
Lawrence Berkeley National Laboratory
Recent Work

Title
Distributed Processing in Roy Tracing

Permalink
https://escholarship.org/uc/item/5vz3w5t9

Author
Tran, M.T.

Publication Date
1989-08-01

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5vz3w5t9
https://escholarship.org
http://www.cdlib.org/

.
·:.1~
~
'

uc..-fos-
LBL-27517

11[1 Lawrence Berkeley Laboratory
li:l UNIVERSITY OF CALIFORNIA

Information and Computing
Sciences Division

Distributed Processing in Ray Tracing

M.T. Tran
(M.S. Thesis)

August 1989

For Reference
Not to be taken from this room

. Prepared for the U.S. Department ofEot:rgy under Contract Number DE-AC03-76SF00098.

IJj
l--'

0.. '
!0
c

Ul
IS!

r
ern
;; 0
!lJ"O
"1-<
-<
c 1-'"

r
IJj
r
I

f(l

"' Ul
1-'o

"'

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.

' ...

DISTRIBUTED PROCESSING IN RAY TRACING

Master of Science
Thesis

Mydung Thi Tran
·Advanced Development Projects

Information & Computing Sciences Division
Lawrence Berkeley Laboratory

l Cyclotron Road
Berkeley; California 94720

August 1989

LBL-27517

This work was supported by the Director, Office of Energy Research, of the U.S. Department of
Energy under Contract No. DE-AC03-76SF00098.

,_

DISTRIBUTED PROCESSING IN RAY TRACING .

A thesis submitted to the faculty of
San Francisco State University

in partial fulfillment of the
requirements for the

degree

Master of Science
in

Computer Science

by

Mydung Thi Tran

San Francisco, California

August, 1989

ACKNOWLEDGEMENTS

I wish to extend my· sincere gratitude to all the members of the Thesis

Advisory Committee: Dr. McDonald, Mr. Johnston, Dr. Kroll, and Mr. Greg

'.J
'' Ward of Lawrence Berkeley Laboratory, whose time, patience, understanding,

and invaluable criticisms and suggestion had contributed a great deal in the com-

pletion of this thesis, and the past and current members of the Information and

Computing Science Division, Advanced Development Group at Lawrence Berke-

ley Laboratory for their help.

This work was supported by the Director, Office of Energy Research, U.S.

Department of Energy, under Contract No. DE-AC03-76SF00098 with the

Lawrence Berkeley Laboratory·, University of California.

v

TABLE OF CONTENTS

List of Tables .. . viii

List of Figures 1X ..
List of Appendices X

~:

Chapter

1. In traduction•............................ '" •.................................... 1

Goal 1

Environment 2

2. Ray Tracing ... ; 4

What is Ray Tracing·? 4

Advantages versus Disadvantages8

Different Methods Developed to Improve Ray Tracing Speed 8

3. Distnbuted Processing 19

Different Classes of Coupled Processors 19

Remote Procedure Call .. . 20

Sun Microsystems' Network File System•................. 26

External Data Representation 26

4. Design and. Implementation .. . 30

Major Issue 30

Major Components/Processes .. . 30 <.1

Flow of Control .. ." 35
-~

RPC Programming Issues 41

5. Result and Effectiveness Analysis .. . 44

vi

Performance of an Asynchronous Distributed Environment. .. 44

Factors that might effect Performance 45

Models used iil Estimating Results 48

Estimated Time versus Obtained CPU Results 49

Estimated Time versus Obtained Real-time Results 49

Justification for Differences in Comparison 49

6. Conclusion•.. 54

Meet design goals 54

Further improvements .. . 54

References'. ... ; 57

Appendices 61
1·;.·.r

,·.{
·I.'

:·~~~

vii

LIST- OF TABLES

Table

3.1: XDR types ...•.................

S.1: Time results (seconds}•...... ~-.....•.................

s

46

S .2: Time results (speed-up ratios) 46

S.3: CPU profile (seconds)"........ SO

S .4: CPU profile (percentage).. SO

viii

~'

LIST OF FIGURES

Figure

2.1: Ray tracing... 5 . .~
'I 2.2: Parallel Processing of Object Space - System Architecture......... 11

2.3: Program and Data Relationship in Radiance............................ 15

2.4: Space Division for Octree Structure 17

3.1: Sun's RPC client-server paradigm .. 22

4.1: Distributed Architecture .. 36

4.1.1: Distnbution client... 37

4~ 1.2: Ray tracing server • 38

4.1.3: Collection server 39

4.2: Flow of control. ... :........ 40

5.1: Ray-traced Gold Sphere... 53

...

ix

LIST OF APPENDICES

Appendices

A. Program Listings

Notice of Copyright ..•....... 62

color .h•....... 63

distribute.h ·:·.· -............ 64

distnbute_client.c'........... 66

raytracing_server .c ... ;. 77

collect_server .c 91

B. Program Profiles

distnbute. p 99.

raytrace. p•...........................•...... 101

collect.p .. . 104

X

'"

1.1. Goal

Chapter 1

Introduction

As the demand for computing power keeps increasing scientific and indus

trial applications push computer and programming technology to its limit. Sem

iconductor technology has also been advancing dramatically. While the cost of

hardware has been decreasing large and complex multiprogrammed uniprocessors

are being manufactured. Multi-processor systems have become easier to purchase

and in fact are much cheaper to own. Local Area Computer Network technology

has also developed very quickly, a computing environment consisting of worksta

tions connected by a high-speed network is becoming more and more popular.

This concept of distributed processing has grown widespread. A computing job

which has certain parallel characteristics is an excellent application for distributed

processing. The process of image generation using "ray tracing" fits this category

of computing applications. The purpose of this thesis is to investigate the issues

of distnbuted processsing in ray tracing. The work required to ray trace a still

image is distributed among several loosely coupled processors, connected by a

local area network, using the DARPA Internet Protocols. Improvement in pro

cess time, the interval from the moment that the first ray is traced to the moment

the last ray result is collected, over serial processing is demonstrated for the pro

posed method.

1

2

1.2. Environment

1.2.1. Operating System and Programming Language

This thesis work was carried out at Lawrence Berkeley Laboratory, under

the supervision of Mr. William E. Johnston. Available as tools for my work ate:

• Radiance, a tool developed by Greg Ward, at Lawrence Berkeley

Laboratory, is a ray tracing.method for c~ctilating luminance, and produc

ing realistic images of a complex lighting environment. It was developed

as a research tool for predicting the distribution of visible radiation in

illumminated spaces. Light rays are traced backward, from the image plane

to the source(s) [WardGr86]. Radiance is written in the C programming

language, in the 4.3BSD Unix environment.

• In addition, Sun Microsystems' Remote Procedure Call (RPC) mechan

ism is also available. It provides communication betWeen heterogeneous

environments (i.e. machine architecture, programming languages and

operating systems) distnbuted across a computer network.

1.2.2. Hardware available

VAX 11-780 's and Sun Workstations (ranges from SUN 3-50 to 3-110) pro

vide the computing resources. They are ·connected by a local area network and

run versions of the Unix (4.3BSD) operating system. In addition, the Sun works

tations are connected to file servers using Sun's NFS (Network File System) Pro

tocol. NFS performs operations such as storing and retrieving information from a

file upon reveiving requests from the workstations.

'•

3

I choose to run the control process, the distnbution client, which acts as a

supervisor in distributing the work on the VAX 11-780. Sun workstations are my

ray tracing servers, the workers who carry out the actual task.· The VAX 11-780 is

the host where all results generated by the ray tracing servers are sent.

2.1. What is Ray Tracing?

Chapter 2

Ray Tracing

Ray tracing is one of the most exciting area in computer graphics. To under

stand the basic idea of the technique of Ray tracing, one must think about how

our eyes normally work. Light rays from a light source illuminate an object and

are reflected or transmitted through surfaces in many directions. Some of these

light rays eventually reach our eyes, impact on the retina and are relayed to our

brain. From each light source. there are an infinite number of rays, and these rays

most often do .not reach the viewer. As the result, the process of tracing rays

from the sources is computationally inefficient. In 1968, Appel originated the

idea of tracing rays from the opposite direction, i.e. from the viewpoint as we

look out to the scene[Appel68]. The taster screen of the computer monitor is

treated as an imaginary plane positioned in front of the scene [Figure 2.1].

4

5

observer

object \//
--o--
/f\
light source

Figure 2.1 : Ray tracing

"i.

6

Appel's ideas brought a new horizon to image synthesis. Since then many

ray-tracing algorithms have been developed. Whitted implemented an algorithm

in conjunction with global illumination models, and true reflection, refraction,

transparency and shadowing are accounted for in this model. Anti-aliasing is also

included [Whitted80].

In ray-tracing algorithms luminance is computed by following-light backwards

from the point of measurement to the source(s). Each "light ray" can be thought

of as the luminance value that results either· directly from an emitting surface or

indirectly from a reflecting surface. The basic steps of ray-tracing method are:

1. Determine surfaces that rays intersect.

2. Calculate luminance in the ray's direction, tracing newly spawned rays,

if any.

3. Return the computed luminance value.

In step 1, for a scene of multi-surfaces, an individual intersection test must

be performed for each surface in the ray's path, until the closest point of intersec

tion, with respect to the viewer, is encountered. Radiance, the ray- tracing tool

used, applies the octree sorting method developed by Glassner, as the quick way

of identifying those surfaces that are in the path of a ray. The scene space is

recursively divided into cubes, each tree cube, branches into eight sub-cubes. A

leaf cube, one that does not subdivide, contains a list of the surfaces that

penetrate this leaf cube. To construct the octree for a scene start with an empty

cube which completely contains the scene, add to it surfaces, one by one, using

the following algorithm:

,,,.,

AddSurface(Cube, Surface):
if lntersect(Cube, Surface) then

if not Leaf(Cube) then
for each SubCube in Cube :

AddSurface(SubCube, Surface)
else

if (SetSize(Cube.Set) < N) OR (CannotDivide(Cube) then
AddElement(Cube.Set, Surface) -

else
SubDivide(Cube)

for each SubCube in Cube:
for each Element in Cube.Set:

AddSurface(SubCube, Element)
AddSurface(SubCube, Surface)

7

where Intersect() is the test for whether a cube contains a surface. N is the

user-defined maximum set size for a leaf. CannotDivide() prevents cubes from

being made smaller than a certain size.

For step 2, ·as mentioned earlier, there are two components: direct and

indirect illumination.

1. The contribution of direct illumination is computed using locations and

sizes of the light sources in the scene to determine whether the surface is

in shadow. If the surface is completely in shadow, the contribution is

zero. If the surface is illuminated by a source, the size, distance, bright-

ness, direction of the source, and the surface reflectance distribution are

used in calculating the contnbution. If the surface is partially illuminated,

the luminance is fractional. A Monte Carlo technique is used to deter-

mine the contribution due to penumbra phenomenon (the "soft shadow-

ing" due to a finite size light source).

2. Illumination arriving at a surface that did not travel directly from any

light source (i.e. indirect illumination) is computed by sampling re-radiated

8

luminance values over a hemisphere defined by the surface element posi

tion and normal direction. The bidirectian reflectance distnbution func~

tion could be divided into two components: diffuse and specular [Ward86].

2.2. Advantages versus Disadvantages

Ray tracing is one of the techniques for hidden surface removal. David

Rogers has compared it with others such as: list priority algorithms, Z-buffer algo

rithm, spanning scanline algorithms, etc ... [Rogers85].

Ray tracing is used as a method to do shadowing for surfaces that transmit

as well as reflect light [Foley82].

"Ray tracing is one of the most elegant techniques in computer graphics.

Many phenomena that are difficult or impossible with other techniques are sim

ple with ray tracing, including shadows, reflections, and refracted light."

[Cook84]. Cook also developed the technique of Distributed Ray tracing, which

provides easy solutions to some previously unsolved or partially solved problems,

such as motion blur, depth of field, penumbra, translucency and fuzzy reflections.

Ray tracing has the capability of producing very realistic images. It uses a

global lighting model to calculate reflection, refraction, shadow. In addition, it

can handle different geometric primitives. Although the algorithm is very simple,

it has a major drawback: it is time-consuming.

2.3. Different Methods Developed to Improve Ray Tracing Speed

Since its introduction in the field of Computer Graphics, many improvement

methods have been developed for ray tracing.

i

9

2.3.1. Ray Casting

Roth descnbes a method for solid modeling using ray casting. Blocks. and

cylinders are combined to model solid objects. VIrtual light rays are cast as

probes to visualize and analyze the composite solids modeled [Roth82].

2.3.2. Space Subdivision

A method which reduces the number of time-consuming object-ray intersec

tion calculations that have to be made was developed by Glassner [Glassner84].

The space of a three-dimensional scene is divided into small cubes. A list of all

the objects residing in each of these cubes is maintained. For each ray traced,

determine the cube from which the ray originated. Follow the ray and compare

only against the objects it hits in that cube. If the ray passes through one or more

objects, the return value for the ray is the color of the first object the ray hits. If

the ray does not hit any object in this cube, project the ray into the next cube and

repeat the process.

The algorithm to get to the next cube is based on the idea of finding a point

that is guaranteed to be in the next cube. Statistics for this algorithm gathered

with code written in C, running under Unix, on VAX 11-780 indicates speed-up

ratios ranging from 4 up to 27 times, depending upon the image complexity

[Glassner84].

The octree technique which describes the breaking up of space into cubes

was developed by Jackins and Tanimoto and Meagher [Meagher82]. Space is

dynamically divided into cubes of decreasing volume until each cube contains less

than a minimum number of objects.

10

2.3.3. The Light Buffer: A Shadow-Testing Accelerator

Light buffers, cubes surrounding light sources, are generated to partition the

environment. This partitioning is used in the process of shadow testing to quickly

determine a small· subset of objects for intersection testing. Depending upon the

resolution of the light buffer and the scene complexity, this approach, proposed

by Haines and Greenberg, has a speed-up ratio of 4 to· 30 [Haines86].

2.3.4. An Adaptive Subdivision Algorithm & Parallel Architecture

Dippe and Swensen subdivide the three dimensional space of a scene into

subregions, more or less uniformly, and load them with object descriptions. Rays

are traced in these subregions and tested for intersection only with those objects
.
within a subregion. Those rays which do not hit objects are traced into neighbor-

ing subregions. To maintain balance in the work load, the space is redistributed

among subregions as computational loads are determined. The algorithm is imple-

mented using independent computers, each responsible for one or more subre-

gions, and each communication is with a few neighbors using messages [Dippe84].

2.3.5. Parallel Processing or an Object Space

A hardware approach .is presented by Kobayashi, Nakamura and Shigei.

There are five components to the system architecture [Figure 2.2].

Intersection
Processors

Shading
Processors

Interconnection Network

• • • •

Distribution Network

., ...

Frame Buffer

Display

Figure 2.2 : Parallel processing of object space
- System architecture

11

12

In this method, the host computer subdivides the object space and initial

rays and sends them to IP (Intersectioq Processors). If the rays intersect any

objects within the subspace, the local intensity is calculated and passed to the SP

(Shading Processors). If the rays do not intersect an object, they are passed to a

neighbor IP. SPs calculate the global intensity of pixels. As the number of

objects of a scene increases; the total processing time-of intersections decreases

[Kobayashi87].

2.3.6. Distributed Processing - The Chosen Method

Parallel processing is the key issue of this thesis. The proposed method is

based on the observation that rays can- be traced independently. Radiance pro

vides a routine named "rtrace", which takes as input a scene description, an

octree structure generated from the scene description, and a file which contains

the rays' origin and direction. From these, "rtrace" traces the rays providing a

color for each pixel of the raster image.

The scene description file is a three-dimensional environment in Cartesian

world coordinates. The surfaces and materials that make up the specific environ

ment of the image to be generated are listed in this scene description file. This is

an Ascii file with the followingformat:

xmin ymin zmin size

#comment

modifier type identifier

n Sl S2 S3 ... Sn

0

I•

i

13

m Rl R2 R3 ... Rm

!command

The bounding cube containing all surfaces is defined by the four numbers on

the first line. The second line, which start with a pound sign (#), is an example

of a comment. Groups of four lines follow. Each of these groups describes a

scene description primitive. A scene description primitive can be either a surface

or a modifier, and is descnbed by the following:

- modifier: an identifier, a previously defined primitive, or void

:..._ type: the following are supported:

*surfaces: source, sphere, bubble, polygon, cone, cup,

·cylinder, tube and ring

*textures: Texfimc, a perturbation of the surface normal,

which is specified by a function

*materials: light, ilium (secondary light source), glow,

plastic, metal, dielectric, glass, clip (a material which

acts to cloak other surfaces from view)

*patterns: colorfunc, brightfunc (monochromatic),

colordata{data map interpolation),

brightdata(monochromatic data map interpolation), text

-identifier: any string of non-blank characters.

The arguments of the primitive can be strings or real numbers. These argu

ments make up the second, third, and fourth lines of the primitive description.

The command line, which starts with the exclamation mark, is executed by the

shell.

14

The following is the scene description file of the image of a gold sphere

used:

#0 0

0 10

A room, a ball, and a lightbulb

void plastic light_blue
00
5 .6 .6 .7. 0 .1

!genbox light_blue room 10 5 8 -i

void metal gold
00
5 .45 .25 .02 .9 0

gold, sphere ball
00
4 2 1 2 1

void light incandescent
00
3 1000 1000 1000

incandescent sphere lightbulb
00
4 5 4.5 4 .4

. ~-

'ol Oconv

Octree

Auxiliary Files rtrace

Convert to
Graphic device
driver fonnat

Xform

Figure 2.3 : Programs and Data Relationship in Radiance.·

15

16

Figure 2.3 describes the relationship between data files and programs. The

oval boxes represent the data files while programs are illustrated using rectangles.

"Generators'' are programs that produce a scene description as output. For

examples: genbox produce a parallelepiped given width, height and depth, gensky

generates a Radiance description of the sky, etc ...

"Oconv" takes a scene description and creates an octree structure.

"Xform" transforms. a Radiance scene description (i.e. translates, rotates,

mirrors the scene about the xy, xz, yz plane, etc ..).

The octree structure is used for geometric modeling. Arbitrary 3-D objects

aie represented to any specified resolution in a hierarchical 8-ary tree structure or

"octree". Solid objects may be concave, convex, or consist of disjoint parts.

Boolean operations such as union, intersection and difference are used to com-·

bine primitive solids, such as blocks and cylinders, into solid modeling objects.

Octree encoding technique makes real time analysis and manipulation of highly

complex objects possible, due to the fact that it does not require floating-point

operations, integer multiplications, or integer divisions [Meagher82]. While an

octree is the input to the ray tracing program, it also directs the use of a scene

description [Ward86]. In an octree structure, cubic space is divided into 2x2x2 - 8

basic cells by halving each sides. Each of the cell is called an octant (also called

voxel). For the first division, a cube is partitioned into 8 octants. Each of these

first generation octants could be further divided into smaller octants, or suboc

tants [Figure 2.4].

lo'

17

/ / / / ~
/ / / / /

··"!

/ / / / / ~
/ / / / / ~

~~~~~ 
~~~~;"" 
~~~~~ 
ll~ 

Figure 2.4 : Space Division for an Octree structure 



18 

The dividing process continues until a desired resolution is reached. This 

resolution increases with the number of the objects in a scene. Space is typically 

divided 3-7 times for images generated using Radiance. In addition, there is a 

trade-off between the resolution· and the time taken to determine the intersection 

points (where light rays hit objects). The higher the resolution, the less time 

taken to determine intersection points,. i.e. smaller space volume results in less 

effort for finding intersection points. 

Ray tracing is extremely time-consuming. Most of the computing time is 

spent in calculating the intersections between objects and rays. The number of 

these intersections is enormous. The number of rays for a given image is propor- · 

tional to the number of pixels and the number of light sources. Approximately· 

one million rays are traced for the test image, the image of the gol~ sphere, using 

one light source. Efficiency in data structure management allows fast access 

to geometrical information. The Octree structure is utilized to improve the data 

access time. 

)' 



Chapter 3 

Distributed Processing 

In the past, a collection of small computers which had the equivalent capa

bility of a large computer has cost more than the large computer. That has 

changed in the past few years, and distnbuted systems have become an increas

ingly important trend in the computer world. A distnbuted system is a collection 

of computers {linked by shared memory, communication lines, etc ... ) or process

ing elements working closely together to solve a single problem or problems. Dis-

. tnbuted processing is a technique that implements a set of processing tasks across 

several computers. Each computer performs some part of the total processing 

required. 

In this chapter a brief explanation of different classes of processor coupling 

will be presented followed by the remote procedure call facility with its paradigm, 

layers, binding protocol, and data representation in a heterogeneous environment. 

3.1. Different Classes or Coupled Processon 

Systems can be categorized by the degree of coupling between processors. 

In general, there are three classes: 

3.1.1. Tightly Coupled 

In this class, the processors are physically close. Shared memory is used for 

data transfer and for program storage. Tight coupling is required when there is a 

19 



20 

high degree of interprocess, or even more commonly intraprocess communica-

tion. These systems are classified as multiprocessors. 

3.1.2. Moderately Coupled 

These systems are characterized by high levels of intercomputer activity using 

either high speed serial lines, 50 Kbytes/sec or- greater, parallel data busses or 

shared disks. 

3.1.3. Loosely Coupled 

. . 
Processors of these systems can be either co-located or separated by large 

distances. Serial lines and relatively low transmission speeds are among the 

characteristics of these systems. The amount of interprocess activity is relatively 

low, and the degree of error checking is high. 

Available for my work, as descnbed in the previous section, is an environ-

ment consisting of loosely coupled processors. 

3.2. Remote Procedure Call 

Communication among processes plays an important role in this projecL 

Shared primary memory is not common in distnbuted systems. Communication 

using semaphores and monitors is not applicable. Message-passing is the method, 

and the preferred model in this area is the client-server model using Remote Pro-

cedure Call (RPC) for interprocess communication. 

3.2.1. The RPC Paradigm :the Client-Server Model 

For the local procedure model, the caller passes arguments to a procedure, 

typically by pushing them onto to an in-memory stack. The control is then 



... 

'• 

21 

transfered to the procedure, and eventually the caller will gain back control so 

that it can contip,~e. RP<; is similar to the local procedure model, except there are 

two processes - the caller, or client, and the server processes - in the thread of 

control. 

In· Sun's RPC the call message has three unsigned fields: a remote program 

number, a remote program version number, and a remote procedure number. 

These three fields uniquely identify the procedure to be called. When a program 

first becomes available on a machine, it registers itself with the port mapper on 

the same machine. The port mapper program maps RPC program and version 

numbers to UDP/IP or TCP/IP port numbers. This port mapper program makes 

dyn~amic binding of remote programs possible. When a program becomes una

vailable, it should unregister itself with the port mapper program on the same 

machine (SunPRC86]. This is desirable since the number of potential remote pro

grams is very large and the range of reserved port numbers is very small. By run

ning only the port mapper on a reserved port, the port numbers of other remote 

programs can be ascertained by querying the port mapper. 

The caller process initiates the remote procedure call by sending a call mes

sage, which contains the procedure's parameters, to the server process, and waits 

for a reply message. When the caller process receives the reply, the results of the 

procedure are extracted and the control returns to the caller [Figure 3.1]. 



. Machi ne 1 

client 
program 

program 
continues 

, 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

,, 

-... 

callrpcQ 
function 

return 
reply 

Machine 2 
I 

service I 
.-daemon 1 

I .. .. 
execute 
request 

lir 

I 
I 
I --~ 

request 
completed 

' lr 

I 
I 

t 

call 
service 

return 
answer 

.. 

'. 

.. .. 

, r 

service 
executes 

Figure 3.1 : Sun's RPC client-server paradigm 

22 



23 

The caller process resides on the client machine while the library of called 

routines resides on the server machine. The server process, when started, regis

ters all RPC calls it will handle, and then goes into a wait state waiting for service 

requests, i.e. remains dormant until the arrival of the call messages (request). 

When the call message arrives, the procedure's parameters are extracted, and the 

server calls a dispatch routine to perform the requested service. When the called 

procedure is completed a reply message is sent back to the caller. In Sun's RPC 

model, the conventional procedure call semantic is exactly emulated only one of 

the two processes is active at any given time, and multi-threading of the caller or 

server is not supported. Riche semantics are supported by other RPC mechan

isms. 

3.2.2. Different Layers or RPC 

Sun RPC interface is divided into three layers, according to the degree of 

transparency [SunRPC86]: 

3.2.2.1. Highest Layer 

Total transparency is provided to the programmer in this layer. The call, 

issued by the programmer, looks like a regular hbrary call with the name of the 

remote server machine name as argument. This layer consists of system services 

such as: requesting numbers of users on remote machine (rnusers), requesting 

information about users (rusers), determining if remote machine has disk 

(havedisk), getting performance data from a remote kernel (rstat), writing to a 

specified remote machines (rwall), geting name of name server master (getmllster), 

geting RPC port number (getrpcport), updating user password in name server 



database (yppasswd), etc. 

3.2.2.2. Intermediate Layer 

24 

There are two routines in this layer: callrpc, which resides in the caller pro-

cess (the.client machine), and registe"pc which resides in the server process. 

• callrpc requires eight parameters: the name of the remote 

machine, the program number, the version number, the-procedure 

number, the type and address of the input argument, the type and 

the address of the result. 

• registe"pc establishes what procedure corresponds to each RPC 

procedure number. It is called with six arguments: the program 

number, the version number, the procedure number, the name of 

the dispatch routine, the type of the input to, and output from the 

procedure. 

If successful, callrpc returns with a zero, non-zero otherwise. 

3.2.2.3. Lowest Layer 

The programmer must know about sockets, the basic building block for 

communication, in this layer. Transport handles must be established on both 

sides, in the client and the server, and if bound to a port, this port number must 

match on both sides . Transport protocol must be specified according to the 

requirements of the application. 

All three layers of RPC are used for this project. As described in the later 

chapter, workstation status check will utilize a routine of the first layer of RPC. 

Register and unregister ray-tracing service, as well as result sending service, will 

.. 



make use of the second and third layers. · 

3.2.3. Different Message Passing Protocols 

25 

Processes communicate with each others through communication channels. 

One type of Inter Process Communication off erred. by 4.3BSD UNIX is sockets. 

Sockets are end-points of communication. Normally, sockets communicate with 

sockets of common properties. Depending upon properties which are visible to 

the user, sockets are typed as follows [SuniPC86]: 

* Stream Socket : bidirectional, reliable, sequenced and unduplicated flow 

of data without record boundaries are characteristic of this type of socket. 

When the supporting network is the Internet, the TCP/IP protocol sup

ports stream sockets. 

* Datagram Socket : bidirectional flow of data is supported. However, 

duplication of messages is possible, the order in which the messages are 

received could be different from the order in which they are sent, and 

messages may be lost. In the Internet environment the UDP/IP protocol 

supports Datagrams. 

* Raw Socket : access to the underlying communication protocol that sup

ports socket abstraction are provided. Sockets of this type are used in 

developing new communication protocol. 

* Sequenced Packet Socket : in addition to the properties posessed by 

Stream sockets, record boundaries are also preserved for this type of sock

ets. 



26 

*Reliable Delivered Message Socket : this is Datagram socket with reliable 

delivery. 

The Sun's RPC Protocol is independent of transport protocols. It does not 

care how a message is passed among processes. . It only deals with the 

specification and interpretation of messages. For an application which does not 

care· ·about reliability, message passing using UDP/IP (User Datagram Protocol) 

can be specified. In constrast, RPC using TCP/IP (Transmission Control Proto

col) must be used to guarantee reliability. UDP is implemented using Datagram 

sockets while TCP is built on Stream sockets. Currently, Sun's RPC only sup

ports UDP and TCP transports [SunRPC86]. 

3.3. Sun Microsystems' Network File System 

4.3BSD Unix is not a distributed operating system. Nonetheless, one of the 

goals of my thesis is to be able to work in a heterogeneous computing environ

ment. Information sharing is neccessary. Fortunately, Sun Microsystems' Net

work File System is available. This allows file access transparency. Machine, 

operating system, network architecture, and transport protocol independence are 

provided by this NFS protocol [SunNFS86]. 

Through the use of remote procedure call primitives built on top of eXternal 

Data Representation, this independency is achieved. 

3.4. EXternal Data Representation 

3.4.1. Justification 

Data format incompatability often occurs in a heterogeneous environment. 

Whenever data is passed back and forth among two or more machines of 

... 

.i 



'~ 

27 

different architecture, there is a need for translating data formats. Sun's 

approach to this is with an intermediate, in this case a "standard", network for

mat. Data coming out from machine A, before being sent to machine B, is con

verted from machine A's format to the network standard format. When received 

at machine B, conversion is made from the network standard format to machine 

B's format. Sun provides an eXternal Data Representation (XDR) Protocol for 

data-portability purpose. 

3.4.2. Sun XDR 

The dual purpose of XDR is to provide an architecture independent 

representation of data types, and to provide an encoding for data structures that 

are passed. as arguments. XDR uses a complementary set of procedures to 

encode an arbitrary C data structure to a byte stream and a matching procedure 

to decode the byte stream back to a data structure. 

Among the arguments of a call in the second or third layer of Sun RPC are 

the XDR procedures and addresses of the input to, and output from, the service 

routine as descnbed in an earlier section. Using RPC, the types of input and out

put arguments are specified in terms of filters supplied by the Sun· XDR h"brary. 

Users can also construct special-purpose filters to fit their own needs, using the 

available primitives. See table 3.1 for examples of available primitives. 



28 

Table 3.1 - XDR Types 
XDR Type C Primitive Data type 

xdrJnt integer 324>it integer 
xdrJong integer 64-bit integer 
xdr_short integer 16-bit integer 
xdr_ujnt unsigned 324>it unsigned 
xdr.::.uJong unsigned 64-bit unsigned 
xdr...:,u_short unsigned 16-bit unsigned 
xdr_float float 32-bit real 
xdr_double double 64-bit real . 
xdr_enum enum_t enumerated integers 
xdcbool booLt boolean integer(0/1) 
xdr_string string string 
xdr_bytes string 8-bit char 
xdr_array array arrays 
xdr_opaque opaque uninterpreted data 
xdr_union UDIOO UniOn 
xdr_reference pointer pointer chasing structures 
xdr_void - no data 

The XDR standard is independent of operating systems and hardware archi-

lecture. This eXternal Data Representation standard assumes that bytes, quanti-

ties of eight bits of data, are portable, i.e. byte's meanings across hardware boun-

daries are preserved. In transmitting data accessed by different types of machines 

XDR must be used. 

The basic block size is four bytes. They are numbered 0 through n-1, where 

(n mod 4) - 0. These bytes are read from or written to a stream in increasing 

order, i.e. starting with 0 and going up to n-1. An XDR signed integer is 

represented in two's complement notation. Its least significant byte is numbered 

3 while the most significant is 0. Floating point numbers, are encoded using the 

IEEE standard: 

)I 



- bit 0, the most significant, is the sign bit, 

-bits 1-8 (float), or 1-11 (double), are the base 2 exponent, 

. -bits 9-31 (float), or 12..Q3 (double), are the base 2 fractional part 

of the mantissa. 

29 

On the client side, when a service is requested, the XDR input procedure 

will serialize the arguments, and on the server side deserializing will take place in 

the XDR input procedure, upon receiving the service request. Upon completing 

the request and returning to the client/caller, the XDR output procedure will seri

alize the return data, and deserializing will be handled by the XDR output pro

cedure on the client side, upon getting the reply [SunXDR86]. 



Chapter 4 

Design and Implementation 

4.1. Major Issue 

Parallel processing is the key issue for my proposed method. Providing con-

currency within the· semantics of synchronous procedure calls is the goal. 

4.2. Major Components/Processes 

To accomplish the work of ray tracing an nnage , the following tasks are 

identified: 

- search for an available processor; 

- distnbute the units of work, 

-trace rays, (the actual work), 

-collect results, (the output from ray tracing), 

- check progress, and recover work lost if necessary. 

The goal here is to be able to execute the ray tracing routine concurrently on 

several processors. Using remote procedure calls the client will issue requests to .. 
the servers to trace rays. In order to establish concurrency the client, after issu-

ing a request, should not have to wait for the result. Instead, the initiating RPC 

should return with the server sending a void message as soon as the request is 

received, so that the client can regain control and continue distributing pieces of 

the job. The results generated by the ray tracing servers will be sent to one com-

mon destination. This destination must have the information on how to 

30 



31 

reconstruct the entire image, since the result could be collected in a random 

order. Three major components/processes will be described in this chapter: 

-the distribution client, 

-the ray tracing server, 

-the collection server. 

4.2.1. The distribution client 

This is the main control process. Its functions are: 

4.2.1.1. Checking Status or Workstation 

The ray tracing servers and the collection server were started before the kis

tnbution client. Before work is given out to a workstation its availability must be 

checked. A remote procedure call of the first layer type will be issued to the next 

workstation in a list of available machines to get back the idle time. These 

machines are connected to the network. A threshold of idle time value is used to 

determine availability. The percent of idle time is calculated based on the result 

returned by this RPC call. The returned value will be compared to the threshold 

value. 

4.2.1.2. Distributing Units or Work 

Once the status of the workstation is determined as being available, a unit of 

work will be distnbuted to this processor. Otherwise, the status of the next pro

cessor in the list will be checked. A unit of work is a block of scanlines. Work 

is given out in order, starting with block 0, and ending with the last block. The 

blocksize is a compilation constant in the distribution client. 



32 

4.2.1.3. Checking Progress and Recovering Errors 

After all work has been distributed, the distribution client will start checking 

progress by issuing another RPC to the process that collects the ray tracing 

results. The collection server will be discussed as the third process, in a later sec

tion. The collection server responds to this progress query by sending a list of 

the result units that have· been collected .. If this list indicates that there are still 

some result units that have not arrived, then the time stamped by the distribution 

client when these units were distributed will be checked against the current time. 

An estimate for completing a unit of work will be used to determine that the 

result may have been lost, or a workstation became unavailable, etc... If the 

estimated time for completing units of work is much less than the elapsed tiple 

since the work was distributed, then these work units will be redistributed. 

4.2.1.4. Initiating Image Reconstruction Process 

ypon receiving the indication that all scanline results have been collected 

from the collection server, the distribution client will issue a call to the Collect 

server to construct the completed image. 

4.2.1.5. Unregistering Services 

When the collection server finishes the image reconstruction, it will notify 

the distribution client. Upon getting this notification, the distribution client will 

start the cleaning up process before exiting, by issuing calls to unregister services 

on the ray tracing servers and the collection server, and terminating processes on 

the servers. 



33 

4.2.2. The ray tracing server 

The ray tracing server carries out the actual work of tracing rays. Multiple 

processors are used as ray tracing servers for this project. All of these servers 

have the same set of functions: 

4.2.2.1. Generating Input for Ray Trace Routines 

From the user-defined viewing parameters, a file consisting of viewpoint and 

ray directions are generated. Among viewing parameters are view point, view up, 

view direction vectors, view angles, view plane, etc .... 

4.2.2.2. Tracing Rays 

The ray trace routines are executed for the block of scanlines requested. 

Results are written into a temporary file. 

4.2.2.3. Sending Results to the collection server 

As soon as the ray tracing server finishes tracing the block of scanlines, it 

will initiate an RPC call to the collection server {discussed in the next section) to 

send the result to the common destination. 

4.2.3. The collection server 

In the RPC paradigm, while the thread of control is intertwined between two 

processes, only one process can be active at a time. If the Distribute server is to 

wait for the ray tracing servers in order to collect the result, it could not do any 

other job, such as continuing the work distribution. Hence, the ray trace server 

upon receiving the processing request, has to reply immediately, i.e. send a void 

message to the distribution client, before starting to perform the actual requested 



34 

work. 

The result, generated by the ray tracing server, is stored on the server side as 

separate files for each unit of work done. A record of the completed scanlines is 

kept in order to allow the user to reconstruct the final image. This could be 

cumbersome for the user. In addition to the two. processes just descnbed, a third 

one is introduced, the collection server, as an answer to this issue. Among its 

functions are: 

4.2.3.1. Collecting Results 

The ray tracing servers, when finished with the work requested, will send the 

results to this collection server. These results will be written into a file in the 

order they come in. (The results of blocks of scanlines do not necessarily arrive 

at the collection server in the same order they are given out by the distnoution 

client.) 

4.2.3.2. Updating Progress Report 

A list of the blocks of scanlines collected will be kept as the progress report. 

When a request arrives from the distnoution client querying the progress, this list 

is sent as the reply. 

4.2.3.3. Reconstrocting Image 

A data structure which contains information such as the starting and ending 

position in the result file for each block of scanlines is maintained by this server 

for image reconstruction. Run-length encoding is used by the ray trace routine, 

therefore, for blocks of the same number of scanlines, the number of bytes 

needed to store the results could be different in length. Upon receiving the 



35 

progress report from this collection server, with a success result indicating that all 

results have been collected, the distribution client will issue ·an RPC call to this 

collect server to reconstruct the final image. 

4.3. Flow ot Control 

The following two figures serve a5 a more detailed description of the distri

buted architecture. The communication among the three components is summar

ized in Figure 4.1. Figure 4.2 illustrates the control thread of the entire task in 

which concurrency is provided within a synchronous procedure call paradigm and 

how error recovery is accomplished. 

:.· 



3e 

Distribution client Ray tracing server 

Collection server 

Figure 4.1 · Distributed Architecture 



37 

Distribution client 

yes 

@ 

© 

@ 

Figure 4.1.1 



Ray tracing server 

@ Status 

received 
uest 

· ® Ray trace @Kill 

detennine unregister 
availabili service 

® 

continue ® 
,_. 

Figure 4.1.2 

38 



Collection server 

(stan 

' I received request 

@Progress ® Collect (f) Reconstruct @ Kill 

send progress 1)1\ 
result back ~ 

write results 
to file 

ui)dateprogress 
report 

ui)date 
reconstruction 
infonnation 

send void 
result back ® 

reconstruct 
image 

send void 
result back 

Figure 4.1.3 

® 

send void 
result back 

unregister 
service 

stop 

39. 



Distribution 
client 

t 
i 
I 
I 

I 
I 

I 
I 

I 
I 

I 
I 

I 
I 
I 
I 

I 

I 
I 

I 
I 

I 
I 

I 
I 

I 
I 

, 
... 
rr ... 

-
': 
:.. 
:: -

Ray tracing servers Collection 
server 

I Status RPC 

----------~~~---------( t 1 t 
I 

I I 
I 

Ray trace RPC I 
I -

': I .. 
I -.... 

• I Status RPC I 

' I 
I I 

Ray trace RPC I 
I ...... 

+ I 
I 

-·- Actual Work ! ·- I Collect RPC 
I ..... 

I 
I 

I I 
~ 

I 

- I = I CollectRPC .. I ~ I .. . f 
J 
I 

': I 

..... - -.- I CollectRPC 
': I - I 

: I 
I I 

~ I .. I 
I 
I 

I CollectRPC 
I I 
I 

1 I I CollectRPC 
I I 
I I 
I I I I I I CollectRPC 

r---------------+~----------~----------~~----------~·~o~~sRPC 
II t I ! I I 

: : : J Reconsll'UCt RPC 
~::::::::::::::~,ru~~;;g~~~~~R;PC~i·:------------:------------: 
~============-. Unre~~ RPC 

t==================::t, Unregister RPC 
.~=======================================~,Unreg~~rRPC 

Figure 4.2 · Flow of control 

40 



.. 

4.4. RPC Programming Issues 

4.4.1. Chosen Protocol 

41 

Among the five different network communication protocols, Sun's RPC only 

supports two of them: datagrams and streams. Less overhead is incurred by 

datagrams (UDP). Datagram communication does not use connections, each 

message is addressed individually. If the address is correct, the message will usu

ally be received. There is a system dependent limitation on the size of the mes

sage. The upper limit for message length is lKbyte on the VAX. Depending on 

the size of the blocks of scanlines and the format of the output, the result from 

the ray tracing server could be longer than the upper limit for UDP. The 

datagram proto~ol is not reliable. Lengthy messages are sent using the reliable 

stream protocol, provided by TCP/IP (Transmission Control Protocol). TCP is 

also chosen for its reliability, any messages received with errors will be retransmit

ted, and for the fact that the timeout per try, as well as the number of tries for 

each call, can be controlled. 

4.4.2. Chosen layer of RPC 

Since socket manipulation is necessary, the third layer of RPC is utilized. 

4.4.2.1. On the distribution client 

There is a limitation on the number of open socket descriptors, i.e. the 

number of communication channels. (According to the library function descrip

tion "servers • inet server data base", at the time this thesis was written, Sun limits 

this number to 27). One has to adapt to one of the two alternatives: release the 

socket after every call, or leave the communication channel open once it is 



42 

established and only close it upon the last call to the server. With the first alter

native, the communication will still linger for at least 4 seconds after a close call 

was issued to shutdown the socket. For this reason the second alternative was 

chosen; the client handles established for the first call will be saved and reused 

until the last call is made to unregister the service. At that time these handles will 

be destroyed •. 

4.4.2.2. On the ray tracing servers 

Due to the synchronous nature of RPC, a void reply is sent to the Distribute 

client immediately after the ray tracing servers receive messages to trace rays, so 

that concurrency can occur. 

4.4.3. Chosen XDR 

A standard network data format plays an important role in a heterogenuous 

environment; Three different XDR routines are utilized to . accomplish this. 

These routines are built using the existing XDR library. 

4.4.3.1. Input to Ray Trace Routines 

For the call to request the ray tracing server to trace rays, an XDR routine is 

used to serialize the argument data structure (input). The input is sent as a byte 

stream, and it consists of the scanline block number, the names for the octree 

scene description file, and the viewing parameter file. XDR for this input struc

ture utilized the integer and string XDR primitives. 

4.4.3.2. Output from Ray Trace Routines 

The output from the ray tracing server is tr.ansfered to the collection server 

as another data structure. This output consists of a scanline block number, the 



43 

number of bytes of the result, and the pixels that make up the scanlines. Integer 

XDR, and opaque XDR are used. 

4.4.3.3. Progress in Collecting Results 

The last type of data structure which is sent over the network is the progress 

report structure. This structure is an array whose index is the scanline block 

number. Each element of this array is of type boolean, which indicates the status 

of the block: collected or not. Only boolean XDR is needed. 

4.4.4. Miscellaneous 

Two further issues were encountered during the design: 

4.4.4.1. Broadcast RPC 

This option of RPC could be used in searching for more than one available 

processors in one call. Broadcast RPC expects more than one reply, while normal 

RPC expects only one. For simplicity, one mechanism of RPC, the normal RPC, 

is used through out the entire project. Mismatch of RPC IJbrary versions between 

client and servers are not notified by broadcast RPC due to its implementation 

which treats unsuccessful reponses as garbage, and filters them out. 

4.4.4.2. Batching RPC 

Normal RPC is designed such that the clients wait for the servers to reply, 

i.e. clients must be silent while servers process a call. Batching facilities provide 

the possibility for clients to continue computing while waiting for replies. No mes

sages will be sent by the servers, so failures are not notified. As a result, clients 

have to provide error checking. Batching was not used. 



Chapter 5 

Result and Effectiveness Analysis 

5.1. Perfonnance of an Asynchronous Distributed Environment 

The Unix time command was used to obtain the elapsed CPU and the real 

time for the timing alnalysis. 

Data was collected for ray tracing a specific picture, an image of a metallic 

gold sphere (Figure 5.1). Using the. ray tracing program, in a uni-processor 

environment, data was collected on different CPUs. Time taken to generate this 

image ranged from 1. 72 to 3.31 hours for a group of Sun 3 workstations. These 

non-distributed- timings were used to estimate the speed up ratios for the distri

buted case. 

For the same image, data was collected using different numbers of ray trac

ing servers and different work unit sizes. CPU and Real time estin:lates were done 

using the time taken for the least powerful server in each case, using the non

distnbuted method, plus the estimated overhead. The overhead were estimated 

based upon the result of running prof on the executables. prof is the Unix com

mand for obtaining procedure level execution time profiles of programs. The 

differences between the results collected and estimated were tabulated using. the 

estimates as the bases. 

Statistics in seconds are listed in table 5.1. In table 5.2, these data were inter

preted in speedup ratios. Note that in most cases the speed-up ratios are in 

44 



45 

between n-1 and n, where n is the number of servers used in each case. Data was 

collected for up to 7 servers, the limit of servers available to the work of this 

thesis. 



46 

Table 5.1 Time results (seconds) 

Work Unit #servers 
Real time CPU time 

Est Act % diff Est Act %diff 
2 4107 4090 ~.4 4047 3898 -3.7 
3 3699 4228 +10.1 3619 3531 -2.4 

20 sl 4 2666 3176 +8.1 2586 2574 -0.5 
5 2170 2286 +16.1 2090 2146 -16.5 
6 2162 2087 -3.6 2082 1918 -7.9 
7 1666 1753 +5.0 1586 1501 -5.1 
2 4180 4265 +2.0 4100 3930 -4.1 
3 3483 3929 +11.3 3403 3304 -2.9 

10 sl 4 2748 2790 +1.5 2668 2575 -3.5 
5 2187 2194 +0.3 2107 1998 -5.2 
6 1920 1955 +1.8 1840 1753 -4.7 
7 1678 1755 +4.4 1598 1522 -4.8 
4 2762 2898 +4.7 2682 2568 -4.2 

5 sl 5 2242 2478 +9.5 2162 2082 -3.7 
6 1963 2071 +5.2 1883 1744 -7.4 
7 1705 1857 +8.2 1625 1543 -5.0 

Table 5.2 Time results (speed-up ratios) 

Work Unit #servers 
Real time CPU time 

Est Act % diff Est Act %diff 
2 1.94 1.94 +0.0 1.97 2.04 +3.4 
3 2.75 2.40 -14.6 2.87 2.88 +0.3 

20 sl 4 3.81 3.20 -19.1 3.93 3.94 +0.4 
s 4.68 4.44 -5.4 4.86 4.73 -2.6 
6 4.11 4.87 +3.3 4.87 5.29 +8.6 
7 6.09 5.79 -5.2 6.41 6.78 +5.7 
2 1.90 1.86 -2.2 1.94 2.02 +5.7 
3 2.92 2.58 -13.2 2.98 3.07 +3.1 

10 sl 4 3.70 3.64 -1.6. 3.81 3.94 +3.5 
5 4.65 4.64 -0.2 4.82 5.08 +5.4 
6 5.29 5.19 -1.9 5.53 5.80 +5.0 
7 6.05 5.79 -4.5 6.35 6.67 +5 
4 3.68 3.50 -5.1 3.93 3.95 +0.6 

5 sl 5 4.53 4.10 -10.5 4.70 4.88 +3.7 
6 5.17 4.90 -5.5 5.39 5.82 +8.0 
7 5.97 5.48 -8.9 6.26 6.59 +5.5 



47 

5.2. Factors that might effect Performance 

There are several factors that effect the time taken to generate an lDlage. 

These are: 

5.2.1. Number or ray tracing servers 

It is only logical that this number has to be greater than one. Together with 

the number of scanlines that makes up the block (unit of work), the number of 

servers and the blocksize determine the maximum number of work units which 

each server will be requested to do in order to complete an image of a given reso

lution. For example, for a 512 X 400 image, if the blocksize is 20, there will be 20 

work units to be distributed. If there are 5 servers available, and if there is no 

error recovery needed, then each server will be requested to perform 5 work 

units. In the case where work balancing is not done ideally, some servers will 

need to perform more work than others, for example, if there are 6 servers; and 

there are 20 work units, if there is no error recovery the time required to com

plete the image is the time taken for those servers that received requests for 4 

units. 

The number of active descriptors or the number of communication channels 

is limited to 28, less one for the Collect server, due to a reason mentioned earlier. 

The number of accessible servers are also limited. The maximum number servers 

. used is seven. 

5.2.2. Size or Work Units 

The number of scanlines that makes up a block, a unit of work, is another 

factor that affects the performance. Small blocks take less time to be 



48 

accomplished, and if work loss occurs less time is required to redo one unit of 

work. More overhead for making RPC calls will be needed since the number of 

calls increases. RPC overhead will be discussed in a later section. Work balanc

ing is one of the keys for choosing the blocksize. 

5.2.3. Dift"erences in Individual Server Perfonnance 

A group of Sun workstations were used as ray traciri.g servers. These works

tations possess different computing power, hence the time taken to finish one 

work unit varies from server to server. 

5.2.4. Work Balancing 

Among the factors that affect the efficiency of the method implemented is 

the need to obtain an even work distribution for all servers; i.e. all servers 

optimally receive the same number of work units. 

5.3. Models Used in Estimating Performance 

For performance guidelines, three models were used: 

1. A single CPU in a non--distributed environment. 

2. More than one CPU in a distributed environment with infinitely fast 

data transfer rate. 

3. A data transfer rate of 10 KBytes per second across the network was 

assumed in the last model. Each pixel required 4 bytes. 

For the chosen picture, the resolution is 512 X 400, and a total of 800 

KBytes were transfered across the network. The estimated data transfer time was 

80 seconds. In model two, programs' profiles were used to estimate the RPC and 

I/0 overhead. In addition to this overhead, the waiting time between calls to 



49 

obtain the servers' status had to be included. 

5.4. Estimated Time ve~us Obtained CPU Results 

The obtained CPU results were compared against the time taken for the least 

powerful server among the group of servers to perform the work re.quested. The 

estimated data was calculated using the CPU times of the slowest servers and the 

overhead described in model 2. The measured time was consistently lower than 

the estimated CPU time. 

5.5. Estimated Time versus Obtained Real-time Results 

The obtained Real-time results were compared against the time taken for the least 

powerful server among the group of servers to perform the work requested, plus 

the time taken for the server availability checks, plus the· data transfer time 

described in model 3. As expected, the differences in the estimated and collected 

results were larger than the CPU results. 

5.6. Justification Cor Dift'erences in Comparison 

In calculating the estimated data, it is assumed that the servers will be dedi-

cated for ray tracing. However, in reality, the Sun workstations were also being 

used for other tasks. As the result, the results collected could be significantly 

different from the estimate values. 

For the distributed environment, one must take into account the overhead of 

RPC, XDR, 110 etc.... Files' profiles (see appendix B), obtained using prof were 

analyzed and the results were tabulated in table 5.3 (in seconds) and table 5.4 (in 

percentage). As expected, the overhead increases as the number of servers 



50 

increases. In addition, as the size of work unit grows, the overhead grows. 

Table 5.3 CPU profile seconds) 
Work Unit #servers RPC+XDR XDR 10 Wait Overhead Total 

2 5 1 11 50 67 3989 
3 6 0 12 35 53 3531 

20 sl 4 6 1 12 25 43 2574 
5 8 1 12 20 39 2046 
6 8 1 13 20 41 1918 
7 6 1 13 15 34 1505 
2 7 1 13 10 120 3930 
3 9 1 13 70 91 3304 

10 sl 4 9 1 14 50 72 2575 
5 8 1 12 40 60 1998 
6 12 1 10 35 57 1753 
7 11' 1 13 30 54 1522 
4 17 2 15 100 132 2568 

5 sl 5 16 2 14 80 110 2082 
6 19 2 14 80 11 1744 
7 20 1 14 60 94 1543 

Table 5.4 CPU profile :percenta2e) 
Work Unit #servers RPC+XDR XDR 10 Wait Overhead Total 

2 0.13 0.02 0.28 1.25 1.68 100.00 
3 0.16 0.01 0.35 0.99 1.50 .100.00 

20 sl 4 0.23 0.02 0.47 0.97 1.67 100.00 
5 0.38 0.04 0.51 0.98 1.91 100.00 
6 0.41 0.03 0.68 1.04 2.14 100.00 
7 0.39 0.04 0.88 1.00 2:26 100.00 
2 0.17 0.02 0.34 2.54 3.05 100.00 
3 0.27 0.02 0.38 2.11 2.75 100.00 

10 sl 4 0.33 0.05 0.53 1.94 2.80 100.00 
5 0.41 0.05 0.61 2.00 3.00 100.00 
6 0.68 0.06 0.51 2.00 3.25 100.00 
7 0.70 0.08 0.87 1.97 3.55 100.00 
4 0.63 0.07 0.56 3.89 5.14 100.00 

5 sl 5 0.76 0.08 0.67 3.84 5.28 100.00 
6 1.07 0.10 0.80 4.01 . 5.91 100.00 
7 1.27 0.08 0.92 3.89 6.09 100.00 



51 

5.6.1. RPC Overhead 

Time taken to establish communication links between clients and servers is 

part of the overhead. Up to 15.00% of the total overhead, or up to 1.30% of the 

total time taken to finish tracing the picture, was spent as RPC cost. As 

expected, the RPC overhead increases as the size of work unit decreases due to 

the increase in the number of RPC calls made. 

5.6.2. XDR Cost 

Decoding and encoding the input and output arguments by the client and 

servers contributes to the diferences between the estimates and the collected 

results. Approximate 10.00% of the RPC cost was spent in eXternal Data 

Representation encoding and decoding. In table 5.3 and 5.4, XDR cost was 

included in the RPC cost. 

5.6.3. Sleeping Periods between Status CaDs 

The output of the RPC calls that check for status availability is in cummula

tive numbers, hence it is required to make two calls and take the difference in the 

two results. For each status availability check a sleeping interval of S seconds 

(real time) is used. These waiting periods are shown in the wait column of table 

5.3 and 5.4. 

5.6.4. 1/0 Operations 

A significant portion of the time taken to accomplish an image is spent on 

input and output operations. Viewing parameters are read in from a file. Input 

generated for the ray tracing routine are written into a file and later are read in. 



52 

Output from the ray tracing routine is written into a file before being sent to the 

Collect server. On the Collect server~ at first, the result is written into a file in 

random order. Finally, after receiving the request to reconstruct the file, I/0 

operations are invoked for data transfer. This I/0 cost could taken up to 1.00% 

of the total CPU time collected to trace the chosen picture. 

5.6.5. Progress Checking 

Error checking is important. Fortunately, during the data collection stage 

there was no incidence in which a ray tracing server. went down in the middle of 

carrying the requested work. Error checking could play a significant roll in perfor

mance evaluation, especially when work lost occurs often and recoveries are fre

quently needed. 





6.1. Meet Design Goals 

Chapter 6 

Conclusion 

Improvements were achieved using the proposed method. CPU time. speed

up ratios of up to 6.78 were obtained in the case where seven servers were used. 

Distributed processing was proven to be effective in ray tracing. The work done 

on this the~is could be improved to achieve even higher speed up ratios. 

6.2. Further Improvements 

6.2.1. Upper limit on the number or servers 

Due to the availability of the number of Sun workstations, the maximum 

number of servers used was limited to seven. This limit could be higher. With 

more servers available, the number of distributing cycles would be reduced 

because the CPU time to do the work completely dominates the overhead. An 

ideal situation could be met in which each server would have to perform the work 

on one work unit. 

If the number of servers increased the size of the work unit could be reduced so 

that all available servers would be utilized. 

54 



55 

6.2.2. Screen Saver for Status Check 

The workstation status check could be done using a different method, so 

that the time spent in the sleeping periods between to RPC status calls could be 

eliminated. A good alternative for checking the status is a screen saver program, 

used to monitor the time elapsed since the keyboard was touched. 

6.2.3. Work Balancing 

The distributing process as set up is synchronous, i.e. work is given out to 

served, server2, .... , servem (last server in list), then back to served. Due to the 

variation in performances among workstations, there were servers that sat idle. 

while wmting for the next re'quest. 

To minimize the idle time among servers, i.e. to achieve even higher speed 

up ratio, it is worthwhile to consider the two alternatives: 

1. Using servers of the same performance. 

2. Keeping tracks of the, pool of available servers: As soon as the ray trac

ing server finished sending the result to the collection server, it should notify the 

distnbution client of its availability. The distribution client would then put this 

server in the pool. After the first cycle, work would be given to the first available 

server in this pool. 

6.2.4. Eliminate Image Reconstruction 

A significant amount of time is spent for reconstruction of the final image, 

due to the asynchronous nature in collecting results. If servers of similar 



56 

performance are used, there is a good chance that the result will be received in 

order, hence no reconstruction would be needed. .. 



•. 

References 

[Appel68] 

Appel, A., Some techniques for Shading Machine Renderings of Solids. 

AFIPS 1968 Spring Joint Computer Conference, pp 3745. 

[Cook84] 

Cook Robert L., T. Porter, L. Carpenter, Distributed Ray Tracing. ACM 

SIGGRAPH Conference Proceedin.gs, July 23-27, 1984 Minneapolis, Min

nesota, vol. 18, n. 3, pp 13-144. · 

[Dippe84] 

Dippe, M., J. Swensen, An adaptive Subdivision .Algorithm and Parallel 

Architecture for Realistic Image Synthesis. ACM SIGGRAPH Conference 

Proceedings, July 23-27, 1984 Minneapolis, Minnesota, vol. 18, n. 3, pp 148-

158. 

[Foley82] 

Foley, J. D., and A. van Dam, Fundamentals of Interactive Computer 

Graphics. Addison-Wesley Publishing Company Inc., 1982. pg 585. 1982. 

[Glassner84] 

Glassner, A. Space Subdivisions for Fast Ray Tracing, IEEE CG&A, vol. 

4, n. 10, October 1984, pp 15-22 . 

[Haines86) 

Haines, Eric A., and Donald P. Greenberg, The Light Buffer: A Shadow-

51 



58 

Testing Accelerator. IEEE CG&A, vol. 6, n. 9, September 1986, pp ~16. 

[Kobayashi87] 

Kobayashi, H., T. Nakamura and Y. Shigei, Parallel Processing of an object 

space for image synthesis using ray tracing. The Visual Computer, 1987(3), 

pp 13-22 .. 

[Meagher82] 

Meagher, Donald, Geometric Modeling Using Octree Encoding. Computer 

Graphics and Image Processing, vol. 19, 1982, pp 129-147. 

[Rogers85] 

Rogers, D. F., Procedural Elements for Computer Graphics. McGraw-Hill 

Book Company, New York. 1985, pg 296. 

[Roth82] 

Roth, S. D., Ray Casting for Modeling Solids. Computer Graphics and 

Image Processing, vol. 18, 1982, pp 109-144. 

(SunXDR86] 

Sun Microsystems, External Data Representation Protocol Specification. 

Sun 3.0 Documents, Revision B of 17 February 1986. Sun Microsystems, 

2550 Garcia Avenue, Mountain View, CA 94043. 

(SuniPC86] 

Sun .Microsystems, InterProcess Communication Primer. Sun 3.0 Docu

ments, Revision B of 17 February 1986. Sun Microsystems, 2550 Garcia 

Avenue, Mountain View, CA 94043. 

.. 



" 

59 

[SunNFS86] 

Sun Microsystems., Network File System Protocol Specification. Sun 3.0 

Documents, Revision B of 17 February 1986. Sun Microsystems, 2550 Gar

cia Avenue, Mountain View, CA 94043. 

[SunRPC86] 

Sun Microsystems, Remote Procedure Call Programming Guide. Sun 3.0 

Documents, Revision B of 17 February 1986. Sun Microsystems, 2550 Gar

cia Avenue, Mountain View, CA 94043. 

[Ward86] 

Ward, G., The RADIANCE Synthetic Imaging System. Lawrence Berkeley 

Laboratory Publication, 1986. 

(Whitted80] 

Whitted, T., An Improved Illumi&ation Model for Shaded Display. Com

munication of the ACM, vol. 23, n. 6, June 1980, pp 343-349. 



Appendix A: Program Listings 

61 



Notice of Copyright 

The software written for this thesis, Distnbute Processing in Ray Tracing, is 

copyright (C) 1988, Regents of the University of California. Anyone may repro

duce the software in this distnbution, in whole or in part, provided that: 

(1) Any copy or redistribution of this software must show· the Regents of the 

University of California, through its Lawrence Berkeley Laboratory, as the 

source, and must include this notice;· 

(2) Any use of this software must reference this distribution, state that the 

software copyright is held by the Regents of the University of California, 

and that the software is used by their permission. 

It is acknowledged that the U.S. Government has rights in this software 

under Contract DE-AC03-76SF00098 between the U.S. Department of Energy and 

the University of California. 

This software is provided "as is", with no warranties of any kind whatsoever, 

no support, promise of updates, or printed documentation. The Regents of the 

University of California shall have no liability with respect to the infringement of 

copyrights by this software, or any part thereof. 

62 



color.h 

I* Copyright (c) 1986 Regents of the University of Califomia *I 

I* 
* color.h - header for routines using pixel color values. 
* 
* 12131185 
* * Two color representations are used, one for calculation and 
* another for storage. Calculation i3 done with three floats 
* for speed. Stored color valuu use 4 bytes which contain 
* three single byte numtissas and a common exponent. 
*I 

#define RED 
#define GRN 
#define BLU 
#define EXP 
#define COLXS 

typedef unsigned char BITE; 

typedet BITE COLR[4]; 

#define copycolr(c1,c2) 

typeder ftoat COLOR[J]; 

#define colval( co 1, pri) 

#define setcolor( col,r ,g,b) 

#define copycolor( c1,c2) 

#define scalecolor( col,sf) 

#define addcolor(c1,c2) 

#define multcolor( cl,c2) 

#define WHTCOLOR 
#defin.e BLKCOLOR 
#define WHTCOLR 
#define BLKCOLR 

extern double intensQ; 

Jun 30 13:26 1989 

0 
1 
2 
3 
128 I* excess used for exponent • I 

I* 8-bit unsigned integer • I 

I* red, green, blue, exponent * I 

( c1[0)•c2[0],c1[1 ]•c2[1], \ 
c1[2]•c2[2],c1[3]-c2[3D 

I* red, green, blue * I 

((col)(pri]) 

(( col)(RED]-(r),( col)[GRN]•(g),( col)[BLU)•(b)) 

((c1)(0)•{c2)(0),{c1)(1]•(c2)(1),{c1)(2)•{c2)(2]) 

((col)(O)*-(sf),(col)(1]*•(sf),(col)(2]*-(sf}) 

( c1(0)+•c2(0),c 1{1 ]+-c2{1 ),c1(2)+-c2[2)) 

( c1{0)*•c2{0),c1(1 ]*-c2[1 ],c1(2)*-c2[2)) 

{1.0,1.0,1.0} 
{0.0,0.0,0.0} 
{255,255,255,COLXS} 
{0,0,0,0} 

63 

color.h 

Page I of color.h 



dis tribute .h 

I**************************************************************************** I 
I* 
I* FILE 
I* 
I* DATE 
I* 
I* AUTHOR 
I* 
I* DESCRIPTION 

: distribute.h 

: 8127187 

: Mydung Thi Tran 

this include file contain.f 

distribute.h 

I* 
I* 
I* 
I* 
I* 
I* 

PROGRAM NUMBER, PROGRAM VERSION, PROCEDURE NUMBER 
which are used in various Remote Procedure Calls. 
constants for exit codes, 
constants for resolutions, threshold etc .••• , 
structures for xdr routines. 

I············································································ I 
#Include <stdio.h> · 
#Include <netdb.h> 
#Include <sys ltime.h> 
#Include <signal.h> 
#Include <errno.h> 
#Include <rpc lrpc.h> 
#Include <rpcsvc lrstat.h> 
#Include <sys lwait.h> 
#Include <sys lsocket.h> 
#Include "color.h" 

extern long randomQ; I* forward declaration for random call * 1 

#define 
#define 
#define 
#define 
#define 

I* program numbers,· versions, procedure numbers * I 

RAY PROG 21()()()(XXJ /* program number for SUN servers 
RA Y:VERS 2 I* program version for SUN servers 

*I 
*I 
*I RAY STAT PROC 20 I* procedure for CPU status info 

RA Y-RTRACE PROC21 I* procedure for tracing rays 
RA Y:Kll..L_PROC 22 I* procedure for unregister service 

*I 
*I 

#define COL PROG 31()()()(XX) I* prog.# for collection server on VAX *I 
#define COL -VERS 3 /* version # " • I 
#define COL -QUERY PROC 30 I* procedure for completion list query *I 
#define COL -COLCT-PROC 31 I* procedure for collecting scanline result *I 
#define COL -Kll..L PROC 32 I* procedure for unmap child server service * I 
#define COL :RECON _ PROC 33 I* procedure for reconstructing raster image *I 

I* contant.r for distributed processing * I 
#define MAXNUMOFHOST 2 I* maximum number of .workstations *I 
#define XRES 512 I* x resolution * I 
#define YRES 400 I* y ruolution * I 
#define BLOCKSIZE 20 I* number of scanlines in each block * I 
#define BLOCK {XRES*BLOCKSIZE) 
#define NUMB LOCK (YRES IBLOCKSIZE) 
#define THRESHOLD PRCT so I* threshold value for percent idle time * I 
#define SCANLINE LIMIT 40 /* time taken to trace each scanline *I 
#define TIME LIMiT (SCANLINE_LIMIT * BLOCKSIZE) 

#define NOT YET 0 I* scanline to be done * I 
#define DONE 1 /* scanline already done * I 
#define YES QUERY 1 I* yes, query for progress * I 
#define NO_QUERY 0 I* no, don't query for progress *I 

64 

Jun 30 13:26 1989 Page 1 of distribute.h 



distribute.h 

#define 
#define 
#define 
#define 

REDO 1 
IMAGE COMPLETE 0 

I* some scanlines need to be redone * I 
I* result for entire image coUected * I 
I* workstation is idle * I IDLE - 1 

BUSY 0 I* workstation is busy * I 

#define FTINY 
#define FHUGE 
#define dstrpix 
#define PI 
#define DOT(v1, v2) 
#define frandomQ 
#define pixjitterQ 

#define SUCCESS 
#define FAILURE 

typedef char 
typedef COLR 
typedef double 

I* constants for ray tracing routine * I 

1e-7 I* S11U1U real number *I 
1e10 I* large real number * I 
0.67 I* square pixel distribution * I 
3.141592653589979323846 
(v1{0]*v2{0]+v1{1 ]*v2{1 ]+v1{2]*v2{2D 
(randomQ /2147483648.0) 
(dstrpix * (0.5 - frandomQ)) 

I* constants for exil codu *I 

1 
0 

I* congragulation, you have succeeded * I 
I* sorry *I 

HOSTNAME[20]; 
SCANBUFPCRES*BLOCKSIZE]; 
FVECT[3]; 

I* the foUowing structures are for xdr routines * I 

struct input rt 
{ -

}; 

Int· 
char 
char 

struc:t output_rt 
{ 

I* input to RTRACE *I 

curr block; 
*scene file; 
*view file· - , 

I* current block number *I 
I* scene description filename * I 
I* viewing ~rameter filename • I 

I* output from RTRACE • I 

tnt done block; I* finished scanline • I 
tnt block-:_length; 
SCANBtmesult; 

}; 

I* length of ruult in # of COLR items * I 
I* result for the scanline * I 

struct block info 
{ - I* info for image reconstruction • I 

}; 

tnt 
long 

length; 
start _position; 

I* number of pixel written to fik • I 
I* offset from beginning of file • I 

65 

distribute.h 

Jun 30 13:26 1989 Page 2 of distribute.h 



dis tribute_client.c dis tribute_client.c 

I············································································· I 
I* 
I* PROGRAM 
I* 
I* AUTHOR 
I* 
I* DATE 
I* 
I* DESCRIPTION 
I* 
I* 
I* 
I"' 
I* 
I* 
I* 
I* 
I* 
';• 
I* 
I* 
I* 
I* 
I* 
I* 
I* 
I* 
I* 
I* 
I* 
I* 
I* 
I* 
I* 
I* 
I* INPUT 
I* 
I* 
I* 
I* 
I* OUTPUT 
I* 

distribute client.c 

Mydung Thi Tran 

: 8113187 

this is part one of three parts of the work of my thesis: 
- part 1: distribution client, run on the VAX, 

which will be described in details , 
- part 2: ray tracing server, run on SUN workstations, 

"raytracing_server.c", 
- part 3: collection server, run on VAX,· 

in the file· "collection-server.c". 

The goal is to apply distribute processing in ray tracing, 
part 1 is the main control program, which ·distributes work 
of generating a still image, to a group of workstations, 
the number of workstations is four (4). Work is given out 
by blocks of scanlines. Before work is distributed to the 
workstation, the workstation's status wiU be checked by 
the distribution client for availability. When the ray 
tracing server finish tracing block of scanlines, it will 
contact the coUection server to send resu/J black. Upon 
finishing collecting result, coUection server will update 
progress report. The distribution client, after finish 
giving out aU blocks wiU query the collection server for 
report, if any block took too long to·, send resu/Jc.· back, 
i.e., trouble might occur on that workstations, that block 
of SCflnlines wiU be. redistributed to one of the available 
server. 

The communication mechanism used is remote procedure calL 

should be called with the following arguments: 
+ a filename for the collect, rtrace serven name list, 
+ a filename for the octree scene description (*.oct), 
+ a filename for the viewing parameter file (*. vieMI). 

none. 

I············································································· I 
#Include "distribute.h" 

bool t 
booCt 
CUENT 
CLIENT 
HOSTNAME 
HOSTNAME 
lnt 
stnact 
stnact 
stnact 
stnlct 

main(argc, argv) 
lnt argc; 
char *argv[]; 

scan Iist[NUMBLOCK]; 
progress[NUMBLOCK]; . 
*clients(MAXNUMOFHOST]; 
*client collect; 
collect-server; 
wslist{MAXNUMOFHOST]; 
time distnbuted(NUMBLOCK]; 
block info reconstruct(NUMBLOCK]; 
timevii *timeptr; 
timezone •tzoneptr; 
input_rt *rt_input; 

66 

I* list of blocks to distribued * I 
I* progress report *I 
I* handles for rtrace serven * I 
I* handle for collect server * I 
I* collect server name • I 
I* list of rtrace servers *l 
I* time start block of scanlines* I 

I* image reconstruction info * I 
I* argument for gettimeofday • I 
I* .. 
I* argument for rtrace • I 

*I 

mazn 

Jun 30 13:26 1989 Page 1 of distribute_client.c 



distribute_client.c 

{ 1• decltlrations for main() • I 

double 
FILE 
lot 
lot 

atofQ; 
*host_fp; 

i, j; 
exitcode; 

extern HOSTNAME wslist0; 

1• convert ascii· to double • I 
1• host list file pointer • I 
1• loop control variables • I 
1• exit code • I 

extern HOSTNAME collect_server; 

1• end of decltlrations for main() • I 

dis tribute_client.c 

... main 

I• ---•1 

1• boundary checlu • I 
If (argc < 4) 1• enough argument.r specified? •I 

{ fprintf(stderr, "usage: "'os followed by: \n", argv[O]); 
fprintf(stderr, "host list, scene file, viewing para. file. \n"); 

exit (FAILURE); 
} 

If (argc > 5) 1• too many arguments ? *I 
{ fprintf(stderr, "%s: too many arguments specified \n", argv[O]); 

exit (FAILURE); 
} 

1• print starting time • I 
fprintf(stdout, "Start distribute image at: \nj; 

. system("datej; 

1• · initialization • I 

1• host names • I 
If ((host fp - fopen(argv[l), "rj) •• NULL) 

{ -
fprintf(stderr, "fopen: host list error in main\nj; 
exit(FAll.URE); 

} 

If (fscanf(host fp, ""'os", collect_server) I• 1) 
{ -

} 

fprintf(stderr, "fscanf: error in main\nj; 
exit(F All.URE); 

for (i - 0; i < MAXNUMOFHOST; i++) 
If (fscanf(host fp, ""'os", wslist[i]) I• 1) 

{ -
fprintf(stderr, "fscanf: error in main\nj; 
exit(FAll.URE); 

} 

1• cl~nt handle.r • I 
client collect • NULL; 
for (C • 0; i < MAXNUMOFHOST; i++) 

clients[i] • NULL; 

1• list of scanline to be distributed • I 
for (i • 0; i < NUMBLOCK; i++) 

scan_list[i] - NOT_ YET; 

Jun 30 13:26 1989 

67 

.. -

Page 2 of distribute_client.c 



distribute_client.c dis tribute_client.c 

1• aUocate memory space for pointers to structures • I 
timeptr - (struct timeval •)malloc(slzeof(struct timeval)); 
tzoneptr • (stnlct timezone •)malloc(slzeof(stnact timezone)); 
rt_input - (struct input_rt •)malloc(slzeof(struct input_rt)); 

II ((timeptr -- NULL) II (tzoneptr -- NULL) II (rt input 
{ -

} 

fprintf(stderr, "malloc: error in main\nj; 
exit(F All.URE); 

I* filename for scene description • I 
rt_input->scene_file • argv(2]; 

I* filename for viewing parameten • I 
rt_input->view._file.- argv[3]; 

I* trace rays • I 
exitcode • image(); 

I* clean up • I 
1• deaUocate memory space • I 
free(timeptr); 
free(tzoneptr); 
free(rt_input); 

I* done • I 
If (exitcode - 0) 

{ 

NULL)) 

fprintf(stdout, "Sorry, you need to rerun the program.\nj; 
exit(F AlLURE); 

} 

else 
{ 

} 

fprintf(stdout, "Complete image at: \nj; 
system("datej; 
exit( SUCCESS); 

} I* end of main() • I 

1*--------
ROUTINE : image() 

DESCRIPTION For any block of scanlinu that has not been done, an RPC 
will be made to one of the group of SUN serven, to check 
for availtlblility. If the server is busy, the next one in 
the group wiU be checked until an idle server if found. 
The idle server then is given the work of ray tracing the 
block of scanlines. Once all blocks for the entire image 
are distributed, an RPC call to the collection server (see 
main for details), will be issued to query for progress. 
If complete result has not been collected, one of the two 
actions will be taken: 

1- if time liniu for ray trace the block has not exceeded, 
a wailing period is necessary, 

2- if time ran out, redistribute the unfinished block(s). 
When aU nsults an collected, another RPC to the collection 

68 

... ma.m 

Jun 30 13:26 1989 Page 3 of distribute_client.c 



.. 

.• 

distribute_client.c distribute_client.c 

image 0 

server .is sissued to reconstruct image. 
If the final raster image is achieved, RPC caUs are issued 
to stop all servera before exiting sucessfully. 

{ 1• declarations for image() • I 

bool t 
booCt 
booCt 
lnt -
lnt 
lnt 
lnt 
lnt 
lnt 
lnt 
lnt 
lnt 

xdr _progressO; 
redistnbute; 
query; 
pid; 
i, m; 
currenttime; 
time_ elapsed; 
kill rtrac e; 
kil( collect; 
queryerr; 
reconstruct err; 
retum_code - 1; 

extern bool_t progress0; 
extern bool_t scan_listO; 
extern HOSTNAME collect server; 
extern HOSTNAME wslistO'; 
extern lnt time_ distnbuted0; 
extern stnlct timeval *timeptr; 
extern stnlct timezone •tzoneptr; 

I* end of declarations for image() • I 

I* 

I* initialize· the progress flag • I 
query • YES_QUERY; 
redistnbute • REDO; 

1• this is the distribution client • I 
wbUe (query •• YES_QUERY) 

{ I* begin of while loop *I 

I* xdr routine for progress repon • I 
1• redo scanliM • I 
I* is this 1st query for progress • I 
1• child proces;~ id • I 
I* loop control variable • I 
I* for checking result overdue • I 
I* • ' *I 
I* call to unregister nrace servera • I 
I* call to unregister collect server *I 
I* query call for completion status • I 
I* call to reconstruct image * I 
I* retum code • I 

-----·1 

1• distribute work to available wkstation, record staning time *I 
If (redistribute •• REDO) •. -

{ 

} 

If (distnbute 0 •• 0) 
{ 

} 

fprintf(stderr, •distnbute: error in image \nj; 
return_ code • 0; 

I* reset redistribute flag • I 
redistribute • IMAGE_COMPLETE; 

I* make rpc call for list of scanline done *I 
If ((queryerr • callrpctcp(collect_server, COL_PROG, COL_QUERY PROC, 

COL_ VERS, xdr_void, 0, xdr_progress, progress)) I• 0) 

{ 

69 

*I 

lmage 

Jun 3013:26 1989 Page 4 of distribute_client.c 



distribute_client.c distribute_client.c 

} 

clnt_perrno(queryerr); /* why failed *I 
fprintf(stderr, "callrpctcp: query error in image\n"); 
return_code - 0; 

t• reset the query flag • I 
query - NO_QUERY; 

!• check for overdue scanlinu • I 
lor (m - 0; m < NUMBLOCK; m++) 

{ /* begin of for loop • I . 
scan _list[ m 1 t- progress[ m 1; 
II (scan list[m) - NOT YET) 
. { - -

} 

!• get cu"ent time • I 
If (gettimeofday(timeptr, tzoneptr) ,_ 0) 

{ 

} 

fprintf(stderr, "gettimeofday: error in image\n"); 
return_ code - 0; 

currenttime - (Int)timeptr->tv sec; 
time_elapsed - currenttime - -time_distn"buted[m]; 

t• check to see if it is overdue * I 
If (time elapsed > TIME UMIT) 

{ - -
!• set progress flags * I 

redistnbute - REDO; 
query - YES_QUERY; 

} /* end of if TIME_LIMIT *I 
else 

{ /* begin of else *I 
I* wait awhile • I 
sleep(2*BLOCKSIZE); 

!• requery for progress • I 
II ((queryerr - callrpctcp(collect server, COL PROG, 

COL QUERY PROC, COL VERS, xdf void, 0, 
xdr_irogress, progress)) 1- 0) -

{ 

} 

clnt_perrno(queryerr); /* why fail *I 
fprintf(stderr, "callrpctcp; query error in image\n1; 
return_ code - 0; 

!• recheck • I 
m-; 

. } /* end of else • I 
t• end of if NOT _YET *I 

} /* end of for loop • I 

} /* end of while loop • I 

t• ask child server to reconstruct image • I 
If ((reconstruct err • callrpctcp(collect server, COL PROG, 

COL:RECON_PROC, COL_VERS, xdr_void, 0, xdr_void, 0)) 1- 0) 
{ 

} 

clnt_perrno(reconstruct_ err); !*why failed • I 
fprintf(stderr, "callrpctcp: reconstruct error in image\n"); 
return_ code - 0; 

70 

... image 

Jun 30 13:26 1989 Page 5 of distribute_client.c 



distribute_client.c dis tribu te_client.c 

} 

I* 

I* send signal to kiU servers * '/ 
for (i • 0; i < MAXNUMOFHOST; i++) 

If ((kill_rtrace • callrpctcp(wslist(i), RAY _PROG, RAY _Kll..L_PROC, 

{ 

} 

RAY_ VERS, xdr_void, 0, xdr_void, 0)) I• 0) 

clnt _perrno(kill_ rtrace ); 
fprintf(stderr, "callrpctcp: unregister rtrace error in image\nj; 
retum _code - 0; 

If ((kill_collect • callrpctcp(collect_server, COL_PROG, COL_Kll..L PROC, 

{ 

. } 

COL_ VERS, xdr_void, 0, xdr_void, 0)) I• 0) 

cln t _perrD.o(kill_ collect); 
fprintf(stderr, "callrpctcp: unregister collect error in image\nj; 
retum _code • 0; 

I* done exit • I 
return r~tum_ code; 

I* end of image() * I 

ROUTINE 

DESCRIPTION 

: dirtribute() 

Thu routine u executed by the dirtribution climt. 
It checlu the status of the remote machine for availtlbility 
by comparing the CPU idle time in the lllst 5 seconds with the 
threshold percentage. The work of tracing a block ia then 
given to the remote machine if the statw retum Uadkates 
awiltlbilily. The block number and starting time are 
maintained for synchroni~ation. 

distnbuteQ 

{ I* declllratiotU for distribute() *I 

lnt j; I* loop control VGriable * I 

I* RPC caU for availability statw check. * I 
boot t 
lnt -

avail; 1• availllble flag • I 
statuserr; 1• .statw caU • I 

lnt 
extern 
extern 

i; 1• Uada into remote machine list * I 
HOSTNAME wslist[); 
CLIENT •clients[); 

I* SUN RPC RTRACE variables • I 
boot t xdr_rtinput(); I* :cdr for argumenu to RTRACE *I 
lnt - rtraceerr; I* retum value of RPC RTRACE • I 
extern bool_t scan_listO; 
extern lnt time distnbuted0; 
extern struct input_rt *rt_input; 

I* end of declarations for dirtribute() * I 

71 

... image 

distribute 

Jun 30 13:26 1989 Page 6 of distribute_client.c 

_,_ 



distribute_client.c distribute_client.c 

1*-------· ------------• I 

I* distribute work to available remote machines • I 

for G - 0; j < NUMBLOCK; ) 

{ I* begin of for loop • I · 

I* check for scanline to be distributed • I · 
If (scan_Jistfj) -- NOT_YE1) 

{ I* begin of if scanline NOT _YET distributed • I 

I* check for boundary for hostlist index, reset if needed • I 
II (i >• MAXNUMOFHOST) 

i - 0; 

I* make RPC caU to check status of rtmote machine • I 
II ((statuserr • callrpctcp(wslist[i], RA Y_PROG, RA Y_STAT_PROC, 

RAY_ VERS, xdr_void, 0, xdr_bool, &avail)) 1- 0) 
{ 

} 

clients[i] - NULL; 
clnt permo(statuserr); 
fpnntf(stderr, "callrpctcp: 
goto next_server; 

I* why failed • I 
status check error in distnbute\nj; 

I* check status info • I 
II (avail •• BUSY) 

else 

{ 

} 

{ 

fprintf (stdout; "o/os .is not available \n", wslist[i]); 
goto next_server; 

I* begin of else for servtr available • I 

I* record time distributed • I 
II (gettimeofday(timeptr, tzoneptr) I• 0) 

{ 

} 

fprintf(stderr, "gettimeofday: error in distribute\nj; 
goto next_server; 

time_distnbutedO] • (Int)timeptr->tv_sec; 
rt_input->curr_block • j; 

I* make RPC caU to trace rays for the cu"ent scanline • I 
II ((rtraceerr • callrpctcp(wslist[i], RAY_PROG,RAY_RTRACE_PROC, 

{ 

} 

RAY_ VERS, xdr_rtinput, rt_input, xdr_void, 0)) I• 0) 

clnt_perrno(rtraceerr); I* why failed • I 
fprintf(stderr, "callrpctcp: rtrace error in distnbute\n"); 
aoto next_server; 

I* set up to do next block of scanlines • I 
j++; 

} I* end of else for server availlzble • I 

I* set up to go to next remote machine • I 
next_server: i++; 

.72 

... distribute 

Jun 30 13:26 1989 Page 7 of distribute_client.c 



distribute_client.c distribute_client.c 

} 

} 1• end of scanline is NOT_ YET distributed • I 

else 
j++; 1• go to next block of scanlines • I 

} 1• end of for loop • I 

return( I); 

1• end of distribute() • I 

1•------------
ROUTINE : callrpctcp() 

DESCRIPTION : this routine is the intenMdiate RPC layer to the SUN 
workstations to do the followings: 

- to check workstations' status & determine availability, 
- to distribute work, i.e. tracing one scanline. 

The body of this routine contains the lowest level RPCs. 

... distribute 

---------------------------------------------------------------------~---·1 
callrpctcp(host, prognum, procnum, versnum, inproc, in, outproc, out) 

char 
char 
lnt 
xdrproc_t 

•host; 
•in, •out; 
prognum, procnum, 

inproc, outproc; 
versnum; 

{ 1• declarations for callrpctcp() • I 

enum 
lnt 

clnt_stat. clnt_stat; 
i; 

1• return value of caU • I 
1• loop control variable • I 

callrpctcp 

lnt 
struct 
strud 
struct 
extern 
extern 
extern 

socket • RPC ANYSOCK; 
hostent •hp; -

1• socket chosen by system • I 
1• host entry • I 

sockaddr in server addr; 
timeval tOtal timeout; 
HOSTNAME wslistl]; 
HOSTNAME collect server; 
CLIENT •clients!], *Client_ collect; 

1• end of declarations for callrpctcp() • I 

1• info on server addrus • I 
1• time out provision • I 

1•--------------------------·---------•1 

1• test to appropriate client handle • I 
1• u this a caU to the collection server ? • I 
If (strcmp(host, collect server) •• 0) 

{ -
If (client collect - NULL) 

{ -
1• get host entry • I 
lf ((hp • gethostbyname(host)) •• NULL) 

{ 
fprintf(stderr, "gethostbyname: error in callrpctcp\n"}; 
retum(-1}; 

Jun 30 13:26 1989 

} 
bcopy(hp->h_addr,(caddr_t}&server_addr.sin_addr,hp->h_length}; 
server addr.sin family • AF INET; 
server:addr.sinJort - htons(O); 

73 

Page 8 of distribute_client.c 



distribute_clientoc dis tribute_clien t.c 

I* create client socket, memory stream, and client handle *I 
If ({client_collect • clnttcp_create(&server_addr, prognum, 

versnum, &socket, BUFSIZ, BUFSIZ)) - NULL) 

{ 

} 

clnt_pcreateerror("clnttcp _create"); 
retum(-1); 

} I* end if cl~nt handle has not been created • I 
I* make the caU • I 
total timeout.tv sec • lO*BLOCKSIZE; 
totaCtimeout.tv-usee • 0; 

clnt_Stat • clnt:call(client_collect, procnum, inproc, in, 
outproc, out, total timeout); 

II (clnt stat I• · RPC SUCCESS) -
{- -

} 

clnt_perror(client_ collect, "rpc1; 
retum(-1); 

I* destroy client handle if needed • I 
If (procnum •• COL KILL PROC) 

clnt_ destroy( clien( collect); 

retum({lnt)clnt_ stat); 

} I* end if this is the caU to the collection server • I 

I* or if this is the caU to ray tracing servers ·on the SUNs • I 
for: "(i - 0; i < MAXNUMOFHOST; i++ ) 

{ I* begin of for loop • I 
I* search for the appropriate SUN server *I 
If (strcmp(host, wslist[i]) - 0) 

{ 
I* check to see if client handle has been created ? • I 
If ( clients[i] •• NULL) 

{ I* not yet, create handle • I 
If ((bp • gethostbyname(bost)) - NULL) 

{ 

} 

fprintf(stderr, "gethostbyname: error in calrpctcp\nj; 
retum(-1); 

bcopy(bp->h addr,(caddr t)&server addr.sin addr, 
- hp->h lengili); -

server_addr.sin_family • AF iNET· 
server_addr.sin_port - htons(O);' 

I* create client socket, memory stream and client handle • I 
If ((eli en ts[i] • clnttc:p _create( &server_ addr, prognum, 

{ 

} 

versnum, &socket, BUFSIZ, BUFSIZ)) •• NULL) 

perror("clnttcp createj; 
return( -1); -

} I* end if handle has not been created • I 
I* make the caU •I 
total timeout.tv sec • TIME LIMIT; 
total-timeout.tv -usee • 0; -
clnt_]tat • clnCcall(clients[i], procnum, inproc, in, 

outproc, out, total_ timeout); 
If (clnt stat I• RPC SUCCESS) 

{ - -
perror( clients[i], "rpc1; 

74 

... callrpctcp 

Jun 30 13:26 1989 Page 9 of distribute_client.c 



.. 

distribute_client.c distribute_client.c 

retum(-1); 
} 

I* destroy client handle, if needed * I 
If (procnum -- RAY KILL_ PROC) 

clnt_ destroy( clients1i]); 

retum((lnt)clnt _stat); 
} I* end if strcmp * I 

} 1• end of for loop • I 

} I* end of caUrpctcpO *I 

1•-----------------------------
ROUTINE : xdr _rtinput() 

DESCRIPTION : this i.f the eXternal Data Representation routine for the 
arguments to SUN RPC RTRACE. 
The input argument to RTRACE consists of: 

- an integer for the number of block of scanlines, 
- a filename for the scene description file, 
- a filename for the viewing parameters. 

For part one, executes by the distribution client, this XDR 
will encode the argument before sending it over to the server. 

bool t 
xdr_rtinput(xdrs, rt_input) 

XDR *xdrs; 
stnu:t input_rt *rt_input; 

{ I* decl4ration for xdr _ rtinput() * I 

lnt k; I* loop control. variable • I 

I* end of declilration for xdr _rtinput() *I 

1*------------- ----

If (!xdr_int(xdrs, &rt_input->curr_block)) 
retum(F ALSE); 

If (!xdr string(xdrs, &rt input->scene file, 20)) 
retum(FALSE); - . -

If (!xdr string(xdrs, &rt input->view file, 20)) 
retum(FALSE); - -

retum(TRUE); 

} I* end of xdr _rtinput() *I 

•I 

... callrpctcp 

xdrJtinput 

1*-----------------------------------------------------------------------

ROUTINE : xdr _progress() 

DESCRIPTION : this is the eXternal Data Representation for the array of 
boolean type of NUMBLOCK elements, which contains infomuztion 
on whether or not the scanline result has been recorded in 
the rasterjile. This routine is called to decode the 

75 

Jun 30 13:26 1989 Page 10 of distribute_client.c 



dis tribute_ctient.c 

progress report structure received from the collection 
server., 

distribute_client.c 

--------------------------------------------------------~ 

bool t 
xdr _i;rogress(xdrs, progress) xdr _progress 
XDR •xdrs; 
bool_t progress[NUMBLOCK); 

{ 1• declaration for xdr JTOgress() • I 

IDt k; I* loop control variable • I 

1• end of declaration for xdr JTOgress() • I 

l*i;:.~----· -· -· ----·-· ........ _. -. ..o.-;-.;..._ .......... _._....., ____ •. I 

for (k • 0; k < NUMBLOCK; k++) 
{ 

} 

If {lxdr_bool(xdrs, &progress[k])) 
return(FALSE); 

return(TRUE); 

} 1• end of xdr Jrogrus() • I 

~ 4 

76 

Jun 30 13:26 1989 Page 11 of distribute_client.c 



.. 

raytracingJerver .c raytracing_server.c 

I**************************************************************************** I 
I* 
I* FILENAME : raytracing_server.c 
I* 
I* AUTHOR Mydung Thi Tran 
I* 
I* DATE : 8110187 
I* 
I* DESCRIPTION this is part two of three parts of my thesis work. 
I* 
I* 
I* 
I* 
I* 
I* 
I* 
I* 
I* 
I* INPUT 
I* 

Details of part one can be found in the file 
"distribute client.c" 

Details of pan three can be found in the file 
"raytracing_server.c 

Part two, executed by the SUN workstations, these servers 
carry out the ray tracing work and sending result of a 
block of scanlinu back to its client, the distribution 
server of part one. 

none 

I* OUTPUT : none 
I* 
I**************************************************************************** I 

#Include "distribute.h" 

bool t 
bool-t 
booCt 
c:har-
c:har 
c:bar 
c:bar 
c:bar 
c:bar 
lnt 
lnt 
lnt 
long 
stnac:t 
ltruc:t 
CLIENT 

mainQ 

{ 

statisticsQ; 
xdr rtinputQ; 
xdr-rtoutputQ; 
collect_ server[20]; 
inputfile[20]; 
resultfile[20); 
viewfile[20]; 
octree£20]; 
rt com[512]; 
diSt rt(); 
rtrace workO; 
block.size; 
beader_length • -1; 
input_rt *rt_input; 
output_rt *rt_output; 
*client_callback • NULL; 

I* status check routine forward declllration* I 
I* XDR routine for argument to RTRACE * I 
I* " *I 
I* host name for caU back RPC * I 
I* rtrace input filename *I 
I* rtrace result filename * I 
I* viewing parameter file * I 
I* octree scene description file * I 
I* ray tracing command * I 
I* dispatch routine forward declaration * I 
I* ray tracing routine forward declllration *I 
I* number of scanlinu per block *I 
I* result file header's length * I 
I* input argument to RTRACE * I 
I* output argument to RTRACE * I 

I* client handle for sending result RPC * I 

I* declarations of main() *I 

register SVCXPRT *transp; I* service transport handle * I 

I* end of declllrations of main() *I 

I****************************** I 

I* aUocate memory for arguments to RTRACE • I 
rt_input • (stnact input_rt *)malloc(slzeor(stnact input_rt)); 
rt_output • (stnac:t output_rt •)malloc(slzeor(struct output_rt)); 

I* initiali~e host name for caU back RPC and the blocksi~e • I 
strcpy( collect server, "lb 1-csam "); 
blocksize • BLOCKSIZE; 

n 

main 

Jun 30 13:26 1989 Page I of raytracing_.server.c 



raytracing_server .c raytracing_server.c 

I* create server socket, memory stream and service handle • I 
If ((transp - svctcp _create(RPC _ ANYSOCK, BUFSIZ, BUFSIZ)) -- NULL) 

{ 

} 

fprintf(stderr, "svctcp_create: error in main \nj; 
exit(l); 

I* erase any trace, make sure this is the update version • I 
pmap_unset(RA Y_PROG, RAY_ VERS); 

I* register service * I 
If (!svc regjster(transp, RAY PROG, RAY VERS, dist_rt, IPPROTO_TCP)) 

{ - - -

} 

fprintf(stderr, "svc_regjster: error in main \nj; 
exit(l); 

I* never retum * I 
svc_run Q; 

I* should not reach this point • I 
fprintf(stderr, "svc_run returned: error in main \n"); 
exit(-1); 

} I* end of main() • I 

1*---------
ROUTINE 

DESCRIPTION. : 

: dist_rt() 

this is the actual dispatch routine for distributed processing 
in ray tracing. When this routine is called, one of foUowing 
will be taken care: 

1- RAY_STAT: check for cpu availability, 
2- RAY-RTRACE: decode input argument for ray tracing 

routine, carry out the work, call the collection 
server to send block of scanlinu result back, 

3- RAY KILL: clean up, Le. free memory, unmap service, 
4- default: print "nomatch" error message. 

dist_rt(rqstp, transp) 

register 1truc:t svc_req *rqstp; 
register SVCXPRT *transp; 

I* contains procedure number * I 
I* service transport handle * I · 

{ I* dec14ratiotU for dist_rt() *I 

bool t avail; I* CPU status check *I 
char- ws_name(2D); I* name of host *I 
lot gethost _err; 
lot maxlength • 20; I* max # of elem in name array 
lot callback err; I* sending .rcanline result caU • I 
lot rtpid; I* child process id • I 

extern char collect_server[]; 
extern struct input rt •rt input; 
extern struct output_rt •rt:output; 
extern bool_ t statisticsQ; 
extern bool t xdr rtinputQ; 
extern boo() xdr:rtoutputQ; 

78 

*I 

... main 

distJt 

Jun 30 13:26 1989 Page 2 of raytracing.Jerver.c 



raytracing_server .c raytracing_server .c 

1• end of declarations for dist_rt() •1 

I•······························ I 
switch ((lot) rqstp->rq_proc) 
{ 1• begin of switch • I 

case RAY_STAT_PROC: I* check for CPU availability *I 

{ I* begin of case RAY_STAT_PROC *I 

I* get workstation name • I 
If ((gethost_err • gethostname(ws_name, maxlength)) I• 0 ) 

{ 

} 

fprintf(stderr, "gethostname: error in dist rt \n"); 
return(O); 

I* actual work, i.e. getting workstation status • I 
avail • statistics(ws _name); 

I* send resull back to client • I 
If (lsvc sendreply(transp, xdr bool, &avail)) { - - . 

fprintf(stderr, "svc.;.,sendreply: error in dist_rt \nj; 
return (0); 

} 
return(!); 

} I* end of case RAY_STAT_PROC •1 

case RAY_RTRACE_PROC: I* trace rays for one scatiline *I 

{ 1• begin of case RAY_RTRACE_PROC •1 

1• get argumenu • I 
If (!svc_getargs(transp, xdr rtinput, rt input)) 

{ - -

} 

fprintf(stderr, "svc_getargs: error in dist_rt \nj; 
svcerr decode(transp); 
return\0); 

1• send void retum back to control program • I 
If (lsvc sendreply(transp, xdr void, 0)) 

{ - -
fprintf(stderr, "svc sendreply: error in dist_rt\n"); 
return(O); -

} 

1• carry out actual work, i.e. tracing rays • I 
1• generate input and trace rays for scanline • I 
If (rtrace work(rt input. rt output)!• 0) 

{ - - -

} 

fprintf(stderr, "rtrace_work: error in dist_rt\nj; 
return(O); 

I* RPC call to send back resulu to coUection server on VAX • I 
If ((callbackerr • callrpctcp(collect_server, COL_PROG, COL_ COLCT_PROC, 

COL_ VERS, xdr_rtoutput, rt_output, xdr_void, 0)) I• 0) 
{ 

clnt_perror(callbackerr); 
fprintf(stderr, "can't make rpc call send back result \nj; 
return(O); 

79 

... distJt 

Jun 30 13:26 1989 Page 3 of raytracing_server.c 



raytracing_server .c raytracing_server.c 

} 

retum(l); 

} 1• end of case RAY RTRACE _PROC • I 

case RA Y_KILL_PROC: 1• kill service • I 

{ 1• begin of case RAY_KILL_PROC • I 

If (lsvc sendreply(transp,xdr void, 0)) 
{ - -

} 

fprintf(stderr, "svc_sendreply: error in dist_rt \nj; 
retum(O); 

1• deaUocate memory space used for pointers to structures • I 
free(rt _input); 
free(rt_output); 

1• unnuzp service • I 
svc_unregister(RA Y_PROG, RAY_ VERS); 

1• done, exit • I 
exit(l); 

} 1• end of case RAY_ KILL_ PROC • I 

default: 1• no procedure number matched • I 

{ 1• begin of case default • I 

svcerr noproc(transp); . 
retum(O); 

} I• end of case defaull • I 

} 1• end of switch • I 

} I~ end of dist _nO • I 

1•---------·------··-----------
ROUTINE : statistic.~() 

DESCRIPTION : remote nuzchine status will be checked by caUing the highest 

bool t 
statistics( wsnam e) 

char ••wsname; 

lewl of RPC "mat". "mat" will be called ·twice, since aU 
\lltlluu retum by it i.r accumuliltiw, the difference will be 
calculated for CPU idle time and percentage of this idle time 
will be compared to the THRESHOLD value. Thi.r function will 
retum BUSY if the percent of idletime is less than THRESHOLD, 
IDLE, otherwise. . 

{ 1• declaration for statistics() • I 

80 

... distJt 

_______ ,.. 
statistics 

Jun 30 13:26 1989 Page 4 of raytracing.Jerver.c 



.. 

raytracing_server .c raytracing_server .c 

long cpul_idletime; 
long cpu2_ idletime; 

I* idle time in units of 20 milliseconds *I 
I* idle time obtained by second caU * I 

long cpu_idletime; I* difference between two calls * I 

long currenU 
long current2 

sec; -sec; 
I* time in seconds at jim caU * I 
I* time at second call * I 

long sec_betiCaii; I* time elllpsed between 2 calls *I 

lnt percent_ idle; I* percent of idletime • I 
struc:t statstime statptr; I* retum result • I 

I* end of declllrations for statistics() *I 

I* 

I* first caU * I 
rstat(wsname, &statptr); 

I* set up variablu after first caU *I 
cpul_idletime - statptr.cp_time[CP _IDLE]; 
currentl_sec - statptr.curtime.tv_sec; 

I* wait awhile *I 
sleep(S); 

I* second caU * I 
rstat(wsname, &statptr); 

I* set up variablu after second caU * I 
cpu2_idletime - statptr.cp .:_time[CP _IDLE]; 
current2_sec • statptr.curtime.tv_sec; 

I* get the difference between the 2 calls • I 
cpu_idletime • cpu2_idletime - cpul_idletime; 
sec_bet2call • current2_sec - currentl_sec; 

*I 

I* convert to same units and calculllte percentage * I 
percent_idle • (lnt)((cpu_idletime • 2) I sec_bet2call); 

I* detennine availibility • I 
II (percent idle > THRESHOLD PRCT) 

{ - -

} 
else 

{ 

} 

fprintf(stderr, "o/os is available \n", wsname); 
retum(IDLE); 

fprintf(stderr, "%s is busy \n", wsname); 
retum(BUSY); 

} I* end of statistics() • I 

1*-------

ROUTINE : rtrace_work() 

DESCRIPTION read viewing parameters from a file, generatu input 
(6 floating point numbers for viewpoint and direction 
of rays for "rtrace", the actual ray trace routine. 

... statistics 

-------------------------~------------·-------------------------~----------•1 
rtrace _ work(in,out) rtrace_work 

81 

Jun 30 13:26 1989 Page 5 of raytracingJerver.c 



raytracing_server .c 

struct input rt *in; 
struc:t output_rt *out; 

{ I* declaration for rtrace;_work() *I 

lot 
lot 
lot 
lnt 
char 
FILE 
FILE 
FILE 

i; 
numread; 
rtrace pid; 
wai~d; 
sbufl128]; 
*view fp; 
*input"_fp; 
*result_ fp; 

extern long header length; 
extern char octreeffi 
extern char viewfile[]; 
extern. char inpufile[]; 
extern char resultfile[]; 
extern char rt _com[]; 

I* loop control variable * I 
I* # bytes read from result * I 
I* process id for rtrace * I 
I* proce:u id for child * I 
I* buffer for fik header • I 
I* viewing parameter fik * I 
I* input to rtrace * I 
I* temp result for scanliM * I 

I* end of declaration for rtrace _work() * I 

1*------------------* I 

I* print scanline number for users interest *I 
fprintf(stdout, "start block number: "'od \n", in->curr_block); 

I* set up the commtlnd for tracing rays *I 
strcpy( octree, in..:. >scene_ file); 
setcommandQ; 

I* generate input for rtrace * I 
strcpy(viewfile, in->view file); 
If (gen inputQ 1- 0) -

{ -
fprintf(stderr, "gen_input: error in rtrace_work\n1; 
retum(-1); 

} 

1• spawn new process to retain a copy of aecutabk irruJge • I 
rtrace _pid - forkQ; 

If (rtrace pid -- 0) I* child: trace rays * I 
{ -

} 

execl("lbin Ish", "sh", "-c", rt_com, 0); 
_exit(O); 

If (rtrace pid > 0) I* parent got a copy to cont * I 
{ - . 

wait_pid - wait(O); I* wait for child competion *I 
If (wait_Pid > 0) 

kill( wait _pid, SIGQ UI1j; 

I* store retum result • I 
out->done block - in->curr block; 
result fp - -fopen(resultfile, "r"}; 

1• discard header, store header length if needed • I 
If (header length - -1) 
. { -

wbUe(fgets(sbuf, slzeor(sbuf), result_fp) I• NULL && 
sbuf(O) I• '\n) 

82 

Jun 30 13:26 1989 

raytracing_server cC 

... rtrace_work 

.. 

Page 6 of raytracing....-rerver.c 



• 

raytracing_server .c raytracing_server .c 

} 

} 
else 

{ 

} 

' If {fgets{sbuf, slzeor{sbuf), result_fp) •• NULL II 
sscanf{sbuf, "-Y %d +X %d\n", &yres, &xres) !• 2) 

{ 

} 

fprintf(stderr, "fgets: discard header error \n"); 
return( -1); 

I* get header length· to store • I 
header_length • ftell(result_fp); 

1• get just beyond the header • I 
fseek{result_ fp, header _length, 0); 

1• get result • I 
nUm.read • fread(out->result, slzeoi(COLR), BLOCK, result_fp); 
out->block_Iength • numread; 
fclose( resultfile); 

1• finish actual work • I 
return{O); 

} I* end of rtrace _work() • I 

I* 

ROUTINE : setcomnumd() 

DESCRIPTION : the command for ray tracing a block of scanlines is set up 
by calling this routine. This command consists of: 

- the name of the ray tracing routine, •rtrace", 
- the input and output format option, • -ffc•, 

the first f stands for format, the second / stands for 
float (input: floating point numben), and the c stands 
for COLR (output: specilll format, RED, BLUE, GREEN, 
EXPONENT) · 

- the z and y resolution option, •-z XRES d: ·-y YRES, 
both of these numben should be included so that the 
result buffer will be flushed properly, and the header 
of the output file wil be generated correctly, 

- the octree scene dacription filerulme, 
- the input filename, this file contairu the ray 

origin and ray directioru, 
- the output filename, so that result could be copied 

into a buffer to send back to the collection server. 

setcommandQ 

{ 1• decillratioru for setcommand() • I 

char 
FILE 

extern 
extern 
extern 
extern 
extern 
extern 

hostname(20); 
*input_fp; 

char octree(]; 
char viewfile(]; 
char inputfile(]; 
char resultfile(]; 
char rt_com(]; 
tnt blocksize; 

1• name of ray trace server • I 
1• input to ray trace file pointer • I 

83 

... rtrace_work 

setcommand 

Jun 30 13:26 1989 Page 7 of raytracing.Jerver.c 



raytracing_server .c raytracing_server.c 

... setcommand 
I* end of declarations for setcommand() *I 

1*----------------------------------•1 

I* initialise filenames * I 
strcpy(inputfile, "forj; 
strcpy( resultfile, "from j; 

I* initiaUze command *I 
switch (blocksize) { 

case 5: 

case 10: 

case 20: 

strcpy(rt_com,. "rtrace -ffc -x 512 -y 5 j; 
break; 

strcpy(rt_com, "rtrace -ffc -x 512 -y 10 j; 
break; 

strcpy(rt_com, "rtrace -ffc -x 512 -y 20 j; 
break; 

} I* end of switch statement *I 

I* add octree scene filename * I 
strcat(rt_com, octree); 

I* get hostname to distinguish input and resuh files • I 
gethostname(hostname, 20); 
strcat(inputfile, hostname); 
strcat(resultfile, hostname); 

I* set up· the r~ of the command * I 
strcat(rt com, " < j; 
strcat(rt= com, inputfile); 
strcat(rt_com, " > j; 
strcat(rt_com, resultfile); 

I* finish *I 
return(O); 

} I* end of .retcommand() *l 

I* --. ---· ---------------

ROUTINE : gen _input() 

DESCRIPTION input to "rtrace", the ray trtlcing routine, is generated 
and written into a file in this routine. "rtrace" 's input 
consists of 512 .ret.r of data for 512 pbcels in a .rcanline. 
Each set con.rist.r of 3 floating points for the viewpoint, 
and 3 floating points for the ray direction. 

gen._inputQ 

{ I* decl4ration.r for gen _input() • I 

double 
double 
FILE 
FILE 

anghor, angvert; 
h, v; 
*view fp· 
*inpu~fp; 

1• horizontal, vertical view angles • I 
I* horizontal, vertical offsets • I 
I* viewing parameter file pointer • I 
I* rtrace input file pointer • I 

84 

gen.Jnput 

Jun 30 13:26 1989 Page 8 of raytracing.Jerver.c 

•I 



0 

raytracing_server .c raytracingJerver .c 

Boat 
Boat 
FVECT 
FVECT 
lnt 
lnt 
lnt 

. lnt 
lnt 
lnt 

view[3); 
direction[3); 
vp, vdir, vup; 
vhinc, vvinc; 
i; 
X, y; 
yO, y1; 
point, up, dir; 
angle; 
bview, bdir; 

char inputfile(]; 
char viewfile[]; 

I* view point coordirulte * I 
I* ray direction * I 
I* view point, direction, up vectors * I 
I* hor, vert increments on view plane * I 
I* loop control varillble • I 
I* pixel posilion * I 
I* initial, final scanline # of block • I 
I* # floating point numbers read * I 
I* " *I 
I* # floating point numbers wrilten * I 

extern 
extern 
extern stnlc:t input_rt *rt_input; 

I* end of declarations for gen_input() *I 

I* *I 

I* open files • I 
view fp - fopen(viewfile, "rj; 
input_fp - fopen(inputfile, "wj; 
IC ((view_fp -- NULL) II (input_fp -- NULL)) 

{ 
fprintf(stderr, "fopen: error in gen_input\nj; 
return(-1); 

} 

I* get viewing parameter from file • I 
point • fscanf(view_fp, "%lf%1f%lf", &.vp[O), &.vp[1], &.vp[2]); 
dir -. fscanf(view_fp, "%1f%1f%lf", &.vdir[O), &.vdir{1), &.vdir(2]); 
up • fscanf(view _fp, "%lf"/olf%lf", &.vup[O), &.vup[l), &.vup[2]); 
angle • fscanf(view_fp, "%lf"/olf", &.anghoi, &.angvert); · 

lC ((point I• 3) U (dir 1- 3) II (up I• 3) II (angle I• 2)) 
{ 

fprintf(stderr, "fscanf: viewpara file error in gen_input\nj; 
return(-1}; 

} 

I* done with viewpara file • I 
fclose(view _fp); 

I* $el up view point • I 
view[O) • (ftoat)vp(O); 
view[1) • (Boat)vp(1]; 
view(2] • (ftoat)vp[2]; 

I* calculate viewing direction increment$ • I 
setview(view, vdir, vup, anghor, angvert, vhinc, vvinc); 

I* $el up values for jim and last scanlines of block *I 
yO • rt input->curr block • BLOCKSIZE; 
y1 - yO-+ BLOCKSIZE; 

I* start genarating input • I 
I* loop until the last scanliM of block •1 

Cor (y • yO; y < y1; y++) 

I* loop until last pixel of scanline • I 
Cor (x • 0; x < XRES; x++) 

85 

... gen_jnput 

Jun 30 13:26 1989 Page 9 of raytracing.....server.c 



raytracing_server.c raytracing_s erver .c 

{ I* begin of for x loop • I 
I* set up ray direction • I 

h • x - XRES I 20; I* hori-zontal offset *I 
v • y - YRES I 2.0; /* vertical offset • I 

for (i • 0; i < 3; i++) 
direction[i] - (float)(vdir[i] + h *vhinc[i) + v*vvinc[i]); 

I* write viewpoint and direction to rtrace's inputfile • I 
bview • fwrite(view, slzeol(float), 3, input_fp); 
bdir • fwrite(direction, slzeol(float), 3, input fp); 
If ((bview I• 3) If (bdir · I• 3)) -

{ 

} 

fprintf(stderr, "!write: error in gen_input\nj; 
relurn( -1); 

} /* end of for x ·.loop • I 

I* finish generate input • I 
fclose(input_fp); 
return(O); 

} /* end of gen _input() • I 

... gen_jnput 

1*-----------------------------------------------------------------------
ROUTINE : setview() 

DESCRIPTION calculllte the vertical and hori-zontal increment 
for input to rtrace com1114nd. This routine is irtract~d 
from GREG's routi,le in the file called "inulge.c" 
found in the directory - /ray lrt". 

setview(vp, vdir, vup, anghor, angvert, vhinc, vvinc) 

FVEcr 
double 

vp, vdir, vup, vbinc; vvinc; 
anghor, angvert; 

{ I* begin of declllrations of setview() • I 

double tanQ, normalizeQ; 
double dt; 

I* end of declaration of setview() *I 

1•----~----------

1• normalize view direction vector • I 
If (normalize(vdir) -- 0.0) 

{ 

} 

fprintf(stderr, "zero view direction\nj; 
return( -1); 

I* compute horizontal direction • I 
fcross(vhinc, vdir, vup); 

I* normalize view up vector • I 
If (normalize(vbinc) -- 0.0) 

{ 
fprintf(stderr, "illegal· vieW up .vector\nj; 
return(-1); 

------------• I 

86 

., 
setview 

Jun 30 13:26 1989 Page 10 of raytracing....rerver.c 



.. 

raytracing_server .c 

} 

I* compute vertical direction • I 
fcross(vvinc, vhinc, vdir); 

dt • 20 • tan(anghor*(PI /180.0 12.0)); 

If (dt <• FllNY II dt >- FHUGE) 
{ 

fprintf(stderr, "illegal horizontal view angle\n"); 
retum(-1); 

} 

dt /• XRES; 
vhinc[O) •- dt; 
vhinc[1) •- dt; 
vhinc(2] •- dt; 

dt • 20 • tan(angvert•(PI /180.0/2.0)); 

If (dt <• FTINY II dt >• FHUGE) 
{ 

fprintf(stderr, "illegal vertical view angle \n"); 
retum(-1); 

} 

dt /• YRES; 
vvinc(oJ ·- dt; 
vvinc(1 •- dt; 
vvinc(2] •- dt; 

} /* end of setview() *I 

/*----

ROUTINE : normali~e() 

DESCRIPTION : norma~e a vector. This is an exact copy of tlu 
routine "norma~e" found in ·/ray lrt /fvect.c 

double 
normalize( v) 
register FVECf(v); 

{ /* declaration for norma~e() • I 

double len; 
double sqrtQ; 

I* end of declaration for norma~e() *I 

len • DOT(v,v); 
If (len <• FTINY*FTINY) 

retum(O.O); 

If (len >• (1.0-FTINY)*(l.O-FTINY) &&. 
len <• {l.O+FTINY)*(l.O+FTINY)) 

retum(l.O); 

len • sqrt(len); 
v(O) /• len; 
v(1) /• len; 
v(2) /- len; 

fun 30 13:26 1989 

raytracing_server.c 

... setview 

-------------•! 
normalize 

Page 11 of raytracing.Jerver.c 



raytracing_server .c raytracing_server .c 

return(len); 

} 1• end of normalize() • I 

I• 

ROUTINE. : /cross() 

DESCRIPTION : calculilte the cross product of two vectors vi X v2 

fcross(vres, vl, v2) 
register FVECf vres, vl, v2; 

{ 1• begin of fcross() • I 

vres(O] - vl[l]*v2(2] - v1[2]*v2[1]; 
vres(l] • v1[2]*v2{0] - vl{O]*v2[2]; . 
vres[2] • vl[O]*v2[1] - vl[l]*v2[0]; 

} · I* end of fcross() * I 

... normalize 

fcross 

1*--------------------------------------------~--------------------------

ROUTINE : callrpctcp() 

DESCRIPTION : dispatch routine for sending result back to the child 
proceu on the VAX side. 

callrpctcp(host, prognum, procnum, versnum, inproc, in, outproc. out) 

char 
char 
lnt 
xdrproc_t 

{ 

*host; 
*in, •out; 

prognum, versnum, procnum; 
inproc, outproc; 

I* declilration.r for caUrpctcp() • I 

enum 
lnt 
ltr'uct 
struct 
struct 

extern 

clnt stat clnt stat; 
socket • RPC ANYSOCK; 
sockaddr in server addr; 
hostent *bp; -
timeval total_timeout; 

CLIENT *client_callback; 

1• host entry • I 
I* timeout provision.r • I 

I* end of declilration.r for caUrpctcp() *l 

1•----· --------
I* has socket and client handle been created ? • I 
If (client callback -- NULL) 

{ -
I* get host entry • I 
If ((hp - gethostbyname(host)) - NULL) 

{ 

} 

fprintf(stderr, "can't get address for host \nj; 
return(-1); 

bcopy(hp->h_addr, (caddr_t)&st:rver_addr.sin~addr, hp->h_length); 
server_addr.sin_family - AF _INET; 

88 

callrpctcp 

*I 

Jun 30 13:26 1989 Page 12 of raytracing...server.c 

*I 

*I 



raytracing_server .c raytracing_server .c 

... callrpctcp 
server_addr.sin_port - htons(O); 

I* create client socket, memory stream, and client handle • I 
It ((client_callback - clnttcp_create(&server_addr, 

prognum, versnum, &socket, BUFSIZ, BUFSIZ)) -- NULL) 
{ 

} 

} 

clnt _pcreateerror("clnttcp _ createj; 
return(-1); 

total timeout.tv sec - 20; 
total:timeout.tv :uSee • 0; 

I* caU dispatch routine • I 
clnt_stat •-clnt_call(client_callback, procnum, inproc, in, 

outproc, out, total_ timeout); 
If (clnt stat I•· RPC SUCCESS) 

{ - -

} 

clnt_perror(client_callback, "rpcj; 
return(-1); 

return((lnt)clnt_stat); 

} I* end of caUrpctcp() *I 

I* -------------------

ROUTINE : xdr _mnput() 

DESCRIPTION : eXternal Data Representation for input to "rtrace ... 
This routw is called to decode the input argument. 
The input consists of the foUowings: 

- an integer for the block number, 
- a filename for the scene decription file, 

a filename for the viewing paratMter file. 

boot t 
xdr_rtinput(xdrs, rt_input) 

XDR •xdrs; 
strnct input_rt •rt_input; 

{ I* declaration for xdr _ rtinput() • I 

lnt k; I* loop control variable • I 

1• end of declaration for xdr _ rtinput() *I 

I* 

If (lxdr_int(xdrs, &rt_input->curr_block)) 
return(FALSE); 

If (!xdr_string(xdrs, &rt_input->scene_file, 20)) 
return(FALSE); . 

If (lxdr_string(xdrs, &rt_input->view_file, 20)) 
return(FALSE); 

return(TRUE); 

Jun 30 13:26 1989 

89 

*I 

---·1 

xdr Jtinput · 

Page 13 of raytracing...server.c 



raytracing_server .c raytracing_s erver .c 

.. . xdr Jtinput 
} I* end of xdr _ninput() • I 

1*-----~-----------------------------------------------------------------
ROUTINE 

DESCRIPTION 

: xdr _noutput() 

eXternal Data Representation routine for the result of a 
scanline sent from Sun workstations back to VAX side. 
This routine is called to encode the result before 
sending it to the collection server. 
The result consists of the foUowings: 

an integer for the number of the block done, 
- an integer for the number of "COLR" items store as 

the result, this number is not necessary equal to 
the number of pixels in the block (512 • ABLOCKSIZE), 
due to run-length encoding, 

- an array of pixel values. Each value is stored as 
four unsigned chars: RED, BLUE, GREEN, EXPONENT. 

bool t 
xdr _ rtoutput(xdrs, rt _out) 

XDR *xdrs; 
struct output_rt •rt_out; 

{ 
I* declaration for xdr _noutput() • I 

lnt maxsize; 

I* end of declaration for xdr _noutput() • I 

maxsize • XRES • 4 * BLOCKSIZE; 

If (lxdr_int(xdrs, &rt_out->dooe_block)) 
return (FALSE); 

If (lxdr_int(xdrs, &rt_ out->block_leogth)) 
return (FALSE); 

If (lxdr_opaque(xdrs, rt_out->result, maxsize)) 
return (FALSE); 

return (TRUE); 

} I* end of xdr _noutput() • I 

xdr Jtoutput 

*I 

I• • I 

90 

Jun 30 13:26 1989 Page 14 of raytracing....server.c 

v 



collect_server.c collect_server.c 

I*****************•••························································· I 
I* 
I* PROGRAM : coUect server.c 
I* 
I* AUTHOR : Mydung Thi Tran 
I* 
I* DATE : 7127187 
I* 
I* DESCRIPTION this is part three of 3 parts of my thesis work: 
I* 
I* 
I* 
I* 
I* 
I* 
I* 
I* 
I*, 
I* 
I* 
I* 
I* 
I* 
I* 
I* 
I* 
I* 
I* 
I* 
I* INPUT 
I* 
I* 
I* 

- part 1: the distribution client can be found in the 
file "distribute client.c". 

- part 2: the ray tracing server, can be found in the 
file "raytrace_server.c". 

Thi.J routine if executed the result coUection server. 
It listens to call back from the ray tracing servers for 
result. The results, values for pixels of a scanline, 
are written into the output file, specified by the external 
file pointer "output Jp", these scanlines are written in 
random order at first and when aU scanlines are written, 
image will then be reconstructed using information stored 
in the data structure "result", which contained 3 fields: 
scanline number, location in raster output file, length of 
scanline (necessary due to run-length encoding). 
For synchroni1.ation purposes, distribution client (part 1) 
wiU invoke a remote procedure call to this server, to 
request for list of scanline completed. Checking for image 
completion is done in the distribution client, any overdue 
scanline wiU be redistributed. 

should be caUed with: 
- name for random outputfile, 
- name for raster outputfile. 

I* OUTPUT - random outputfile, 
I* 
I* 

- raster outputjile. 

I·············································································J 
#Include "distribute.h" 

bool t 
bool-t 
char
char 
Fll.E 
Fll.E 
lot 
long 
struct 
struct 

xdr rtoutputO; I* xdr routine for output argument to rtrace *I 
proifess(NUMBLOCK]; I* progrus report structure • I 
outputfi.le[20); 1• random output filename *I 
rasterfile[20); /* raster output filename • I 
*output_fp; /* random file pointer *I 
*raster_ fp; I* raster file pointer * I 
obtain_reportQ; /* dispatch routine forward decloration *I 
next offset - 0; I* offset from beginning of random file*/ 
block info reconstruct(NUMBLOCK); /* image reconstruction info *I 
output_rt •rt_output; /* result sent back from rtrace servers *I 

main(argc. argv) 

lot argc; 
char * argv[]; 

{ /* declaration for main() *I 

register SVCXPRT *transprt; /* service transport handle *I 

I* end of decloration for main() • I 

91 

mazn 

Jun 30 13:26 1989 Page 1 of collect....server.c 



collect_server.c collect_server .c 

1•---~--------------------------~·1 

I* initiali-ze filenames and pointer memory allocation • I 
strcpy( outputfile, argv[l ]) ; 
strcpy(rasterfile, argv[2D; 
rt_output • (struc:t output_rt *)malloc(slzeof(struct output_rt)); 
If (rt output -- NULL) 

c 

} 

fprintf(stderr, "malloc: error in main of collect\n"); 
exit(-1); 

1• create server socket, memory stream and service handle • I 
If ((transprt • svctcp create(RPC ANYSOCK, BUFSIZ, BUFSIZ)) 

{ - -
fprintf(stderr, "'svctcp_create: error in main of collect \nj; 
exit(l); 

I* erase anytrace, make sure this is the update version • I 
pmap_unset(COL_PROG, COL_ VERS); 

NULL) 

1• register sendee, call back procedures from remote machines • I 
lf(!svc_register(transprt,COL_PROG,COL_VERS,obtain_report,IPPROTO_TCP)) 

{ 

} 

fprintf(stderr, "svc_register: error in main of collect \n"); 
exit(l); 

I* run service routine • I 
svc~runO; 

I* should not nach this point • I 
fprintf(stderr, "Error: svc_nin retumed \nj; 
exit(-1); 

} 1• end of main() • I ,. __ _ 
ROUTINE : obtain _report() 

DESCRIPTION this is the collection service dispatch routine, one of the 
following five cases will be taken care: 

1- COL COLCT: collect nsult from ray tracing serven in 
- random order, write to a file, update progress 

report structure, · 
2- COL KILL: unmap service, stop the server, 
3- COL:_QUERY: send progren report to distribution client, 
4- COL RECON: reconstruct image, rewrite the result in 

- random . file to raster order, 
5- defaull: print "nomatch" en-or message. 

... main 

----------· -----------------------------------------1-
obtain_report(rqstp, transprt) obtainJeport 
register stnlct svc req •rqstp; 
register SVCXPRT *transprt; 

{ /* declarations for obtain _report() • I 

Jun 30 13:26 1989 

I* contains procedure number • I 
1• service traansport handle • I 

92 

Page 2 of collect....rerver.c 



collect_server.c collect_server .c 

lnt 
lnt 
lnt 
IDt 
lnt 
long 
long 
bool t 
booCt 
COLR 
void 

extern 
extern 

extern 
extern 
extern 
extern 
extern 
extern 

i; 
length. howlong; 
px_2write; 
px_written; 
block done; 
offset; 
file _length; 
xdr_rtoutput(); 
xdr progress(); 
buff""[BLOCK); 
svc unregister(); 

char outputfile[); 
char rasterfile[); 
FILE •output fp; 
FILE •raster_fp; 
bool_t progress[); 
long next offset; 
struct output_rt •rt_output; 
struc:t block info reconstruct[); 

... obtainJeport 
I* loop control variables • I 
I* # of pixels for result scanline • I 
I* # of pixels to write to rstrfile• I 
I* # of pixels written to ntrfile • I 
I* # of done scanline • I 
I* starting position in randomfile • I 
I* starting position 4 nxt scanline• I 
I* xdr for output from rtrace • I 
I* xdr for progress report • I 
I* temp storage 4 file transfer • I 

1• end of declarations for obtain_report() • I 

1•---------------------• I 
switch ((lnt)rqstp->rq_proc) 

{ I* begin of switch • I 

case COL COLCT PROC: I* collect result • I - -
{ I* begin of case COL_COLCI'_PROC *I 

I* get arguments, i.e. result from rtrace • I 
If (!svc aetargs(transprt, xdr rtoutput. rt output)) 

{-"' - -
svcerr decode(transprt); 
return(O); 

} 

I* which .rcanline is done ? • I 
block_done • rt_output->done_block; 

I* update progru8 report structure • I 
progress[block_done] • DONE; 

1• write result to random file * I 
If ((output fp • fopen(outputfile, •aj) - NULL) · · 

{ -
fprintf(stderr. •ropen: random file in obtain_report\nj; 
return(O); 

Jun 3013:261989 

} 
length • rt_output->block_length; 
fwrite(rt output->result. slzeoi(COLR). length. output_fp); 

fclose{ output fp); 

I* update structure for image reconstruction • I 
reconstruct[block done].Iength • length; 

I* record it as start position for image reconstruct • I 
reconstruct[b lock_ done).start _position • next_ offset; 

I* set up offset for nut scanline * I 
next_offset • next_offset + (length • slzeoi(COLR)); 

93 

Page 3 of collect.....server.c · 



collect_server .c co llect_s erver .c 

I* send signal of completion • I 
ll (!svc_sendreply(transprt, xdr_void, 0)) 

{ 
fprintf(stderr, "svc_sendreply: error in obtain_report\n"); 
retum(O); 

} 

I* print musage for users interest *I 
fprintf(stdout, "Block %d collected\n", block_done); 

I* finish, ail *I 
retum(l); 

} I* end of case COL_COLCT_PROC *I 

case COL_KILL_PROC: I* unregister service • I 

{ I* begin of case COL_KILL_PROC • I 

1• send signal back to client • I 
ll (!svc sendreply(transprt, xdr void, 0)) 

{ - -

.} 

fprintf(stderr, "svc_sendreply: error in obtain_report \n"); 
retum(O); 

1• unmap service • I 
svc_unregister(COL_PROG, COL_ VERS); 

I* doru:, exit • I 
exit(l); 

} I* end of case COL_KILL_PROC *I 

case COL"-QUERY_PROC: 1• check progeD report • I 

{ I* begin of case COL_QUERY _PROC *I 

1• send the boolean a"ay marking scanliM doru: back • I 
ll (!svc_sendreply(traD.sprt, xdr_progress, progress)) 

{ 

} 

fprintf(stderr, "svc_sendreply: error in obtain_report \n"); 
retum(O); 

I* ail • I 
retum(l); 

} I* end of case COL'_QUERY _PROC • I 

case COL_RECON_PROC: I* reconstruct image • I 

{ I* begin of case COL_RECON_PROC *I 

1• open random and raster files • I 
ll ((output fp - fopen(outputfile, "rj) -- NULL) 

{ -

} 

fprintf (stderr, "fopen: random file in obtain_report\n j; 
retum (0); 

ll ((raster fp • fopen(rasterfile, "wj) - NULL) 
{ -

fprintf (stderr, "fopen: raster file in obtain_report\nj; 
retum(O); 

94 

... obtainJeport 

Jun 30 13:26 1989 Page 4 of collect.....server.c 



collect_server.c collect_server.c 

Jun 3013:261989 

} 

I* do until the last block of scanlines *I 
for(i • 0; i < NUMBLOCK; i++) 

{ I* begin of for loop • I 

1• find the starting point for scanline • I 
offset - reconstruct[i].start_position; 

I* get the scanline length • I 
howlong - reconstruct[i].length; 

1• search for the right place in random file *I 
If (fseek(output fp, offset, 0) 1- 0) 

{ -

} 

fprintf(stderr,"fseek: random file in obt_reprt\nj; 
retum (0); 

I* get info for the entire scanline • I 

... obtainJeport 

px 2write - fread{buff, slzeor(COLR), howlong, output_fp); 
If (px 2write 1- howlong) 

{-
fprintf(stderr, "fread: copy file in obt_report\n"); 
retum(O); 

} 

1• write into the final raster file • I 
px_ written - fwrite(buff, slzeor(COLR), px_2write, 

raster_ fp); 
If (px_ ~tten I• px_2write) 

{ 
fprintf(stderr, "fwrite: copy file in obt_report\nj; 
retum(O); 

} 

I* print message for user's interest • I 
fprintf(stdout, "block o/od written \n", i); 

} 1• end of for loop • I 

1• close aU file pointen • I 
If (fclose(raster fp) 1- 0) 

{ -

} 

fprintf (stderr, "fclose: raster file in obt_report\nj; 
retum(O); 

If (fclose(output fp) I• 0) 
{ -

fprlntf (stderr, "fclose: random file in obt_report\nj; 
retum(O); 

} 

1• send signal for completion • I 
If ({vc_sendreply(transprt, xdr_void, 0)} 

fprintf(stderr, "svc sendreply: error in obtain_report \n"); 
retum(O); -

} 

95 

Page 5 of collect....server.c 



collect_server.c co llect_s erver .c 

} 

default: 
{ 

} 

I* end of case COL_RECON_PROC *I 

svcerr noproc(transprt); 
retum(O); 

} I* end of switch *I 

} I* end of receive_reponO *I 

I* 

ROUTINE : zdr _noutput() 

DESCRIPTION eXternal Data Rep;uentation routine for the result of a 
scanline sent from Sun worlcstatioru back to VAX side. 
This routine is caUed to decode the result sent back. 
The result consists of the foUowings: 

- an integer for the number of the block done, 
- an integer for the number of "COLR" items contained 

in block of results (this number could be different 
from (BLOCKSIZE * 512) due to run-length encoding, 

- array of pixel valaues, each pixel is expressed as 

... obtainJeport. 

four unsigned chan: 1 RED, 1 BLUE, GREEN, 1 EXPONENT. 

bool t 
xdr _ rtoutput(xdrs,rt _out) 

XDR *xdrs; 
struct output_rt *rt_out; 

{ 

} 

I• 

I* declllration for xdr _ rtoutputO * I 

u_int maxsize; I* maximum number of elements *I 

maxsizo 

I* end of dec1aration for xdr _noutput() *I 

I* 

XRES * 4 * BLOCKSIZE; 

ll(!xdr int(xdrs, &rt out->dono block)) 
reb:am(FALSE);- -

If (!xdr_int(xdts, &rt_out->block_length)) 
retum(FALSE); 

ll(!xdr _ opaque(xdrs, rt _ out->result, maxsize)) 
retum(FALSE); 

retum(TRUE); 

I* end of xdr _output()_ *I 

ROUTINE : xdr _progress() 

-•I 

. : 

DESCRIPT10N this is the eXternal Data Representation for the array of 
bookan type of YRES ekments, whi.ch contains information 
on whether or not the .scanline result has been recorded in 
the rasterjik. "DONE" or 1 means the result had been written 

"96 

xdr Jtoutput 

Jun 30 13:26 1989 Page 6 of collect.....rerver.c 



co llect_server .c 

into the file. "NOT YET" or 0 indicates that the result has 
not been received. -This routine is caUed to encode the 
progress before sending it to the distribution client. 

collect_server.c 

--------------------------------------------------------------------•1 
bool t 
xdr _j;rogress(xdrs, progress) 

XDR •xdrs; 
bool t progress(NUMBLOCK]; 

{ 

for (k 
{ 

} 

1• ·declarations for xdr _J1rogrus() • I 

lnt k; I* loop control variable • I 

I* end of declllrations for xdr _J1rogrus() • I 

I* 

- 0; k < NUMBLOCK; k++) 
If (lxdr_bool(xdrs, &progress(k.])) 

return(F ALSE); 

return(TRUE); 

} 1• end of xdr Jrogrus() • I 

xdr _progress 

•I 

I* ----------------·1 

91 

Jun 30 13:26 1989 Page 7 of collect_server.c 



Appendix B: Program Profiles 

98 



Oistribute.p Oistribute.p 

/* profile for "distribute_client.c" 

%time cumsecs #call ms/caU name 
14.8 0.17 64 2.66 write 
12.2 0.31 72 1.94 -select 

6.1 0.38 65 1.08 - read -5.2 0.44 10 6.00 connect 
5.2 0.50 871 0.07 -ntohl 

'vi 3.5 0.54 62 0.65 - caUrpctcp 
3.5 0.58 xd"ec create 
2.6 0.61 ::: c/nncp-:.._ create 
2.6 0.64 _ c/ntudp _ bufcreate 

" 2.6 0.67 1 30.00 distribute 
2.6 0.70 103 0.29 -71U1Uoc -2.6 0.73 _p71U1p _getport 
2.6 0.76 15 2.00 _socket 
2.6 0.79 vfork 
1.7 0.81 7 2.86 _dopmt 
1.7 0.83 45 0.44 _genimeofday 
1.7 0.85 1 20.00 main -1.7 0.87 5 4.00 recv -1.7 0.89 5 4.00 _sendto 
1.7 0.91 _xdr_bool 
1.7 0.93 mcount 
1.3 0.95 _xdr_long 
1.3 0.96 xdr u int 
0.9 0.97 - auiiinone create 
0.9 0.98 2 5.00 _}Print/ -
0.9 0.99 6 1.67 ioctl -0.9 1.00 _monstartup 
0.9 1.01 17 0.59 morecore -0.9 1.02 2 5.00 _open 
0.9 1.03 5 2.00 re$ mkquery 
0.9 1.04 19 0.53 :sbrk 
0.9 1.05 5 2.00 send 
0.9 1.06 45 0.22 _setitimer 
0.9 1.07 172 0.06 _strcmp 
0.9 1.08 xdr enum 
0.9 1.£9 - xdr-opaque 
0.9 1.10 16 0.63 _xdr _progreD 
0.9 1.11 xdr u long 
0.9 1.12 - xdr_vo_id 

0.9 1.13 - xdm.em create 
0.9 1.14 ::: xd"ec _ Dulo freco rd 
0.9 1.15 _xdrr:ec _skiprecord 
0.0 1.15 5 0.00 doscan 
0.0 1.15 3 0.00 :::Jlbuf 4. -~--
0.0 1.15 2 0.00 _ _jindiop 
0.0 1.15 3' 0.00 _ftsbuf 
0.0 1.15 344 0.00 ]icopy 
0.0 1.15 5 0.00 bozero 
0.0 1.15 11 0.00 -close 

"· 
0.0 1.15 5 0.00 -:_dn_comp 
0.0 1.15 6 0.00 dn expand 
0.0 1.15 10 0.00 :dn'Jind· 
0.0 1.15 5 0.00 _dn_skip 

" 0.0 1.15 2 0.00 aecl -0.0 1.15 2 0.00 aecv -0.0 1.15 2 0.00 aecve 
0.0 1.15 1 0.00 Jclose 
0.0 1.15 . 1 0.00 _jflush 
0.0 1.15 3 0.00 Jgeu 
0.0 1.15 2 0.00 Jopen 
0.0 1.15 101 0.00 Jree 
0.0 1.15 5 0.00 Jscanf 

99 

fun 30 13:50 1989 Page 1 of distribute.p 



OIStnoute.p OIStflOUte.p 

0.0 1.15 3 0.00 Jstat 
0.0 1.15 5 0.00 _gethostbyname 
0.0 1.15 1 0.00 _getpageske 
0.0 1.15 10 0.00 _getpid 
0.0 1.15 18 0.00 _getshort 
0.0 1.15 264 0.00 htonl 
0.0 1.15 27 0.00 -_htons 
0.0 1.15 1 0.00 image 
0.0 1.15 6 0.00 :index 
0.0 1.15 1 0.00 inet addr \I 

0.0 1.15 1 0.00 :irati; 
0.0 1.15 10 0.00 ntohs 
0.0 1.15 1 0.00 "Jrofil 
0.0 1.15 10 0.00 _putshort "' 
0.0 1.15 5 0.00 _recvfrom 
0.0 1.15 1 0.00 res init 
0.0 1.15 5 0.00 -res-send 
0.0 1.15 15 0.00 -sigblock 
0.0 1.15 8 0.00 _signal 
0.0 1.15 15 0.00 sigpause 
0.0 1.15 15 0.00 :sigsetmask 
0.0 1.15 38 0.00 _sigvec 
0.0 1.15 15 0.00 _sleep 
0.0 1.15 5 0.00 _sprint/ 
0.0 1.15 45 0.00 _strlen 
0.0 1.15 3 0.00 _stnu:mp 
0.0 1.15 1 0.00 _stnu:py 
0.0 .1.15 2 0.00 _system 
0.0 1.15 5 0.00 _ungetc 
0.0 1.15 2 0.00 wait 
0.0 1.15 20 0.00 :_xdr _rtinput 

100 

Jun 30 13:50 1989 Page 2 of distribute.p 



raytrace.p. raytrace.p 

I* profile for "raytracing_server.c" *I 

%time cumsecs #call ms /call name 
18.9 14.27 307500 0.05 Fmuld 
17.0 27.10 307350 0.~ Faddd 
10.7 35.16 1 8059.88 _profil 

8.8 41.78 mcount 
6.3 46.51 d exte 

y 6.1 51.09 102400 0.~ fwrite 
5.8 55.45 5 871.99 _gen_input 
5.4 59.51 d usel 
4.6 63.01 102400 0.03 FB.td 
4.2 66.15 d_rcp 
3.4 68.15 153615 0.02 Fdtos 
2.3 70.52 102522 0.02 _memcpy 
1.7 71.84 376 3.51 write 
1.5 72.97 102470 0.01 Fsubd 
1.3 73.95 d norm 
0.4 74.25 50 6.00 FdiVcl 
0.3 74.49 21 11.43 _open 
0.2 74.67 52 3.46 read 
0.2 74.83 110 1.45 Fcmpd 
0.1 74.93 311 0.32 _bcopy 
0.1 75.01 d_pack 
0.1 75.08 rewind 
0.1 75.14 12 5.00 _ svc _getreqset 
0.1 75.18 1 40.00 _ clntudp _create 
0.1 75.22 31 1.29 close -0.1 75.26 ptwo 
0.0 75.29 Frintd 
0.0 75.~2 Frints 
0.0 15.35 20 1.50 Fscaleid 
0.0 75.38 5 6.00 ftell -0.0 75.40 4 5.00 B.ock: 
0.0 75.42 5 -4.00 fork -0.0 75.44 _getenv 
0.0 75.46 2 10.00 _gethostbyname 
0.0 75.48 6 3.33 lseek 
0.0 75.50 18 1.11 -recvfrom 
0.0 15.52 46 -0.43 select -0.0 15.54 18 1.11 send to -0.0 15.56 2 10.00 xdrrec create 
0.0 15.58 16 1.25 - xdrrec: endofrecord 
0.0 15.59 - Fund 
0.0 15.60 51 0.20 bzero 
0.0 15.60 11 0.00 authenticate --0.0 75.60 25 0.00 do scan --0.0 15.60 37 0.00 filbuf 
0.0 75.60 17 --0.00 findbuf 
0.0 15.60 17 0.00 --findiop 
0.0 75.60 45 0.00 __ fp _normalize 
0.0 75.60 45 0.00 --fp-righ tshift 

... : 0.0 75:60 15 0.00 __ fp _set_ exception 
0.0 15.60 15 0.00 mul 65536 
0.0 75.60 45 0.00 :Jack_ double 
0.0 15.60 48 0.00 __ rpc _ dtab lesize 

7' 0.0 15.60 23 0.00 __ set err_ reply 
0.0 75.60 11 0.00 svcauth null 
0.0 15.60 7 0.00 --wrtchk -
0.0 15.60 160 0.00 --xB.sbuf 
0.0 15.60 3 0.00 -:_-:_yp _ dobind 
0.0 15.60 1 0.00 _accept 
0.0 15.60 8 0.00 authnone create 
0.0 15.60 12 0.00 -bind 
0.0 15.60 9 0.00 :_ bindresvport 

101 

Jun 30 14:29 1989 Page 1 of raytrace.p 



rayuace.p raytrace.p 

0.0 15.60 3 0.00 calloc 
0.0 15.60 10 0.00 -callrpc · 
0.0 15.60 5 0.00 _ callrpctcp 
0.0 15.60 1 0.00 _ clnttcp _create 
0.0 15.60 7 0.00 _ clntudp _ b ufcreate 
0.0 15.60 1 0.00 connect 
0.0 15.60 15 0.00 _:decimal_ to_ binary_ fraction 
0.0 15.60 30 0.00. . _decimal_ to _-binary _integer 
0.0 15.60 55 0.00 decimal to double v 
0.0 15.60 45 0.00 : decima( to: unpacked 
0.0 15.60 11 0.00 dist rt 
0.0 15.60 2 0.00 endiiostent -0.0 15.60 1 0.00 exit ... 
0.0 15.60 17 0.00 -fclose -0.0 15.60 1 0.00 fcntl 
0.0 15.60 10 0.00 -fcross -0.0 15.60 12 0.00 mush 
0.0 15.60 20 0.00 -fgets 
0.0 15.60 55 0.00 file to decimal·. 
0.0 15.60 1 0.00 -:_ finitfp: 
0.0 75.60 17 0.00 _fopen 
0.0 75.60 10 0.00 _fprintf 
0.0 75.60 5 0.00 fread 
0.0 75.60 32 0.00 -free -0.0 75.60 20 0.00 fscanf -0.0 15.60 15 0.00 fstat 
0.0 75.60 3 0.00 -:_get_ myaddress 
0.0 75.60 1 0.00 _getdomainname 
0.0 15.60 1 0.00 getd tab lesize 
0.0 75.60 10 0.00 gethostname 
0.0 15.60 1 0.00 -:_getpagesize .. 
0.0 75.60 12 0.00 _getpid 
0.0 15.60 4 0.00 getsockname 
0.0 15.60 10 0.00 _gettimeofday 
0.0 15.60 2 0.00 inet addr 
0.0 15.60 30 0.00 -ioctC 
0.0 75.60 17 0.00 :isatty 
0.0 75.60 s 0.00 kill 
0.0 75.60 1 0.00 listen· 
0.0 75.60 1 0.00 main 
0.0 15.60 68 0.00 -malloc 
0.0 75.60 20 0.00 _memccpy 
0.0 15.60 10 0.00 memchr 
0.0 75.60 10 -0.00 normalize -0.0 75.60 1 0.00 on exit 
0.0 75.60 2 0.00 J!map _getport 
0.0 75.60 1 0.00 _pmap_set 
0.0 15.60 2 0.00 _pmap _unset 
0.0 15.60 5 0.00 rtrace_work -0.0 15.60 6 0.00 sbrk 
0.0 15.60 5 -0.00 setcommand -0;0 15.60 2 0.00 sethostent 
0.0 75.60 15 0.00 -setitimer 

1" 
0.0 15.60 5 0.00 setview 
0.0 15.60 5 0.00 :sigblock 
0.0 15.60 5 0.00 _sigpause 
0.0 15.60 5 0.00 _ sigsetmask 
0.0 75.60 10 0.00 _sigvec 
0.0 15.60 5 0.00 _sleep 
0.0 15.60 13 0.00 socket 
0.0 75.60 3 0.00 -:_sprintf 
0.0 15.60 5 0.00 sscanf -0.0 75.60 5 0.00 statistics 
0.0 75.60 35 0.00 -strcat 
0.0 75.60 11 0.00 _strcmp 

102 

Jun 30 14:29 1989 Page 2 of raytrace.p 



raytrace.p raytrace.p 

0.0 75.60 33 0.00 _strcpy 
0.0 75.60 26 0.00 strlen 
0.0 75.60 2 0.00 _stmcpy 
0.0 75.60 14 0.00 _strpbrk 
0.0 75.60 1 0.00 _ svc _register 
0.0 75.60 1 0.00 svc run 
0.0 75.60 11 0.00 _:svc _:send reply 
0.0 75.60 .1 0.00 _ svc _ unregister 

9 0.0 75.60 1 0.00 svcfd create - -0.0 75.60 1 0.00 _ svctcp _create 
0.0 75.60 190 0.00 _ungetc 
0.0 75.60 1 0.00 _ usingypmap 

•): 0.0 75.60 5 0.00 wait -0.0 75.60 5 0.00 wait4 
0.0 75.60 34 0.00 -xdr accepted reply - - -0.0 75.60 8 0.00 xdr bool 
0.0 75.60 67 0.00 -xdr -bytes 
0.0 75.60 8 0.00 xdr callhdr 
0.0 75.60 11 0.00 -xdr -callmsg 
0.0 75.60 9 0.00 xdr datum 
0.0 75.60 179 0.00 xdr enum 
0.0 75.60 205 0.00 -xdr-int 
0.0 75.60 454 0.00 -xdr-long 
0.0 75.60 39 0.00 _xdr_opaque 
0.0 75.60 58 0.00 _xdr_opaque_auth 
0.0 75.60 5 0.00 _xdr_pmap 
0.0 75.60 34 0.00 _xdr_replymsg 
0.0 75.60 5 0.00 _xdr_rtinput 
0.0 75.60 5 0.00 _ xdr _ rtoutput 
0.0 75.60 16 0.00 _xdr_string 
0.0 75.60 83 0.00 xdr u int 
0.0 75.60 230 0.00 _:xdr:uJong 
0.0 15.60 2 0.00 xdr u short 
0.0 15.60 34 0.00 .-xdr -union 
0.0 15.60 26 0.00 -xdr-void 
0.0 75.60 3 0.00 : xd(Jpdomain _wrap_ string 
0.0 75.60 3 0.00 _xdr _ypmap _wrap_ string 
0.0 15.60 3 0.00 _ xdr _ypreq_ key 
0.0 15.60 6 0.00 _ xdr _ypresp _val 
0.0 15.60 Zl 0.00 xdrmem create -0.0 15.60 10 0.00 xdrrec ear 
0.0 15.60 16 0.00 - xdrrec-skiprecord 
0.0 15.60 2 0.00 - -_xprt_register 
0.0 15.60 3 0.00 _yp _get_ default_ domain 
0.0 15.60 3 0.00 _yp_ match 
0.0 15.60 1 0.00 _ypprot_err 

103 

Jun 30 14:29 1989 Page 3 of raytrace.p 



collect.p 

/*profile for "collect_server.c" • I 

%time cumsecs #call ms/call name 
35.3 4.66 1239 3.76 read -Z7.2 8.25 385 9.33 write 
16.5 10.43 1129 1.93 select 
13.3 12.18 2985 0.59 :)copy 

1.3 12.35 svcfd create 
1.1 12.50 - xdrrec endofrecord ·~ 

0.9 12.62 iii. count 
0.7 12.71 40 2.25 __ dopmt 
0.5 12.78 22 3.18 _open 
0.4 12.83 xdrrec create (. 

0.3 12.87 348 0.11 1isbuf -
0.2 12;90 1279 0.02 -ntohl -0.2 12.93 _ xdr _ callmsg 
0.2 12.96 24 1.25 sbrk -0.2 12.99 3 10.00 send to 
0.2 13.01 28 0.71 :close 
0.2 13.03 40 0.50 fwrite -0.2 13.05 55 0.36 lseek -0.2 13.07 58 0.34 malloc -0.2 13.09 _ monstartup 
0.2 13.11 _ xdr _ replymsg 
0.1 13.12 156 0.06 filbuf 
0.1 13.13 23 0.43 -Is tat -0.1 13.14 _get_ myaddress 
0.1 13.15 1 10.00 _getsockname 
0.1 13.16 _pmap _unset 
0.1 13.17 3 3.33 recvfrom -0.1 13.18 7 1.43 socket -0.1 13.19 _ svc _getreq 
0.1 13.20 _ xdr _opaque_ auth 
0.0 13.20 22 0.00 __ findiop 
0.0 13.20 5 0.00 _accept 
0.0 13.20 1 0.00 bind 
0.0 13.20 22 0.00 -fclose 
0.0 13.20 22 -0.00 mush 
0.0 13.20 22 0.00 :ropen 
0.0 13.20 40 0.00 _fprintf 
0.0 13.20 20 0.00 fread 
0.0 13.20 29 -0.00 free -0.0 13.20 20 0.00 fseek 
0.0 13.20 1 0.00 _getpagesize 
0.0 13.20 3 0.00 _getpid 
0.0 13.20 3 0.00 _gettimeofday 
0.0 13.20 620 0.00 htonl 
0.0 13.20 3 0.00 htons 
0.0 13.20 10 0.00 -ioctl 
0.0 13.20 1 0.00 _isatty 
0.0 13.20 1 0.00 listen -0.0 13.20 1 0.00 main -0.0 13.20 22 0.00 morecore 
0.0 13.20 1 0.00 ntohs 

,. 
0.0 13.20 38 0.00 _:obtain'-report 
0.0 13.20 1 0.00 _profil · 
0.0 13.20 2 0.00 _strcpy .,. 
0.0 13.20 16 0.00 _ xd r _progress 
0.0 13.20 20 0.00 _ xdr _ rtoutpu t 

104 

Jun 30 14:21 1989 Page 1 of collect.p 



-t;--- ~.3. 

LA~NCEBERKELEYLABORATORY 

TECHNICAL INFORMATION DEPARTMENT 
1 CYCLOTRON ROAD 

BERKELEY, CALIFORNIA 94720 

,-~4.-~ ~ -c:~ 




