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Supervisory Multi-Objective 
Economic Model Predictive Control 
for Heat Pump Water Heaters for 
Cost and Carbon Optimization 

Loren dela Rosa Caton Mande Matthew J. Ellis, PhD 

ABSTRACT 
Heat pump water heaters (HPWHs) offer an efficient way to heat water using electricity, which aligns with efforts toward decarbonization and better 
utilization of renewable energy sources. Economic model predictive control (EMPC) provides an automated way to provide load flexibility of this new electric 
load by accounting for exogenous inputs like time-varying electric rates or marginal greenhouse gas emissions. Furthermore, a cloud-based supervisory 
controller implementation of EMPC enables retrofitting existing HPWHs with cloud-connection. In this work, the formulation of a supervisory multi-
objective EMPC for HPWH is presented. The formulation of a supervisory multi-objective EMPC for HPWH is presented for equipment with a single 
heat pump and up to two backup resistive heating elements. A temperature setpoint is computed from the EMPC decisions using a logic-based setpoint 
calculator so the existing HPWH rule-based control (RBC) strategy activates the desired heat sources when deemed optimal by the EMPC. The performance 
of the simulated testing results under the supervisory EMPC is compared against the performance under an RBC strategy and under a regulatory EMPC 
that directly controls the HPWH. The simulation results demonstrate that the RBC in the proposed control architecture, operates the HPWH heat sources 
in the optimal manner computed by the EMPC, which indicates that the setpoint calculator can translate EMPC decisions to appropriate temperature 
setpoints. To minimize heat pump cycling, the effect of increasing the minimum on-time for the heat pump is also considered and the results show that 
increasing the minimum on-time increases the operating cost. 

INTRODUCTION 

In the United States, water heating is the second-largest residential energy end-use and accounts for 20% of total 
residential consumption (EIA 2018). Heat pump water heaters (HPWHs) offer an efficient way to heat water using 
electricity, aligning with efforts toward decarbonization and leveraging renewable energy sources. HPWHs have inherent 
thermal energy storage, which can shift electricity use away from peak hours by storing hot water generated with low-
cost, emissions-free renewable electricity for use later in the day (Delforge 2020). Nonetheless, determining the optimal 
time and amount to preheat the HPWH tank water is a non-trivial decision that should account for the current and 
future energy cost, water draw, grid greenhouse gas (GHG) emissions rate, and thermal losses to the ambient. Excessive 
preheating, for example, could lead to higher energy consumption and cost. HPWHs are typically controlled by a rule-

© 2023 ASHRAE 
517

AT-23-C060 Published in ASHRAE Transactions, Volume 129, Part 1

Loren dela Rosa is a Ph.D. student in the Department of Chemical Engineering, University of California, Davis, Davis, CA. Caton Mande is a Senior R&D
Engineer with the Western Cooling Efficiency Center and a Ph.D. student in the Department of Mechanical and Aerospace Engineering, University of California,
Davis, Davis, CA. Matthew J. Ellis is an Assistant Professor in the Department of Chemical Engineering, University of California, Davis, Davis, CA.



based control (RBC) strategy that maintains the tank water temperature in a region around the setpoint. While this 
strategy is proven and robust for maintaining a user-defined setpoint, this type of control usually does not provide any 
flexibility when the HPWH operates — it will run until it reaches the setpoint, regardless of the electricity cost or grid 
GHG emissions rate. 

Economic model predictive control (EMPC) is an ideal choice for controlling HPWHs because the optimization-
based predictive control technique determines control actions by predicting system behavior over a horizon to minimize 
an economic cost function. Thus, EMPC can automatically shift the HPWH’s electric load from peak to off-peak 
periods. EMPC may directly control the HPWH heating sources, i.e., the heat pump and backup electric resistive heating 
element(s). In a previous work (Mande et al. 2022), an EMPC was proposed that directly controls the HPWH and 
demonstrated savings compared to an RBC strategy. However, such an implementation would require an on-premise 
deployment. An alternative approach is to implement EMPC as a supervisory controller. In this implementation, the 
EMPC does not directly control the HPWH. Instead, it determines the temperature setpoint, which it communicates to 
a lower-layer tracking controller. The lower-layer tracking controller, which could be an existing RBC strategy, 
manipulates the HPWH heating sources to achieve the setpoint. This implementation offers an advantage as it allows 
for a cloud-based EMPC, enabling retrofitting existing cloud-connected HPWH with EMPC without requiring the 
installation of additional on-premise equipment. 

In this study, a supervisory multi-objective EMPC is presented. The multi-objective EMPC balances operating 
cost with expected grid GHG emissions associated with operating the HPWH while ensuring that the tank temperature 
is maintained within a comfortable range. Considering HPWHs with a heat pump and up to two backup resistive heating 
elements, EMPC decides the optimal operation of these heating sources. A logic-based setpoint calculator is then used 
to convert the operating decisions computed by the EMPC to a temperature setpoint. The temperature setpoint is 
communicated to the existing HPWH RBC strategy and is computed so that the RBC implements the optimal operating 
decisions of the EMPC. The performance under the supervisory EMPC is compared against the performance under an 
RBC strategy and under a regulatory EMPC that directly controls the HPWH based on simulation results. To minimize 
heat pump (HP) cycling, the effect of increasing the minimum on-time for the HP is also considered. 

WATER HEATER TANK MODEL  

In this study, the performance of the different control strategies is evaluated on a simulated HPWH that contains 
three heat sources to provide heat to the water. These heat sources are the heat pump (HP) condenser coil, an upper 
electric resistive heating element (E1), and a lower electric resistive heating element (E2). The HP condenser coil does 
not span the entire height of the tank and is positioned near the bottom of the tank. The HPWH tank contains two 
temperature sensors located above each electric resistive heating element to measure the upper and lower water 
temperatures, respectively. The hot water that is drawn from the top of the tank is replenished by cold make-up water 
that enters the bottom of the tank, maintaining a constant tank water volume.  

Accurately modeling the temperature dynamics of the water in the tank is helpful for evaluating the effectiveness 
of load flexibility strategies for HPWHs. Inspired by previous work on modeling stratified thermal storage tanks 
(Kleinbach, Beckman, and Klein 1993; Nash, Badithela, and Jain 2017; Powell and Edgar 2013), the simulated HPWH 
storage tank is discretized into 𝑛𝑛 vertically stacked volume segments referred to as nodes, with the bottom node 
designated as node one. The water temperature within each node is spatially uniform. The energy balance over each 
node can be expressed by a first-principles model given in Equation 1: 

𝐶𝐶𝑝𝑝𝑚𝑚𝑖𝑖
𝑑𝑑𝑑𝑑𝑖𝑖
𝑑𝑑𝑑𝑑

=  �̇�𝑄𝑖𝑖+1,𝑖𝑖 + �̇�𝑄𝑖𝑖,𝑖𝑖−1 + �̇�𝑄𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑖𝑖 + �̇�𝑄𝑎𝑎𝑎𝑎𝑏𝑏,𝑖𝑖 +  �̇�𝑄𝐻𝐻𝐻𝐻,𝑖𝑖 + �̇�𝑄𝐸𝐸𝐸𝐸,𝑖𝑖  (1) 

where 𝐶𝐶𝑝𝑝 is the heat capacity of the water, 𝑚𝑚𝑖𝑖  is the mass of water in the 𝑖𝑖-th node, 𝑑𝑑𝑖𝑖  is the water temperature of 
the 𝑖𝑖-th node, �̇�𝑄𝑖𝑖+1,𝑖𝑖 is the conductive and diffusive heat transfer rate between node 𝑖𝑖 and the node above (i.e., node 
𝑖𝑖 + 1), �̇�𝑄𝑖𝑖,𝑖𝑖−1 is the conductive and diffusive heat transfer rate between node 𝑖𝑖 and the node below (i.e., node 𝑖𝑖 − 1), 
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�̇�𝑄𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑖𝑖 is the convective heat transfer rate from the water flowing into and out of the node 𝑖𝑖, �̇�𝑄𝑎𝑎𝑎𝑎𝑏𝑏,𝑖𝑖 is the rate of heat 
transfer between node 𝑖𝑖 and the ambient, �̇�𝑄𝐻𝐻𝐻𝐻,𝑖𝑖 is the sensible heat transfer rate provided to node 𝑖𝑖 by the HP condenser 
coil, and �̇�𝑄𝐸𝐸𝐸𝐸,𝑖𝑖 is the sensible heat transfer rate provided to node 𝑖𝑖 by the 𝑗𝑗-th resistive heating element, which could be 
the upper or lower electric resistance heating element denoted by E1 or E2, respectively. The simulated water 
temperatures may experience temperature inversion (warmer water exists below cooler water) whenever a heat source 
is on. A correction term for temperature inversion is provided in Equation 2 (Nash, Badithela, and Jain 2017) to account 
for natural convection, given by: 

�̇�𝑄𝐸𝐸,𝑖𝑖 =
𝑘𝑘�𝐴𝐴
∆𝑧𝑧 �

𝑑𝑑𝐸𝐸 − 𝑑𝑑𝑖𝑖� (2) 

where 𝐴𝐴 is the cross-sectional area of the tank, ∆𝑧𝑧 is the node height, 𝑑𝑑𝐸𝐸 is the temperature of node 𝑗𝑗, 𝑑𝑑𝑖𝑖 is the 
temperature of node 𝑖𝑖, and 𝑘𝑘� is the modified thermal conductivity according to: 

𝑘𝑘� =  �
𝑘𝑘∆(𝑑𝑑𝑖𝑖 − 𝑑𝑑𝐸𝐸), 𝑖𝑖𝑖𝑖 𝑑𝑑𝐸𝐸 < 𝑑𝑑𝑖𝑖

𝑘𝑘, 𝑜𝑜𝑑𝑑ℎ𝑒𝑒𝑟𝑟𝑤𝑤𝑖𝑖𝑤𝑤𝑒𝑒
 

where 𝑘𝑘 is the thermal conductivity and ∆ is a large scaling factor. The solution to the ordinary differential equation 
in Equation 1 with the correction term applied to handle temperature inversion in Equation 2 computes the temperature 
of each node as a function of time. Such solution yields an approximation to the temperature profile in the tank (Powell 
and Edgar 2013). 

RULE-BASED CONTROL APPROACH FOR HPWHS 

Rule-based control (RBC) is one of the most utilized control methods for HPWHs (Lissa et al. 2021). To quantify 
baseline performance, an RBC method, inspired by the approach used in HPWHSim (Kvaltine, Logsdon, and Larson 
2016) is formulated to represent a typical RBC method employed in HPWHs. The objective of the RBC is to maintain 
the tank temperatures within a temperature range defined by the temperature setpoint minus a deadband, with each heat 
source having its own deadband. If the HP cannot meet the hot water demand, the RBC will allow the electric resistive 
elements to come because the heating capacity of the resistive elements is much larger than the HP. The RBC uses a set 
of logical conditions or rules involving temperature setpoints and deadbands to decide whether one of the three heat 
sources should be turned on. Only one heat source may be turned on at a moment in time.  

The RBC has four deadbands, which are denoted by: 𝑑𝑑𝐷𝐷𝐷𝐷,𝐻𝐻𝐻𝐻, 𝑑𝑑𝐷𝐷𝐷𝐷,𝐻𝐻𝐻𝐻,𝑆𝑆𝑆𝑆𝑎𝑎𝑐𝑐𝑆𝑆𝑏𝑏𝑆𝑆, 𝑑𝑑𝐷𝐷𝐷𝐷,𝐸𝐸1 and 𝑑𝑑𝐷𝐷𝐷𝐷,𝐸𝐸2. The upper tank 
temperature and lower tank temperature are denoted by 𝑑𝑑𝑢𝑢𝑝𝑝 and 𝑑𝑑𝑙𝑙𝑐𝑐, respectively. From the four deadbands, the values 
of the two temperatures may be checked against the four temperature ranges to determine how to operate the three 
heat sources. The basic idea of the RBC design is as follows. The RBC will turn on HP if either the upper temperature 
is less than 𝑑𝑑𝑠𝑠𝑝𝑝 −  𝑑𝑑𝐷𝐷𝐷𝐷,𝐻𝐻𝐻𝐻,𝑆𝑆𝑆𝑆𝑎𝑎𝑐𝑐𝑆𝑆𝑏𝑏𝑆𝑆 or if the lower temperature is less than 𝑑𝑑𝑠𝑠𝑝𝑝 −  𝑑𝑑𝐷𝐷𝐷𝐷,𝐻𝐻𝐻𝐻. If the upper temperature is 
less than 𝑑𝑑𝑠𝑠𝑝𝑝 −  𝑑𝑑𝐷𝐷𝐷𝐷,𝐸𝐸1 or the lower temperature is less than 𝑑𝑑𝑠𝑠𝑝𝑝 −  𝑑𝑑𝐷𝐷𝐷𝐷,𝐸𝐸2, the RBC will turn on E1 or E2, respectively. 
Under typical conditions, the decision to turn off the heat source occurs once the temperature setpoint is reached. For 
example, if E1 is turned on, it will be kept on until the upper temperature reaches the temperature setpoint,  𝑑𝑑𝑠𝑠𝑝𝑝 , as 
measured by the upper tank temperature sensor. The same concept applies for turning off E2 and the HP. 

SUPERVISORY EMPC FRAMEWORK FOR HPWHS  

The overall control framework features a cloud-based EMPC deployment. The advantage of the cloud-based 
EMPC deployment over a local (on-premise) EMPC deployment is the cloud-based EMPC deployment can be used to 
retrofit existing cloud-connected HPWHs without requiring modifications to the HPWH. However, a disadvantage of 
a cloud-based deployment is the possibility of communication disruptions or delays. For this reason, many cloud-
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connected HPWHs do not enable direct control of the HPWH heat sources through the cloud. To address this issue, 
the EMPC is used as a supervisory controller, meaning that it sends a temperature setpoint to the local HPWH RBC. 
Since the EMPC computes decisions on how to operate the HPWH heat sources, an additional calculation, referred to 
as the setpoint calculator, is used to convert the EMPC decisions to a temperature setpoint. The setpoint calculator is 
also implemented in the cloud. The overall control architecture is depicted in the block diagram in Figure 1. 

The overall execution and data communication is as follows. Every 5 minutes, the telemetry data from the HPWH 
is retrieved from the local device and forecasts of the exogenous inputs are obtained from application programming 
interfaces (APIs) and forecasting models. The telemetry data and forecasts are provided as input to the EMPC. The 
EMPC problem, described below, is solved to determine the optimal sequence of on/off decisions for the HPWH heat 
sources over a future horizon. The on/off decisions for the first element in the sequence are sent to the setpoint 
calculator to compute the temperature setpoint. The resulting setpoint is communicated from the cloud to the HPWH. 
The RBC uses the setpoint to make its decision on how to operate the HPWH. This process is repeated indefinitely. 

EMPC Problem Formulation 

Prediction model. EMPC uses a dynamic model of the system to forecast system behavior over a finite-time 
window, called the prediction horizon, to compute the control actions that minimize a cost function (Ellis, Durand, and 
Christofides 2014). In Equation 1, a detailed tank thermal dynamic model is developed for 𝑛𝑛 nodes. This tank thermal 
dynamic model is nonlinear when 𝑛𝑛 > 1 due to the correction term that accounts for natural convection. Thus, a one-
node lumped tank thermal dynamic model is used as the predictive model in the EMPC to reduce computational 
complexity. By discretizing the one-node lumped tank thermal dynamic model in time and implementing a zeroth order 
hold on all inputs, the resulting predictive model used in the EMPC is given by: 

𝑑𝑑�𝑘𝑘+1  =  𝐴𝐴(�̃�𝑑𝑘𝑘)𝑑𝑑�𝑘𝑘  +  𝐵𝐵(�̃�𝑑𝑘𝑘)𝑢𝑢�𝑘𝑘  +  𝐵𝐵𝑆𝑆(�̃�𝑑𝑘𝑘)�̃�𝑑𝑘𝑘 (3) 
where 𝑑𝑑�𝑘𝑘 is the predicted (average) tank water temperature at the 𝑘𝑘th time step along the EMPC prediction 

horizon, �̃�𝑑𝑘𝑘 denotes the forecasted exogenous inputs at time step 𝑘𝑘, the matrices 𝐴𝐴(�̃�𝑑𝑘𝑘), 𝐵𝐵(�̃�𝑑𝑘𝑘), and 𝐵𝐵𝑆𝑆(�̃�𝑑𝑘𝑘) can be 
computed from Equation 1, and 𝑢𝑢�𝑘𝑘 ≔ �𝑢𝑢�𝐻𝐻𝐻𝐻,𝑘𝑘  𝑢𝑢�𝑟𝑟𝑟𝑟𝑠𝑠𝑖𝑖𝑠𝑠𝑆𝑆,𝐸𝐸1,𝑘𝑘 �

𝑇𝑇are the control actions at time step 𝑘𝑘 and the decision 
variables of the EMPC. Specifically, 𝑢𝑢�𝐻𝐻𝐻𝐻,𝑘𝑘 is a binary variable indicating if the HP is on or off at time step 𝑘𝑘 and 
𝑢𝑢�𝑟𝑟𝑟𝑟𝑠𝑠𝑖𝑖𝑠𝑠𝑆𝑆,𝐸𝐸1,𝑘𝑘 is a binary variable indicating if a resistive element is on or off at time step 𝑘𝑘. Given that the capacity of the 
resistive elements is usually equal, there is no difference in the use of either element in the lumped one-node model. In 
this work, E1 is selected as the decision variable over E2 in the EMPC as this may be preferred to ensure that the water 
drawn from the top of the tank meets the demand for hot water. Nonetheless, further work is needed to develop a 
strategy that converts the EMPC’s decision of turning on a resistive element to a decision that specifically turns on 
either E1 or E2. At each time step, the model in Equation 3 is initialized with the average temperature of the two tank 
measurements taken at time step 𝑗𝑗. 

 

 

Figure 1 A block diagram of the proposed control architecture. 
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Cost function. The multi-objective cost function of the EMPC is shown in Equation 4 and includes three terms. 
The three objective terms are the electricity cost associated with operating the HPWH, the predicted marginal GHG 
emissions that result from the electricity consumed by the HPWH, and violations of tank water temperature from the 
minimum and maximum allowable limit. 

�𝜔𝜔1 𝑝𝑝elec,𝑘𝑘�𝑃𝑃�𝐻𝐻𝐻𝐻,𝑘𝑘 + 𝑃𝑃�𝑟𝑟𝑟𝑟𝑠𝑠𝑖𝑖𝑠𝑠𝑆𝑆,𝐸𝐸1,𝑘𝑘�𝛥𝛥𝑑𝑑�������������������
Electricity cost

+ 𝜔𝜔2

𝑁𝑁−1

𝑘𝑘=0

𝑝𝑝�𝑔𝑔ℎ𝑔𝑔,𝑘𝑘�𝑃𝑃�𝐻𝐻𝐻𝐻,𝑘𝑘 + 𝑃𝑃�𝑟𝑟𝑟𝑟𝑠𝑠𝑖𝑖𝑠𝑠𝑆𝑆,𝐸𝐸1,𝑘𝑘�𝛥𝛥𝑑𝑑�������������������
GHG emissions

+ 𝜔𝜔3 𝑑𝑑�𝑐𝑐𝑖𝑖𝑐𝑐𝑙𝑙,𝑘𝑘 ���
Comfort violations

 (4) 

where 𝑁𝑁 is the number of time steps in the prediction horizon, 𝑝𝑝𝑟𝑟𝑙𝑙𝑟𝑟𝑐𝑐,𝑘𝑘  is the electric tariff at the 𝑘𝑘th time step, 
𝑝𝑝�𝑔𝑔ℎ𝑔𝑔,𝑘𝑘 is the forecasted marginal GHG emissions at the 𝑘𝑘th time step, 𝑑𝑑𝑐𝑐𝑖𝑖𝑐𝑐𝑙𝑙,𝑘𝑘 is the violation of the minimum or 
maximum allowable temperature at the 𝑘𝑘th time step, 𝑃𝑃�𝐻𝐻𝐻𝐻,𝑘𝑘 and 𝑃𝑃�𝑟𝑟𝑟𝑟𝑠𝑠𝑖𝑖𝑠𝑠𝑆𝑆,𝐸𝐸1,𝑘𝑘 are the predicted power consumption of 
the HP and E1 at the 𝑘𝑘th time step, respectively, ∆𝑑𝑑 refers to the duration between two sample times, and 𝜔𝜔1, 𝜔𝜔2, and 
𝜔𝜔3 are weights that are used to manage trade-offs between the multiple objectives that may be in conflict.  

The input data required to formulate the cost function include the electric tariff and marginal grid GHG emissions. 
The electric tariff is assumed to follow a residential time-of-use (TOU) tariff. The marginal grid GHG emissions is 
provided from an external source. Although the ambient temperature impacts HP efficiency, this study uses a constant 
efficiency-type model to compute the predicted power consumption of the HP for simplicity. Future refinements will 
account for the effect of ambient temperature on HP efficiency. A constant efficiency-type model is also used to 
compute the power consumed by the electric resistive heating element. The weight assigned to an objective is 
proportional to the relative importance of the objective in the problem. For example, if the objective is purely to 
minimize cost (referred to as cost minimization), the weights are set to 𝜔𝜔1 = 1 and 𝜔𝜔2 = 0. For purely optimizing 
GHG emissions (referred to as GHG emissions optimization), 𝜔𝜔1 = 0 and 𝜔𝜔2 = 1. For all cases, 𝜔𝜔3 takes a non-zero 
value to prevent trading off thermal comfort for benefit of the two other objective terms.  

Other Exogenous inputs. The exogenous inputs include hot water draw volumetric flow rate (based on field 
measurements), inlet water temperature (assumed to be constant at 20 ℃), and ambient temperature surrounding the 
HPWH (from a weather forecast). The inlet water temperature is assumed to be constant with time since a model that 
estimates this temperature is currently unavailable. A potential future refinement would be to develop a model that 
predicts the inlet water temperature. A detailed mathematical formulation of the multi-objective EMPC finite-horizon 
optimal control problem is given in (Mande et al. 2022). 

The proposed control architecture is compared to a control architecture involving an EMPC that directly controls 
the HPWH heat sources. The latter approach is referred to as the regulatory EMPC. The regulatory EMPC has the 
same optimal control problem formulation as the supervisory EMPC, but its decision is directly communicated to the 
HPWH. More details of this approach are given in (Mande et al. 2022). 

Setpoint Calculator  

The objective of the setpoint calculator is to convert the output of the EMPC to temperature setpoints that would 
prompt the RBC to implement the control actions computed by the EMPC. At each time step, the setpoint calculator 
receives the predicted input trajectory of the EMPC. The temperature setpoint that is computed over the first sampling 
period is sent down to the RBC. At the next time step, the process is repeated after receiving the new input trajectory 
of the EMPC. The basic idea of the setpoint calculator is as follows. If the EMPC decides to turn on one of the heat 
sources for a given time step, the setpoint calculator sends down a temperature setpoint with a large enough temperature 
difference to prompt the RBC to turn on the desired heat source. If the EMPC decides to turn off all heat sources for 
a given time step, the setpoint calculator will send down a low temperature setpoint such that none of the heat sources 
are expected to turn on.  

The specific logic of the setpoint calculator is summarized: If the EMPC predicts the HP to be on at time step 𝑘𝑘, 
the setpoint is computed as 𝑑𝑑𝑠𝑠𝑝𝑝,𝑘𝑘 = min(𝑑𝑑𝑎𝑎𝑎𝑎𝑚𝑚,𝑠𝑠𝑝𝑝,  𝑑𝑑𝑢𝑢𝑝𝑝,𝑘𝑘 + 𝑑𝑑𝐷𝐷𝐷𝐷,𝐻𝐻𝐻𝐻,𝑆𝑆𝑆𝑆𝑎𝑎𝑐𝑐𝑆𝑆𝑏𝑏𝑆𝑆 + 𝜀𝜀𝐻𝐻𝐻𝐻 ,  𝑑𝑑𝑙𝑙𝑐𝑐,𝑘𝑘 + 𝑑𝑑𝐷𝐷𝐷𝐷,𝐻𝐻𝐻𝐻 + 𝜀𝜀𝐻𝐻𝐻𝐻). If the 
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EMPC predicts the E1 to be on at time step 𝑘𝑘, the setpoint is computed as 𝑑𝑑𝑠𝑠𝑝𝑝,𝑘𝑘 = min(𝑑𝑑𝑎𝑎𝑎𝑎𝑚𝑚,𝑠𝑠𝑝𝑝,𝑑𝑑𝑢𝑢𝑝𝑝,𝑘𝑘 + 𝑑𝑑𝐷𝐷𝐷𝐷,𝐸𝐸1 +
𝜀𝜀𝐸𝐸1). If the EMPC predicts all heat sources to be off at time step 𝑘𝑘, the setpoint is 𝑑𝑑𝑤𝑤𝑝𝑝,𝑘𝑘 =  𝑑𝑑𝑚𝑚𝑖𝑖𝑛𝑛,𝑤𝑤𝑝𝑝. 𝑑𝑑𝑢𝑢𝑝𝑝,𝑘𝑘 is the upper 
tank temperature at time step 𝑘𝑘 and 𝑑𝑑𝑙𝑙𝑜𝑜,𝑘𝑘 is the lower tank temperature at time step 𝑘𝑘. The constants 𝜀𝜀𝐻𝐻𝑃𝑃 and 𝜀𝜀𝐸𝐸1 take 
on values that cause the tank temperature sensor measurements to fall below the setpoint minus the deadband 
temperature to prompt the desired heat source to turn on. 𝑑𝑑𝑚𝑚𝑖𝑖𝑛𝑛,𝑤𝑤𝑝𝑝 is the minimum temperature setpoint and is chosen 
to be a low temperature setpoint such that tank temperatures are within the temperature setpoint minus the deadband 
to prevent any heat sources from turning on. If a heat source does turn on after sending down a minimum temperature 
setpoint, this implies that either the upper or lower tank temperature is too low, in which case turning on a heat source 
may be desired based on comfort considerations. 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚,𝑤𝑤𝑝𝑝 is the maximum temperature setpoint and is selected to be 
near or equal to the maximum allowable temperature setpoint of the HPWH. The 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚,𝑤𝑤𝑝𝑝 and 𝑑𝑑𝑚𝑚𝑖𝑖𝑛𝑛,𝑤𝑤𝑝𝑝 are different 
from the minimum and maximum allowable temperature in the EMPC. Specifically, 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚,𝑤𝑤𝑝𝑝 and 𝑑𝑑𝑚𝑚𝑖𝑖𝑛𝑛,𝑤𝑤𝑝𝑝 have a wider 
temperature range compared to the temperature range used in the EMPC to achieve the performance described above. 
Moreover, it is worth emphasizing that the overall goal of the setpoint calculator is to have the RBC turn the heat source 
on or off at the times dictated by the EMPC, and not for the tank temperature to reach the computed setpoints. Hence, 
the resulting temperature setpoint profiles of this framework may seem irregular. 

APPLICATION TO A SIMULATED HPWH 

In this section, the results obtained from closed-loop simulations consisting of the simulated HPWH under the 
RBC, regulatory EMPC, and the proposed supervisory EMPC framework are presented and analyzed. The simulated 
HPWH has the tank configuration discussed in the earlier section. The dynamic temperature profile of the HPWH is 
assumed to be perfectly forecasted by the tank thermal dynamic model with one node in Equation 1. The HPWH model 
parameters are summarized in (Mande et al. 2022). Perfect forecasting of all exogenous inputs is assumed in this work 
to establish a baseline performance that can later be compared to the case when uncertainty in the forecasts is 
introduced. The exogenous input profiles are shown in Figure 2a. A residential TOU electric tariff structure is 
considered. The peak period occurs from 4 PM to 9 PM with a peak price of $0.50/kWh. The off peak-price is 
$0.36/kWh. The marginal GHG emissions data is provided by WattTime. The water volumetric flow rate data is 
collected from a field site in California Climate Zone 12. The weather data is obtained from OpenWeather. 

For the EMPC, the minimum and maximum allowable temperature of the average water temperature is selected 
to be 42 ℃ (107.6 ℉) and 50 ℃ (122 ℉), respectively. This choice corresponds to the approximate temperature range 
of the HPWH under the RBC with setpoint 50 ℃ (122 ℉) and the deadband 𝑑𝑑𝐷𝐷𝐷𝐷,𝐻𝐻𝐻𝐻,𝑆𝑆𝑆𝑆𝑎𝑎𝑐𝑐𝑆𝑆𝑏𝑏𝑆𝑆 = 8.33 ℃ (15 ℉), which 
gives a range of 41.67 ℃ (107 ℉) to 50 ℃ (122 ℉). The minimum temperature bound of the EMPC is rounded to 42 
℃ (107.6 ℉) because of the EMPC’s tendency to regulate the average water temperature near the lower bound for 
periods to save energy (see results below), which can result in small temperature violations from the lower bound. Thus, 
the EMPC temperature range (for both the supervisory case and the regulatory case) is restricted to a smaller range to 
ensure that the average water temperature is maintained within 41.67 ℃ (107 ℉) to 50 ℃ (122 ℉). The minimum and 
maximum temperature setpoint are set to 𝑑𝑑𝑎𝑎𝑖𝑖𝑐𝑐,𝑠𝑠𝑝𝑝 = 41 ℃ (105.8 ℉) and 𝑑𝑑𝑎𝑎𝑎𝑎𝑚𝑚,𝑠𝑠𝑝𝑝 = 55 ℃ (131 ℉), respectively. The 
𝜀𝜀𝐻𝐻𝐻𝐻 and 𝜀𝜀𝐸𝐸1 are assigned a value of 1 ℃ (1.8 ℉). The supervisory and regulatory EMPC problem are solved under cost 
optimization and with a weight value of 𝜔𝜔3= 2 applied to the comfort violations term in the cost function. The EMPC 
problem is solved using CPLEX. The absolute gap tolerance is set to 0.001 with a solver time limit of 20 s. The solver 
returns a solution that either met the gap tolerance or time limit. A controller time step of 5 minutes is used in the 
EMPC, with a prediction horizon of 24 hours to consider a full diurnal cycle. A minimum on dwell-time of 10 minutes 
is enforced to limit excessive cycling of the EMPC. The average water tank temperature is initialized at 44 ℃ (111.2 ℉) 
for all closed-loop simulations. All simulations begin at midnight where minimal hot water demand is expected. 

For baseline purposes, the RBC is applied to the HPWH, and the closed-loop results are given in Figure 2b. A 
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large hot draw event occurs in the morning, likely caused by occupants showering. Prior to the first morning water draw, 
the RBC turns on the HP as the tank temperature dropped below the HP deadband. The HP turns on for several hours 
to return the tank water temperature to setpoint. After the setpoint is reached, the RBC turns off the HP. Over the day, 
several hot water draw events occur, which eventually causes the tank temperature to decrease to its minimum. Once 
the temperature is at its minimum, the RBC turns on the HP to return to the water temperature setpoint. However, this 
occurs during the peak period (Figure 2b). The estimated cost associated with this operating strategy is $0.693. Its 
estimated GHG emissions is 1.78 lb. 

The closed-loop results of the regulatory and supervisory EMPC are given in Figure 2c and 2d, respectively. For 
the supervisory EMPC, the on/off decisions implemented by the RBC matched those computed by the EMPC, 
indicating that the setpoint calculator can translate the EMPC’s decisions to the appropriate temperature setpoints. For 
both the regulatory and supervisory EMPC, none of the electric resistance elements turned on and no temperature 
violations occurred. Thus, only the HP decisions of the RBC are displayed in Figure 2d. Over the first six hours, both 
the regulatory and supervisory EMPC pre-heat the tank to prepare for the first expected draw event of the day. The 
first draw event causes the temperature of the tank to decrease but is still above the lower bound. Between 6 AM and 9 
AM, both the regulatory and supervisory EMPC keep the tank temperature near the minimum for energy savings. Prior 
to the peak period, both the regulatory EMPC and supervisory EMPC pre-heat the tank near the maximum allowable 
temperature to minimize the utilization of the HP during this time window. However, due to multiple hot water draw 
events that occurred in the peak period, both the regulatory EMPC and supervisory EMPC turned on the HP to prevent 
temperature violations. During the peak period, the regulatory EMPC total HP runtime is 35 minutes, whereas the 
supervisory EMPC total HP runtime is 25 minutes. The estimated operating cost of the regulatory EMPC is $0.607, 
whereas the estimated operating cost of the supervisory EMPC is $0.600. In terms of GHG emissions, the regulatory 
EMPC GHG emissions is 1.54 lb and the GHG emissions of the supervisory EMPC is 1.53 lb. The difference in closed-
loop evolution under the two EMPCs is caused by the solver not able to completely close the optimality gap in the time 
needed, resulting in different solutions returned in each case. 

From the simulation results in Figure 2, the operating behavior under EMPC cost-optimization (regulatory and 
supervisory case) is different from the operating behavior under the RBC, resulting in lower cost under EMPC but with 
more HP cycling. If this cycling is deemed undesirable as it causes more wear on the HP, the minimum on-time can be 
increased greater than 10 minutes. The effect of increasing minimum on time to the operating cost is investigated under 
cost-optimization. Two minimum on times for the HP are considered: 30 minutes and 1 hour. The operating cost 
increases as the minimum on-time increases. Specifically, for a minimum on-time of 30 minutes, the operating cost of 
regulatory and supervisory EMPC are $0.625 and $0.631, respectively. In the case of 1 hour minimum on-time, the 
operating cost of regulatory and supervisory EMPC is $0.664. 

CONCLUSION  

A cloud-based supervisory EMPC framework for HPWHs was proposed to minimize electricity cost and GHG 
emissions rate. In the proposed framework, the cloud-based EMPC sends down a temperature setpoint to the local 
HPWH RBC as opposed to directly controlling the HPWH heat sources. The RBC, regulatory EMPC, and the 
supervisory EMPC were applied to a simulated HPWH to analyze the behavior of the HPWH under the three control 
strategies. From this analysis, the RBC (in the supervisory EMPC case) was able to implement the on and off decisions 
computed by the EMPC, which indicates that the setpoint calculator was able to translate the EMPC’s decisions to the 
appropriate temperature setpoints. The effect of increasing minimum on-time was also investigated and showed that 
minimizing HP cycling results in increased operating cost. In all cases considered, the EMPC reduced operating costs 
and expected GHG emissions compared to the cost and expected GHG emissions under RBC. 
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Figure 2  The (a) exogenous inputs and HP status and average water temperature under (b) RBC, (c) 

regulatory EMPC, and (d) supervisory EMPC under cost-optimization. 
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