of daily,

weekly, and monthly ones.

▷ DiffPool [55]: Computes graph embeddings via a differentiable graph pooling

method. Because this model is designed for classification, it does not account for

the dynamics.

Other Settings

Train/Test Splits: We evaluate the methods using p-fold nested cross-validation

[61], where p was set based on event frequency. Each method runs 20 times per train/test

split (at least 100 repetitions/method), and we report average results. Train/test splits of

3720/744, 575/115, and 2192/365 snapshots are applied for the NYC Cab, Hedge Fund,

Twitter Weather datasets, respectively.

Ratio of positive and negative samples: Overall percentages of positive sam-

ples (events) are 3.62%, 7.97%, and 11.22% for the NYC Cab, Hedge Fund, and Twitter

Weather dataset, respectively. As we use nested cross-validation, train/test event ratios

vary (depending on the fold) from/to 3.46/4.18%-3.61/3.37%, 3.57/12.5%-8.37/7.14%

and 11.17/18.23%-13.53/4.14% for NYC Cab, Hedge Fund, and Twitter Weather respec-

tively.

Hyper-parameters: We tune the hyper-parameters of our methods and baselines

with a grid search. We find that training using Adam optimization with learning rate,

dropout rate, and the batch size set to 0.005, 0.2, and 100, respectively, works well for

23

Event Detection on Dynamic Graphs Chapter 2

our methods. The number of GCN layers, MLP layers, the size of the embedding set to

2, 2, and 64, respectively, are good choices for model parameters.

Quality metric: We compare the quality of the predictions by the methods using

the Area under the ROC curve (AUC) [57].

Hardware: We run our experiments on a machine with NVIDIA GeForce RTX 2080

GPU (8GB of RAM) and 32 Intel Xeon CPUs (2.10GHz and 128GB of RAM).

Method NYC Cab Hedge Fund TW TW Large

Baselines:
Micro Dynamics

EvolveGCN 0.842∗∗ ± 0.008 0.718∗∗ ± 0.011 0.782∗∗ ± 0.012 0.731∗∗ ± 0.011
ASTGCN 0.903∗∗ ± 0.003 0.753∗ ± 0.022 0.747∗∗ ± 0.018 0.722∗∗ ± 0.014
DynGCN 0.901∗∗ ± 0.003 0.679∗∗ ± 0.030 0.713∗∗ ± 0.012 0.709∗∗ ± 0.007

Classification DiffPool 0.887∗∗ ± 0.003 0.690∗∗ ± 0.020 0.766∗∗ ± 0.014 0.728∗∗ ± 0.007

Proposed:
Macro Dynamics

DyGED-CT 0.910± 0.009 0.776± 0.012 0.775∗∗ ± 0.014 0.743∗∗ ± 0.014
DyGED-NL 0.912± 0.004 0.779∗ ± 0.012 0.791∗∗ ± 0.014 0.752∗ ± 0.020
DyGED-NA 0.896∗∗ ± 0.004 0.784∗ ± 0.014 0.800∗ ± 0.009 0.734∗∗ ± 0.012
DyGED 0.905∗ ± 0.004 0.787± 0.015 0.810± 0.012 0.760± 0.014

Table 2.3: AUC scores of event detection methods. The highest and second highest
values for each column are in bold and underlined, respectively. Our methods, ac-
counting for macro dynamics, achieve the best results, outperforming the best baseline
(ASTGCN) by 4.5% on average and up to 8.5% (on Twitter Weather). We performed
a paired t-test comparing the best model against the others (markers ** and * indicate
p-value < .01 and < .05, respectively).

2.5.3 Event Detection Accuracy

Table 2.3 shows the event detection accuracy results in terms of AUC. For the ap-

proaches that consider a sliding window, reported results are the best ones among window

sizes (k + 1) varying from one to five. The optimal window size for all these methods is

either four or five. We use only static node features in our main experiments, and the

effect of dynamic features will be shown in Section 2.5.8.

Results show that DyGED outperforms the competing approaches in all datasets.

In particular, DyGED outperforms ASTGCN—best baseline—by 0.2%, 4.5%, 8.5%, and

24

Event Detection on Dynamic Graphs Chapter 2

5.2% for NYC Cab, Hedge Fund, Twitter Weather, and Twitter Weather Large, re-

spectively (4.5% on average). Notice that, different from most baselines, our approach

captures the macro-dynamics correlated with events. DyGED-NL and DyGED, which

adopt temporal self-attention, achieve the best results indicating that it enables the

learning of adaptive weights for different snapshots/times. Moreover, DyGED-NA and

DyGED—using recurrent neural network to capture the macro dynamics—achieve better

performance for the Hedge Fund and Twitter Weather datasets.

S&
P5

00

"Worst day of the year
for Dow, S&P 500"

"Stocks plunge, S&P
goes negative for year"

Ev
ol

ve
GC

N
AS

TG
CN

Dy
GE

D-
CT

Dy
GE

D-
NA

time (day)

Dy
GE

D

Figure 2.2: Scaled prediction scores ([0, 1]) given by some of the event detection
methods for Hedge Fund. Events are marked as vertical (red) lines. The first (grey)
half covers some of the training events, while the remaining (white) is in the test set.
Some events are annotated for illustration. Hedge Fund annotations are headlines
from CNBC on the day of the event. Our method DyGED can identify several of the
events while keeping the false positive rate lower.

25

Event Detection on Dynamic Graphs Chapter 2

2.5.4 Visualization of Event Scores

Besides evaluating event detection approaches in terms of accuracy, it is also impor-

tant to analyze how event scores are related to true events in the data. This is particularly

relevant when events are determined based on a threshold.

Figure 2.2 shows the prediction scores for a set of events from the Hedge Fund dataset.

It illustrates how events are distributed over time and also how specific events are pre-

dicted by the methods. Events are marked as vertical (red) lines. Moreover, scores are

(min-max) scaled versions of the event (yes) class score (i.e. Yt,1, as defined in Section

2.4.1).

We show events and scores for part of the training window (in gray) and also the

complete test window (in white) of a particular fold. We also show the value of the

S&P500 index and some headlines of the day from the business section of the CNBC

News website.5 These visualizations provide important insights regarding the nature of

events in these datasets and also about the performance of event detection schemes.

Notice that prediction scores are correlated with events across methods, particularly

the top-performing ones. However, most methods tend to suffer from false positive errors.

This shows that the relationship between the graph dynamics and events is often weak

(or noisy), which is a challenge for event detection methods.

Prediction scores also give us a better understanding of the differences between our

method (DyGED) and baselines EvolveGCN and ASTGCN. Different from DyGED,

these baselines capture the micro (or node-level) dynamics of the graph. On the other

hand, our approach focuses on the macro (or graph-level) dynamics. First, DyGED is

effective at fitting the training data. Moreover, DyGED also achieves better performance

during testing, producing significantly fewer false positives. These results are consistent

5https://www.cnbc.com

26

https://www.cnbc.com

Event Detection on Dynamic Graphs Chapter 2

with the quantitative analysis provided in Section 2.5.3.

(a) DyGED Attentions (b) Betweenness (c) Clustering

Baseball Stadium

(d) Degree

Figure 2.3: Top 10 taxi zones (in red) based on various metrics for NYC Cab dataset.
Attention mechanism finds closer taxi zones to the stadiums compared to some node
statistics such as betweenness centrality, clustering coefficient, and node degree. In
other words, DyGED detects more crucial nodes for Baseball game detection.

2.5.5 Importance via Attention

DyGED applies node and time self-attention weights for event detection. Here, we

analyze these attention weights as a proxy to infer importance node and time importance.

We notice that the use of attention weights for interpretability is a contentious topic in

the literature [62, 63, 64]. Still, we find that these learned weights to be meaningful

for our datasets. They also provide interesting insights regarding the role played by

self-attention in our model.

Node Attention

A critical task in event detection on graphs is to measure the importance of nodes and

subgraphs [65] based on the events of interest. As a step towards answering this question,

we analyze attention weights learned the v-Att(.) operator—normalized by the softmax

function. For each node, we compute the average weight learned. For a comparison, we

also consider the following classical node importance measures from the network science

27

Event Detection on Dynamic Graphs Chapter 2

0th 1st 2nd 3rd

previous snapshot

0.1
0.2
0.3
0.4
0.5
0.6

at
te

nt
io

n
we

ig
ht

s

(a) NYC Cab

0th 1st 2nd 3rd

previous snapshot

0.15

0.20

0.25

0.30

0.35

at
te

nt
io

n
we

ig
ht

s
(b) Hedge Fund

0th 1st 2nd 3rd

previous snapshot

0.23

0.24

0.25

0.26

0.27

at
te

nt
io

n
we

ig
ht

s

(c) Twitter Weather

Figure 2.4: Illustration of the attention weights (normalized) of current and previous
three snapshots for all datasets. While in NYC Cab, the current snapshot has more
attention weights than the previous ones, attention weights in the Hedge Fund and
Twitter datasets reveal more about the importance of temporal information. Results
show that history plays a role in predicting the event. 0th refers to the current snap-
shot.

literature: degree, betweenness centrality, and clustering coefficient.

Figure 2.3 shows the top 10 most important taxi zones based on each importance

measure for the NYC Cab dataset. Our attention weights find taxi zones near the

baseball stadiums, whereas topology-based baseline measures select stations in downtown

Manhattan and the airports. In Twitter Weather, where nodes are words, our solution

set contains “fire”, “warm”, “tree”, and “snow” as the top words while the topology-

based baselines have “weather”, “update”, “fire”, and “barometer”. The results show

that words found using our measure are more strongly associated with events of interest.

Time (Snapshot) Attention

We also propose a time importance module that uses temporal self-attention weights

via the function t-Att(.), to measure how the past snapshots (time) affect event detection.

Similar to the node attention weights, the attention values here also signify the value

of the information from the snapshots. We use three previous (i.e., k = 4) and the

28

Event Detection on Dynamic Graphs Chapter 2

current snapshot in our experiments. Figure 2.4 shows the attention weights (output of

softmax) for snapshots (with mean and standard deviation). For NYC Cab, the current

snapshot has significantly higher weights. However, the remaining datasets reveal more

interesting attention patterns. For instance, in Hedge Fund, the importance of earlier

weights can be associated with the definition of an event—a stock market shock. For

Twitter Weather, events often last several days, and thus weights are expected to be

more uniformly distributed.

None
Yankees
Mets

(a) NYC Cab

None
Up
Down

(b) Hedge Fund

None
Blizzard
Hurricane
Flood
Wildfire
Tornado
Storm
Extreme

(c) Twitter Weather

Figure 2.5: An illustration of how DyGED graph embeddings support event diagnosis
for three datasets. For each snapshot window Gt−k:t, we assign an event case (e.g.
game at Yankees or Mets stadium for NYC Cab) or None. Results show that event
causes tend to form clusters in the embedding for all datasets. Thus, events can be
automatically diagnosed based on a few manually diagnosed ones in their embedding
neighborhood. Better seen in color.

2.5.6 Event Embeddings and Diagnosis

Figure 2.5 shows graph embeddings produced by DyGED for our three datasets. Each

point corresponds to a sequence of snapshots Gt−k:t. These are the same embeddings

given as input to the MLP in our architecture. We set the number of dimensions h

of the embeddings originally to 64 and then project them to 2-D using tSNE [66]. We

also annotate each embedding with the type/cause of the event. For NYC Cab, we

consider the stadium (Yankees or Mets) where the game takes place. For Hedge Fund, we

distinguish between up and down shocks. For Twitter Weather, we use the classification

29

Event Detection on Dynamic Graphs Chapter 2

from the US National Weather Service (blizzard, hurricane, flood, wildfire, tornado, storm

and extreme).6 Notice that this additional information is not used for event detection.

As desired, events often form clusters in the embedding space for all datasets. That

illustrates the ability of DyGED to produce discriminative representations that enable

the classifier to identify events. However, notice that events and non-events are not

completely separated in 2-D embeddings produced by DyGED which outperform all the

baselines. This suggests that the event detection problem on dynamic graphs might be

non-trivial.

It is also interesting to analyze whether DyGED embeddings can be useful for event

diagnosis, which consists of providing users with information that enables the identifi-

cation of causes for the events [67, 68]. More specifically, embeddings might capture

not only whether an event occurs or not but also the nature of the event—i.e. events

with the same cause are embedded near each other. Our results show that events of the

same type/cause tend to cluster in the embedding space. In particular, in the Twitter

Weather dataset, events of type ‘Extreme’ and ‘Storm’ could be potentially diagnosed

using a simpler nearest neighbors scheme.

2.5.7 Event Detection Efficiency

Table 2.4 shows testing times (in secs.) for a batch size of 100 data points for NYC

Cab, Hedge Fund, Twitter Weather, and Twitter Weather Large, respectively. The

window size is set to 4. Results show that DyGED is scalable—up to 206 and 29 times

faster than the top 2 baselines (ASTGCN and EvolveGCN, respectively).

6https://www.ncdc.noaa.gov/stormevents/pd01016005curr.pdf

30

https://www.ncdc.noaa.gov/stormevents/pd01016005curr.pdf

Event Detection on Dynamic Graphs Chapter 2

NYC Cab Hedge Fund TW TW-Large

EvolveGCN 1.912 0.303 0.949 4.65
ASTGCN 13.57 2.131 6.916 24.41
DynGCN 0.064 0.019 0.080 0.622
DiffPool 0.057 0.016 0.045 0.482
DyGED 0.066 0.017 0.048 0.479

Table 2.4: Testing times (in secs.) for all the methods with windows length k+1 set
to 4. DyGED is scalable and up to 206 times faster than the best baseline, ASTGCN.

2.5.8 Ablation Study

Feature Variation

We also calculate three graph statistics as dynamic node features: node degree, be-

tweenness centrality, and clustering coefficient. Table 2.5 shows results for static-only,

dynamic-only, and static+dynamic node features for DyGED and the best baseline (AST-

GCN) using all datasets. Results show that static features are often more relevant than

dynamic ones—NYC Cab is the exception. Moreover, combining static and dynamic

features often improves performance. We notice that for Twitter Weather (TW), static

features (word embeddings) are quite expressive.

Method NYC Cab Hedge Fund Twitter Weather

ASTGCN-S 0.903 0.753 0.774
DyGED-S 0.905 0.787 0.810
ASTGCN-D 0.894 0.741 0.747
DyGED-D 0.911 0.786 0.765

ASTGCN-SD 0.905 0.763 0.751
DyGED-SD 0.925 0.798 0.815

Table 2.5: AUC scores of DyGED and the best baseline method ASTGCN with
different sets of node features. -S, -D, -SD suffixes are for static-only, dynamic-only,
static+dynamic node features, respectively. TW is the Twitter Weather dataset.

31

Event Detection on Dynamic Graphs Chapter 2

Pooling Operator Variation

Mean and max operators are two of the most common pooling operators in convolu-

tional networks [69]. They have been used for down-sampling the data and their useful-

ness depends on the application and the dataset [70]. We compare these operators against

self-attention graph pooling (Section 2.4.1). Table 2.6 shows that the self-attention oper-

ator (DyGED) outperforms the other operators for all datasets. These results highlight

the importance of adaptive node weighting when capturing the macro dynamics for event

detection, one of the essentials of our approach.

Method NYC Cab Hedge Fund Twitter Weather

DyGED-Mean 0.879 0.704 0.773
DyGED-Max 0.880 0.729 0.729

DyGED 0.905 0.787 0.810

Table 2.6: AUC scores of our event detection method DyGED equipped with differ-
ent pooling operators. Attention pooling outperforms mean and max pooling for all
datasets using our method DyGED. TW is the Twitter Weather data.

2.6 Conclusions

This paper is focused on event detection on dynamic graphs. We have proposed a

deep learning based method, DyGED, which learns correlations between the graph macro

dynamics—i.e. a sequence of temporal graph representations—and events. We compared

DyGED against multiple baselines using a representative set of datasets. Our approach

outperformed the baselines in accuracy while being more scalable than the most effective

one. We also showed how our method could be applied for event diagnosis as well as

to provide interpretability via self-attention on nodes and snapshots. In future work,

we want to develop hierarchical event detection architectures that are able to combine

macro and micro dynamics. We are also interested in designing even more interpretable

32

Event Detection on Dynamic Graphs Chapter 2

models for event detection on graphs so that the discovered events can be associated with

subgraphs and their dynamics.

2.7 Future Works - Multi-scale Anomalies [1]

Detecting suspicious patterns in attributed networks, such as transaction networks, is

crucial for addressing vulnerabilities, yet challenging due to limited knowledge of anomaly

characteristics. We focus on identifying cohesive anomalous communities operating at

different scales based on size and deviation from normal node behavior. To address

this, we propose an unsupervised framework using graph autoencoders to reconstruct

the graph at multiple scales, flagging anomalous nodes based on unstable embeddings

and poor reconstructions.

In their work, Tang et al. [71] analyze anomalous graphs by evaluating the spectral

energy distribution. To further explore this analysis, we conduct spectral analysis to de-

termine if multi-scale anomalies exhibit distinct spectral behavior. Figure 2.6 illustrates

that anomalous graphs at different scales exhibit dominant frequency bands on Cora

dataset [72], supporting the hypothesis that anomaly scale influences the spectral charac-

teristics. While Tang et al. assume high spectral energy around λ = 1, our experimental

results demonstrate that anomalies of varying scales exhibit unique spectral behavior.

For instance, anomalies with scale 1 (anomalous clusters of size 10) dominate at λ = 1.2,

scale 2 (anomalous clusters of size 50) at λ = [0.8, 0.1], scale 3 (anomalous clusters of

size 150) at λ = 0.6, and single-node anomalies dominate the higher frequency band

at λ = 1.4. Therefore, our proposed method should account for distinguishing between

anomalies of different scales by leveraging their distinctive spectral characteristics.

In order to focus on unsupervised learning, our proposed approach utilizes graph

autoencoders to reconstruct the graph structure, training the encoder using the recon-

33

Event Detection on Dynamic Graphs Chapter 2

Figure 2.6: Spectral energy distributions of normal nodes, node-level anomalies, and
three subgraph-level anomalies at different scales for Cora with injected anomalies.
The spectral energy distributions of anomalous nodes concentrate more on the high
frequency regions.

struction error. The decoder simply employs the inner product of node embeddings.

The difference between the actual graph and the reconstructed graph yields the recon-

struction error, calculated for each element (edge) individually. To compute node-level

reconstruction, we consider the edges connected to each specific node.

To capture distinctive spectral patterns of multi-scale anomalies, we introduce the

use of Beta Wavelet Graph Neural Networks (GNNs) [71] for learning node embeddings

in our encoders. The Beta wavelet kernel, characterized by hyperparameters p and q, is

defined as Wp,q = βp,q(L) =
(L/2)p(I−L/2)q

2B(p+1,q+1)
, where B(p+ 1, q + 1) = p!q!

(p+q+1)!
is a constant.

Beta kernels can effectively capture anomalies at different scales compared to the more

commonly used heat kernels in GNNs. Figure 2.7 provides a visual comparison of the

spectral properties between heat kernels and Beta kernels with varying hyperparameters.

We employ τ Beta wavelets, where p and q are integers satisfying p, q ∈ Z+ and

p + q ⩽ τ , to generate embeddings Z0,τ , Z1,τ−1, · · · , Zτ,0. In Eq. 2.1, a scale-specific

34

Event Detection on Dynamic Graphs Chapter 2

0.0 0.5 1.0 1.5 2.0
λ

0.0

0.2

0.4

0.6

0.8

1.0
ex

p(
−τ

λ)
τ=1
τ=2
τ=4
τ=8
τ=16

(a) Heat Kernels

0.0 0.5 1.0 1.5 2.0
λ

0.0

0.5

1.0

1.5

2.0

2.5

β p
,q

(λ
)

p= 0, q= 4
p= 1, q= 3
p= 2, q= 2
p= 3, q= 1
p= 4, q= 0

(b) Beta Kernels

Figure 2.7: Spectral properties of heat kernels and Beta kernels are compared, with
the latter incorporating diverse band-pass filters to enable the detection of anomalies
at multiple scales.

wavelet, parameterized by unique values of p and q, is applied to the transformed input

features. In contrast, we utilize these scale-specific embeddings for scale-specific graph

reconstruction. The final embedding is obtained as a weighted sum of the multi-scale

filter outputs in Eq. 2.2 using a learned weight vector α. For each embedding Zp,q, we

generate a scale-specific graph reconstruction.

Z(s)
p,q = Wp,qMLPs(X) (2.1)

Z(s) =

τ,0∑
p=0,q=τ

α(s)
p,qZ

(s)
p,q (2.2)

In our subsequent steps, we will compare our method with competing baselines in

terms of detecting node or subgraph-level anomalies. If the competing methods are

designed for supervised learning, we will adapt their loss functions to unsupervised ones

to ensure a fair comparison. As datasets may vary, we also aim to investigate which filters

are responsible for detecting anomalies at specific scales by analyzing the α parameters.

35

Chapter 3

Global Counterfactual Explainer for

Graph Neural Networks

3.1 Introduction

Graph Neural Networks (GNNs) [13, 14, 73, 74, 75, 76] are being used in many

domains such as drug discovery [77], chip design [78], combinatorial optimization [79],

physical simulations [80, 81] and event prediction [82, 83, 84]. Taking the graph(s) as

input, GNNs are trained to perform various downstream tasks that form the core of

many real-world applications. For example, graph classification has been applied to

predict whether a drug would exhibit the desired chemical activity [77]. Similarly, node

prediction is used to predict the functionality of proteins in protein-protein interaction

networks [85] and categorize users into roles on social networks [86].

Despite the impressive success of GNNs on predictive tasks, GNNs are black-box

machine learning models. It is non-trivial to explain or reason why a particular

prediction is made by a GNN. Explainability of a prediction model is important to

understand its shortcomings and identify areas for improvement. In addition, the ability

36

Global Counterfactual Explainer for Graph Neural Networks Chapter 3

to explain a model is critical towards making it trustworthy. Owing to this limitation of

GNNs, there has been significant efforts in recent times towards explanation approaches.

Existing work on explaining GNN predictions can be categorized mainly in two

directions: 1) factual reasoning [65, 87, 88, 89], and 2) counterfactual reasoning

[90, 91, 92, 93]. Generally speaking, the methods in the first category aim to find

an important subgraph that correlates most with the underlying GNN prediction. In

contrast, the methods with counterfactual reasoning attempt to identify the smallest

amount of perturbation on the input graph that changes the GNN’s prediction, for

example, removal/addition of edges or nodes.

CH

O

H
(a) Formaldehyde

CH

O

O H
(b) Formic acid

Figure 3.1: Formaldehyde (a) is classified by a GNN to be an undesired mutagenic
molecule with its important subgraph found by factual reasoning highlighted in red.
Formic acid (b) is its non-mutagenic counterfactual example obtained by removing
one edge and adding one node and two edges.

Compared to factual reasoning, counterfactual explainers have the additional

advantage of providing the means for recourse [94]. For example, in the applications of

drug discovery [77, 95], mutagenicity is an adverse property of a molecule that hampers

its potential to become a marketable drug [96]. In Figure 3.1, formaldehyde is classified

by a GNN to be mutagenic. Factual explainers can attribute the subgraph containing

the carbon-hydrogen bond to the cause of mutagenicity, while counterfactual explainers

provide an effective way (i.e., a recourse) to turn formaldehyde into formic acid, which

is non-mutagenic, by replacing a hydrogen atom with a hydroxyl.

In this work, we focus on counterfactual explanations. Our work is based on the

observation that existing counterfactual explainers [65, 87, 88, 89] for graphs take a local

37

Global Counterfactual Explainer for Graph Neural Networks Chapter 3

perspective, generating counterfactual examples for individual input graphs. However,

this approach has two key limitations:

▷ Lack of global insights: It is desirable to offer insights that generalize across a

multitude of data graphs. For example, instead of providing formic acid as a coun-

terfactual example to formaldehyde, we can summarize global recourse rules such as

“Given any molecule with a carbonyl group (carbon-oxygen double bond), it needs a hy-

droxy to be non-mutagenic”. This focus on global counterfactual explanation promises

to provide higher-level insights that are complementary to those obtained from local

counterfactual explanations.

▷ Information overload: The primary motivation behind counterfactual analysis is

to provide human-intelligible explanations. With this objective, consider real-world

graph datasets that routinely contain thousands to millions of graphs. Owing to

instance-specific counterfactual explanations, the number of counterfactual graphs

grows linearly with the graph dataset size. Consequently, the sheer volume of

counterfactual graphs overloads human cognitive ability to process this information.

Hence, the initial motivation of providing human-intelligible insights is lost if one

does not obtain a holistic view of the counterfactual graphs.

Contributions: In this paper, we study the problem of model-agnostic, global counter-

factual explanations of GNNs for graph classification. More specifically, given a graph

dataset, our goal is to counterfactually explain the largest number of input graphs with

a small number of counterfactuals. As we will demonstrate later in our experiments, this

formulation naturally forces us to remove redundancy from instance-specific counterfac-

tual explanations and hence has higher information density. Algorithmically, the pro-

posed problem introduces new challenges. We theoretically establish that the proposed

problem is NP-hard. Furthermore, the space of all possible counterfactual graphs itself is

38

Global Counterfactual Explainer for Graph Neural Networks Chapter 3

exponential. Our work overcomes these challenges and makes the following contributions:

▷ Novel formulation: We formulate the novel problem of global counterfactual rea-

soning/explanation of GNNs for graph classification. In contrast to existing works on

counterfactual reasoning that only generate instance-specific examples, we provide an

explanation on the global behavior of the model.

▷ Algorithm design: While the problem is NP-hard, we propose GCFExplainer,

which organizes the exponential search space as an edit map. We then perform vertex-

reinforced random walks on it to generate diverse, representative counterfactual can-

didates, which are greedily summarized as the global explanation.

▷ Experiments: We conduct extensive experiments on real-world datasets to validate

the effectiveness of the proposed method. Results show that GCFExplainer not

only provides important high-level insights on the model behavior but also outper-

forms state-of-the-art baselines related to counterfactual reasoning in various recourse

quality metrics.

3.2 Global Counterfactual Explanations

This section introduces the global counterfactual explanation (GCE) problem for

graph classification. We start with the background on local counterfactual reasoning.

Then, we propose a representation of the global recourse rule that provides a high-level

counterfactual understanding of the classifier behavior. Finally, we introduce quality

measures for recourse rules and formally define the GCE problem.

3.2.1 Local Counterfactual

Consider a graph G = (V,E), where V and E are the sets of (labelled) nodes and

edges respectively. A (binary) graph classifier (e.g., a GNN) ϕ classifies G into either the

39

Global Counterfactual Explainer for Graph Neural Networks Chapter 3

undesired class (ϕ(G) = 0) or the desired one (ϕ(G) = 1). An explanation of ϕ seeks

to answer how these predictions are made. Those based on factual reasoning analyze

what properties G possesses to be classified in the current class while those based on

counterfactual reasoning find what properties G needs to be assigned to the opposite

class.

Existing counterfactual explanation methods take a local perspective. Specifically,

for each input graph G, they find a counterfactual (graph) C that is somewhat similar

to G but is assigned to a different class. Without loss of generality, let G belong to

the undesired class, i.e., ϕ(G) = 0, then the counterfactual C satisfies ϕ(C) = 1. The

similarity between C and G is quantified by a predefined distance metric d, for example,

the number of added/removed edges [90, 91].

In our work, we consider the graph edit distance (GED) [97], a more general distance

measure, as the distance function to account for other types of changes. Specifically,

(G1, G2) counts the minimum number of “edits” to convert G1 to G2. An “edit” can be

the addition or removal of edges and nodes, or change of node labels (see Figure 3.2).

Moreover, to account for graphs of different sizes, we normalize the GED by the sizes of

graphs: (̂G1, G2) = (G1, G2)/(|V1|+ |V2|+ |E1|+ |E2|). Nonetheless, our method can be

applied with other graph distance metrics, such as those based on graph kernels (e.g.,

RW [98], NSPDG [99], WL [100]).

The distance function measures the quality of the counterfactual found by the ex-

planation model. Ideally, the counterfactual C should be very close to the input graph

G while belonging to a different class. Formally, we define the counterfactuals that are

within a certain distance θ from the input graph as close counterfactuals.

Definition 1 (Close Counterfactual). Given the GNN classifier ϕ, distance parameter

θ, and an input graph G with undesired outcome, i.e., ϕ(G) = 0; a counterfactual graph,

40

Global Counterfactual Explainer for Graph Neural Networks Chapter 3

Node/edge addition

Node/edge
removal Node label change

Figure 3.2: Edits between graphs.

C, is a close counterfactual of G when ϕ(C) = 1 and d(G,C) ⩽ θ.

While the (close) counterfactual C found by existing methods explains the classifier

behavior for the corresponding input graph G, it is hard to generalize to understand the

global pattern. Next, we introduce the global recourse rule that provides a high-level

summary of the classifier behavior across different input graphs.

3.2.2 Global Recourse Representation

The global counterfactual explanation requires a global recourse rule r. Specifically,

for any (undesired) input graph G with ϕ(G) = 0, r provides a (close) counterfactual (i.e.,

a recourse) for G: ϕ(r(G)) = 1. While both a recourse rule and a local counterfactual

explainer find a counterfactual given an input graph, their goals are different. The goal

of the local counterfactual explainer is to find the best (closest) counterfactual possible

for each input graph, and therefore, r can be very complicated, e.g., in the form of an

optimization algorithm [91, 93]. On the other hand, a recourse rule aims to provide

an explanation of the classifier’s global behavior, which requires a simpler form that is

understandable for domain experts without prior knowledge of deep learning on graphs.

Existing global recourse rules for classifiers with feature vectors as input take the

41

Global Counterfactual Explainer for Graph Neural Networks Chapter 3

form of short decision trees [101]. However, this is hard to be generalized to graph

data with rich structure information. Instead, we propose the representation of a global

recourse rule for a graph classifier to be a collection of counterfactual graphs C in the

desired class that are diverse and representative enough to capture its global behavior.

This representation does not require any additional knowledge for domain experts to

understand and draw insights from, similar to the local counterfactual examples. It

is also easy to find the local counterfactual for a given input graph G based on C by

nominating the closest graph in C: r(G) = argminC∈C d(G,C).

3.2.3 Quantifying Recourse Quality

Given a graph classifier ϕ and a set of n input graphs G in the undesired class, we

want to compare the quality of different recourse representations C. Similar to the quality

metrics introduced for vector data [101], we aim to account for the following factors:

1. Coverage: Like local counterfactual explainers, we want to ensure that counterfac-

tuals found for individual input graphs are of high quality. Specifically, we introduce

recourse coverage—the proportion of input graphs that have close counterfactuals

from C under a given distance threshold θ:

(C) = |{G ∈ G | min
C∈C
{d(G,C)} ⩽ θ}|/|G|

2. Cost: Another quality metric based on local counterfactual quality is the recourse

cost (i.e., the distance between the input graph and its counterfactual) across the

input graphs:

(C) =G∈G {min
C∈C
{d(G,C)}}

where is an aggregation function, e.g., mean or median.

42

Global Counterfactual Explainer for Graph Neural Networks Chapter 3

3. Interpretability: Finally, the recourse rule should be easy (small) enough for

human cognition. We quantify the interpretability as the size of recourse represen-

tation:

(C) = |C|

3.2.4 Problem Formulation and Characterization

An ideal recourse representation should maximize the coverage while minimizing the

cost and the size. Formally, we define the global counterfactual explanation problem as

follows:

Problem 1 (Global Counterfactual Explanation for Graph Classification (GCE)). Given

a GNN graph classifier ϕ that classifies n input graphs G to the undesired class 0 and a

budget k ≪ n, our goal is to find the best recourse representation C that maximizes the

recourse coverage with size k:

max
C

(C) s.t. (C) = k

We note that in our problem formulation only coverage and size are explicitly

accounted for, whereas cost is absent. We make this design choice since cost and

coverage are intrinsically opposing forces. Specifically, if we are willing to allow a high

cost, coverage increases since we allow for higher individual distances between an input

graph and its counterfactual. Therefore, we take the approach of binding the cost to

the distance threshold θ in the coverage definition. Nonetheless, an explicit analysis

of all these metrics including cost is performed to quantify recourse quality during our

empirical evaluation in Section 3.4. Below we discuss the hardness of GCE.

Theorem 1 (NP-hardness). The GCE problem is NP-hard.

43

Global Counterfactual Explainer for Graph Neural Networks Chapter 3

Proof:

To establish NP-hardness of the proposed problem we reduce it from the classical

Maximum Coverage problem.

Definition 2 (Maximum Coverage). Given a budget k and a collection of subsets S =

{S1, · · · , Sm} from a universe of items U = {u1, · · · , un}, find a subset S ′ ⊆ S of sets

such that |S ′| ⩽ k and the number of covered elements |
⋃

∀Si∈S′ Si| is maximized.

We show that given any instance of a maximum coverage problem ⟨S, U⟩, it can be

mapped to a GCE problem. For ui, we construct a star graph with a center node with

an empty label and n leaf nodes with n − 1 empty labels and one label ui. For Si, we

construct a similar star graph with a center node with a special label γ and n leaf nodes

with |Si| labeled with the elements in Si and n− |Si| with empty labels. The classifier ϕ

classifies a graph as a desired one if and only if it is a star graph with a γ-labeled central

node and n leaf nodes with a set of labels among S = {S1, · · · , Sm}. The allowed edit

operations are either adding or deleting a set of labels (as a single edit), but not both

together. So, each Si corresponds to a counterfactual candidate Ci and d(Gj, Ci) ⩽ θ = 1

if and only if uj ∈ Si. With this construction, it is easy to see that an optimal solution

for this instance of GCE is the optimal solution for the corresponding instance of the

maximum coverage problem.

Owing to NP-hardness, it is not feasible to identify the optimal solution for the

GCE problem in polynomial time unless NP = P. In the next section, we will introduce

GCFExplainer, an effective and efficient heuristic that solves the GCE problem.

3.3 Proposed Method: GCFExplainer

In this section, we propose GCFExplainer, the first global counterfactual explainer

for graph classification. The GCE problem requires us to find a collection of k counter-

44

Global Counterfactual Explainer for Graph Neural Networks Chapter 3

factual graphs that maximize the coverage of the input graphs. Intuitively, we want each

individual counterfactual graph to be a close counterfactual to (i.e., “cover”) as many

input graphs as possible. Additionally, different counterfactual graphs should cover dif-

ferent sets of input graphs to maximize the overall coverage. These intuitions motivate

the design of our algorithm GCFExplainer, which has three major components:

1. Structuring the search space: The search space of counterfactual graphs con-

sists of all graphs that are in the same domain as the input graphs and within a

distance of θ. In other words, any graph within a distance of θ from an input graph

may be a potential counterfactual candidate and therefore needs to be analyzed.

The number of potential graphs within θ increases exponentially with θ since the

space of graph edits is combinatorial [102, 103]. GCFExplainer uses an edit map

to organize these graphs as a meta-graph G, where individual nodes are graphs that

are created via a different number of edits from the input graphs and each edge

represents a single edit.

2. Vertex-reinforced random walk: To search for good counterfactual candidates,

GCFExplainer leverages vertex-reinforced random walks (VRRW) [104] on the

edit map G. VRRW has the nice property of converging to a set of nodes that are

both important (i.e., cover many input graphs) and diverse (i.e., non-overlapping

coverage), which will form a small set of counterfactual candidates for further pro-

cessing.

3. Iterative computation of the summary: After obtaining good counterfactual

candidates from VRRW,GCFExplainer creates the final set of the counterfactual

graphs (i.e., the summary) as the recourse representation by iteratively adding the

best candidate based on the maximal gain of the coverage given the already added

candidates.

45

Global Counterfactual Explainer for Graph Neural Networks Chapter 3

3.3.1 Structuring the Search Space

The search space for counterfactual graphs in GCFExplainer is organized via an

edit map G. The edit map is a meta-graph whose nodes are graphs in the same domain

as the input graphs and edges connect graphs that differ by a single graph edit. As an

example, each graph in Figure 3.2 represents a node in the edit map, and the arrows

denote edges between graphs (nodes) that are one edit away. In the edit map, we only

include connected graphs since real graphs of interest are often connected (e.g., molecules,

proteins, etc.).

While all potential counterfactual candidates are included as its nodes, the edit map

has an exponential size and it is computationally prohibitive to fully explore it. However,

a key observation is that a counterfactual candidate can only be a few hops away from

some input graph. Otherwise, the graph distance between the counterfactual and the

input graph would be too large for the counterfactual to cover it. This observation moti-

vates our exploration of the edit map to be focused on the union of close neighborhoods

of the input graphs (see Section 3.3.2). Additionally, while we cannot compute the entire

edit map, it is easy to chart the close neighborhoods by iteratively performing all possible

edits from the input graphs. Next, we introduce the vertex-reinforced random walk to

efficiently explore the edit map to find counterfactual candidates.

3.3.2 Vertex-Reinforced Random Walk

Vertex-reinforced random walk (VRRW) [104] is a time-variant random walk. Differ-

ent from other more widely applied random walk processes such as the simple random

walk and the PageRank [105, 106, 107, 108], the transition probability p(u, v) of VRRW

from node u to node v depends not only on the edge weight w(u, v) but also the number of

46

Global Counterfactual Explainer for Graph Neural Networks Chapter 3

previous visits in the walk to the target node v, which we denote using N(v). Specifically,

p(u, v) ∝ w(u, v)N(v) (3.1)

GCFExplainer applies VRRW on the edit map and produces n most frequently

visited nodes in the walk as the set of counterfactual candidates S. Next, we formalize

VRRW in our setting and explain how it surfaces good counterfactual candidates for

GCE.

Vertex-reinforcement

Our main motivation for using VRRW to explore the edit map instead of other random

walk processes is that VRRW converges to a diverse and representative set of nodes

[109, 110] in different regions of the edit map. In this way, the frequently visited nodes

in instances of VRRW have the potential to be good counterfactual candidates as they

would cover a diverse set of input graphs in the edit map. The reason behind the diversity

of the highly visited nodes is the previous visit count N(v) in the transition probability.

Specifically, nodes with larger visit counts tend to be visited more often later (“richer

gets richer”), and thereby dominating all other nodes in their neighborhood. This leads

to a bunch of highly visited nodes to “represent” each region of the edit map. We refer

the readers to [109] for details on the mathematical basis and the theoretical correctness

of this property. Moreover, as our goal is to find counterfactual candidates, we only

reinforce (i.e., increase the visit counts of) graphs in the counterfactual class.

Importance function

While the vertex-reinforcement mechanism ensures diversity of the highly visited

nodes, we still need to guide the walker to visit graphs that are good counterfactual

47

Global Counterfactual Explainer for Graph Neural Networks Chapter 3

candidates. We achieve this by assigning large edge weight w(u, v) to good counterfactual

candidates via an importance function I(v):

w(u, v) = I(v) (3.2)

The importance function I(v) should capture the quality of a graph v as a counterfactual

candidate. It has the following components:

1. Counterfactual probability pϕ(v). The graph classifier ϕ predicts a probability for v

to be in the counterfactual class (ϕ(v) = 1). By using it as part of the importance

function, the walker is encouraged to visit regions with rich counterfactual graphs.

2. Individual coverage ({v}). The individual coverage of a graph v computes the

proportion of input graphs that are close to v. This encourages the walker to visit

graphs that cover a large number of input graphs.

3. Gain of coverage (v;S). Given a graph v and the current set of counterfactual

candidates S (i.e., the n most frequently visited nodes), we can compute the gain

between the current coverage and the coverage after adding v to S:

(v;S) = (S ∪ {v})− (S)

This guides the walker to find graphs that complement the current counterfactual

candidates to cover additional input graphs.

The importance function is a combination of these components:

I(v) = pϕ(v)(α({v}) + (1− α)(v;S)) (3.3)

where α is a hyperparameter between 0 and 1. With the above importance function, the

48

Global Counterfactual Explainer for Graph Neural Networks Chapter 3

VRRW in GCFExplainer converges to a set of diverse nodes that have high counter-

factual probability and collectively cover a large number of input graphs.

Dynamic teleportation

The last component of VRRW, teleportation, is to help us manage the exponential

search space of the edit map. Since our goal is to find close counterfactuals to the

input graphs, the walker only needs to explore the nearby regions of the input graphs.

Therefore, we start the walk from the input graphs, and also at each step, let the walker

teleport back (i.e. transit) to a random input graph with probability τ .

To decide which input graph to teleport to, we adopt a dynamic probability distribu-

tion based on the current counterfactual candidate set S. Specifically, let g(G) = |{v ∈

S | d(v,G) ⩽ θ and ϕ(v) = 1}| be the number of close counterfactuals in S covering an

input graph G. Then the probability to teleport to G is

pτ (G) =
exp(−g(G))∑

G′∈G exp(−g(G′))
(3.4)

This dynamic teleportation favors input graphs that are not well covered by the

current solution set and encourages the walker to explore nearby counterfactuals to cover

them after teleportation.

3.3.3 Iterative Computation of the Summary

We have applied VRRW to generate a good set of n counterfactual candidates S. In

the last step of GCFExplainer, we aim to further refine the candidate set and create

the final recourse representation (i.e., the summary) with k counterfactual graphs. This

summarization problem is also NP-hard and we propose to build C in an iterative and

greedy manner from S.

49

Global Counterfactual Explainer for Graph Neural Networks Chapter 3

Specifically, we start with an empty solution set C0. Then, for each iteration t, we

add the graph v to Ct with the maximal gain of coverage (v;Ct). This is repeated k

times to get the final recourse representation C with k graphs. It is easy to show that

the summarization problem is submodular and therefore, our greedy algorithm provides

(1− 1/e)-approximation.

Notice that the greedy algorithm can also be applied to the local counterfactuals found

by existing methods to generate a GCE solution. Here, we highlight three advantages of

GCFExplainer:

1. Existing local counterfactual explainers [90, 91, 92, 93] are only able to generate

counterfactuals based on one type of graph edits—edge removal, while GCFEx-

plainer incorporates all types of edits to include a richer set of counterfactual

candidates.

2. The set of counterfactual candidates from GCFExplainer is generated with the

GCE objective in mind, while the local counterfactuals from existing methods are

optimized for individual input graphs. Therefore, they may not be good candidates

to capture the global behavior of the classifier.

3. It is easy to incorporate domain constraints (e.g., the valence of chemical bonds)

into GCFExplainer by pruning the neighborhood of the edit map, while existing

methods based on optimization require non-trivial efforts to customize.

We will empirically demonstrate the superiority of GCFExplainer to this two-stage ap-

proach with state-of-the-art local counterfactual explanation methods in our experiments

in Section 3.4.2.

Pseudocode and complexity: The pseudocode of GCFExplainer is presented in 2.

Line 1-16 summarizes the VRRW component of GCFExplainer. Specifically, Line 3-10

50

Global Counterfactual Explainer for Graph Neural Networks Chapter 3

Algorithm 2 GCFExplainer(ϕ, G)

1: G← random input graph from G, N(G)← 1, S = {G}
2: for i ∈ 1 : M do
3: Let ε ∼ Bernoulli(τ)
4: if ε = 0 then
5: for v ∈ Neighbors(G) do
6: Compute I(v) based on Equation 3.3
7: Compute p(G, v) based on Equation 3.1
8: end for
9: v ← random neighbor of G based on p(G, v)
10: else
11: v ← random input graph from G based on Equation 3.4
12: end if
13: if ϕ(v) = 1 then
14: if v ∈ S then
15: N(v)← N(v) + 1
16: else
17: S← S+ {v}, N(v)← 1
18: end if
19: end if
20: G← v
21: end for
22: S← top n frequently visited counterfactuals in S
23: C← ∅
24: for t ∈ 1 : k do
25: v ← argmaxv∈S(v;C)
26: C← C+ {v}
27: end for
28: return C =0

determines the next graph to visit based on VRRW transition probabilities and dynamic

teleportation, and Line 11-16 update the visit counts and the set of counterfactual can-

didates. The iterative computation of the counterfactual summary is described in Line

17-21. The overall complexity of GCFExplainer is O(Mhn + kn), where M is the

number of iterations for the VRRW, h is the average node degree in the meta-graph, n is

the number of input graphs, and k is the size of the global counterfactual representation.

In practice, we store the computed transition probabilities with a space-saving algorithm

[111] to improve the running time of GCFExplainer.

51

Global Counterfactual Explainer for Graph Neural Networks Chapter 3

3.4 Experiments

We provide empirical results for the proposed GCFExplanier along with baselines

on commonly used graph classification datasets. Our code is available at https://

github.com/mertkosan/GCFExplainer.

NCI1 Mutagenicity AIDS Proteins

#Graphs 3978 4308 1837 1113
#Nodes 118714 130719 28905 43471
#Edges 128663 132707 29985 81044

#Node Labels 10 10 9 3

Table 3.1: The statistics of the datasets.

3.4.1 Experimental Settings

Datasets

We use four different real-world datasets for graph classification benchmark with their

statistics in Table 3.1. Specifically, NCI1 [112], Mutagenicity [113, 96], and AIDS [113] are

collections of molecules with nodes representing different atoms and edges representing

chemical bonds between them. The molecules are classified by whether they are anti-

cancer, mutagenic, and active against HIV, respectively. Proteins [85, 114] is a collection

of proteins classified into enzymes and non-enzymes, with nodes representing secondary

structure elements and edges representing structural proximity. For all datasets, we filter

out graphs containing rare nodes with label frequencies smaller than 50.

Graph classifier

We follow [88] and train a GNN with 3 convolution layers [13] of embedding

dimension 20, a max pooling layer, and a fully connected layer for classification. The

52

https://github.com/mertkosan/GCFExplainer
https://github.com/mertkosan/GCFExplainer

Global Counterfactual Explainer for Graph Neural Networks Chapter 3

model is trained with the Adam optimizer [115] and a learning rate of 0.001 for 1000

epochs. The datasets are split into 80%/10%/10% for training/validation/testing with

the model accuracy shown in Table 3.2.

NCI1 Mutagenicity AIDS Proteins

Training 0.8439 0.8825 0.9980 0.7800
Validation 0.8161 0.8302 0.9727 0.8198
Testing 0.7809 0.8000 0.9781 0.7297

Table 3.2: Accuracy of the GNN graph classifier.

Baselines

To the best of our knowledge, GCFExplainer is the first global counterfactual

explainer. To validate its effectiveness, we compare it against state-of-the-art local coun-

terfactual explainers combined with the greedy summarization algorithm described in

Section 3.3.3. The following local counterfactual generation methods are included in our

experiments.

▷ Ground-Truth: Using graphs belonging to the desired class from the original

dataset as local counterfactuals.

▷ RCExplainer [91]: Local counterfactual explainer based on the modeling of implicit

decision regions of GNNs.

▷ CFF [93]: Local counterfactual explainer based on joint modeling of factual and

counterfactual reasoning.

Explainer settings

We use a distance threshold θ of 0.05 for training all explainers. Since computing the

exact graph edit distance is NP-hard, we apply a state-of-the-art neural approximation

algorithm [103]. For GCFExplainer, we set the teleportation probability τ = 0.1 and

53

Global Counterfactual Explainer for Graph Neural Networks Chapter 3

tune α, the weight between individual coverage and gain of coverage, from {0, 0.5, 1}.

A sensitivity analysis is presented in Section 3.4.6. The number of VRRW iterations

M is set to 50000, which is enough for convergence as shown in Section 3.4.5. For

baselines, we tune their hyperparameters to achieve the best local counterfactual rates

while maintaining an average distance to input graphs that is smaller than the distance

threshold θ.

NCI1 Mutagenicity AIDS Proteins
Coverage Cost Coverage Cost Coverage Cost Coverage Cost

Ground-Truth 16.54% 0.1326 28.96% 0.1275 0.41% 0.2012 8.47% 0.2155
RCExplainer 15.22% 0.1370 31.99% 0.1290 8.96% 0.1531 8.74% 0.2283

CFF 17.61% 0.1331 30.43% 0.1327 3.39% 0.1669 3.83% 0.2557
GCFExplainer 27.85% 0.1281 37.08% 0.1135 14.66% 0.1516 10.93% 0.1856

Table 3.3: Recourse coverage (θ = 0.1) and median recourse cost comparison between
GCFExplainer and baselines for a 10-graph global explanation. GCFExplainer
consistently and significantly outperforms all baselines across different datasets.

3.4.2 Recourse Quality

We start by comparing the recourse quality between GCFExplainer and baselines.

Table 3.3 shows the recourse coverage with θ = 0.1 and median recourse cost of the

top 10 counterfactual graphs (i.e., k = 10). We first notice that the two state-of-the-art

local counterfactual explainers have similar performance as Ground-Truth, consis-

tent with our claim that local counterfactual examples from existing methods are not

good candidates for a global explanation. The proposed GCFExplainer, on the other

hand, achieves significantly better performance for global recourse quality. Compared to

the best baseline, RCExplainer, GCFExplainer realizes a 46.9% gain in recourse

coverage and a 9.5% reduction in recourse cost.

Next, we show the recourse coverage and cost for different sizes of counterfactual

summary in Figure 3.3. As expected, adding more graphs to the recourse representation

54

Global Counterfactual Explainer for Graph Neural Networks Chapter 3

0

20

40

60

80

Co
ve

ra
ge

 (%
)

NCI1

0

20

40

60

80 Mutagenicity

0

10

20

30

40 AIDS

0

10

20

30

40
Proteins

0 20 40 60 80 100
0.08

0.12

0.16

0.20

0.24

Co
st

0 20 40 60 80 100
0.09

0.13

0.17

0.21

0.25

0 20 40 60 80 100
0.11

0.14

0.17

0.20

0.23

Ground-Truth RCExplainer CFF GCFExplainer

0 20 40 60 80 100
0.11

0.25

0.39

0.53

0.67

0.0 0.2 0.4 0.6 0.8 1.0
Size (k)

0.0

0.2

0.4

0.6

0.8

1.0

Figure 3.3: Coverage and cost performance comparison between GCFExplainer and
baselines based on different counterfactual summary sizes. GCFExplainer consis-
tently outperforms the baselines across different sizes.

increases recourse coverage while decreasing recourse cost, at the cost of interpretability.

And GCFExplainer maintains a constant edge over the baselines.

We also compare the recourse coverage based on different distance thresholds θ, with

results shown in Figure 3.4. While coverage increases for all methods as the thresh-

old increases, GCFExplainer consistently outperforms the baselines across different

thresholds.

0.00 0.04 0.08 0.12 0.16
0

30

60

90

Co
ve

ra
ge

 (%
)

NCI1

0.00 0.04 0.08 0.12 0.16
0

30

60

90
Mutagenicity

0.00 0.04 0.08 0.12 0.16
0

20

40

60 AIDS

Ground-Truth RCExplainer CFF GCFExplainer

0.00 0.04 0.08 0.12 0.16
0

10

20

30

40 Proteins

0.0 0.2 0.4 0.6 0.8 1.0
Distance threshold (θ)

0.0

0.2

0.4

0.6

0.8

1.0

Figure 3.4: Recourse coverage comparison between GCFExplainer and baselines
based on different distance threshold values (θ). GCFExplainer consistently out-
performs the baselines across different θ.

55

Global Counterfactual Explainer for Graph Neural Networks Chapter 3

3.4.3 Global Counterfactual Insight

We have demonstrated the superiority of GCFExplainer based on various quality

metrics for global recourse. Here, we show how GCFExplainer provides global in-

sights compared to local counterfactual examples. Figure 3.5 illustrates (a) four input

undesired graphs with a similar structure from the AIDS dataset, (b) corresponding local

counterfactual examples (based on RCExplainer and CFF), and (c) the representative

global counterfactual graph from GCFExplainer covering the input graphs. Our goal

is to understand why the input graphs are inactive against AIDS (undesired) and how

to obtain the desired property with minimal changes.

The local counterfactuals in (b) attribute the classification results to different edges

in individual graphs (shown as red dotted lines) and recommend their removal to make

input graphs active against HIV. Note that while only two edits are proposed for each

individual graph, they appear at different locations, which are hard to generalize for a

global view of the model behavior. In contrast, the global counterfactual graph from

GCFExplainer presents a high-level recourse rule. Specifically, the carbon atom with

the carbon-oxygen bond is connected to two other carbon atoms in the input graphs,

making them ketones (with a C=O bond) or ethers (with a C-O bond). On the other

hand, the global counterfactual graph highlights a different functional group, aldehyde

(shown in blue), to be the key for combating AIDS. In aldehydes, the carbon atom with

a carbon-oxygen bond is only connected to one other carbon atom, leading to different

chemical properties compared to ketones and ethers. Indeed, aldehydes have been shown

to be effective HIV protease inhibitors [116].

Finally, this case study also demonstrates that counterfactual candidates found by

GCFExplainer are better for global explanation than local counterfactuals. We note

that while the graph edit distance between the local counterfactuals and their correspond-

56

Global Counterfactual Explainer for Graph Neural Networks Chapter 3

ing input graphs is only 2, they do not cover other similarly structured input graphs (with

distance > 5). Meanwhile, our global counterfactual graph covers all input graphs (with

distance ⩽ 4).

CCO

C

C

C

C

C

C
C

C

CCO

C

C

C

C

C

C
C

C

CCO

C

C

C

C

C

C
C

C

CCO

C

C

C

C

C

C
C

C

(a) Input graphs

CCO

C

C

C

C

C

C
C

C

CCO

C

C

C

C

C

C
C

C

CCO

C

C

C

C

C

C
C

C

CCO

C

C

C

C

C

C
C

C

(b) Local counterfactuals

CCO

C

C

C

C

C

C
C

C

(c) Global counterfactual

Figure 3.5: Illustration of global and local counterfactual explanations for the
AIDS dataset. The global counterfactual graph (c) presents a high-level recourse
rule—changing ketones and ethers into aldehydes (shown in blue)—to combat HIV,
while the edge removals (shown in red) recommended by local counterfactual examples
(b) are hard to generalize.

3.4.4 Ablation Study

We then conduct an ablation study to investigate the effectiveness of GCFEx-

plainer components. We consider three alternatives:

▷ GCFExplainer-NVR: no vertex-reinforcement (N(v) = 1)

▷ GCFExplainer-NIF: no importance function (I(v) = 1)

57

Global Counterfactual Explainer for Graph Neural Networks Chapter 3

▷ GCFExplainer-NDT: no dynamic teleportation (pτ (G) = 1/|G|)

The coverage results are shown in Table 3.4. We observe decreased performance when

any of GCFExplainer components is absent.

NCI1 Mutagenicity AIDS Proteins

GCFExplainer-NVR 24.56% 35.44% 11.33% 8.56%
GCFExplainer-NIF 13.29% 29.16% 4.54% 6.83%
GCFExplainer-NDT 27.34% 36.35% 14.05% 9.28%

GCFExplainer 27.85% 37.08% 14.66% 10.93%

Table 3.4: Ablation study results based on recourse coverage.

3.4.5 Convergence Analysis

In this subsection, we show the empirical convergence of VRRW based on the Mu-

tagenicity dataset in Figure 3.6. We observe that the coverage performance for different

summary sizes starts to converge after 15000 iterations and fully converges after 50000

iterations, which is the number we applied in our experiments.

0 15000 30000 45000 60000
Number of VRRW iterations (M)

0.25

0.40

0.55

0.70

0.85

Co
ve

ra
ge

 (%
)

10 25 50 100 200

Figure 3.6: Convergence of VRRW for the Mutagenicity dataset based on recourse
coverage with different summary sizes. VRRW fully converges after M = 50000
iterations.

58

Global Counterfactual Explainer for Graph Neural Networks Chapter 3

NCI1 Mutagenicity AIDS Proteins

α = 0.0 27.85% 36.87% 12.83% 10.11%
α = 0.5 27.50% 36.59% 14.66% 10.38%
α = 1.0 22.27% 37.08% 13.99% 10.93%

Table 3.5: Sensitivity analysis on α, the weight between individual coverage and gain
of coverage in the importance function.

3.4.6 Sensitivity Analysis

The only hyperparameter of GCFExplainer we tune is α in Equation 3.3 that

weights the individual coverage and gain of coverage for the importance function. Ta-

ble 3.5 shows the results based on different α. While GCFExplainer outperforms

baselines with all different α, we observe that individual coverage works better for NCI1

and gain of cumulative coverage works better for other datasets.

NCI1 Mutagenicity AIDS Proteins

RCExplainer 30454 52549 29047 8444
CFF 22794 31749 21296 6412

GCFExplainer 19817 24006 2615 19246
GCFExplainer-S 19365 18798 2539 7429

Table 3.6: Counterfactual candidates generation time comparison. GCFExplainer
(-S) has competitive running time albeit exploring more counterfactual graphs.

3.4.7 Running Time

Table 3.6 summarizes the running times of generating counterfactual candidates

based on different methods. GCFExplainer has a competitive running time albeit

exploring more counterfactual graphs in the process. We also include results for

GCFExplainer-S which samples a maximum of 10000 neighbors for computing the

importance at each step. It achieves better running time at a negligible cost of 3.3%

performance loss on average. Finally, summarizing the counterfactual candidates takes

59

Global Counterfactual Explainer for Graph Neural Networks Chapter 3

less than a second for all methods.

3.5 Related Work

Explanations for Graph Neural Networks. There is much research

[65, 87, 88, 89] on explaining graph neural networks (GNNs). The first proposed

method, GNNExplainer [65], finds the explanatory subgraph and sub-features by

maximizing the mutual information between the original prediction and the prediction

based on the subgraph and sub-features. Later, PGExplainer [87] provides an inductive

framework that extracts GNN node embeddings and learns to map embedding pairs to

the probability of edge existence in the explanatory weighted subgraph. PGMExplainer

[88] builds a probabilistic explanation model that learns new predictions from perturbed

node features, performs variable selection using Markov blanket of variables, and then

produces a Bayesian network via structure learning. In XGNN [89], the authors find

model-level explanations by a graph generation module that outputs a sequence of edges

using reinforcement learning. These explanation methods focus on factual reasoning

while the goal of our work is to provide a global counterfactual explanation for GNNs.

Counterfactual Explanations. Recently, there are several attempts to have expla-

nations of graph neural networks (GNNs) via counterfactual reasoning [90, 91, 92, 93].

One of the earlier methods, CF-GNNExplainer [90], provides counterfactual explana-

tions in terms of a learnable perturbed adjacency matrix that leads to the flipping of

classifier prediction for a node. On the other hand, RCExplainer [91] aims to find a

robust subset of edges whose removal changes the prediction of the remaining graph by

modeling the implicit decision regions based on GNN graph embeddings. In [92], the

authors investigate counterfactual explanations for a more specific class of graphs—the

brain networks—that share the same set of nodes by greedily adding or removing edges

60

Global Counterfactual Explainer for Graph Neural Networks Chapter 3

using a heuristic. More recently, the authors of CFF [93] argue that a good explanation

for GNNs should consider both factual and counterfactual reasoning and they explicitly

incorporate those objective functions when searching for the best explanatory subgraphs

and sub-features. Counterfactual reasoning has also been applied for link prediction

[117]. All the above methods produce local counterfactual examples while our work aims

to provide a global explanation in terms of a summary of representative counterfactual

graphs.

3.6 Conclusions

We have proposed GCFExplainer, the first global counterfactual explainer for

graph classification. Compared to local explainers, GCFExplainer provides a high-

level picture of the model behavior and effective global recourse rules. We hope that our

work will not only deepen our understanding of graph neural networks but also build a

bridge for experts from other domains to leverage deep learning models for high-stakes

decision-making.

Future Works: We have identified two weaknesses in our framework. Firstly, GCFEx-

plainer occasionally generates invalid molecules in the summary (in terms of valence),

rendering the summary graphs inapplicable in certain domains. To address this issue,

we propose incorporating fragment-based editing during the random walk process. This

approach aims to enhance the generation of valid molecules in the summaries, ensuring

their relevance and applicability.

Secondly, our algorithm is currently transductive, meaning that when a new graph

emerges, the entire algorithm needs to be rerun. To mitigate this limitation, we plan

to leverage molecule generation models from existing literature. By incorporating such

models, we anticipate the ability to generate new valid graphs on the fly, eliminating the

61

Global Counterfactual Explainer for Graph Neural Networks Chapter 3

need for rerunning the entire algorithm when faced with new data.

To address the issue of molecular validity in our framework, we propose two ap-

proaches. The first approach, referred to as Post-checking, involves checking the valid-

ity of each generated molecule after the summary generation process. However, it should

be noted that this method may result in a decrease in the number of counterfactual

graphs present in the summary set.

Alternatively, we can modify the importance function used during the random walk to

ensure that only valid graphs are traversed. The updated importance function, referred

to as In-checking, is defined as follows:

I(v) =

p(ϕ(v))(α coverage(v) + (1− α) gain(v)) f(v) = 1

0 f(v) = 0

(3.5)

Here, f(v) represents the validity of the molecule, where f(v) = 1 indicates that v is a

legal molecule. By incorporating the validity function within the importance function, the

random walk will prioritize valid graphs, ensuring that only valid molecules are included

in the summary.

During our experiments, we observed that only a limited number of editing operations

resulted in new valid molecules, while most operations led to valence violations. To

enhance search efficiency, we propose transitioning from atom-based editing to fragment-

based editing, which focuses exclusively on adding or deleting legal fragments.

To construct a fragment vocabulary, we follow the approach outlined in [118], which

involves breaking every single bond in the molecules within the dataset and considering

the resulting smaller arms as separate fragments. During the random walk, we implement

fragment addition and removal for the current node. Additionally, we enumerate node

62

Global Counterfactual Explainer for Graph Neural Networks Chapter 3

positions to insert the fragment and test all fragments present in the vocabulary. For

removal, we break single bonds and delete the smaller fragment.

By incorporating fragment-based editing, we strive to enhance the search efficiency

of our framework while prioritizing the generation of valid molecules and avoiding va-

lence violations. Table 3.7 presents the results obtained from the Post-checking, In-

checking, and Fragment-based methods on the Mutagenicity dataset. Comparing

these methods to the original GCFExplainer, we observe a degradation in coverage and

cost performance, while the validity of generated molecules improves. Notably, the Mu-

tagenicity dataset exhibits a small fragment vocabulary size, indicating a prevalence of

shared patterns among the graphs. Consequently, fragments extracted from one graph

are likely to be valuable for generating valid molecules in another graph. As a result, the

fragment-based method proves to be more efficient compared to the other two checking

methods.

Mutagenicity (vocab=408)

Coverage ↑ Cost ↓ #Valid / #Total Time (’)

GCFExplainer 38.52% 11.37 / /

Post-checking 32.36% 12.84 883/2438 258
In-checking 34.95% 12.23 2438/2438 242
Fragment-based 35.32% 12.15 2438/2438 229

Table 3.7: Fragment-based editing enhances the search efficiency and promotes valid
molecule generation. Despite slightly lower coverage and cost, the validity of molecules
improves due to shared patterns and the efficiency of fragment utilization. Time is
calculated based on minutes.

To address the limitation of the fragment-based method in generating a summary set

for unseen graphs, we aim to make our framework more inductive. One approach is to

explore molecule generation methods, such as the one proposed by Kong et al. [119], and

optimize them using our objective function, specifically the importance function. As our

objective function is non-differentiable, we are investigating solutions from reinforcement

63

Global Counterfactual Explainer for Graph Neural Networks Chapter 3

learning to optimize our framework.

Our proposed approach involves developing an end-to-end framework that initially

generates molecules for input graphs. These generated molecules will then be optimized

using the same importance function, which considers factors such as being counterfactual

to the input graphs, high coverage, and/or low cost. By integrating reinforcement learn-

ing techniques, we aim to enhance the overall performance of our framework, enabling it

to generate optimized molecules that align with our defined objectives.

Furthermore, we aim to incorporate a human-in-the-loop mechanism to leverage ex-

pert feedback in order to enhance the quality of the generated explanations. This is

crucial because the effectiveness of the explanations heavily relies on the accuracy of the

underlying graph classifier, which may not always be optimal. By obtaining additional

feedback from domain experts, we can iteratively improve the quality and relevance of

the explanations, thereby enhancing the overall performance of our framework.

64

Chapter 4

Robust Ante-hoc Graph Explainer

using Bilevel Optimization

4.1 Introduction

(a) Planted Clique (b) Sunglasses - EASY (c) Sunglasses - HARD

Figure 4.1: Explanations generated by our approach (RAGE) in two case studies:
Planted Clique (graphs with and without cliques) and Sunglasses (headshots
with and without sunglasses). RAGE explanations identify edges in the clique and
in the region around the sunglasses for both difficulties. For Planted Clique (a),
the heatmap and sizes show node and edge influences, and the nodes with a thick
border are members of the planted clique. For Sunglasses (b-c), the red dots show
the influential pixel connections to the detection.

65

Robust Ante-hoc Graph Explainer using Bilevel Optimization Chapter 4

A critical problem in machine learning on graphs is understanding predictions made

by graph-based models in high-stakes applications. This has motivated the study of

graph explainers, which aim to identify subgraphs that are both compact and corre-

lated with model decisions. However, there is no consensus on what constitutes a good

explanation—i.e. correlation metric. Recent papers [65, 87, 91] have proposed different

alternative notions of explainability that do not take the user into consideration and

instead are validated using examples. On the other hand, other approaches have applied

labeled explanations to learn an explainer directly from data [120]. However, such labeled

explanations are hardly available.

Explainers can be divided into post-hoc and ante-hoc (or intrinsic) [121]. Post-hoc

explainers treat the prediction model as a black box and learn explanations by modifying

the input of a pre-trained model [122]. On the other hand, ante-hoc explainers learn

explanations as part of the model. The key advantage of post-hoc explainers is flexibility

since they make no assumption about the prediction model to be explained or the training

algorithm applied to learn the model. However, these explanations have two major

limitations: (1) they are not sufficiently informative to enable the user to reproduce the

behavior of the model, and (2) they are often based on a model that was trained without

taking explainability into account.

The first limitation is based on the intuitive assumption that a good explanation

should enable the user to approximately reproduce the decisions of the model for new

input. That is simply because the predictions will often depend on parts of the input

that are not part of the explanation. The second limitation is based on the fact that

for models with a large number of parameters, such as neural networks, there are likely

multiple parameter settings that achieve similar values of the loss function. However,

only some of such models might be explainable [123, 124]. While these limitations do

not necessarily depend on a specific model, this paper addresses them in the context of

66

Robust Ante-hoc Graph Explainer using Bilevel Optimization Chapter 4

Graph Neural Networks for graph-level tasks (classification and regression).

We propose RAGE—a novel ante-hoc explainer for graphs—that aims to find compact

explanations while maximizing the graph classification/regression accuracy using bilevel

optimization. Figure 4.2 compares the post-hoc and ante-hoc approaches in the context

of graph classification. RAGE explanations are given as input to the GNN, which guar-

antees that no information outside of the explanation is used for prediction. This enables

the user to select an appropriate trade-off between the compactness of the explanations

and their discrimination power. We show that RAGE explanations are more robust to

noise in the input graph than existing (post-hoc and ante-hoc) alternatives. Moreover,

our explanations are learned jointly with the GNN, which enables RAGE to learn GNNs

that are accurate and explainable. In fact, we show that RAGE’s explainability objec-

tive produces an inductive bias that often improves the accuracy of the learned GNN

compared to the base model. We emphasize that while RAGE is an ante-hoc model, it

is general enough to be applied to a broad class of GNNs.

Figure 4.1 shows examples of RAGE explanations in two case studies. In 4.1a, we

show an explanation from a synthetic dataset (Planted Clique), where the goal is to

classify whether the graph has a planted clique or not based on examples. As expected,

the edge influences learned by RAGE match with the planted clique. In 4.1b, we show

an explanation for a real dataset (Sunglasses) with graphs representing headshots

(images), where the goal is to classify whether the person in the corresponding headshot is

wearing sunglasses. We notice that edge influences highlight pixels around the sunglasses.

We will evaluate our approach quantitatively in terms of accuracy, reproducibility, and

robustness. Our results show that RAGE often outperforms several baselines. Our main

contributions can be summarized as follows:

▷ We highlight and empirically demonstrate two important limitations of post-hoc graph

explainers. They do not provide enough information to enable reproducing the be-

67

Robust Ante-hoc Graph Explainer using Bilevel Optimization Chapter 4

GNN
Classifier

Post-hoc
Explainer

Class 1

(a) Post-hoc Models

GNN
ClassifierExplainer

p = 0.9

Class 1

(b) Ante-hoc Models

Figure 4.2: (a) Post-hoc models generate explanations for a pre-trained GNN clas-
sifier using its predictions. (b) Ante-hoc models, as our approach, learn GNNs and
explanations jointly. This enables ante-hoc models to identify GNNs that are both
explainable and accurate.

havior of the predictor and are based on fixed models that might be accurate but not

explainable.

▷ We propose RAGE, a novel GNN and flexible explainer for graph classification and

regression tasks. RAGE applies bilevel optimization, learning GNNs in the inner

problem and an edge influence function in the outer loop. Our approach is flexible

enough to be applied to a broad class of GNNs.

▷ We will compare RAGE against state-of-the-art graph classification and GNN ex-

plainer baselines using six datasets—including five real-world ones. Our initial pre-

liminary results show that RAGE generates explanations that are robust, and enable

reproducing the behavior of the predictor. We also provide case studies showing that

our method improves interpretability by highlighting essential parts of the input data.

4.2 Related Work

Graph classification with GNNs: Graph Neural Networks (GNNs) have gained

prominence in graph classification due to their ability to learn features directly from data

[13, 47, 125, 126]. GNN-based graph classifiers aggregate node-level representations via

pooling operators to represent the entire graph. The design of effective graph pooling

operators is key for effective graph classification [55, 17, 56, 127]. However, simple pool-

68

Robust Ante-hoc Graph Explainer using Bilevel Optimization Chapter 4

ing operators that disregard the graph structure, such as mean and max, remain popular

and have been shown to have comparable performance to more sophisticated alternatives

[128]. Recently, [129] proposed a multi-head attention pooling layer to capture struc-

tural dependencies between nodes. In this paper, we focus on graph classification and

regression tasks.

Explainability of GNNs: Explainability has become a key requirement for the

application of machine learning in many settings (e.g., healthcare, court decisions) [130].

Several post-hoc explainers have been proposed for explaining Graph Neural Networks’

predictions using subgraphs [65, 87, 131, 91, 93, 132]. GNNExplainer [65] applies a mean-

field approximation to identify subgraphs that maximize the mutual information with

GNN predictions. PGExplainer [87] applies a similar objective, but samples subgraphs

using the reparametrization trick. RCExplainer [91] identifies decision regions based on

graph embeddings that generate a subgraph explanation such that removing it changes

the prediction of the remaining graph (i.e., counterfactual). While post-hoc explainers

treat a trained GNN as a black box —i.e., it only relies on predictions made by the GNN—

ante-hoc explainers are model-dependent. GIB [133] applies the bottleneck principle and

bilevel optimization to learn subgraphs relevant for classification but different from the

corresponding input graph. ProtGNN [124] learns prototypes (interpretable subgraphs)

for each class and makes predictions by matching input graphs and class prototypes.

Bilevel optimization and prototypes help in the generalizability of explanations. Our

preliminary results show that RAGE explanations are more meaningful and robust than

alternatives and can reproduce the model behavior better than existing post-hoc and

ante-hoc explainers.

Bilevel optimization: Bilevel optimization is a class of optimization problems where

two objective functions are nested within each other [134]. Although the problem is

known to be NP-hard, recent algorithms have enabled the solution of large-scale problems

69

Robust Ante-hoc Graph Explainer using Bilevel Optimization Chapter 4

in machine learning, such as automatic hyperparameter optimization and meta-learning

[135]. Bilevel optimization has recently also been applied to graph problems, includ-

ing graph meta-learning [136] and transductive graph sparsification scheme [137]. Like

RAGE, GIB [133] also applies bilevel optimization to identify discriminative subgraphs

inductively. However, we show that our approach consistently outperforms GIB in terms

of discriminative power, reproducibility, and robustness.

Graph structure learning: Graph structure learning (GSL) aims to enhance (e.g.,

complete, de-noise) graph information to improve the performance of downstream tasks

[138]. LDS-GNN [139] applies bilevel optimization to learn the graph structure that

optimizes node classification. VIB-GSL [140] advances GIB [133] by applying a varia-

tional information bottleneck on the entire graph instead of only edges. We notice that

GSL mainly focuses on learning the entire graph, whereas we only sparsify the graph,

which reduces the search space and is more interpretable than possibly adding new edges.

Furthermore, learning the entire graph is not scalable in large graph settings.

4.3 Methodology

4.3.1 Problem Formulation

We formulate our problem as a supervised graph classification (or regression). Given

a graph set G = {G1, G2, . . . , Gn} and continuous or discrete labels Y = {y1, y2, . . . , yn}

for each graph respectively, our goal is to learn a function f̂ : G → Y that approximates

the labels of unseen graphs.

70

Robust Ante-hoc Graph Explainer using Bilevel Optimization Chapter 4

Explainer GNN
Classifier

T inner
iterations

outer update using inner iteration gradients

input graph explanation graph
0.4

0.9

0.7

0.8

0.0

0.0

Figure 4.3: Illustration of an edge-based ante-hoc explainer that uses bilevel optimiza-
tion. Explainer generates an explanation graph from the input graph by assigning an
influence value to each edge. Edge influences are incorporated to edge weights on the
explanation graph, the input of GNN Classifier. The inner problem optimizes GNN
Classifier with T iterations, while the outer problem updates Explainer using gradi-
ents from inner iterations. The dotted edges in the explanation graph show that they
do not influence the classification, while others have different degrees of influence.

4.3.2 RAGE: Robust Ante-hoc Graph Explainer

We introduce RAGE, an ante-hoc explainer that generates robust explanations using

bilevel optimization. RAGE performs compact and discriminative subgraph learning as

part of the GNN training that optimizes the prediction of class labels in graph classifi-

cation or regression tasks.

RAGE is based on a general scheme for an edge-based approach for learning ante-hoc

explanations using bilevel optimization, as illustrated in Figure 4.3. The explainer will

assign an influence value to each edge, which will be incorporated into the original graph.

The GNN classifier is trained with this new graph over T inner iterations. Gradients

from inner iterations are kept to update the explainer in the outer loop. The outer

iterations minimize a loss function that induces explanations to be compact (sparse) and

discriminative (accurate). We will now describe our approach (RAGE) in more detail.

71

Robust Ante-hoc Graph Explainer using Bilevel Optimization Chapter 4

Explainer - Subgraph Learning

RAGE is an edge-based subgraph learner. It learns edge representations from the

node representations/features. Surprisingly, most edge-based explainers for undirected

graphs are not permutation invariant when calculating edge representations. Shuffling

nodes could change their performance drastically since the edge representations would

differ. We calculate permutation invariant edge representations hij given two node rep-

resentations hi and hj as follows: hij = [max(hi, hj);min(hi, hj)], where max and min

are pairwise for each dimension and [·; ·] is the concatenation operator.

Edge influences are learned via an MLP with sigmoid activation based on edge rep-

resentations: zij = MLP (hij). This generates an edge influence matrix Z∈ [0, 1]nxn. We

denote our explainer function as gΦ with trainable parameters Φ.

Influence-weighted Graph Neural Networks

Any GNN architecture can be made sensitive to edge influences Z via a transformation

of the adjacency matrix of the input graphs. As our model does not rely on a specific

architecture, we will refer to it generically as GNN(A,X), where A and X are the

adjacency and attribute matrices, respectively. We rescale the adjacency matrix with

edge influences Z as follows: AZ = Z ⊙ A.

The GNN treats AZ in the same way as the original matrix: H = GNN(AZ , X)

We generate a graph representation h from the node representation matrix H via a

max pooling operator. The graph representation h is then given as input to a classifier

that will predict graph labels y. Here, we use an MLP as our classifier.

72

Robust Ante-hoc Graph Explainer using Bilevel Optimization Chapter 4

Bilevel Optimization

In order to perform both GNN training and estimate the influence of edges jointly,

we formulate graph classification as a bilevel optimization problem. In the inner problem

(Equation 4.2), we learn the GNN parameters θ∗ ∈ Rh given edges influences Z∗ ∈

[0, 1]nxn based on a training loss ℓtr and training data (Dtr, ytr). We use the symbol

C to refer to any GNN architecture. In the outer problem (Equation 4.1), we learn

edge influences Z∗ by minimizing the loss ℓsup using support data (Dsup, ysup). The loss

functions for the inner and outer problem, fZ∗ and F , also apply regularization functions,

Θinner and Θouter, respectively.

Z∗ = argmin
Z

F (θ∗, Z) = ℓsup(C(θ∗, Z,Dsup), ysup) + Θouter (4.1)

θ∗ = argmin
θ

fZ∗(θ) = ℓtr(C(θ, Z∗, Dtr), ytr) + Θinner (4.2)

RAGE can be understood through the lens of meta-learning. The outer problem

performs meta-training and edge influences are learned by a meta-learner based on sup-

port data. The inner problem solves multiple tasks representing different training splits

sharing the same influence weights.

At this point, it is crucial to justify the use of bilevel optimization to compute edge

influences Z. A simpler alternative would be computing influences as edge attention

weights using standard gradient-based algorithms (i.e., single-level). However, we argue

that bilevel optimization is a more robust approach to our problem. More specifically, we

decouple the learning of edge influences from the GNN parameters and share the same

edge influences in multiple training splits. Consequently, these influences are more likely

to generalize to unseen data. We validate this hypothesis empirically using different

datasets in our experiments (Sec. 4.6.1).

73

Robust Ante-hoc Graph Explainer using Bilevel Optimization Chapter 4

Loss Functions

RAGE loss functions have two main terms: a prediction loss and a regularization

term. As prediction losses, we apply cross-entropy or mean-square-error, depending on

whether the problem is classification or regression. The regularization for the inner

problem Θinner is a standard L2 penalty over the GNN weights θ. For the outer problem

Θouter, we also apply an L1 penalty to enforce the sparsity of Z. Finally, we also add an

L2 penalty on the weights of gΦ.

4.3.3 Bilevel Optimization Training

The main steps performed by our model (RAGE) are given in Algorithm 3. For

each outer iteration (lines 1-14), we split the training data into two sets—training and

support—(line 2). First, we use training data to calculate Ztr, which is used for GNN

training in the inner loop (lines 5-10). Then, we apply the gradients from the inner

problem to optimize the outer problem using support data (lines 11-13). Note that we

reinitialize GNN and MLP parameters (line 4) before starting inner iterations to remove

undesirable information [141] and improve data generalization [142]. We further discuss

the significance and the impact of this operation in Sec. 4.6.2. The main output of our

algorithm is the explainer gΦκ . Moreover, the last trained GNNθT can also be used for

the classification of unseen data, or a new GNN can be trained based on Z. In both cases,

the GNN will be trained with the same input graphs, which guarantees the behavior of

the model GNNθT can be reproduced using explanations from gΦκ .

For gradient calculation, we follow the gradient-based approach described in [143].

The critical challenge of training our model is how to compute gradients of our outer

objective with respect to edge influences Z. By the chain rule, such gradients depend

on the gradient of the classification/regression training loss with respect to Z. We will,

74

Robust Ante-hoc Graph Explainer using Bilevel Optimization Chapter 4

again, use the connection between RAGE and meta-learning to describe the training

algorithm.

Training (Inner Loop)

At inner loop iterations, we keep gradients while optimizing model parameters θ.

θt+1 = inner-optt
(
θt,∇θtℓ

tr(θt, Zτ)
)

After T iterations, we compute θ∗, which is a function of θ1, . . . , θT and Zτ , where τ

is the number of iterations for meta-training. Here, inner-optt is the inner optimization

process that updates θt at step t. If we use SGD as an optimizer, inner-optt will be

written as follows with a learning rate η:

inner-optt
(
θt,∇θtℓ

tr(θt, Zτ)
)
:= θt − η · ∇θtℓ

tr(θt, Zτ)

Meta-training (Outer Loop)

After T inner iterations, the gradient trajectory saved to θ∗ will be used to optimize Φ.

We denote outer-optτ as outer optimization that updates Φτ at step τ . The meta-training

step is written as:

Φτ+1 = outer-optτ (Φτ ,∇Φτ ℓ
sup(θ∗))

= outer-optτ
(
Φτ ,∇Φτ ℓ

sup(inner-optT (θT ,∇θT ℓ
tr(θT , zτ)))

)
After each meta optimization step, we calculate edge influences Zτ+1 using gΦτ+1(.).

Notice that our training algorithm is more computationally-intensive than training a

simple GNN architecture. Therefore we set T and κ to small values. Thus, RAGE can

75

Robust Ante-hoc Graph Explainer using Bilevel Optimization Chapter 4

Algorithm 3 RAGE

Require: Graphs A1:n, node attributes X1:n, labels y1:n, explainer gΦ0 , outer/inner loops
κ and T

Ensure: Trained gΦκ

1: for τ ∈ [0, κ− 1] do
2: Atr, Asup, X tr, Xsup, ytr, ysup ← split(A1:n, X1:n, y1:n)
3: Ztr ← gΦτ (A

tr, X tr)
4: (re)initialize GNNθ0 , MLPθ0

5: for t ∈ [0, T − 1] do
6: H tr ← GNNθt(Z

tr ⊙ Atr, X tr)
7: htr ← POOLmax(H

tr)
8: ptr ←MLPθt(h

tr)
9: GNNθt+1 ,MLPθt+1 ← inner-opt fZtr(ptr, ytr)
10: end for
11: Zsup ← gΦτ (A

sup, Xsup)
12: psup ←MLPθT (POOLmax(GNNθT (Z

sup ⊙ Asup, Xsup))
13: gΦτ+1 ← outer-opt FθT (p

sup, ysup)
14: end for
15: return gΦκ =0

also be efficiently applied at training and testing times.

4.4 Experiments

We evaluate RAGE on several datasets, outperforming both post-hoc and ante-hoc

explainers in terms of metrics, including discriminative power and robustness. A key

advantage of our approach is being able to efficiently search for a GNN that is both ex-

plainable and accurate. Our case studies show the effectiveness of explanations generated

by RAGE over the baselines. We also provide more results and analysis on RAGE. Our

implementation of RAGE is available at https://anonymous.4open.science/r/RAGE/.

76

https://anonymous.4open.science/r/RAGE/

Robust Ante-hoc Graph Explainer using Bilevel Optimization Chapter 4

4.4.1 Experimental Settings

Datasets: We consider six graph classification (regression) datasets in our experi-

ments. Table 4.1 shows the main statistics of them. Mutagenicity [113, 96], Pro-

teins [85, 114], IMDB-B [144] are graph classification datasets. We assign one-hot

node degrees as features for IMDB-Binary, which originally does not have node fea-

tures. Sunglasses [145] is a dataset created from the CMU face dataset, where nodes

are pixels, edges connect nearby pixels, node attributes are pixel (gray-scale) colors, and

labels indicate whether the person in the picture wears sunglasses. Tree of Life [146]

is a collection of Protein-Protein Interaction (PPI) networks with amino-acid sequence

embeddings [147] as node features and (real) evolution scores as graph labels. Planted

Clique are Erdős–Rényi (ER) graphs (edge probability of 0.1) and add a planted clique

of size k (class 1) to half of them (others assigned to class 0). We select the value of

k to be larger than the size of the largest clique in the ER graphs. We also consider

a noisy version of Mutagenicity, which we call MutagenicityNoisyX, where the

noise X ∈ {1, 2, 4, 8, 16, 32} corresponds to the number of i.i.d. random edges added to

each graph.

Table 4.1: The statistics of the datasets.

#Graphs #Nodes #Edges #Features

Mutagenicity [113, 96] 4337 131488 133447 14
Proteins [85, 114] 1113 43471 81044 32
IMDB-B [144] 1000 19773 96531 136

Sunglasses [145] 624 2396160 9353760 1
Tree of Life [146] 1245 944888 5634922 64
Planted Clique 100 10000 49860 64

Baselines: We consider several classical baselines for graph classification and regres-

sion including GCN [13], GAT [47], GIN [126], and SortPool [17]). We also compare

RAGE against ExpertPool [56], which learns attention weights for node pooling, and

77

Robust Ante-hoc Graph Explainer using Bilevel Optimization Chapter 4

against state-of-the-art GNN-based methods such as DropGNN [148], GMT [129], GIB

[133], ProtGNN [124], and those that apply graph structure learning including LDS-GNN

[139] and VIB-GSL [140]. For methods that use node classification, we add an additional

pooling layer to adapt to the graph classification setting. Finally, we consider inductive

GNN explainers: PGExplainer [87], RCExplainer [91].

Evaluation metrics: We compare the methods in terms of accuracy using AUC

for classification and also MSE for regression. Moreover, we compare explanations in

terms of stability [149], and reproducibility. Stability (or robustness) quantifies the cor-

relation between explanations generated for the original dataset and its noisy variants.

Reproducibility assesses the accuracy of a GNN trained solely using the explanations as

a dataset.

Machine Settings: We run and test our experiments on a machine with NVIDIA

GeForce RTX 2080 GPU (8GB of RAM) and 32 Intel Xeon CPUs (2.10GHz and 128GB

of RAM).

Hyperparameters: We tune the hyperparameters of our methods and baselines with

a grid search. Adam optimizer with a learning rate of 0.001 works well in practice for

our inner and outer optimization. T and κ (number of inner and outer epochs) are set to

20 and 100 with early stopping, respectively. We choose 0.001 for regularization weights

for inner and outer problem regularization. If the focus is only on graph classification

performance, sparsity regularization weight can be set to 0.

Model selection: We model g as a combination of a 3-layer GCN and a 1-layer

MLP with sigmoid activation function. For the inner GNN, we use a 3-layer influence-

weighted GCN (see Section 4.3.2) and a 1-layer MLP in our experiments. The size

of the embeddings is fixed at 20. For all graph classification and explainer baselines,

we usually set the GCN layers with the same settings as ours in order to have a fair

comparison (unless there are special circumstances of the baseline methods). We changed

78

Robust Ante-hoc Graph Explainer using Bilevel Optimization Chapter 4

the baselines’ loss functions to mean squared error for Tree of Life datasets and removed

the sigmoid activation function MLP.

Dataset splits: We use 80% training, 10% validation, and 10% testing splits in our

experiments. For our method, we further split the training set into 50% training and

50% support sets. We run each method 20 times and report the average accuracy and

standard deviation.

4.5 Preliminary Results

Classification (AUC %) Regression (MSE)

Mutagenicity Proteins IMDB-B Sunglasses Planted Clique Tree of Life

GCN [13] 86.82± 0.39 82.71± 1.08 81.49± 1.16 79.66± 13.12 52.89± 15.87 0.222± 0.010
GAT [47] 86.05± 0.59 82.31± 1.70 80.66± 1.56 67.80± 15.37 51.78± 22.36 0.179± 0.018
GIN [126] 88.15± 0.37 82.65± 0.90 84.14± 1.20 55.25± 4.62 87.78± 12.36 0.751± 0.584

ExpertPool [56] 86.81± 0.47 81.33± 1.21 83.20± 0.48 93.68± 1.15 80.00± 19.12 0.100± 0.015
SortPool [17] 85.34± 0.64 82.76± 1.10 80.62± 1.43 93.26± 2.52 54.44± 26.97 0.098± 0.014

DropGNN [148] 84.86± 2.11 82.59± 4.13 84.73± 2.00 54.74± 2.30 69.66± 12.70 2.690± 1.298
GMT [129] 86.06± 1.17 82.19± 3.13 80.82± 1.38 52.32± 1.21 56.39± 26.64 0.087± 0.004
GIB [133] 85.53± 0.99 82.71± 0.95 82.21± 2.04 61.30± 7.26 53.33± 16.33 0.305± 0.046

ProtGNN [124] 86.72± 0.62 81.21± 2.07 82.53± 2.37 N/S 57.78± 13.33 N/A
LDS-GNN [139] 86.12± 1.50 81.73± 1.32 81.12± 1.30 OOM 54.12± 15.32 OOM
VIB-GSL [140] 84.19± 1.10 EG 81.11± 1.21 OOM 54.44± 12.96 OOM

RAGE 89.52± 0.36 85.20± 0.93 84.16± 0.32 99.36± 0.44 97.78± 4.44 0.073± 0.007

EG: Exploding Gradient OOM: Out Of Memory N/S: Not Scalable N/A: Not Applicable

Table 4.2: Test scores for graph classification/regression. Best and second-best values
are in bold and underlined for each dataset. RAGE achieves the best results on
average, outperforming the baselines.

4.5.1 Graph Classification and Regression

Table 4.2 shows the graph classification (regression) results in terms of AUC (MSE)

for RAGE and the baselines using five real-world and one synthetic dataset. RAGE

outperforms the competing approaches in five datasets and has comparable results for

IMDB-B.

79

Robust Ante-hoc Graph Explainer using Bilevel Optimization Chapter 4

Each of its baselines has its own drawbacks and performs poorly on (at least) one

dataset with the exception of ExpertPool, which has consistent performance across

datasets. Still, RAGE outperforms ExpertPool for every dataset by 10.75% on aver-

age and by up to 27.2% on Tree of Life. Surprisingly, most baselines achieve poor

results for the Sunglasses and Planted Clique datasets, with the best baselines achieving

93.68% (ExpertPool) and 87.78% (GIN) AUC, respectively. This is evidence that exist-

ing approaches, including GIB, are not able to effectively identify compact discriminative

subgraphs. We also notice that, comparatively, RAGE achieves the best results for real

datasets with large graphs (Sunglasses and Tree of Life). Intuitively, these are datasets

for which identifying discriminative subgraphs has the highest impact on performance.

Additionally, baselines using graph structure learning have poor performance and are not

able to scale to large datasets.

10 30 50 70 90
0.60

0.67

0.74

0.81

0.88
Mutagenicity (AUC)

10 30 50 70 90
0.74

0.77

0.80

0.83

0.86
Proteins (AUC)

PGExplainer RCExplainer GIB RAGE

10 30 50 70 90
0.50

0.60

0.70

0.80

0.90
IMDB-B (AUC)

10 30 50 70 90
0.00

0.15

0.30

0.45

0.60
Tree of Life (MSE)

0.0 0.2 0.4 0.6 0.8 1.0
Explanation %

0.0

0.2

0.4

0.6

0.8

1.0

Figure 4.4: Reproducibility comparison between methods for different explanation
sizes (in percentage) using four datasets. RAGE outperforms or has comparable re-
sults to the baselines across different sizes and datasets.

4.5.2 Reproducibility

Reproducibility measures how well explanations alone can predict class labels. It is

a key property as it allows the user to correlate explanations and predictions without

neglecting potentially relevant information from the input. In our evaluation, we vary

80

Robust Ante-hoc Graph Explainer using Bilevel Optimization Chapter 4

1 2 4 8 16 32
0.0

0.2

0.4

0.6

0.8

1.0

Co
rre

la
tio

n

PGExplainer
RCExplainer

GIB
RAGE

0.0 0.2 0.4 0.6 0.8 1.0
X

0.0

0.2

0.4

0.6

0.8

1.0

Figure 4.5: Pearson correlation (higher is better) between explanations for Muta-
genicity and MutagenicityNoisyX generated by RAGE and the baselines. RAGE is
significantly more stable than the baselines, with GIB as the best baseline.

the size of the explanations by thresholding edges based on their values. We then train a

GNN using only the explanations and labels. We compare RAGE against post-hoc and

ante-hoc explainers and the resulting accuracies are shown in Figure 4.4.

4.5.3 Robustness

Effective explanations should be robust to noise in the data. We evaluate the robust-

ness of RAGE and the baselines using MutagenicityNoisyX—i.e. noisy versions of

Mutagenicity with random edges. We discuss results in terms of stability.

Figure 4.5 presents a comparison of explanations obtained from Mutagenicity

dataset and its noisy variants, evaluated based on Pearson correlation. Our results

demonstrate that RAGE outperforms other graph explainers. Furthermore, GIB is

identified as a competitive baseline, which is consistent with the reproducibility met-

ric. These findings provide further evidence that RAGE’s approach to generalizability

81

Robust Ante-hoc Graph Explainer using Bilevel Optimization Chapter 4

through bilevel optimization contributes to the robustness of explanations. Furthermore,

post-hoc explainers, PGExplainer and RCExplainer, are more sensitive to noise.

(a) Original Image (b) PGExplainer (c) GIB (d) RAGE

(e) Original Image (f) PGExplainer (g) GIB (h) RAGE

Figure 4.6: Two examples with different levels of difficulty due to poses from the
Sunglasses dataset. RAGE is able to detect the edges between the sunglasses and the
human faces, which are the most relevant for the prediction task (i.e., whether the
human is wearing sunglasses) for both examples.

4.5.4 Case Study

We now provide a case study illustrating the explanations generated by RAGE and

compare them against those generated by post-hoc and ante-hoc baselines. The Sun-

glasses contain ground truth explanations that are quite intuitive, are applied in our case

study. Figure 4.6 shows the results for the Sunglasses dataset. Notice that the examples

have different levels of difficulty due to the poses in the pictures. RAGE detects edges at

the border between the sunglasses and the faces of the humans in both pictures. These

are the edges most relevant for the prediction task—i.e. detecting whether the human

82

Robust Ante-hoc Graph Explainer using Bilevel Optimization Chapter 4

is wearing sunglasses. Intuitively, the highlighted edges are the most influential ones for

the learned GNN to achieve the high accuracy results from Table 4.2. For the easier

pose (Figure 4.6b), PGExplainer identifies one of the glasses as an explanation together

with other dark pixels in the image. However, for Figure 4.6e, PGExplainer misses the

sunglasses completely. GIB explanations do not match the sunglasses in both examples,

which explains its poor performance in this dataset (see Table 4.2). We were not able to

apply RCExplainer to this dataset due to an out-of-memory error.

4.6 Ablation Study

4.6.1 Single-level Optimization

We create a single-level version of RAGE (RAGE-single) to test the effectiveness of

our bilevel optimization scheme. More specifically, RAGE-single optimizes the explainer

and GNN classifier parts in an end-to-end fashion with a single loss function. Table 4.3

shows that RAGE consistently outperforms RAGE-single. The performance gap is more

prominent for large (e.g., Tree of Life) datasets. This is expected since large and noisy

datasets are more prone to overfitting.

RAGE RAGE-single

Mutagenicity 89.52± 0.36 88.79± 0.82
Proteins 85.20± 0.93 84.05± 1.26
IMDB-B 84.16± 0.32 82.26± 1.42
Sunglasses 99.36± 0.44 95.23± 1.51

Planted Clique 97.78± 4.44 86.67± 12.96
Tree of Life (MSE) 0.0725± 0.0068 0.1002± 0.0101

Table 4.3: Test scores (AUC and MSE) of RAGE and its single-level variant RAGE-s-
ingle for all datasets. RAGE outperforms RAGE-single in all datasets. Nevertheless,
RAGE-single still has consistent performance across datasets.

83

Robust Ante-hoc Graph Explainer using Bilevel Optimization Chapter 4

RAGE RAGE-keep

Mutagenicity 89.52± 0.36 85.76± 0.77
Proteins 85.20± 0.93 84.47± 0.68
IMDB-B 84.16± 0.32 83.46± 1.20
Sunglasses 99.36± 0.44 70.66± 6.88

Planted Clique 97.78± 4.44 97.78± 4.44
Tree of Life (MSE) 0.0725± 0.0068 0.0912± 0.0056

Table 4.4: Test scores (AUC and MSE) of RAGE and its without reinitialization
variant RAGE-keep for all datasets. RAGE outperforms RAGE-keep in all datasets
except Planted Clique which has the same performance. The usefulness of reini-
tialization is more obvious in larger datasets.

4.6.2 Keeping Base Model

RAGE incorporates reinitialization of the base GNN parameters before each inner

loop iteration to eliminate unnecessary training trajectory from previously found expla-

nations. This technique is known to reinforce effective features that may work under

different conditions, as suggested by Zhou et al. [141]. Since the objective of RAGE is to

combine sparsity and accuracy, there is no incentive to retain subgraphs that are unlikely

to be used by the GNNs learned during the inner loop for making predictions. Therefore,

restarting the entire GNN process after each iteration of RAGE is an effective approach

to obtain a good representation of the subgraphs that will be applied by any accurate

GNN trained using our method. Additionally, reinitializing neural network weights has

been found to improve generalization on data, as discussed by Alabdulmohsin et al. [142].

To demonstrate the effect of reinitialization, we created a version of RAGE (RAGE-

keep) without reinitializing the base GNN . The results of Table 4.4 indicate that reini-

tialization significantly improved the classifier quality. Notably, for larger datasets like

Sunglasses, the difference was more pronounced.

84

Robust Ante-hoc Graph Explainer using Bilevel Optimization Chapter 4

0 20 40 60 80 100
Epoch

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

Lo
ss

Training Loss
Validation Loss

Figure 4.7: Training and validation loss over iterations of bilevel optimization training
of Mutagenicity dataset. Even though our training process is not unstable, there is
still room for improvement.

4.7 Training Stability

We provide the change in training and validation loss over epochs. Antoniou et.al.

[150] discuss the drawback of bilevel optimization algorithms in terms of stability and

proposes a few modifications. Here, we provide the same analysis done in [150] for

bilevel optimization training. The results show that RAGE is not significantly affected

by the training instability of bilevel optimization. It could be because of the selection

of inner and outer-loop epochs. However, Figure 4.7 shows that there is still room for

improvement. The solutions provided in [150] to make the training process more stable

are also applicable to our method, RAGE.

4.8 Conclusions

We investigate the problem of generating explanations for GNN-based graph-level

tasks (classification and regression) and propose RAGE, a novel ante-hoc GNN explainer

85

Robust Ante-hoc Graph Explainer using Bilevel Optimization Chapter 4

based on bilevel optimization. RAGE inductively learns compact and accurate explana-

tions by optimizing the GNN and explanations jointly. Moreover, different from several

baselines, RAGE explanations do not omit any information used by the model, thus en-

abling the model behavior to be reproduced based on the explanations. We will compare

RAGE against state-of-the-art graph classification methods and GNN explainers using

synthetic and real datasets. Our preliminary results demonstrate that RAGE consistently

outperforms the baseline models across various evaluation metrics, such as reproducibility

and robustness to noise. Moreover, our initial case studies (Figure 4.1) vividly illustrate

RAGE’s ability to accurately identify pertinent components within the graphs, leading

to compelling explanations and insights.

Future Work: Our work will be finalized by conducting more experiments such

as evaluating the robustness of our method by measuring various metrics, including the

quality of explanations across different runs or base models. To enhance our proposed ap-

proach, we plan to explore the potential of a sampling-based extension, which can enable

the discovery of multiple plausible yet independent explanations for predictions. Fur-

thermore, we intend to investigate the application of our method in the semi-supervised

setting, where a limited number of labeled explanations are available, and where human

evaluation can be incorporated in an interactive manner.

Limitations: RAGE still has room for improvement on its training stability (Sec.

4.7) and training running time due to the nature of bilevel optimization. We discuss

potential improvements for training stability. For running time, gradient estimations or

momentum-based optimization can be applied [151] for faster training.

Broader Impacts: We do not anticipate any direct negative societal impact. How-

ever, it is possible for third parties to use our method and declare that it generates good

explanations and accuracy without proper evaluation on the domain.

86

Chapter 5

Link Prediction without Graph

Neural Networks

5.1 Introduction

Machine learning on graphs supports various structured-data applications including

social network analysis [152, 153, 154], recommender systems [155, 156, 157], natural

language processing [158, 159, 160], and physics modeling [161, 162, 163]. Among the

graph-related tasks, one could argue that link prediction [164, 165] is the most funda-

mental one. This is because link prediction not only has many concrete applications

[166, 167, 168] but can also be considered an (implicit or explicit) step of the graph-

based machine learning pipeline [169, 170, 171]—as the observed graph is usually noisy

and/or incomplete.

In recent years, Graph Neural Networks (GNNs) [13, 14, 73] have emerged as the

predominant paradigm for machine learning on graphs. Similar to their great success

in node classification [106, 172, 173] and graph classification [55, 17, 174], GNNs have

been shown to achieve state-of-the-art link prediction performance [175, 176, 177].

87

Link Prediction without Graph Neural Networks Chapter 5

������������		�
� ����������������������

�������������� !���"�#�$�����%#���&�'�(�)���*+��������������,����������������������� ���

(a) Link prediction for
attributed graphs

�����������	
��� ����������������������

����	����	������ !��"�#�$�����%!#���&�'�(�)�* +,��������!�� ���-����������������������� ���

(b) GNN:
topology → attributes

�����������	
��� ���������������������

����	����	������� ��!�"�#�����$ "���%�&�'�(�)�*+�������� ������,���������������������� ���

(c) Gelato:
attributes → topology

Figure 5.1: GNN incorporates topology into attributes via message-passing, which
is effective for tasks on the topology. Link prediction, however, is a task for the
topology, which motivates the design of Gelato—a novel framework that leverages
graph learning to incorporate attributes into topology.

Compared to classical approaches that rely on expert-designed heuristics to extract

topological information (e.g., Common Neighbors [178], Adamic-Adar [179], Preferential

Attachment [180]), GNNs have the potential to discover new heuristics via supervised

learning and the natural advantage of incorporating node attributes.

However, there is little understanding of what factors contribute to the success

of GNNs in link prediction, and whether simpler alternatives can achieve comparable

performance—as recently found for node classification [181]. GNN-based methods ap-

proach link prediction as a binary classification problem. Yet different from other classi-

fication problems, link prediction deals with extremely class-imbalanced data due to the

sparsity of real-world graphs. We argue that class imbalance should be accounted for in

both training and evaluation of link prediction. In addition, GNNs combine topological

and attribute information by learning topology-smoothened attributes (embeddings) via

message-passing [182]. This attribute-centric mechanism has been proven effective for

tasks on the topology such as node classification [183], but link prediction is a task for

the topology, which naturally motivates topology-centric paradigms (see Figure 5.1).

The goal of this paper is to address the key issues raised above. We first show that

the evaluation of GNN-based link prediction pictures an overly optimistic view of model

performance compared to the (more realistic) imbalanced setting. Class imbalance also

prevents the generalization of these models due to bias in their training. Instead, we

88

Link Prediction without Graph Neural Networks Chapter 5

propose the use of the N-pair loss with an unbiased set of training edges to account for

class imbalance. Moreover, we present Gelato, a novel framework that combines topo-

logical and attribute information for link prediction. As a simpler alternative to GNNs,

our model applies topology-centric graph learning to incorporate node attributes directly

into the graph structure, which is given as input to a topological heuristic, Autocovari-

ance, for link prediction. Extensive experiments demonstrate that our model significantly

outperforms state-of-the-art GNN-based methods in both accuracy and scalability.

To summarize, our contributions are:

▷ We scrutinize the training and evaluation of supervised link prediction methods and

identify their limitations in handling class imbalance.

▷ We propose a simple, effective, and efficient framework to combine topological and

attribute information for link prediction without using GNNs.

▷ We introduce an N-pair link prediction loss combined with an unbiased set of training

edges that we show to be more effective at addressing class imbalance.

5.2 Limitations in supervised link prediction evalu-

ation and training

Supervised link prediction is often formulated as a binary classification problem,

where the positive (or negative) class includes node pairs connected (or not connected)

by a link. A key difference between link prediction and typical classification problems

(e.g., node classification) is that the two classes in link prediction are extremely imbal-

anced, since most real-world graphs of interest are sparse (see Table 5.1). However, we

find that class imbalance is not properly addressed in both evaluation and training of

existing supervised link prediction approaches, as discussed below.

89

Link Prediction without Graph Neural Networks Chapter 5

Link prediction evaluation. Area Under the Receiver Operating Characteristic Curve

(AUC) and Average Precision (AP) are the two most popular evaluation metrics for

supervised link prediction [184, 175, 185, 186, 187, 188, 189, 190, 177]. We first argue

that, as in other imbalanced classification problems [191, 192], AUC is not an effective

evaluation metric for link prediction as it is biased towards the majority class (non-

edges). On the other hand, AP and other rank-based metrics such as Hits@k—used

in Open Graph Benchmark (OGB) [193]—are effective for imbalanced classification if

evaluated on a test set that follows the original class distribution. Yet, existing link

prediction methods [184, 175, 187, 189, 177] compute AP on a test set that contains all

positive test pairs and only an equal number of random negative pairs. Similarly, OGB

computes Hits@k against a very small subset of random negative pairs. We term these

approaches biased testing as they highly overestimate the ratio of positive pairs in the

graph. Evaluation metrics based on these biased test sets provide an overly optimistic

measurement of the actual performance in unbiased testing, where every negative pair is

included in the test set. In fact, in real applications where test positive edges are not

known a priori, it is impossible to construct those biased test sets to begin with. Below,

we also present an illustrative example of the misleading performance evaluation based

on biased testing.

Example: Consider a graph with 10k nodes, 100k edges, and 99.9M disconnected (or

negative) pairs. A (bad) model that ranks 1M false positives higher than the true edges

achieves 0.99 AUC and 0.95 in AP under biased testing with equal negative samples.

(Detailed computation in Section 5.4.8.)

The above discussion motivates a more representative evaluation setting for su-

pervised link prediction. Specifically, we argue for the use of rank-based evaluation

metrics—AP, Precision@k [164], and Hits@k [194]—with unbiased testing, where positive

edges are ranked against all negative pairs. These metrics have been widely applied in

90

Link Prediction without Graph Neural Networks Chapter 5

related problems, such as unsupervised link prediction [164, 195, 196, 197], knowledge

graph completion [194, 198, 199], and information retrieval [200], where class imbalance

is also significant. In our experiments, we will illustrate how these evaluation metrics

combined with unbiased testing provide a drastically different and more informative

performance evaluation compared to existing approaches.

Link prediction training. Following the formulation of supervised link prediction as

binary classification, most existing models adopt the binary cross entropy loss to optimize

their parameters [184, 175, 185, 186, 188, 176, 189, 190]. To deal with class imbalance,

these approaches downsample the negative pairs to match the number of positive pairs

in the training set (biased training). We highlight two drawbacks of biased training : (1)

it induces the model to overestimate the probability of positive pairs, and (2) it discards

potentially useful evidence from most negative pairs. Notice that the first drawback is

often hidden by biased testing. Instead, this paper proposes the use of unbiased training,

where the ratio of negative pairs in the training set is the same as in the input graph.

To train our model in this highly imbalanced setting, we apply the N-pair loss for link

prediction instead of the cross entropy loss (Section 5.3.3).

5.3 Method

Notation and problem. Consider an attributed graph G = (V,E,X), where V is

the set of n nodes, E is the set of m edges (links), and X = (x1, ..., xn)
T ∈ Rn×r collects

r-dimensional node attributes. The topological (structural) information of the graph is

represented by its adjacency matrix A ∈ Rn×n, with Auv > 0 if an edge of weight Auv

connects nodes u and v and Auv = 0, otherwise. The (weighted) degree of node u is

given as du =
∑

v Auv and the corresponding degree vector (matrix) is denoted as d ∈ Rn

(D ∈ Rn×n). The volume of the graph is (G) =
∑

u du. Our goal is to infer missing links

91

Link Prediction without Graph Neural Networks Chapter 5

in G based on its topological and attribute information, A and X.

�����������	
���� ����������������

����	����	����������� �!�����" ���#$%�&�'�(�)*�������������������������������� ���

Figure 5.2: Gelato applies graph learning to incorporate attribute information into
the topology via an MLP. The learned graph is given to a topological heuristic that
predicts edges between node pairs with high Autocovariance similarity. The param-
eters of the MLP are optimized end-to-end using the N-pair loss. Experiments show
that Gelato outperforms state-of-the-art GNN-based link prediction methods.

Model overview. Figure 5.2 provides an overview of our link prediction model. It

starts with a topology-centric graph learning phase that incorporates node attribute

information directly into the graph structure via a Multi-layer Perceptron (MLP). We

then apply a topological heuristic, Autocovariance (AC), to the attribute-enhanced graph

to obtain a pairwise score matrix. Node pairs with the highest scores are predicted as

(positive) links. The scores for training pairs are collected to compute an N-pair loss.

Finally, the loss is used to train the MLP parameters in an end-to-end manner. We

named our model Gelato (Graph enhancement for link prediction with autocovariance).

Gelato represents a paradigm shift in supervised link prediction by combining a graph

encoding of attributes with a topological heuristic instead of relying on increasingly

popular GNN-based embeddings.

5.3.1 Graph learning

The goal of graph learning is to generate an enhanced graph that incorporates

node attribute information into the topology. This can be considered as the “dual”

92

Link Prediction without Graph Neural Networks Chapter 5

operation of message-passing in GNNs, which incorporates topological information into

attributes (embeddings). We argue that graph learning is the more suitable scheme to

combine attributes and topology for link prediction, since link prediction is a task for

the topology itself (as opposed to other applications such as node classification).

Specifically, our first step of graph learning is to augment the original edges with

a set of node pairs based on their (untrained) attribute similarity (i.e., adding an ε-

neighborhood graph):

Ẽ = E + {(u, v) | s(xu, xv) > εη} (5.1)

where s(·) can be any similarity function (we use cosine in our experiments) and εη is a

threshold that determines the number of added pairs as a ratio η of the original number

of edges m.

A simple MLP then maps the pairwise node attributes into a trained edge weight for

every edge in Ẽ:

wuv = ([xu;xv]; θ) (5.2)

where [xu;xv] denotes the concatenation of xu and xv and θ contains the trainable pa-

rameters. For undirected graphs, we instead use the following permutation invariant

operator [201]:

wuv = ([xu + xv; |xu − xv|]; θ) (5.3)

The final edge weights of the enhanced graph are a weighted combination of the

topological weights, the untrained weights, and the trained weights:

Ãuv = αAuv + (1− α)(βwuv + (1− β)s(xu, xv)) (5.4)

where α and β are hyperparameters. The enhanced adjacency matrix Ã is then fed

into a topological heuristic for link prediction introduced in the next section. Note that

93

Link Prediction without Graph Neural Networks Chapter 5

the MLP is not trained directly to predict the links, but instead trained end-to-end to

enhance the input graph given to the topological heuristic. Also note that the MLP can

be easily replaced by a more powerful model such as a GNN, but the goal of this paper

is to demonstrate the general effectiveness of our framework and we will show that even

a simple MLP leads to significant improvement over the base heuristic.

5.3.2 Topological heuristic

Assuming that the learned adjacency matrix Ã incorporates structural and attribute

information, Gelato applies a topological heuristic to Ã. Specifically, we adopt Auto-

covariance, which has been shown to achieve state-of-the-art link prediction results for

non-attributed graphs [197].

Autocovariance is a random-walk based similarity metric. Intuitively, it measures the

difference between the co-visiting probabilities for a pair of nodes in a truncated walk and

in an infinitely long walk. Given the enhanced graph G̃, the Autocovariance similarity

matrix R ∈ Rn×n is given as

R =
D̃

(G̃)
(D̃−1Ã)t − d̃d̃T

2(G̃)
(5.5)

where t ∈ N0 is the scaling parameter of the truncated walk. Each entry Ruv represents

a similarity score for node pair (u, v) and top similarity pairs are predicted as links.

Note that Ruv only depends on the t-hop enclosing subgraph of (u, v) and can be easily

differentiated with respect to the edge weights in the subgraph. In fact, Gelato could be

applied with any differentiable topological heuristic or even a combination of them. In

our experiments (Section 5.4.2), we will show that Autocovariance alone enables state-

of-the-art link prediction performance.

Next, we introduce how to train our model parameters with supervised information.

94

Link Prediction without Graph Neural Networks Chapter 5

5.3.3 N-pair loss and unbiased training

As we have mentioned in Section 5.2, current supervised link prediction methods rely

on biased training and the cross entropy loss (CE) to optimize model parameters. Instead,

Gelato applies the N-pair loss [202] that is inspired by the metric learning and learning-

to-rank literature [203, 204, 205, 206] to train the parameters of our graph learning model

(see Section 5.3.1) from highly imbalanced unbiased training data.

The N-pair loss (NP) contrasts each positive training edge (u, v) against a set of

negative pairs N(u, v). It is computed as follows:

L(θ) = −
∑

(u,v)∈E

log
exp(Ruv)

exp(Ruv) +
∑

(p,q)∈N(u,v) exp(Rpq)
(5.6)

Intuitively, L(θ) is minimized when each positive edge (u, v) has a much higher sim-

ilarity than its contrasted negative pairs: Ruv ≫ Rpq,∀(p, q) ∈ N(u, v). Compared to

CE, NP is more sensitive to negative pairs that have comparable similarities to those

of positive pairs—they are more likely to be false positives. While NP achieves good

performance in our experiments, alternative losses from the learning-to-rank literature

[207, 208, 209] could also be applied.

Gelato generates negative samples N(u, v) using unbiased training. This means that

N(u, v) is a random subset of all disconnected pairs in the training graph, and |N(u, v)|

is proportional to the ratio of negative pairs over positive ones. In this way, we leverage

more information contained in negative pairs compared to biased training. Note that,

similar to unbiased training, (unsupervised) topological heuristics implicitly use infor-

mation from all edges and non-edges. Also, unbiased training can be combined with

adversarial negative sampling methods [210, 211] from the knowledge graph embedding

literature to increase the quality of contrasted negative pairs.

95

Link Prediction without Graph Neural Networks Chapter 5

Complexity analysis. The only trainable component in our model is the graph learning

MLP with O(rh + lh2) parameters—where r is the number of node features, l is the

number of hidden layers, and h is the number of neurons per layer. Notice that the number

of parameters is independent of the graph size. Constructing the ε-neighborhood graph

based on cosine similarity can be done efficiently using hashing and pruning [212, 213].

Computing the enhanced adjacency matrix with the MLP takes O((1 + η)mr) time per

epoch—where m = |E| and η is the ratio of edges added to E from the ε-neighborhood

graph. We apply sparse matrix multiplication to compute k entries of the t-step AC in

O(max(k, (1+η)mt)) time. Note that unlike recent GNN-based approaches [175, 214, 177]

that generate distinctive subgraphs for each link (e.g., via the labeling trick), enclosing

subgraphs for links in Gelato share the same information (i.e., learned edge weights),

which significantly reduces the computational cost. Our experiments will demonstrate

Gelato’s efficiency in training and inference.

5.4 Experiments

We provide empirical evidence for our claims regarding supervised link prediction and

demonstrate the accuracy and efficiency of Gelato. Our implementation is anonymously

available at https://anonymous.4open.science/r/Gelato/.

5.4.1 Experiment settings

Datasets. Our method is evaluated on five attributed graphs commonly used as link

prediction benchmark [185, 186, 188, 189, 190, 177]:

▷ Cora [72] and CiteSeer [215] are citation networks where nodes represent scientific

publications (classified into seven and six classes, respectively) and edges represent the

citations between them. Attributes of each node is a binary word vector indicating

96

https://anonymous.4open.science/r/Gelato/

Link Prediction without Graph Neural Networks Chapter 5

the absence/presence of the corresponding word from a dictionary.

▷ PubMed [216] is a citation network where nodes represent scientific publications (clas-

sified into three classes) and edges represent the citations between them. Attributes

of each node is a TF/IDF weighted word vector.

▷ Photo and Computers are subgraphs of the Amazon co-purchase graph [217] where

nodes represent products (classified into eight and ten classes, respectively) and edges

imply that two products are frequently bought together. Attributes of each node is a

bag-of-word vector encoding the product review.

We use the publicly available version of the datasets from the pytorch-geometric

library [218] (under the MIT licence) curated by [219] and [220]. Table 5.1 shows dataset

statistics. Table 5.1)

#Nodes #Edges #Attrs Avg. degree Density

Cora 2,708 5,278 1,433 3.90 0.14%
CiteSeer 3,327 4,552 3,703 2.74 0.08%
PubMed 19,717 44,324 500 4.50 0.02%
Photo 7,650 119,081 745 31.13 0.41%

Computers 13,752 245,861 767 35.76 0.26%

Table 5.1: A summary of dataset statistics.

Baselines. For GNN-based link prediction, we include six state-of-the-art methods

published in the past two years: LGCN [186], TLC-GNN [188], Neo-GNN [176], NBFNet

[189], BScNets [190], and WalkPool [177], as well as three pioneering works—GAE [184],

SEAL [175], and HGCN [185]. For topological link prediction heuristics, we consider

Common Neighbors (CN) [178], Adamic Adar (AA) [179], Resource Allocation (RA)

[221], and Autocovariance (AC) [197]—the base heuristic in our model. To demonstrate

the superiority of the proposed end-to-end model, we also include an MLP trained directly

for link prediction, the cosine similarity (Cos) between node attributes, and AC on top

of the respective weighted/augmented graphs (i.e., two-stage approaches where the MLP

97

https://github.com/pyg-team/pytorch_geometric/blob/master/LICENSE

Link Prediction without Graph Neural Networks Chapter 5

is trained separately for link prediction rather than trained end-to-end) as baselines.

We list link prediction baselines and their reference repositories we use in our experi-

ments in Table 5.2. Note that we had to implement the batched training and testing for

several baselines as their original implementations do not scale to unbiased training and

unbiased testing without downsampling.

Baseline Repository

GAE [13] https://github.com/zfjsail/gae-pytorch
SEAL [175] https://github.com/facebookresearch/SEAL OGB

HGCN [185] https://github.com/HazyResearch/hgcn
LGCN [186] https://github.com/ydzhang-stormstout/LGCN/

TLC-GNN [188] https://github.com/pkuyzy/TLC-GNN/
Neo-GNN [176] https://github.com/seongjunyun/Neo-GNNs
NBFNet [189] https://github.com/DeepGraphLearning/NBFNet
BScNets [190] https://github.com/BScNets/BScNets
WalkPool [177] https://github.com/DaDaCheng/WalkPooling

AC [197] https://github.com/zexihuang/random-walk-embedding

Table 5.2: Reference of baseline code repositories.

Hyperparameters. For Gelato, we tune the proportion of added edges η from {0.0,

0.25, 0.5, 0.75, 1.0}, the topological weight α from {0.0, 0.25, 0.5, 0.75}, and the trained

weight β from {0.25, 0.5, 0.75, 1.0}, with a sensitivity analysis included in Section 5.4.6.

All other settings are fixed across datasets: MLP with one hidden layer of 128 neurons,

AC scaling parameter t = 3, Adam optimizer [115] with a learning rate of 0.001, a

dropout rate of 0.5, and unbiased training without downsampling. For baselines, we use

the same hyperparameters as in their papers.

Data splits for unbiased training and unbiased testing. Following [184, 175,

185, 186, 190, 177], we adopt 85%/5%/10% ratios for training, validation, and testing.

Specifically, for unbiased training and testing, we first randomly (with seed 0) divide

the (positive) edges E of the original graph into E+
train, E

+
valid, and E+

test for training,

validation, and testing based on the selected ratios. Then, we set the negative pairs

98

https://github.com/zfjsail/gae-pytorch
https://github.com/facebookresearch/SEAL_OGB
https://github.com/HazyResearch/hgcn
https://github.com/ydzhang-stormstout/LGCN/
https://github.com/pkuyzy/TLC-GNN/
https://github.com/seongjunyun/Neo-GNNs
https://github.com/DeepGraphLearning/NBFNet
https://github.com/BScNets/BScNets
https://github.com/DaDaCheng/WalkPooling
https://github.com/zexihuang/random-walk-embedding

Link Prediction without Graph Neural Networks Chapter 5

in these three sets as (1) E−
train = E− + E+

valid + E+
test, (2) E−

valid = E− + E+
test, and

(3) E−
test = E−, where E− is the set of all negative pairs (excluding self-loops) in the

original graph. Notice that the validation and testing positive edges are included in the

negative training set, and the testing positive edges are included in the negative validation

set. These inclusions simulate the real-world scenario where the testing edges (and the

validation edges) are unobserved during validation (training).

Evaluation metrics. We adopt Precision@k (prec@k)—proportion of positive edges

among the top k of all testing pairs, Hits@k (hits@k)—ratio of positive edges individu-

ally ranked above kth place against all negative pairs, and Average Precision (AP)—area

under the precision-recall curve, as evaluation metrics. We report results from 10 runs

with random seeds ranging from 1 to 10.

Positive masking. For unbiased training, a trick similar to negative injection [175] in

biased training is needed to guarantee model generalizability. Specifically, we divide the

training positive edges into batches and during the training with each batch Eb, we feed

in only the residual edges E−Eb as the structural information to the model. This setting

simulates the testing phase, where the model is expected to predict edges without using

their own connectivity information. We term this trick positive masking.

Other implementation details. We add self-loops to the enhanced adjacency ma-

trix to ensure that each node has a valid transition probability distribution that is used

in computing Autocovariance. The self-loops are added to all isolated nodes in the

training graph for PubMed, Photo, and Computers, and to all nodes for Cora

and CiteSeer. Following the postprocessing of the Autocovariance matrix for embed-

ding in [197], we standardize Gelato similarity scores before computing the loss. For

training with the cross entropy loss, we further add a linear layer with the sigmoid ac-

tivation function to map our prediction score to a probability. We optimize our model

with gradient descent via autograd in pytorch [222]. We find that the gradients are

99

Link Prediction without Graph Neural Networks Chapter 5

sometimes invalid when training our model (especially with the cross entropy loss), and

we address this by skipping the parameter updates for batches leading to invalid gra-

dients. Finally, we use prec@100% on the (unbiased) validation set as the criteria for

selecting the best model from all training epochs. The maximum number of epochs

for Cora/CiteSeer/PubMed and Photo/Computers are set to be 100 and 250,

respectively.

Experiment environment. We run our experiments in an a2-highgpu-1g node of the

Google Cloud Compute Engine. It has one NVIDIA A100 GPU with 40GB HBM2 GPU

memory and 12 Intel Xeon Scalable Processor (Cascade Lake) 2nd Generation vCPUs

with 85GB memory.

Number of trainable parameters. The only trainable component in Gelato is the

graph learning MLP, which for Photo has 208,130 parameters. By comparison, the

best performing GNN-based method, Neo-GNN, has more than twice the number of

parameters (455,200).

5.4.2 Link prediction performance

Table 5.3 summarizes the link prediction performance in terms of the mean and

standard deviation of Average Precision (AP) for all methods. Figure 5.3 and Figure 5.4

show results based on prec@k (k as a ratio of test edges) and hits@k (k as the rank) for

varying k.

First, we want to highlight the drastically different performance of GNN-based meth-

ods compared to those found in the original papers [186, 188, 176, 189, 190, 177] and

reproduced in Section 5.4.9. While they achieve AUC/AP scores of often higher than

90% under biased testing, here we see most of them underperform even the simplest

topological heuristics such as Common Neighbors under unbiased testing. These results

100

Link Prediction without Graph Neural Networks Chapter 5

Cora CiteSeer PubMed Photo Computers

GNN

GAE 0.27 ± 0.02 0.66 ± 0.11 0.26 ± 0.03 0.28 ± 0.02 0.30 ± 0.02
SEAL 1.89 ± 0.74 0.91 ± 0.66 *** 10.49 ± 0.86 6.84*

HGCN 0.82 ± 0.03 0.74 ± 0.10 0.35 ± 0.01 2.11 ± 0.10 2.30 ± 0.14
LGCN 1.14 ± 0.04 0.86 ± 0.09 0.44 ± 0.01 3.53 ± 0.05 1.96 ± 0.03

TLC-GNN 0.29 ± 0.09 0.35 ± 0.18 OOM 1.77 ± 0.11 OOM
Neo-GNN 2.05 ± 0.61 1.61 ± 0.36 1.21 ± 0.14 10.83 ± 1.53 6.75*

NBFNet 1.36 ± 0.17 0.77 ± 0.22 *** 11.99 ± 1.60 ***
BScNets 0.32 ± 0.08 0.20 ± 0.06 0.22 ± 0.08 2.47 ± 0.18 1.45 ± 0.10
WalkPool 2.04 ± 0.07 1.39 ± 0.11 1.31* OOM OOM

Topological
Heuristics

CN 1.10 ± 0.00 0.74 ± 0.00 0.36 ± 0.00 7.73 ± 0.00 5.09 ± 0.00
AA 2.07 ± 0.00 1.24 ± 0.00 0.45 ± 0.00 9.67 ± 0.00 6.52 ± 0.00
RA 2.02 ± 0.00 1.19 ± 0.00 0.33 ± 0.00 10.77 ± 0.00 7.71 ± 0.00
AC 2.43 ± 0.00 2.65 ± 0.00 2.50 ± 0.00 16.63 ± 0.00 11.64 ± 0.00

Attributes
+

Topology

MLP 0.30 ± 0.05 0.44 ± 0.09 0.14 ± 0.06 1.01 ± 0.26 0.41 ± 0.23
Cos 0.42 ± 0.00 1.89 ± 0.00 0.07 ± 0.00 0.11 ± 0.00 0.07 ± 0.00

MLP+AC 3.24 ± 0.03 1.95 ± 0.05 2.61 ± 0.06 15.99 ± 0.21 11.25 ± 0.13
Cos+AC 3.60 ± 0.00 4.46 ± 0.00 0.51 ± 0.00 10.01 ± 0.00 5.20 ± 0.00

MLP+Cos+AC 3.39 ± 0.06 4.15 ± 0.14 0.55 ± 0.03 10.88 ± 0.09 5.75 ± 0.11

Gelato 3.90 ± 0.03 4.55 ± 0.02 2.88 ± 0.09 25.68 ± 0.53 18.77 ± 0.19

*Run only once as each run takes ∼100 hrs; *** Each run takes >1000 hrs;
OOM: Out Of Memory.

Table 5.3: Link prediction performance comparison (mean ± std AP). Gelato con-
sistently outperforms GNN-based methods, topological heuristics, and two-stage ap-
proaches combining attributes and topology.

0 20 40 60 80 100
0

5

10

15

20

Pr
ec

@
k

(%
)

Cora

0 20 40 60 80 100
0

5

10

15

20 CiteSeer

0 20 40 60 80 100
0

6

12

18

24 PubMed

0 20 40 60 80 100
0

20

40

60

80 Photo

GAE SEAL HGCN LGCN TLC-GNN Neo-GNN NBFNet BScNets WalkPool AC Gelato

0 20 40 60 80 100
0

16

32

48

64 Computers

0.0 0.2 0.4 0.6 0.8 1.0
k (%)

0.0

0.2

0.4

0.6

0.8

1.0

Figure 5.3: Link prediction performance in terms of prec@k for varying values of k
(as percentages of test edges). With few exceptions, Gelato outperforms the baselines
across different values of k.

101

Link Prediction without Graph Neural Networks Chapter 5

2−2 20 22 24 260

10

20

30

40

Hi
ts

@
k

(%
)

Cora

2−2 20 22 24 260

14

28

42

56 CiteSeer

2−2 20 22 24 260

3

6

9

12 PubMed

2−2 20 22 24 260

8

16

24

32 Photo

GAE SEAL HGCN LGCN TLC-GNN Neo-GNN NBFNet BScNets WalkPool AC Gelato

2−2 20 22 24 260

6

12

18 Computers

0.0 0.2 0.4 0.6 0.8 1.0
k (×100)

0.0

0.2

0.4

0.6

0.8

1.0

Figure 5.4: Link prediction performance in terms of hits@k for varying values of k.
With few exceptions, Gelato outperforms the baselines across different values of k.

support our arguments from Section 5.2 that evaluation metrics based on biased testing

can produce misleading results compared to unbiased testing. The overall best performing

GNN model is Neo-GNN, which directly generalizes the pairwise topological heuristics.

Yet still, it consistently underperforms AC, a random-walk based heuristic that needs

neither node attributes nor supervision/training.

We then look at two-stage combinations of AC and models for attribute information.

We observe noticeable performance gains from combining attribute cosine similarity and

AC in Cora and CiteSeer but not for other datasets. Other two-stage approaches

achieve similar or worse performance.

Finally, Gelato significantly outperforms the best GNN-based model with an average

relative gain of 145.2% and AC with a gain of 52.6% in terms of AP—similar results

were obtained for prec@k and hits@k. This validates our hypothesis that a simple MLP

can effectively incorporate node attribute information into the topology when our model

is trained end-to-end. Next, we will provide insights behind these improvements and

demonstrate the efficiency of Gelato on training and inference.

5.4.3 Visualizing Gelato predictions

To better understand the performance of Gelato, we visualize its learned graph, pre-

diction scores, and predicted edges in comparison with AC and the best GNN-based

102

Link Prediction without Graph Neural Networks Chapter 5

baseline (Neo-GNN) in Figure 5.5.

5.5a shows the input adjacency matrix for the subgraph of Photo containing the

top 160 nodes belonging to the first class sorted in decreasing order of their (within-class)

degree. 5.5b illustrates the enhanced adjacency matrix learned by Gelato’s MLP. Com-

paring it with the Euclidean distance between node attributes in 5.5c, we see that our

enhanced adjacency matrix effectively incorporates attribute information. More specifi-

cally, we notice the down-weighting of the edges connecting the high-degree nodes with

larger attribute distances (matrix entries 0-40 and especially 0-10) and the up-weighting

of those connecting medium-degree nodes with smaller attribute distances (40-80). In

5.5d and 5.5e, we see the corresponding AC scores based on the input and the enhanced

adjacency matrix (Gelato). Since AC captures the degree distribution of nodes [197], the

vanilla AC scores greatly favor high-degree nodes (0-40). By comparison, thanks to the

down-weighting, Gelato assigns relatively lower scores to edges connecting them to low-

degree nodes (60-160), while still capturing the edge density between high-degree nodes

(0-40). The immediate result of this is the significantly improved precision as shown in

5.5h compared to 5.5g. Gelato covers as many positive edges in the high-degree region

as AC while making far fewer wrong predictions for connections involving low-degree

nodes.

The prediction probabilities and predicted edges for Neo-GNN are shown in 5.5f and

5.5i, respectively. Note that while it predicts edges connecting high-degree node pairs

(0-40) with high probability, similar values are assigned to many low-degree pairs (80-

160) as well. Most of those predictions are wrong, both in the low-degree region of 5.5i

and also in other low-degree parts of the graph that are not shown here. This analysis

supports our claim that Gelato is more effective at combining node attributes and the

graph topology, enabling state-of-the-art link prediction.

103

Link Prediction without Graph Neural Networks Chapter 5

0 40 80 120 160
0

40

80

120

160

Edge Nonedge

(a) Input adjacency matrix

0 40 80 120 160
0

40

80

120

160

0.0 0.1 0.2 0.3 0.4 0.5

(b) Enhanced adjacency matrix

0 40 80 120 160
0

40

80

120

160

0 5 10 15 20 25

(c) Attribute Euclidean distance

0 40 80 120 160
0

40

80

120

160

0 5 10 15 20 25 30

(d) AC scores

0 40 80 120 160
0

40

80

120

160

0 5 10 15 20 25 30

(e) Gelato scores

0 40 80 120 160
0

40

80

120

160

0.995 0.996 0.997 0.998 0.999 1.000

(f) Neo-GNN predictions

0 40 80 120 160
0

40

80

120

160

True positive False positive

(g) AC predicted edges

0 40 80 120 160
0

40

80

120

160

True positive False positive

(h) Gelato predicted edges

0 40 80 120 160
0

40

80

120

160

True positive False positive

(i) Neo-GNN predicted edges

Figure 5.5: Illustration of the link prediction process of Gelato, AC, and the best
GNN-based approach, Neo-GNN, on a subgraph of Photo. Gelato effectively incor-
porates node attributes into the graph structure and leverages topological heuristics
to enable state-of-the-art link prediction.

104

Link Prediction without Graph Neural Networks Chapter 5

5.4.4 Loss and training setting

In this section, we demonstrate the advantages of the proposed N-pair loss and unbi-

ased training for supervised link prediction. Figure 5.6 shows the training and validation

losses and prec@100% (our validation metric) in training Gelato based on the cross en-

tropy (CE) and N-pair (NP) losses under biased and unbiased training respectively. The

final test AP scores are shown in the titles.

0.42

0.54

0.66

Tr
ai

n
lo

ss

CE+biased : 14.87%±1.41%

Loss Prec@k

0.05

0.08

0.11
NP+biased : 19.63%±0.38%

0.3

0.6

0.9
CE+unbiased : 23.66%±1.01%

2.0

2.5

3.0
NP+unbiased : 25.68%±0.53%

0 50 100 150 200 250
0.30

0.60

0.90

Va
lid

 lo
ss

0 50 100 150 200 250
6

8

10

0 50 100 150 200 250
0.0

0.5

1.0

0 50 100 150 200 250
5.0

7.5

10.0

50

74

98

5.0

9.5

14.0

95.5

96.0

96.5

12.0

14.5

17.0

20

45

70

5

12

19

47

51

55

Tr
ai

n
pr

ec
@

10
0%

 (%
)

13

16

19

Va
lid

 p
re

c@
10

0%
 (%

)

0.0 0.2 0.4 0.6 0.8 1.0
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

Figure 5.6: Training of Gelato based on different losses and training settings for
Photo with test AP (mean ± std) shown in the titles. Compared with the cross
entropy loss, the N-pair loss with unbiased training is a more consistent proxy for
unbiased testing metrics and leads to better peak performance.

In the first column (CE with biased training), different from the training, both loss and

precision for (unbiased) validation decrease. This leads to even worse test performance

compared to the untrained base model (i.e., AC). In other words, albeit being the most

popular loss function for supervised link prediction, CE with biased training does not

generalize to unbiased testing. On the contrary, as shown in the second column, the

proposed NP loss with biased training—equivalent to the pairwise logistic loss [223]—is

a more effective proxy for unbiased testing metrics.

The right two columns show results with unbiased training, which is better for CE

105

Link Prediction without Graph Neural Networks Chapter 5

as more negative pairs are present in the training set (with the original class ratio). On

the other hand, NP is more consistent with unbiased evaluation metrics, leading to 8.5%

better performance. This is because, unlike CE, which optimizes positive and negative

pairs independently, NP contrasts negative pairs against positive ones, giving higher

importance to negative pairs that are more likely to be false positives.

5.4.5 Ablation study

We have demonstrated the superiority of Gelato over its individual components and

two-stage approaches in Table 5.3 and analyzed the effect of losses and training settings in

Section 5.4.4. Here, we collect the results with the same hyperparameter setting as Gelato

and present a comprehensive ablation study in Table 5.4.5. Specifically, Gelato−MLP

(AC) represents Gelato without the MLP (Autocovariance) component, i.e., only using

Autocovariance (MLP) for link prediction. Gelato−NP (UT) replaces the proposed N-

pair loss (unbiased training) with the cross entropy loss (biased training) applied by the

baselines. Finally, Gelato−NP+UT replaces both the loss and the training setting.

Cora CiteSeer PubMed Photo Computers

Gelato−MLP 2.43 ± 0.00 2.65 ± 0.00 2.50 ± 0.00 16.63 ± 0.00 11.64 ± 0.00
Gelato−AC 1.94 ± 0.18 3.91 ± 0.37 0.83 ± 0.05 7.45 ± 0.44 4.09 ± 0.16
Gelato−NP+UT 2.98 ± 0.20 1.96 ± 0.11 2.35 ± 0.24 14.87 ± 1.41 9.77 ± 2.67
Gelato−NP 1.96 ± 0.01 1.77 ± 0.20 2.32 ± 0.16 19.63 ± 0.38 9.84 ± 4.42
Gelato−UT 3.07 ± 0.01 1.95 ± 0.05 2.52 ± 0.09 23.66 ± 1.01 11.59 ± 0.35
Gelato 3.90 ± 0.03 4.55 ± 0.02 2.88 ± 0.09 25.68 ± 0.53 18.77 ± 0.19

Table 5.4: Results of the ablation study based on AP scores. Each component of
Gelato plays an important role in enabling state-of-the-art link prediction perfor-
mance.

We observe that removing either MLP or Autocovariance leads to inferior perfor-

mance, as the corresponding attribute or topology information would be missing. Fur-

ther, to address the class imbalance problem of link prediction, both the N-pair loss and

106

Link Prediction without Graph Neural Networks Chapter 5

unbiased training are crucial for effective training of Gelato.

While all supervised baselines originally adopt biased training, we also implement the

same unbiased training (and N-pair loss) as Gelato for those that are scalable in Section

5.4.10—results are consistent with the ones discussed in Section 5.4.2.

5.4.6 Sensitivity analysis

The selected hyperparameters of Gelato for each dataset are recorded in Table 5.5, and

a sensitivity analysis of η, α, and β are shown in Figure 5.7 and Figure 5.8 respectively

for Photo and Cora.

Cora CiteSeer PubMed Photo Computers

η 0.5 0.75 0.0 0.0 0.0
α 0.5 0.5 0.0 0.0 0.0
β 0.25 0.5 1.0 1.0 1.0

Table 5.5: Selected hyperparameters of Gelato.

0.00 0.25 0.50 0.75 1.00
η

23.4

24.0

24.6

25.2

25.8

AP
 (%

)

30.0

30.6

31.2

31.8

32.4

Pr
ec

@
10

0%
 (%

)

(a) Photo performance

0.00 0.25 0.50 0.75 1.00
η

3.00

3.25

3.50

3.75

4.00

AP
 (%

)

8.8

9.6

10.4

11.2

12.0

Pr
ec

@
10

0%
 (%

)

(b) Cora performance

Figure 5.7: Performance of Gelato with different values of η.

For most datasets, we find that simply setting β = 1.0 and η = α = 0.0 leads to

the best performance, corresponding to the scenario where no edges based on cosine

107

Link Prediction without Graph Neural Networks Chapter 5

0.0 0.25 0.5 0.75
α

0.25

0.5

0.75

1.0

β

17.08 17.34 17.20 16.93

21.02 19.83 18.54 17.45

23.98 22.01 19.96 18.05

25.68 23.43 21.33 18.59

17.08 17.34 17.20 16.93

21.02 19.83 18.54 17.45

23.98 22.01 19.96 18.05

25.68 23.43 21.33 18.59

17

19

21

23

25

AP
 (%

)
(a) Photo AP scores

0.0 0.25 0.5 0.75
α

0.25

0.5

0.75

1.0

β

25.53 25.82 25.59 24.99

29.54 28.38 26.98 25.62

31.31 30.08 28.38 26.31

32.13 30.88 29.53 26.82

25.53 25.82 25.59 24.99

29.54 28.38 26.98 25.62

31.31 30.08 28.38 26.31

32.13 30.88 29.53 26.82

25

26

27

28

29

30

31

32

Pr
ec

@
10

0%
 (%

)

(b) Photo prec@100% scores

0.0 0.25 0.5 0.75
α

0.25

0.5

0.75

1.0

β

2.10 2.96 3.90 3.68

2.86 3.54 3.81 3.60

2.63 3.28 3.52 3.51

2.26 3.12 3.21 3.47

2.10 2.96 3.90 3.68

2.86 3.54 3.81 3.60

2.63 3.28 3.52 3.51

2.26 3.12 3.21 3.47

2.2

2.6

3.0

3.4

3.8

AP
 (%

)

(c) Cora AP scores

0.0 0.25 0.5 0.75
α

0.25

0.5

0.75

1.0
β

5.07 8.98 11.67 9.56

10.11 10.89 11.01 9.81

9.26 10.02 10.27 9.68

7.46 9.43 9.15 9.77

5.07 8.98 11.67 9.56

10.11 10.89 11.01 9.81

9.26 10.02 10.27 9.68

7.46 9.43 9.15 9.77

6

7

8

9

10

11

Pr
ec

@
10

0%
 (%

)

(d) Cora prec@100% scores

Figure 5.8: Performance of Gelato with different α and β.

similarity are added and the edge weights are completely learned by the MLP. For Cora

and CiteSeer, however, we first notice that adding edges based on untrained cosine

similarity alone leads to improved performance (see Table 5.3), which motivates us to

set η = 0.5/0.75. In addition, we find that a large trainable weight β leads to overfitting

of the model as the number of node attributes is large while the number of (positive)

edges is small for Cora and CiteSeer (see Table 5.1). We address this by decreasing

the relative importance of trained edge weights (β = 0.25/0.5) and increasing that of the

topological edge weights (α = 0.5), which leads to better generalization and improved

108

Link Prediction without Graph Neural Networks Chapter 5

performance. Based on our experiments, these hyperparameters can be easily tuned using

simple hyperparameter search techniques, such as line search, using a small validation

set.

GAE SEAL HGCN LGCN TLC-GNN Neo-GNN NBFNet BScNets MLP Gelato

Training 1,022 11,493 92 56 42,440 14,807 30,896 115 232 1,265
Testing 0.031 380 0.093 0.099 5.722 346 76,737 0.394 1.801 0.057

Table 5.6: Training and inference time comparison between supervised link prediction
methods for Photo. Gelato has competitive training time (even under unbiased
training) and is significantly faster than most baselines in terms of inference, especially
compared to the best GNN model, Neo-GNN.

5.4.7 Running time

We compare Gelato with other supervised link prediction methods in terms of running

time for Photo in Table 5.4.6. As the only method that applies unbiased training—

with more negative samples—Gelato shows a competitive training speed that is 11×

faster than the best performing GNN-based method, Neo-GNN. In terms of inference

time, Gelato is much faster than most baselines with a 6,000× speedup compared to

Neo-GNN. We further observe more significant efficiency gains for Gelato over Neo-GNN

for larger datasets—e.g., 14× (training) and 25,000× (testing) for Computers.

5.4.8 Analysis of link prediction evaluation metrics with differ-

ent test settings

In Section 5.2, we present an example scenario where a bad link prediction model

that ranks 1M false positives higher than the 100k true edges achieves good AUC/AP

with biased testing. Here, we provide the detailed computation steps and compare the

results with those based on unbiased testing.

109

Link Prediction without Graph Neural Networks Chapter 5

5.9a and 5.9b show the receiver operating characteristic (ROC) and precision-recall

(PR) curves for the model under biased testing with equal negative samples. Due to

the downsampling, only 100k (out of 99.9M) negative pairs are included in the test set,

among which only 100k/99.9M×1M ≈ 1k pairs are ranked higher than the positive edges.

In the ROC curve, this means that once the false positive rate reaches 1k/100k = 0.01,

the true positive rate would reach 1.0, leading to an AUC score of 0.99. Similarly, in the

PR curve, when the recall reaches 1.0, the precision is 100k/(1k + 100k) ≈ 0.99, leading

to an overall AP score of ∼0.95.

By comparison, as shown in 5.9c, when the recall reaches 1.0, the precision under

unbiased testing is only 100k/(1M + 100k) ≈ 0.09, leading to an AP score of ∼0.05.

This demonstrates that evaluation metrics based on biased testing provide an overly

optimistic measurement of link prediction model performance compared to the more

realistic unbiased testing setting.

0 0.2 0.4 0.6 0.8 1.0
False positive rate

0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 p
os

iti
ve

 ra
te

0.01

AUC = 0.99

(a) ROC

0 0.2 0.4 0.6 0.8 1.0
Recall

0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

0.99

AP = 0.95

(b) PR under biased testing

0 0.2 0.4 0.6 0.8 1.0
Recall

0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

0.09

AP = 0.05

(c) PR under unbiased testing

Figure 5.9: Receiver operating characteristic and precision-recall curves for the bad
link prediction model that ranks 1M false positives higher than the 100k true edges.
The model achieves 0.99 in AUC and 0.95 AP under biased testing, while the more
informative performance evaluation metric, Average Precision (AP) under unbiased
testing, is only 0.05.

110

Link Prediction without Graph Neural Networks Chapter 5

5.4.9 Results based on AUC scores

As we have argued in Section 5.2, AUC is not an effective evaluation metric for link

prediction (even under unbiased testing) as it is biased towards the majority class. In

Table 5.7, we report the AUC scores for different methods under unbiased testing. These

results, while being consistent with those found in the link prediction literature, disagree

with those obtained using the rank-based evaluation metrics under unbiased testing.

Cora CiteSeer PubMed Photo Computers

GNN

GAE 87.30 ± 0.22 87.48 ± 0.39 94.10 ± 0.22 77.59 ± 0.73 79.36 ± 0.37
SEAL 91.82 ± 1.08 90.37 ± 0.91 *** 98.85 ± 0.04 98.7*

HGCN 92.60 ± 0.29 92.39 ± 0.61 94.40 ± 0.14 96.08 ± 0.08 97.86 ± 0.10
LGCN 91.60 ± 0.23 93.07 ± 0.77 95.80 ± 0.03 98.36 ± 0.01 97.81 ± 0.01

TLC-GNN 91.57 ± 0.95 91.18 ± 0.78 OOM 98.20 ± 0.08 OOM
Neo-GNN 91.77 ± 0.84 90.25 ± 0.80 90.43 ± 1.37 98.74 ± 0.55 98.34*

NBFNet 86.06 ± 0.59 85.10 ± 0.32 *** 98.29 ± 0.35 ***
BScNets 91.59 ± 0.47 89.62 ± 1.05 97.48 ± 0.07 98.68 ± 0.06 98.41 ± 0.05
WalkPool 92.33 ± 0.30 90.73 ± 0.42 98.66* OOM OOM

Topological
Heuristics

CN 71.15 ± 0.00 66.91 ± 0.00 64.09 ± 0.00 96.73 ± 0.00 96.15 ± 0.00
AA 71.22 ± 0.00 66.92 ± 0.00 64.09 ± 0.00 97.02 ± 0.00 96.58 ± 0.00
RA 71.22 ± 0.00 66.93 ± 0.00 64.09 ± 0.00 97.20 ± 0.00 96.82 ± 0.00
AC 75.41 ± 0.00 72.41 ± 0.00 67.46 ± 0.00 98.24 ± 0.00 96.86 ± 0.00

Attributes
+

Topology

MLP 85.43 ± 0.36 87.89 ± 2.05 87.89 ± 2.05 91.24 ± 1.61 88.84 ± 2.58
Cos 79.06 ± 0.00 89.86 ± 0.00 89.14 ± 0.00 71.46 ± 0.00 71.68 ± 0.00

MLP+AC 79.77 ± 0.03 82.26 ± 0.29 66.31 ± 0.74 98.02 ± 0.05 96.69 ± 0.05
Cos+AC 86.34 ± 0.00 89.29 ± 0.00 75.56 ± 0.00 97.28 ± 0.00 96.26 ± 0.00

MLP+Cos+AC 86.90 ± 0.14 89.42 ± 0.09 75.78 ± 0.27 97.27 ± 0.01 96.24 ± 0.01

Gelato 83.12 ± 0.06 88.38 ± 0.02 64.93 ± 0.06 98.01 ± 0.03 96.72 ± 0.04

*Run only once as each run takes ∼100 hrs; *** Each run takes >1000 hrs;
OOM: Out Of Memory.

Table 5.7: Link prediction performance comparison (mean ± std AUC). AUC results
conflict with other evaluation metrics, presenting a misleading view of the model
performance for link prediction.

5.4.10 Baseline results with unbiased training

Table 5.8 summarizes the link prediction performance in terms of mean and standard

deviation of AP for Gelato and the baselines using unbiased training without downsam-

pling and the cross entropy loss, and Figure 5.10 and Figure 5.11 show results based on

111

Link Prediction without Graph Neural Networks Chapter 5

prec@k and hits@k for varying k values.

Cora CiteSeer PubMed Photo Computers

GNN

GAE 0.33 ± 0.21 0.69 ± 0.18 0.63* 1.36 ± 3.38 7.91*

SEAL 2.24* 1.11* *** *** ***
HGCN 0.54 ± 0.23 1.02 ± 0.05 0.41* 3.27 ± 2.97 2.60*

LGCN 1.53 ± 0.08 1.45 ± 0.09 0.55* 2.90 ± 0.26 1.13*

TLC-GNN 0.68 ± 0.16 0.61 ± 0.19 OOM 2.95 ± 1.50 OOM
Neo-GNN 2.76 ± 0.36 1.80 ± 0.22 *** *** ***
NBFNet *** *** *** *** ***
BScNets 1.13 ± 0.25 1.27 ± 0.20 0.47* 8.54 ± 1.55 4.40*

WalkPool *** *** *** OOM OOM

Topological
Heuristics

CN 1.10 ± 0.00 0.74 ± 0.00 0.36 ± 0.00 7.73 ± 0.00 5.09 ± 0.00
AA 2.07 ± 0.00 1.24 ± 0.00 0.45 ± 0.00 9.67 ± 0.00 6.52 ± 0.00
RA 2.02 ± 0.00 1.19 ± 0.00 0.33 ± 0.00 10.77 ± 0.00 7.71 ± 0.00
AC 2.43 ± 0.00 2.65 ± 0.00 2.50 ± 0.00 16.63 ± 0.00 11.64 ± 0.00

Attributes
+

Topology

MLP 0.22 ± 0.27 1.17 ± 0.63 0.44 ± 0.12 1.15 ± 0.40 1.19 ± 0.46
Cos 0.42 ± 0.00 1.89 ± 0.00 0.07 ± 0.00 0.11 ± 0.00 0.07 ± 0.00

MLP+AC 0.63 ± 0.32 1.00 ± 0.43 1.17 ± 0.44 11.88 ± 0.83 8.73 ± 0.45
Cos+AC 3.60 ± 0.00 4.46 ± 0.00 0.51 ± 0.00 10.01 ± 0.00 5.20 ± 0.00

MLP+Cos+AC 3.80 ± 0.01 3.94 ± 0.03 0.77 ± 0.01 12.80 ± 0.03 7.57 ± 0.02

Gelato 3.90 ± 0.03 4.55 ± 0.02 2.88 ± 0.09 25.68 ± 0.53 18.77 ± 0.19

*Run only once as each run takes ∼100 hrs; *** Each run takes >1000 hrs;
OOM: Out Of Memory.

Table 5.8: Link prediction performance comparison (mean ± std AP) with super-
vised link prediction methods using unbiased training. While we observe noticeable
improvement for some baselines (e.g., BScNets), Gelato still consistently and signifi-
cantly outperform the baselines.

We first note that unbiased training without downsampling brings serious scalabil-

ity challenges to most GNN-based approaches, making scaling up to larger datasets

intractable. For the scalable baselines, unbiased training leads to marginal (e.g., Neo-

GNN) to significant (e.g., BScNets) gains in performance. However, all of them still

underperform the topological heuristic, Autocovariance, in most cases, and achieve much

worse performance compared to Gelato. This supports our claim that the topology-

centric graph learning mechanism in Gelato is more effective than the attribute-centric

message-passing in GNNs for link prediction, leading to state-of-the-art performance.

As for the GNN-based baselines using both unbiased training and our proposed N-

pair loss, we have attempted to modify the training functions of the reference repositories

112

Link Prediction without Graph Neural Networks Chapter 5

0 20 40 60 80 100
0

5

10

15

20

Pr
ec

@
k

(%
)

Cora

0 20 40 60 80 100
0

5

10

15

20 CiteSeer

0 20 40 60 80 100
0

6

12

18

24 PubMed

0 20 40 60 80 100
0

20

40

60

80 Photo

GAE SEAL HGCN LGCN TLC-GNN Neo-GNN NBFNet BScNets WalkPool AC Gelato

0 20 40 60 80 100
0

16

32

48

64 Computers

0.0 0.2 0.4 0.6 0.8 1.0
k (%)

0.0

0.2

0.4

0.6

0.8

1.0

Figure 5.10: Link prediction performance in terms of prec@k (in percentage) for vary-
ing values of k with baselines using unbiased training. While we observe noticeable
improvement for some baselines (e.g., BScNets), Gelato still consistently and signifi-
cantly outperform the baselines.

2−2 20 22 24 260

10

20

30

40

Hi
ts

@
k

(%
)

Cora

2−2 20 22 24 260

14

28

42

56 CiteSeer

2−2 20 22 24 260

3

6

9

12 PubMed

2−2 20 22 24 260

8

16

24

32 Photo

GAE SEAL HGCN LGCN TLC-GNN Neo-GNN NBFNet BScNets WalkPool AC Gelato

2−2 20 22 24 260

6

12

18 Computers

0.0 0.2 0.4 0.6 0.8 1.0
k (×100)

0.0

0.2

0.4

0.6

0.8

1.0

Figure 5.11: Link prediction performance in terms of hits@k (in percentage) for vary-
ing values of k with baselines using unbiased training. While we observe noticeable
improvement for some baselines (e.g., BScNets), Gelato still consistently and signifi-
cantly outperform the baselines.

of the baselines and managed to train SEAL, LGCN, Neo-GNN, and BScNet. However,

despite our best efforts, we are unable to obtain better link prediction performance using

the N-pair loss. We defer the further investigation of the incompatibility of our loss

and the baselines to future research. On the other hand, we have observed significantly

better performance for MLP with the N-pair loss compared to the cross entropy loss under

unbiased training. This can be seen by comparing the MLP performance in Table 5.8 here

and the Gelato−AC performance in Table 5.4.5 in the ablation study. The improvement

shows the potential benefit of applying our training setting and loss to other supervised

link prediction methods.

We also show the training time comparison between different supervised link predic-

113

Link Prediction without Graph Neural Networks Chapter 5

tion methods using unbiased training without downsampling in Table 5.4.10. Gelato is

the second fastest model, only slower than the vanilla MLP. This further demonstrates

that Gelato is a more efficient alternative compared to GNNs.

GAE SEAL HGCN LGCN TLC-GNN Neo-GNN NBFNet BScNets MLP Gelato

Training 6,361 >450,000 1,668 1,401 53,304 >450,000 >450,000 2,323 744 1,285

Table 5.9: Training time comparison between supervised link prediction methods for
Photo under unbiased training. Gelato, while achieving the best performance, is also
the second most efficient method in terms of total training time, slower only than the
vanilla MLP.

5.5 Related work

Topological heuristics for link prediction. The early link prediction literature

focuses on topology-based heuristics. This includes approaches based on local (e.g.,

Common Neighbors [178], Adamic Adar [179], and Resource Allocation [221]) and

higher-order (e.g., Katz [224], PageRank [225], and SimRank [226]) information. More

recently, random-walk based graph embedding methods, which learn vector representa-

tions for nodes [105, 227, 197], have achieved promising results in graph machine learning

tasks. Popular embedding approaches, such as DeepWalk [105] and node2vec [227], have

been shown to implicitly approximate the Pointwise Mutual Information similarity [228],

which can also be used as a link prediction heuristic. This has motivated the investiga-

tion of other similarity metrics such as Autocovariance [229, 197, 230]. However, these

heuristics are unsupervised and cannot take advantage of data beyond the topology.

Graph Neural Networks for link prediction. GNN-based link prediction addresses

the limitations of topological heuristics by training a neural network to combine

topological and attribute information and potentially learn new heuristics. GAE [184]

combines a graph convolution network [13] and an inner product decoder based on

114

Link Prediction without Graph Neural Networks Chapter 5

node embeddings for link prediction. SEAL [175] models link prediction as a binary

subgraph classification problem (edge/non-edge), and follow-up work (e.g., SHHF [214],

WalkPool [177]) investigates different pooling strategies. Other recent approaches for

GNN-based link prediction include learning representations in hyperbolic space (e.g.,

HGCN [185], LGCN [186]), generalizing topological heuristics (e.g., Neo-GNN [176],

NBFNet [189]), and incorporating additional topological features (e.g., TLC-GNN [188],

BScNets [190]). Motivated by the growing popularity of GNNs for link prediction, this

work investigates key questions regarding their training, evaluation, and ability to learn

effective topological heuristics directly from data. We propose Gelato, which is simpler,

more accurate, and faster than the state-of-the-art GNN-based link prediction methods.

Graph learning. Gelato learns a graph that combines topological and attribute

information. Our goal differs from generative models [231, 232, 233], which learn to

sample from a distribution over graphs. Graph learning also enables the application

of GNNs when the graph is unavailable, noisy, or incomplete (for a recent survey, see

[234]). LDS [139] and GAug [235] jointly learn a probability distribution over edges

and GNN parameters. IDGL [236] and EGLN [237] alternate between optimizing the

graph and embeddings for node/graph classification and collaborative filtering. [238]

proposes two-stage link prediction by augmenting the graph as a preprocessing step. In

comparison, Gelato effectively learns a graph in an end-to-end manner by minimizing

the loss of a topological heuristic.

5.6 Conclusion

This work sheds light on key limitations in how GNN-based link prediction methods

handle the intrinsic class imbalance of the problem and presents more effective and ef-

ficient ways to combine attributes and topology. Our findings might open new research

115

Link Prediction without Graph Neural Networks Chapter 5

directions on machine learning for graph data, including a better understanding of the

advantages of increasingly popular and sophisticated deep learning models compared to

more traditional and simpler graph-based solutions.

Future Works: We have identified several potential extensions and improvements for

our framework and experiments:

▷ Scalability: Initially, Gelato had a space complexity of O(V 2), which limited its appli-

cability to large datasets, such as those found in OGB [193]. To address this limitation,

we plan to develop a version of Gelato that incorporates graph partitioning techniques,

enabling scalability to handle large datasets more efficiently.

▷ Theoretical justification: We will focus on providing a theoretical explanation for why

existing GNN-based approaches appear to struggle with learning autocovariance based

on their expressive power. This investigation aims to deepen our understanding of the

limitations and challenges associated with autocovariance learning in GNNs.

▷ Gelato+GNN: As an additional enhancement, we intend to implement a variant of

Gelato that employs a GNN instead of an MLP to learn the underlying graph. By

leveraging the increased expressive power of GNNs, we anticipate improved perfor-

mance and capabilities in the Gelato framework.

116

Chapter 6

Feature-based Individual Fairness in

k-Clustering

6.1 Introduction

Machine learning systems are increasingly being used in various societal decision-

making, including predicting recidivism [239, 240], deciding interest rates [241], and even

allocating healthcare resources [242]. However, beginning with the report on bias in

recidivism risk prediction [239], it has been known that such systems are often biased

against certain groups of people. In recent years, various methods and definitions have

been proposed for ensuring fairness in supervised learning settings, with efforts ranging

from debiasing datasets [243] to explicitly encoding the fairness constraints during the

training of a classifier [244].

Our paper focuses on fairness in unsupervised learning, particularly clustering. There

are two major reasons why clustering should be fair with respect to different subgroups.

First, clustering is often a pre-processing step for generating new data representations

for downstream tasks. Since we want the downstream decisions to be fair, the clustering

117

Feature-based Individual Fairness in k-Clustering Chapter 6

step needs to be unbiased [245]. Second, clustering is also used in various resource

allocation problems, e.g., in facility location [246]. Since it is desirable that no group

is disproportionately affected by such decisions, there has been an increasing interest in

designing clustering algorithms that are fair with respect to different subgroups [247, 248,

249, 250]. Such group-fair clustering algorithms ensure that each protected group has an

approximately equal presence in each cluster.

Compared to group fairness, individually fair clustering has received less attention.

Individually fair clustering is motivated by the facility location problem where the goal

is to open k facilities while minimizing the total transportation cost between individuals

and their nearest facility. If we choose k facilities (or centers) uniformly at random, then

each point x could expect one of its nearest n/k neighbors to be one of such facilities. This

led a few studies [246, 251, 252] to consider the following notion of individual fairness.

For a point x, let r(x) be the radius such that the ball of radius r(x) centered at x has

at least n/k points. An individually fair clustering guarantees that, for every x, a cluster

center is chosen from the r(x)-neighborhood of x.

Although individually fair clustering [246] provides guarantees for each point, it

does not exactly reflect the original premise of individual fairness suggested by [253],

which requires that similar individuals should receive similar decisions. In the context

of clustering, this means that two points x and y that are similar (in terms of features)

should be clustered similarly. However, the definition proposed by [246] does not provide

such a guarantee, as points similar to a point x could be different from the points within

a radius of r(x) from x.

Proposed Definition of Individual Fairness. In order to address the drawback

above, we propose a new notion of individual fairness in clustering. First, motivated by

the original definition of individual fairness in supervised learning [253], we introduce a

118

Feature-based Individual Fairness in k-Clustering Chapter 6

feature-based notion of individual fairness. We say that two individuals are similar if their

features match significantly (parameterized by γ in Definition 3). Now, for each individual

v, let C(v) denote the cluster v is assigned to. Then our feature-based individually fair

clustering requires that C(v) also contains at least mv individuals that are similar to

v. The variable mv is a parameter to encode the degree of fairness. More specifically,

it encodes the amount of similarity an individual seeks inside their own cluster. This

guarantees that a point v is not isolated in its own cluster but that the cluster has a

desired representation (or participation) from points similar to it. Note that, the features

that are used to compute similarity for individual fairness might not necessarily be used

for clustering. In fact, these two sets of features might be disjoint.

Our notion of individual fairness guarantees that similar individuals (in terms of pos-

sibly sensitive features) often share similar clusters. Consider the following motivating

example. Ad networks collect user behavior data (e.g., browsing history, location) as well

as possibly sensitive attributes (e.g., race and gender) to cluster users into several cate-

gories [254]. These categories are directly used for targeted recommendations, including

jobs and healthcare. In this context, the cost function of the clustering algorithm should

be based on user behavior while an individual’s notion of fairness should be based on

sensitive attributes such as race and gender. In this case, similarity in terms of sensitive

features can be seen as a relaxation of a protected group membership.

Contributions. Our main contributions are as follows:

▷ Novel Formulation: We propose a new definition of individual fairness in clustering

based on how individuals are similar in terms of their features. Our definition guar-

antees that each individual has a desired level of representation of similar individuals

in their own cluster.

▷ Problem Characterization: We show that minimizing the clustering cost subject

119

Feature-based Individual Fairness in k-Clustering Chapter 6

to the new notion of individual fairness is NP-hard, and also cannot be approximated

within a factor δ for any δ > 0.

▷ Algorithm: We design a randomized algorithm providing an additive approximation

cost while guaranteeing fairness within a multiplicative factor with high probability.

▷ Experiments: Our experiments on several standard datasets show that our ap-

proach produces by 34.5% less cost on average in clustering than the best-competing

method while ensuring individual fairness for more than 95.5% points on average.

Related Work. [247] first introduced the problem of fair clustering with disparate im-

pact constraints and their goal was to ensure that all the protected groups have approx-

imately equal representation in every cluster. Several works [255, 256] studied different

generalizations of the fair clustering problem. Furthermore, several papers [248, 257, 258]

proposed procedures to scale fair clustering to a large number of points. Although we con-

sider individual fairness, our work is related to [249], which shows that a ρ-approximation

to the vanilla clustering problem can be converted to a (ρ + 2)-approximate solution to

fair clustering with bounded (and often negligible) violation of fairness constraints.

Our paper is focused on individual fairness, which was first defined by [253] in the

context classification, and requires similar individuals to be treated similarly. For clus-

tering problems, such a notion of individual fairness was first defined by [246]. They

studied individual fairness in terms of the guarantee a randomly chosen set of k points

must satisfy. Informally, an individually fair clustering guarantees that for each point x,

a cluster center is chosen from a certain neighborhood of x. [251] designed a bicriteria

approximation algorithm for individually fair k-means and k-median problems. Their

algorithms guarantee that not only the fairness constraints are approximately satisfied,

but also the objective is approximately maximized. Later, [252] proposed an algorithm

that has theoretical fairness guarantees comparable with [251], and empirically, obtains

120

Feature-based Individual Fairness in k-Clustering Chapter 6

noticeably fairer solutions. Recently, [259] designed improved bicriteria algorithms for

general ℓp-norm costs. Another recent study [260] defined a coreset for individually fair

clustering problem using the generalized fair radius notion, and [261] used per-point

fairness and aggregate fairness constraints for the k-center problem. Later they incorpo-

rated the price of fairness notion to combine these two constraints into one algorithm.

[262] study stochastic pairwise constraints between points. However, unlike ours, these

constraints are insufficient to model the individual fairness constraints.

The definition of individual fairness in [246] was mainly motivated by fairness in

the facility location problem. Recently, [263] considered a different notion of individual

fairness in clustering, where the goal is to ensure that each point, is closer to the points

in its own cluster than the points in any other cluster. Our proposed definition can be

seen as a way to capture these two notions, as we consider feature-based similarity, as

well as guaranteed representation for each point.

Here, we focus on the ℓp-norm cost for clustering, which is just the sum of ℓp-distances

of each point from its corresponding cluster center. [261] also considers ℓp-norm objec-

tives in their individual fairness formulation. However, several papers did consider other

objectives in the context of group-fair clustering [250, 264, 265]. Finally, our focus is on

fair clustering algorithms, and there is extensive literature on fair algorithms for unsu-

pervised [266, 267] and supervised learning more broadly [244, 268, 269]. The coverage

of these algorithms is out of the scope of the paper, and we refer the interested reader to

the following excellent surveys: [270, 271] and [272].

6.2 Preliminaries

We first introduce some necessary notations. Let V be a set of n points V =

{1, 2, . . . , n}. We denote {S1, S2, . . . , Sq} as a set of q features, where Si is the set of val-

121

Feature-based Individual Fairness in k-Clustering Chapter 6

ues for the i-th feature. We denote the tuple of q features of the point i by Xi = (X t
i)t∈[q].

We write C = (Ci)i∈[k] to denote a clustering (i.e. partition) of the set V and (ci)i∈[k] to

denote the corresponding cluster centers. Given a clustering C and a point v, let ϕ(v, C)

be the cluster center assigned to the point v. When the clustering C is clear from the

context, we use ϕ(v) to denote the cluster center assigned to the vertex v. We are also

given a distance function d : V × V → R that measures the distance between any pair

of points. Given a clustering C, we can measure its cost through the distance metric d.

In particular, we will be interested in measuring the sum of the p-th powers of distances

from each point to its cluster center for p ∈ N ∪ { 0 }:

Cost(C) =
∑
v∈V

d(v, ϕ(C, v))p. (6.1)

We assume that the distance function d depends on some features of the points but don’t

assume any relationship between those features and the ones used for fairness.

6.2.1 Similarity

In order to define the feature-based notion of individual fairness, we first define a

similarity measure based on the features. To the best of our knowledge, all the existing

notions of individual fairness in clustering only depend on the distance-based neighbor-

hood of each point. In contrast, our definition of individual fairness builds upon the

features of individual points that are not necessarily used for clustering. In order to

define the feature-based notion of fairness, we first define a similarity measure based on

the features.

In real-world settings, the fairness features can be both continuous and discrete. To

handle both cases, we convert the discrete variables (features) into one-hot encoding

vectors. The continuous variables are also normalized to be within the range [0, 1]. After

122

Feature-based Individual Fairness in k-Clustering Chapter 6

these conversions, we can now define the distance (or similarity) between two vectors.

We convert the distance to similarity as follows:

s(Xi, Xj) = e−d(Xi,Xj) (6.2)

where s is the similarity between Xi and Xj and d is a distance function (e.g., Euclidean).

This operation guarantees that s will always generate a value between 0 and 1. We say

that Xi and Xj are gamma similar if s > γ.

Definition 3 (γ-similarity). For a parameter γ ∈ [0, 1], we say two points i, j ∈ V, i ̸= j

are γ-similar if s(Xi, Xj) > γ where s(Xi, Xj) = e−d′(Xi,Xj). We assume that a point is

not γ-matched with itself.

Our definition of similarity is flexible enough to support diverse applications. For any

point v, we use Γ(v) to denote the set of points in V that are γ-similar to v. Next, we

introduce our definition of individually fair clustering.

6.2.2 Individual Fairness

Definition 4 (Individual Fairness in Clustering). Given a set V of n points along with

a q-length feature vector Xv = (x1
v, . . . , x

q
v) for every point v ∈ V , a similarity parameter

γ ∈ [0, 1], an integer tuple (mv)v∈V , and an integer k, we say that a clustering (Ci)i∈[ℓ]

(ℓ ⩽ k) is (mv)v∈V -individually fair if it satisfies the following constraint for every point

v ∈ V :

|{u : u ∈ Γ(v) and ϕ(u) = ϕ(v) }| ⩾ mv (6.3)

The fairness constraint (6.3) says that at least mv points that are γ-similar to point

v must belong to the cluster of v. Our goal is to cluster V into ℓ (⩽ k) clusters, (Ci)i∈[ℓ],

123

Feature-based Individual Fairness in k-Clustering Chapter 6

with corresponding centers (or facilities1) (ci)i∈[ℓ], such that clusters are individually

fair for every point and minimize the clustering cost (e.g. sum of the p-th powers of

distances from cluster centers for some p ∈ N∪{ 0 }). Formally, our Individually Fair

Clustering problem is defined as follows.

Definition 5 (Individually Fair Clustering (IFC)). The input is a set V of n

points with a q-length feature vector Xv = (x1
v, . . . , x

q
v) for each v ∈ V , a similarity

parameter γ ∈ [0, 1], an integer tuple (mv)v∈V , a set F of potential facilities. The objective

is to open a subset S ⊆ F of at most k facilities, and find an assignment ϕ : V −→ S to

minimize Cost(C) satisfying the fairness constraints (eq., 6.3).

The classical clustering problem, which we call Vanilla Clustering, is the same

as the IFC problem except for the fairness requirements from Equation 6.3.

6.3 Results

We present our main technical results in two directions. First, we provide several

hardness results to show that the general Individually Fair Clustering (IFC) prob-

lem is hard even if one considers approximation. Then we contrast the hardness results

by developing randomized approximation algorithms for various special cases of the IFC

problem.

6.3.1 Hardness Results

In order to prove hardness results, we consider the decision version of the IFC problem,

where the goal is to find a clustering whose cost is below a certain threshold. Note that, it

is always possible to find a (trivial) individually fair clustering by one cluster containing

1We use cluster center and facility interchangeably.

124

Feature-based Individual Fairness in k-Clustering Chapter 6

all the points. However, the cost of such a fair clustering could be high, and we ask

whether it is possible to beat the cost of such trivially fair clustering. As there can be

multiple trivial fair clustering (depending on the cluster center chosen), we naturally pick

the one minimizing the cost as the benchmark.

Definition 6 (Trivially Fair Clustering). Given a set V of n points along with q-

length feature vector Xv = (x1
v, . . . , x

q
v) for every point v ∈ V , the trivially fair clustering

puts all points in one cluster and picks the point as cluster center which minimizes the

cost:

min
f∈F

∑
v∈V

d(v, f)p.

We show that it is NP-complete to compute if there exists a clustering better

than Trivially Fair Clustering by providing a reduction from Satisfactory-

Partition, which is known to be NP-complete [273].

Definition 7 (Satisfactory-Partition). Given a graph G = (V , E) and an integer

λv for every vertex v ∈ V, compute if there exists a partition (V1,V2) of V such that

i) V1,V2 ̸= ∅

ii) For every i ∈ [2] and every v ∈ Vi, the number of neighbors of v in Vi is at least λv.

We denote an arbitrary instance of Satisfactory-Partition by (G, (λv)v∈G).

Theorem 1. It is NP-complete to decide whether an instance of Individually Fair

Clustering admits a clustering of cost less than the Trivially Fair Clustering

even when there are only 2 facilities.

Proof: The problem clearly belongs to NP. We now exhibit a reduction from

Satisfactory-Partition. Let (G = (V = {v1, v2, . . . , vn}, E), (λv)v∈V) be an arbitrary

125

Feature-based Individual Fairness in k-Clustering Chapter 6

instance of Satisfactory-Partition. In our Individually Fair Clustering in-

stance, we have two facilities l and r and the set of points U = {u1, u2, . . . , un}. We

define the distances as

d(ui, l) =

(⌈n

2
⌉+ β)1/p 1 ⩽ i ⩽ ⌈n

2
⌉+ 1

β1/p ⌈n
2
⌉+ 2 ⩽ i ⩽ n

d(ui, r) =

β1/p 1 ⩽ i ⩽ ⌊n

2
⌋

(⌈n
2
⌉+ β + 1)1/p ⌊n

2
⌋+ 1 ⩽ i ⩽ n

for any β ⩾
⌈n
2
⌉+1

2
. We can easily verify that the following properties are satisfied:

i) The distances satisfy the triangle inequality.

ii)
∑
v∈V

d(v, l)p =
∑
v∈V

d(v, r)p = A (say).

iii) For any X ⊂ V,X ̸= ∅, X ̸= V, we have
∑
v∈X

d(v, l)p ̸=
∑
v∈X

d(v, r)p. To see

this, let s = |X ∩ {u1, u2, . . . , u⌈n
2
⌉+1}| and t = |X ∩ {u⌊n

2
⌋+1, u⌊n

2
⌋+2, . . . , un}|

so that s ⩽ ⌈n
2
⌉ + 1 and t ⩽ ⌈n

2
⌉. Then

∑
v∈X

d(v, l)p = s⌈n
2
⌉ + β|X| and∑

v∈X
d(v, r)p = t(⌈n

2
⌉ + 1) + β|X|. Thus

∑
v∈X

d(v, l)p =
∑
v∈X

d(v, r)p would imply

s⌈n
2
⌉ = t(⌈n

2
⌉+ 1) and therefore either s = t = 0 or s = ⌈n

2
⌉+ 1 and t = ⌈n

2
⌉. In the

former case X = ∅ while in the latter case X = V , a contradiction.

We now describe the feature vector. For every edge e ∈ E , we have a feature θe. A

point ui, i ∈ [n] has value 1 for θe if the edge e is incident on the vertex vi in G; otherwise

has value 0 for θe. We define the distance function d′ on feature space as the number of

126

Feature-based Individual Fairness in k-Clustering Chapter 6

features that two points differ. Finally, we set the similarity parameter γ = e−m+e−(m−1)

2
.

We observe that two points ui, uj, i, j ∈ [n] are γ-similar if and only if there is an edge

between vi and vj in G. Finally, we define mvi = λvi for every i ∈ [n].

We claim that the Satisfactory-Partition instance is a yes instance if and only

if there exists a fair clustering of U with cost < A. The “if” part follows directly, since

any fair clustering of U with cost < A must be non-trivial and fairness ensures that the

corresponding partition of G is satisfactory.

For the “only if” part, let (X, X̄) be a non-trivial satisfactory partition of G. Let

ϕ1 denote the assignment that assigns all corresponding vertices in X to l and all corre-

sponding vertices in X̄ to r, and ϕ2 denote the assignment that assigns all vertices in X

to r and all vertices in X̄ to l. Thus,

Cost(ϕ1) =
∑
v∈X

d(v, l)p +
∑
v∈X̄

d(v, r)p

Cost(ϕ2) =
∑
v∈X

d(v, r)p +
∑
v∈X̄

d(v, l)p

Thus, Cost(ϕ1)+Cost(ϕ2) = 2A. Now, it cannot be the case that Cost(ϕ1) = Cost(ϕ2) =

A, which would imply that one of the assignments ϕ1 or ϕ2 must have cost < A. Suppose

to the contrary that Cost(ϕ1) = A. Thus,
∑
v∈X

d(v, l)p +
∑
v∈X̄

d(v, r)p =
∑
v∈X

d(v, r)p +∑
v∈X̄

d(v, r)p and therefore
∑
v∈X

d(v, l)p =
∑
v∈X

d(v, r)p, a contradiction.

Given the NP-completeness result, we explore the possibility of approximation for the

Individually Fair Clustering (IFC) problem. However, the next theorem shows that

IFC is inapproximable within factor δ for any δ > 0.

Theorem 2. Distinguishing between instances of the IFC problem having zero and non-

zero optimal costs is NP-complete even when there are 2 facilities. Hence, for any

computable function δ, there does not exist a δ-approximation algorithm for IFC unless

127

Feature-based Individual Fairness in k-Clustering Chapter 6

P=NP.

Proof: Let A be a deterministic polynomial time algorithm that distinguishes

between instances of IFC with 0 and non-zero optimal costs. We use A to build an

algorithm for Satisfactory-Partition. Let (G = (V = {v1, v2, . . . , vn}, E), (λv)v∈V)

be an instance of Satisfactory-Partition. We create n− 1 instances I1, I2, . . . , In−1

of IFC as follows: the set of points is U = {u1, . . . , un} and mvi = λvi for every i ∈ [n]

for all the instances; for instance Ii, i ∈ [n], we introduce 2 facilities l and r and define

distances as follows:

d(uj, l) =

1 j = 1

0 j ∈ {2, 3, . . . , n}

d(uj, r) =

1 j = i+ 1

0 j ∈ {1, 2, . . . , n} \ {i+ 1}

We define feature vectors of every point similar to Theorem 1 to realize the above dis-

tances. We now run A on each of these instances. If A finds any instance in {I1, . . . , In−1}

to have zero optimal cost, then we return yes for the Satisfactory-Partition instance;

otherwise, we return no for the Satisfactory-Partition instance.

Clearly, the above algorithm runs in polynomial time. For proof of correctness;

if G does not have a non-trivial satisfactory partition, then clearly every instance in

I1, . . . , In−1 has an optimal cost of one. On the other hand, if G has a non-trivial satis-

factory partition, say (X, X̄), then we claim that at least one of I1, . . . , In−1 has optimal

cost 0. Without loss of generality, we assume that we have v1 ∈ X. Let vj ∈ X̄, for some

j ∈ {2, 3, . . . , n}. Then clearly OPT(Ij−1) = 0 (assigning all the corresponding vertices

in X to the cluster center r and all other vertices to the cluster center l).

The distances in the above reduction do not satisfy the triangle inequality. If we insist

128

Feature-based Individual Fairness in k-Clustering Chapter 6

triangle inequality of distances, then we have the following (weaker than Theorem 2)

inapproximability result.

Theorem 3. There does not exist any FPTAS for the IFC problem when the distances

in the input satisfy triangle inequality unless P = NP.

Proof: Let A be an FPTAS for IFC. Similar to the proof of Theorem 2, we create

n − 1 instances of Satisfactory-Partition where instance Ii is as follows: the set

of points is U = {u1, . . . , un} and mvi = λvi for every i ∈ [n] for all the instances; for

instance Ii, i ∈ [n], we introduce 2 facilities l and r and define distances as follows:

d(uj, l) =

(1 + β)1/p j = 1

β1/p j ∈ {2, 3, . . . , n}

d(uj, r) =

(1 + β)1/p j = i+ 1

β1/p j ∈ {1, 2, . . . , n} \ {i+ 1}

where β is any constant ⩾ 1/2. The algorithm runs B on each of the above instances

with approximation parameter ε = 1
2nβ

. If B returns a solution of cost less than 1 + nβ

on any instance, return yes for the Satisfactory-Partition instance; otherwise, we

return no for the Satisfactory-Partition instance.

Clearly, the cost of the trivial partition is 1 + nβ. Thus, if G does not have a non-

trivial satisfactory partition, then B must always return the trivial assignment of cost

1 + nβ for all instances. If G has a satisfactory partition (X, X̄), then as in Theorem 2,

there exists an instance with optimal cost nβ. Thus, the solution returned by B will have

cost at most nβ(1 + 1
2nβ

) < 1 + nβ. Hence, the algorithm is correct.

129

Feature-based Individual Fairness in k-Clustering Chapter 6

6.3.2 Algorithmic Results

Given the strong inapproximability results in the previous section, we aim to develop

approximation algorithms for Individually Fair Clustering under suitable condi-

tions. First, we develop an approximation algorithm for Individually Fair Assign-

ment (Theorem 4). Next, we show how to obtain an algorithm for Individually Fair

Clustering of similar guarantee (Theorem 5). Bera et al. [249] designed an approxi-

mation algorithm for group fair clustering from an algorithm for group fair assignment.

We follow a similar approach to individual fairness.

One of the main ingredients of our technical results is the Individually Fair As-

signment problem, which, given a set of k potential cluster centers, determines an

assignment of the points i.e. which point should be assigned to which cluster center.

Formally, it is defined as follows:

Definition 8 (Individually Fair Assignment (IFA)). Given a set V of n points

along with a q-length feature vector Xv = (x1
v, . . . , x

q
v) for every point v ∈ V , a similarity

parameter γ ∈ [0, 1], an integer tuple (mv)v∈V , and a set F = {f1, . . . , fk} of k facilities,

an (mv)v∈V -fair assignment finds the optimal cost-minimizing assignment satisfying the

fairness constraints (6.3).

Our Algorithm, LP-FAIR: Algorithm 4 describes our randomized approximation

algorithm for IFA. The linear program (LP) in Inequality (6.4) is a relaxation of IFA

problem and has a variable xv,fk for each vertex v and facility fk. In an (integral)

“solution” the variable xv,fk takes value 1 if and only if the point v is assigned to the

facility fk. After solving the LP, Algorithm 4 determines the assignment ϕ by assigning

point v to fk with probability x∗
v,fk

. Finally, the above procedure is repeated log1+δ n

times and the assignment with the lowest cost is returned to boost the success probability.

The next theorem presents probabilistic approximation guarantees provided by Algo-

130

Feature-based Individual Fairness in k-Clustering Chapter 6

Algorithm 4 LP-FAIR, Algorithm for IFA

Require: (V, (Xv)v∈V , γ, (mv)v∈V , k), and δ.
0: for t = 1, 2, . . . , T = log1+δ n do
0: Solve the following LP to get solution x⋆

t .

min
x

∑
v∈V

∑
fk∈F

d(v, fk)
p · xv,fk

s.t.
∑

u∈Γ(v)

xu,fk ⩾ mv · xv,fk ∀v ∈ V, fk ∈ F

∑
fk∈F

xv,fk = 1 ∀v ∈ V

xv,fk ⩾ 0 ∀v ∈ V, fk ∈ F

(6.4)

0: for each v ∈ V do
0: Set ϕt(v) = fk with probability x⋆

t,v,fk
.

0: return Assignment ϕ⋆ with the minimum cost. =0

rithm 4.

Theorem 4. For any ε, δ > 0, there is a randomized algorithm for IFA running poly-

nomial time in n and 1
δ
, that outputs a solution of cost at most (1 + δ)OPT where each

vertex v has at least mv

k
(1 − ε) γ-similar points assigned to the same facility with high

probability if mv = Ω(k logn
ε2

), ∀v ∈ V .

Proof: Let x⋆ be a solution to the linear program 6.4. Algorithm 4 assigns point

v to fk with probability x∗
v,fk

. We now prove the quality of this solution. Let X be the

random variable denoting the number of points in Γ(v) that are assigned to the same

facility as a given point v. For every u ∈ Γ(v), let Xu be the indicator random variable

indicating whether u and v are assigned to the same facility. Thus,

E[Xu] =
∑
fk∈F

x∗
v,fk

x∗
u,fk

131

Feature-based Individual Fairness in k-Clustering Chapter 6

So we have,

E[X] =
∑

u∈Γ(v)

E[Xu] =
∑
fk∈F

(x∗
v,fk

∑
u∈Γ(v)

x∗
u,fk

) ⩾ mv

∑
fk∈F

x∗2
v,fk

⩾ mv/k

Now using Chernoff bound, Pr[v has at most mv

k
(1− ε) γ-similar points] ⩽ e−

ε2

2
mv
k ⩽

1
n2

And using union bound, Pr[∃ a vertex that has at most mv

k
(1−ε) γ-similar points] ⩽

1
n

Also, clearly, the expected cost of the computed solution is at most OPT. Hence,

using Markov’s inequality, Pr[cost of computed solution is ⩾ (1 + δ)OPT] ⩽ 1
1+δ

As we repeat the above algorithm T = logn
log(1+δ)

times and output the solution with

minimum cost, we have Pr[cost of the computed solution is ⩾ (1 + δ)OPT] ⩽ 1
n

Also, by union bound, the probability that there exist a vertex having at most mv

k
(1−

ε) γ-similar points in one of the T solutions is at most T
n
.

Algorithm 5 Algorithm for Individually Fair Clustering

Require: (V, (Xv)v∈V , γ, (mv)v∈V , k)
0: Solve clustering problem (V, (Xv)v∈V , γ, (mv)v∈V , k) using any vanilla algorithm ig-

noring fairness constraints. Let
(
(Ci)i∈[ℓ] , (ci)i∈[ℓ]

)
be the output of the clustering

algorithm.
0: F ← {c1, . . . , cℓ}
0: Run algorithm for Individually Fair Assignment on (V, (Xv)v∈V , γ, (mv)v∈V , F).

Let ϕ be the output.
0: return (ϕ−1(ci))i∈[ℓ] (ignore ϕ−1(cj) if ϕ

−1(cj) is the empty set for some j ∈ [ℓ) =0

We next show a method to obtain an approximation algorithm for Individually

Fair Clustering from an approximation algorithm for Individually Fair Assign-

ment in a black box fashion.

Theorem 5. If the distances satisfy the triangle inequality, then the existence of an ρ-

approximation algorithm for Vanilla Clustering and an α-approximation algorithm

132

Feature-based Individual Fairness in k-Clustering Chapter 6

for Individually Fair Assignment with λ-multiplicative violations for some λ ⩾ 1

implies the existence of an α(ρ + 2)-approximation algorithm for Individually Fair

Clustering with λ-multiplicative violation.

Proof: Let S∗ be the optimal set of facilities opened and ϕ∗ be the optimal as-

signment in the input Individually Fair Clustering instance. Let S be the set of

facilities returned by the vanilla k-clustering problem and ϕ the assignment. For each

f ∗ ∈ S∗, let us define nrst(f ∗) = argminf∈S d(f, f
∗). Consider the assignment ϕ′ over

the set of facilities S that assigns each vertex v to nrst(ϕ∗(v)). We claim that ϕ′ is a fair

assignment (please see Claim 1).

For any vertex v, let ϕ(v) = f , ϕ′(v) = f ′ and ϕ∗(v) = f ∗. Thus d(v, f ′) ⩽ d(v, f ∗) +

d(f ∗, nrst(f ∗)) ⩽ d(v, f ∗) + d(f ∗, f) ⩽ 2d(v, f ∗) + d(v, f). Since lp is a monotone norm,

lp(S, ϕ
′) ⩽ 2lp(S

∗, ϕ∗) + lp(S, ϕ) ⩽ (ρ+ 2)OPT . Now, since we have an α-approximation

algorithm for Individually Fair Assignment, the solution returned by the algorithm

will have cost at most α · lp(S, ϕ′) ⩽ α(ρ+ 2)OPT.

Note that the proof requires that ϕ′ is an individually fair assignment. We prove the

following claim:

Claim 1. ϕ′ is an individually fair assignment.

Proof: For v ∈ V , let Tv denote the set of vertices assigned to ϕ∗(v). Since ϕ∗

is an individually fair assignment, the number of γ-similar points of v in Tv is at least

mv. Now all vertices in Tv are assigned to the facility nrst(ϕ∗(v)). Thus, the number of

γ-similar points of v in the assignment ϕ′ is at least mv. Hence, ϕ
′ is an individually fair

assignment.

133

Feature-based Individual Fairness in k-Clustering Chapter 6

6.4 Experiments

Here, we conduct an experimental evaluation of our LP-based algorithm and eight

baselines using the K-means cost function (unless specified otherwise) on three datasets.

Our assessment includes performance on various metrics (Sec. 6.4.1), the impact of

varying cluster numbers (Sec. 6.4.2), and cluster quality (Sec. 6.4.3). Additionally, we

provide running time information (Sec. 6.5), and extra experiments (Sec. 6.6). Our

implementation is available online at https://github.com/mertkosan/lp-fair.

Datasets: We use three datasets from the UCI repository (https://

archive.ics.uci.edu/ml/datasets) in our experiments. These datasets have also

been used by previous work [249, 251, 247]. We consider the following attributes for

distance and γ-similarity (fairness):

▷ Adult [274]: Cluster labels determine whether a person makes over 50K a year. Dis-

tance features are “educationnum” and “age”. The γ-similarity features are “salary”

and “hoursperweek”.

▷ Bank [275]: Data from customers of a bank. Distance features are “duration”, and

“age”, γ-similarity features are “education” and “balance”.

▷ Diabetes: Data from diabetes patients from 130 hospitals in the USA from 1999

to 2008. The distance features are “age” and “number-emergency”. The γ-similarity

features are “time in hospital”, “num lab procedures”.

We also provide experiments with randomly selected features.

Algorithms: We evaluate the following nine algorithms.

▷ Our LP-based approach (LP-FAIR): Provides probabilistic approximation guar-

antees (Algorithm 4). Our implementation is based on Algorithm 5 (Section 6.3.2).

▷ PBS [262]: Utilizes stochastic pairwise constraints in optimizing clustering while

134

https://github.com/mertkosan/lp-fair
https://archive.ics.uci.edu/ml/datasets
https://archive.ics.uci.edu/ml/datasets

Feature-based Individual Fairness in k-Clustering Chapter 6

incorporating individual fairness. The paper has two methods: k-means-PBS [262]

and k-center-PBS-CC [262].

▷ FairCenter [246]: Ensures fairness based on the existence of a cluster center nearby.

Notice that this algorithm has different fairness criteria than ours.

▷ P-PoF-Alg [261]: Incorporates the Price of Fairness notion and combines the con-

straints from Alg-PP [261] and Alg-AG [261], which optimizes the clusters based

on a per-point and an aggregate fairness metric, respectively.

▷ Hochbaum-Shmoys (H-S) [276]: Uses the triangle inequality to solve a k-center

problem with a 2-approximation algorithm.

▷ Gonzalez [277]: Minimizes the maximum intercluster distance. H-S and Gonzalez

are used as baselines in [261] for comparison.

Performance measures: We evaluate the algorithms described above using the fol-

lowing metrics:

▷ Normalized Cost: Clustering cost (Equation 6.1) normalized by the cost of triv-

ially fair clustering (Definition 6). The normalization removes the effect of dataset-

dependent feature distributions and makes it easier to compare the results across

datasets:

Normalized Cost(A) =
Cost(A)

Cost(Trivially Fair Clustering)

▷ Fairness: This denotes the fraction of points that satisfy individual fairness.

▷ Macro Fairness: This denotes the average of the Fairness metric for each cluster.

▷ Cluster Imbalance: This measures the imbalance of the found clusters in terms of

their sizes. It is a standard deviation of cluster sizes (i.e., the number of elements in

the cluster). The lower value of imbalance means the clusters are more balanced.

135

Feature-based Individual Fairness in k-Clustering Chapter 6

Other experimental settings: We choose 200 points from each dataset randomly

for all the experiments. The experiments are run five times, and averages and standard

deviations are reported based on these repetitions. Let Γv denote the number of γ-

matched points of v in the entire dataset and k′ be the number of clusters found by the

algorithm. The initial mv for each node v is set as θ
k
∗ |Γv|, then scaled by k

k′
(after k′ is

decided) to make the fairness metric cluster balanced. Unless specified otherwise, we set

θ as 0.5 in all experiments.

Normalized Cost Fairness Macro Fairness

Adult Bank Diabetes Adult Bank Diabetes Adult Bank Diabetes

k-means-PBS 0.58± 0.09 0.65± 0.08 0.77± 0.03 91.4± 0.6 95.5± 2.2 93.3± 1.4 70.8± 6.0 66.2± 5.6 60.5± 1.7
k-center-PBS-CC 0.56± 0.12 0.65± 0.08 0.77± 0.03 90.5± 1.3 93.6± 3.4 94.8± 0.9 64.0± 22.2 58.0± 20.4 51.0± 21.8

FairCenter 0.54± 0.11 0.53± 0.13 0.34± 0.03 90.0± 5.5 96.0± 2.0 94.1± 5.0 64.0± 15.0 76.0± 8.0 64.0± 8.0
Alg-PP 0.63± 0.10 0.52± 0.05 0.42± 0.09 86.8± 10.9 91.3± 7.4 88.1± 7.0 70.0± 24.5 72.9± 16.3 60.0± 20.0
Alg-AG 0.62± 0.11 0.56± 0.18 0.65± 0.27 86.8± 10.9 83.4± 5.5 87.2± 7.9 70.0± 24.5 56.9± 13.2 60.0± 20.0

P-PoF-Alg 0.60± 0.08 0.59± 0.14 0.53± 0.15 86.8± 10.9 87.6± 7.7 92.8± 9.1 70.0± 24.5 66.9± 18.0 80.0± 24.5
H-S 0.27± 0.05 0.25± 0.02 0.11± 0.03 90.8± 4.3 97.7± 1.8 91.1± 7.1 53.0± 13.3 70.0± 8.4 66.0± 21.5

Gonzalez 0.33± 0.08 0.33± 0.02 0.09± 0.03 88.6± 3.5 90.4± 3.9 89.9± 4.0 56.0± 15.0 60.0± 0.0 56.0± 15.0
LP-FAIR 0.19± 0.03 0.18± 0.02 0.06± 0.03 92.3± 0.7 96.3± 4.6 97.9± 2.8 80.0± 0.0 92.0± 9.8 92.0± 9.8

Table 6.1: Normalized cost and fairness comparison between LP-FAIR (ours) and
competing baselines. The best and second-best values for each column are in bold
and underlined, respectively. Our method outperforms or has performance comparable
to the baselines in terms of the three evaluation metrics.

6.4.1 Performance

We present the results for our method LP-FAIR and competing baselines using the

normalized cost (the lower the better) and fairness metrics (the higher the better). Table

6.1 shows the results produced by all algorithms. LP-FAIR has a significantly lower

cost than the baselines, with a 34.5% lower cost than the best baseline (H-S) on average.

Moreover, LP-FAIR consistently clusters points fairer. The best baselines for the fairness

metric are k-means-PBS, FairCenter, and P-PoF-Alg, which have consistent performances

overall. However, LP-FAIR outperforms them by 12.5% on average. Furthermore, our

method generates results with less variance compared to the baselines, which shows the

136

Feature-based Individual Fairness in k-Clustering Chapter 6

stability of our algorithm.

0.05

0.20

0.35

0.50

0.65

0.80

No
rm

al
ize

d
Co

st

Adult

0.07

0.19

0.31

0.43

0.55

0.67
Bank

−0.05

0.09

0.23

0.37

0.51

0.65
Diabetes

0.78

0.82

0.86

0.90

0.94

0.98

Fa
irn

es
s

0.84

0.87

0.90

0.93

0.96

0.99

0.84

0.87

0.90

0.93

0.96

0.99

3 4 5 6 7 8 9 10
0.40

0.51

0.62

0.73

0.84

0.95

M
ac

ro
 F

ai
rn

es
s

3 4 5 6 7 8 9 10
0.49

0.57

0.65

0.73

0.81

0.89

FairCenter Alg-PP Alg-AG P-PoF-Alg H-S Gonzalez LP-FAIR

3 4 5 6 7 8 9 10
0.42

0.53

0.64

0.75

0.86

0.97

0.0 0.2 0.4 0.6 0.8 1.0
k

0.0

0.2

0.4

0.6

0.8

1.0

Figure 6.1: Cost and fairness results, varying the number of clusters (k) for 30k
random data points using all datasets and methods (better seen in color). LP-FAIR
outperforms or achieves results comparable to the baselines for all k.

6.4.2 Varying Number of Clusters

Here, we evaluate the impact of the number of clusters (k) on cost and fairness.

We vary the value of k from 3 to 10 and choose 30k random points from each dataset.

Figure 6.1 shows the results. LP-FAIR achieves the best results for most values of k. In

general, the cost decreases as the number of clusters increases. The exceptions are for

the cases where the number of clusters generated is lower than expected. For fairness

metrics, LP-FAIR outperforms or achieves comparable results to all baselines for all

datasets. The values for Fairness do not present a clear trend based on k. We also

137

Feature-based Individual Fairness in k-Clustering Chapter 6

evaluate the impact of the number of clusters on the macro fairness metric. Figure 6.1

shows that LP-FAIR performs better or has comparable results to the baselines. Macro

Fairness tends to decrease as the number of clusters increases. That is because k affects

the cluster imbalance. Eventually, this makes some clusters less fair and decreases the

average score.

6.4.3 Quality of Clusters

Cluster quality is also a crucial metric to be considered. Table 6.2 and Table 6.3 show

generated cluster counts and imbalance, respectively, for all methods and datasets. Some

algorithms use less number of clusters even though the expected number is k = 5, which

makes their cost higher compared to the one generating close to 5. Cluster imbalance

is also critical as imbalanced clusters would result in clusters with a small number of

elements in them. The elements in those clusters are unlikely to be fair, and this will

affect individual fairness as well as macro fairness. LP-FAIR generates more balanced

clusters (low imbalance) compared to the baselines resulting in better fairness. The

primary reason for our algorithm’s emphasis on balanced clusters is rooted in our fairness

notion, which demands an equitable allocation of similar individuals for each individual.

Summary. A few key observations from the above experiments are as follows: (1) Our

method (LP-FAIR) produces clusters that are individually fair to more than 95.5% points

and achieves 88% Macro Fairness on average, outperforming the baselines in most of the

settings; (2) LP-FAIR also produces lower cost or distance than competing baselines in all

settings; (3) LP-FAIR generates better clusters in terms of numbers and imbalance. This

makes LP-FAIR clusters less costly and more fair compared to the existing competitors.

138

Feature-based Individual Fairness in k-Clustering Chapter 6

Table 6.2: The mean and standard deviation of the number of clusters generated by
the methods (with k = 5). Generating fewer clusters generally leads to higher costs
(see Table 6.1).

Adult Bank Diabetes

k-means-PBS 3.2± 0.52 3.1± 0.35 3.0 +−0.33
k-center-PBS-CC 5.0± 0.0 5.0± 0.0 5.0± 0.0

FairCenter 5.0± 0.0 5.0± 0.0 4.0± 0.63
Alg-PP 2.0± 0.0 3.2± 0.98 2.0± 0.0
Alg-AG 2.0± 0.0 2.8± 0.4 1.8± 0.4

P-PoF-Alg 2.0± 0.0 4.0± 1.67 2.0± 0.0
H-S 4.6± 0.49 4.6± 0.49 4.6± 0.49

Gonzalez 5.0± 0.0 5.0± 0.0 5.0± 0.0
LP-FAIR 5.0± 0.0 5.0± 0.0 4.8± 0.4

Table 6.3: The mean and standard deviation of cluster imbalance. Imbalanced clusters
result in small clusters where the members might not be individually fair. LP-FAIR
generates clusters with lower imbalance compared to the baselines.

Adult Bank Diabetes

k-means-PBS 49.7± 31.6 47.5± 27.0 75.6± 19.2
k-center-PBS-CC 40.7± 13.7 49.4± 17.1 64.6± 17.8

FairCenter 28.4± 5.8 30.3± 5.2 35.1± 6.3
Alg-PP 51.4± 6.5 37.1± 13.6 63.8± 14.8
Alg-AG 51.4± 6.5 42.7± 13.8 54.4± 28.7

P-PoF-Alg 51.4± 6.5 29.1± 15.5 37.6± 23.0
H-S 44.5± 9.5 34.9± 6.2 40.9± 13.4

Gonzalez 40.9± 10.0 33.3± 5.7 37.1± 10.0
LP-FAIR 17.9± 2.8 17.6± 2.1 15.8± 4.8

139

Feature-based Individual Fairness in k-Clustering Chapter 6

6.5 Running Time

The runtime for Algorithm 4 is equivalent to solving a theoretically polynomial linear

program that is practically lightning-fast. On the other hand, the runtime for Algorithm

5 is the summation of Vanilla Clustering and Individually Fair Assignment algorithms’

runtimes.

Our implementation employs the scipy.optimize.linprog Python module. To account

for the randomization in our algorithm, we conducted ten trials, but the best performance

was consistently achieved within four trials. A single trial of our algorithm required 36.7

seconds to complete the Adult dataset. The running time for LP-FAIR and the baselines

on the Adult dataset is summarized in Table 6.5.

Adult

FairCenter 16.5s
Alg-PP 11.8s
Alg-AG 9.68s

P-PoF-Alg 9.55s
H-S 7.92s

Gonzalez 7.91s
LP-FAIR (10 trials) 367.5s
LP-FAIR (4 trials) 147s
LP-FAIR (1 trial) 36.7s

Table 6.4: The running times of LP-FAIR and baselines on the Adult dataset. We
run our randomized algorithm ten times, but the best performance is achieved with
at most four trials.

In addition, we tested the scalability of our algorithm on larger datasets by sampling

1000 data points from the Adult dataset and executing it under identical settings and

hardware. The results showed that a single trial of LP-Fair required 165.88 seconds to

complete. As highlighted in Table 6.5, our algorithm’s practical scalability is linear with

respect to the data point size.

140

Feature-based Individual Fairness in k-Clustering Chapter 6

6.6 Additional Experiments

6.6.1 Random Features

We randomly select two distance and two fairness attributes, with five different ran-

dom selections, and run each experiment five times. Table 6.6.1 shows that selecting

random features does not alter the performance of our method compared to Table 6.1,

and LP-FAIR is the best performing or has comparable results to the baselines.

Normalized Cost Fairness

Adult Bank Diabetes Adult Bank Diabetes

FairCenter 0.783 0.535 0.874 91.93 90.90 92.43
Alg-PP 0.632 0.415 0.852 76.60 77.38 91.00
Alg-AG 0.643 0.432 0.953 78.55 77.75 91.30

P-PoF-Alg 0.525 0.382 0.856 76.60 75.15 94.20
H-S 0.415 0.526 0.773 92.55 93.60 94.90

Gonzalez 0.472 0.359 0.548 88.50 91.20 90.50
LP-FAIR 0.302 0.232 0.189 93.48 92.18 96.43

Table 6.5: Normalized cost and fairness comparison between LP-FAIR (ours) and
competing baselines with random feature selections. The best and second-best values
for each column are in bold and underlined, respectively. Our method outperforms or
has performance comparable to the baselines in terms of fairness and cost.

6.6.2 Neglecting Fairness Constraint

We run experiments by setting mv = 0 in Equation 6.3 to see the effect of our

fairness constraint. Setting mv = 0 essentially makes all points fair after the first cluster

assignments, so the cost will be minimized with K-means. Table 6.6 shows that setting

mv = 0, as expected, decreases the normalized cost, whereas the fairness performance

becomes much worse.

141

Feature-based Individual Fairness in k-Clustering Chapter 6

Normalized Cost Fairness

Adult Bank Diabetes Adult Bank Diabetes

LP-FAIR (mv = 0) 0.182 0.159 0.047 89.3 92.2 93.4
LP-FAIR 0.194 0.176 0.057 92.3 96.3 97.9

Table 6.6: The effect of removing fairness constraint from LP-FAIR. The better per-
formances are in bold. As expected, our algorithm makes the clusters more costly
while having more individually fair clusters.

6.7 Conclusions

We have studied the k-clustering problem with individual fairness constraints. Our

notion of fairness is defined in terms of a feature-based similarity among points and

guarantees that each point will have a pre-defined number of similar points in their

cluster. We have provided an algorithm with probabilistic approximation guarantees for

optimizing the cluster distance as well as ensuring fairness. Finally, the experimental

results have shown that our proposed algorithm can produce 34.5% lower clustering cost

and 12.5% higher individual fairness than previous works on average.

Limitations: Our definition of individual fairness might be limited and specific to

certain application scenarios. We aim to generalize this definition in future work.

Broader Impact Statement: Our work is mainly theoretical in nature and we

do not anticipate any direct negative societal impact. However, it is possible for third

parties to use the techniques developed in our paper and declare a clustering as fair

without proper evaluation on the domain.

142

Chapter 7

Robustness of Human Decision

Making under Risk

7.1 Introduction

Prospect Theory has played a crucial role in enhancing our understanding of decision-

making processes when faced with risk and uncertainty. Developed by Kahneman and

Tversky [278], this theoretical framework has provided valuable insights into the biases

and preferences exhibited by individuals when making choices involving potential gains or

losses. Extensive research [279, 280] has focused on comprehending individual decision-

making within the context of Prospect Theory, resulting in significant advancements in

the field. Various domains, such as economics [281, 282] and politics [283], have widely

studied Prospect Theory to improve their decision-making processes, given their high

level of risk. However, the exploration of decision-making in collective settings, known

as Group Prospect Theory, has received relatively less attention, with most scenarios

involving decisions under risk being made by groups of individuals rather than individuals

alone. This study seeks to bridge this gap by investigating the dynamics of decision-

143

Robustness of Human Decision Making under Risk Chapter 7

making within groups and examining the implications for risk preferences and behavior.

Understanding decision-making within groups is crucial, as many real-world scenar-

ios involve collective decision-making processes [284, 285, 286]. Whether it’s a board

of directors making strategic business decisions or a committee of policymakers deter-

mining public policies, the dynamics of group decision-making significantly impact the

outcomes. Group Prospect Theory aims to uncover how the interactions, influence, and

social dynamics within a group shape decision-making behavior, and whether they differ

from individual decision-making.

Furthermore, cognitive biases and the concept of transactive memory are relevant to

group decision-making [287, 288]. Cognitive biases [289, 290] refer to systematic devi-

ations from rationality that individuals exhibit when processing information or making

judgments. These biases can impact decision-making outcomes within groups, as in-

dividuals bring their biases into the collective decision-making process. Additionally,

transactive memory [291] refers to the shared knowledge and information storage system

within a group, where individuals rely on each other’s expertise and memory to make

decisions. Understanding how cognitive biases and transactive memory influence group

decision-making is an essential aspect of studying Group Prospect Theory.

To gain insights into Group Prospect Theory and provide empirical results, this study

employs a combination of experimental methods and behavioral analysis. Human exper-

iments are conducted to observe decision-making behavior as individuals transition from

making choices in isolation to making decisions within a group setting. By carefully

designing and controlling the experimental conditions, we aim to measure the behavioral

shifts that occur during this transition and identify the factors that influence risk pref-

erences and decision outcomes within a group context. The details of experiments will

be discussed in Human Experiments Section 7.2.

In addition to examining the behavior changes associated with group decision-making,

144

Robustness of Human Decision Making under Risk Chapter 7

this study also explores the robustness of groups in the face of potential attacks facilitated

by artificial intelligence (AI). As AI systems become more sophisticated and capable

of manipulating information and influencing decision-making processes, it is crucial to

understand how groups respond to such attacks and whether their decision outcomes

are compromised. By investigating the vulnerability of groups to AI-based attacks, we

can assess the potential risks and develop strategies to safeguard group decision-making

processes.

This paper aims to significantly contribute to the literature on Group Prospect The-

ory, shed light on the behavioral dynamics of decision-making within groups, and raise

awareness regarding the potential risks and vulnerabilities posed by AI in collective

decision-making processes. Our contributions can be summarized as follows:

▷ We conduct carefully designed human experiments to understand human decision-

making processes in both individual and group settings.

▷ We extensively analyze the experimental results to gain insights into the behavioral

shifts that occur as individuals transition from making decisions in isolation to making

decisions within a group setting.

▷ We explore the robustness of groups in the face of AI attacks by designing an evasion

attack model, which enables us to identify vulnerabilities and assess the resilience of

groups against AI attacks.

▷ We develop a generative model for human behavior to increase the efficiency and

effectiveness of attacks.

7.2 Human Experiments

Our experimental setup is meticulously designed to investigate human decision-

making under conditions of risk in both individual and group settings. The experiment

145

Robustness of Human Decision Making under Risk Chapter 7

Individual Phase

IND PRE POST

Group Phase

Figure 7.1: Overview of our human experiments. The individual phase (IND) involves
each participant independently responding to a series of m issues. Following this,
groups are formed and the group phase begins. In the pre-discussion (PRE) phase,
each group member individually answers an issue, engages in group discussions, and
subsequently provides their responses again in the post-discussion (POST) phase.
This cycle of pre-discussion and post-discussion repeats for a total of n iterations. At
the end of each cycle, each member indicates the perceived influence from other group
members.

consists of three distinct phases: Individual (IND), Pre-discussion (PRE), and Post-

discussion (POST). Figure 7.1 demonstrates the phases and their transitions.

During the Individual phase (IND), participants are presented with a series of m

issues, also known as gambles, and are asked to make independent decisions on each

issue. An example issue is illustrated in Figure 7.2. This phase allows us to observe and

analyze individual behaviors in risk-based decision-making scenarios.

Following the IND phase, participants form groups consisting of three or four in-

dividuals, and the group phases begin. The group phase comprises two phases: PRE

and POST. In the PRE phase, participants individually respond to similar issues before

engaging in group discussions. Subsequently, they exchange opinions and discuss their

respective choices with other group members.

In the POST phase, participants answer the same set of questions again, taking into

consideration the information shared and opinions expressed during the group discussion.

146

Robustness of Human Decision Making under Risk Chapter 7

Figure 7.2: An issue example. Each issue contains a choice dilemma of a binary
gamble selection between option A and B. Each option includes gain and loss with
corresponding probabilities. Individuals record their answers by selecting either op-
tion.

This two-phase modeling enables us to examine how group discussions influence imme-

diate decision-making outcomes. Group phase cycles m times, and after each cycle, all

group members record the extent of influence they perceive from the other group mem-

bers, including themselves. This record generates an influence matrix, providing valuable

insights into the dynamics of influence within the group.

By employing this experimental process, we aim to gain a deeper understanding of

how individuals’ decision-making behavior evolves when transitioning from independent

decision-making to decision-making within a group. The IND phase provides a baseline

for individual risk preferences, while the group phases offer insights into how group

discussions and information sharing influence decision outcomes. The analysis of the

influence matrix enhances our understanding of the dynamics of influence within the

group and its impact on decision-making processes.

7.2.1 Datasets

We conducted experiments at two distinct locations: the University of California,

Santa Barbara (UCSB) and Fort Bragg (FB). The statistics for each dataset from the

human experiments are presented in Table 7.1. During the group phase, individuals form

groups of three or four people.

147

Robustness of Human Decision Making under Risk Chapter 7

#Individuals #Groups #Individual Issues (m) #Group Issues (n)

UCSB 107 30 30 12
FB 29 8 30 12

Table 7.1: The statistics of datasets from human experiments.

7.3 Preliminaries

7.3.1 Prospect Theory

The classic approach to studying risk preference behavior involves presenting individ-

uals with a series of choice dilemmas. In our experiments, participants are given a set of

numbered issues on paper, where they must select their preferred ”mixed gamble” from

options X and Y. These options consist of pairs of outcomes, with X, represented as

((x1, p1), (x2, p2)) and Y as ((y1, q1), (y2, q2)). Here, x1 and y1 represent potential gains in

monetary value, while x2 and y2 denote potential losses. Choosing X leads to a payment

of x1 with probability p1 or a debt of x2 with probability p2, and the same applies to Y .

Cumulative Prospect Theory (CPT) proposes that individuals maintain an internal

valuation function, denoted as V (X), which assigns psychological value to risky outcomes

known as prospects. The valuation function for a mixed gamble X can be decomposed

as follows:

148

Robustness of Human Decision Making under Risk Chapter 7

V (X) = v+(x1)w
+(p1) + v−(x2)w

−(p2) (7.1)

where the value function v+/−(·) and the weighting function w+/−(·) depending on

how the individual perceives the outcome relative to a reference point, such as a gain or

loss of capital or social status.

To determine the likelihood that an individual prefers X over Y , denoted as p(X, Y),

we assume it can be calculated using the Logistic transformation of the negative, weighted

exponential of the difference in valuations between X and Y (i.e., Softmax activation

function). The weight is denoted by the parameter rho, and p(X, Y) is given by the

following equation:

pθ(X, Y) = 1/
(
1 + exp(−ρ{V (X|θ)− V (Y |θ)})

)
(7.2)

Here, θ represents a parameter vector, including values such as α, β, λ, γ+, and γ−

which determine the evaluation of v and w in Equation 7.1. ρ reflects the extent to which

prospect valuations determine choice behavior instead of random choice.

Extensive empirical analysis comparing various functions for v, w, and p has been

conducted [292]. These functions, based on the suggestions of [292], include the power

value function (Equations 7.3 & 7.4), the Prelec [293] weighting function (Equations

7.5 & 7.6), and the Logistic stochastic choice function (Equation 7.2). The parameter

vector θ = (α, β, λ, γ+, γ−) determines the shape of v and w according to the following

equations:

149

Robustness of Human Decision Making under Risk Chapter 7

v+(x) = xα, α > 0 (7.3)

v−(x) = −λ|x|β, λ, β > 0 (7.4)

w+(p) = exp
(
− (− ln p)γ

+)
, γ+ > 0 (7.5)

w−(p) = exp
(
− (− ln p)γ

−)
, γ− > 0 (7.6)

Expected utility theory is a special case of CPT where v+/− and w+/− are the identity

function, represented by a parameter vector θ of all ones. It’s worth noting that the

valuation function for a mixed gambleX is the same in both original prospect theory [278]

and cumulative prospect theory [279] for mixed binary gambles. However, for general

prospects with multiple gains or losses, the function w+/− depends on a cumulative

weighting function.

Applying CPT as a predictive model of choice behavior involves associating or learning

a parameter vector θ = (α, β, λ, γ+, γ−) for each individual, sub-population, or population

to capture systematic risky choice preferences. One of the significant advantages of the

CPT framework is the ability to interpret behavior based on these parameters. Based on

Nilsson et.al. [294], we provide a simplified interpretation below:

▷ α (resp. β) reflects the sensitivity to gain (loss) outcomes.

▷ λ reflects the perceived impact of loss relative to gain.

▷ γ+(resp. γ−) reflects the degree to which gain (loss) probabilities are over- or under-

weighted.

Prospect Theory Parameters Calculation

Due to the non-differentiable and non-convex nature of v and w, we employ a grid-

search method to find optimal parameters for each individual. However, optimizing six

150

Robustness of Human Decision Making under Risk Chapter 7

parameters using grid search can be challenging. To address this issue, we follow a similar

approach in [281] and simplify the model by setting α = β, γ+ = γ−. Our experimental

results indicate that setting ρ = 1 yields favorable outcomes. With this simplification,

our model reduces the number of parameters to be optimized to three: θ = (α, λ, γ).

We apply grid search over α ∈ (0, 1] with a step size of 0.05, λ ∈ [0.25, 5] with a step

size of 0.25, and γ ∈ (0, 1.5] with a step size of 0.05. We choose θ that maximizes the

expected value of the valuation function with Equation 7.2 over multiple issues. Since

we have three phases (i.e., IND, PRE, POST), we calculate prospect theory parameters

for every phase and denote them as θIND
i = (αIND

i , λIND
i , γIND

i) for participant i during the

IND phase (similarly for PRE and POST).

Deciding Risky Option

During the preparation of our issues, we deliberately avoided specifying which option

is riskier to prevent bias. However, for the purpose of analysis, we need to determine the

risky option for each issue. To address this, we define the riskier option as the one with

a higher variance.

Let’s consider an option X = ((x1, p1), (x2, p2)) as defined before. The variance of

this option can be calculated using the following formula:

V AR(X) = p1 ∗ (x1 − E[X])2 + p2 ∗ (−x2 − E[X])2

where E[X] represents the expected value of the choice, given by:

E[X] = p1 ∗ x1 − p2 ∗ x2

Note that x2 > 0 represents a loss, so the formulation includes −x2 in the calculation

of variance and expected value. By applying this formulation to the issue example shown

151

Robustness of Human Decision Making under Risk Chapter 7

in Figure 7.2, we find that the first option has a variance of approximately 777100, while

the second option has a higher risk with a variance of approximately 4819054.

7.3.2 Behavior Calculation

One of the main objectives of this study is to investigate the changes in human

behavior following discussions with other individuals. To quantify this change, it is

necessary to calculate the distance between two behaviors. However, directly calculating

the distance using Prospect Theory (PT) parameters may lack intuitive meaning and

may not provide a comprehensive representation. To address this issue, we propose a

measure of individual behavior based on their PT parameters: bi = b(θi = (αi, λi, γi)),

which involves the following steps:

▷ Randomly sample a sequence of gambles (i.e., issues) to create a random gamble

sequence.

▷ Profile each individual over the gamble sequence to obtain their respective valuation

sequence.

Subsequently, we can calculate the pairwise distance between two individuals by com-

puting the cosine distance between their valuation sequences (i.e., behaviors). The use

of cosine distance allows us to capture the orientation of behaviors rather than solely

focusing on the absolute magnitude.

7.3.3 Evasion Attack

In our framework, we incorporate machine learning to enhance the analysis and in-

crease the predictive power and flexibility of our models. Additionally, by employing ma-

chine learning, we can investigate potential attacks by AI on the group decision-making

process within our experiments.

152

Robustness of Human Decision Making under Risk Chapter 7

In the literature, two primary types of attacks on machine learning models are dis-

cussed: poisoning attacks and evasion attacks [295]. These attacks are frequently exam-

ined in various applications, particularly in high-stakes scenarios like autonomous vehicles

[296]. Poisoning attacks occur during the training phase of the machine learning algo-

rithm, while evasion attacks take place during the inference phase (after training). In

this project, our focus is on studying evasion attacks, as we aim to analyze the impact

of AI on group decisions after modeling the group using machine learning models (which

will be described later).

Let di,t represent the decision of participant i on issue t. The decision can be deter-

mined through influence mechanisms, previous decisions, or the decisions of other group

members. In an evasion attack, an attacker acting as another group member aims to

influence the decision of participant i. The objective of a successful attack is to flip

the decision of participant i to an alternative choice. For instance, in a scenario where

all group members have reached a consensus with the same decision, the attack would

involve flipping the decisions of each member while maintaining consensus, but to a dif-

ferent choice. A similar approach has been explored in the context of Byzantine faults

[297].

7.4 Analysis and Experiments

7.4.1 Prospect Theory Parameters for Individuals

We calculate the prospect theory parameters of individuals based on their answers

during the individual (IND), pre-discussion (PRE), and post-discussion (POST) phases.

The calculation process is described in the Preliminary section (Prospect Theory Param-

eters Calculation).

153

Robustness of Human Decision Making under Risk Chapter 7

α = β λ γ+ = γ−

Model IND PRE POST IND PRE POST IND PRE POST

UCSB 0.28 0.41 0.41 1.47 1.22 0.78 0.58 0.63 0.58
FB 0.36 0.56 0.54 1.42 1.16 1.43 0.50 0.60 0.56

Table 7.2: The average statistics of PT parameters for IND/PRE/POST across all
individuals.

Table 7.2 shows the average statistics of the prospect theory (PT) parameters of

individuals in different phases. α (β) increases from IND to PRE (i.e., sensitivity to

gain/loss increases) for both datasets. PRE and POST α values remain similar. The λ

parameter decreases from IND to PRE for both datasets. For the UCSB dataset, the λ

value further decreases in POST, while it becomes similar to IND for the FB dataset.

Across all measurements, the parameter γ remains relatively stable.

7.4.2 Understanding Influence in a Group

After each cycle of the group discussion phase, participants are asked to assign influ-

ence values to themselves and other group members. This question aims to understand

the explicit influence obtained by each member of the group.

To analyze the influence mechanism, we examine the influence matrix, which can be

represented as a directed graph. The direction of the edges in the graph indicates the

flow of influence. Table 7.3 provides statistics on the influence matrices, focusing on

their ergodic structure and the presence of influential leaders. An influential leader is

defined as a node that is reachable from all other nodes in the graph. Unfortunately,

the percentage of groups with ergodic influence matrices is quite low for both datasets.

Moreover, no group exhibits at least one influential leader across all issues.

We observe that there is no clear pattern in the explicit influence mechanism, likely

due to noise introduced by human participants. The assignments of influence are in-

154

Robustness of Human Decision Making under Risk Chapter 7

%Ergodic %Influential Leader #Groups Ergodic ∀ #Groups Ergodic ∃ #Groups Leader ∀ #Groups Leader ∃

UCSB 15% 37.8% 3 / 30 22 / 30 0 / 30 27 / 30
FB 39.6% 55.2% 0 / 8 5 / 8 0 / 8 7 / 8

Table 7.3: Statistics of influence matrices from human experiments. ∀ denotes every
issue, and ∃ denotes at least one issue.

consistent across different issues and group members. In some cases, participants assign

influence only to themselves, resulting in an identity matrix.

We introduce the concept of ”stubbornness” to describe the behavior of individuals

assigning self-influence. To quantify this behavior, we calculate the average of diagonal

entries in the influence matrix within a group and then compute the overall average

across all groups.

Figure 7.3 presents the stubbornness measure across group issues for both the UCSB

and FB datasets. The results indicate that participants from the UCSB dataset exhibit

a higher level of stubbornness, indicating a stronger inclination to maintain their own

opinions. In contrast, participants from the FB dataset tend to conform more to the

group’s opinion. Additionally, the level of stubbornness among UCSB participants tends

to increase as the experiment progresses.

To address this issue, we also consider capturing the implicit influence from the

data. During the experiments, participants provide their pre-discussion (PRE) and post-

discussion (POST) choices, which may differ due to the group discussion. We have

encountered cases where individuals do not assign explicit influence but change their an-

swers after considering the choices of other group members. We refer to this phenomenon

as an implicit influence.

Both explicit and implicit influences are utilized as features in our machine-learning

framework to predict the behavior of individuals and groups. We will provide a more

detailed explanation of these features later on.

155

Robustness of Human Decision Making under Risk Chapter 7

1 2 3 4 5 6 7 8 9 10 11 12
Issue Order

0.45

0.55

0.65

0.75

0.85

St
ub

bo
rn

ne
ss

UCSB FB

Figure 7.3: Stubbornness level of individuals over group issues. UCSB participants
are more stubborn than FB participants.

7.4.3 Predictive Power

Prospect Theory

Prospect theory parameters can be used to predict future choices by individuals using

the valuation formulation described in the Preliminaries. We consider IND, PRE, and

POST as different models and learn different parameters for each of them. Additionally,

PT provides interpretable results, allowing us to analyze the risky behavior of individuals

by examining the α, λ, and γ parameters.

We compare PT models to different baselines:

▷ Neural Net: Choice based on the learned weights of neural net that takes only issue

parameters (e.g., x1, x2, and p1) as input.

▷ Utility: Rational choice based on utility.

▷ Max Gain: Choice based on maximum gain.

▷ Min Loss: Choice based on minimum loss.

Table 7.4 shows the prediction of choices based on different models. The PT model

156

Robustness of Human Decision Making under Risk Chapter 7

outperforms or has comparable results to the baselines for different datasets and models.

Model FB (IND) FB (PRE) FB (POST) UCSB (IND) UCSB (PRE) UCSB (POST)

PT 0.747 0.73 0.782 0.723 0.692 0.699
Neural Net 0.749 0.724 0.718∗ 0.704∗ 0.678 0.682
Utility 0.56∗∗ 0.606∗∗ 0.606∗∗ 0.56∗∗ 0.639∗∗ 0.645∗∗

Max Gain 0.396∗∗ 0.399∗∗ 0.417∗∗ 0.393∗∗ 0.431∗∗ 0.469∗∗

Min Loss 0.4∗∗ 0.397∗∗ 0.379∗∗ 0.374∗∗ 0.385∗∗ 0.418∗∗

∗∗p < 0.01 ∗p < 0.05

Table 7.4: N-fold cross-validation accuracy results for different models. The best and
second-best models are shown in bold and underlined, respectively. The PT model
performs best. p-values are calculated with paired t-tests between PT and baselines.
The neural net model is closest to PT in terms of accuracy.

Even though prospect theory has the advantage of providing interpretable parameters,

its accuracy performance may be limited due to its design and lack of flexibility in using

different feature sets, such as influence mechanisms or unseen structures of group member

behaviors. To overcome this issue, we can design a machine-learning model that offers

more flexibility and ease of use. However, a potential disadvantage of using a machine

learning model is the loss of interpretability that prospect theory provides.

POST Decision Predictor using Machine Learning

We have developed a one-layer MLP model with a hidden layer size of 128 and a

logistic activation function to predict the POST choices of individuals in the UCSB

dataset. The model takes into account the individual’s PRE choice, as well as explicit

and implicit influences from group members. The model consists of five features:

▷ (explicit) Average influence from group members who made high-risk choices in the

PRE phase.

▷ (explicit) Average influence from group members who made low-risk choices in the

PRE phase.

▷ (implicit) Number of group members who made high-risk choices in the PRE phase.

157

Robustness of Human Decision Making under Risk Chapter 7

▷ (implicit) Number of group members who made low-risk choices in the PRE phase.

▷ PRE choice of the individual.

The model demonstrates an accuracy of 75% in predicting no change for low-risk

choices (i.e., when the individual chooses low-risk options in both the PRE and POST

phases). Similarly, it achieves an accuracy of 84% in predicting no change for high-risk

choices. The accuracy significantly improves to 97% when predicting a change from low

risk in the PRE phase to high risk in the POST phase, and it reaches 94% when predicting

a change from high risk to low risk.

high risk
influence

low risk
influence

#high risk
(PRE)

#low risk
(PRE)

PRE choice
0.050

0.055

0.060

0.065

0.070

0.075

0.080

0.085

0.0722

0.0649

0.0803

0.06
0.0621

Figure 7.4: Contributions of different features in making predictions in POST choice
for UCSB dataset.

Figure 7.4 provides insight into the importance of each feature in making predictions

for the UCSB dataset. The importance of each feature is determined by assessing how the

model’s performance deteriorates when the feature is excluded. The results highlight the

significant influence of both explicit and implicit factors associated with group members

who selected high-risk options during the PRE phase in predicting POST choices.

158

Robustness of Human Decision Making under Risk Chapter 7

7.4.4 Behavioural Changes between IND - PRE - POST

We analyze the changes occurring between IND, PRE, and POST based on choices

on issues, consensus, and behavior valuation curves, as described in the Preliminaries.

low
risk

high
risk

PRE

low
risk

high
risk

IN
D

337 129

223 595

(a) IND→PRE

low
risk

high
risk

POST

low
risk

high
risk

IN
D

308 158

233 585

(b) IND→POST

low
risk

high
risk

POST

low
risk

high
risk

PR
E

461 99

80 644

(c) PRE→POST

Figure 7.5: Confusion matrix showing the shift between low and high-risk choices
based on different models. Significant changes occur from IND to POST. The predic-
tions are based on the PT models.

Choice Shift

Figure 7.5 demonstrates the shift of individuals towards less or more risky choices for

the UCSB dataset based on the issues asked during the individual phase. Please note

that the choices in the figure represent predictions based on the PT models. While there

is a significant change from IND to PRE and POST, the change from PRE to POST is

relatively less significant. The change indicates that human behavior towards risk evolves

through group discussion.

Consensus Shift

Figure 7.6 illustrates the consensus ratio over groups for all issues, comparing the

PRE and POST choices in the UCSB dataset. The figure clearly shows that POST

159

Robustness of Human Decision Making under Risk Chapter 7

0 2 4 6 8 10
Issues

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Co
ns

en
su

s R
at

io

PRE POST

(a) All Issues

0 1 2 3 4 5 6 7 8
Issues

0.4

0.5

0.6

0.7

0.8

Co
ns

en
su

s R
at

io

PRE POST

(b) Rolling Average

Figure 7.6: Consensus ratio over groups for all issues. The groups tend to form a consensus.

choices exhibit higher consensus compared to the PRE choices, which can be attributed

to the group discussion. Furthermore, it is observed that the group tends to form a

consensus even in the PRE choices (before discussion), as their behaviors become more

aligned with each other over time.

Behavior Shift

Figure 7.7 displays the average pairwise cosine distance between individuals within

each group, comparing the IND, PRE, and POST parameters in the UCSB dataset. As

anticipated, in the majority of groups, the pairwise distance decreases from the individual

settings to the group settings (IND → PRE → POST). This observation indicates that

there is a shift in behavior towards consensus as a result of the group discussion. The

pairwise IND distances are generally greater than the pairwise PRE distances, which, in

turn, are greater than the pairwise POST distances.

160

Robustness of Human Decision Making under Risk Chapter 7

0 5 10 15 20 25 30
Group

0.0

0.2

0.4

0.6

0.8

Av
er

ag
e

co
sin

e
di

st
an

ce

IND
PRE
POST

Figure 7.7: Average pairwise distance between individuals in each group for IND, PRE
and POST parameters. For most groups, pairwise IND distances > pairwise PRE
distances > pairwise POST distance. This shows that the behavior of individuals
shifts towards consensus in a group setting.

7.4.5 Robustness of Groups

One of the major concerns in group decision-making is the robustness of decisions.

It raises the question of whether group decisions can be significantly different under

different circumstances. Specifically, we are interested in investigating the impact of

adding additional members to a group and how it might alter the decisions made. To

measure this metric of group robustness, we have designed a framework to perform evasion

attacks on each group. In order to formulate our evasion strategy, we first need to develop

three different models that capture various aspects of group behavior. It is important

to note that the experiments conducted in this section focus exclusively on the UCSB

dataset.

Consensus Predictor

We have developed a predictor that determines whether a consensus has been reached

within a group. For this task, we chose a one-layer Multi-Layer Perceptron (MLP) with

161

Robustness of Human Decision Making under Risk Chapter 7

a hidden layer size of 128 and a logistic activation function. The problem can be framed

as a binary classification, where class 0 represents no consensus and class 1 represents

consensus.

During training, we used six different features as input for the predictor. These

features are similar to the ones used in the POST choice predictor, as we found them to

be useful in capturing relevant information. The six features are as follows:

▷ (explicit) Average influence from group members who made high-risk choices in the

PRE phase.

▷ (explicit) Average influence from group members who made low-risk choices in the

PRE phase.

▷ (implicit) Number of group members who made high-risk choices in the PRE phase.

▷ (implicit) Number of group members who made low-risk choices in the PRE phase.

▷ Number of group members who made high-risk choices in the PRE phase based on

PT parameters from IND.

▷ Number of group members who made low-risk choices in the PRE phase based on PT

parameters from IND.

The last two parameters provide additional prediction power by considering the status

of group members during the individual phases. Our model achieves an accuracy of 89%

in predicting consensus.

To assess the importance of each feature, we conducted an analysis where we removed

each feature from the model and calculated the accuracy of the modified model. The

difference in accuracy before and after removing a feature indicates its importance. Figure

7.8 illustrates the feature importance in predicting consensus. The explicit and implicit

low-risk influence features are found to be the most effective in predicting consensus

compared to the other features. It is worth noting that each feature contributes to

improving the performance of the model.

162

Robustness of Human Decision Making under Risk Chapter 7

high risk
influence

low risk
influence

#high risk
(PRE)

#low risk
(PRE)

#high risk
(IND)

#low risk
(IND)

0.06

0.07

0.08

0.09

0.10

0.11

0.12

0.0862

0.1121

0.0776

0.0948

0.0776 0.0776

Figure 7.8: Importance of features in predicting consensus. Explicit and implicit
low-risk influence are effective features.

Overall, the machine learning-based consensus predictor offers flexibility in incorpo-

rating various features and demonstrates the ability to capture patterns in the data to

predict whether a group has reached a consensus.

Group Prospect Theory Parameter Predictor

Group Prospect Theory (GPT) parameters are defined as PT parameters in a group

in which issues they had a consensus. Firstly, using this formulation, we calculated

ground-truth GPT parameters for each group.

Later on, we developed supervised MLP regressors to estimate GPT parameters.

Each regressor is responsible for predicting one of the GPT parameters: α, λ, and γ. The

regressors are designed as MLP regressors with similar hyperparameters to the consensus

predictor.

The input features used in the regressors are similar to those used in the consensus

predictor. In addition, two additional parameters are included based on the model:

▷ The minimum IND-PT parameter within the group.

163

Robustness of Human Decision Making under Risk Chapter 7

▷ The maximum IND-PT parameter within the group.

Including the minimum and maximum parameters ensures permutation invariance in

the model. It is important to note that we use the IND-PT parameters (e.g., α IND-PT

parameter) to predict the corresponding GPT parameters (e.g., α GPT parameter).

The model for α achieves a Mean Squared Error (MSE) of 0.024 and an R2 score of

0.86. The model for λ has an MSE of 0.037 and an R2 score of 0.76. Finally, the model

for γ achieves an MSE of 0.01 and an R2 score of 0.78.

These results indicate that the MLP regressors are effective in estimating the GPT

parameters based on the provided input features, including the IND-PT parameters and

the minimum/maximum values within the group. The low MSE values and relatively

high R2 scores demonstrate the accuracy and goodness of fit of the regression models.

Influence Predictor

Our third model is the Influence Predictor, which aims to predict the influence matrix

between group members. To develop this predictor, we use the ground-truth influence

matrices provided by the participants. The model is designed as a supervised MLP with

one hidden layer of size 64 and a softmax activation function to generate the influence

distribution over group members for each participant.

The Influence Predictor operates on pairs of individuals, considering their IND pa-

rameters and PRE choices. Hence, we have eight input features to predict the influence

of person j over person i: αi, λi, γi, αj, λj, γj, PRE-choicei, and PRE-choicej.

The model achieves a KL divergence performance of approximately 0.146, where a

smaller value indicates better performance. Similar to the previous models, we assess

the importance of each feature by removing it and evaluating the model’s performance.

Figure 7.9 presents the feature importances for influence predictions. The results indicate

that the λ parameters of individuals, which reflect the perceived impact of loss relative

164

Robustness of Human Decision Making under Risk Chapter 7

i i i j j j PREi PREj
0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.003

0.01

0.005
0.006

0.013

0.006

0.001

Figure 7.9: Importance of features for influence predictions. lambda parameters are
the most effective parameter to decide influence.

to gain, are the most effective features in determining influence. On the other hand, the

choices made in the pre-discussion phase have a negligible effect on influence predictions.

These findings highlight the significance of individual λ parameters in capturing the

influence dynamics within the group. The Influence Predictor effectively utilizes the pro-

vided features to estimate the influence matrix, providing insights into the relationships

and interactions between group members.

Attacking Group Decisions

Now, we will use the earlier models for understanding the robustness of the groups.

They will help us calculate new GPT parameters and a new influence matrix within a

group when a new agent joins. Note that the group members are not aware of this new

agent is a human or AI.

To evaluate the robustness of group behavior under an evasion attack, we introduce

a new agent whose goal is to maintain the group’s consensus behavior while inducing a

change in the group’s behavior based on new GPT parameters. The attack agent aims

165

Robustness of Human Decision Making under Risk Chapter 7

to maximize the cosine distance between the group behavior without the agent and the

group behavior with the agent, using the consensus GPT parameters.

maxCosineDistance(b(GPT), b(GPT ′)) (7.7)

where GPT is the GPT parameter without the agent, GPT ′ is the GPT parameter

with the agent, and function b calculates the behavior given PT parameters, as previously

described in Preliminaries.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Group

0.00

0.05

0.10

0.15

0.20

0.25

Co
sin

e
Di

st
an

ce

Group Consensus Behavior Changes with Optimal Evasion Attack (w/ Influence)

Figure 7.10: Robustness of groups based on cosine distance between group behavior
with AI agent and group behavior without AI agent. Missing data shows there are
no agents found using grid search to reach a consensus on the same issues. Group 5
is the least robust and groups 10, 15, 16, 21, 22, 23, and 24 are the most robust.

We employ a simple grid search approach to find the attack agent’s PT parameters

that optimize the objective. The ranking of groups based on the cosine distance between

their behavior with and without the attack agent is shown in Figure 7.10. Higher cosine

distances indicate a lower level of robustness, as the group behavior changes more signif-

icantly due to the evasion attack. For example, Group 5 is the least robust, experiencing

the most substantial changes in behavior. On the other hand, some groups exhibit high

166

Robustness of Human Decision Making under Risk Chapter 7

robustness, where we were unable to find an attack agent that can reach a consensus on

the same issues.

Additionally, we investigate the effect of the influence mechanism on the robustness of

groups by removing the influence predictor and using the previous influence values within

a group for GPT parameter predictions. The results are depicted in Figure 7.11 Although

there are no significant overall changes, certain groups, such as Group 1, become less

robust when the influence mechanism is not considered. This emphasizes the importance

of the influence mechanism in determining the robustness of group behavior.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Group

0.00

0.05

0.10

0.15

0.20

0.25

Co
sin

e
Di

st
an

ce

Group Consensus Behavior Changes with Optimal Evasion Attack (w/o Influence)

Figure 7.11: Robustness of groups based on cosine distance between group behavior
with AI agent and group behavior without AI agent without considering influence
changes in the group. Missing data shows there are no agents found using grid search
to reach a consensus on the same issues. Group 5 is the least robust and groups 1, 8,
10, 12, 15, 21, 22, 23, 24, and 25 are the most robust.

Overall, these findings highlight the vulnerability of group decisions to evasion attacks

and the significance of considering both the influence mechanism and GPT parameters

in assessing the robustness of group behavior.

167

Robustness of Human Decision Making under Risk Chapter 7

7.4.6 Human Behavior Generative Model

Instead of relying on grid search and sampled human behaviors with prospect theory

(PT) parameters to find an agent that either harms or benefits the group, an intriguing

alternative is to leverage generative AI to optimize the objective. A human-behavior

generation has emerged as a fascinating area of research, aiming to comprehend human

behaviors in social contexts and their interactions with others [298, 299, 300, 301].

By training generative models on our real-world datasets encompassing a broad range

of risk preferences and decision-making scenarios, we can guide the model to produce

human-like behaviors that align with our desired outcomes. This approach holds promise

in exploring the effects of different risk profiles and behaviors on group decision-making

dynamics and identifying strategies to optimize decision outcomes while upholding con-

sensus. The integration of generative AI into the study of group decision-making offers

a powerful tool to understand the complex interplay between individual behaviors and

group dynamics, opening up avenues for innovative approaches to influence and shape

group behaviors without compromising consensus.

Framework

Our human behavior generation model comprises two main steps: pretraining a Vari-

ational Autoencoder (VAE) [302] and fine-tuning it for evasion attacks. It should be

noted that the fine-tuning process can be tailored to different tasks.

In the first step, the VAE utilizes Prospect Theory (PT) parameters obtained from

randomly sampled humans and the IND-PT parameter of our participants, controlled by

a hyperparameter c ∈ [0, 1]. During each iteration of the VAE, a sample is drawn from

a random set with a probability of c. This allows us to control the level of randomness

in our generative model.

168

Robustness of Human Decision Making under Risk Chapter 7

To begin, we calculate the human behavior based on our behavior calculation, denoted

as b(PT), and feed it into the VAE. The VAE then generates three parameters, namely

α′, λ′, and γ′. The loss function for training the VAE involves reconstructing the input

parameters α, λ, and γ using a mean squared error (MSE) loss function. Figure 7.12

illustrates VAE diagram of our proposed generative model.

𝝰, 𝞴, 𝛄 b(𝝰, 𝞴, 𝛄) Encoder z 𝝰’, 𝞴’, 𝛄’

Latent Space

Decoder

Figure 7.12: VAE Diagram for Generative Model.

Once the VAE is trained, we can utilize its decoder component for fine-tuning, specifi-

cally for the evasion attack task. The VAE-decoder is optimized using a similar approach

as described in the previous chapter on Attacking Group Decisions. Essentially, we aim to

maximize the behavioral distance between a group’s decision outcomes with and without

the presence of a generated agent as in Equation 7.7.

Our generative model offers several advantages over previous methods:

▷ It eliminates the need for grid search across multiple parameter options, streamlining

the optimization process.

▷ The generative model reduces the need to generate a large number of agents, saving

valuable time and computational resources.

▷ The flexibility of our generative model allows for easy adaptation to different tasks

through fine-tuning.

By leveraging these advantages, our model enhances the efficiency and adaptability

of behavior generation, making it a valuable tool for various applications and scenarios.

169

Robustness of Human Decision Making under Risk Chapter 7

Results

Figure 7.13 presents our preliminary findings comparing the generative model with

the grid search method. Both approaches successfully target the majority of groups,

but the grid search method exhibits a stronger capability to alter the group consensus

behavior. This observation suggests that the generative model may fail to identify certain

regions that were overlooked by the grid search. This discrepancy is primarily due to the

grid search approach’s comprehensive examination of numerous parameters. To address

this issue, we reduce the resolution of the grid search by a factor of 2 for each parameter.

Figure 7.14 demonstrates that reducing the resolution diminishes the attack performance

of the grid search, to the extent that it fails to identify an attacking agent for Group 2

and 16. These findings highlight that the effectiveness of the generative model becomes

more apparent as the number of parameters increases, making it challenging to apply

grid search at a high resolution.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Group

0.00

0.05

0.10

0.15

0.20

0.25

Co
sin

e
Di

st
an

ce

Group Consensus Behavior Changes with Optimal Evasion Attack

Grid Search
Generative Model

Figure 7.13: Comparison of two agent selection methods in finding optimal AI agent
for attacking the groups. Notably, the grid search method identifies an AI agent with
a more impactful attack for groups.

170

Robustness of Human Decision Making under Risk Chapter 7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Group

0.00

0.05

0.10

0.15

0.20

0.25

Co
sin

e
Di

st
an

ce
Group Consensus Behavior Changes with Optimal Evasion Attack

Grid Search
Generative Model

Figure 7.14: Comparison of two agent selection methods for finding optimal AI agents
to attack groups, while considering the reduced resolution of the grid search. The
results highlight the generative model’s ability to maintain continuity and successfully
target a larger number of groups (specifically, Groups 2 and 16) for successful attacks.

7.5 Conclusions

Our study builds upon previous research that has explored decision-making processes

in both individual and group settings. Transitioning from an individual decision-making

context to a group setting introduces new dynamics and complexities, especially under

risk. Previous studies, such as the work by Askari et al. [303], have examined the

role of expertise in group decision-making and highlighted the significance of influence

mechanisms within a group. Expanding on this line of inquiry, we extend the analysis to

include evasion attacks and evaluate the robustness of group decisions in the presence of

malicious agents.

By integrating machine learning models and evasion attacks into the study of group

decision-making, we provide a comprehensive framework including grid search and gener-

ative model for assessing robustness. Our approach captures individual behaviors, group

consensus, and influence dynamics, allowing us to analyze the impact of different fac-

171

Robustness of Human Decision Making under Risk Chapter 7

tors on group behavior under attack scenarios. This research contributes to the broader

understanding of group decision-making processes, highlighting the potential vulnerabil-

ities and the need for resilient decision-making mechanisms. Ultimately, our findings can

inform the development of strategies and interventions to enhance the robustness and

reliability of group decisions in various domains, ranging from organizational settings to

public policy and beyond.

7.5.1 Future Works

Human Experiment Validation on Robustness

Firstly, we will incorporate different techniques for our generative model showing its

effectiveness over the grid search approach. Secondly, in order to thoroughly evaluate the

effectiveness of our attacking schema, it is crucial to validate this idea through real human

experiment settings. As previously mentioned, the group members will be unaware of

whether other group members are humans or AI agents. This blinding approach will

enable us to examine the relationship between humans and AI agents without introducing

any biases. By conducting these real human experiments, we can gain valuable insights

into the dynamics and interactions between human decision-makers and AI agents within

a group context. This approach ensures a more realistic assessment of our attacking

schema and enhances the validity of our findings.

Text to Prospect Theory

One intriguing avenue for further exploration is the possibility of understanding

Prospect Theory parameters from textual data. This entails analyzing the language and

content of written text to infer an individual’s risk preferences and biases, as reflected in

Prospect Theory parameters like loss aversion and probability weighting. By developing

172

Robustness of Human Decision Making under Risk Chapter 7

advanced natural language processing (NLP) techniques and machine learning models, it

may be feasible to extract these parameters from text, thereby empowering AI agents to

offer persuasive arguments and exert influence over group decision-making processes. To

investigate this prospect, we will design new human experiments that incorporate dia-

logue during group discussions, allowing us to delve deeper into the relationship between

textual data and Prospect Theory parameters.

Human-AI Teams on Intellective Issues

We are planning to conduct additional human experiments to analyze the interac-

tions between humans and both other humans and AI agents, specifically focusing on

intellective issues. To facilitate this, we will design a jeopardy game format, where hu-

man participants answer questions, engage in discussions with other group members, and

collectively reach a consensus on the answers. During the game, participants will have

the option to seek assistance from an AI agent.

In a separate scenario, we will introduce AI agents as members of the group, while

keeping the humans unaware of which members are human and which are AI. This setup

will allow us to examine the dynamics of group decision-making when humans interact

with both humans and AI agents.

Through these experiments, we aim to gain a deeper understanding of transactive

memory, cognitive biases, and the influence system that operates within groups, partic-

ularly in the context of intellective issues rather than controversial ones. By exploring

these aspects, we can shed light on how human-AI interactions shape decision-making

processes and uncover insights into the collective intelligence of mixed human-AI groups.

In the existing literature, various techniques have been proposed to address and un-

derstand decision-making processes in human-AI groups. These techniques include ac-

tive learning [304, 305], reinforcement learning [306, 307], and theory of mind [308].

173

Robustness of Human Decision Making under Risk Chapter 7

In our study, we aim to investigate and evaluate these different approaches to enhance

the effectiveness and informativeness of our systems. By leveraging insights from these

techniques, we can further advance our understanding of decision-making dynamics in

human-AI groups and develop improved systems that facilitate collaborative decision-

making processes.

174

Chapter 8

AI Decision Systems with Feedback

Loop Active Learner

8.1 Introduction

Accuracy is one of the critical evaluation metrics in decision systems, especially for

high-stake applications [309, 123] such as financial event detection [82], drug discovery

[310], and autonomous driving [311]. Making the decision systems controlled by AI is

risky because of the gray area problem [312], where AI cannot decide the actual answer

and uses an artificial and pre-defined threshold. On the other hand, human decision

systems are time-consuming and require an expert [313]. It leads us to the following

question: Can we improve AI decision systems with the help of human expertise?

Certain high-stakes decisions, such as detecting anomalies in operating server ma-

chines wherein missing them would cause financial loss, can be easily given by AI decision

systems. In order to make such decisions, AI Decision systems are created using either

historical experience (previous anomaly patterns, i.e., learned features) or algorithmic

design (certain behaviors are anomalies, i.e., expert-designed features). However, histor-

175

AI Decision Systems with Feedback Loop Active Learner Chapter 8

Figure 8.1: A short illustration of Feedback Loop Active Learner. It starts with
multiple entities at which a black box AI system generates decisions. FLAL uses these
decisions and entities to send queries to a human, who evaluates them and generates
ground truth labels and feedback. FLAL uses this feedback (including human interest
and expertise) in active learning training and stores the ground truth labels for future
updates in the AI decision system.

ical experiences are not always available because of the label scarcity problem in AI for

high-stakes applications. Therefore, the anomaly decision systems generally are designed

as unsupervised classification models, which affects generalizability and generates multi-

ple misclassifications. A human decision maker may solve this problem. However, human

decision making is very time-consuming and not ideal where a fast decision is necessary.

For instance, if a server machine fails, AI could detect this quickly compared to a hu-

man however human expertise is needed to check and confirm the detection as well as

understand its root cause. In such a context, the human required should be an expert in

understanding the problem. This scenario is not limited to high-stakes decisions. Credit

card approval systems or insurance acceptance systems are other examples that AI may

need the help of human decisions.

Feedback loop (Human-in-the-loop) systems have been studied [314] to create a bridge

between AI and humans. They collect labels from the users and improve the AI decision

176

AI Decision Systems with Feedback Loop Active Learner Chapter 8

systems. However, can we trust the user’s expertise? Even if they are experts, how do

we confirm their interest in asked queries? Recommender systems have been proposed to

learn the interest of people [315, 316, 317]. The system ranks unseen/unused items and

recommends them to the user based on their historical interest or using user interactions

[318]. While collecting ground-truth labels, the selection of humans to answer particular

queries is critical to improving label correctness and quality. Combining the recommender

mechanism with a feedback loop system could potentially increase the performance of AI

decision systems by having plenty and correct ground-truth labels.

In this paper, we are looking at specific scenarios of multiple independent entities.

Each entity has temporal multidimensional features, and the AI system makes a decision

for each entity and time (e.g., anomaly/failure decision). Entities will be ranked by their

relevance score to the humans and queried to them to learn their expertise and interests

with a pre-defined budget. It helps the framework generate accurate ground-truth labels

and labeling operation will not be challenging or boring for a human since they are

interested in answering.

We propose FLAL–a novel Feedback Loop Active Learner for better ground-truth

labeling–which aims to learn the expertise and interest of a human before querying the

entities to them using the active learning mechanism. Figure 8.1 illustrates a summary

of FLAL bridging between an AI decision system and a human. FLAL collects decision

for entities from the AI system, ranks entities based on their relevance score to human/s,

and send queries based on the budget. The human/s answers these queries and sends

them back to a FLAL, which learns their behavior towards these entities as well as stores

the answers as ground truths. These ground truths will be used to improve AI decision

systems in the future. Our main contributions can be summarized as follows:

▷ We highlight the limitation of current AI decision systems, human decisions, and their

cooperation to generate data labels. AI decision system makes many mistakes, human

177

AI Decision Systems with Feedback Loop Active Learner Chapter 8

decisions are slow, and cooperation may be limited because of the lack of expertise or

interest from humans.

▷ We propose FLAL, a novel feedback loop active learning framework, for better ground-

truth generation and understanding of human behavior. It uses active learning to train

the framework based on human feedback and stores generated data labels to improve

AI decision systems in the future.

▷ We conduct experiments to verify the effectiveness of FLAL. We show that our frame-

work performs better than competing baselines: random forest active learner, AI

decision-based, and random recommendations. FLAL not only has the best perfor-

mance but also converges fast.

8.2 Related Works

Human-in-the-Loop: Human-in-the-loop, in other words, feedback-loop, mech-

anisms are studied in the literature to enhance AI performance by label annotation

[319, 320] and generating explanations [321, 322, 323, 324] to black-box operations. Since

feedback-loop systems are generally real-time systems, they often use active learning dur-

ing their training [325, 326, 319]. In our work, we also adapt similar ideas by incorporating

human decisions into AI. However, our method increases the efficiency of this cooperation

by learning the expertise and interest of humans before asking them questions.

Recommenders: Recommendation systems are one of the solutions for understand-

ing the behavior of individuals. They are designed to infer interests and recommend items

to humans based on their historical experience or user interactions [318]. The main idea

is to rank all relevant items to the user and recommend the top ones. Therefore, ranking

algorithms become one of the main components [327, 328, 329] in designing recommen-

dation systems. Recently, as opposed to classical recommenders such as collaborative

178

AI Decision Systems with Feedback Loop Active Learner Chapter 8

filtering and matrix factorization, deep-learning frameworks are applied to learn a better

representation of items [316, 330, 331]. However, a lack of data availability can restrict

the number of parameters to be learned. Even though we still use the advantage of deep

learning recommenders, we keep our framework simple but effective. Our recommender

system finds better queries based on the user’s expertise and interests. In this way, the

feedback loop will generate better ground truth labels.

Temporal Embeddings: Representation learning on time-series data has become

a popular technique to reduce the dimension of the temporal data while keeping the

representation (meaning) of it intact [332, 333]. Time2Vec [334] uses a sine activation

function to embed the time-series data. Unsupervised time-series embedders have been

proposed [335, 336] to deal with label scarcity. Franceschi et al. [335] use the triplet

loss function to learn a representation of multidimensional time-series data. The trained

embedder can embed any time-series data with any length. More recently, Zerveas et

al. [336] propose a transformer-based framework by reconstructing the mask part of

the time-series data. FLAL uses a pre-trained temporal data embedder to represent

time-series data coming from the entities for better and more compact representations.

8.3 Methodology

8.3.1 Problem Formulation

We formulate our problem as a self-supervised time-series classification. Given an

entity set E = {E1, E2, . . . , En} where each entity represents a multivariate time-series

data (i.e., Ei = [xi1, xi2, . . . , xit]), an unsupervised AI decision system D which generates

decision probability dit for each entity and timestamp (i.e, D(Eit) = dit), a user set U =

{U1, U2, . . . , Um}, and interest labels Y ∈ {0, 1}m×n×t for each user to certain timestamp

179

AI Decision Systems with Feedback Loop Active Learner Chapter 8

Figure 8.2: Feedback Loop Active Learner steps. (1) It starts with embedding stream
data using pre-trained embedders. (2) User embedding mapper maps the embed-
ding space into a more personalized space. (3) Feature extractor generates learned
or expert-designed features to tackle the cold-start problem for recommenders. (4)
Generates relevance scores based on AI decision system and extracted features. It
sends queries to users for ground truth generation. (5) User generates ground truths
and relevancy of the query. They send them back to the framework. Later, FLAL
updates its components using an active learning mechanism and keeps ground truth
information for future updates on the AI decision system. Notice that the user’s in-
terest (relevancy) in queries can also be inferred using interaction detectors.

and entity; our goal is to learn a function F̂ : E ,D → Y that approximates the expertise

of users.

8.3.2 FLAL: Feedback Loop Active Learner

We introduce FLAL, a feedback loop active learner that generates ground-truth la-

bels for the AI decision system while learning human expertise and/or interest. FLAL

performs user mapping and feature extraction that optimizes the human expert’s predic-

tions. As a result, it obtains better ground-truth labels for the AI decision system.

180

AI Decision Systems with Feedback Loop Active Learner Chapter 8

Figure 8.2 describes the steps of FLAL in detail. FLAL finds a global embedding

space using pre-trained time-series embedders and translates the global embedding space

into personalized embedding space. To overcome the cold-start problem, FLAL extracts

features from user embedding space and incorporates AI decisions into this feature set.

Finally, it calculates relevance scores for each entity and sends the topQ to human experts

for evaluation. The human classifies each query which in turn generates ground truth

information and adds feedback (explicit or implicit) about their expertise or interest in

a certain query. FLAL trains its framework using this feedback via an active learning

mechanism and stores the ground truth information to improve AI decision systems in

the future when necessary.

Stream Data Embedder

To increase the expressiveness and compactness of our data, we use an unsupervised

multivariate time-series embedder to represent the entity’s time series. This part of

our algorithm is pre-trained with the data, which is not used in our experiments. We

used [335] for our stream data embedder since it is more flexible to different time-series

lengths and generates good representations for anomaly data compared to [336]. During

the embedding of the time-series data, we consider the last τ timestamps.

hit = S([xi(t−τ); . . . ;xit]) (8.1)

where hit is an embedding of Eit, S is an unsupervised multivariate time-series em-

bedder, xit is multivariate time-series data for Eit, and [·; ·] is the row concatenation

operator.

181

AI Decision Systems with Feedback Loop Active Learner Chapter 8

Figure 8.3: An illustration of Stream Data Embedder. The pre-trained unsupervised
embedder takes input from all entities’ time series data (up to τ timestamp history)
and embeds them into d dimensional space. This allows a better and more compact
representation of time-series data.

Figure 8.4: The usefulness example of user embedding mapper. Since the global em-
bedding space will group related entities together and a specific user may be interested
in different types of entities, the user embedding mapper will learn how to regroup
entities. This example shows that the algorithm may detect the anomalies for differ-
ent reasons: data issues, seasonal change, and authentication-related. Therefore, if
only data issues and authentication-related anomalies (red entities) are relevant to the
user, the algorithm groups them together to make the embedding space personalized.

182

AI Decision Systems with Feedback Loop Active Learner Chapter 8

User Embedding Mapper

Global embedding space may not be as representative as user embedding space, where

one can understand the expertise of users. Therefore, we have a user embedding mapper

that maps generated embeddings from the stream data embedder to the user embedding

space. This allows them to distinguish between relevant and irrelevant entities to the

user. Figure 8.4 shows an example of the usefulness of user embedding mapper. For an

anomaly detection problem, multiple reasons can cause an anomaly. But the users are

often experts on a certain subset of those anomalies and the user embedding mapper will

map these types close to each other. As a result, they can be separated from the other

anomaly types or normal ones. The user embeddings are generated as follows:

hA
it = gA(hit) (8.2)

where hA
it is a user embedding for User A, and g is the user embedding mapper. g

can be designed as any function, such as the identity or neural networks.

Feature Extractor

Since we do not know any information about the users and cannot conduct an initial

survey as most recommenders do, we need to extract features from the user embedding

space. Features can be learned or designed for a specific application scenario. An example

of an expert-designed feature for anomaly applications can be the average distance from

one item to others, which will likely be higher for anomaly cases. However, learned

features are shown as more expressive than expert-designed features because it is hard

to design or engineer all useful features. Feature extractor can also be seen as a function

layer on top of the user embedding mapper. So it will learn new features from hA
it:

183

AI Decision Systems with Feedback Loop Active Learner Chapter 8

h′A
it = f(hA

it) (8.3)

where h′ has smaller dimension than h, and f is a feature extractor function. f can

also represent a set of learned and expert-designed functions. In that case, h′ will be a

concatenation of extracted features.

Recommender

In order to find better queries for specific users, we calculate each entity’s relevance

score to a user. Note that the AI decision systemD already calculates decision probability

dit for entity i. Even though this probability may not be fully correct, we can incorporate

it into relevance score calculation to ease the cold-start problem. Furthermore, we will

also use the extracted features from the feature extractor. The relevance score of Eit for

a user A calculation will be as the following:

rAit = w1 × dit +
∑

W ⊙ h′A
it (8.4)

where w1 and W are learned weights. Also, these weights may tell us a story about

the importance of AI decision systems and extracted features for different users. Once

relevance scores are calculated for all entities, the recommender will send the top Q

relevant entities to the user to get feedback.

User Feedback

The users will have a list of queries to be checked and answered. The user will

respond to each query with two answers: (1) what should be the decision of the AI

system? (2) what is their expertise/interest in this query? The first answer is stored

to update the AI decision system if necessary, while the second is used to train FLAL.

184

AI Decision Systems with Feedback Loop Active Learner Chapter 8

Note that our main algorithm is not controlling the answering part done by the user. If

a query has no response, it means no decision (i.e., do not use to improve the AI decision

system) and no expertise (improve FLAL with the information that the user is not an

expert). Furthermore, an interaction system can be designed to understand the expertise

or interest of the user in queries by looking at their click count or other related metrics.

However, this is out of the scope of this project. The expertise information will be stored

in eAit ∈ {0, 1}, and used to update FLAL.

8.3.3 Training FLAL

We train our framework based on active learning principles since the problem requires

learning the behavior of users in real-time to collect better ground truth labels for AI

decision systems. The collected ground truth information will be stored to update the

AI decision system if necessary. Our active learning mechanism focuses on updating the

recommender using feedback from expertise information. For each timestamp t, we train

our objective which aims to sort relevance scores of entities, RA
t = [rA1t, . . . , r

A
nt] based on

the expertise information array EA
t = [eA1t, . . . , e

A
Qt]. More specifically we use a contrastive

loss for our active learning training which contains three different terms as follows:

maxLALL(E
A
t , R

A
t) = x1 ∗

∑
i<Q
eAit=1

∑
Q>j>i
eAjt=0

σ(rAit − rAjt) → LWIDEN

+ x2 ∗
∑
i<Q
eAit=1

∑
Q>j>i
eAjt=0

σ(rAit − rAjt) → LNARROW

+ x3 ∗
∑
j<Q
eAit=1

∑
k>=Q

σ(rAkt − rAjt) → LRECOVER

185

AI Decision Systems with Feedback Loop Active Learner Chapter 8

where LWIDEN widens the gap between correctly ranked positive and negative sam-

ples, LNARROW narrows the gap between wrongly ranked positive and negative sam-

ples, and LRECOVERY recovers unrecommended by narrowing the gap between wrongly-

recommended samples and unrecommended samples (which may contain useful recom-

mendations). We use x1,2,3 as a tunable hyperparameter to value each term respectively.

They can be optimized based on the scenario and the need of an application.

Example scenario for our training

Let RA
t = [1.5, 1.2, 1.1, 0.9, 0.3, 0.2], Q = 4, EA

t = [1, 0, 0, 1, ?, ?], x1 = 0.50, x2 = 0.75,

and x3 = 0.25, then our objective will be calculated as follows:

LALL(E
A
t , R

A
t) = 0.50 ∗ (σ(1.5− 1.2) + σ(1.5− 1.1))→ LWIDEN

+ 0.75 ∗ (σ(0.9− 1.2) + σ(0.9− 1.1))→ LNARROW

+ 0.25 ∗ (σ(0.3− 1.2) + σ(0.2− 1.2) +

σ(0.3− 1.1) + σ(0.2− 1.1))→ LRECOVER

8.3.4 User Simulation

To see the effectiveness of our feedback-loop part, we need to simulate the user an-

swers. One way to do this is by using ground truth information for the AI decision system

if it is available (simulating that the user’s expertise/interest is the ground truth). We

apply this strategy in this paper. However, this would allow only one user available in

186

AI Decision Systems with Feedback Loop Active Learner Chapter 8

Figure 8.5: The example scenario of the user simulation. The user space will be
randomly assigned in the embedding space. The entities inside of this space will be
relevant to the user. So user embedding mapper should learn how to map relevant
items to this space based on the answers by the user. This will allow better ground
truth generation by the user.

the system. To extend the number of users to more than one, we propose a new way

of simulating users. Each user is represented as a Gaussian latent space in the entity

embedding space. The user space is assigned randomly. If a query entity is in this space,

the user is considered an expert. The user embedding mapper will map related entities

into this space. Figure 8.5 shows the mapping example.

8.4 Experiments

We illustrate the empirical verification of FLAL compared to three baselines on a

dataset. First, we compare method performance with precision at Section 8.4.3. Later

on, we conduct two ablation studies: the effect of user embedding mapper (Section 8.4.4)

and objective function weights (Section 8.4.5).

8.4.1 Dataset

We use a public Server Machine [337] dataset for our experiments. The dataset

contains 38 time-series data with various lengths. For our purpose, we chucked the

187

AI Decision Systems with Feedback Loop Active Learner Chapter 8

data into 100 time series (entities) with a length of 365. Each time series consists of 38

different features. At any point in the time series, machine activity is classified as normal

or failure. Failure represents an anomaly.

8.4.2 Experimental Settings

Baselines

We used three baselines to compare our method.

Random: It makes random recommendations in the recommender step to the user.

AI System Decisions: It only uses AI decision system probability to recommend

entities to the user.

Random Forest Active Learner: It combines uncertainty and confidence scores

for each entity and recommends them to the user. The model is trained using active

learning with a random forest as the estimator and the same settings as FLAL.

Other Settings

Model selection: We select user embedding mapper as a linear layer as a result of

ablation study (See Section 8.4.4), feature extractor generates 15 learned features with

linear layer, and recommender is also a linear layer to generate a relevance score for an

entity. To simulate user feedback, we use the ground truth information of the dataset.

Hyperparameters: We tune hyperparameters of FLAL using grid search. We optimize

our model using Adam optimizer with a learning rate of 0.0001, L2 normalization weight

on model weights 0.001. We select loss function weights x1, x2, and x3 from {0.0, 0.5, 1.0}

(See Section 8.4.5). In our experiments, τ is set to 127 (the length of the multivariate

time series data becomes 128 with the current snapshot) and the embedding size d is 128.

We set Q to 10 and 20 for different runs. The number of recommended items is also set

188

AI Decision Systems with Feedback Loop Active Learner Chapter 8

to Q.

Evaluation metrics: Since the real evaluation can only consider feedback from the

recommended entities, we compare precision metrics in our experiments. At each round,

we calculate precision@Q and average precision@Q.

8.4.3 Performance

Figure 8.6 shows precision@Q and average precision@Q, where Q is 10 and 20. We

calculate a cumulative average of precision performance at each step. Note that this

performance will reflect improved AI decision system performance since we use the user’s

interest/expertise label as a ground truth decision. Our method, Feedback Loop Active

Learner, outperforms the competing baselines at all reported metrics, especially after 10-

20 steps. Another essential requirement of learning human interest is convergence speed.

FLAL converges in around 50 steps, faster than the best baseline Random Forest Active

Learner.

Notice that the precision performance of the AI Decision System is not enough.

However, active learner mechanisms improve the performance of the decision system

drastically, while random decisions are still worse than the original AI decision system.

Another notable difference between Q = 10 and Q = 20 is in precision@Q performance.

When Q = 20, the performance drops below 0.6. However, this essentially could happen

because the number of anomalies in the data is hardly more than 12 (i.e., 20 × 0.6) at

a certain time. This shows us that we should optimize the number of recommended

entities based on the number of anomalies at every step instead of using the same values

as the budget of Q. The average precision is less vulnerable to this issue since the

leading zeros do not affect the result. For both Q, the performance is close to each other.

189

AI Decision Systems with Feedback Loop Active Learner Chapter 8

0 50 100 150 200 250 300 350
Step

0.0

0.2

0.4

0.6

0.8

Pr
ec

isi
on

@
Q=

10

Random AI Decision System Random Forest Active Learner Feedback Loop Active Learner

0 50 100 150 200 250 300 350
Step

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Pr
ec

isi
on

@
Q=

10

(a)

0 50 100 150 200 250 300 350
Step

0.1

0.2

0.3

0.4

0.5

0.6

Pr
ec

isi
on

@
Q=

20

Random AI Decision System Random Forest Active Learner Feedback Loop Active Learner

0 50 100 150 200 250 300 350
Step

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Pr
ec

isi
on

@
Q=

20

(b)

Figure 8.6: Test scores for Precision@Q and AveragePrecision@Q. FLAL outperforms
the competing baselines in both metrics and with different Q = {10, 20}. FLAL’s
performance becomes strictly better in around 10-20 steps and converges around 50
steps. Another active learning mechanism, Random Forest Active Learner, also gen-
erates better performance compared to the original AI decision system performance.
Random recommendation mechanism expectedly is the worst.

190

AI Decision Systems with Feedback Loop Active Learner Chapter 8

0 50 100 150 200 250 300 350
Step

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Pr
ec

isi
on

@
10

 (Q
=1

0)

Identity Linear NonLinear Non-Linear2

0 50 100 150 200 250 300 350
Step

0.1

0.2

0.3

0.4

0.5

0.6

Pr
ec

isi
on

@
20

 (Q
=2

0)

(a)
Figure 8.7: Ablation study of user embedding mapper. The linear and non-linear
layers have competing performances at both metrics. The linear mapping converges
slowly, and 2 non-linear layers suffer from the lack of available data points.

8.4.4 Different User Embedding Mapper

Figure 8.7 shows an ablation study on different user embedding mapper layers using

precision@10 and precision@20. We compare identity, linear, nonlinear, and nonlinear-2

(2 nonlinear layers). The identity layer returns the same embedding space and the non-

linear layers use a sigmoid activation. The result suggests that one linear layer captures

enough information as much as one nonlinear layer. On the other hand, the identity layer

has gradually increasing performance for Precision@10, but with a slower convergence

rate. Nonlinear-2 has the worst performance. The reason could be overfitting since the

lack of data points.

8.4.5 Loss Function Term Sensitivity

Figure 8.8 shows a sensitivity analysis on objective function terms for the Machine

dataset. Each block represents the last step cumulative average of precision@10 scores

from FLAL parameterized by different x1,2,3 values. All terms contribute to the perfor-

191

AI Decision Systems with Feedback Loop Active Learner Chapter 8

0.0 0.5 1.0
x2

1.
0

0.
5

0.
0

x1

0.74 0.81 0.76

0.74 0.78 0.81

0.075 0.71 0.75

x3 = 0

0.0 0.5 1.0
x2

0.75 0.83 0.78

0.75 0.78 0.8

0.28 0.69 0.7

x3 = 0.5

0.0 0.5 1.0
x2

0.78 0.81 0.83

0.81 0.81 0.82

0.31 0.59 0.71

x3 = 1.0

0.3

0.4

0.5

0.6

0.7

0.8

Figure 8.8: Sensitivity analysis of choosing x1,2,3 for our loss terms on the Machine
dataset. The reported blocks show an average of precision@10 across all steps of
active learning. x1 is the most effective term in our loss function as the absence of it
generates much worse performance. x2 and x3 have similar effects since they aim to
narrow between negative and positive samples.

mance, while the absence of the first term (i.e., x1 = 0) makes the model performance

very bad. This behavior is expected since the first term is the core part of the contrastive

loss. The second term is not effective as the first term for the Machine dataset, but still

increasing the value of x2 makes the performance better. The third term has a similar

effect as the second term. They both aim to narrow the positive and negative sample

rankings. The best performance is achieved when hyperparameters are equal to 1, or

x1 = 1, x2 = 0.5, and x3 = 0.5.

8.5 Conclusions

We investigate better and more effective ground truth generation by incorporating

recommendation systems into AI decision systems and human collaboration for entity-

based time-series data. We propose FLAL understanding the expertise and interest of a

human over queries to make feedback more eligible and accurate using active learning.

FLAL trains a personalized embedding mapper; uses features extraction and AI sys-

192

AI Decision Systems with Feedback Loop Active Learner Chapter 8

tem decisions to solve the cold-start problem of recommender systems. FLAL performs

better than competing baselines: random forest active learners, AI decision-based, and

random recommenders; and it converges fast. Furthermore, our ablation studies show

that the linear user embedding mapper is learning enough information and each term in

the objective function contributes to the result.

Future works: We want to investigate this problem using different datasets and our

proposed user simulation setting. We also desire to conduct human experiments to show

the effectiveness of FLAL in real settings. Furthermore, we will optimize the number of

recommendations instead of using it as the budget Q.

193

Chapter 9

Conclusions

The rapid growth of data generated in our digital world has necessitated the development

of effective techniques for extracting key information from the abundance of available

data. Representation learning using deep learning has emerged as a powerful approach to

uncovering meaningful features from data, enabling informed decision-making in various

domains. However, the lack of transparency and explainability in deep learning models

poses challenges in ensuring trust, accountability, and ethical use of AI systems.

Addressing the need for explainability and transparency, this dissertation focuses

on the transparent representation of learning on graphs. Graphs, or networks, provide

a versatile framework for modeling diverse applications and data types, incorporating

attributes and temporal dynamics. The dissertation explores the development of trans-

parent graph representation learning methods that not only encode graphs effectively but

also provide insights into the decision-making process of the models. By making deep

learning models more interpretable, we can enhance trust between humans and AI and

mitigate potential ethical concerns.

Furthermore, the dissertation emphasizes the importance of human-AI collaboration

and the robustness of group decisions in decision-making tasks. While AI algorithms

194

excel at processing large amounts of data and making quick decisions, human exper-

tise brings nuanced understanding and domain knowledge to enhance the accuracy and

effectiveness of AI systems. By leveraging the strengths of both humans and AI, we

can develop collaborative decision-making frameworks that mutually benefit from each

other’s capabilities.

The contributions of this dissertation encompass advancements in transparent graph

representation learning, including the development of explainable and fair models, as well

as exploring the dynamics of human and AI collaboration. By incorporating transparency

into graph representation learning, we aim to provide interpretable models that can

be trusted and understood by humans. Additionally, investigating the collaboration

between humans and AI contributes to the development of decision-making frameworks

that leverage the strengths of both entities. As the field continues to evolve, transparent

representation learning and human-AI collaboration will play crucial roles in harnessing

the power of data-driven decision-making for the benefit of society.

195

Bibliography

[1] M. Arriola, M. Kosan, Z. Huang, S. Sharma, and A. Singh, Evolving graph
autoencoders for multi-scale anomaly detection in attributed networks, On going
project (2023).

[2] M. Kosan, A. Silva, S. Medya, B. Uzzi, and A. Singh, Event detection on dynamic
graphs, arXiv preprint arXiv:2110.12148 (2021).

[3] Z. Huang, M. Kosan, S. Medya, S. Ranu, and A. Singh, Global counterfactual
explainer for graph neural networks, in Proceedings of the Sixteenth ACM
International Conference on Web Search and Data Mining, WSDM ’23,
pp. 141–149, 2023.

[4] M. Kosan, A. Silva, and A. Singh, Robust ante-hoc graph explainer using bilevel
optimization, arXiv preprint arXiv:2305.15745 (2023).

[5] Z. Huang, M. Kosan, A. Silva, and A. Singh, Link prediction without graph neural
networks, arXiv preprint arXiv:2305.13656 (2023).

[6] D. Kar, M. Kosan, D. Mandal, S. Medya, A. Silva, P. Dey, and S. Sanyal,
Feature-based individual fairness in k-clustering, in Proceedings of the 2023
International Conference on Autonomous Agents and Multiagent Systems,
AAMAS ’23, p. 2772–2774, 2023.

[7] M. Kosan, Z. Huang, F. Bullo, N. Friedkin, and A. Singh, Robustness of human
decision making under risk, On going project (2023).

[8] M. Kosan, L. He, S. Agrawal, H. Liu, and C. Chetia, Ai decision systems with
feedback loop active learner, pp. 44–58.

[9] Z. Li, D. Sun, R. Zhu, and Z. Lin, Detecting event-related changes in
organizational networks using optimized neural network models, PloS one (2017).

[10] K. Leetaru and P. A. Schrodt, Gdelt: Global data on events, location, and tone,
1979–2012, in ISA annual convention, 2013.

[11] D. M. Romero, B. Uzzi, and J. Kleinberg, Social networks under stress, in WWW,
2016.

196

[12] X. Lu and C. Brelsford, Network structure and community evolution on twitter:
human behavior change in response to the 2011 japanese earthquake and tsunami,
Scientific reports 4 (2014) 6773.

[13] T. N. Kipf and M. Welling, Semi-supervised classification with graph convolutional
networks, arXiv preprint arXiv:1609.02907 (2016).

[14] W. Hamilton, Z. Ying, and J. Leskovec, Inductive representation learning on large
graphs, Advances in neural information processing systems 30 (2017).

[15] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu, A comprehensive
survey on graph neural networks, arXiv preprint arXiv:1901.00596 (2019).

[16] S. Georgousis, M. P. Kenning, and X. Xie, Graph deep learning: State of the art
and challenges, IEEE Access (2021).

[17] M. Zhang, Z. Cui, M. Neumann, and Y. Chen, An end-to-end deep learning
architecture for graph classification, in AAAI, vol. 32, 2018.

[18] F. Errica, M. Podda, D. Bacciu, and A. Micheli, A fair comparison of graph
neural networks for graph classification, in ICLR, 2020.

[19] A. Nicolicioiu, I. Duta, and M. Leordeanu, Recurrent space-time graph neural
networks, vol. 32, pp. 12838–12850, 2019.

[20] Y. Seo, M. Defferrard, P. Vandergheynst, and X. Bresson, Structured sequence
modeling with graph convolutional recurrent networks, in NeurIPS, Springer, 2018.

[21] A. Pareja, G. Domeniconi, J. Chen, T. Ma, T. Suzumura, H. Kanezashi, T. Kaler,
and C. E. Leisersen, Evolvegcn: Evolving graph convolutional networks for
dynamic graphs, arXiv preprint arXiv:1902.10191 (2019).

[22] L. Zhao, Y. Song, C. Zhang, Y. Liu, P. Wang, T. Lin, M. Deng, and H. Li, T-gcn:
A temporal graph convolutional network for traffic prediction, IEEE ITS (2019).

[23] S. Deng, H. Rangwala, and Y. Ning, Learning dynamic context graphs for
predicting social events, in SIGKDD, 2019.

[24] T. Sakaki, M. Okazaki, and Y. Matsuo, Earthquake shakes twitter users: real-time
event detection by social sensors, in WWW, 2010.

[25] N. Ramakrishnan, P. Butler, S. Muthiah, N. Self, R. Khandpur, P. Saraf,
W. Wang, J. Cadena, A. Vullikanti, et. al., ’beating the news’ with embers:
forecasting civil unrest using open source indicators, in SIGKDD, 2014.

[26] F. Atefeh and W. Khreich, A survey of techniques for event detection in twitter,
Computational Intelligence 31 (2015), no. 1 132–164.

197

[27] S. Ranshous, S. Shen, D. Koutra, S. Harenberg, C. Faloutsos, and N. F.
Samatova, Anomaly detection in dynamic networks: a survey, WIREs
Computational Statistics (2015).

[28] S. Rayana and L. Akoglu, Less is more: Building selective anomaly ensembles
with application to event detection in temporal graphs, in SDM, 2015.

[29] L. Akoglu and C. Faloutsos, Event detection in time series of mobile
communication graphs, in Army science conference, 2010.

[30] L. Peel and A. Clauset, Detecting change points in the large-scale structure of
evolving networks, in AAAI, 2015.

[31] S. Staniford-Chen, S. Cheung, R. Crawford, M. Dilger, J. Frank, J. Hoagland,
K. Levitt, et. al., Grids-a graph based intrusion detection system for large
networks, in NISSC, 1996.

[32] F. Chen and D. B. Neill, Non-parametric scan statistics for event detection and
forecasting in heterogeneous social media graphs, in SIGKDD, 2014.

[33] P. Rozenshtein, A. Anagnostopoulos, A. Gionis, and N. Tatti, Event detection in
activity networks, in SIGKDD, 2014.

[34] W. Hu, Y. Yang, Z. Cheng, C. Yang, and X. Ren, Time-series event prediction
with evolutionary state graph, in WSDM, 2021.

[35] C. C. Aggarwal and K. Subbian, Event detection in social streams, in SDM, 2012.

[36] Y. Ning, R. Tao, C. K. Reddy, H. Rangwala, J. C. Starz, and N. Ramakrishnan,
Staple: Spatio-temporal precursor learning for event forecasting, in SDM, 2018.

[37] N. M. Kriege, F. D. Johansson, and C. Morris, A survey on graph kernels, Applied
Network Science 5 (2020), no. 1 1–42.

[38] N. Kriege and P. Mutzel, Subgraph matching kernels for attributed graphs, in
ICML, 2012.

[39] N. Shervashidze, S. Vishwanathan, T. Petri, K. Mehlhorn, and K. Borgwardt,
Efficient graphlet kernels for large graph comparison, in AISTATS, 2009.

[40] H. Kashima, K. Tsuda, and A. Inokuchi, Marginalized kernels between labeled
graphs, in ICML, 2003.

[41] R. Trivedi, M. Farajtabar, P. Biswal, and H. Zha, Dyrep: Learning
representations over dynamic graphs, in ICLR, 2019.

198

[42] G. H. Nguyen, J. B. Lee, R. A. Rossi, N. K. Ahmed, E. Koh, and S. Kim,
Continuous-time dynamic network embeddings, in Companion Proceedings of the
The Web Conference 2018, pp. 969–976, 2018.

[43] U. Singer, I. Guy, and K. Radinsky, Node embedding over temporal graphs, arXiv
preprint arXiv:1903.08889 (2019).

[44] Y. Lu, X. Wang, C. Shi, P. S. Yu, and Y. Ye, Temporal network embedding with
micro-and macro-dynamics, in CIKM, pp. 469–478, 2019.

[45] M. Gori, G. Monfardini, and F. Scarselli, A new model for learning in graph
domains, in IJNN, IEEE, 2005.

[46] D. K. Duvenaud, D. Maclaurein, J. Iparraguirre, R. Bombarell, T. Hirzel,
A. Aspuru-Guzik, and R. P. Adams, Convolutional networks on graphs for
learning molecular fingerprints, in NeurIPS, pp. 2224–2232, 2015.

[47] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Bengio,
Graph attention networks, arXiv preprint arXiv:1710.10903 (2017).

[48] J. Skarding, B. Gabrys, and K. Musial, Foundations and modelling of dynamic
networks using dynamic graph neural networks: A survey, arXiv preprint
arXiv:2005.07496 (2020).

[49] S. Yan, Y. Xiong, and D. Lin, Spatial temporal graph convolutional networks for
skeleton-based action recognition, in AAAI, 2018.

[50] S. Guo, Y. Lin, N. Feng, C. Song, and H. Wan, Attention based spatial-temporal
graph convolutional networks for traffic flow forecasting, in AAAI, 2019.

[51] A. Taheri, K. Gimpel, and T. Berger-Wolf, Learning to represent the evolution of
dynamic graphs with recurrent models, in WebConf, 2019.

[52] A. Sankar, Y. Wu, L. Gou, W. Zhang, and H. Yang, Dysat: Deep neural
representation learning on dynamic graphs via self-attention networks, in WSDM,
2020.

[53] M. Niepert, M. Ahmed, and K. Kutzkov, Learning convolutional neural networks
for graphs, in ICML, 2016.

[54] J. B. Lee, R. Rossi, and X. Kong, Graph classification using structural attention,
in SIGKDD, 2018.

[55] R. Ying, J. You, C. Morris, X. Ren, W. L. Hamilton, and J. Leskovec,
Hierarchical graph representation learning with differentiable pooling, arXiv
preprint arXiv:1806.08804 (2018).

199

[56] J. Li, Y. Rong, H. Cheng, H. Meng, W. Huang, and J. Huang, Semi-supervised
graph classification: A hierarchical graph perspective, in The Web Conference,
pp. 972–982, 2019.

[57] T. Fawcett, An introduction to roc analysis, Pattern recognition letters 27 (2006),
no. 8 861–874.

[58] Y. Ho and S. Wookey, The real-world-weight cross-entropy loss function:
Modeling the costs of mislabeling, IEEE Access 8 (2020) 4806–4813.

[59] S. Wang, Z. Chen, B. Liu, and S. Emery, Identifying search keywords for finding
relevant social media posts, in AAAI, 2016.

[60] T. Mikolov, K. Chen, G. Corrado, and J. Dean, Efficient estimation of word
representations in vector space, arXiv preprint arXiv:1301.3781 (2013).

[61] C. Bergmeir and J. M. Beńıtez, On the use of cross-validation for time series
predictor evaluation, Information Sciences 191 (2012) 192–213.

[62] S. Jain and B. C. Wallace, Attention is not explanation, arXiv preprint
arXiv:1902.10186 (2019).

[63] D. Pruthi, M. Gupta, B. Dhingra, G. Neubig, and Z. C. Lipton, Learning to
deceive with attention-based explanations, arXiv preprint arXiv:1909.07913 (2019).

[64] S. Wiegreffe and Y. Pinter, Attention is not not explanation, arXiv preprint
arXiv:1908.04626 (2019).

[65] R. Ying, D. Bourgeois, J. You, M. Zitnik, and J. Leskovec, Gnnexplainer:
Generating explanations for graph neural networks, Advances in neural
information processing systems 32 (2019) 9240.

[66] L. Van der Maaten and G. Hinton, Visualizing data using t-sne., JMLR 9 (2008),
no. 11.

[67] K. Julisch, Clustering intrusion detection alarms to support root cause analysis,
TISSEC (2003).

[68] T. Jéron, H. Marchand, S. Pinchinat, and M.-O. Cordier, Supervision patterns in
discrete event systems diagnosis, in WODES, 2006.

[69] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. 2016.

[70] Y.-L. Boureau, J. Ponce, and Y. LeCun, A theoretical analysis of feature pooling
in visual recognition, in ICML, pp. 111–118, 2010.

[71] J. Tang, J. Li, Z.-C. Gao, and J. Li, Rethinking graph neural networks for
anomaly detection, .

200

[72] A. K. McCallum, K. Nigam, J. Rennie, and K. Seymore, Automating the
construction of internet portals with machine learning, Information Retrieval 3
(2000) 127–163.

[73] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Bengio,
Graph attention networks, in ICLR, 2018.

[74] Y. Wang, B. Feng, G. Li, S. Li, L. Deng, Y. Xie, and Y. Ding, Gnnadvisor: An
efficient runtime system for gnn acceleration on gpus, in OSDI, 2021.

[75] Y. Wang, B. Feng, and Y. Ding, Qgtc: accelerating quantized graph neural
networks via gpu tensor core, in PPoPP, 2022.

[76] S. Nishad, S. Agarwal, A. Bhattacharya, and S. Ranu, Graphreach:
Position-aware graph neural network using reachability estimations, in IJCAI,
2021.

[77] M. Jiang, Z. Li, S. Zhang, S. Wang, X. Wang, Q. Yuan, and Z. Wei, Drug–target
affinity prediction using graph neural network and contact maps, RSC advances
10 (2020), no. 35 20701–20712.

[78] A. Mirhoseini, A. Goldie, M. Yazgan, J. W. J. Jiang, E. M. Songhori, S. Wang,
Y. Lee, E. Johnson, O. Pathak, S. Bae, A. Nazi, J. Pak, A. Tong, K. Srinivasa,
W. Hang, E. Tuncer, A. Babu, Q. V. Le, J. Laudon, R. Ho, R. Carpenter, and
J. Dean, Chip placement with deep reinforcement learning, CoRR
abs/2004.10746 (2020).

[79] S. Manchanda, A. Mittal, A. Dhawan, S. Medya, S. Ranu, and A. Singh, Gcomb:
Learning budget-constrained combinatorial algorithms over billion-sized graphs, in
NeurIPS, 2020.

[80] R. Bhattoo, S. Ranu, and N. Krishnan, Learning articulated rigid body dynamics
with lagrangian graph neural network, in NeurIPS, 2022.

[81] A. Thangamuthu, G. Kumar, S. Bishnoi, R. Bhattoo, N. M. A. Krishnan, and
S. Ranu, Unravelling the performance of physics-informed graph neural networks
for dynamical systems, in NeurIPS, 2022.

[82] M. Kosan, A. Silva, S. Medya, B. Uzzi, and A. Singh, Event detection on dynamic
graphs, arXiv preprint arXiv:2110.12148 (2021).

[83] S. Medya, M. Rasoolinejad, Y. Yang, and B. Uzzi, An exploratory study of stock
price movements from earnings calls, in WebConf, 2022.

[84] S. Gupta, S. Manchanda, S. Bedathur, and S. Ranu, TIGGER: scalable generative
modelling for temporal interaction graphs, in AAAI, 2022.

201

[85] K. M. Borgwardt, C. S. Ong, S. Schönauer, S. Vishwanathan, A. J. Smola, and
H.-P. Kriegel, Protein function prediction via graph kernels, Bioinformatics 21
(2005), no. suppl 1 i47–i56.

[86] S.-H. Yang, B. Long, A. Smola, N. Sadagopan, Z. Zheng, and H. Zha, Like like
alike: joint friendship and interest propagation in social networks, in WebConf,
2011.

[87] D. Luo, W. Cheng, D. Xu, W. Yu, B. Zong, H. Chen, and X. Zhang,
Parameterized explainer for graph neural network, in NeurIPS, 2020.

[88] M. Vu and M. T. Thai, Pgm-explainer: Probabilistic graphical model explanations
for graph neural networks, in NeurIPS, 2020.

[89] H. Yuan, J. Tang, X. Hu, and S. Ji, Xgnn: Towards model-level explanations of
graph neural networks, in SIGKDD, 2020.

[90] A. Lucic, M. A. Ter Hoeve, G. Tolomei, M. De Rijke, and F. Silvestri,
Cf-gnnexplainer: Counterfactual explanations for graph neural networks, in
AISTATS, 2022.

[91] M. Bajaj, L. Chu, Z. Y. Xue, J. Pei, L. Wang, P. C.-H. Lam, and Y. Zhang,
Robust counterfactual explanations on graph neural networks, in NeurIPS, vol. 34,
pp. 5644–5655, 2021.

[92] C. Abrate and F. Bonchi, Counterfactual graphs for explainable classification of
brain networks, in SIGKDD, 2021.

[93] J. Tan, S. Geng, Z. Fu, Y. Ge, S. Xu, Y. Li, and Y. Zhang, Learning and
evaluating graph neural network explanations based on counterfactual and factual
reasoning, in WebConf, pp. 1018–1027, 2022.

[94] P. Voigt and A. Von dem Bussche, The eu general data protection regulation
(gdpr), A Practical Guide, 1st Ed., Cham: Springer International Publishing 10
(2017), no. 3152676 10–5555.

[95] J. Xiong, Z. Xiong, K. Chen, H. Jiang, and M. Zheng, Graph neural networks for
automated de novo drug design, Drug Discovery Today 26 (2021), no. 6
1382–1393.

[96] J. Kazius, R. McGuire, and R. Bursi, Derivation and validation of toxicophores for
mutagenicity prediction, Journal of medicinal chemistry 48 (2005), no. 1 312–320.

[97] A. Sanfeliu and K.-S. Fu, A distance measure between attributed relational graphs
for pattern recognition, IEEE transactions on systems, man, and cybernetics
(1983), no. 3 353–362.

202

[98] K. Borgwardt, N. Schraudolph, and S. Vishwanathan, Fast computation of graph
kernels, in NeurIPS, 2006.

[99] F. Costa and K. De Grave, Fast neighborhood subgraph pairwise distance kernel,
in ICML, 2010.

[100] N. Shervashidze, P. Schweitzer, E. J. Van Leeuwen, K. Mehlhorn, and K. M.
Borgwardt, Weisfeiler-lehman graph kernels., Journal of Machine Learning
Research 12 (2011), no. 9.

[101] K. Rawal and H. Lakkaraju, Beyond individualized recourse: Interpretable and
interactive summaries of actionable recourses, in NeurIPS, 2020.

[102] Y. Liang and P. Zhao, Similarity search in graph databases: A multi-layered
indexing approach, in ICDE, pp. 783–794, 2017.

[103] R. Ranjan, S. Grover, S. Medya, V. Chakravarthy, Y. Sabharwal, and S. Ranu,
Greed: A neural framework for learning graph distance functions, in NeurIPS,
2022.

[104] R. Pemantle, Vertex-reinforced random walk, Probability Theory and Related
Fields 92 (1992), no. 1 117–136.

[105] B. Perozzi, R. Al-Rfou, and S. Skiena, Deepwalk: Online learning of social
representations, in SIGKDD, 2014.

[106] J. Klicpera, A. Bojchevski, and S. Günnemann, Predict then propagate: Graph
neural networks meet personalized pagerank, in ICLR, 2018.

[107] Z. Huang, A. Silva, and A. Singh, A broader picture of random-walk based graph
embedding, in SIGKDD, 2021.

[108] Z. Huang, A. Silva, and A. Singh, Pole: Polarized embedding for signed networks,
in WSDM, 2022.

[109] Q. Mei, J. Guo, and D. Radev, Divrank: the interplay of prestige and diversity in
information networks, in SIGKDD, 2010.

[110] D. Natarajan and S. Ranu, A scalable and generic framework to mine top-k
representative subgraph patterns, in ICDM, 2016.

[111] A. Metwally, D. Agrawal, and A. E. Abbadi, Efficient computation of frequent
and top-k elements in data streams, in ICDT, 2005.

[112] N. Wale and G. Karypis, Comparison of descriptor spaces for chemical compound
retrieval and classification, in ICDM, 2006.

203

[113] K. Riesen and H. Bunke, Iam graph database repository for graph based pattern
recognition and machine learning, in Joint IAPR International Workshops on
Statistical Techniques in Pattern Recognition (SPR) and Structural and Syntactic
Pattern Recognition (SSPR), pp. 287–297, Springer, 2008.

[114] P. D. Dobson and A. J. Doig, Distinguishing enzyme structures from non-enzymes
without alignments, Journal of molecular biology 330 (2003), no. 4 771–783.

[115] D. P. Kingma and J. Ba, Adam: A method for stochastic optimization,
arXiv:1412.6980 (2014).

[116] E. Sarubbi, P. F. Seneci, M. R. Angelastro, N. P. Peet, M. Denaro, and K. Islam,
Peptide aldehydes as inhibitors of hiv protease, FEBS letters 319 (1993), no. 3
253–256.

[117] T. Zhao, G. Liu, D. Wang, W. Yu, and M. Jiang, Learning from counterfactual
links for link prediction, in ICML, 2022.

[118] Y. Xie, C. Shi, H. Zhou, Y. Yang, W. Zhang, Y. Yu, and L. Li, Mars: Markov
molecular sampling for multi-objective drug discovery, arXiv preprint
arXiv:2103.10432 (2021).

[119] X. Kong, W. Huang, Z. Tan, and Y. Liu, Molecule generation by principal
subgraph mining and assembling, Advances in Neural Information Processing
Systems 35 (2022) 2550–2563.

[120] L. Faber, A. K. Moghaddam, and R. Wattenhofer, Contrastive graph neural
network explanation, in ICML Workshop on Graph Representation Learning and
Beyond, p. 28, International Conference on Machine Learning, 2020.

[121] G. Vilone and L. Longo, Explainable artificial intelligence: a systematic review,
arXiv preprint arXiv:2006.00093 (2020).

[122] H. Yuan, H. Yu, S. Gui, and S. Ji, Explainability in graph neural networks: A
taxonomic survey, IEEE Transactions on Pattern Analysis and Machine
Intelligence (2022).

[123] C. Rudin, Stop explaining black box machine learning models for high stakes
decisions and use interpretable models instead, Nature Machine Intelligence 1
(2019), no. 5 206–215.

[124] Z. Zhang, Q. Liu, H. Wang, C. Lu, and C. Lee, Protgnn: Towards self-explaining
graph neural networks, in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 36, pp. 9127–9135, 2022.

204

[125] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl, Neural
message passing for quantum chemistry, in International conference on machine
learning, pp. 1263–1272, PMLR, 2017.

[126] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, How powerful are graph neural
networks?, in ICLR, 2018.

[127] H. Gao and S. Ji, Graph u-nets, in international conference on machine learning,
pp. 2083–2092, PMLR, 2019.

[128] D. Mesquita, A. Souza, and S. Kaski, Rethinking pooling in graph neural networks,
Advances in Neural Information Processing Systems 33 (2020) 2220–2231.

[129] J. Baek, M. Kang, and S. J. Hwang, Accurate learning of graph representations
with graph multiset pooling, in ICLR, 2021.

[130] C. Molnar, Interpretable machine learning. Lulu. com, 2020.

[131] H. Yuan, H. Yu, J. Wang, K. Li, and S. Ji, On explainability of graph neural
networks via subgraph explorations, in International Conference on Machine
Learning, pp. 12241–12252, PMLR, 2021.

[132] Y. Xie, S. Katariya, X. Tang, E. Huang, N. Rao, K. Subbian, and S. Ji,
Task-agnostic graph explanations, arXiv preprint arXiv:2202.08335 (2022).

[133] J. Yu, T. Xu, Y. Rong, Y. Bian, J. Huang, and R. He, Graph information
bottleneck for subgraph recognition, in International Conference on Learning
Representations, 2021.

[134] B. Colson, P. Marcotte, and G. Savard, An overview of bilevel optimization,
Annals of operations research 153 (2007), no. 1 235–256.

[135] L. Franceschi, P. Frasconi, S. Salzo, R. Grazzi, and M. Pontil, Bilevel
programming for hyperparameter optimization and meta-learning, in International
Conference on Machine Learning, pp. 1568–1577, PMLR, 2018.

[136] K. Huang and M. Zitnik, Graph meta learning via local subgraphs, Advances in
Neural Information Processing Systems 33 (2020).

[137] G. Wan and H. Schweitzer, Edge sparsification for graphs via meta-learning, in
2021 IEEE 37th International Conference on Data Engineering (ICDE),
pp. 2733–2738, IEEE, 2021.

[138] Y. Zhu, W. Xu, J. Zhang, Q. Liu, S. Wu, and L. Wang, Deep graph structure
learning for robust representations: A survey, arXiv preprint arXiv:2103.03036
(2021).

205

[139] L. Franceschi, M. Niepert, M. Pontil, and X. He, Learning discrete structures for
graph neural networks, in International conference on machine learning,
pp. 1972–1982, PMLR, 2019.

[140] Q. Sun, J. Li, H. Peng, J. Wu, X. Fu, C. Ji, and S. Y. Philip, Graph structure
learning with variational information bottleneck, in Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 36, pp. 4165–4174, 2022.

[141] H. Zhou, A. Vani, H. Larochelle, and A. Courville, Fortuitous forgetting in
connectionist networks, arXiv preprint arXiv:2202.00155 (2022).

[142] I. Alabdulmohsin, H. Maennel, and D. Keysers, The impact of reinitialization on
generalization in convolutional neural networks, arXiv preprint arXiv:2109.00267
(2021).

[143] E. Grefenstette, B. Amos, D. Yarats, P. M. Htut, A. Molchanov, F. Meier,
D. Kiela, K. Cho, and S. Chintala, Generalized inner loop meta-learning, arXiv
preprint arXiv:1910.01727 (2019).

[144] P. Yanardag and S. Vishwanathan, Deep graph kernels, in SIGKDD,
pp. 1365–1374, 2015.

[145] T. M. Mitchell and T. M. Mitchell, Machine learning, vol. 1. McGraw-hill New
York, 1997.

[146] M. Zitnik, R. Sosič, M. W. Feldman, and J. Leskovec, Evolution of resilience in
protein interactomes across the tree of life, Proceedings of the National Academy
of Sciences 116 (2019), no. 10 4426–4433.

[147] K. K. Yang, Z. Wu, C. N. Bedbrook, and F. H. Arnold, Learned protein
embeddings for machine learning, Bioinformatics 34 (2018), no. 15 2642–2648.

[148] P. A. Papp, K. Martinkus, L. Faber, and R. Wattenhofer, Dropgnn: random
dropouts increase the expressiveness of graph neural networks, Advances in Neural
Information Processing Systems 34 (2021).

[149] C. Agarwal, O. Queen, H. Lakkaraju, and M. Zitnik, Evaluating explainability for
graph neural networks, Scientific Data 10 (2023), no. 1 144.

[150] A. Antoniou, H. Edwards, and A. Storkey, How to train your maml, arXiv
preprint arXiv:1810.09502 (2018).

[151] J. Yang, K. Ji, and Y. Liang, Provably faster algorithms for bilevel optimization,
Advances in Neural Information Processing Systems 34 (2021) 13670–13682.

[152] J. Tang, J. Zhang, L. Yao, J. Li, L. Zhang, and Z. Su, Arnetminer: extraction and
mining of academic social networks, in SIGKDD, 2008.

206

[153] C. Li, J. Ma, X. Guo, and Q. Mei, Deepcas: An end-to-end predictor of
information cascades, in WebConf, 2017.

[154] J. Qiu, J. Tang, H. Ma, Y. Dong, K. Wang, and J. Tang, Deepinf: Social
influence prediction with deep learning, in SIGKDD, 2018.

[155] M. Jamali and M. Ester, Trustwalker: a random walk model for combining
trust-based and item-based recommendation, in SIGKDD, 2009.

[156] F. Monti, M. Bronstein, and X. Bresson, Geometric matrix completion with
recurrent multi-graph neural networks, in NeurIPS, 2017.

[157] X. Wang, X. He, Y. Cao, M. Liu, and T.-S. Chua, Kgat: Knowledge graph
attention network for recommendation, in SIGKDD, 2019.

[158] H. Sun, B. Dhingra, M. Zaheer, K. Mazaitis, R. Salakhutdinov, and W. Cohen,
Open domain question answering using early fusion of knowledge bases and text,
in EMNLP, 2018.

[159] S. K. Sahu, F. Christopoulou, M. Miwa, and S. Ananiadou, Inter-sentence relation
extraction with document-level graph convolutional neural network, in ACL, 2019.

[160] L. Yao, C. Mao, and Y. Luo, Graph convolutional networks for text classification,
in AAAI, 2019.

[161] A. Sanchez-Gonzalez, N. Heess, J. T. Springenberg, J. Merel, M. Riedmiller,
R. Hadsell, and P. Battaglia, Graph networks as learnable physics engines for
inference and control, in ICML, 2018.

[162] B. Ivanovic and M. Pavone, The trajectron: Probabilistic multi-agent trajectory
modeling with dynamic spatiotemporal graphs, in ICCV, 2019.

[163] A. L. da Silva, F. Kocayusufoglu, S. Jafarpour, F. Bullo, A. Swami, and A. Singh,
Combining physics and machine learning for network flow estimation, in ICLR,
2020.

[164] L. Lü and T. Zhou, Link prediction in complex networks: A survey, Physica A:
statistical mechanics and its applications 390 (2011), no. 6 1150–1170.

[165] V. Mart́ınez, F. Berzal, and J.-C. Cubero, A survey of link prediction in complex
networks, ACM computing surveys (CSUR) 49 (2016), no. 4 1–33.

[166] Y. Qi, Z. Bar-Joseph, and J. Klein-Seetharaman, Evaluation of different biological
data and computational classification methods for use in protein interaction
prediction, Proteins: Structure, Function, and Bioinformatics 63 (2006), no. 3
490–500.

207

[167] D. Liben-Nowell and J. Kleinberg, The link-prediction problem for social
networks, Journal of the American society for information science and technology
58 (2007), no. 7 1019–1031.

[168] Y. Koren, R. Bell, and C. Volinsky, Matrix factorization techniques for
recommender systems, Computer 42 (2009), no. 8 30–37.

[169] T. Martin, B. Ball, and M. E. Newman, Structural inference for uncertain
networks, Physical Review E 93 (2016), no. 1 012306.

[170] A. Bahulkar, B. K. Szymanski, N. O. Baycik, and T. C. Sharkey, Community
detection with edge augmentation in criminal networks, in ASONAM, 2018.

[171] B. Wilder, E. Ewing, B. Dilkina, and M. Tambe, End to end learning and
optimization on graphs, NeurIPS (2019).

[172] F. Wu, A. Souza, T. Zhang, C. Fifty, T. Yu, and K. Weinberger, Simplifying
graph convolutional networks, in ICML, 2019.

[173] C. Zheng, B. Zong, W. Cheng, D. Song, J. Ni, W. Yu, H. Chen, and W. Wang,
Robust graph representation learning via neural sparsification, in International
Conference on Machine Learning, pp. 11458–11468, PMLR, 2020.

[174] C. Morris, M. Ritzert, M. Fey, W. L. Hamilton, J. E. Lenssen, G. Rattan, and
M. Grohe, Weisfeiler and leman go neural: Higher-order graph neural networks,
in AAAI, 2019.

[175] M. Zhang and Y. Chen, Link prediction based on graph neural networks, in
NeurIPS, 2018.

[176] S. Yun, S. Kim, J. Lee, J. Kang, and H. J. Kim, Neo-gnns: Neighborhood
overlap-aware graph neural networks for link prediction, in NeurIPS, 2021.

[177] L. Pan, C. Shi, and I. Dokmanić, Neural link prediction with walk pooling, in
ICLR, 2022.

[178] M. E. Newman, Clustering and preferential attachment in growing networks,
Physical review E 64 (2001), no. 2 025102.

[179] L. A. Adamic and E. Adar, Friends and neighbors on the web, Social networks 25
(2003), no. 3 211–230.

[180] A.-L. Barabási, H. Jeong, Z. Néda, E. Ravasz, A. Schubert, and T. Vicsek,
Evolution of the social network of scientific collaborations, Physica A: Statistical
mechanics and its applications 311 (2002), no. 3-4 590–614.

208

[181] Q. Huang, H. He, A. Singh, S.-N. Lim, and A. R. Benson, Combining label
propagation and simple models out-performs graph neural networks, in ICLR,
2021.

[182] Q. Li, Z. Han, and X.-M. Wu, Deeper insights into graph convolutional networks
for semi-supervised learning, in AAAI, 2018.

[183] J. Ma, B. Chang, X. Zhang, and Q. Mei, Copulagnn: towards integrating
representational and correlational roles of graphs in graph neural networks, in
ICLR, 2020.

[184] T. N. Kipf and M. Welling, Variational graph auto-encoders, arXiv preprint
arXiv:1611.07308 (2016).

[185] I. Chami, Z. Ying, C. Ré, and J. Leskovec, Hyperbolic graph convolutional neural
networks, in NeurIPS, 2019.

[186] Y. Zhang, X. Wang, C. Shi, N. Liu, and G. Song, Lorentzian graph convolutional
networks, in WebConf, 2021.

[187] L. Cai, J. Li, J. Wang, and S. Ji, Line graph neural networks for link prediction,
IEEE TPAMI (2021).

[188] Z. Yan, T. Ma, L. Gao, Z. Tang, and C. Chen, Link prediction with persistent
homology: An interactive view, in ICML, 2021.

[189] Z. Zhu, Z. Zhang, L.-P. Xhonneux, and J. Tang, Neural bellman-ford networks: A
general graph neural network framework for link prediction, in NeurIPS, 2021.

[190] Y. Chen, Y. R. Gel, and H. V. Poor, Bscnets: Block simplicial complex neural
networks, in AAAI, 2022.

[191] J. Davis and M. Goadrich, The relationship between precision-recall and roc
curves, in ICML, 2006.

[192] T. Saito and M. Rehmsmeier, The precision-recall plot is more informative than
the roc plot when evaluating binary classifiers on imbalanced datasets, PloS one
10 (2015), no. 3 e0118432.

[193] W. Hu, M. Fey, M. Zitnik, Y. Dong, H. Ren, B. Liu, M. Catasta, and J. Leskovec,
Open graph benchmark: Datasets for machine learning on graphs, in NeurIPS,
2020.

[194] A. Bordes, N. Usunier, A. Garćıa-Durán, J. Weston, and O. Yakhnenko,
Translating embeddings for modeling multi-relational data, in NeurIPS, 2013.

209

[195] M. Ou, P. Cui, J. Pei, Z. Zhang, and W. Zhu, Asymmetric transitivity preserving
graph embedding, in SIGKDD, pp. 1105–1114, 2016.

[196] Z. Zhang, P. Cui, X. Wang, J. Pei, X. Yao, and W. Zhu, Arbitrary-order
proximity preserved network embedding, in SIGKDD, 2018.

[197] Z. Huang, A. Silva, and A. Singh, A broader picture of random-walk based graph
embedding, in SIGKDD, 2021.

[198] B. Yang, S. W.-t. Yih, X. He, J. Gao, and L. Deng, Embedding entities and
relations for learning and inference in knowledge bases, in ICLR, 2015.

[199] Z. Sun, Z.-H. Deng, J.-Y. Nie, and J. Tang, Rotate: Knowledge graph embedding
by relational rotation in complex space, in ICLR, 2018.

[200] H. Schütze, C. D. Manning, and P. Raghavan, Introduction to information
retrieval, vol. 39. Cambridge University Press Cambridge, 2008.

[201] X. Chen, X. Cheng, and S. Mallat, Unsupervised deep haar scattering on graphs,
in NeurIPS, 2014.

[202] K. Sohn, Improved deep metric learning with multi-class n-pair loss objective, in
NeurIPS, 2016.

[203] B. McFee and G. Lanckriet, Metric learning to rank, in ICML, 2010.

[204] F. Cakir, K. He, X. Xia, B. Kulis, and S. Sclaroff, Deep metric learning to rank,
in CVPR, 2019.

[205] J. Revaud, J. Almazán, R. S. Rezende, and C. R. d. Souza, Learning with average
precision: Training image retrieval with a listwise loss, in ICCV, 2019.

[206] X. Wang, Y. Hua, E. Kodirov, G. Hu, R. Garnier, and N. M. Robertson, Ranked
list loss for deep metric learning, in ICCV, 2019.

[207] Y. Freund, R. Iyer, R. E. Schapire, and Y. Singer, An efficient boosting algorithm
for combining preferences, JMLR 4 (2003), no. Nov 933–969.

[208] F. Xia, T.-Y. Liu, J. Wang, W. Zhang, and H. Li, Listwise approach to learning to
rank: theory and algorithm, in ICML, 2008.

[209] S. Bruch, An alternative cross entropy loss for learning-to-rank, in WebConf, 2021.

[210] L. Cai and W. Y. Wang, Kbgan: Adversarial learning for knowledge graph
embeddings, in NAACL, 2018.

[211] P. Wang, S. Li, and R. Pan, Incorporating gan for negative sampling in knowledge
representation learning, in AAAI, 2018.

210

[212] V. Satuluri and S. Parthasarathy, Bayesian locality sensitive hashing for fast
similarity search, in VLDB, 2012.

[213] D. C. Anastasiu and G. Karypis, L2ap: Fast cosine similarity search with prefix
l-2 norm bounds, in ICDE, 2014.

[214] Z. Liu, D. Lai, C. Li, and M. Wang, Feature fusion based subgraph classification
for link prediction, in CIKM, 2020.

[215] C. L. Giles, K. D. Bollacker, and S. Lawrence, Citeseer: An automatic citation
indexing system, in ACM conference on Digital libraries, 1998.

[216] P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Galligher, and T. Eliassi-Rad,
Collective classification in network data, AI magazine 29 (2008), no. 3 93–93.

[217] J. McAuley, C. Targett, Q. Shi, and A. Van Den Hengel, Image-based
recommendations on styles and substitutes, in SIGIR, 2015.

[218] M. Fey and J. E. Lenssen, Fast graph representation learning with PyTorch
Geometric, in ICLR Workshop on Representation Learning on Graphs and
Manifolds, 2019.

[219] Z. Yang, W. Cohen, and R. Salakhudinov, Revisiting semi-supervised learning
with graph embeddings, in ICML, 2016.

[220] O. Shchur, M. Mumme, A. Bojchevski, and S. Günnemann, Pitfalls of graph
neural network evaluation, arXiv preprint arXiv:1811.05868 (2018).

[221] T. Zhou, L. Lü, and Y.-C. Zhang, Predicting missing links via local information,
The European Physical Journal B 71 (2009), no. 4 623–630.

[222] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,
Z. Lin, N. Gimelshein, L. Antiga, et. al., Pytorch: An imperative style,
high-performance deep learning library, in NeurIPS, 2019.

[223] C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds, N. Hamilton, and
G. Hullender, Learning to rank using gradient descent, in ICML, 2005.

[224] L. Katz, A new status index derived from sociometric analysis, Psychometrika 18
(1953), no. 1 39–43.

[225] L. Page, S. Brin, R. Motwani, and T. Winograd, The pagerank citation ranking:
Bringing order to the web., tech. rep., Stanford InfoLab, 1999.

[226] G. Jeh and J. Widom, Simrank: a measure of structural-context similarity, in
SIGKDD, 2002.

211

[227] A. Grover and J. Leskovec, node2vec: Scalable feature learning for networks, in
SIGKDD, pp. 855–864, 2016.

[228] J. Qiu, Y. Dong, H. Ma, J. Li, K. Wang, and J. Tang, Network embedding as
matrix factorization: Unifying deepwalk, line, pte, and node2vec, in WSDM, 2018.

[229] J.-C. Delvenne, S. N. Yaliraki, and M. Barahona, Stability of graph communities
across time scales, PNAS 107 (2010), no. 29 12755–12760.

[230] Z. Huang, A. Silva, and A. Singh, Pole: Polarized embedding for signed networks,
in WSDM, 2022.

[231] J. You, R. Ying, X. Ren, W. Hamilton, and J. Leskovec, Graphrnn: Generating
realistic graphs with deep auto-regressive models, in International conference on
machine learning, pp. 5708–5717, PMLR, 2018.

[232] Y. Li, O. Vinyals, C. Dyer, R. Pascanu, and P. Battaglia, Learning deep
generative models of graphs, in ICML, 2018.

[233] A. Grover, A. Zweig, and S. Ermon, Graphite: Iterative generative modeling of
graphs, in ICML, 2019.

[234] T. Zhao, G. Liu, S. Günnemann, and M. Jiang, Graph data augmentation for
graph machine learning: A survey, arXiv preprint arXiv:2202.08871 (2022).

[235] T. Zhao, Y. Liu, L. Neves, O. Woodford, M. Jiang, and N. Shah, Data
augmentation for graph neural networks, in AAAI, 2021.

[236] Y. Chen, L. Wu, and M. Zaki, Iterative deep graph learning for graph neural
networks: Better and robust node embeddings, Advances in Neural Information
Processing Systems 33 (2020) 19314–19326.

[237] Y. Yang, L. Wu, R. Hong, K. Zhang, and M. Wang, Enhanced graph learning for
collaborative filtering via mutual information maximization, in SIGIR, 2021.

[238] A. Singh, Q. Huang, S. L. Huang, O. Bhalerao, H. He, S.-N. Lim, and A. R.
Benson, Edge proposal sets for link prediction, arXiv preprint arXiv:2106.15810
(2021).

[239] J. Angwin, J. Larson, S. Mattu, and L. Kirchner, Machine bias, ProPublica, May
23 (2016), no. 2016 139–159.

[240] A. Chouldechova, Fair prediction with disparate impact: A study of bias in
recidivism prediction instruments, Big data 5 (2017), no. 2 153–163.

[241] A. Fuster, P. Goldsmith-Pinkham, T. Ramadorai, and A. Walther, Predictably
unequal? the effects of machine learning on credit markets, The Effects of
Machine Learning on Credit Markets (October 1, 2020) (2020).

212

[242] Z. Obermeyer, B. Powers, C. Vogeli, and S. Mullainathan, Dissecting racial bias
in an algorithm used to manage the health of populations, Science 366 (2019),
no. 6464 447–453.

[243] M. Feldman, S. A. Friedler, J. Moeller, C. Scheidegger, and
S. Venkatasubramanian, Certifying and removing disparate impact, in proceedings
of the 21th ACM SIGKDD international conference on knowledge discovery and
data mining, pp. 259–268, 2015.

[244] A. Agarwal, A. Beygelzimer, M. Dudik, J. Langford, and H. Wallach, A
reductions approach to fair classification, in International Conference on Machine
Learning, pp. 60–69, PMLR, 2018.

[245] M. Abbasi, S. A. Friedler, C. Scheidegger, and S. Venkatasubramanian, Fairness
in representation: quantifying stereotyping as a representational harm, in
Proceedings of the 2019 SIAM International Conference on Data Mining,
pp. 801–809, 2019.

[246] C. Jung, S. Kannan, and N. Lutz, A center in your neighborhood: Fairness in
facility location, arXiv preprint arXiv:1908.09041 (2019).

[247] F. Chierichetti, R. Kumar, S. Lattanzi, and S. Vassilvitskii, Fair clustering
through fairlets, in Proceedings of the 31st International Conference on Neural
Information Processing Systems, pp. 5036–5044, 2017.

[248] A. Backurs, P. Indyk, K. Onak, B. Schieber, A. Vakilian, and T. Wagner, Scalable
fair clustering, in International Conference on Machine Learning, pp. 405–413,
PMLR, 2019.

[249] S. Bera, D. Chakrabarty, N. Flores, and M. Negahbani, Fair algorithms for
clustering, in Advances in Neural Information Processing Systems, pp. 4955–4966,
2019.

[250] S. Ahmadian, A. Epasto, R. Kumar, and M. Mahdian, Clustering without
over-representation, in Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pp. 267–275, 2019.

[251] S. Mahabadi and A. Vakilian, Individual fairness for k-clustering, in International
Conference on Machine Learning, pp. 6586–6596, PMLR, 2020.

[252] D. Chakrabarty and M. Negahbani, Better algorithms for individually fair
k-clustering, NeurIPS (2021).

[253] C. Dwork, M. Hardt, T. Pitassi, O. Reingold, and R. Zemel, Fairness through
awareness, in Proceedings of the 3rd innovations in theoretical computer science
conference, pp. 214–226, 2012.

213

[254] J. Yan, N. Liu, G. Wang, W. Zhang, Y. Jiang, and Z. Chen, How much can
behavioral targeting help online advertising?, in Proceedings of the 18th
international conference on World wide web, pp. 261–270, 2009.

[255] I. O. Bercea, M. Groß, S. Khuller, A. Kumar, C. Rösner, D. R. Schmidt, and
M. Schmidt, On the cost of essentially fair clusterings., in APPROX-RANDOM,
2019.

[256] C. Rösner and M. Schmidt, Privacy preserving clustering with constraints, in 45th
International Colloquium on Automata, Languages, and Programming (ICALP
2018), Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.

[257] M. Schmidt, C. Schwiegelshohn, and C. Sohler, Fair coresets and streaming
algorithms for fair k-means clustering, arXiv preprint arXiv:1812.10854 (2018).

[258] L. Huang, S. Jiang, and N. Vishnoi, Coresets for clustering with fairness
constraints, Advances in Neural Information Processing Systems 32 (2019)
7589–7600.

[259] A. Vakilian and M. Yalçıner, Improved approximation algorithms for individually
fair clustering, arXiv preprint arXiv:2106.14043 (2021).

[260] R. Chhaya, A. Dasgupta, J. Choudhari, and S. Shit, On coresets for fair
regression and individually fair clustering., in AISTATS, pp. 9603–9625, 2022.

[261] D. Chakrabarti, J. P. Dickerson, S. A. Esmaeili, A. Srinivasan, and L. Tsepenekas,
A new notion of individually fair clustering: α-equitable k-center, in International
Conference on Artificial Intelligence and Statistics, pp. 6387–6408, PMLR, 2022.

[262] B. Brubach, D. Chakrabarti, J. P. Dickerson, A. Srinivasan, and L. Tsepenekas,
Fairness, semi-supervised learning, and more: A general framework for clustering
with stochastic pairwise constraints, in Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 35, pp. 6822–6830, 2021.

[263] M. Kleindessner, P. Awasthi, and J. Morgenstern, A notion of individual fairness
for clustering, arXiv preprint arXiv:2006.04960 (2020).

[264] M. Ghadiri, S. Samadi, and S. Vempala, Socially fair k-means clustering, in
Proceedings of the 2021 ACM Conference on Fairness, Accountability, and
Transparency, pp. 438–448, 2021.

[265] M. Kleindessner, P. Awasthi, and J. Morgenstern, Fair k-center clustering for
data summarization, in International Conference on Machine Learning,
pp. 3448–3457, 2019.

214

[266] S. Samadi, U. Tantipongpipat, J. Morgenstern, M. Singh, and S. Vempala, The
price of fair pca: one extra dimension, in Proceedings of the 32nd International
Conference on Neural Information Processing Systems, pp. 10999–11010, 2018.

[267] M. Kleindessner, S. Samadi, P. Awasthi, and J. Morgenstern, Guarantees for
spectral clustering with fairness constraints, in International Conference on
Machine Learning, pp. 3458–3467, 2019.

[268] M. Donini, L. Oneto, S. Ben-David, J. Shawe-Taylor, and M. Pontil, Empirical
risk minimization under fairness constraints, in Proceedings of the 32nd
International Conference on Neural Information Processing Systems,
pp. 2796–2806, 2018.

[269] L. E. Celis, L. Huang, V. Keswani, and N. K. Vishnoi, Classification with fairness
constraints: A meta-algorithm with provable guarantees, in Proceedings of the
conference on fairness, accountability, and transparency, pp. 319–328, 2019.

[270] A. Chouldechova and A. Roth, The frontiers of fairness in machine learning,
arXiv preprint arXiv:1810.08810 (2018).

[271] A. D. Selbst, D. Boyd, S. A. Friedler, S. Venkatasubramanian, and J. Vertesi,
Fairness and abstraction in sociotechnical systems, in Proceedings of the
conference on fairness, accountability, and transparency, pp. 59–68, 2019.

[272] N. Mehrabi, F. Morstatter, N. Saxena, K. Lerman, and A. Galstyan, A survey on
bias and fairness in machine learning, ACM Computing Surveys (CSUR) 54
(2021), no. 6 1–35.

[273] C. Bazgan, Z. Tuza, and D. Vanderpooten, The satisfactory partition problem,
Discrete applied mathematics 154 (2006), no. 8 1236–1245.

[274] R. Kohavi et. al., Scaling up the accuracy of naive-bayes classifiers: A
decision-tree hybrid., in Kdd, vol. 96, pp. 202–207, 1996.

[275] S. Moro, P. Cortez, and P. Rita, A data-driven approach to predict the success of
bank telemarketing, Decision Support Systems 62 (2014) 22–31.

[276] D. S. Hochbaum and D. B. Shmoys, A best possible heuristic for the k-center
problem, Mathematics of operations research 10 (1985), no. 2 180–184.

[277] T. F. Gonzalez, Clustering to minimize the maximum intercluster distance,
Theoretical computer science 38 (1985) 293–306.

[278] D. Kai-Ineman and A. Tversky, Prospect theory: An analysis of decision under
risk, Econometrica 47 (1979), no. 2 363–391.

215

[279] A. Tversky and D. Kahneman, Advances in prospect theory: Cumulative
representation of uncertainty, Journal of Risk and uncertainty 5 (1992) 297–323.

[280] K. D. Edwards, Prospect theory: A literature review, International review of
financial analysis 5 (1996), no. 1 19–38.

[281] N. Barberis, M. Huang, and T. Santos, Prospect theory and asset prices, The
quarterly journal of economics 116 (2001), no. 1 1–53.

[282] N. C. Barberis, Thirty years of prospect theory in economics: A review and
assessment, Journal of Economic Perspectives 27 (2013), no. 1 173–196.

[283] J. Mercer, Prospect theory and political science, Annu. Rev. Polit. Sci. 8 (2005)
1–21.

[284] R. Y. Hirokawa and M. S. Poole, Communication and group decision making,
vol. 77. Sage, 1996.

[285] D. Black, On the rationale of group decision-making, Journal of political economy
56 (1948), no. 1 23–34.

[286] S. Kiesler and L. Sproull, Group decision making and communication technology,
Organizational behavior and human decision processes 52 (1992), no. 1 96–123.

[287] F. Tschan, N. K. Semmer, A. Gurtner, L. Bizzari, M. Spychiger, M. Breuer, and
S. U. Marsch, Explicit reasoning, confirmation bias, and illusory transactive
memory: A simulation study of group medical decision making, Small Group
Research 40 (2009), no. 3 271–300.

[288] D. Levi and D. A. Askay, Group dynamics for teams. Sage Publications, 2020.

[289] M. G. Haselton, D. Nettle, and P. W. Andrews, The evolution of cognitive bias,
The handbook of evolutionary psychology (2015) 724–746.

[290] D. Kahneman and A. Tversky, Subjective probability: A judgment of
representativeness, Cognitive psychology 3 (1972), no. 3 430–454.

[291] D. M. Wegner, T. Giuliano, and P. T. Hertel, Cognitive interdependence in close
relationships, Compatible and incompatible relationships (1985) 253–276.

[292] H. P. Stott, Cumulative prospect theory’s functional menagerie, Journal of Risk
and uncertainty 32 (2006) 101–130.

[293] D. Prelec, The probability weighting function, Econometrica (1998) 497–527.

[294] H. Nilsson, J. Rieskamp, and E.-J. Wagenmakers, Hierarchical bayesian parameter
estimation for cumulative prospect theory, Journal of Mathematical Psychology 55
(2011), no. 1 84–93.

216

[295] P. Dixit and S. Silakari, Deep learning algorithms for cybersecurity applications:
A technological and status review, Computer Science Review 39 (2021) 100317.

[296] W. Jiang, H. Li, S. Liu, X. Luo, and R. Lu, Poisoning and evasion attacks against
deep learning algorithms in autonomous vehicles, IEEE transactions on vehicular
technology 69 (2020), no. 4 4439–4449.

[297] M. Castro, B. Liskov, et. al., Practical byzantine fault tolerance, in OsDI, vol. 99,
pp. 173–186, 1999.

[298] B. Ivanovic, E. Schmerling, K. Leung, and M. Pavone, Generative modeling of
multimodal multi-human behavior, in 2018 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pp. 3088–3095, IEEE, 2018.

[299] Y. Ren, V. Cedeno-Mieles, Z. Hu, X. Deng, A. Adiga, C. Barrett, S. Ekanayake,
B. J. Goode, G. Korkmaz, C. J. Kuhlman, et. al., Generative modeling of human
behavior and social interactions using abductive analysis, in 2018 IEEE/ACM
International Conference on Advances in Social Networks Analysis and Mining
(ASONAM), pp. 413–420, IEEE, 2018.

[300] J. S. Park, J. C. O’Brien, C. J. Cai, M. R. Morris, P. Liang, and M. S. Bernstein,
Generative agents: Interactive simulacra of human behavior, arXiv preprint
arXiv:2304.03442 (2023).

[301] T. Pearce, T. Rashid, A. Kanervisto, D. Bignell, M. Sun, R. Georgescu, S. V.
Macua, S. Z. Tan, I. Momennejad, K. Hofmann, et. al., Imitating human
behaviour with diffusion models, arXiv preprint arXiv:2301.10677 (2023).

[302] D. P. Kingma and M. Welling, Auto-encoding variational bayes, arXiv preprint
arXiv:1312.6114 (2013).

[303] O. Askarisichani, E. Y. Huang, K. S. Sato, N. E. Friedkin, F. Bullo, and A. K.
Singh, Expertise and confidence explain how social influence evolves along
intellective tasks, arXiv preprint arXiv:2011.07168 (2020).

[304] D. Jarrett, A. Hüyük, and M. van der Schaar, Online decision mediation, in
Advances in Neural Information Processing Systems (A. H. Oh, A. Agarwal,
D. Belgrave, and K. Cho, eds.), 2022.

[305] M.-A. Charusaie, H. Mozannar, D. Sontag, and S. Samadi, Sample efficient
learning of predictors that complement humans, in International Conference on
Machine Learning, pp. 2972–3005, PMLR, 2022.

[306] D. Asmar and M. Kochenderfer, Collaborative decision making using action
suggestions, in Advances in Neural Information Processing Systems (A. H. Oh,
A. Agarwal, D. Belgrave, and K. Cho, eds.), 2022.

217

[307] Q. Li, Z. Peng, H. Wu, L. Feng, and B. Zhou, Human-AI shared control via policy
dissection, in Thirty-Sixth Conference on Neural Information Processing Systems,
2022.

[308] M. Sclar, G. Neubig, and Y. Bisk, Symmetric machine theory of mind, in
International Conference on Machine Learning, pp. 19450–19466, PMLR, 2022.

[309] K. Zheng, S. Cai, H. R. Chua, W. Wang, K. Y. Ngiam, and B. C. Ooi, Tracer: A
framework for facilitating accurate and interpretable analytics for high stakes
applications, in Proceedings of the 2020 ACM SIGMOD International Conference
on Management of Data, pp. 1747–1763, 2020.

[310] M. Kosan, Z. Huang, S. Medya, S. Ranu, and A. Singh, Global counterfactual
explainer for graph neural networks, arXiv preprint arXiv:2210.11695 (2022).

[311] C. Chen, A. Seff, A. Kornhauser, and J. Xiao, Deepdriving: Learning affordance
for direct perception in autonomous driving, in Proceedings of the IEEE
international conference on computer vision, pp. 2722–2730, 2015.

[312] T. Stevens, Knowledge in the grey zone: Ai and cybersecurity, Digital War 1
(2020), no. 1 164–170.

[313] V. Lai, C. Chen, Q. V. Liao, A. Smith-Renner, and C. Tan, Towards a science of
human-ai decision making: a survey of empirical studies, arXiv preprint
arXiv:2112.11471 (2021).

[314] X. Wu, L. Xiao, Y. Sun, J. Zhang, T. Ma, and L. He, A survey of
human-in-the-loop for machine learning, Future Generation Computer Systems
(2022).

[315] J. Bobadilla, F. Ortega, A. Hernando, and A. Gutiérrez, Recommender systems
survey, Knowledge-based systems 46 (2013) 109–132.

[316] S. Zhang, L. Yao, A. Sun, and Y. Tay, Deep learning based recommender system:
A survey and new perspectives, ACM Computing Surveys (CSUR) 52 (2019),
no. 1 1–38.

[317] Y. Peng, A survey on modern recommendation system based on big data, arXiv
preprint arXiv:2206.02631 (2022).

[318] R. Sabitha, S. Vaishnavi, S. Karthik, and R. Bhavadharini, User interaction based
recommender system using machine learning, Intelligent Automation and Soft
Computing 31 (2022), no. 2 1037–1049.

[319] R. M. Monarch, Human-in-the-Loop Machine Learning: Active learning and
annotation for human-centered AI. Simon and Schuster, 2021.

218

[320] Y. Liang, L. He, and X. Anthony’Chen, Human-centered ai for medical imaging,
Artificial Intelligence for Human Computer Interaction: A Modern Approach
(2021) 539–570.

[321] H. Dong, V. Suárez-Paniagua, W. Whiteley, and H. Wu, Explainable automated
coding of clinical notes using hierarchical label-wise attention networks and label
embedding initialisation, Journal of biomedical informatics 116 (2021) 103728.

[322] T. Dash, S. Chitlangia, A. Ahuja, and A. Srinivasan, A review of some techniques
for inclusion of domain-knowledge into deep neural networks, Scientific Reports
12 (2022), no. 1 1–15.

[323] Y. Kang, Y.-W. Chiu, M.-Y. Lin, F.-Y. Su, and S.-T. Huang, Towards
model-informed precision dosing with expert-in-the-loop machine learning, in 2021
IEEE 22nd International Conference on Information Reuse and Integration for
Data Science (IRI), pp. 342–347, IEEE, 2021.

[324] C. Chandler, P. W. Foltz, and B. Elvev̊ag, Improving the applicability of ai for
psychiatric applications through human-in-the-loop methodologies, Schizophrenia
Bulletin (2022).

[325] Z. Liu, J. Wang, S. Gong, H. Lu, and D. Tao, Deep reinforcement active learning
for human-in-the-loop person re-identification, in Proceedings of the IEEE/CVF
international conference on computer vision, pp. 6122–6131, 2019.

[326] S. Budd, E. C. Robinson, and B. Kainz, A survey on active learning and
human-in-the-loop deep learning for medical image analysis, Medical Image
Analysis 71 (2021) 102062.

[327] G. Shani and A. Gunawardana, Evaluating recommendation systems, in
Recommender systems handbook, pp. 257–297. Springer, 2011.

[328] M. Zehlike, K. Yang, and J. Stoyanovich, Fairness in ranking, part ii:
Learning-to-rank and recommender systems, ACM Computing Surveys (CSUR)
(2022).

[329] Y. Zhang, X. Chen, et. al., Explainable recommendation: A survey and new
perspectives, Foundations and Trends® in Information Retrieval 14 (2020), no. 1
1–101.

[330] H.-T. Cheng, L. Koc, J. Harmsen, T. Shaked, T. Chandra, H. Aradhye,
G. Anderson, G. Corrado, W. Chai, M. Ispir, et. al., Wide & deep learning for
recommender systems, in Proceedings of the 1st workshop on deep learning for
recommender systems, pp. 7–10, 2016.

219

[331] H. Wang, N. Wang, and D.-Y. Yeung, Collaborative deep learning for
recommender systems, in Proceedings of the 21th ACM SIGKDD international
conference on knowledge discovery and data mining, pp. 1235–1244, 2015.

[332] S. M. Kazemi, R. Goel, K. Jain, I. Kobyzev, A. Sethi, P. Forsyth, and P. Poupart,
Representation learning for dynamic graphs: A survey., JMLR 21 (2020), no. 70
1–73.

[333] E. Eldele, M. Ragab, Z. Chen, M. Wu, C. K. Kwoh, X. Li, and C. Guan,
Time-series representation learning via temporal and contextual contrasting, arXiv
preprint arXiv:2106.14112 (2021).

[334] S. M. Kazemi, R. Goel, S. Eghbali, J. Ramanan, J. Sahota, S. Thakur, S. Wu,
C. Smyth, P. Poupart, and M. Brubaker, Time2vec: Learning a vector
representation of time, arXiv preprint arXiv:1907.05321 (2019).

[335] J.-Y. Franceschi, A. Dieuleveut, and M. Jaggi, Unsupervised scalable
representation learning for multivariate time series, Advances in neural
information processing systems 32 (2019).

[336] G. Zerveas, S. Jayaraman, D. Patel, A. Bhamidipaty, and C. Eickhoff, A
transformer-based framework for multivariate time series representation learning,
in Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery &
Data Mining, pp. 2114–2124, 2021.

[337] Y. Su, Y. Zhao, C. Niu, R. Liu, W. Sun, and D. Pei, Robust anomaly detection for
multivariate time series through stochastic recurrent neural network, in
Proceedings of the 25th ACM SIGKDD international conference on knowledge
discovery & data mining, pp. 2828–2837, 2019.

220

	Curriculum Vitae
	Abstract
	Permissions and Attribution
	List of Figures
	List of Tables
	Introduction
	Event Detection on Dynamic Graphs
	Introduction
	Related Work
	Problem Definition
	Proposed Model: DyGED
	Experiments
	Conclusions
	Future Works - Multi-scale Anomalies marianne2023musgad

	Global Counterfactual Explainer for Graph Neural Networks
	Introduction
	Global Counterfactual Explanations
	Proposed Method: GCFExplainer
	Experiments
	Related Work
	Conclusions

	Robust Ante-hoc Graph Explainer using Bilevel Optimization
	Introduction
	Related Work
	Methodology
	Experiments
	Preliminary Results
	Ablation Study
	Training Stability
	Conclusions

	Link Prediction without Graph Neural Networks
	Introduction
	Limitations in supervised link prediction evaluation and training
	Method
	Experiments
	Related work
	Conclusion

	Feature-based Individual Fairness in k-Clustering
	Introduction
	Preliminaries
	Results
	Experiments
	Running Time
	Additional Experiments
	Conclusions

	Robustness of Human Decision Making under Risk
	Introduction
	Human Experiments
	Preliminaries
	Analysis and Experiments
	Conclusions

	AI Decision Systems with Feedback Loop Active Learner
	Introduction
	Related Works
	Methodology
	Experiments
	Conclusions

	Conclusions
	Bibliography

