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Recent estimates show significant human population expansion in the Amazon region 

that in turn implies dramatic changes in natural landscapes and also in human behaviors such as 

human mobility which may further expose these communities to malaria risk. The current path 

toward eliminating malaria is severely threatened by these environmental and human activity 

changes, yet there is scarce evidence of how changing land cover affects human mobility 

dynamics and ultimately malaria transmission, especially in the Amazon region.
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This dissertation includes three studies examining the relationship of human mobility and 

land cover change on the epidemiology of malaria in the Peruvian Amazon. The first study 

assesses the connectivity structure and centrality between cities and villages as malaria 

transmission drivers in rural Amazonia using novel network analysis on granular passive case 

detection data. The second study determines the effect of out-of-village working activities on 

recent malaria exposure using two population-based studies and a g-computation approach to 

simulate multiple scenarios of mobility restrictions (by proportion of travelers, gender, and age) 

to quantify the impact of such restriction policies on malaria exposure reduction. The third study 

quantifies the effect of human population mobility on malaria risk using GPS data and fine-scale 

mobility metrics computed by a novel movement ecology non-parametric Bayesian framework. 

The first study showed that localities with high connectivity consistently have higher 

malaria endemicity that was exacerbated in regions with the highest baseline malaria 

transmission rates. The second study presented the crucial significance of human mobility in 

supporting malaria transmission in the Peruvian Amazon. This study demonstrated the 

importance of targeting key subpopulations when creating occupational interventions by 

simulating the incidence of out-of-village employment activities to represent different policy 

scenarios. Targeting males and adults (18 years and older) groups has the greatest influence on 

malaria seropositivity. Finally, the third study showed that the high interaction between Amazon 

villages for reasons such as labor, commerce, or recreation may sustain such endemicity levels 

by increasing exposure to the malaria parasites and eventually increasing the importation risk. 

The findings of this research can be used to inform control strategies and policies in the 

Amazon region to shift towards approaches that incorporate village connectivity structure and 
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human mobility patterns to prioritize connected areas instead of single villages and intensify 

malaria screening in sub-populations defined by their mobility profile. 
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Chapter 1: Introduction 

1.1. Overview of Malaria 

Malaria is the most important arthropod-borne disease in developing countries. 

According to the World Malaria Report by the World Health Organization (WHO) 1, there were 

247 million malaria cases and an estimated 619,000 deaths in 2021. This vector-borne disease 

affects other impoverished populations in tropical and subtropical areas due to the suitable 

environmental conditions that favor the development of the vectors and spread of the parasites, 

in addition to the lack of access to quality healthcare 2 (Figure 1.1) 

 

The transmission cycle involves protozoan parasites of the genus Plasmodium spp. 

transmitted to humans through the bite of mosquitoes of the genus Anopheles spp. There are six 

species within the genus Plasmodium that cause human malaria: Plasmodium vivax, P. 

falciparum, P. malariae, P. ovale curtisi, P. ovale wallikeri, and P. knowlesi 3. There are 

differences among these pathogens, including their life cycle, symptoms, and treatment. From an 

epidemiological point of view, the main difference is mortality risk; untreated P. falciparum 

cases result in high mortality rates 3,4. On the other hand, there are about 440 anopheline species, 

of which only approximately 70 are vectors of Plasmodium spp. and of these, about 41 are 

important vectors that transmit the disease to humans 5,6. 

 

Malaria vectors are sensitive to the characteristics (i.e., temperature and precipitation) of 

the micro-environment and the physicochemical composition of the water bodies where they 

breed. These sensitivities determine the spatio-temporal distribution of anopheline species across 

landscape gradients such as in the Amazon region7. Landscape modification due to urban 
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expansion alters human-mosquito interactions, in particular, due to the adaptability of the 

dominant vector species in the area, Nyssorhynchus (Anopheles) darlingi 8–10. Importantly, as the 

flight range of Anopheles spp. in this area is 400-500m 11,12, the most relevant source of parasite 

flow between regions that can jeopardize current malaria control efforts is Human Population 

Movement (HPM) 13–15.  

 

 

Figure 1.1. Worldwide distribution of malaria incidence in 1990 and 2017. Source: Our 
World in Data, 2020. 
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The following sections will cover: i) a general overview of malaria epidemiology in Latin 

America and Peru, ii) the population and urban expansion in these areas and frameworks that 

link landscape modification with malaria transmission, iii) the evidence of the role of HPM on 

the transmission of infectious diseases with particular emphasis on malaria and highlighting 

where the literature has or has not considered urban development as a driver for increased 

connectivity due to HPM, and finally, iv) the evidence for the relationship between occupational-

related HPM and malaria infection. 

 

1.2. Malaria in Latin America 

1.2.1. Region of the Americas 

From 2005 to 2014, malaria reduction efforts were successful in the WHO Region of the 

Americas. However, since 2015, this region experienced an increase in the total number of cases 

due to outbreaks in the Bolivarian Republic of Venezuela along with increased transmission in 

endemic areas of countries such as Brazil, Colombia, Guyana, Nicaragua, and Panama, as well as 

outbreaks in countries that are moving towards elimination (Costa Rica, the Dominican 

Republic, and Ecuador) 16,17. Most of the cases in this part of the world are located in the 

Amazon region (Figure 1.2) and are mainly caused by P. vivax. 

 

The primary vector in the Americas is Ny. darlingi which, in comparison with An. 

gambiae in the African continent, is more flexible in its selection of breeding sites and is more 

strongly anthropophilic (attracted to biting humans) and exophagic (preferring to bite outdoors) 

9,18. Ny. darlingi is highly susceptible to human plasmodium and capable of transmitting the 
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parasite inside and outside houses, even when its density is low 19. Breeding sites for Ny. darlingi 

are characteristically represented by collections of clear, shallow water, shaded, with vegetation, 

and low salt concentration 8,18,20. Since this species is both anthropophilic and opportunistic 8,10, 

as the natural environment becomes more altered or deforested, the local population of Ny. 

darlingi tends to cohabit with humans, invading their homes, and increasing its importance as a 

vector 21. In the Amazon, it is the anopheline vector that most quickly and efficiently benefits 

from human-driven land-use change to the pristine environment 7,12,21,22. The rural, riverine 

context that characterizes the Amazon rainforest provides suitable breeding sites for Anopheles 

mosquitos, allowing large heterogeneity in spatial patterns and less marked seasonal patterns of 

malaria transmission in comparison to SSA settings.  

 

 

Figure 1.2. Malaria cases per 1000 population in 2021 in the Region of Americas. 
Percentage of Plasmodium species by country and change in estimated malaria incidence and 
mortality 2015-2021. Source: World Malaria Report, 2021. 
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1.2.2. Peru 

The Peruvian Amazon is a region undergoing epidemiological changes as a result of 

complex land alterations/deforestation and climate change. Malaria epidemiology in the Peruvian 

Amazon is dominated by P. vivax (80%), with the remaining 20% of cases attributed to P. 

falciparum 23. Currently, the province of Loreto accounts for around 90% of all malaria cases 

reported in Peru 24 and the main vector is Ny. darlingi 8,9.  

 

The trends of malaria in Peru show that important reductions in the malaria burden can be 

obtained with intensive and comprehensive standard control measures, but also that this progress 

can quickly be lost if there is not a long-term country wide plan to sustain control activities and 

prevent malaria resurgence 23,25. In this context, new challenges such as rapid urban expansion 

and changes in human mobility remain elusive in malaria control plans, which may deter current 

efforts.  For instance, the Global Fund-sponsored “Plan de Malaria en Áreas de Frontera” 

(PAMAFRO) project, which ran between 2005 and 2010 in the Peruvian Amazon, supported the 

1) strengthening of microscopic diagnosis, 2) implementation of active test-and-treat 

interventions by training community health workers (CHW), community-based larval source 

management (LSM), and 4) the distribution of long-lasting insecticidal mosquito nets (LLINs) 

with a community-based intercultural approach.  During this period, malaria declined drastically 

in the most affected department of Loreto from 54,291 reported cases (25% due to P. 

falciparum) in 2005 to 10,504 cases (20% due to P. falciparum) in 2010 23,26.  Regrettably, the 

marked reduction of international donors' support and the unusually heavy rains that caused 

floods in riverine villages starting in 2012 led to a five-fold increase in cases between 2010 and 

2015 (60,302 cases) 23,24 (Figure 1.3).   
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Political and financial commitment from the Peruvian government was crucial not only to 

respond to this malaria resurgence, but also to establish a long-term initiative called Plan Malaria 

Cero started in 2017, with the ambitious aim of eliminating malaria in the country by 2036 24.  

Intensive malaria control interventions based on the PAMAFRO program in villages at high risk 

of malaria contributed to a substantial reduction in malaria incidence in Loreto, which reported 

22,037 cases in 2019 24.  As transmission decreases, malaria strategies need to be more focused 

and tailored to the local malaria epidemiology determined by the complex interactions between 

Plasmodium parasites, human behavior, and highly variable environments driving changes in 

vector behavior and habitat suitability 23,27,28.  

 

Figure 1.3. Time series of annual parasite index (API) of P. falciparum and P. vivax in the 
Loreto Region, Peru, 2000-2017. Source: Own elaboration, Ministry of Health data, 2018. 
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Rural riverine villages, characterized by poverty and limited access to healthcare facilities 

29 (Figure 1.4), represent an important proportion of reported malaria cases in Loreto 30; 

however, the transmission dynamics in these villages remain understudied 13,31. Previous studies 

in the Peruvian Amazon have examined the association between malaria cases and climatic 

factors using the scarce and scattered network of meteorological stations in this area 32–34 or 

indices that describe the El Niño Southern Oscillation (ENSO) 35–37. These studies concluded that 

higher temperatures, river levels and more abundant rainfall during El Niño conditions were 

associated with increased malaria risk in the Peruvian Amazon 32,34,35. 

 

Figure 1.4. District-level travel time (in minutes) from villages to health facilities in Peru, 
by type of healthcare facility. Source: Carrasco-Escobar, 2020. 
 

1.3. Population growth and land cover change 

Population growth and land occupation follow parallel trends particularly in the early 

stages of urban development. A shift in human populations from rural to urban environments 

will change global patterns of disease and mortality 38,39; for example, some studies suggest that 

urban African populations are healthier and have reduced malaria transmission rates compared 
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with their rural counterparts 40. These improved health conditions in urban areas reflect enhanced 

access to preventative and curative services that might be related to wealth, education, and 

geographical location. Additionally, with increased human density in urban areas, malaria 

exposure per capita also decreases since most natural breeding sites remain constant or reduced 

due to land use and land cover (LULC) change 40. However, while it remains challenging to 

determine whether increased urbanization results in decreased transmission, or if malaria 

reductions promote urban development, the results of multiple studies point to a close 

relationship between the two, irrespective of national wealth 40,41. Markedly, prior literature on 

the subject has focused on the African continent, with few studies evaluating these interactions in 

Latin America (LA), where different dynamics of the parasite, vectors, and hosts are in place. 

 

Human population size is hypothesized to influence the abundance and distribution of 

malaria-transmitting mosquitoes in rural settings 42,43, but also in the transition to urban 

environments. Population density also affects within-city dynamics (i.e., occupational activities, 

impoverished and vulnerable populations) that cause uneven exposure to mosquitoes. The 

combination of vector (Ny. darlingi) and parasite (P. vivax) characteristics and population 

dynamics in the neglected region of LA creates a situation that potentially jeopardizes global 

efforts of malaria control, though it also provides motivation to investigate such an understudied 

region. 

 

In addition, anthropogenic environmental change is a significant driver of infectious 

disease dynamics in the Amazon rainforest 44. Increased human population and LULC influence 

the biological community, including Anopheles mosquitoes, particularly those with some degree 
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of competence to transmit Plasmodium sp. that circulate in the Amazon region 45. Importantly, 

changes in weather patterns also alter the ecological and spatial distributions of the malaria 

parasite, Plasmodium spp. and its vector, Anopheles spp. 46,47. As a result, the interaction 

between LULC change, such as deforestation, and climate change is altering the landscape of 

infectious diseases in the Amazon. These factors are contributing to the re-emergence of malaria 

and other vector-borne diseases in some areas where it had previously been on the decline, 

threatening the success of malaria elimination programs 48,49. 

 

Two types of LULC in the Amazon, forest degradation and land clearance, are associated 

with environmental and ecological changes that increase the breeding habitat of mosquito vectors 

such as Ny. darlingi 7. In addition, movement of workers into deforested areas increases human 

exposure to the mosquito vector, elevating mosquito biting rates 50. These conditions facilitate 

the spread of malaria vectors and disease transmission, particularly in the early stages of forest 

clearance, such as in Amazonian frontier settlements, where forest edge habitat is high 44. This 

framework is called “frontier malaria” 51 and consists of initial high rates of malaria in newly 

deforested areas, followed by a decline due to improvement in public services, such as healthcare 

infrastructure. In the final stage of frontier malaria, disease transmission is reduced and becomes 

stable 52 (Figure 1.5). The complex dynamics of malaria transmission in deforested areas is a 

challenge for control programs in the Amazon region.  
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Figure 1.5. Conceptual framework of ‘Frontier Malaria’. Source: de Oliveira Padilha, 2019. 
 

Malaria is not the only infectious disease affected by the modification of the 

environment. The conversion of natural habitats to agricultural or urban ecosystems is widely 

recognized to influence the risk and emergence of zoonotic disease in humans 53,54. Gibb et al. 55 

analyzed large-scale dataset of ecological assemblages and host species and showed that LULC 

has global and systematic effects on local zoonotic host communities. Notably, LULC intensity 

has positive effects on community zoonotic potential both within and between LULC types, with 

the largest increases in zoonotic potential seen for sites recovering from past disturbances 

(“substantial-use secondary”), managed sites (i.e., cropland, pasture, or plantation) (18–21% host 

proportion richness, 21–26% proportion abundance), and urban sites (62–72% proportion 

richness, 136–144% proportion abundance). Their results suggest that global changes in the 

mode and the intensity of LULC are expanding and creating new hazardous interfaces between 

people, livestock, and wildlife reservoirs of zoonotic disease.  
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Remote sensing has been widely used to help identify the environmental determinants of 

malaria transmission and how these determinants have changed spatio-temporally concurrent 

with the LULC trajectories in the Amazon region 56. These development trajectories in the 

Amazon rainforest fit within the frontier malaria framework as they involve tight interactions 

between environmental and contextual variables pertaining to malaria risk 48,51,57–59. A recent 

study tested the hypothesis that deforestation, as a marker of LULC, and malaria incidence 

influence each other in bidirectional causal relationships governed by socio-ecological 

mechanisms. They found that deforestation leads to an increase in malaria incidence and the 

increase in malaria burden reduces forest clearing events 44. In these settings, environmental 

changes can trigger a change in vector species composition. Some malaria vector species thrive 

in the new landscapes resulting from changes in deforestation rates, land use, behavioral patterns, 

or economic activities, whereas other species are replaced 60.  

 

1.4. Networks and connectivity 

As villages and cities grow, transit to and from these locations increases. From a malaria 

control perspective, this flow, also referred to as connectivity, may influence the endemicity 

level in the system (group of villages/cities). In other words, if there is no population interaction 

between two places, their malaria endemicity and risk remains independent. In contrast, if there 

is an intense population flow between two places, their connectivity influences, to some degree, 

the malaria endemicity and risk in both locations. Most of the literature on this subject uses the 

disease elimination framework 61, that is, once control strategies are successful and a country 

achieves the malaria elimination phase (< 1 case / 1000 population at risk) 62, particular attention 

is paid to the prevention of malaria re-introduction (Figure 1.6). 
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Key concepts to sustain malaria elimination were first defined in the previous Global 

Malaria Eradication Programme (GMEP, 1955–1969), directed by the World Health 

Organization. These concepts include: 1) vulnerability (the rate of malaria importation), 2) 

receptivity (the potential for ongoing local transmission), and 3) malariogenic potential (the 

expected number of cases that could occur as a product of vulnerability and receptivity). These 

concepts were revised in 2018 by the WHO Evidence Review Group on the assessment of 

malariogenic potential to inform elimination strategies and plans to prevent re-establishment of 

malaria 63, see text box 1 for updated terminology. 

 

Figure 1.6. Programme phases from malaria control to elimination. Source: Mendis, 2009. 
 

The new version of the WHO guideline “A framework for malaria elimination” 64 

expanded these definitions to subnational levels. However, in some contexts, this framework 

could be further expanded to micro-scale levels. In rural Amazonia, where most commuting 

occurs by river, the connectivity between villages is shaped by the river network or watershed. 

Villages with varying levels of malaria endemicity could be located in the same watershed, 

potentially allowing the circulation of the parasite between eliminated and endemic regions 65. 
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1.4.1. Parasite flow and malariogenic potential 

For a given area, the malariogenic potential is the likelihood that an imported infection 

establishes onward local malaria transmission due to characteristics of the host, the parasite, the 

vector, and the ecosystem (see text box 1 for further details). In elimination settings, the 

connectivity between areas of contrasting endemicity, due to HPM, is considered key to prevent 

the re-establishment of transmission 61,65,66.  

 

Multiple studies have analyzed the role of HPM in the transportation of parasites and the 

generation of local subsequent outbreaks 61,65–69. Importantly, most of these studies identified 

Text Box 1. Updated terminology by the Malaria Policy Advisory Committee. 
 
Malariogenic potential: Likelihood of local transmission that is the product of receptivity, 
risk of importation of malaria parasites and infectivity of imported parasites. Note: The 
concept of malariogenic potential is most relevant for elimination and prevention of 
reestablishment when indigenous transmission is mostly or entirely eliminated. 
 
Receptivity: Degree to which an ecosystem in a given area at a given time allows for the 
transmission of Plasmodium spp. from a human through a vector mosquito to another human. 
Note: This concept reflects vectorial capacity, susceptibility of the human population to 
malaria infection, and the strength of the health system, including malaria interventions. 
Receptivity can be influenced by ecological and climatic factors.  
 
Vulnerability: Likelihood of malaria infection based on living conditions or behavioral risk 
factors, or likelihood of increased risk of severe morbidity and mortality from malaria 
infection. 
 
Importation risk: Risk or potential influx of parasites via infected individuals or infected 
Anopheles spp. mosquitoes. Note: “Infected individuals” includes residents infected while 
visiting endemic areas as well as infected immigrants. 
 
Infectivity: Ability of a given Plasmodium strain to establish an infection in an Anopheles 
mosquito species and undergo development until the mosquito has sporozoites in its salivary 
glands. 
 



 14 

multiple types of HPM (i.e., labor, recreational, forced migration, etc.); however, none of these 

studies quantified of the role of urbanization (or development) of the cities in attracting or 

generating these types of HPM. 

 

An important, and related, task is the identification of the “source areas” where humans 

may become infected and subsequently, through travel, introduce the parasite into new “sink 

areas” 69,70. Recent access to mobile phone data has improved the estimation of these source and 

sink areas in Africa 70–73; however, regions such as the Amazon rainforest lack the mobile phone 

infrastructure to conduct this type of analysis 74.  

 

1.4.2. Connectivity and centrality applied to infectious diseases 

Networks can be used to represent any type of relationship between entities 75,76. Network 

theory has been used to represent relationships in scientific fields such as physics, informatics, 

chemistry, and biology, and more recently in social sciences 75,77. Networks could represent 

relations of cells, organisms, information, ideas, or any other study subject. Importantly, network 

analysis is a branch of applied mathematics derived from graph theory, and as such, multiple 

properties may be derived from the graph representation 75,78. These properties could be 

measured at the entity (herein referred to as nodes or vertices), the relationships (herein referred 

to as edges or links), or at the overall level. In the study of social science or ecology, these 

networks are in constant flux due to of the addition or removal of nodes and edges to the system 

77. This property, called “scale-free” (represented in Figure 1.7a), is particularly important in the 

study of infectious diseases due to their dynamic behavior. 
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Nodes can be defined as populations (in cities or villages) and the edges as the flow of 

parasites or susceptible hosts due to HPM. As the size of the nodes increases (due to population 

growth and/or urbanization in cities/villages), new edges could be created (as people start 

traveling between villages/cities) and ultimately shape malaria distribution in the system. As 

more edges are added to the network, the relative importance of the nodes in a network could be 

measured by centrality properties (Figure 1.7b). The most popular measure is the “betweenness 

centrality”, that is computed in a weighted network as follows: 

𝐶!(𝜐) 	= 	 '
𝛿"#(𝜐)
𝛿"#"$%$#

 

where 𝛿"# is the total number of shortest paths from node s to node t and 𝛿"#(𝜐) is the 

number of those paths that pass through node 𝜐 79,80. 𝐶! ranges from 0 to 1 and high values 

indicate the relative high importance of a specific node in a network. Betweenness centrality 

differs from other centrality measures such as degree, eigenvector, and closeness centrality by 

considering nodes who play a "bridge spanning" role inside a network. 

 

Network analysis and connectivity have been previously used in the malaria literature. 

Buckee et al.  analyzed the malaria parasite population structure from serological networks 81. 

Tatem et al. estimated the role of international population movements on P. falciparum malaria 

elimination strategies 82. Pindolia et al.  further analyzed regional connectivity and the mobility 

of different demographic groups in in East Africa and showed that demographically-stratified 

HPM and malaria movement estimates using network analysis can provide quantitative evidence 

to inform the design of more efficient malaria interventions 83. Huang et al. expanded this 

analysis to understand global malaria connectivity through air travel and showed that both 
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malaria-free areas and other endemic regions are strongly connected, particularly in Africa and 

Southeast Asia 84.  

 

Figure 1.7. Networks representations. A) Scale-free model representation in time (t =1-8). 
Source: Barabási, 2009 93. B) Four network structures in relation to the centrality degree. The 
most central node in each network is colored red. Source: Borgatti, 2009. 
 

In the mobility and migration literature, the strength of the links between nodes is 

commonly computed using ‘gravity models’ 85. These models are used to understand the 

connectivity between areas as a consequence of HPM and as a function of the population size in 

the origin and destination locations. Analogous to Newton’s law of gravity, a gravity model 

assumes that the number of individuals Fij that move between locations i and j per unit time is 

 
 
a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b) 
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proportional to some power of the population of the source (mi) and destination (nj) locations, 

and decays with the distance rij between them: 

𝐹&' =
𝑚&
(𝑛'

)

𝑓-𝑟&'/
 

where a and b are adjustable exponents and the deterrence function 𝑓-𝑟&'/ is chosen to fit 

the empirical data 85. This model and some variations were recently used to analyze the 

connectivity between areas due to HPM in malaria-endemic countries 61,70,86,87. It is important to 

mention that network analyses (i.e., connectivity, centrality, gravity, etc.) are models where 

HPM is used to represent a link between two nodes (villages/cities), and taken together with 

urban expansion, are used in this study to understand the dynamics of the cities and villages in 

developing settings.  

 

The main mechanism establishing malaria transmission from external sources is the 

importation of parasites from HPM. As cities grow, HPM intensifies, and in consequence, the 

probability of malaria importation increases. The magnitude of the connectivity in these areas is 

conditioned by the size of the cities as a proxy for the number of services and commerce in 

place.  

 

1.5. Human Mobility  

Human travel (referred to as HPM) impacts the spread of pathogens (i.e., viruses, 

bacteria, parasites, etc.), increases exposure to high-risk or hazardous environments (i.e., forest 

fringe, air pollution, UV radiation) 88–92, and affects urban planning decisions 89,90. Prothero et al. 

88 highlighted in 1977 that “Not only must mobility be identified as a factor in disease 
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transmission, because disease itself is a factor responsible for movement: areas may become less 

suitable for occupation if not totally uninhabitable, thereby forcing the movement and 

redistribution of population”. Nowadays, the availability of new streams of data due to 

ubiquitous technologies (such as mobile phones, the Internet of Things, and Smart Cities 

Networks) has revolutionized our understanding of HPM patterns 68,70,72,73. However, the lack of 

necessary infrastructure in rural areas such as the Amazon rainforest prevents the use of such 

technologies and ultimately limits our understanding of the role of HPM on the transmission of 

diseases in this region 74,93.  

 

1.5.1. Impact of human movement on infectious diseases 

People can acquire a parasitic infection during transit between regions with different 

endemicity levels 65,66. While travelling, individuals may be exposed to environments favorable 

to mosquito abundance, biting behavior, and ultimately malaria risk 13,31,94,95. Multiple factors 

influence particular HPM patterns. Prothero et al. 88 pioneered a characterization of HPM in 

circulatory and migratory movements, and in relation to a rural-urban gradient. Stoddard et al. 96 

described a framework for characterizing HPM relevant for vector-borne diseases across spatial 

and temporal scales. Recently, Pindolia et al. 61expanded these typologies in relation to the 

distance and frequency of travel in the context of malaria elimination (see Figure 1.8). 
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Figure 1.8. Examples of human population movement (HPM) types relevant for malaria 
control and elimination, stratified by distance and frequency. Source: Pindolia, 2012. 

 

HPM results in increased contact between humans and mosquitos. The extent of this 

exposure is dependent on human behavior and the type of movement 14. For instance, sleeping 

outdoors without bed nets, working certain hours of the day, not using protective clothes, or not 

taking necessary hygienic measures are all factors that can modulate the spread of malaria while 

traveling. These tangled interactions have been explored recently by Fornace et al. 94 by using 

detailed GPS-tracking data to understand the impact of HPM on zoonotic malaria in Malaysia 

and highlighting the importance of intensified interactions between pathogens, insect vectors, 

and people around habitat edges. 
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Previous studies have quantified the role of HPM on malaria transmission in the Amazon 

region 13,15,97–100. These studies found that the relationship between HPM and malaria 

transmission is highly context-dependent, with contrasting malaria exposure levels associated 

with different HPM patterns. In these studies, consistent risk factors for malaria exposure 

included travel related to certain occupations, travelling for multiple days at a time, and using 

multiple means of transportation in a single trip. Most of these studies relied on the use of travel 

questionaries or participatory mapping 93,98, however, this method has important limitations (i.e., 

recall bias, lack of accuracy defining transit areas, collecting details on destinations but not on 

trajectories) in comparison to other methods for measuring HPM 91,96,101, such as telemetry, 

Radio Frequency Identification (RFID), GPS tracking, and mobile phone tracking (based on 

cellphone-towers registries). GPS tracking emerged as a suitable approach to measure HPM in 

the absence of phone infrastructure in regions such as the Amazon. In particular, previous studies 

on malaria 74 and dengue 102 in the Loreto Region of Peru, showed the feasibility of this 

technology in rural and urban settings, respectively. Both studies showed the high mobility and 

connectivity of this population but also how patterns of HPM differed based on factors such as 

occupational activities and demographic characteristics, with the authors hypothesizing on the 

potential impact these different HPM patterns might have on the transmission of infectious 

diseases in the area. 

 

1.5.2. Occupational-related mobility 

One of the most important drivers of HPM in malaria-endemic areas is occupational 

activities like fishing, logging, agriculture, or commerce 83,94,95,98,103. Previous studies in the 

Loreto Region have showed consistent evidence suggesting the important role that HPM plays in 
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the malaria epidemiology of P. vivax and P. falciparum. Chuquiyauri et al. 104 reported higher 

odds of several clinical malaria episodes in logging and agricultural workers, and Chuquiyauri et 

al. 105 showed higher odds of P. vivax reinfections in participants with jobs that require travel out 

of the village. Furthermore, Carrasco-Escobar et al. 13 showed in a longitudinal analysis that 

loggers, fishers, and farmers had a higher risk of P. vivax malaria in riverine communities than 

occupations carried out inside the villages. Rosas-Aguirre et al. 106 showed that individuals with 

outdoor occupations (e.g., farmers, guards, loggers, fishers) had higher odds for P. falciparum 

malaria. Finally, Parker et al. 31 reported high measures of vectorial capacity and indices of 

malaria transmission risk based on direct measurement of anopheline biting rates and sporozoite 

(dormant stage) rates for several undeveloped, riverine campsites in the Peruvian Amazon, 

frequented by occupation-related travelers. 

 

1.6. Dissertation overview and specific aims 

Despite reductions in malaria incidence and mortality worldwide, malaria remains one of 

the most important infectious diseases globally in terms of cases and deaths. Malaria 

transmission occurs mainly in rural areas; however, the expansion of the urban frontier favors 

complex interactions between hosts, vectors, and parasites in new transient environments. In 

2007, the United Nations (UN) estimated that, for the first time, more people in the world lived 

in urban than in rural areas. Current projections highlight the rapid population growth in urban 

settings that will in turn involve dramatic changes in natural landscapes and also in human 

behaviors such as HPM. These increasing changes in the environment and human activities pose 

a critical challenge to the current malaria elimination track; however, evidence regarding the role 
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of land cover change on the dynamics of HPM and ultimately on malaria transmission remains 

scarce, particularly in the Amazon region. 

 

In the Amazon region, bigger cities intensify the HPM between neighboring areas. 

Increased connectivity, generated due to HPM, also influences the malaria endemicity in a 

network of cities/villages. HPM provides additional opportunities for environmental exposure to 

occur in transit between areas, and represents a key, yet neglected factor for tailoring current 

malaria control strategies, such as household spraying and bed net distribution, which commonly 

assume stable (not mobile) populations. Using detailed spatio-temporal data at the village level 

in Peru, this study proposes to unveil the effect of connectivity on malaria transmission in rural 

settings using network analysis under contrasting transmission levels. 

 

Importantly, different patterns of HPM result in contrasting malaria exposure levels. In 

rural areas, the highest risk of malaria infections is observed among inhabitants with 

occupational-related HPM. Logging, fishing, commerce, or agriculture are hypothesized to 

expose inhabitants to higher mosquito biting rates; however, no etiological assessment has been 

conducted to understand this relationship. In this study, I propose the use of causal inference 

methods and detailed individual-level travel data to understand this etiological relationship and 

simulate potential interventions to optimize the reduction in transmission risk. 

 

Ultimately, studies that examine fine-scale mobility patterns and their role in importing 

malaria parasites in endemic Amazonian settings remain scarce. GPS data is increasingly being 

applied to a variety of epidemiological studies to quantitatively characterize mobility patterns at 
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a fine spatio-temporal resolution. Such GPS-based approaches include time-weighted spatial 

averaging (TWSA) (e.g., utilization distribution, kernel density, density ranking) and models 

based on activity spaces (e.g., daily path area, minimum convex polygon, standard deviation 

ellipse) 107,108. In this study, I propose quantifying the effect of human population mobility on 

malaria importation risk by using a densely sampled population cohort tracked with GPS data 

loggers.  

 

In this dissertation, a multilevel and multiple-method approach is proposed to address the 

role of urban expansion and HPM in the epidemiology of malaria in the Peruvian Amazon 

(Table 1.1). The following specific aims will be addressed: 

 

Aim 1: Assess connectivity structure and centrality between cities and villages as malaria 

transmission drivers in rural Amazonia. 

Aim 2: Determine the effect of out-of-village working activities on recent malaria 

exposure in the Peruvian Amazon. 

Aim 3: Quantify the effect of human population mobility on malaria risk using GPS data 

and fine-scale mobility metrics. 

 

Evidence generated in this dissertation is aimed to help decision-makers in the Amazon 

region and other malaria-endemic settings to better prepare for and respond to future changes in 

malaria risk. By analyzing the effect of environmental modification and HPM on malaria 

transmission in the Amazon region, the evidence generated in this study will support the 

adoption of 1) malaria control strategies that account for environmental modification and human 
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mobility, and 2) urban planning and development policies in rural areas that consider infectious 

disease dynamics. 

 

Table 1.1. Summary of study area, inference level, temporal scale, and data sources of malaria 
and covariates for study aims. 

Study 
aims 

Study area 
Inference 
level 

Temporal 
scale 

Malaria data source Covariate data sources 

Aim 1 
Loreto region 
(Peruvian 
Amazon) 

Village/cities  
(n = 1608) 

Monthly 
(2009–2018) 

Passive case detection (PCD) 
reports from the Peruvian 
Ministry of Health 

Hansen collection derived deforestation 
metrics, National watershed network 

Aim 2 
Rural villages 
(Peruvian 
Amazon) 

Individuals 
(n=1790) 

Cross-
sectional 
(2018) 

Amazonian International Center 
of Excellence in Malaria 
Research (ICEMR) data 

Sociodemographic and travel surveys 

Aim 3 

Gamitanacocha 
village 
(malaria 
hotspot) 

Trips (GPS 
logs) (n = 30 
individuals) 

Weekly  
(8 weeks, 
2018) 

Proof-of-concept study, 
GORGAS study data 

Sociodemographic and travel surveys 
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Chapter 2: The role of connectivity on malaria dynamics across areas with contrasting 

control coverage in the Peruvian Amazon 

 
2.1. Abstract 

Network analysis may improve the understanding of malaria epidemiology in rural areas 

of the Amazon region by explicitly representing the relationships between villages as a proxy for 

human population mobility. This study tested a comprehensive set of connectivity metrics and 

their relationship with malaria incidence across villages with contrasting PAMAFRO (a malaria 

control initiative) coverage levels in the Loreto department of Peru using data from the passive 

case detection reports from the Peruvian Ministry of Health between 2011 and 2018 at the 

village level. A total of 24 centrality metrics were computed and tested on 1,608 nodes (i.e., 

villages/cities). Based on its consistency and stability, the betweenness centrality type 

outperformed other metrics. No appreciable differences in the distributions of malaria incidence 

were found when using different weights, including population, deforested area, Euclidian 

distance, or travel time. Overall, villages in the top quintile of centrality had a higher malaria 

incidence in comparison with villages in the bottom quintile of centrality (Mean Difference in 

cases per 1000 population; P. vivax = 165.78 and P. falciparum = 76.14). The mean difference 

between villages at the top and bottom centrality quintiles increased as PAMAFRO coverage 

increased for both P. vivax (Tier 1 = 155.36; Tier 2 = 176.22; Tier 3 = 326.08) and P. falciparum 

(Tier 1 = 48.11; Tier 2 = 95.16; Tier 3 = 139.07). The findings of this study support the shift in 

current malaria control strategies from targeting specific locations based on malaria metrics to 

strategies based on connectivity neighborhoods that include influential connected villages. 
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2.2. Introduction 

The Peruvian Amazon is experiencing epidemiological changes in malaria transmission 

as a result of landscape modifications, climatic factors, malaria control interventions, and other 

anthropogenic drivers. Regionally, malaria epidemiology is dominated by P. vivax (80%), with 

the remaining 20% of cases attributed to P. falciparum 23. Currently, the Loreto department 

accounts for an estimated 90% of all malaria cases reported in Peru 24. In this area, between 2006 

and 2010, an intense malaria control program, PAMAFRO, (Project for Malaria Control in 

Andean Border Areas) was undertaken, supported by the Global Fund 26. This program was 

successful and effective, resulting in a sharp reduction in malaria, with cases reaching their 

lowest number (22,909) in 2011109. However, since 2011, this trend has been reversed, with a 

peak of 61,108 malaria cases reported in 2014 24. Re-emergence factors such as asymptomatic 

reservoirs 110,111, meteorological conditions 112, and changes in the mosquito population 9,31,113 

have been previously studied in this area. However, evidence of other factors influencing this 

uptick in malaria cases, such as human population mobility (HPM) and, as a result, the 

connectivity between villages with contrasting malaria transmission, remains scarce.  

 

The transit and return of people from locations with contrasting endemicity levels must 

be addressed to achieve malaria elimination 28. This flow, also referred to as connectivity, 

influences the malaria endemicity level in the system (group of villages/cities) and jeopardizes 

control interventions that focus on targeted villages as isolated from (not connected to) other 

locations. This human population flow between two areas influences, to some degree, the malaria 

endemicity and risk in both locations (origin and destination). Under the World Health 

Organization (WHO) malaria elimination framework, human mobility and connectivity are key 



 27 

parts of the malariogenic potential, defined as the likelihood that an imported infection 

establishes local malaria transmission due to characteristics of the host, the parasite, the vector, 

and the ecosystem 63. 

 

The relationships between two or more entities (i.e., villages) are often analyzed as 

networks 75,76,78. Different properties can help capture the level of connectivity between such 

entities and can be measured at the entities (nodes), the links, or at the overall level. This 

framework has recently been used in the context of infectious diseases. Buckee et al. analyzed 

the malaria parasite population structure from serological networks 81. Tatem et al. estimated the 

role of international population movements on P. falciparum malaria elimination strategies 82. 

Pindolia et al. further analyzed regional connectivity and the mobility of different demographic 

groups in in East Africa and showed that demographically-stratified HPM and malaria movement 

estimates using network analysis can provide quantitative evidence to inform the design of more 

efficient malaria interventions 83. Finally, Huang et al. expanded this analysis to understand the 

global malaria connectivity through air travel and showed that both malaria-free areas and other 

endemic regions are strongly connected, particularly in Africa and Southeast Asia 84.  

 

However, no agreement has yet been reached on which network property best captures 

how HPM affects malaria epidemiology, particularly in areas such as Latin America, which is 

the region with the most rapid urban growth rate in the world 114,115. Furthermore, the current 

projections of population growth in the Amazon region involve dramatic changes in natural 

landscapes but also in human behaviors such as HPM. This study therefore proposes 

incorporating LULC changes to reflect the expansion of villages and cities nested in watersheds 
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that reflect microcircuits of mobility. Taken together, refined metrics of connectivity between 

villages have the potential to better inform malaria control efforts. In this study, we use data from 

the passive case detection (PCD) reports from the Peruvian Ministry of Health (MoH) between 

2011 and 2018 at the village level to test a comprehensive set of connectivity metrics, including 

population and environmental (deforestation) weights, and their relationship with malaria 

incidence across villages with contrasting baseline malaria transmission and PAMAFRO 

coverage levels in the Loreto department of Peru. 

 

2.3. Methods 

2.3.1. Study design 

This is an observational ecological study that tests the relationship between connectivity 

metrics and malaria incidence in the Loreto department of Peru. Connectivity metrics were 

derived from the combination of multiple centrality measures (i.e., betweenness, strength, eigen, 

and closeness) and weights such as masses (i.e., population and deforested area) and costs (i.e., 

distance and travel time). The relative importance of the nodes has been analyzed as a driver for 

malaria incidence in the area using ten-year (2011–2018) records of the PCD data from the MoH 

at village/city (node) level. This relationship was further stratified across villages with 

contrasting baseline malaria transmission and PAMAFRO coverage levels. 

 
2.3.2. Study area 

The Loreto department, located in the northeast of Peru, covers 28.7% of the national 

territory and a total population of 883,510. The political-administrative organization of Loreto is 

divided into 8 provinces, 53 districts and 31 watersheds (Figure 2.1). Iquitos is the capital city 

and the most densely populated with 510,000 inhabitants (the 7th most populated city in Peru). 
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Most inhabitants (69.6%) live in urban areas, 32.2% live in poverty, and 7% live in extreme 

poverty. Only 39.6% of households have access to basic public services (water, sanitation, 

electricity, and telephone) 116. The most common economic activities are agriculture, fishing, and 

mining 116. In 2016, Loreto had a total of 521 health care facilities, with a ratio of 1,086 

inhabitants per healthcare personnel 116 and important transportation and monetary barriers 29,117 

to quality healthcare access. The tropical climate in this area ranges on average from 17°C 

(between June and July) to 36°C (between December and March) with a rainy season between 

December and March. 

 

2.3.3. Data sources 

2.3.3.1. Malaria passive case detection data 

Malaria is a notifiable disease by the Peruvian MoH and the registry of individual-level 

data started in 2009 23. These data are available in both electronic and hardcopy format for the 

dominant malaria species P. vivax and P. falciparum. In Peru, malaria diagnosis relies primarily 

on microscopic inspection of thick and thin blood smears in health facilities. The presence of 

asexual and sexual stages of Plasmodium species is determined after examining 100 high-

powered fields 118. All positive cases are immediately treated according to national guidelines 

from MoH 119: chloroquine (CQ) for 3 days and primaquine (PQ) for 7 days in confirmed P. 

vivax malaria infections, and mefloquine (MQ) for 2 days and artesunate (AS) for 3 days in 

confirmed P. falciparum infections. For this study, georeferenced malaria diagnosis data were 

obtained at the village/city level from 2011 to 2018 for each month and were collapsed for the 

entire study period. GPS coordinates of the centroids and population size are provided for each 
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village by the MoH. Malaria endemicity level was computed as the mean 2011–2018 Annual 

Parasite Index (API), defined as the total number of new cases per 1,000 individuals. 

 

2.3.3.2. Deforestation and watershed data 

The Hansen collection 120, a high-spatial resolution (1 arc-second, approximately 30 

meters) dataset of yearly forest coverage loss, was used to extract village-level (within 5 km 

radius from the centroids of villages/cities) mean deforested area (2011–2018; Km2). The 

Hansen collection defines forest loss as a stand-replacement disturbance, or a change from a 

forest to non-forest state, using the year 2000 as reference and bands 3, 4, 5, and 7 of Landsat 7 

cloud-free image composites. Hansen collection data were gathered and processed in Google 

Earth Engine 121, a cloud-based platform for planetary-scale geospatial analysis 

(https://earthengine.google.com). The watershed boundaries were obtained from the Peruvian 

National Authority of Water (ANA by its Spanish acronym). ANA provides a division, 

codification, and systematization of watersheds using two international standard methodologies, 

the Pfafstetter coding system 122 and a Digital Elevation Model (DEM) such as NASA's SRTM 

of 30 meters spatial resolution. The final product is a map to a scale of 1:100,000 cm. 

 

2.3.3.3. Distance and travel time estimation 

The computation of the distance from each village to all villages analyzed in the entire 

department of Loreto was performed by calculating the Euclidean distance using the R Statistical 

Software (v4.2.2; R Core Team 2021). This Euclidean distance is defined as the shortest straight 

line that exists between two points without considering the type of existing surface. For its 

calculation the following formula was used: 

https://earthengine.google.com/
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) + %𝑦' − 𝑦((

)
 

 

Where (𝑥& , 𝑦&) are the coordinates of the origin and -𝑥' , 𝑦'/ are the coordinates of the 

destination. 

 

The estimation of travel time was conducted in R Statistical Software (v4.2.2; R Core 

Team 2021) using the rgee package 123 that bridges R to the Google Earth Engine (GEE) API 121. 

We followed travel time estimation procedures described in previous literature 29,124. To 

summarize the method, information about land coverage, road infrastructure, and river network 

was used to create a 30 m resolution grid surface. The speed assigned for each category of land 

cover was obtained from elsewhere 124 and the Ministry of Transportation provided the speed for 

the road infrastructure. A friction surface was constructed where each pixel contained the cost 

(time) to move through the area encompassed in the pixel. Then, a cumulative cost function was 

applied (least-cost-path algorithm) that examined all potential paths iteratively, and the time-

weighted cost was then minimized to calculate the minimum travel time between villages. 

 

2.3.4. Network analysis 

From the Euclidean distance and travel time calculations, we obtained two origin-

destination datasets of all possible connections between villages in the study area. After data 

cleaning and harmonization (Supplementary Methods 2.1), we used these interactions (links) to 

construct graph class objects in R for visualization and calculation of centrality metrics for each 

community within each of the watersheds (Figure 2.2). Network processing and visualization 
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was performed using R Statistical Software (v4.2.2; R Core Team 2021). The standardized mean 

and standard deviation of the computed metrics were estimated overall and by watershed.  

 

2.3.4.1. Network processing 

In this study, the 1,608 communities were considered as nodes and the 73,944 possible 

connections as the edges. The origin-destination dataset containing the connections was 

formatted as an edge list, as each row represents an edge. The distances and travel times 

computed for each connection were assigned iteratively as edge weights, which may represent 

the strength or weakness of the connection between nodes. Additionally, we constructed four 

different versions of weights based on the gravity model by combining population and average 

annual forest loss as masses with Euclidean distance and travel time as cost proxies. Finally, we 

scaled the weights to range from 0 to 1 within each watershed. 

 

Having the nodes and edges with their different weights, we used the tidygraph package 

in R 125 to create the graphs for each watershed. Since the connections between the villages are 

unique and do not have directionality, the resulting graphs are undirected graphs. Next, we 

calculated the centrality metrics. For this study, we considered strength, closeness, betweenness, 

and eigenvector centrality measures (Supplementary Methods 2.2). The calculations of these 

centralities were made considering the weight of the edges. Each type of centrality works with a 

different interpretation of the weights. As mentioned earlier, the weights represent the relative 

importance of the connection between two nodes. In the case of strength and eigenvector 

centrality indicators, the weight is interpreted as connection strength and, therefore, a higher 

weight indicates a stronger connection between the nodes. On the other hand, in the case of 
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closeness and betweenness centrality indicators, the weight is interpreted as connection weakness 

and, therefore, a higher weight indicates a weaker connection between the nodes. Therefore, to 

keep signs consistent and comparable between centrality measures, we use the inverse of these 

measures for the calculations of the strength and eigenvector centralities. On the other hand, 

since the weights based on the gravity model represent the "attraction" between communities, we 

used the inverses of these weights for the calculations of the closeness and betweenness 

centralities.  

 

We thus obtained six different versions of the centrality indicators depending on the 

weight used: 1) Euclidean distance, 2) Gravity model with distance and population, 3) Gravity 

model with distance and forest loss, 4) Travel time, 5) Gravity model with travel time and 

population, and 6) Gravity model with travel time and forest loss. Within every watershed, we 

calculated all the versions of the centrality indicators for each village and then scaled them from 

0 to 1 using tidygraph. The correlations between all centrality metrics across all villages were 

computed using Pearson correlation. Dendrograms to cluster centrality metrics were based on a 

hierarchical cluster analysis using a complete linkage method. 

 

2.3.4.2. Network visualization 

Network visualizations were constructed using the ggraph package in R 126. Two types of 

visualizations were used for all versions of the centrality metrics. The first consisted of plotting 

all nodes and edges and distinguishing them by watershed using colors, plotting the opacity of 

the edges as a function of the weight value (higher weight, less opaque), and setting the node size 

as a function of the centrality index value (higher centrality, larger size). The second type of 
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visualization consisted of plotting the networks in different facets for each watershed and 

following the same settings for edge opacity and node size as in the first type of visualization. 

For both visualizations, two node layout algorithms were tested: the Kamada-Kawai algorithm 

and the Stress majorization algorithm. Both algorithms emerge from the same optimization 

problem, however, the second one uses a more global approximation technique to the problem, 

resulting in improvements in run time and stability of the resulting node layout 127. The algorithm 

used for the final visualizations was chosen by visual inspection of how well the nodes were 

arranged for our data.  

 

2.3.5. Stratified analysis 

Further explorations of the relationship between connectivity metrics and malaria 

incidence were conducted by stratifying the data across levels of intervention coverage of the 

PAMAFRO project (2006–2010). Four control activities were recorded per district and year 

including: i) strengthening of malaria diagnosis, ii) training and supervision of community health 

workers, iii) community-based larval source management (LSM), and iv) distribution of long-

lasting insecticidal nets (LLINs). A more detailed description of control activities carried out 

during the 2006–2010 intensified malaria control period (PAMAFRO) is found elsewhere 26. The 

PAMAFRO intervention coverage was computed as the proportion of intervention-years 

(maximum of 4 interventions multiplied by 5 years; 20 intervention-years) conducted in each 

district and assigned to all of that district’s villages. To test the trend in the differences in malaria 

incidence between low and high centrality metrics across the levels of PAMAFRO coverage, an 

ordinary least squares (OLS) Linear Regression model for interaction between centrality and 
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PAMAFRO coverage categories were constructed using the watershed units as a fixed effect. 

(code repository: https://github.com/healthinnovation/network-malaria).  

 

2.4. Results 

2.4.1. Baseline characteristics of villages 

In total, data from 1,608 nodes (villages/cities) nested within 31 watersheds in the Loreto 

department were analyzed after data cleaning (Supplementary Figure 2.1). The total malaria 

cases (2011-2018) was 232,252 P. vivax and 60,512 P. falciparum. The number of villages in the 

selected watersheds ranged from 8 to 202, with an average of 51 villages per watershed (Table 

2.1). Most populated villages/cities are located on the banks of rivers, mainly close to Iquitos 

city; in contrast, most highly deforested areas are located on the south-west side of the study area 

(Figure 2.1). 

 

Important spatial heterogeneity was observed for both P. vivax and P. falciparum cases. 

The highest Annual Parasite Index (API) was observed in the watersheds of Pastaza, Tigre, 

Yavari, and Napo (Figure 2.3). These watersheds showed contrasting epidemiological profiles. 

Pastaza and Tigre watersheds showed a rapid increase in malaria incidence; on the other hand, 

Napo and Yavari watersheds, despite their high malaria endemicity levels, were stable during the 

2011–2018 period (Figure 2.3). This scattered spatial location of villages and cities is reflected in 

the contrasting distributions of distance and travel time between village/city dyads 

(Supplementary Figure 2.2). Both are positively skewed; however, a larger kurtosis is present in 

the travel time distribution in comparison to Euclidian distance. This pattern is consistent across 

all the 31 watersheds (Supplementary Figure 2.3). 
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2.4.2. Centrality estimation 

Multiple connectivity metrics were computed from the combination of centrality types 

and weights. A consensus graph was constructed to represent the network between villages 

located in the same watershed using multiple iterations of centrality metrics. An example using 

betweenness centrality with weights based on a gravity model that includes Euclidian distance 

and population is shown in Figure 2.4. Due to the high density of villages and links, a version 

divided by watersheds is presented in Supplementary Figure 2.4. The densest networks are 

Intercuenca 4977, Napo, Medio Bajo Marañon, Pastaza, and Nanay.  

 

A total of 24 centrality metrics were computed. Overall summary statistics are shown in 

Table 2.2 and watershed-specific statistics are shown in Supplementary Table 2.1. Metrics with 

the highest standardized mean and variability are those that use distance and travel time as 

weights. On the other hand, metrics with the lowest standardized mean and variability are those 

that use a gravity model based on distance and population or travel time and population. 

Betweenness centrality is consistently the metric with the lowest standardized mean and 

variability across all weights (Table 2.2) and these trends are consistent across watersheds 

(Supplementary Table 2.1). Strong correlation patterns were observed between centrality metrics 

(Figure 2.5). Betweenness centrality is the metric that showed the most consistent clustering 

pattern in the hierarchical clustering analysis (Supplementary Figure 2.5). 
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2.4.3. Relationship of centrality measures with malaria incidence 

Betweenness centrality indicators using multiple versions of gravity models as weights 

were selected for further analyses based on the criteria described above. This metric was used to 

define categories of centrality (low vs. high quintiles) to test their relationship with malaria 

incidence. Overall, villages in the top quintile of centrality had a higher malaria incidence in 

comparison with villages in the bottom quintile of centrality (Mean Difference [MD] in cases per 

1,000 individuals; P. vivax = 165.78 and P. falciparum = 76.14) (Supplementary Figure 2.6). 

When stratifying by levels of PAMAFRO coverage, the mean difference between villages at the 

top and bottom centrality quintiles increases as PAMAFRO coverage increases (Supplementary 

Table 2.2) for both P. vivax (Tier 1 = 155.36; Tier 2 = 176.22; Tier 3 = 326.08) and P. 

falciparum (Tier 1 = 48.11; Tier 2 = 95.16; Tier 3 = 139.07). Overall distributions are 

comparable across calculations of weights (i.e., combinations of distance/travel time and 

population/deforestation); however, the dose-response pattern following the PAMAFRO 

coverage is consistent across all combinations of weight calculations for P. falciparum, in 

contrast to P. vivax where the pattern is more noticeable when using deforestation instead of 

population (Figure 2.6). The consensus plots and results of the comparison of the malaria 

incidence between high and low centrality villages using other centrality types (closeness, eigen, 

and strength) are presented in Supplementary Figure 2.7 – 2.9. 

 

2.5. Discussion 

How villages and cities are connected and how these connections influence the 

transmission of pathogens remains of great interest for global public health. Evidence from this 

study contributes to the scarce literature on human mobility and its impact on malaria in rural 
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areas of the Amazon region. This study investigated this relationship in the Peruvian Amazon 

using a comprehensive set of connectivity metrics and malaria incidence records at a granular 

spatial resolution. Betweenness centrality outperformed other metrics based on its consistency 

and stability, and no meaningful differences were detected when using multiple versions of 

weights such as population, deforested area, Euclidian distance, or travel time. The evidence 

presented in this study highlights that villages and cities with a high connectivity are consistently 

locations with higher malaria incidence in the Loreto department of Peru. Further explorations 

showed that this difference in malaria incidence is exacerbated in areas that received greater 

coverage of malaria control activities from the PAMAFRO project. These, in turn, are the areas 

with the greatest baseline malaria transmission. The findings of this study support a shift in 

current malaria control strategies from targeting particular locations based on their malaria 

metrics towards strategies based on connectivity neighborhoods that incorporate influential 

connected villages that share a flow of parasites and hosts.  

 

The main mechanism of malaria transmission reestablishment is the importation of 

parasites from HPM, and this plays a major role in elimination scenarios. However, it is also 

meaningful at the micro-geographical level, after malaria control interventions occur and malaria 

endemicity is expected to be low with only remaining P. vivax hypnozoite reservoirs. In these 

scenarios, interrupting importation pathways may greatly improve the effectiveness of current 

malaria control efforts 28,61. However, capturing individual HPM information requires intensive 

use of resources 73,98,128,129. This study showed that the use of connectivity metrics between 

villages contributes to an improved understanding of these complex dynamics in rural areas that 

are highly connected through river networks.  
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Importantly, we found that in areas with the greatest malaria endemicity and coverage of 

PAMAFRO control activities, the influence of connectivity was more prominent. These findings 

challenge previous literature that highlighted a greater importance of HPM in low-transmission 

and close-to-elimination settings than in moderate- and high-transmission settings 61–63,82,130. In 

fact, less attention was put into the role of HPM and connectivity in high malaria transmission 

settings 67,131. Interestingly, areas with high vectorial capacity 31 and parasite genomic diversity 

132 are areas with intense HPM in the Peruvian Amazon. These findings are consistent with an 

emergent body of evidence showing the role HPM in high- to moderate-transmission settings 

15,74,98,100,133–135. 

 

In the Amazon region, as cities grow, HPM intensifies, and as a result so does the 

probability of malaria importation. The magnitude of connectivity in these areas is affected by 

the size of the cities as a proxy for the number of services and level of commercial activity in 

place. In addition, these anthropogenic environmental changes impact infectious disease 

dynamics 44. Increased human population and environmental modification influence biological 

communities, including Anopheles mosquitoes, particularly those with some degree of 

competence to transmit Plasmodium species that circulate in the Amazon region 45,136. In this 

study, centrality metrics computed using population size and deforested area showed comparable 

performance. These similarities may be leveraged in scenarios with weak vital registration 

statistics such as rural areas, areas under conflict, or forced displaced populations 137–140 since the 

collection of deforested area could be conducted using remote sensing tools in comparison to the 

intense effort involved in a population census. 
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In this study, connectivity and centrality measures were assessed in relationship to land 

coverage change using network analysis at the village level in Peru, and their effect on malaria 

transmission was estimated. This evidence contributes to the understanding of the role of HPM 

in malaria transmission in rural areas, and secondarily, provides information to optimize the 

distribution of services or the configuration of networks to reduce the overall flow of malaria 

infections between cities and villages.  

 

We acknowledge some limitations of this study. First, 221 villages (12%) were excluded 

from the analysis in the data cleaning process due to missing mass and cost data for the weight 

calculations (Supplementary Figure 2.1). These exclusions may alter the estimations; however, 

data was missing completely at random (MCAR). Second, for the connectivity metrics 

computation, all villages located in the same watershed were assumed to be connected. However, 

human preferences to avoid villages in the same watershed or travel to villages in another 

watershed are plausible. We suggest further studies in other settings that consider more complex 

network structures. Finally, previous studies in the Peruvian Amazon 141–143 reported a high 

number of sub-clinical infections that are not recorded by the MoH during routine data 

collection. The findings of this study are relevant only for clinical cases, and caution is suggested 

when interpreting these results for asymptomatic cases, which can contribute to the maintenance 

of parasite transmission. 
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2.6. Conclusion 

This study exploited detailed malaria incidence data at the village level to test the 

influence of a comprehensive set of connectivity metrics. The data in this study show that in the 

Loreto department of Peru, villages and cities with high connectivity consistently have higher 

malaria incidence. When stratified by coverage of PAMAFRO control activities, the areas where 

malaria transmission was the highest are the areas where this difference in malaria incidence is 

most pronounced. These findings challenge prior research that emphasized the importance of 

HPM being greater in low-transmission and close-to-elimination settings rather than in 

moderate- and high-transmission settings. The evidence outlined in this study can be used to 

tailor malaria control strategies in rural areas by prioritizing influential connected neighborhoods 

instead of single villages. 
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2.7. Tables 

Table 2.1. Descriptive demographical, epidemiological, and environmental characteristics 
(2011–2018) in all villages nested in 31 watersheds in the Loreto department, Peru. 
 

Watershed name Number of 
villages 

Total number of cases  Deforestation 
P. falciparum P. vivax  Mean sd 

Cuenca Carhuapanas 32 10 664  5.41099 3.35717 
Cuenca Itaya 69 2415 21452  4.75289 2.53186 
Cuenca Manití 14 327 1228  2.23778 1.79954 
Cuenca Morona 46 595 2488  1.29575 0.88265 
Cuenca Nanay 91 10276 47046  4.43810 3.29485 
Cuenca Napo 169 6333 28177  3.15514 2.35080 
Cuenca Paranapura 86 285 5073  9.75672 5.39148 
Cuenca Pastaza 95 16825 34343  1.51598 1.24127 
Cuenca Potro 8 15 310  1.35012 0.73314 
Cuenca Putumayo 42 232 1037  1.07531 1.03147 
Cuenca Tahuayo 17 10 213  4.36052 2.01849 
Cuenca Tapiche 35 1365 4956  2.42216 2.55880 
Cuenca Tigre 75 11830 33253  2.33620 1.84907 
Cuenca Yavari 38 2815 10177  2.92976 2.09816 
Intercuenca 4977 202 1820 16051  4.27788 3.04429 
Intercuenca 49791 12 7 107  4.31276 2.35457 
Intercuenca 49793 40 125 1441  5.53734 3.08079 
Intercuenca 49795 8 4 34  4.88276 2.69110 
Intercuenca 49797 49 82 1580  4.65196 1.88203 
Intercuenca 49799 35 6 155  4.14853 1.97210 
Intercuenca 49871 11 16 418  6.73127 3.70163 
Intercuenca 49873 10 3 32  4.31457 2.41013 
Intercuenca 49877 42 130 989  3.49134 2.32782 
Intercuenca 49911 19 18 254  3.32678 1.99509 
Intercuenca 49913 72 42 618  3.95505 2.86444 
Intercuenca 49915 9 1 26  5.73575 2.71946 
Intercuenca Bajo Huallga 62 136 500  7.78687 5.19647 
Intercuenca Bajo Marañón 48 329 8600  3.89483 2.19509 
Intercuenca Medio Bajo Huallaga 36 67 336  10.66703 6.19642 
Intercuenca Medio Bajo Marañón 124 4383 10620  2.10576 2.06783 
Intercuenca Medio Marañón 12 10 74  3.27035 2.35675 
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Table 2.2. Descriptive statistics of centrality metrics in all villages in the Loreto 
department, Peru. 
 

Centrality Mean (sd) 

Distance as weight  

    Strength 0.68 (0.26) 
    Closeness 0.65 (0.28) 

    Betweenness 0.14 (0.24) 
    Eigenvector 0.64 (0.28) 

Distance and population-based gravity model weight 
    Strength 0.11 (0.18) 

    Closeness 0.19 (0.21) 
    Betweenness 0.03 (0.15) 

    Eigenvector 0.12 (0.18) 
Distance and forest loss-based gravity model weight 
    Strength 0.27 (0.26) 
    Closeness 0.39 (0.29) 

    Betweenness 0.10 (0.23) 
    Eigenvector 0.26 (0.26) 

Travel time as weight  

    Strength 0.62 (0.28) 

    Closeness 0.64 (0.28) 
    Betweenness 0.12 (0.23) 

    Eigenvector 0.60 (0.30) 
Travel time and population-based gravity model weight 
    Strength 0.09 (0.17) 
    Closeness 0.18 (0.20) 

    Betweenness 0.02 (0.14) 
    Eigenvector 0.10 (0.18) 

Travel time and forest loss-based gravity model weight 
    Strength 0.22 (0.26) 

    Closeness 0.33 (0.28) 
    Betweenness 0.12 (0.23) 

    Eigenvector 0.21 (0.26) 
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2.8. Figures 

 
 
Figure 2.1. Study area and hydro-basins in the Loreto department in the Peruvian 
Amazon. Each point represent the location of villages and the color and size represent their A) 
Mean Annual P. vivax API, B) Mean Annual P. falciparum API, C) Deforested area, and D) 
Population size. Maps were produced using R v.4.1 (R Development Core Team, R Foundation 
for Statistical Computing, Australia) based on public geographic data extracted from © 
OpenStreetMap contributors (www.openstreetmap.org) under Open Data Commons Open 
Database License (ODbL) 1.0 (http://openstreetmap.org/copyright). 
 
 
  

http://www.openstreetmap.org/
http://openstreetmap.org/copyright
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Figure 2.2. Connectivity and centrality estimation workflow. Synthetic example of all the 
steps to compute the centrality metrics that comprises A) the geolocation of the river network 
and villages in each watershed area, B) estimating the cost of displacement between villages (i.e., 
distance and travel time), C) construction of an undirected and unweighted network based on the 
connections between villages in the same watershed, and finally, D) testing gravity model 
weights for the links in the network. Weights were computed using multiple masses (i.e., 
population and deforested areas). Edges widths are relative to weights. 
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Figure 2.3. Annual malaria incidence rate variation by parasite species. Variation in annual 
malaria incidence rates due to P. vivax (red) and P. falciparum (light blue) in 31 watersheds of 
the Loreto department between 2011 and 2018.  
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Figure 2.4. Consensus graph of the network of villages in the Loreto department in the 
Peruvian Amazon. 
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Figure 2.5. Correlation of centrality metrics of villages in the Loreto department in the 
Peruvian Amazon. Abbreviations: Mass (population [pop], deforested area [adef], and none), 
cost (distance [d], travel time [t]), and centrality type (betweenness [between], strength [stre], 
eigen [eigen], and closeness [close]). 
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A)  

 
 
B)  

 
 
Figure 2.6. Distribution of Total Annual Parasite Index (API) per 1,000 individuals (2011–
2018) across high and low centrality villages stratified by levels of PAMAFRO intervention 
coverage in the Loreto department in the Peruvian Amazon.  A) For P. vivax and B) for P. 
falciparum. Mean difference between groups are represented as diamonds in each panel. T1 = 
Tier 1 (Low coverage; Low baseline endemicity), T2 = Tier 2 (Moderate coverage; Moderate 
baseline endemicity), and T3 = Tier 3 (High coverage; High baseline endemicity). 
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2.9. Supplementary information 

 
Supplementary Methods 2.1. Network Analysis – Data cleaning 
 

The origin-destination data sets contained duplicates because the calculation of distance 

and travel time was performed against the entire set. In other words, there could be a connection 

from village A to B and from B to A, which gave the same distance and travel time. We removed 

the duplicates and also filtered out those connections that had a calculation equal to zero 

(connection between the same community). Overall, 1,671,706 distance connections and 

1,627,314 travel time connections were computed. The complete case dataset was constructed 

resulting in a single origin-destination dataset with 1,627,314 connections, having one column 

for distance and another one for travel time. 

 

The average annual forest loss for each village from 2009 to 2018 was then calculated. 

Those villages with an average annual forest loss of zero and a population of zero were excluded 

from further processing. From the total number of villages and connections, 1,634 villages and 

73,946 connections remained for analysis. After this, we grouped the connections by watershed 

and filtered out those that had only one connection, leaving us with 31 watersheds, 73,944 

connections and 1,608 communities (Supplementary Figure 2.1). 

 

Supplementary Methods 2.2. Description of centrality metrics 

The strength centrality of a particular node is the sum of the weights of all its adjacent 

edges (Kolaczyk & Csárdi, 2014). The weights here are interpreted as measures of attraction 

between nodes. On the other hand, the closeness centrality measures how “close” a node is to 
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other nodes it is connected to, and is defined as the inverse sum of the weights of the adjacent 

edges of a particular node, given that the weights are measuring the distance between the nodes 

(Kolaczyk & Csárdi, 2014). Using this same interpretation of the weights, if for every pair of 

nodes in the graph we find the path or sequence of edges that connects the nodes that minimizes 

the sum of the edge weights (that is, the shortest path), then the betweenness centrality of a 

certain node is the proportion of shortest paths that passes through this node (Kolaczyk & Csárdi, 

2014). Finally, the eigenvector centrality uses the interpretation of weights as connection 

strength to give higher scores to the nodes that are more connected to other nodes with high 

scores (Kolaczyk & Csárdi, 2014). Mathematically, the scores are calculated as the eigenvector 

components of the weighted adjacency matrix of the graph. 
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Supplementary Table 2.1. Descriptive centrality metrics by watershed 
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Supplementary Table 2.2. Ordinary least squares Linear Regression model for interaction 
between centrality and PAMAFRO coverage categories. 
 
  Coeff. S.E. t. val. p-value 
High Centrality (Ref: Low 
Centrality) 1.28 35.34 0.04 0.97 
PAMAFRO T2 (Ref: T1) 165.96 48.64 3.41 <0.01*  
PAMAFRO T3 (Ref: T1) 112.94 50.87 2.22 0.03 * 
High Centrality * PAMAFRO T2 142.59 50.69 2.81 <0.01*  
High Centrality * PAMAFRO T3 96.05 46.7 2.06 0.04 * 
Accounting for watersheds as fixed effect     
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Supplementary Figure 2.1. Data flowchart of the analytical dataset. 
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Supplementary Figure 2.2. Overall distribution of distance and travel time between dyad 
villages in the Loreto department in the Peruvian Amazon. 
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Supplementary Figure 2.3. Distribution of distance and travel time between dyad villages 
in each watershed in the Loreto department in the Peruvian Amazon. 
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Supplementary Figure 2.4. Consensus graph of the network of villages by watersheds in the 
Loreto department in the Peruvian Amazon. 
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Supplementary Figure 2.5. Correlation of centrality metrics of villages in the Loreto 
department in the Peruvian Amazon. Margin plots shows the mass (population [pop; light 
orange], deforested area [adef; light blue], and none [red]), cost (distance [d; green], travel time 
[t; purple]), and centrality type (betweenness [between; blue], strength [stre; orange], eigen 
[eigen; pink], closeness [close; light green]) used for the calculations. Dendrograms to cluster 
centrality metrics are based on a hierarchical cluster analysis using a complete linkage method. 
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A)  

 
B)  

 
Supplementary Figure 2.6. Distribution of Total Annual Parasite Index (API) per 1,000 
individuals (2011–2018) across high and low centrality villages stratified by levels of 
PAMAFRO intervention coverage and overall distributions in the Loreto department in 
the Peruvian Amazon.  A) For P. vivax and B) for P. falciparum. Mean difference between 
groups are represented as diamonds in each panel. T1 = Tier 1 (Low coverage; Low baseline 
endemicity), T2 = Tier 2 (Moderate coverage; Moderate baseline endemicity), and T3 = Tier 3 
(High coverage; High baseline endemicity). 



 60 

A)  

 
B)      C)  

        
Supplementary Figure 2.7. A) Consensus graph of the network of villages in the Loreto 
department in the Peruvian Amazon using closeness centrality and Distribution of Total 
Annual Parasite Index (API) per 1,000 individuals (2011–2018) across high and low 
centrality villages stratified by levels of PAMAFRO intervention coverage and overall 
distributions in the Loreto department in the Peruvian Amazon.  B) For P. vivax and C) for 
P. falciparum. Mean difference between groups are represented as diamonds in each panel. T1 = 
Tier 1 (Low coverage; Low baseline endemicity), T2 = Tier 2 (Moderate coverage; Moderate 
baseline endemicity), and T3 = Tier 3 (High coverage; High baseline endemicity). 
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A)  

 
B)      C)  

        
Supplementary Figure 2.8. A) Consensus graph of the network of villages in the Loreto 
department in the Peruvian Amazon using eigen centrality and Distribution of Total 
Annual Parasite Index (API) per 1,000 individuals (2011–2018) across high and low 
centrality villages stratified by levels of PAMAFRO intervention coverage and overall 
distributions in the Loreto department in the Peruvian Amazon.  B) For P. vivax and C) for 
P. falciparum. Mean difference between groups are represented as diamonds in each panel. T1 = 
Tier 1 (Low coverage; Low baseline endemicity), T2 = Tier 2 (Moderate coverage; Moderate 
baseline endemicity), and T3 = Tier 3 (High coverage; High baseline endemicity). 
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A)  

 
B)      C)  

        
Supplementary Figure 2.9. A) Consensus graph of the network of villages in the Loreto 
department in the Peruvian Amazon using strength centrality and Distribution of Total 
Annual Parasite Index (API) per 1,000 individuals (2011–2018) across high and low 
centrality villages stratified by levels of PAMAFRO intervention coverage and overall 
distributions in the Loreto department in the Peruvian Amazon.  B) For P. vivax and C) for 
P. falciparum. Mean difference between groups are represented as diamonds in each panel. T1 = 
Tier 1 (Low coverage; Low baseline endemicity), T2 = Tier 2 (Moderate coverage; Moderate 
baseline endemicity), and T3 = Tier 3 (High coverage; High baseline endemicity). 
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Chapter 3: Effect of out-of-village working activities on recent malaria exposure in the 

Peruvian Amazon using parametric g-formula 

 
3.1. Abstract 

In the Amazon Region of Peru, occupational activities are important drivers of human 

mobility and may increase the individual risk of being infected while contributing to increasing 

malaria community-level transmission. Even though out-of-village working activities and other 

mobility patterns have been identified as determinants of malaria transmission, no studies have 

quantified the effect of out-of-village working activities on recent malaria exposure and proposed 

plausible intervention scenarios. Using two population-based cross-sectional studies in the 

Loreto Department in Peru, and the parametric g-formula method, we simulated various 

hypothetical scenarios intervening in out-of-village working activities to reflect their potential 

health benefits. This study estimated that the standardized mean outcome (malaria 

seroprevalence) in the unexposed population (no out-of-village workers) was 44.6% (95% CI: 

41.7 % - 47.5%) and 66.7% (95% CI: 61.6% - 71.8%) in the exposed population resulting in a 

risk difference of 22.1% (95% CI: 16.3% - 27.9%). However, heterogeneous patterns in the 

effects of interest were observed between peri-urban and rural areas (Cochran's Q test = 15.5, p-

value <0.001). Heterogeneous patterns were also observed in scenarios of increased prevalence 

of out-of-village working activities and restriction scenarios by gender (male vs. female) and age 

(18 and under vs. 19 and older) that inform possible occupational interventions targeting 

population subgroups. The findings of this study support the hypothesis that targeting out-of-

village workers will considerably benefit current malaria elimination strategies in the Amazon 

Region. Particularly, males and adult populations that carried out out-of-village working 
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activities in rural areas contribute the most to the malaria seropositivity (recent exposure to the 

parasite) in the Peruvian Amazon. 

 

3.2. Introduction 

The Amazon rainforest located in the World Health Organization (WHO) Region of the 

Americas remains a malaria hotspot. Within the 19 countries in this Region, more than 600,000 

(presumed and confirmed) incident cases were estimated in 2020 144 and 9 countries shared the 

Amazonian territory and most of the malaria cases: Bolivia, Brazil, Colombia, Ecuador, French 

Guiana (France), Guyana,  Suriname, Venezuela, and Peru 144. Malaria transmission in this area 

is dominated by Plasmodium vivax (75%) followed by P. falciparum and mixed (25%) 

infections. Most of these cases are located within 14 subnational units only 144 which include the 

Loreto Region located in the Peruvian Amazon. Historically, 93.1% of cases in Peru were 

reported in this Region 145 that are mainly transmitted by Nyssorinchus (Anopheles) darlingi 18,60.  

 

In the last two decades, many interventions aiming at reducing the incidence of malaria in 

Peru have been implemented. For example, the PAMAFRO project (2005–2010) 146 focused on 

training community health workers for early diagnosis, monitoring, and treatment of malaria, the 

use of long-lasting insecticide-treated nets (LLINs), and community education in malaria 

prevention measures. Shortly after the interruption of the PAMAFRO project, the “Plan Malaria 

Cero” (PMC; 2017-2021) 147 was implemented with the aim to eliminate malaria transmission in 

three stages over a 25-year timeframe. More recently, a new “Plan Hacia la Eliminación de la 

Malaria en el Perú” (2022 – 2030) 148 aims to provide the legal, economic, and political support 

to achieve malaria elimination in Peru by applying a set of evidence-based interventions. 



 66 

However, while most of these activities contributed to a reduction of malaria incident cases 23, 

many dimensions regarding malaria transmission, such as human mobility, are still not 

considered and constitute missed opportunities for alternative interventions to ultimately 

eliminate malaria. The WHO guidelines for elimination and prevention of reintroduction 

strategies recently highlighted the important role of human mobility as a challenge for sustaining 

malaria elimination efforts 149,150. Human mobility was described as an associated factor for both 

malaria exposure 106 and infection 13 in the Amazon Region.   

 

In the Amazon Region of Peru, an important driver of human mobility is related to 

occupational activities 74,98. Indeed, many workers engage in out-of-village working activities in 

order to meet job opportunities and thus may increase their risk of being infected but also may 

contribute to increasing community-level transmission 13,74. Previous studies have identified 

occupational mobility as a determinant for malaria risk and used forest goers 151–153 or out-of-

village activities 13,141 as measures of such exposure but did not rely on causal modelling nor 

objectively measured exposures and malaria outcomes. Furthermore, no study simulated 

plausible scenarios to assess the potential benefits of hypothetical interventions.  

 

The contribution of occupational determinants of infectious diseases has received more 

attention recently in the context of the COVID-19 pandemic 154 but evidence about which 

strategies targeting occupational mobility may be most effective at reducing malaria risk is 

lacking. Therefore, simulating the potential benefits of various intervention scenarios could be 

particularly helpful to design future occupational interventions to complement already 

implemented community-based actions to ultimately reach malaria elimination. Some modern 
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causal inference methods, including the parametric g-formula, have been proposed to flexibly 

estimate the effect of different exposure regimes. Parametric g-formula methods are a 

generalization of standardization methods that can simulate different hypothetical interventions 

on the exposure of interest 155. While many studies have recently relied on such an approach, 

including in occupational settings 156–158, to simulate hypothetical interventions, such methods 

have been applied to a limited extent in the context of malaria epidemiology 159,160.  

 

In addition, many population characteristics may modulate the effect of out-of-village 

activities on malaria risk and may inform targeted interventions. First, individual-level 

characteristics such as gender and age may constitute important effect modifiers. Yet, cultural, 

geographical, and social characteristics may also greatly differ between rural and peri-urban 

areas in the Peruvian Amazon. Previous studies found contrasting differences in the proportion 

of inhabitants that participate in out-of-village activities between rural and peri-urban areas in 

Iquitos 106. Also, contrasting patterns were reported in malaria infection rate 13,141, seropositivity 

(exposure to previous infection) 106, and parasite genetic population structure 161,162 between 

these areas. In regions with rural-to-urban gradients, ecological factors increase disparities in 

malaria susceptibility 63 driven by marked variations in Ny. darlingi abundance and biting 

behavior across the forest, chacra (crop fields) (perturbed secondary forest), and urban settings 

113,163.  

 

Thus, this study aims to estimate the effect of out-of-village mobility on malaria exposure 

in contrasting geographic areas to better inform occupational interventions related to malaria 

elimination strategies in the Amazon Region. Using two population-based cross-sectional studies 
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in the Loreto Department in Peru, and g-formula methods, we simulated various hypothetical 

scenarios intervening in out-of-village working activities and various population subgroups to 

reflect the potential health benefits of future interventions. 

 

 

3.3. Methods 

3.3.1. Ethics 

This study analyzed data from two studies that were approved by the Ethics Review 

Board of the Regional Health Directorate of Loreto and Universidad Peruana Cayetano Heredia 

in Lima: the Circles of Research on Arboviruses and Malaria (CAM) study (SIDISI 

101645/2017) and the Amazonia International Center of Excellence in Malaria Research 

(ICEMR) study (SIDISI 101518/2018). Participants in both studies were enrolled upon signing 

an informed consent or informed assent in case of participants under 18 years old. All the 

methods were carried out in accordance with the approved guidelines.  

 

3.3.2. Study design 

We conducted etiological and simulation studies to quantify the role of out-of-village 

working activities on recent malaria exposure in two population-based cross-sectional studies 

carried out in the Loreto Department, Peru. The designs of both studies were described elsewhere 

164. Briefly, both studies were conducted by the same research team in different months in 2018. 

A structured questionnaire, georeferencing of households, and blood samples were collected in 

10 villages in two districts of Loreto: Iquitos – mostly urban – in April 2018, and Mazán – 

mostly rural – in July 2018. Here, the –previously reported 164 – seropositivity status of the 
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participants (based on a random forest classifier) was used in combination with a parametric g-

formula (see details below) to compute the average causal effect of out-of-village mobility on 

malaria exposure. In addition, we simulated multiple scenarios of mobility restrictions (by 

proportion of travelers, gender, and age) to estimate the impact of such restriction policies in 

reducing malaria exposure in the Peruvian Amazon. 

 

3.3.3. Study site and population 

High-risk malaria villages were selected in peri-urban and rural areas based on Ministry 

of Health (MoH) historical data (Figure 3.1A). Three villages were selected in the peri-urban 

area: Rumococha (RM), Santo Tomás (ST), and Quistococha (QC). These villages are located on 

the outskirts of Iquitos district, 10 km from Iquitos City (capital of Loreto; lat: 03°44.591′S, 

long: 73°19.615′W), accessible by road and highly deforested. Seven villages were selected in 

the rural area: Gamitanacocha (GC), Libertad (LB), Primero de Enero (PE), Puerto Alegre (PA), 

Salvador (SL), Lago Yuracyacu (LY), and Urco Miraño (UM). These villages are located in the 

Mazán district, accessible only by boat (~2-7 h from Iquitos city) and characterized by dense 

primary and secondary forest cover. All participants 6 months or older at the date of survey were 

invited to the study if they lived in the selected village and gave consent to donate a blood 

sample by venipuncture for malaria diagnosis. 

 

3.3.4. Data collection and variable definitions 

A full census of the study populations was conducted in April-July 2018. Individual and 

household data on socio-demographics (age, gender, education, occupation), self-reported 

previous history of clinical malaria, and structural characteristics of the household were 
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collected. All households and participants were encoded and geo-referenced using a Global 

Positioning System (GPS) handheld device (Garmin’s GPSMAP 60CSx, Garmin International 

Inc., USA). 

 

A blood sample of 6 mL for adults or 3 mL for children of whole blood was collected by 

venipuncture in tubes with EDTA (BD Vacutainer, BD Franklin Lakes, USA) as a preservative. 

Venipuncture blood samples were separated by centrifugation (3500 rpm) into plasma and 

packed red blood cells (PRBC) for serological analysis. 

 

The primary exposure – out-of-village working activities – and covariates were collected 

in structured questionaries. All villagers self-reported whether they traveled in the previous 

month (travel history), sex, age, and occupation. All occupational activities were grouped into a 

binary variable according to the location where the activities were carried out (inside or outside 

their home village). Previous studies identified that out-of-village working activities in these 

areas include logging, hunting, fishing, trading, and farming 165,13,98.  

 

The primary outcome –malaria serological exposure– was defined according to a 

serological assay that target Plasmodium species-specific levels (recent infection up to 9 months 

in the past) 166. IgG antibody responses to 8 serological exposure markers (SEM) to P. vivax 

were measured using a Luminex® platform, as described elsewhere 167. The 8 SEM panel has 

been previously validated 166 and consisted of the following proteins: PVX_099980 (19 kDa C-

terminal region of merozoite surface protein 1, PvMSP119), PVX_096995 (tryptophan-rich 

antigen, Pv-fam-a, PvTRAg_2), PVX_112670 (PvTRAg_28), PVX_097625 (merozoite surface 



 71 

protein 8, putative, PvMSP8), PVX_097720 (merozoite surface protein 3, PvMSP3.10), 

PVX_087885 (rhoptry-associated membrane antigen, putative, PvRAMA), PVX_094255 

(reticulocyte binding protein 2b, PvRBP2b) and KMZ83376.1d (erythrocyte-binding protein II, 

PvEBPII). To normalize and diminish inter-plate variation, a standard curve was prepared using 

a plasma pool of hyper-immune adults from Papua New Guinea. Relative Antibody Units (RAU) 

or dilutions were obtained by extrapolating the Median Fluorescence Intensity (MFI) in a 

standard curve by a 5 parameters logistic model. Seropositivity to each marker was defined by 

using a Random Forests based classification algorithm previously validated in low P. vivax 

transmission contexts 166. Further description of the serological makers and the measured 

structure of the transmission in the area could be found elsewhere 164. 

 

3.3.5. Estimating the average causal effect of out-of-village working activities on malaria 

To estimate the average causal effect of out-of-village working activities on malaria a 

parametric g-computation described previously 155,158,168–171 was used. G-formula (also known as 

g-computation) can be seen as a generalization of standardization methods applied to multiple 

settings and first described in 1986 172. In the g-formula, under identification assumptions such as 

exchangeability, consistency and positivity conditional on the variables in L (potential 

confounders), the standardized mean outcome is the weighted average of the conditional means 

using as weights the prevalence of each stratum l of the vector of confounders L in the study 

population computed as follows: 

'𝐸[𝑌|𝐴 = 𝑎, 𝐿 = 𝑙] 	× 𝑃𝑟[𝐿 = 𝑙]
*

 

where 𝐸[𝑌|𝐴 = 𝑎, 𝐿 = 𝑙] are the conditional means in each of the strata l and 𝑃𝑟[𝐿 = 𝑙] 

is the prevalence of l. Such quantities are estimated parametrically. The following 4-step process 
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was adopted. First, expansion of the original dataset; a new set of analytic datasets was created 

by repeating the original dataset in three blocks. The first block was identical to the original 

dataset, the second block was modified and set the values of A (of out-of-village working 

activities) to unexposed (A=0), the third block was modified and set the values of A to exposed 

(A=1). In the second and third blocks, the values of the outcome (Y – malaria exposure) were 

removed and set as missing. Second, a regression model (a modified Poisson regression 173 to 

consider the highly prevalent outcome) was fitted for the outcome (i.e. malaria) given exposure A 

(out-of-village working activities) and confounders L (including villages as fixed effects). The 

variables used for the model estimation were age, sex, education, and fever history. The final 

model included interactions between the main exposure and age and sex. It is worth mentioning 

that only data in the first block contributed to the estimation (as Y was absent from the created 

blocks). Third, the parameters estimated using data from the first block were used to predict the 

outcome values for all observations in the second and third blocks, which standardizes based on 

the empirical distribution of confounders. The average of all predicted values in the second and 

third block is precisely the standardized mean outcome in the unexposed and exposed, 

respectively. Finally, risk differences and ratios can be estimated by comparing such estimated 

counterfactual quantities. To obtain 95% Confidence Intervals (CI), a Monte Carlo resample with 

999 replicates was drawn with replacement from the original data. These analyses were further 

explored by stratifying by age, proportion of travelers, and gender as well as location in peri-

urban or rural settings. 
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3.3.6. Simulation of restriction scenarios 

We then conducted a series of simulations to (synthetically) modify the prevalence of the 

main exposure (out-of-village working activities) while keeping the confounding structure, to 

explore scenarios where the main exposure would vary and compared to the natural course (i.e., 

the initial/observed setting or said differently, in the absence of any interventions) to inform 

future interventions. We tested scenarios of the prevalence of out-of-village working activities 

ranging from 0 to 1 through incremental steps of 0.1. We stratified our analyses by peri-urban or 

rural settings. In addition, 4 scenarios were tested based on full (FE) and null (NE) exposure in 

relation to gender (male vs. female) and age (18 and under vs. 19 and older) to inform possible 

occupational interventions targetting population subgroups.  

 

3.4. Results 

3.4.1. Baseline characteristics 

A total of 785 individuals from 421 households were enrolled in the Iquitos district (peri-

urban setting) and 1005 individuals from 419 households in the Mazán district (rural setting). 

The village sample size range between 250 and 273 individuals in peri-urban settings and 

between 47 and 270 individuals in rural areas. The average age of the population was 27.7 (SD = 

22.2) years in the rural area and 30.6 (SD = 21.8) years in the peri-urban area. Important 

differences were observed in the proportion of females (59% vs 51%), secondary or superior 

education (46% vs 27%), work inside the village (88% vs 59%), and travel in the last month (2% 

vs 33%) between peri-urban and rural settings. 
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3.4.2. Malaria seroprevalence rate 

An overall seroprevalence rate of 49% was observed in the study population. However 

important differences were observed across settings (Table 3.1). A higher seroprevalence was 

observed in rural areas (57%) in comparison to peri-urban areas (39%). Importantly, a 

seroprevalence rate higher than 40% was observed in 6 (GC, LB, PE, SL, PA, and UM) out of 

the 7 rural villages and only in 1 (ST) out of the 3 peri-urban villages. The highest 

seroprevalences were observed in GC (87%), LB (75%), and PE (69%), all located in the rural 

district of Mazán. On average, the age of seropositive participants is higher (37 years old) in 

comparison to seronegative participants (21 years old). Slight differences in the seropositivity 

status were observed in relation to gender and education, however, contrasting patterns were 

observed in relation to outside (77%) in comparison to inside (38%) workers and recent travelers 

(66%) in comparison to no travelers (45%). 

 

The spatial distribution of the seropositivity rates is shown in Figure 3.1A and 

Supplementary Figure 3.1. A clustered pattern at the household level was observed in both study 

settings. Out of the 421 households surveyed in the peri-urban area, a seropositive individual was 

detected in 290 (68%) households, ranging from 55% to 82% at the village level. Conversely, in 

the rural setting, a seropositive individual was detected in 396 (94%) out of 419 households. 

Remarkably, at least one seropositive participant was detected in all households in GC and PE. 

 

The seroprevalence rates were further explored across age categories and different 

socioeconomic variables in Figure 3.1B. In addition to the overall higher malaria exposure 

(seroprevalence) in rural than peri-urban areas, the age breakdown showed contrasting patterns 
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between these areas. A smoother increase in the age-seroprevalence trend was observed in peri-

urban areas. In contrast, an abrupt disruption at age 15 was observed in rural areas. It is 

important to notice that the age composition is different between rural/peri-urban areas 

(distinguished by the width of the bars), much younger in rural areas. Most noticeable 

differences in the age-structure and age-seroprevalence trend were observed between type of 

activities (inside/outside village) and recent travelers. Out-of-village working activities were 

carried out by the older population (>30 years old) that showed high seroprevalence rates 

(>60%). A similar pattern was observed for recent travelers, most of them were adults (> 30 

years old) with very high seroprevalence rates (>80%). The frequency distribution of out-of-

village working activities and seropositivity status is shown in Supplementary Figure 3.2 and 

spatial distribution of household work out-of-village rate spatial distribution in the villages in the 

study area is shown in Supplementary Figure 3.3. 

 

3.4.3. Average causal effect estimation 

Using a parametric g-computation, this study estimated that the standardized mean 

outcome (malaria seroprevalence) in the unexposed population (i.e. if all participants do not 

carry out out-of-village working activities) is 44.6% (95% CI: 41.7 % - 47.5%) and 66.7% (95% 

CI: 61.6% - 71.8%) in the exposed population (i.e. if all participants carry out out-of-village 

working activities) (Figure 3.2). The role of out-of-village working activities on recent malaria 

exposure (seroprevalence) was estimated as the difference between these quantities (standardized 

mean outcome) in the exposed and unexposed. This results in an important and precise average 

causal effect with a risk difference of 22.1% (95% CI: 16.3% - 27.9%). 
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However, contrasting patterns in standardized mean outcomes and the average causal 

effects were observed between peri-urban and rural areas. In peri-urban settings, similar 

standardized mean outcomes were estimated among exposed (42.5%; 95% CI: 29.7% - 55.4%) 

and unexposed (38.6%; 95% CI: 35.0% - 42.1%) resulting in no detected differences in malaria 

risk associated with out-of-village working activities. In the rural areas, the standardized mean 

outcomes among exposed was 78.4% (95% CI: 72.7% - 84.1%) and 47.7% (95% CI: 43.2% - 

52.1%) among unexposed, resulting in an average causal effect of 30.7% (95% CI: 23.8% - 

37.6%).  Significant heterogeneity in the average causal effect was observed between peri-urban 

and rural areas (Cochran's Q test = 15.5, p-value <0.001). 

 

3.4.4. Restriction scenarios 

Multiple scenarios were tested to inform policy making by simulating the prevalence of 

out-of-village working activities. Overall, the observed prevalence of out-of-village working 

activities was 28.6% (Table 3.1) and the estimated standardized mean outcome (malaria 

seroprevalence) was 48.8% (95% CI: 46.4% - 51.1%) (Figure 3.2). After manipulating (by 

simulation) the prevalence of the exposure (herein referred to as simulated exposure – SE) and 

computing the corresponding standardized mean outcome, a dose-response curve was 

constructed for overall, peri-urban, and rural areas (Figure 3.3). The average causal effect is –in 

consequence– the difference between the standardized mean outcome at both extremes of these 

dose-response curves (0% exposed vs. 100% exposed). Further explorations were conducted by 

comparing the SE against no (0%) exposure (NE) and the natural course (NC) in each 

geographic area (Figure 3.3). The main role of out-of-village working activities on malaria 
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seroprevalence in rural in comparison to peri-urban areas was further depicted by comparing the 

dose-response curves between these areas. 

 

Further scenarios were explored based on gender and age travel restriction policies. The 

standardized mean outcome when simulating a full exposure (FE – 100% prevalence of out-of-

village working activities) was 57.3% (95% CI: 53.6% - 61.0%) in males and 58.2% (95% CI: 

54.8% - 61.6%) in females (Figure 3.4A). In contrast, the standardized mean outcome when 

simulating the NE was 45.8% (95% CI: 43.0% - 48.6%) and 47.6% (95% CI: 45.0% - 50.2%) in 

males and females, respectively. Overall, a slightly greater impact was observed when restriction 

policies targeted males. The average causal effect in males was 11.5% (95% CI: 8.0% - 15.0%) 

and 10.5% (95% CI: 7.8% - 13.3%) in females. Importantly, this type of policy is most effective 

in rural areas (Figure 3.4A). The average causal effect is 3- and 15-folds higher in rural than 

peri-urban areas, in females and males respectively.  

 

A contrasting pattern was observed when simulating travel restrictions based on legal 

adult age (18 years old) in Peru. The standardized mean outcome when simulating the FE was 

greater in adults –18 years old and older– (63.8%; 95% CI: 59.6% - 68.0%) than in children and 

adolescents –17 years old and under– (51.7%; 95% CI: 48.7% - 54.7%) and (Figure 3.4B). In 

addition, a pronounced reduction in the standardized mean outcome was observed in adults 

(44.9%; 95% CI: 42.0% - 47.9%) in comparison to children and adolescents (48.5%; 95% CI: 

46.0% - 50.9%) when simulating the NE. Overall, a greater impact was observed when 

restriction policies were targeted at adults than children and adolescents. The average causal 

effect in adults was 18.8% (95% CI: 14.2% - 23.5%) and 3.2% (95% CI: 1.5% - 5.0%) in 
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children and adolescents. As previously observed, this policy scenario (targeting mobility 

restrictions to adults) is only effective in rural than peri-urban areas (Figure 3.4B). In rural areas, 

we identified an average causal effect of 27.9% (95% CI: 21.5% - 34.3%) while no effect in peri-

urban areas.  

 

3.5. Discussion 

Despite numerous studies highlighting the links between human mobility and malaria in 

Amazonian contexts, the quantification of occupational-driven mobility was lacking. Using two 

population-based studies we determined the average causal effect of out-of-village working 

activities on malaria seropositivity (recent exposure to the malaria parasite). This study 

highlighted the critical role of human population mobility in sustaining malaria transmission in 

the Peruvian Amazon. By simulating the prevalence of out-of-village working activities to reflect 

different policy scenarios, this study showed the importance of targeting key subpopulations 

when designing such occupational interventions. Particularly, targeting males and adult (18 years 

old and older) populations causes the greatest effect on malaria seropositivity. Finally, in all 

these scenarios, the effect is highly pronounced in rural in comparison to peri-urban areas. The 

findings of this study are substantial to tailor current and future malaria elimination programs in 

the Amazon Region. 

 

The role of human population mobility is of particular importance under elimination and 

prevention of reintroduction frameworks 149,150,174. In areas where malaria transmission is 

heterogeneous –such as the Peruvian Amazon–, human mobility increases the importation risk 

(formerly known as vulnerability) 63. Multiple mechanisms originate different mobility patterns 
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61,65,66,68 as described in Africa 83,91, Southeast Asia 94, and more recently in Latin America 74,100. 

Out-of-village working activities are central in the Peruvian Amazon since it is the most frequent 

reason for human mobility 98. However, as previously described 15,61,175,176, subnational and local 

approaches should be considered since human mobility and malaria dynamics are tightly related 

micro-geographical and local contexts. In this study, we estimated the contrasting effect of a set 

of policy scenarios in rural and peri-urban areas. Importantly, both settings are located in 

contiguous districts (administrative level 3). This emphasizes the importance to adopt flexible 

malaria elimination approaches since a variety of scenarios could be found at neighbor 

subnational levels.   

 

The goal of this study was to simulate the benefits of a new set of interventions by 

focusing solely on hypothetical interventions linked to out-of-village working activities. We 

recommend that future directions in malaria elimination research and policy would quantify 

other historical interventions based on pharmacological, environmental, and social/lifestyle 

factors to define a cost-effective set of interventions to achieve local malaria elimination goals. 

The hypothetical set of interventions tested in this study does not intend to suggest limiting the 

mobility of habitants in the Amazon Region, rather, intends to highlight their key role in 

sustaining malaria transmission. In consequence, our findings emphasized the urge to design 

tailored interventions for subpopulations that contribute the most to the malaria exposure such as 

males and adults in rural areas. Based on previous experiences 146, community health workers 

(CHW) may play a key role in deploying such kind of targeted strategies.  
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This study concludes that out-of-village working activities potentially encompass a wide 

range of mobility patterns that, if correctly identified, may help to enhance targeted interventions 

such as screening or surveillance strategies. Furthermore, recent studies leverage detailed GPS 

data to identify where people go and spend their time, allowing them to obtain accurate 

measurements of what they are exposed to within their activity spaces 177. Studies in Southeast 

Asia 94 and Latin America 74 showed the interaction between travel/commuting patterns and land 

coverage as a main driver of malaria endemicity. Importantly, Ny. darlingi (dominant malaria 

vector) demonstrates an increased exophagic –outdoors– biting behavior 8,163,178 and a breeding 

site preference in the forest fringes 179–181 in rural Amazon. Taken together, if both environmental 

and health policies are combined, it is hypothesized that amplified impacts in both fields can be 

achieved 136.  

 

We acknowledge the following limitations in this study. First, as a cross-sectional, this 

study is not designed to infer malaria transmission intensity. In this case, the seroprevalence 

reflects recent exposure to malaria infection (up to 9 months in the past) 164,166, however no 

active infection data was used. Despite other studies demonstrating that malaria seroprevalence 

is a good proxy for malaria transmission intensity 106,182,183, further longitudinal studies, to deal 

with potential regressions to the mean issues, are suggested to determine the causal effect on 

malaria transmission intensity. Second, personal protective measures (i.e., seasonal mobility, the 

use of bed nets or pharmacological prophylaxis) may play a key role in effect modification. 

Furthermore, besides the inclusion of these behaviors, considering the timing during transit or 

return of out-of-village activities may be important to consider for future studies. Finally, a 

potential threat to causal identifiability in this study may arise from the fact the outcome 
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(secondary infection) in one individual may be dependent on the outcome (primary infection) in 

other individuals (in other words, it would violate the stable unit treatment value assumption) 184. 

Given the design of this study, the main assumption relies on that the main outcome (recent 

malaria exposure) is independent across study participants (i.e., no interference). Further 

longitudinal studies including GPS data may explicitly determine the interactions (matrices) 

between primary and secondary infections to estimate causal effects that are conditional on 

contact with an exposed individual 185,186. 

 

3.6. Conclusion 

The findings of this study support the hypothesis that targeting out-of-village workers 

will considerably benefit current malaria elimination strategies in the Amazon Region. 

Particularly, males and adult populations that carried out out-of-village working activities in 

rural areas contribute the most to the malaria seropositivity (recent exposure to the parasite) in 

the Peruvian Amazon. This study contributed to designing a new set of interventions that will 

potentially prevent one-third of recent malaria exposures. An optimal set of interventions to 

achieve malaria elimination goals in Amazonia should be driven by further exploring the causal 

effects of innovative and traditional policies.  
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3.7. Tables 

Table 3.1. Baseline characteristics of the study population and their malaria seropositive 
status. 
 

  Negative Positive Overall 
  (N=917) (N=873) (N=1790) 
Area    

Peri-urban 481 (52.5%) 304 (34.8%) 785 (43.9%) 
Rural 436 (47.5%) 569 (65.2%) 1005 (56.1%) 
Age    

[0,5] 147 (16.0%) 31 (3.6%) 178 (9.9%) 
(5,15] 405 (44.2%) 163 (18.7%) 568 (31.7%) 
(15,30] 148 (16.1%) 151 (17.3%) 299 (16.7%) 
(30,50] 126 (13.7%) 262 (30.0%) 388 (21.7%) 
(50,117] 91 (9.9%) 266 (30.5%) 357 (19.9%) 
Gender    

Female 536 (58.5%) 437 (50.1%) 973 (54.4%) 
Male 381 (41.5%) 436 (49.9%) 817 (45.6%) 
Education    

Primary or less 582 (63.5%) 601 (68.8%) 1183 (66.1%) 
Secondary or Superior 335 (33.9%) 272 (31.2%) 607 (33.9%) 
Work type    

Inside village 798 (87.0%) 480 (55.0%) 1278 (71.4%) 
Outside village 119 (13.0%) 393 (45.0%) 512 (28.6%) 
Travel in the last month *   

No 794 (86.6%) 642 (73.5%) 1436 (80.2%) 
Yes 120 (13.1%) 229 (26.2%) 349 (19.5%) 
Microscopy result*    

Negative 894 (97.5%) 835 (95.6%) 1729 (96.6%) 
Positive 12 (1.3%) 26 (3.0%) 38 (2.1%) 
Fever    

No 900 (98.1%) 864 (99.0%) 1764 (98.5%) 
Yes 17 (1.9%) 9 (1.0%) 26 (1.5%) 
* variable with missing data   
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3.8. Figures 

 
 
Figure 3.1. Study area and socio-demographic distribution of seropositivity in the Loreto 
department in the Peruvian Amazon. A) Seropositivity rate at household level in the villages 
of Iquitos district (bottom left): Rumococha (RC), Santo Tomas (ST), Quistococha (QC), and 
Mazán district (top right): Gamitanacocha (GC), Libertad (LB), Primero de Enero (PE), Puerto 
Alegre (PA), Salvador (SL), Lago Yuracyacu (LY), and Urco Miraño (UM). B) Distribution of 
serology (sero) and microscopy (micro) rates across age categories and sociodemographic 
variables. Maps were produced using R v.4.1 (R Development Core Team, R Foundation for 
Statistical Computing, Australia) based on public geographic data extracted from 
OpenStreetMap contributors (www.openstreetmap.org) under Open Data Commons Open 
Database License (ODbL) 1.0 (http://openstreetmap.org/copyright). 
 
 
  

http://www.openstreetmap.org/
http://openstreetmap.org/copyright
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Figure 3.2. Summary of g-computation estimates by geographic area in the Loreto 
department in the Peruvian Amazon. Standardized mean outcome estimations for the natural 
course (NC) and simulated scenarios of full exposure (FE), no exposure (NE) and their risk 
differences (RD, grey area).  
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Figure 3.3. Standardized mean outcome estimated under simulated scenarios by proportion 
of travelers and geographic area in the Loreto department in the Peruvian Amazon. 
Standardized mean outcome estimations for the simulated exposure (SE; level of out-of-village 
working activities) and its risk difference (RD, grey panels) in comparison to no exposure (NE) 
and the natural course (NC).  
 
  
  



 86 

 
 
Figure 3.4. Standardized mean outcome estimated under simulated scenarios by 
geographic area and A) gender and B) age in the Loreto department in the Peruvian 
Amazon. Standardized mean outcome estimations for the natural course (NC) and simulated 
scenarios of full exposure (FE), no exposure (NE) and their risk differences (RD, grey area). 
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3.9. Supplementary information 

 
 
Supplementary Figure 3.1. Household seropositivity rate spatial distribution in villages in 
the study area in the Loreto department in the Peruvian Amazon. Maps were produced 
using R v.4.1 (R Development Core Team, R Foundation for Statistical Computing, Australia) 
based on public geographic data extracted from OpenStreetMap contributors 
(www.openstreetmap.org) under Open Data Commons Open Database License (ODbL) 1.0 
(http://openstreetmap.org/copyright). 
 
 
  

http://www.openstreetmap.org/
http://openstreetmap.org/copyright
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Supplementary Figure 3.2. Frequency of main occupational activity grouped by out-of-
village and in-village activities and seropositivity status. 
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Supplementary Figure 3.3. Household work out-of-village rate spatial distribution in 
villages in the study area in the Loreto department in the Peruvian Amazon. Maps were 
produced using R v.4.1 (R Development Core Team, R Foundation for Statistical Computing, 
Australia) based on public geographic data extracted from OpenStreetMap contributors 
(www.openstreetmap.org) under Open Data Commons Open Database License (ODbL) 1.0 
(http://openstreetmap.org/copyright). 
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Chapter 4: Quantifying the effect of Human Population Mobility on Malaria risk in the 

Peruvian Amazon 

 

4.1. Abstract 

The impact of Human population movement (HPM) on the epidemiology of vector-borne 

diseases, such as malaria, has been described. However, there are limited data on the use of new 

technologies for the study of HPM in endemic areas with difficult access such as the Amazon. In 

this study conducted in rural Peruvian Amazon, we used self-reported travel surveys and GPS 

trackers coupled with a Bayesian spatial model to quantify the role of HPM on the malaria risk. 

By using a densely sampled population cohort, this study highlighted the elevated malaria 

transmission in a riverine community of the Peruvian Amazon. We also found that the high 

connectivity between Amazon communities for reasons such as work, trading or family plausibly 

sustain such transmission levels. Finally, by using multiple human mobility metrics including 

GPS-trackers, and adapted causal inference methods we identified for the first time the effect of 

human mobility patterns on malaria risk in rural Peruvian Amazon. This study provides evidence 

of the causal effect of HPM on malaria that may help to adapt current malaria control programs 

in the Amazon. 

 

4.2. Introduction 

During 2019, 229 million malaria cases worldwide and 409 deaths occurred in 87 

endemic countries which surpassed projections made few years earlier 187. In Latin America, 

countries that share the Amazon region account for about 86% of all of the cases in the continent, 

despite control programs implemented for several years 187,188. In Peru, >90% of malaria cases 



 92 

are concentrated in the Loreto region, a mainly rural area with no electricity supply, no piped 

water, mostly accessible only by river, poor housing conditions and high mobility of people 

between villages 187,189. Well-identified individual and household level risk factors for malaria 

risk such as the misuse of personal protection measures (e.g., bed nets), knowledge of malaria, 

occupation household infrastructure, overcrowding, indoor animals, and proximity to mosquito 

breeding sites have been widely described 190–194. In addition, a number of studies showed the 

interplay of these individual and household factors with large-scale processes such as climate, 

deforestation, control programs and cultural aspects 195–198. However, most of these previous 

epidemiological studies relied on static exposures assuming individuals are not moving across 

different areas. Human population movement (HPM) has been hypothesized as a potential driver 

of malaria transmission 199,200 but empirical evidence is lacking in the Amazon region.  

 

The HPM between different villages impacts the spread of multiple infectious diseases 

and it has been observed that HPM is responsible for the spread of vector-borne diseases on 

scales that exceed the areas covered by their main arthropod vectors 201,202. In previous studies 

considering HPM, standardized (self-reporting) travel questionnaires have been used for the 

study of HPM 203–205, however, the lack of space and time granularity collected with these 

questionnaires often masked the effect of complex travel patterns 206. In the context of rural and 

riverine areas such as the Peruvian Amazon, labor activities (e.g., fishermen, loggers, and 

trading) involve long-distance travel through the rivers that connect the whole region, 

multimodal transportation, and multiple intermediate destinations that often include villages that 

are crossing borders to other countries with heterogeneous endemicity level 207,208. The particular 

HPM characteristics in this area require the use of innovative geographic positioning 
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technologies that help the characterization of HPM at a fine scale and with greater precision 

204,209.   

 

Previous studies described multiple options to collect data for the study of HPM and its 

role in disease transmission, such as the use of GPS trackers, cellphone records, and participatory 

mapping (GeoODK) 199,210,211. These approaches allow the collection of data for spatiotemporal 

analysis at different levels (neighborhood to international temporal scale, or daily to seasonal 

temporal scale). Another approach is based on using data from mobile phones to capture 

mobility patterns. Data collected with mobile phones generates a large number of records to 

capture people’s mobility that can be then used to quantify HPM patterns. The combination of 

mobile records with epidemiological surveillance and genetic data improves the estimation of the 

flows of parasite between localities due to HPM 212. However, due to privacy concerns, it is not 

possible to obtain sociodemographic data of the mobile users and in rural areas, such as the 

Amazon region, the communication network is scarce and limits the collection of data through 

these devices 210,213. Another option to capture population mobility is based on GPS data. GPS 

data is increasingly being applied to a variety of statistical methods to quantitatively characterize 

mobility patterns, such as time-weighted spatial averaging (TWSA) approaches (e.g., utilization 

distribution, kernel density, density ranking) and models based on activity spaces (e.g., daily path 

area, minimum convex polygon, standard deviation ellipse) at a fine spatio-temporal resolution. 

The integration of sociodemographic data from travel surveys with the accuracy of GPS data 

trackers would improve the assessment of HPM and quantify its role on the malaria 

epidemiology in the Peruvian Amazon. In the previous study 214, we considered only 20 

participants with GPS and movement ecology methods to describe the mobility between infected 



 94 

and non-infected participants. For the current paper, we extend the analysis to the whole cohort, 

combining and comparing two methodologies for the study of HPM (GPS and surveys) to 

investigate the etiological effect of human mobility on malaria. 

 

Another important challenge for the study of the effect of HPM on malaria risk is the 

complex confounding structure which require a clear causal inference framework and adapted 

methods. In the presence of complex confounding structures, methods based on propensity score 

estimation such as Inverse Probability of Treatment Weighting (IPTW) 215 have been proposed to 

deal with high-dimensional settings while allowing to check and optimize covariate balance to 

ensure that exposed and unexposed individuals are as similar as possible thus emulating a target 

trial 216. However, such approaches are still underused in the malaria epidemiology literature 217–

219 and to the best of our knowledge never applied in the context of HPM.   

 

To bridge this gap in the literature, our study sought to characterize and quantify the 

mobility patterns and their effects on malaria risk using a densely sampled study in rural 

Amazonia as a case study. This study leverages a rich human movement dataset (previously 

reported 199) with a causal inference framework to estimate the etiological effect of multiple 

mobility patterns on malaria risk that will provide important insights for malaria control and 

elimination in rural areas such as the Amazon rainforest region. 
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4.3. Methods 

4.3.1. Ethics 

All participants were included in the study (data collection and blood sample) after the 

signature of an informed consent form. The study was approved by the ethics review board of 

Universidad Peruana Cayetano Heredia (UPCH) in Lima (SIDISI: 100469). 

 

4.3.2. Study design 

A population cohort study was conducted to assess the contribution of human population 

movement to the malaria epidemiology in the rural Peruvian Amazon. All inhabitants aged 18 

years or older were invited to participate and upon signed consent were followed for two months 

with weekly measurements. Sociodemographic and epidemiological data were collected at 

census (week 0), parasitological surveys (weeks 1 and 8), and follow-up surveys (weeks 2 to 7). 

In addition, a sub-cohort was conducted with 20 selected inhabitants of the main cohort who 

were given a 3D-printed GPS tracker developed for the study, described elsewhere 199 during the 

last 4 weeks of the study (weeks 5 to 8). Malaria infection status was diagnosed weekly by 

molecular testing. Finger prick blood samples were taken to all participants during the 

parasitological surveys regardless their symptoms or travel status. During the follow-up surveys 

samples were collected if at least one of the following three conditions occurred: (i) the 

participant reported a travel outside the village the last week; (ii) the GPS tracker recorded travel 

outside the village (for the sub-cohort participants) and (iii) the participant presented clinical 

symptoms compatible with malaria.  
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4.3.3. Study site and population 

This study was conducted in Gamitanacocha (3.426°S, 73.318°W), in the Mazan district, 

Maynas province in the Loreto Region (Figure 4.1) with a total population of 92 inhabitants. 

Gamitanacocha is a community located north of Iquitos, capital of the Loreto. The community is 

only accessible using boat transportation, which takes ~6 hours from Iquitos. Gamitanacocha is a 

community surrounded by dense primary and secondary tropical forest with tropical weather and 

two marked seasons: rainy season from November to May and a dry season from June to 

October. This climate is optimal for the development of the primary vector of malaria in the 

region, Nyssorhynchus (Anopheles) darlingi 220, making it one of the villages with the highest 

risk of malaria 205. All villagers aged 18 years or older (N = 50) were included in this study. The 

GPS trackers developed for this proof-of-concept study were distributed by purposive sampling 

of participants, taking into account whether the participant had self-reported a trip outside the 

community in the last month 199. 

 

4.3.4. Data collection 

A census of all inhabitants aged 18 years or older in all households was conducted and 

included sociodemographic data (age, sex, occupation, migratory status, birthplace, time in 

community, pregnant, chronic disease, educational level, household structure). A parasitological 

survey (weeks 1 and 8) was conducted to collect epidemiological and mobility history in the last 

month for the entire population. In addition, the follow-up survey (weeks 2 to 7) was used to 

collect epidemiological and mobility data for the last week, including whether the GPS tracker 

recorded participants departure from the community. These surveys included data such as place 

of sleeping during travel, reason for travel, work conducted during travel, travel destination and 



 97 

travel duration. It is important to mention that the difference between the main occupation 

(census) and the work performed during the travel (follow-up survey) was considered because 

the study population had the characteristic of having occasional or seasonal jobs that did not 

necessarily coincide with their main occupation. Capillary blood samples were taken on filter 

paper from all participants to determine the basal and final infection status (parasitological 

surveys) and the infection status per week of each participant (follow-up survey). Infection status 

was determined by microscopy and PCR for Plasmodium at the species level 205, because 

infections can be submicroscopic. In addition, a second blood sample was taken 4 days later to 

avoid false negatives, because the parasitemia may be undetectable at the beginning of the 

disease. All this information was collected in both the main cohort and the sub-cohort. 

 

4.3.5. Laboratory procedure 

In the case of detection by PCR, Genomic DNA was extracted from dry blood spots of ~6 

mm2 sections using E.Z.N.A.® Blood DNA Kit (Omega Bio-tek®, USA), according to the 

manufacturer guidelines with slight modifications – addition of TEN (20 mM Tris-HCl, pH 8.0; 

2 mM EDTA, pH 8.0; 0.2 M NaCl) buffer, supplemented with SDS 10% w/v. Subsequent 

amplification was done by a real-time quantitative PCR (qPCR) method targeting the 18SSU 

rRNA gene region of the Plasmodium species-specific region. Oligonucleotides 5-

TAACGAACGA- GATCTTAA-3 and 5-GTTCCTCTAAGAAGCTTT-3 were used as primers 

as reported by Mangold et al. 205  and a modified protocol was used including PerfeCta SYBR 

Green Fast Mix (Quanta Biosciences, MD, USA). Ambiguous diagnostic results were confirmed 

by using a nested ssPCR method 221. 
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4.3.6. Statistical analysis 

The sociodemographic data of all participants and the characteristics of their households 

were summarized in proportions for categorical variables, and in median and interquartile range 

for continuous variables with skewed distribution. 

 

4.3.6.1. Mobility patterns 

For the main cohort, mobility patterns derived from the parasitological and follow-up 

surveys were described, such as travel frequency, destination and reason for travel, work 

performed during the travel, number of destinations, and travel time. For the sub-cohort, GPS 

trackers were used to record the total distance covered and total time covered (per participant) to 

observe their relationship with Plasmodium spp. infection. The features of the GPS tracker 

(hardware architecture, code and performance characteristics) were described elsewhere 199.  

 

The GPS records after being integrated with the data of the surveys, were characterized 

by a non-parametric Bayesian framework using the Bayesmove package in R programming 

software v.4.0.3 222 , to accurately characterize the mobility patterns of the sub-cohort 223. The 

model consists of a two-step framework, which divides individual tracks into segments 

(Supplementary Figure 4.1) and then groups these segments into possible movement patterns 

called " latent behavioral states" which, depending on whether their characteristics (in terms of 

step length-SL and turning angle-TA) have biological plausibility, are finally selected. The 

detailed procedure can be found in Supplementary methods 1. To obtain a mobility pattern per 

individual using these generated behavioral states, a summary of these results was performed. 

First, the proportion of each behavioral state generated was calculated, and second, the optimal 
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value of the proportion of a behavioral state that predicts Plasmodium infection was calculated as 

a breakpoint to define which behavioral state will be assigned as the mobility pattern. This 

procedure was performed using a ROC curve. 

 

In addition, we compared the performance of GPS trackers and surveys to identify 

whether participants leave the village, destinations and number of travels. Community departure 

identified by the GPS trackers was based on the detection of movement out of a 500 m radius 

with respect to the village centroid. In the case of GPS tracker travel destinations, they were 

identified by the presence of GPS records within a buffer (~500 m) of the Mazan riverine 

communities based on the results of the Bayesmove spatial model. 

 

4.3.6.2. Mobility patterns as risk factors for malaria infection 

Multiple mobility pattern metrics were explored, such as traveled more than 4 times 

(TN), traveled to Mazan (TD), traveled for work (TR), use a non-motorized boat for travel (TT), 

sleep outside during the trip (TSP), traveled to Mazan for more than 24 hours (M24), traveled to 

Mazan for reasons other than work (MnW), which were constructed from the weekly surveys, 

and the displacement pattern obtained by the Bayesmove model (MovT). and commuting pattern 

by Bayesmove model (MovT). Since the infection status was tested each week, we selected 

participants free of infection at week 1 (N = 30). From these participants, a positive infection 

status was determined if the participants developed infection during the study period (the first 

positive result obtained) and, in addition, we computed the time (in weeks) from enrollment to 

the first malaria infection.  
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To determine the effect of multiple mobility patterns while dealing with multiple a priori 

identified confounders, we used inverse probability treatment weighting (IPTW) to minimize the 

differences in baseline characteristics between the groups for each exposure (mobility pattern). 

The weights were created from the inverse of the propensity score (PS) if the individual was 

exposed, and for the unexposed it was the inverse of 1 minus the propensity score 224. The 

variables used to create the propensity scores for each mobility pattern were a priori selected 

using a directed acyclic graph (DAG) 225 (Supplementary Figure 4.2) considering all possible 

causal paths between each exposure (mobility pattern) and malaria infection. We first optimized 

the propensity score models (considering multiple functional forms and interactions using 

identified covariates) by comparing the AIC between models. Once we obtained an optimized 

propensity score (for each comparison of interest), we then created weights as described above 

226. We then checked the covariate balance between exposure groups using standardized mean 

differences and love plots. We developed 3 different models to determine the risk malaria 

infection associated with HPM exposures through different incidence-based approaches: (1) Log-

binomial model to estimate the Incidence Proportion Ratio (IPR), (2) Poisson model controlling 

by person-week of follow-up as an offset to estimate the Incidence Rate Ratio (IRR), and (3) 

Cox Proportional-hazards model to estimate the Hazard Ratio (HR).  All analysis and figures 

were conducted in R programming software v.4.0.3 222. 

 

4.4. Results 

4.4.1. Baseline characteristics and infection status 

From the 30 participants in the cohort (excluding positives at baseline), the median age 

was 32 years (IQR = 25-48), the proportion of males and females were the same, and the most 
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frequent occupation was farmer (73%). More than 70% of participants had at least primary 

education and were literate, only 2 people had a diagnosis of chronic disease, and 43% of the 

total population was born in the community. The main reason for migration to Gamitanacocha 

was for family and economic reasons (30% and 23%, respectively). The distribution of 

socioeconomic variables by at least one episode of malaria infection during the study is 

presented in Table 4.1. The incidence proportion of malaria by PCR in the study was 40%, and 

the incidence rate was 1 per 10 person-week with a median survival time of 2 weeks, and the 

incidence proportion of malaria by microscopy was 17 %. Figure 4.2 shows the distribution of 

malaria cases by species in the total number of inhabitants of the village during the 8 weeks of 

the study. 

 

Regarding households’ characteristics, 86% of the houses use the river as a source of 

water and 14% use rainwater. Most (86%) households did not have a bathroom, 67% of the 

households had electricity, and only 14% were fumigated. The floor and walls were made of 

wood in more than 90% of the households, and the roofs were made of thatch in more than 50%. 

The characteristics of the total population (N=50) of the village are shown in Table 4.1 in 

Supplementary Table 4.1.  

 

4.4.2. Mobility patterns 

In the main cohort (n=30), a total of 132 trips were reported by participants during the 

study (using surveys). Work was the most frequent reason to travel out of the village (42%). 

Mazan was reported as the most frequent travel destination (36%) and logger the most frequent 

occupation (Table 4.2). Table 4.3 shows the mobility patterns and person-weeks for each 
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category for participants (free of infection at baseline). The 77% of participants traveled to 

Mazan at least once, 83% traveled for work at least once, 73% traveled to Mazan not for work at 

least once, and 53% traveled to Mazan for more than 24 hours at least once. The travel 

characteristics of the total population of the village are presented in Supplementary Table 4.2. 

 

For the sub-cohort (n=20), mobility patterns were described in relation to time and 

distance covered by the participants (using GPS data). Malaria cases increased in those who 

stayed more time outside the village and traveled more distance, both for the infections 

summarized per participant (Figure 4.3A) and per participant-week of follow-up (Figure 4.3B). 

From the Bayesmove model we obtained probabilities for each GPS record of belonging to a 

latent behavioral state, showing that the first and second behavioral states grouped the largest 

number of GPS records. We analyzed the characteristics of the two behavioral states with the 

largest amount of data and identified that the first pattern consisted of long step length 

movements without a defined turning angle, and another pattern of medium to short step length, 

with varying turning angles (Supplementary Figure 4.3). From these results, the first movement 

pattern identified was named “displacement pattern” and the second, “community pattern”. With 

these mobility patterns, the villages in which participants developed a community pattern, that is, 

their travel destinations, were identified. The Figure 4.3 shows selected trajectories followed by 

the participants, with their respective behavioral states. It can also be observed that the 

trajectories marked by the displacement patterns were variable, from leaving up to a radius of 3 

km relative to Gamitanacocha, to beyond 20 km. Graphics of all participants are in 

Supplementary Figure 4.4 The results of the comparison of GPS trackers and surveys to detect 

community departures, number of trips and destinations are shown in Supplementary Table 4.3. 
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4.4.3. Effect of mobility patterns on risk of infection by Plasmodium spp. 

Figure 4.4 shows the results of IPR, IRR, and HR (in balanced samples) to estimate the 

effect of multiple mobility patterns on the risk of malaria infection. A travel to Mazan at least 

once (IPR: 6.61 [1.87-40.32], IRR: 7.33 [2.07-44.66]), travel to Mazan for other than work (IPR: 

3.22 [1.18-10.65], IRR: 3.43 [1.26-11.33]), and travel to work (IPR: 4.35 [1.19-29.76], IRR: 4.79 

[1.31-32.76]) were the mobility metrics that increased risk of acquiring a malaria infection in 2 

of the 3 models considered. Travel to Mazan for more than 24 hours (IRR: 2.81 [1.06 - 7.97]) 

was the mobility metrics shown to be a risk for Plasmodium infection in one of the 3 models. 

The point estimation of the 3 models had similar results although for the interval estimates the 

Cox model less precise. Kaplan-Meier plots (Supplementary Figure 4.5) show that, although not 

statistically significant, it takes less time for the exposed group (for each mobility pattern) to 

reach 50% infection compared to the non-exposed. 

 

4.5. Discussion 

The estimation of the etiological effect of human population mobility on malaria risk has 

been elusive in rural areas in Latin America where moderate-to-high malaria transmission 

occurs. By using a densely sampled population cohort, this study highlighted the elevated 

malaria transmission in a riverine community of the Peruvian Amazon. We also found that the 

high connectivity between Amazon communities for reasons such as work, trading or family 

plausibly sustain such transmission levels. Finally, by using multiple human mobility metrics 

including GPS-trackers and adapted causal inference methods we identified for the first time the 

effect of human mobility patterns on malaria risk in rural Peruvian Amazon.  
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This area was previously characterized as a moderate transmission setting 227, however, 

this is the first report of hyper-endemicity levels comparable to some hyper-endemic areas of 

SSA such as Guinea (43.9%), Mozambique (38.3%), and ivory coast (41.5%) 228. Importantly, it 

has been previously reported a high level of asymptomatic malaria cases (~88%) in the villages 

in the Mazan basin, that potentially underestimates actual transmission in the area 221. In this 

study, a high detection of infections was accounted by sampling the population twice a week, 

highlighting the importance of prospective surveillance of malaria. This is particularly important 

in populations with low parasite densities or close to the limit of detection of diagnostic methods 

due to the fitness of the immune response in consequence to constant infections 229. The results 

obtained in this study are comparable with the 54.3% previously obtained in the district of 

Mazan 220, 40.9% and 31.8% in the village of Libertad 205,230, Primero de Enero village with 

44,4% 205,  and in villages that belong to other river basins, such as the Napo river basin, where 

the Urco Miraño village had a prevalence of 30.7% 205,230. Further studies are needed to 

determine the generalizability of the results of this study to the entire Loreto Region, mainly due 

to the high heterogeneity in malaria endemicity and HPM patterns. 

 

This study highlights to importance of considering population mobility when designing 

strategies to reduce malaria risk. For example, environmental interventions such as vegetation 

clearance or modification of river boundaries may target areas characterized with higher 

population mobility patterns.  This high transmission observed is possibly fueled by the high 

connectivity between communities in the Amazon due to highly mobile populations. In this 

study, all participants have left the community at least once during the study period (2 months). 
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We determined the mobility of the participants through self-reporting travel questionnaires and 

the use of GPS trackers. By using questionnaires, we determined that travel reasons of the 

inhabitants of Gamitanacocha were mainly due to work, followed by trading, and family. 

Collecting mobility data from both questionnaires and GPS are complementary and here we 

showed how such data can be combined to study the effect of HPM patterns on malaria risk. We 

therefore encourage future studies to rely on diverse sources of data collection. Furthermore, 

collecting survey data regarding travel reasons has been shown to limit the "residential" effect 

fallacy 231.  The results are consistent with those reported in Brazil 204,208, where labor was the 

third cause of travel; however, these reports were collected from surveys in rural and urban 

areas, where workplaces may be in the same locality. In our study, logging was the most frequent 

work. Despite the community is surrounded by primary and secondary tropical forest, which 

allows the development of this activity, long distances were recorded to logging areas where 

high human-biting behaviors of mosquitoes were recorded 221. Another important factor is the 

seasonality of both, vector and work-related travel. This study was conducted during the rainy 

season, when the malaria vector has favorable climatic conditions to develop. In addition, the 

activities carried out by people are also conditioned by seasonality since there are activities that 

are carried out on a daily (trading, fishing), periodically (tourism, mining, logging) or long term 

(migration, colonization) basis 232. This connectivity between communities has also been inferred 

through genetic analysis of parasite populations found in the communities of the same watershed. 

The level of genetic similarity between parasites sampled in the Mazan watershed indicated an 

intense flow of parasites between communities, highly compatible with human populations with 

frequent mobility between them 200.  
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In this study we analyzed GPS data –to objectively characterize the HPM among 

villagers– with a Bayesian behavioral state approach. This analysis revealed that there are at least 

two mobility behaviors in the study participants. We were able to differentiate travel trajectories 

through the river network from travel in communities or work zones within the forest or forest 

fringes. It is important to highlight that previous studies reported that these displacements in 

different communities or forest areas put people at great risk (2-fold higher) of get a malaria 

infection, because the vector prefers peri-domestic areas and the forest fringe 233. This suggests 

that interventions to prevent malaria should take particular attention not only to local 

transmission but HPM as a key mechanism in moderate-to-high transmission settings. 

Additionally, we were able to identify the communities most frequented by participants, which 

for 2018, the Regional Health Direction of Loreto reported Annual Parasitic Indices (API) of 

403.4 and 537.5 for Libertad and Visto Bueno villages, 138.8 for Santa Cruz village, 51.9 for 

Puerto Alegre and 11.6 for Mazan village. Although Mazan does not present high API levels, the 

malaria risk obtained by the models may be due to these villages, for their location in the basin, 

are transitory stops on the way to the final destination, which is Mazan.  Rich GPS tracking data 

were leveraged by movement ecology methods such as utilization distribution or kernel density, 

and other post-hoc analyses such as step selection functions (SSF), calculation of activity 

budgets, or behavior-specific measures of landscape resistance 199,234,235 in the context of non-

human animals; however, a body of studies examining these methods for infectious diseases 

epidemiology are still scarce. Moreover, the fine-scale characterization of HPM obtained in this 

study is consistent with that described elsewhere 236,237, which gives it an advantage over more 

commonly used methodologies such as telephone records or self-report surveys. We should also 

highlight that, in this study, low-cost open-source GPS devices were used 214, which overcomes 



 107 

the logistical limitation that is usually present when researchers want to implement HPM studies 

at this level of resolution. It is also important to mention that, in this study, the surveys had 

highly comparable results with the GPS trackers for the detection of community departures by 

participants. This is possibly since the surveys –like the malaria tests– were conducted on a 

weekly basis during the whole study, decreasing possible recall bias due to participant omission.  

 

We determined that travel to Mazan city (~3 Km from study area) increases the risk of 

malaria infection, compatible with previous reports that also highlight that the vector is present 

in the peri-domestic zones of the community and in greater frequency in all villages in the 

watershed of the Mazan river 230,233. It is also important to note that Mazan is the main city in the 

entire watershed, so all the other communities interact there for different reasons. Several 

previous studies have reported the association between traveling for work and risk of malaria, 

although due to the characteristics of the type of work carried out in this study (mainly logging) 

it resulted in a much higher risk compared to the other studies 205,207,208. From the 3 types of 

models developed, the estimates obtained from calculating the IPR and IRR were consistent in 

the point estimation and precision, in contrast to the HR, which obtained wider CIs, although 

with the same direction of effect and similar point estimate.   

 

Some limitations in this study must be acknowledged. First, the mobility data from the 

overall cohort were collected over an 8-week period and the GPS data over a 4-week period. 

This condition would not capture seasonal changes in both mobility patterns and vector 

development in the area 232. Future, longitudinal studies are suggested to account for potential 

seasonal differences in malaria transmission and mobility patterns.  Second, the GPS tracker had 



 108 

moments of low battery and had to stop recording data, but the spatial model developed in the 

study homogenized the recording times in a step prior to the analysis, and the records that could 

not be smoothed were excluded from the analysis without altering the results. Third, there were 

participants who were not sampled in all weeks of the study, which could affect the time at 

which they truly became infected. The weekly sampling strategy was intended to minimize this 

missing data problem. Fourth, although there were variables that could not be collected, these 

variables were identified as latent variables through the DAGs and their position as confounders 

in the causal path were examined. No latent variables were required in the minimum adjustment 

sets for all DAGs evaluated. Fifth, the study was designed to detect malaria infections during 

travel and not locally in the community. This could affect the differentiation of whether the 

participant became infected during travel or in the same community. In addition, we were not 

able to consider the role non-travelling asymptomatic individuals in the study area regarding 

malaria risk. Sixth, personal protection measures (e.g., using of repellent) may act as important 

effect modifiers. The survey included questions about such individual behaviors’ measures, but 

most participants did not answer to these questions. It would be important to investigate the 

potential protective role of such behaviors measures regarding the effect of mobility and malaria 

risk. Finally, the small sample size of this study, in addition to the exclusion of participants 

infected at week 1, may affect the precision of our estimates; however, the different metrics 

analyzed were consistent in direction and magnitude despite the precision estimates. 

 

4.6. Conclusion 

This study shows the potential of hyper-endemicity of malaria in riverine communities of 

the Peruvian Amazona that were supported by high connectivity between villages in the same 
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watershed. We objectively characterized the human population movement through the river 

network and forested areas using GPS tracking data and highlight the mobility patterns that 

strongly increase the risk of malaria in the area. Finally, this study provides evidence of the 

etiological effect of human mobility on the risk of malaria that may help tailoring current malaria 

control strategies in areas with moderate-to-high malaria transmission such as the Amazon 

rainforest. 
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4.7. Tables 

Table 4.1. Baseline characteristics of the study population infection-free at the beginning of 
the study.  

  N = 30 

  P. vivax   P. falciparum 
 Negative  Positive    Negative  Positive  
  n = 18 (%) n = 12 (%)   n = 26 (%) n = 4 (%)         

Age (years)        
18–50  23 (77)  13 (72) 10 (83)  20 (77) 3 (75) 
51–65 5 (17)  4 (22) 1 (8.3)  5 (19) 0 (0) 
> 65 2 (6.7)  1 (5.6) 1 (8.3)  1 (3.8) 1 (25) 
Sex        
Male 15(50)  8(44) 7(58)  12(43) 3(75) 
Female 15(50)  10(56) 5(42)  14(54) 1(25) 
Occupation        
Farmer 22(73)  14(78) 8(67)  19(73) 3(75) 
Housewife 6(20)  3(17) 3(25)  5(19) 1(25) 
Teacher 1(3.3)  1(5.6) 0  1(3.8) 0(0) 
Health promoter 1(3.3)  0 (0) 1(8.3)  1(3.8) 0(0) 
Education level        
None 2(6.7)  2(11) 0(0)  2(7.7) 0(0) 
Primary school 21(70)  12(67) 9(75)  19(73) 2(50) 
Secondary school 5(17)  2(11) 3(25)  3(12) 2(50) 
Higher education 2(6.7)  2(11) 0(0)  2(7.7) 0(0) 
Literate        
Yes 26(87)  15(83) 11(92)  22(85) 4(100) 
No 4(13)  3(17) 1(8.3)  4(15) 0(0) 
Other disease        
None 28(93)  16(89) 12(100)  24(92) 4(100) 
Anemia 1(3.3)  1(5.6) 0(0)  1(3.8) 0(0) 
Diabetes 0(0)  0(0) 0(0)  0(0) 0(0) 
Rheumatism 1(3.3)  1(5.6) 0(0)  1(3.8) 0(0) 
Pregnant        
Yes 2(13)  0(0) 2(40)  2(14) 0(0) 
No 13(87)  10(100) 3(60)  12(86) 1(100) 
Born in community        
Yes 13(43)  8(44) 5(42)  12(46) 1(25) 
No 17(57)  10(56) 7(58)  14(54) 3(75)         
Time in community (months)*        
< 12 2 (6.7)  1 (5.6) 1 (8,3)  2 (7.7) 0 (0) 
12–24 1 (3.3)  1 (5.6) 0 (0)  1 (3.8) 0 (0) 
24–48 4 (13)  2 (11) 2 (17)  4 (15) 0 (0) 
48–60 1 (3.3)  1 (5.6) 0 (0)  1 (3.8) 0 (0) 
> 60 22 (73)  13 (72) 9 (75)  18 (69) 4 (100) 
Reason for migration        
None 13 (43)  8(44) 5(42)  12(46) 1(25) 
Economic 7(23)  3(17) 4(33)  5(19) 2(50) 
Family 9(30)  6(33) 3(25)  8(31) 1(25) 
Other 1(3.3)  1(5.6) 0(0)  1(3.8) 0(0) 
Birthplace        
Gamitanacocha 13(43)  8(44) 5(42)  12(46) 1(25) 
Marañon 1(3.3)  1(5.6) 0(0)  1(3.8) 0(0) 
Loreto 1(3.3)  1(5.6) 0(0)  1(3.8) 0(0) 
Maynas 12(40)  6(33) 6(50)  9(35) 3(75) 
Putumayo 1(3.3)  0(0) 1(8.3)  1(3.8) 0(0) 
Ramon Castilla 1(3.3)  1(5.6) 0(0)  1(3.8) 0(0) 
San Martin 0(0)  0(0) 0(0)  0(0) 0(0) 
Yurimaguas 1(3.3)   1(5.6) 0(0)   1(3.8) 0(0) 
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Table 4.2. Total number of travels of the participants during the whole study. 
 

 

  N = 132  

  P. vivax   P. falciparum 

 Negative  Positive    Negative  Positive  
  n = 113(%) n = 19 (%)   n = 127 (%) n = 5 (%) 

        
Travel work        
No work on the travel 91(69)  77(68) 14974)  88(69) 3(69) 
Farmer 8(6.1)  6(5.3) 2(11)  7(5.5) 1(20) 
Logger 14(11)  14(12) 0(0)  14(11) 0(0) 
Fisher 8(6.1)  7(6.2) 1(5.3)  8(6.3) 0(0) 
Laborer 3(2.3)  1(0.9) 2(11)  3(2.4) 0(0) 
Other 8(6.1)  8(7.1) 0(0)  7(5.5) 1(20) 
Travel destination        
Libertad 7(5.3)  7(6.2) 0(0)  7(5.5) 0(0) 
Mazan 47(36)  38(34) 9(47)  45(35) 2(40) 
Visto Bueno 20(15)  19(17) 1(5.3)  19(15) 1(20) 
Other 58(44)  49(43) 9(47)  56(44) 2(40) 
Travel reason        
Trade 26(20)  22(19) 4(21)  25(20) 1(20) 
Studies 2(1.5)  2(1.8) 0(0)  2(1.6) 0(0) 
Family 21(16)  16(14) 5(26)  20(16) 1(20) 
Health 6(4.5)  4(3.5) 2(11)  6(4.7) 0(0) 
Work 56(42)  49(43) 7(37)  54(43) 2(40) 
Other 21(16)  20(18) 1(5.3)  20(16) 1(20) 
Travel transportation        
Canoe 13(9.4)  11(9.7) 2(11)  12(9.4) 1(20) 
Motorized boat 109(83)  92(81) 17(89)  105(83) 4(80) 
Other 10(7.6)  10(8.8) 0(0)  10(7.9) 0(0) 
Travel sleep place        
No sleep during travel 73 (55)  65(58) 8(42)  69(54) 4(80) 
House 49(37)  38(34) 11(58)  48(38) 1(20) 
Outside 6(4.5)  6(5.3) 0(0)  6(4.7) 0(0) 
Other 4(3)  4(3.5) 0(0)  4(3.1) 0(0) 

        
Travel duration (hours)* 40 

(9–107)   
49 
(8–124) 

28 
(27–51)   

49 
(9–123) 

27 
(18–39) 

*Median (IQR) 
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Table 4.3. Mobility patterns of the participants for the whole study period. 
 

 
  

Positive  Population  
N = 30 
(%) 

Pseudo-
population  

Person-week (N = 
120)   N = 12 (%) 

      
Traveled to Mazan not for work     
 No 2 (17) 8(27) 33 35 

 Yes 10(83) 22(73) 30 85 
Traveled to Mazan > 24 h     
 No  4(33) 14(47) 36 61 
 Yes 8(67) 16(53) 21 59 
Number of travels (> = 4)     
 No 7(58) 19(63) 30 72 
 Yes 5(42) 11(37) 25 48 
Slept outside during travel     
 No 8(67) 22(73) 30 90 
 Yes 4(33) 8(27) 24 30 
Traveled in motorized boat     
 No 7(58) 17(57) 31 63 

 Yes 5(42) 13(43) 30 57 
Traveled to Mazan     
 No 1(8.3) 7(23) 31 33 
 Yes 11(91.7) 23(77) 30 87 
Traveled to work     
 No 1(8.3) 5(17) 32 22 
 Yes 11(91.7) 25(83) 55 98 
Displacement pattern*     
 No 3(38) 8(53) 15 36 
  Yes 3(43) 7(47) 15 32 
*Percent for N=15.     
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4.8. Figures 

 

 
 
Figure 4.1. Location of Gamitanacocha in the Peruvian Amazon and travel records. 
Located in the district of Mazan, province of Maynas, region Loreto, Peru. The GPS trackers 
recorded the trajectories developed by the participants during 4 weeks. (GC: Gamitanacocha, 
MZ: Mazan, VB: Visto Bueno, LB: Libertad). 
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Figure 4.2. Cases per species detected by PCR weekly of the 50 study participants. 
Participants who were included in the sub cohort are indicated with (*). Empty spaces indicate 
that the participant was not sampled in that week because did not meet the established criteria for 
being sampled. 
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Figure 4.3. Travel patterns of study participants in Gamitanacocha in the Peruvian 
Amazon A. Cumulative distance and time traveled by subcohort participants during the whole 
study by infection status. B. Distance and time traveled weekly by participants in the subcohort 
during the whole study by infection status. C. Trajectories of selected participants outside the 
village taking into account the type of mobility pattern performed and the distance from 
Gamitanacocha (Red buffer: 3 km, Blue buffer: 10 km, Violet buffer: 20 km). 
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Figure 4.4. Forest plot of the models for each exposure applying the IP weighting method 
for each type of model developed. 
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4.9. Supplementary information 

Supplementary methods 4.1. Mobility characterization using the Bayesmove package 

GPS data processing 

The model consists of a two-step framework. The step length (SL), turning angle (TA) 

and time difference (DT) of the records were calculated based on the GPS tracks. The records 

with the most frequent DT value (five minutes) were selected. From these data, the SL and TA 

values were discretized, using quantiles for SL and by ��4 from -2 � to 2� for TA. These new 

discrete variables were used for the first step of the model. 

Segment the tracks 

This first step consists in a Bayesian segmentation model, which uses a reversible-jump 

Markov chain Monte Carlo (RJMCMC) algorithm to estimate the breakpoints where values of 

SL and TA substantially change. These breakpoints were verified visually using a function from 

the Bayesmove package to generate graphs with the breakpoints generated, in addition to 

verifying the convergence of the model per individual. These breakpoints generated segments in 

the data that represent different changes in movement patterns of the participants based on the 

variables (SL and TA). 

Cluster track segments 

Once observations from all participants have been assigned to the segments obtained in 

the previous step, a Latent Dirichlet Allocation (LDA) model was performed to estimate the 

latent behavioral states. For the selection of the final behavioral states, we considered the 

proportions of each latent behavioral state with respect to all the records and the biological sense, 

that is, that according to the characteristics of the behavioral state, it can be explained as an 

activity of the individual. 
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Supplementary Figure 4.1. Graphs showing the breakpoints generated in the first step of the 
spatial model (Bayesmove). the vertical black lines indicate where the model detected a 
significant change in SL and TA values for each participant. 
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Supplementary Figure 4.1. (Continued) Graphs showing the breakpoints generated in the first 
step of the spatial model (Bayesmove). the vertical black lines indicate where the model detected 
a significant change in SL and TA values for each participant. 
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Supplementary Figure 4.1. (Continued) Graphs showing the breakpoints generated in the first 
step of the spatial model (Bayesmove). the vertical black lines indicate where the model detected 
a significant change in SL and TA values for each participant. 
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Supplementary Figure 4.2. DAGs for the models adjusted for each exposure. A. Travel to 
Mazan not for work (MW), B. Travel to Mazan for at least 24 hours (M24), C. Mobility pattern 
(MovT), D. Travel Number >4 (TN), E. Travel sleep place -out (TSP), F. Travel to work (TR), 
G. Travel to Mazan (TD).  
  

A 
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Supplementary Figure 4.2. (Continued) DAGs for the models adjusted for each exposure. A. 
Travel to Mazan not for work (MW), B. Travel to Mazan for at least 24 hours (M24), C. 
Mobility pattern (MovT), D. Travel Number >4 (TN), E. Travel sleep place -out (TSP), F. 
Travel to work (TR), G. Travel to Mazan (TD).  

B 
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Supplementary Figure 4.2. (Continued) DAGs for the models adjusted for each exposure. A. 
Travel to Mazan not for work (MW), B. Travel to Mazan for at least 24 hours (M24), C. 
Mobility pattern (MovT), D. Travel Number >4 (TN), E. Travel sleep place -out (TSP), F. 
Travel to work (TR), G. Travel to Mazan (TD).  

C 
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Supplementary Figure 4.2. (Continued) DAGs for the models adjusted for each exposure. A. 
Travel to Mazan not for work (MW), B. Travel to Mazan for at least 24 hours (M24), C. 
Mobility pattern (MovT), D. Travel Number >4 (TN), E. Travel sleep place -out (TSP), F. 
Travel to work (TR), G. Travel to Mazan (TD).  
  

D 
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Supplementary Figure 4.2. (Continued) DAGs for the models adjusted for each exposure. A. 
Travel to Mazan not for work (MW), B. Travel to Mazan for at least 24 hours (M24), C. 
Mobility pattern (MovT), D. Travel Number >4 (TN), E. Travel sleep place -out (TSP), F. 
Travel to work (TR), G. Travel to Mazan (TD).  
  

E 
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Supplementary Figure 4.2. (Continued) DAGs for the models adjusted for each exposure. A. 
Travel to Mazan not for work (MW), B. Travel to Mazan for at least 24 hours (M24), C. 
Mobility pattern (MovT), D. Travel Number >4 (TN), E. Travel sleep place -out (TSP), F. 
Travel to work (TR), G. Travel to Mazan (TD).  
  

F 
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Supplementary Figure 4.2. (Continued) DAGs for the models adjusted for each exposure. A. 
Travel to Mazan not for work (MW), B. Travel to Mazan for at least 24 hours (M24), C. 
Mobility pattern (MovT), D. Travel Number >4 (TN), E. Travel sleep place -out (TSP), F. 
Travel to work (TR), G. Travel to Mazan (TD).  
 
 
  

G 
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Definition of terms – DAGs 
BC born in community 
M12 malaria in the last 12 months 
PP personal protection 
PI preventive intervention 
SL study level   
SEL socioeconomic level 
SI structure intervention 
MQ use flynet   
MF floor material 
MR roof material 
MW wall material 
ES electricity source 
WS water source 
F fumigate   
L literate   
MG migration   
PO principal occupation 
TM     
TN travel number 
TR travel reason 
TDu travel duration 
TT travel transportation 
TD travel destination 
TSP travel sleep place 
MovT Movement type 
Inf.status Infection status 
M24 Mazan at least 24 hours 
MNW Mazan not for work 

 
 
Supplementary Figure 4.2. (Continued) DAGs for the models adjusted for each exposure. A. 
Travel to Mazan not for work (MW), B. Travel to Mazan for at least 24 hours (M24), C. 
Mobility pattern (MovT), D. Travel Number >4 (TN), E. Travel sleep place -out (TSP), F. 
Travel to work (TR), G. Travel to Mazan (TD).  
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Supplementary Figure 4.3. A. Bar chart showing the probabilities that a GPS record belongs to 
a particular latent behavioral state. B. Step length and turning angle characteristics of the chosen 
behavioral states (in color). 
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Supplementary Figure 4.4. Behavioral state per participant and trajectory. The dotted lines 
indicate the radius of mobilization traveled taking Gamitanacocha as reference (Red: 3 km, Blue: 
10 km, Violet: 20 km). 
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Supplementary Figure 4.5. Kaplan Meier plot of mobility patterns for the main cohort.  
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Supplementary Table 4.1. Baseline characteristics of study population 
 
  

 

  N = 50 

  P. vivax   P. falciparum 
 Negative  Positive     Negative  Positive   
  n = 25 (%) n = 25 (%)    n = 35 (%) n = 15 (%)  

          
Age (years)* 32(23)  31 (29) 32(14)   32(18) 32(31)  
Sex          
Male 28(56)  13(52) 15(60)   18(51) 10(67)  
Female 22(44)  12(48) 10(40)   17(49) 5(33)  
Occupation          
Farmer 37(74)  20(80) 17(68)   25(71) 12(80)  
Housewife 10(20)  4(16) 6(24)   7(20) 3(20)  
Teacher 2(4)  1(4) 1(4)   2(5.7) 0(0)  
Health promoter 1(2)  0 (0) 1(4)   1(2.9) 0(0)  
Education level          
None 3(6)  2 (8) 1(4)   3(8.6) 0(0)  
Primary school 35(70)  18(72) 17(68)   24(69) 11(73)  
Secondary school 9(18)  3(12) 6(24)   5(14) 4(27)  
Higher education 3(6)  2(8) 1(4)   3(8.6) 0(0)  
Literate          
Yes 40(80)  19(76) 21(84)   28(80) 12(80)  
No 10(20)  6(24) 4(16)   7(20) 3(20)  
Other disease          
None 47(94)  22(88) 25(100)   33(94) 14(93)  
Anemia 1(2)  1(4) 0(0)   1(2.9) 0(0)  
Diabetes 1(2)  1(4) 0(0)   0(0) 1(6.7)  
Rheumatism 1(2)  1(4) 0(0)   1(2.9) 0(0)  
Pregnant          
Yes 3(14)  0(0) 3 (30)   2(12) 1(20)  
No 19(86)  12(100) 7 (70)   20(57) 12(80)  
Born in community          
Yes 18(36)  9(36) 9(36)   15(43) 3(20)  
No 32(64)  16(64) 16(64)   20(57) 12(80)  
          
Time in community (months)* 168(222)  156 (228) 216(192)   180(294) 120(180)  
Migration reason          
None 18(36)  9(36) 9(36)   15(43) 3(20)  
Economic 12(24)  6(24) 6(24)   7(20) 5(33)  
Family 18(36)  8(32) 10(40)   12(34) 6(40)  
Others 2(4)  2(8) 0(0)   1(2.9) 1(1.67)  
Birthplace          
Gamitanacocha 18(36)  9(36) 9(36)   15(43) 3(20)  
Marañon 1(2)  1(4) 0(0)   1(2.9) 0(0)  
Loreto 1(2)  1(4) 0(0)   1(2.9) 0(0)  
Maynas 23(46)  11(44) 12(48)   12(34) 11(73)  
Putumayo 1(2)  0(0) 1(4)   1(2.9) 0(0)  
Ramon Castilla 2(4)  1(4) 1(4)   2(2.5) 0(0)  
San Martin 1(2)  0(0) 1(4)   1(2.9) 0(0)  
Yurimaguas 3(6)  2(8) 1(4)   2(5.7) 1(6.7)   
*Median (IQR) 
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Supplementary Table 4.2. Total travels of the total number of participants over 8 weeks   

 

  N = 210  

  P. vivax   P. falciparum 

 Negative  Positive    Negative  Positive  

  n = 162 (%) n = 48 (%)   n = 190 (%) n = 20 (%) 

        
Travel work        
No work on the travel 147(70)  110(68) 37(77)  133(70) 14(70) 

Farmer 14(6,7)  10(6,2) 4(8,3)  12(6,3) 2(10) 

Logger 23(11)  21(13) 2(4,2)  21(11) 2(10) 

Fisher 11(5,2)  9(5,6) 2(4,2)  10(5,3) 1(5) 

Laborer 6(2,9)  3(1,9) 3(6,2)  6(3,2) 0(0) 

Other 9(4,3)  9(5,6) 0(0)  8(4,2) 1(5) 

Travel destination        
Libertad 10(4,8)  9(5,6) 1(2,1)  10(5,3) 0(0) 

Mazan 75(36)  61(38) 14(29)  65(34) 10(50) 

Visto Bueno 28(13)  69(43) 28(58)  25(13) 3(15) 

Other 97(46)  23(14) 5(10)  90(47) 7(35) 

Travel reason        
Trade 46(22)  37(23) 9(19)  39(21) 7(35) 

Studies 2(1)  2(1,2) 0(0)  2(1,1) 0(0) 

Family 32(15)  23(14) 9(19)  29(15) 3(15) 

Health 10(4,8)  7(4,3) 3(6,2)  9(4,7) 1(5) 

Work 92(44)  70(43) 22(46)  86(45) 6(30) 

Other 28(13)  23(14) 5(10)  25(13) 3(15) 

Travel transportation        
Canoe 19(9)  13(8) 6(12)  17(8,9) 2(10) 

Motorized boat 176(84)  135(83) 41(85)  159(84) 17(85) 

Other 15(7,1)  14(8,6) 1(2,1)  14(7,4) 1(5) 

Travel sleep place        
No sleep during travel 107(51)  82(51) 25(52)  97(51) 10(50) 

House 84(40)  62(38) 22(46)  77(41) 7(35) 

Outside 13(6,2)  12(7,4) 1(2,1)  11(5,8) 2(10) 

Other 6(2,4)  6(3,1) 0(0)  6(2,6) 0(0) 

        
Travel duration (hours)* 49(112)   51(122) 28(44)   49(112) 52(98) 

Statistical test performed: Wilcoxon rank-sum test, Fisher's exact test 

*Median (IQR) 
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Supplementary Table 4.3. Performance comparison between GPS trackers and surveys 
 
 

 

  

 
    GPS trackers Self-reported surveys 
    
Number of trips  46 48 
    
Travel destination    
    

 
Number 

  
 1–3 16 37 
 4–6 - 4 
 7–10 - 6 
 > 10 - 1 
    

 
Places 

  
 Mazan 11 19 
 Visto Bueno 4 8 
 Libertad 2 1 
  Others 5 20 
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Chapter 5: Overall Discussion 

5.1. Summary of dissertation research 

Results from previous ecological and epidemiological studies provided preliminary 

evidence for the relationship between urban expansion and increased human mobility on malaria 

epidemiology 61,130,136. Independent and combined effects of these factors impact malaria 

epidemiology particularly in areas with unstable transmission and in early stages of development 

such as the Amazon rainforest. However, no studies have been conducted to comprehensively 

understand these multiple (and multilevel) pathways that condition malaria endemicity in many 

Amazonian countries. The current pathway towards malaria elimination is severely threatened by 

growing environmental and human activity changes, yet there is still scarce evidence of how 

changing land cover affects HPM dynamics and eventually malaria transmission, especially in 

the Amazon region. 

 

The purpose of this dissertation was to provide evidence of the epidemiological impacts 

of human mobility and land cover change in an understudied region and population in the 

Peruvian Amazon. This research expands on previous work by 1) using novel data sources to 

represent human mobility at a range of spatio-temporal scales from village-level to individual-

level trip-level records, 2) applying novel analysis methodologies such as network analysis, time-

weighted spatial averaging approaches (TWSA) for GPS-tracking data, and causal inference 

methods, and 3) identifying target populations and proposing policy strategies for malaria control 

in Amazonian settings with high HPM and LULC changes. In the first aim of the dissertation, a 

comprehensive set of village-level connectivity metrics were computed using network analysis 

and their relationships with malaria transmission levels were tested. In the second aim, the effect 
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of out-of-village working activities on recent malaria exposure was determined by using g-

computation methods on two population-based studies in rural and peri-urban areas of the 

Peruvian Amazon. Lastly, the third aim quantified the effect of human mobility on malaria risk 

using GPS data and fine-scale mobility metrics. 

 

Aim 1 of this dissertation (Section 2) represents the first study in the Peruvian Amazon 

that has applied novel network analysis on granular PCD routine data to understand the role of 

connectivity on malaria endemicity. This expanded on previous studies published in the 

Brazilian Amazon 15 by testing an ample set of connectivity metrics on networks constructed 

based on watershed distribution. Betweenness centrality outperformed other metrics based on its 

consistency and stability, and no important differences were detected when using multiple 

versions of weights (i.e., population, deforested area, Euclidian distance, or travel time) for its 

construction. In this region, this study found that localities and cities with high connectivity 

consistently have higher malaria endemicity. Subsequent explorations revealed that these 

differences in malaria endemicity due to connectivity is exacerbated in regions with the highest 

baseline malaria transmission rates. These results contradict prior research 61–63,82,130 that 

suggested that HPM was more significant in low-transmission and close-to-elimination settings 

than in moderate- and high-transmission settings. This study's findings support a transition in 

existing malaria control methods from targeting specific villages based on malaria metrics to 

strategies targeting interconnected “neighborhoods” that include influential connected villages 

that share a flow of parasites and hosts. 
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Aim 2 of this dissertation (Section 3) applied a g-computation methodology 155,158,168–171 

to estimate the average causal effect of out-of-village working activities on malaria exposure. In 

g-computation, the standardized mean outcome is the weighted average of the conditional means 

using the prevalence of each stratum l of the vector of confounders L in the study population as 

weights. With this framework, this study was able to simulate multiple scenarios of mobility 

restrictions (by proportion of travelers, gender, and age) to quantify the impact of such restriction 

policies on malaria exposure reduction in the Peruvian Amazon. This study stressed the 

importance of human population mobility in supporting malaria transmission in the Peruvian 

Amazon. It also demonstrated the relevance of targeting key subpopulations when creating 

interventions based on employment activities. Targeting males and adults (18 years and older) 

groups had the greatest influence on malaria seropositivity. Finally, across all these scenarios, the 

effect of working activities on malaria exposure was far stronger in rural areas than in peri-urban 

areas. The findings of this study are important for tailoring existing and future malaria 

elimination strategies in the Amazon region and identifying sub-populations with important 

potential for intensified epidemiological surveillance. 

 

Finally, Aim 3 of this dissertation (Section 4) leveraged GPS-tracking data from a proof-

of-concept study in a village with high malaria incidence in the Loreto Region of Peru. Multiple 

detailed mobility metrics were computed using GPS data records. In addition, a novel non-

parametric Bayesian framework was applied, which addresses several limitations of existing 

segmentation methods and state-space models in movement analysis. Using this detailed 

information, this study showed that the high interaction between Amazon villages for reasons 
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such as labor, commerce, or recreation may sustain these high endemicity levels through 

increased exposure to the malaria parasite and in consequence the importation risk.  

 

The implications of this work are threefold. First, the results can be used to better 

understand the potential of human mobility in sustaining malaria endemicity in rural villages in 

the Peruvian Amazon. Second, the findings can be used to inform malaria control strategies and 

policies in the Amazon region that incorporate connectivity structure to prioritize connected 

areas instead of single villages and intensify malaria screening in sub-populations defined by 

their mobility patterns. Finally, the methodology implemented in this dissertation can be further 

adapted to other infectious diseases to test the importance of human mobility on their 

transmission, particularly in rural Amazonian regions with potential to expand to other contexts.  

 

5.2. Methodological contributions 

The methodological approaches applied in this dissertation have not been traditionally 

used in malaria epidemiology in the Amazonian region. The estimation of the etiological effect 

of human population mobility on malaria risk has been elusive in rural areas in Latin America 

where moderate-to-high malaria transmission occurs. The network analysis used in Aim 1 was 

applied previously to international migration 84, as well as to other diseases in the Brazilian 

Amazon 15,97,238. The novelty of this study relies on three characteristics. First, the analysis of a 

broad set of centrality metrics and multiple versions of weights based on population, deforested 

area, distance, and travel time. Second, the coverage of an extensive territory with more than 

1,600 villages across the Loreto region. And finally, the focus on rural areas and the use of 

watershed composition for the creation of the graph representation.  
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In Aim 2, this study made use of causal inference methods (parametric g-formula) to 

simulate various hypothetical scenarios targeting out-of-village working activities and determine 

their potential health benefits in terms of malaria exposure reduction. The use of such causal 

inference methods in the literature of malaria epidemiology is still in its infancy 160,239. This 

research is intended to expand the set of tools applied for malaria epidemiology, particularly in 

remote areas, to better simulate interventions and guide control and elimination strategies. 

Finally, this study presented and tested a novel set of policy interventions that included scenarios 

involving mobility restrictions (by proportion of travelers, gender, and age) in peri-urban and 

rural settings. 

 

In Aim 3, this dissertation explored the use on novel time-weighted spatial averaging 

approaches (TWSA). In particular, the granular GPS tracking data collected in this study was 

leveraged by the use of movement ecology methods such as the mixed-membership method for 

movement (M4) that provides segment-level behavioral state estimation. This approach as well 

as other movement ecology methods such as utilization distribution or kernel density, and other 

post-hoc analyses such as step selection functions (SSF)199,234,235 were only traditionally used for 

the analysis of non-human animals. There is still a dearth of research evaluating these techniques 

for infectious disease epidemiology that involve human mobility.  

 

Finally, capturing signals of human mobility and its impact on infectious diseases 

remains elusive and difficult to apply to most malaria control initiatives. Overall, this dissertation 

presented a multilevel methodology that can be extended to other infectious diseases and regions. 
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This approach comprises 1) connectivity metrics at the village level to understand village level 

flow, 2) standardized travel questionnaires to understand individual importation risk and g-

computation simulation to design targeted populations, and 3) GPS-tracking to characterize 

detailed mobility patterns to identify sub-populations for improved malaria screening upon 

departure or return.  

 

5.3. Policy implications 

Overall, the findings in this dissertation suggest that human mobility is an important 

driver of malaria in the Amazon region and should be incorporated into current malaria control 

strategies. In the Peruvian Amazon in particular, control strategies may shift from prioritizing 

singular locations based on local malaria metrics to strategies based on connectivity 

neighborhoods that include influential connected villages under active landscape modification. 

As villages and cities continue to expand, human mobility intensifies. The magnitude of 

connectivity in these areas is conditioned by the size of the cities as a proxy of the number of 

services and commerce in place. This results in increased connectivity, leading to a complex 

network of cities/villages that influence the transmission of the malaria parasite and which 

should also be considered in regional and urban planning.  

 

Current literature and malaria elimination programs have placed a greater importance on 

HPM in low-transmission and close-to-elimination settings than in moderate- and high-

transmission settings 61–63,82,130. However, the findings of this dissertation challenge this previous 

knowledge by showing that higher malaria endemicity was observed in high centrality villages 

(Aim 1). In addition, policies to restrict human mobility have a greater impact in rural villages 
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with a higher malaria incidence (Aim 2). Finally, in villages with high local malaria 

transmission, particular human mobility patterns contribute to malaria importation and sustaining 

of malaria transmission (Aim 3). Taken together, a re-direction of current malaria control 

strategies to target high centrality villages and implement mobility restrictions in the Peruvian 

Amazon is strongly suggested, in addition to including travel information in current routine data 

collection so that these strategies can be modified iteratively.  

 

Lastly, evidence and methods described in this dissertation may help to prioritize sub-

populations for targeting interventions. Evidence from Vietnam 151, Cambodia 152, and Indonesia 

240 has shown that improved strategies targeting actively commuting subpopulations may greatly 

impact malaria transmission in origin and destination localities. Interventions include early 

diagnosis and screening, provision of prophylaxis, improved collection of travel-related data, and 

case investigation to prevent secondary cases. The findings in this dissertation stress the 

importance of intervening in these high-mobility populations, however, further studies are 

needed to define the most appropriate intervention strategies. Considering the lack of 

accessibility to health facilities in most villages in the Peruvian Amazon 29, an important factor in 

implementing most strategies that target mobile populations will be community health workers 

(CHW), who were also a key component of previous malaria control campaigns in Peru 146.  

 

5.4. Future directions 

This dissertation illustrates the application of novel methods to study the effect of human 

mobility and land cover change on the epidemiology of malaria in the Peruvian Amazon. These 

findings may inform the direction of future research to better understand this relationship and 
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design targeted interventions. The methodologies presented in this dissertation could be extended 

to refine the conceptualization of human mobility variables. Connectivity metrics covered in 

Aim 1 could be further explored to include more flexible and dynamic network structures 

77,80,241,242. In rural context, important change in the mobility patterns (and in consequence the 

connectivity between villages) occurs seasonally. For instance, labor season for occupations such 

as logging, fishing, and agriculture varies throughout the year. Albeit less marked than in labor 

seasons, hydrological conditions affect the links between villages. In the dry season, many 

fluvial routes are interrupted due to the low level of the river. In contrast, in the wet season, new 

shortcuts emerged that favor the links between villages. 

 

Travel questionaries applied in Aim 2 could be revised and synthesized to determine a 

minimum set of variables that capture enough travel information to inform models. In addition, 

group (i.e. family) travel patterns should be accounted since the potential for malaria importation 

and subsequently secondary infections (local infections acquired from an imported parasite) is 

larger as multiple hosts share similar travel patterns. 

 

The adherence to the use of the GPS tracking devices tested in Aim 3 requires intense 

logistics and supervision that could be hard to maintain at a large geographical scale. Studies that 

evaluate attaching the GPS tracking devices to the commuting vehicle instead of humans should 

be conducted to assess their added value with lower logistic costs. In addition, community health 

workers (CHW) could be integrated in the malaria importation surveillance based on the CHW 

network deployed in the PAMAFRO project. Finally, movement ecology is an active field under 
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development; therefore, mobility patterns computed in Aim 3 might be further revised to 

incorporate human behaviors that shape travel patterns. 

 

Following our recommendation to shift malaria strategies towards those that prioritize 

connectivity neighborhoods, further studies may explore the operational definition of this 

suggested area. This definition will be influenced by the frequency and extent of commuting but 

also by the malaria endemicity in the destination locations. Both might be improved with robust 

data collection methods able to capture high spatial and temporal resolution. In this regard, 

sentinel villages could be selected for detailed data collection (travel questionnaires and GPS 

tracking) that could inform a general connectivity model. 

 

Lastly, recent studies in Southeast Asia have started to evaluate the use of improved 

malaria control strategies informed by human mobility metrics vs. standard strategies that do not 

consider HPM 152,243. Future work should consider this type of community randomized trial in 

the Amazon region, which has unique behavioral, socio-demographic, ecological, and climatic 

conditions, in order to better understand the benefits provided by human mobility informed 

systems vs. current malaria control strategies. 

 

5.5. Concluding remarks 

In the context of climate change and an ever-growing urban population, the evidence of 

this study is of particular interest for a global public health audience. Addressing the aims of this 

dissertation provided valuable knowledge of the relationship between urban expansion, human 

mobility, and malaria transmission using a combination of multiple methodological approaches 



 145 

from global earth observation at a regional scale to detailed individual mobility data. The 

findings of this study refute prior assumptions that human mobility is only of interest in low 

transmission settings. These findings also offer valuable information for redesigning current 

malaria control strategies in rural areas, where populations are particularly vulnerable to the 

devastating effects of malaria. 
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