Lawrence Berkeley National Laboratory
Recent Work

Title
Distributed Processing in Roy Tracing

Permalink
https://escholarship.org/uc/item/5vz3w5t9

Author
Tran, M.T.

Publication Date
1989-08-01

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/5vz3w5t9
https://escholarship.org
http://www.cdlib.org/

eta :

Ue-40s

LBL-27517

Lawrence Berkeley Laboratory

UNIVERSITY OF CALIFORNIA

Information and Computing
Sciences Division

Distributed Processing in Ray Tracing

M.T. Tran
(M.S. Thesis)

August 1989 ( . ™~
For Reference

Not to be taken from this room

“fp1g

Prepared for the U.S. Department of Energy under Contract Number DE-AC03-76SF00098.

Adeaqtr] s
1 Ado

"

a
SV ACE I

L1



DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.



LBL-27517

DISTRIBUTED PROCESSING IN RAY TRACING

Master of Science
Thesis

Mydung Thi Tran
Advanced Development Projects
Information & Computing Sciences Division
Lawrence Berkeley Laboratory
1 Cyclotron Road
Berkeley, California 94720

August 1989

This work was supported by the Director, Office of Energy Research, of the U. S. Department of
Energy under Contract No. DE-AC03-765F00098.



DISTRIBUTED PROCESSING IN RAY TRACING. .

A thesis submitted to the faculty of
San Francisco State University
in partial fulfillment of the
requirements for the

degree

Master of Science
in
Computer Science

by
Mydung Thi Tran.
San Francisco, California

August, 1989



W

ACKNOWLEDGEMENTS

I wish to extend my: sincere gratitude to all the members of the Thesis
Advisory Committee: Dr. McDonald, Mr. Johnston, Dr. Kroll, énd Mr. Greg
Ward of Lawrevnce Berkeley Laboratory, whose time, patience, understanding, -
and invaluable criticisms and suggestion had contributed a great deal in the com-
pletion of this thesis, and the past and current members of the Information and
Computing Science Division, Advanced Development Group at Lawrence Berke-

ley Laboratory for their help.

This work was supported by the Director, Office of Energy Research, U.S.
Department of Energy, under Contract No. DE-AC03-763F00098 with the

Lawrence Berkeley Laboratory, University of California.



TABLE OF CONTENTS

LISt Of TaADIES cuventeenieircineniocurnsoansccosnascoscsonnscsnnsesssesoncssscnssossossss viii

List of FigUIES «..cucveuiiiiiiiiiiineiiinicrieotenccrcnrcrnnsecncscssonsssssesnssansens ix

List of AppPendiCes......ccuiuiiiaiiiiecrieeiiniiorencsreeccoccncstcreosasensascosssans X
Chapter |

1. Introduction ...cccceuuvienrrnnennnenn. eeerteeteeateasaaesrenseenaeensenntananns 1

Goal.; ............................................................................ 1

Environment ......cceoiieeiiiieiiniiieniiiuiiieieeeerraceececoeocsenonans 2

2. Ray Tracing ...ccceerereniiciicienienionarerenonsonceancronsosrosansocsassnnsnnes 4

What is Ray Tracing? .....c.ccccuvreennenes aerenos eereeereernetnnenncancnes 4

Advantages versus Disadvantages.,..........? ......................... ~ 8

Different Methods Developed to Improve Ray Tracing Speed 8

3. Distributed Processing.......ccccceuuerrunnenn. eermmeerescrteceeeenatsaeeaeonnn. . 19

Different Classes of Coupled Processors ............... 19

Remote Proceduré Cal ........... eeesssesocanrsssesssesssssrsssrnssesanns 20

Sun Microsystems’ Network File System essusnsasatenasensureninas 26

External Data Representation......ccceceeeeeenencirnnicrecccannenenco 26

4. Design and-Implementétion.....; ......... ............................. 30

| Major Issue ....cccccvenrierinniencianans etraesereiesaceresosensrasensanas 30

Major Components/Processes ........cceeeeunreeniceennienncennreanaes 30

Flow of Control .......ccccceaeneaenn.. ................................ eeees 35

RPC Programming ISsues......coveevumiimiiininiiniinniiiniiiinaninns 41

5. Result and Effectiveness Analysis.....c.ccccvvereermencceeiciciencennnnenacs 44



Performance of an Asynchronous Distributed Environment... 44

Factors that might effect Performance......cccccevuuecvneiiannneanee. 45
Models used in Estimating Results ettt tentennens 48
i Estimated Time versus Obtained CPU Results ......... ceensecanece 49
b ' Estimated Time versus Obtained Real-time Results................ 49
Justification for Differences in Comparison ..........ccceeunvnnene. 49
6. Conclusion ......ccccevverereennennnns feesresresresennissessranares SO ceveeiee 54
Meet design goals ....ccveuieniiniinnraniuniiiiiieniieiecnieereceesencnees 54
FUrther IMpPrOVEmMEntS . ccevureeeerresereraeeaseeaseaessanessesensesaanes 54
RELEIENCES  veeurrrerinreerissrseessessessrenins teeeerieerrerenrearee e e e erneas 57
FN o o-3 T § (0T U 61
<



LIST OF TABLES

Table

3.1: XDR tyPes ..ceutieuirniiemniimniomoionernsencceccsnsssosrossssossacssessrscssseses 5
5.1: Time results (seconds) ......ccoeuveuiencinncenioennee ereecsenensiacenanetans 46
5.2: Time results (speed-up ratios) .......cccceeeuenes S crevsens 46
5.3: CPU profile (S€CORdS)....ccerrerrerrrirrirecreesnnennesvensenannas eeeeons 50
5.4: CPU profile (percentage)....;,..,....................;............; ............. 50

b

.



*ul
b

LIST OF FIGURES

Figure

2.1: Ray tracing......ccccueeeneee rteeeeeeetseneens ................. 5
2.2: Paraliel Processing of Object Space - System Architecture......... 11
2.3: Program and Data Relationship in Radiance o.e..veeeeneeeneceeenene. 15
2:4: Space Division for Octree Structure........cccovuueveninnnnnnnne. e 17
3.1: Sun’s RPC client-server paradigm ettt e et s s eeeeene e 22
4.1: Distributed AIChIteCture .....ccceevvivuiiuniieniiniiienieicrenscenenens 36
4.1.1: Distribution cHent.....cccccceiiiriuiiiiiiiiiiruieinicinniencienen. R | 37
4.1.2: Ray tracing SEIVEr ....cececereeeeerrerensusnnseseerereeesemeassonsssssosaiones 38
4.1.3: COlIECHION SEIVET .....e.eceeeeerencressssseesscssnsssssssssssans .......... -39
4.2: Flow Of CONIOL...cceecuueernennnnnncnensensnsnncnnnsnnnssossssnssssssnsnmenaennes 40
5.1: Ray-traced Gold Sphere ............... ettt e anae 53



LIST OF APPENDICES

Appendices
A. Program Listings
Notice of CopYIight ...c.cvuieniiiiiiiierciectiiieniriciniiesiiniesnnnanes

(761 o] 0 + LN

distribute.h.' ........... :.,............................«'...'..... ........... ececscon .

distribute_client.c ......... reeerseriereiarreatsraaraeereeserassssannone
FAYLIACING SEIVEL.C.cvuurrennniraneieeruiemeiertanessremnnseroonsnees eeenne
collect_server.c ....................................

B. Program Profiles
- AIStIIDULE.Peceennenirecerrceconscsnrereracsccnsecsesssonasscnnosonasesnnossns

TAYLTaCe.Poceeeerocncenns eerereesraneens seesscsncesnsossssarsansstsosarnsosasass

1701 111 38 » N

64

66

77

91

9.

101

104

o



fo

Chépter 1

Introduction |

1.1. Goal

As the demand for computing power keeps increasing scientific and indus-
trial applications push computer and programming technology to its limit. Sem-
iconductor technology has also been advancing dramatically. While the cost of
hardware has been decreasing large and complex multiprogrammed uniprocessors
are being manufactured. Multi-processor systems have become easier to purch}ase
and in fact are much cheaper to own. Local Area Computer Network technology
has also developed very quickly, a computing environment consisting of worksta-
tions connected by a high-speed network is becoming more and more popular.
This concept of distributed processing has grown widespread. A computing job.
which has certain parallel characteristics is an excellent application for distributed
processing. The pfocess of image generation using “ray tracing” fits this category
of computing applications. The purpose of this thesis is to investigate the issues
of distributed processsing in ray tracing. The work required to ray trace a still
image is distributed ainong several loosely coupled processors, connected by a
local area network, usiﬁg the DARPA Internet Protocols. Improvement in pro-
cess time, the interval from the moment that the first ray is traced to the moment
the last ray result is collected, over serial processing is demonstrated for the pro-

posed method.



1.2. Environment
1.2.1. Operating System and Programming Language

This thesis work was carried out at Lawrence Berkeley Laboratory, under
the supervision of Mr. William E. Johnston. Available as tools for my work are:
¢ Radiance, a tool developed by Greg Ward, at Lawrence Berkeley
Laboratory; is a ray tracing method for calculating'lumih.ance, and produc- -
ing realistic images of a complex lighting environment. It was developed
as a research tool for predicting thé distribution of visible radiation in
illumminated spaces. Light rays are traced backward, from the image plane
to the source(s) [WardGr86]. Radiance is written in the C programming

language, in the 4.3BSD Unix environment.

e In addition, Sun Microsystems’ Remote Procedure Call (RPC) mechan-
ism is also available. It provides communication between heterogeneous
environments (i.e. machine architecture, programming languages and

operating systems) distributed across a computer network.
1.2.2. Hardware available

VAX 11-780 ’s and Sun Workstations (ranées from SUN 3-50 to 3-110) pro-
vide the computing_resources; They are-connected by a local area network and
run versions of the Unix (4.3BSD) operating system. In addition, the Sun works-
tations are connected to file servers using Sun’s NFS (Network File System) Pro-
tocol. NFS performs operations such as storing and retrieving inforrﬁation from a

file upon reveiving requests from the workstations.



I choose to run the control process, the distribution client, which acts as a
supervisor in distributing the work on the VAX 11-780. Sun workstations are my
ray tracing servers, the workers who carry out the actual task. The VAX 11-780 is

the host where all results generated by the ray tracing servers are sent.



Chapter 2

Ray Tracing

2.1. What is Ray Tracing?
Ray tracing is one of the most-exciting area in computer graphics. To under-
stand the basic idea of the technique of Ray tracing, one must think about ‘how

our eyes normally work. Light rays from a light source illuminate an object and

are reflected or transmitted through surfaces in many directions. Some of these

light rays eventually reach-our eyes, impact on the retina and are relayed ‘to' our
brain. From each lighf, source.there are an infinite number of rays, and these rays
mdst often do not reach tﬁe viewer. As th_e result, fhe process of tracing rays
from the sources is computational!y inefficient. In '1968, Appel originated the
idea of tr;acing rays from the opposite direction, i.e. from the viewpoint as we
look out to the scene[Appel68]. The .raster screen of the computer monitor is

treated as an imaginary plane positioned in front of the scene [Figure 2.1].

;/



light Source



Appel’s ideas brought a new horizon to image synthesis. Since then many
ray-tracing algorithms have been developed. Whitted implemented an algorithm
in conjunction with global illumination models, and true reﬂectiohv, refraction,
transparency and shadowing are accounted for in this model. Anti-aliasing is also
included [Whitted80]. |

In ray-tracing algorithms luminance is computed by following light backwards
from the point of measurement to the séurce(s). Each “light fay” can be thought
of as the luminance value that results either directly from an emitting surface or
indirectly from a reflecting surface. The basic steps of ray-tracing method are: |

1. Determine surfaces that rays intersect.

2. Calculate luminance in the ray’s direction, tracing newly spawned rays,
if any. | |

3. Return the computed luminance value. .

In step 1, for a scene of multi-surfaces, an individual intersectidn test must
be performed for each surface in the ray’s path, until the closest point of intersec-
tion, with respect to the viewer, is encountered. Radiance, the ray- tracing tool
used, applies the octree sorting method developed by Glassner, as the quick way
of identifying those surfaces that are in the path of a ray. The scene space is
recursively divided into cubes, each tree cube, branches into eight sub-cubes. A
leaf cube, one that does not subdivide, contains a list of the surfaces tﬁat
penetrate this leaf cube. To construct the octree for a scene start with an empty
cube which completely contains the scene, add to it surfaces, one by one, using

the following algorithm:



AddSurface(Cube, Surface):
if Intersect(Cube, Surface) then
if not Leaf(Cube) then
for each SubCube in Cube :
AddSurface(SubCube, Surface)
else
if (SetSize(Cube.Set) < N) OR (CannotDivide(Cube) then
AddElement(Cube.Set, Surface) '
else
SubDivide(Cube)
for each SubCube in Cube: -
for each Element in Cube.Set:
AddSurface(SubCube, Element)
AddSurface(SubCube, Surface)

where Intersect() is the test for whether a cube contains a surface. N is the

user-defined maximum set size for a leaf. CannotDivide() prevents cubes from

being made smaller than a certain size.

For step 2, as mentioned earlier, there are two components: direct and

indirect illumination.

1. The contribution of direct illumination is computed using locations and
sizes of the light sources in the scene to determine whether the surface is
in shadow. If the surface is completely in shadow, the contribution is
zero. If the surface is illuminated by a source, the size, distance, bright-
- ness, directioh of the source, and the surface reflectance distribution are
used in calculating the contribution. If the surface is partially illuminated,
the luminance is fractional. A Monte Carlo technique is used to deter-
mine the contribution due to penumbra phenomenon (the “soft shadow-

ing” due to a finite size light source).

2. Illumination arriving at a surface that did not travel directly from any

light source (i.e. indirect illumination) is computed by sampling re-radiated



luminance values over a hemisphere defined by the surface element posi-
tion and normal direction. The bidirection reflectance distribution func-

tion could be divided into two components: diffuse and specular [Ward86].
2.2. Advantages versus Disadvantages

Ray tracing is one of the techniques'for hidden surface removal. David
Rogers has compared it with others such as: list priority algo'ritﬁms, Z-buffer. algo-
rithm, spanning scanline algorithms, etc...[Rogers85].

Ray tracing is used as a method to do shadowing for surfaces that transmit

as well as reflect light [Foley82].

“Ray tracing is one of the most elegant techgiques in computer graphics.
Many phenomena that .are difficult or impossible with ot'he.r téchniques are sim-
ple with ray tracing, including shadéws, - reflections, and refracted light.”
[Cook84]. Cook also developed the technique of Distributed Ray tracing, which
provides easy solutions to some previously unsolved or partially solved problems,
such as motion blur, depth of field, penumbra, translucency and fuzzy reflections.

Ray tracing has the capability of producing very realistic images. It uses a
global lighting model to calculate reflection, ref-raction,- shadow. In addition, it
can handle diffeient geometric primitives. Although the algorithm is very simple,

it has a major drawback: it is time-consuming.

2.3. Different Methods Developed to Improve Ray Tracing Speed

Since its introduction in the field of Computer Graphics, many improvement

methods have been developed for ray tracing.



2.3.1. Ray Casting

Roth describes a method for solid modeling using ray casting. Blocks. and
cylinders are combined to model solid objects. Virtual light rays are cast as

probes to visualize and analyze the compbsite solids modeled [Roth82].
2.3.2. Space Subdivision

A method which reduces the number of time-consuming object-ray intersec-
tion calculations that have to be made was developed by Glassner [Glassner84].
The space of a three-dimensional scene is divided into small cubes. A list of all
the objects residing in each of these cubes is maintained. For each ray traced,
determine the cube from which the ray originated. Follow the ray and compare
only. against the objects it hits in that cube. If the ray passes through one or more
objects, the return value for the ray is the color of the first object the ray hits. If
the ray does not hit any object in this cube, project the ray into the next cube and

repeat the process.

The algorithm to get to the next cube is based on the idea of finding a point
that is guaranteed to be in the next cube. Statistics for this algorithm gathered
with code written in C, running under Unix, on' VAX .1-1-780 indicates speed-up
ratios ranging frorﬁ 4 up to 27 times, depending upon the image complexity'

[Glassner84].

The octree technique which describes the breaking up of space into cubes
was developed by Jackins and Tanimoto and Meagher [Meagher82]. Space is
dynamically divided into cubes of decreasing volume until each cube contains less

than a minimum number of objects.



10

2.3.3. The Light Buffer: A Shadow-Testing Accelerator

Light buffers, cubes surrounding light sources, are generated to partition the
environment. This partitioning is used in the process of shadow testing to quickly
determine a small subset of objects for intersection testing. Depending upon the
resolution of the light buffer and the scene com;'alexit‘y, this approach, proposed

by Haines and Greenberg, has a speed-up ratio of 4 to 30 [Haines86].
2.3.4. An Adaptive Subdivision Algorithm & Parallel Architecture

Dippe and Swensen subdivide the three dimensional space of a scene into
subregions, more or les‘s uniformly, and load them with object descriptions. Rays
are traced in these subregions and tested for intersection only with those objects
within a subregion. Those rays which do not hit objectsv are traced into neighbor-
ing subregions. To maint;ain balance in the work load, the space is redistributed
among subregions as computational loads are determined. The algorithm is imple-
mented using independent computers, each responsible for one or more. subre-

gions, and each communication is with a few neighbors using messages [Dippe84].
2.3.5. Parallel Processing of an Object Space

A hardware approach is presented by Kobaya’shi,-Nakamura and Shigei.

There are five components to the system architecture [Figure 2.2].



Intersection
Processors

Shading
Processors

Figure 2.2 : Parallel processing of objeC‘t space

Host Computer

'

Interconnection Network

pood

]

Distribution Network

Frame Buffer

l

Display

- System architecture

s

'

11



12

In this method, the host computer subdivides the object space and initial
rays and sends them to IP (Intersection i’rocessors). If the rays intersect any
objects within the subspace, the local intensity is calculated and passed to the SP
(Shading Processors). If the rays do not intersect an object, they are passed to a
neighbor IP. ‘SPs calculate the global intensity of pixels. As the number of
objects of a scene increases; the total processing time-of intersections decreases

[Kobayashi87].
2.3.6. Distributed Processing - The Chosen Method

Parallel processing is the key issue of this thesis. The proposed method is
baséd on- the 6bservétion tha‘t rays can be traced independently. Radiance pro-
vides a routine named “rtrace”, which takes as input a scene descriptiqn, an
octree structure generated from the scene description, and a file which contains
the rays’ origin and direction. From these, “rtrace” traces the rays providing a

color for each pixel of the raster image..

The scene description file is a three-dimensional environment in Cartesian
world coordinates. The surfaces and materials that make up the specific environ-
ment of the image to be generated are listed in this.scen’e' description file. This is
an Ascii file with the following format:

xmin ymin zmin size
#éomment
modifier type identifier
n S1S8283... Sn

0



13

m R1R2R3...Rm

lcommand

The bounding cube containing all surfaces is defmed by the four numbers on
the ﬁfst line. The second line, which start with a pound sign (#), is an example
of a comment. Groups of four lines follow. Each of these- groups describes a
scene description primitive. A scene description primitive can be either a surface
or a modifier, and is described by the following:

— modifier: an identifier, a previously defined primitive, or void
— type: the following are supported:
* surfaces: source, sphere, bubble, polygon, cone, cup,
cylinder, tube and ring
* textures: Texfunc, a perturbation of the surface normal,
which is specified by a function |
* materia}s: light., illum (secondary light source), glow,
plastic, metal, dielectric, glass, clip (a material which
acts to cloak other surfaces from view)
* patterns: colorfunc, brightfunc (monochromatic),
colordata(data map interpolation),
brightdata(monochromatic data map interpolation), text

— identifier: any string of non-blank characters.

The arguments of the primitive can be strings or real numbers. These argu-
ments make up the second, third, and fourth lines of the primitive description.
The command line, which starts with the exclamation mark, is executed by the

shell.



14

The following is the scene description file of the ithage of a gold sphere

used:

#0 0 0 10

#

# A room, a ball, and a lightbulb
# _

void plastic light_blue -
00
5 6 6 7 0 1

lgenbox light_blue room 10 5 8 -i

void metal gold
00 ,
5 45 25 02 9 O

gold sphere ball
00
4 2 1 2 1

void light incandescent
00 .
3 1000 1000 1000

incandescent sphere lightbulb
00 :
4 5 45 4 4



15

Generator

Oconv Scene Description Xform

Octee
Aucxiliary Files > rtrace Distributed

Convert to
Graphic device
driver format

!

Device Driver

Graphic Output

Figure 2.3 : Programs and Data Relationship in Radiance:




16

Figure 2.3 describes the relationship between data files and programs. The

oval boxes represent the data files while programs are illustrated using rectangles.

“Generators” are programs that produce a scene description as output. For
examples: genbox prodﬁcc a parallelopiped given width, height and depth, gensky

generates a Radiance description of the sky, etc...
“Oconv” takes a scene description and creates an octree structure. -

“Xform” transforms. a Radiance scene description (i.e. translates, rotates,

mirrors the scene about the xy, xz, yz plane, etc..).

The octreé structure is used for geometric modeling. Arbitrary 3-D objects
are represented to any specified reso'lution in a hierarchical 8-ary tree stméture or
“octree”. Solid objects may be concave, convex, or consist of disjoint parts.
Boolean operations such as union, intersection and difference are used to com--
bine primitive solids, such as blocks and cylinders, into solid modeling objects.
Octree encoding technique makes real time analysis and maniphlatién of highly
complex objects possible, due to the fact that it does not require floating-point
operations, ';nteger ﬁmltiplications, or integer divisiops [Meagher82]. While an
octree is the input to the ray tracing program, it also directs the use of a scene
description [Ward86].vIn an octree structure, cubic space is divided into 2x2x2 = 8
basic cells by halving each sides. Each of the cell is called an octant (also called
voxel). For the first division, a cube is partitioned into 8 octants;. Each of these
first generation octants could be further divided into smaller octants, or suboc-

tants [Figure 2.4].



a4

AN

AN

Figure 2.4 : Space Division for an Octree structure

17



18

The dividing process continues until a desired resolution is reached. This
resolution increases with the number of the objects in a scene. Space is typically
divided 3-7 times for images generated using Radiance. In addition, there is é
trade-off between the resolution and the time taken to determine the intersection
points (where light rays hit objects). The higher the resolution, the less time
taken to determine -interséétioh’ points,. i.e. smaller space volume results in less

effort for finding intersection points.

Ray tracing is extremely time-consuming. Most of the computing time is

spent in calculating the intersections between objects and rays. The number of

these intersections is enormous. The number of rays for a given image is propor- -

tional to the number of pixels and the number of light sources. Approximately’

one million rays are traced for the test image, the image of the gold sphere, using
one light source. Efficiency in data structure management allows fast access
to geometrical information. The Octree structure is utilized to improve the data

access time.



Chapter 3

Distributed Processing

In the past, a collection of small computers which had the equivalent capa-
bility of a large computer has cost more than the large computer. That ha$
changed in the past few years, and distributed systems have become an increas-
ingly importaht trend m the computer world. A distributed system is a collection
of computers (linked by shared memory, communication lines, etc...) or procéss-
ing elements working clbsely together to solve a single problem or problems. Dis-

: tn'Buted processing is a.technique that implements a set of processing tasks across
several computers. Each computer performs some pa}t of the total processing
required.

In this chapter a brief explanation of different classes of processor coupling
will be presented followed by the remote procedure call facility with its paradigm,

layers, binding protocol, and data representation in a heterogeneous environment.
3.1. Different Classes of Coupled Processors

Systems can be categorized by the degree of coupling between processors. '

In general, there are three classes:
3.1.1. Tightly Coupled

In this class, the processors are physically close. Shared memory is used for

data transfer and for program storage. Tight coupling is required when there is a

19



20

high degree of interprocess, or even more commonly intraprocess communica-

tion. These systems are classified as multiprocessors.
3.1.2. Moderately Coupled

These systems are characterized by high levels of intercomputer activity using
either high speed serial lincs‘,‘.,SO Kbytes/sec or. greater, parallel data busses or

shared disks.
3.1.3. Loosely Coupled

Processors of these systems can be either co-located or separated by'large
distances. Serial lines and relatively low transmission speeds are among the
characteristics of these systems. The amount of interprocess activity is relatively
low, and the degree ‘of error ch;cking is high.

Available fo; my work, as descn’bed in the previous section, is an ehviron-
ment consisting of loosely coupled processors.

3.2. Remote Procedure Call

Communication among processes plays an important role in this project.
Shared primary memory is not common in distributed systéms. Communication
using semaphores and monitors is not applicable. Message-passing is the method,
and the preferred model in this area is the client-server model using Remote Pro-
cedure Call (RPC) for interprocess communication.

3.2.1. The RPC Paradigm : the Client-Server Model

For the local procedure model, the caller passes arguments to a procedure,

typically by pushing them onto to an in-memory stack. The control is then



21

transfered to the procedure, and eventually the caller will gain back control so
that it can continue. RPC is similar to the local procedure model, except there are
two 'processes - the caller, or client, and the server processes - in the thread of

control.

In Sun’s RPC the call message has three unsigned fields: a remote program
number, a remote program version number, and a remote procedure number.
These three fields uniquely identify the procedure to be called. When a program
first becomes available on a machine, it registers itself with the port mapper on
the same machine. The port mapper program maps RPC program and version
numbers to UDP/IP or TCP/IP port numbers. This port mapper program makes |
dynamic binding of remote progréms possible. When a program becomes una-
vailable, it should unregister itself with the port mapper program on the same -
machine [SunPRC86]. This is desirable since the number of potential remote pro-
grams is very large and the range of reserved port numbers is very small. By run-
ning only the port mapper on a reserved port, the port numbers of other remote

programs can be ascertained by querying the port mapper.

The caller process initiates the remote procedure call by sending a call mes-
sage, which contains the procedure’s parameters, to the server process, and waits
for a reply message. When the caller process receives the reply, the results of the

procedure are extracted and the control returns to the caller [Figure 3.1).



22

Machine 2

~ Machine 1
, |
client A service |
program callrpc() . daemon }
function |
l . -
I execute
| call
request .
I “q \ service
| I
! | ' service
| | return executes
| ] answer ’
l .
'_ request
i retum completed
I reply |
program

continues

*———

Figure 3.1 : Sun's RPC client-server paradigm



23

The caller process resides on fhe client machine while the library of called -
routines resides on the server machine. The server process, when started, regis-
ters all RPC calls it will handle, and then goes into a wait state waiting for service
requests, i.e. remains dormant until the arrival of'fhe call messages (request).
When the call message arrives, the procedure’s ba:ametcrs are .extracted, and the
server calls a dispatch routine to perform the requested service. When the called
procedure is completed a reply message is sent back to the caller. In Sun’s RPC
model, the conventional procedure call semantic is exactly emulated only one of
the two processes is active at any given time, and multi-threading of the caller or
server is not supported. Riche semantics are supported by other RPC mechan-
isms.

3.2.2. Different Layers of RPC

Sun RPC interface is divided into three layers, according to the degree of

transparency [SuaRPC86]:
3.2.2.1. Highest Layer

Total transparency is provided to the programmer in this layer. The call,
issued by the programmer, looks like a regular library call with the name of the
remote server macfxinc name as argument. This layer consists of system services
such as: requesting numbers of users on remote machine (rnusers), requesting
information about users (rusers), determining if remote machine has disk
(havedisk), getting performance data from a remote kernel (rstat), writing to a
specified remote machines (rwall), geting name of name server master (getmaster),

geting RPC port number (getrpcport), updating user password in name server



24

database (yppasswd), etc.
3.2.2.2. Intermediate Layer

There are two routines in this layer: callrpc, which resides in the caller pro-

cess (the client machine), and registerrpc which resides in the server process.

® callrpc requires  eight parameters:: the name of the remote
machine, the program number, the version number, the‘procedure
number, the type and address of the input argument, the type and

the address of the resuit.

® registerrpc establishes what procedure corresponds to each RPC
procedure number. It is called with six arguments: the program
number, the version number, the procedure number, the name of
the dispatch routine, the type of the input to, and output from the

procedure.
If successful, callrpc returns with a zero, non-zero otherwise.
3.2.2.3. Lowest Layer

The programmer must know about sockets, the basic building block for
communication, in this layer. Transport handles must be established on both
- sides, in the client and the server, and if bound to a port, this port number must
match on both sides . Transport protocol must be specified according to the

requirements of the application.

All three layers of RPC are used for this project. As described in the later
chapter, workstation status check will utilize a routine of the first layer of RPC.

Register and unregister ray-tracing service, as well as result sending service, will



25

make use of the second and third layers."
3.2.3. Different Message Passing Protocols

Processes communicate with each others through communication channels.
One type of InterProcess Communication offerred by 4.3BSD UNIX is sockets.
Sockets are end-points of communication. . Normally, sockets communicate with
sockets of common properties. Depending upon properties v;'hich are visible to

the user, sockets are typed as follows [SunIPC86]:

+ Stream Socket : bidirectional, reliable, sequenced and unduplicated flow
of data without record boundaries are characteristic of this type of socket.
When the supporting network is the Internet, the TCP/IP protocol sup-

ports stream sockets.

* Datagram Socket : bidirectional ﬂow of data is supported. However,
.duplication of messages is possible, the order in which the messages are
received could be different from the order in which they are sentv,“and
messages may be lost. In the Internet environment the UDP/IP protocol
supports Datagrarﬁs.

*+ Raw Socket : access to the underlying communication protocol that sup-
ports socket abstraction are provided. Sockets of this type are used in

developing new communication protocol.

* Sequenced Packet Socket : in addition to the properties posessed by
Stream sockets, record boundaries are also preserved for this type of sock-

ets.



26

* Reliable Delivered Message Socket : this is Datagram socket with reliable
delivery.

The Sun’s RPC Protocol is independent of transport protocols. It does not
care how a message is passed among processes. It only deals with the
specification and interpretation of messages.. For an application which does not
care ‘about reliability, message passing using UDP/IP (User Datagram Protocol)
can be specified. In constrast, RPC using TCP/IP (Transmission Control Proto-
col) must ber used to guarantee reliability. UDP is ithplémented using Datagram
sockets while TCP is built on Stream sockets. Currently, Sun’s RPC only sﬁp-

ports UDP and TCP transpofts [SunRPC86).
3.3. Sun Microsystems’.Network File System

4.3BSD Unix is not a distributed operating system. Nonetheless, one of the
-goals of my thesis is to be able to work in a heterogeneous computing environ-
ment. Information sharing is neccessary. Fortunately, Sun Microsystems’ Net-
work File System is .available. This allows file access transparency. Machine,
operating system, network architecture, and transport protocol independence are

provided by this NFS protocol [SunNFS86].

“Through the use of remote procedure call primitives built on top of eXternal

Data Representation, this independency is achieved..
3.4. EXternal Data Representation
3.4.1. Justification

Data format incompatability often occurs in a heterogeneous environment.

Whenever data is passed back and forth among two or more machines of



27

different architecture, there is a need for translating data formats. Sun’s
approach to this is with an intermediate, in this case a “standard”, network for-

mat. Data coming out from machine A, before being sent to machine B, is con-

- verted from machine A’s format to the network standard format. When received

at machine B, conversion is made from the network standard format to machine
B’s format. Sun provides an eXternal Data Representation (XDR) Protocol for
data-portability purpose.

3.4.2. Sun XDR

The dual purpose of XDR is .to provide an architecture independent
representation of data types, and to provide an encoding for data structures that
- are passed.as arguments. XDR uses a compleméntary set of procedures to
encode an arbitrary C data structure to a byte stream and a matching procedure

to decode the byte stream back to a data structure.

Among the arguments of a call in the second or third layer of Sun RPC are
the XDR procedures and addresses of the input to, and outplit from, the service
routine as described in an earlier section. Using RPC, tixe ‘types of input and out-
put arguments are specified in terms of filters sﬁpplied:by the Sun XDR library.
Users can also construct special-purpose filters to fit their own needs, using the

available primitives. See table 3.1 for examples of available primitives.



28

Table 3.1 - XDR Types

XDR Type C Primitive Data type
xdr_int integer 32-bit integer
xdr_long integer 64-bit integer
xdr_short integer 16-bit integer
xdr_u_int unsigned 32-bit unsigned
xdr_u_long unsigned 64-bit unsigned
xdr_u_short unsigned 16-bit unsigned
xdr_float float 32-bit real
xdr_double double 64-bit real .
xdr_enum enum_t enumerated integers
xdr_bool bool_t boolean integer(0/1)
xdr_string string string
xdr_bytes string . 8bit char
xdr_array array arrays
xdr_opaque opaque uninterpreted data
xdr_union union union
xdr_reference pointer pointer chasing structures
xdr_void - ~_no data

The XDR stan;iard is independent of operating systems and rhardwz.xlre archi-
tecture. This eXtemél Data Representation standard assumes that bytes, quanti-
ties of eight bits of data, are portable, i.e. byte’s meanings across hardware boun-
daries are preserved. In transmitting data accesSed by different types of machines

XDR must be used.

The basic block size is four bytes. They are numbered 0 through n-1, where
(n mod 4) = 0. These bytes are read from or written -to a stream in increasing
order, i.e. starting with 0 and going up to n-1. An XDR signed integer is
represented in two’s complement notation. Its least significant bbyte is numbered
3 while the most significant is 0. Floating point numbers, are encoded using the

IEEE standard:



29

— bit 0, the most significant, is the sign bit,
— bits 1-8 (float), or 1-11 (double), are the base 2 exponent,
- — bits 9-31 (float), or 12-63 (double), are the base 2 fractional part

of the mantissa.

On the client side, when a service is requested, the XDR input procedure -
will serialize the arguments, and on the server side deserializing will take place in
the XDR input procedure,-upoﬁ receiving the service request. Upon completing
the request and returning to the client/caller, the XDR output procedure will seﬂ-
alize the return data, and deserializing will be handled by thé XDR output pro-

cedure on the client side, upon getting the reply [SunXDR86].



Chapter 4

Design and Implementation

4.1. Major Issue

Parallel processing is the key issue for my proposed method. Providing con-

currency within the semantics of synchronous procedure calls is the goal.

4.2. Major Components/Processes

To accomplish the work of ray tracing an imége » the following tasks are
iden‘tiﬁed: |
— search for an available processor,
- distﬁbute the units of work,.
— trace rays, (the actual work),
— collect results, (the output from ray tracing),

— check progress, and recover work lost if necessary.

The goal here is to be able to execute the ray tracing routine concurrently on
several processors. Using remote procedure calls the client will issue requests to
the servers to trace rays. In order to establish concurreﬁcy the client, after issu-
ing a request, should not have to wait for the result. Instead, the initiating RPC
should return with the server sending a void message as soon as the request is
received, so that the client can regain control and continue distﬁbuting pieces of
the job. The results generated by the ray tracing servers will be sent to one com-

mon destination. This destination must have the information on how to

30



3

reconstruct the entire image, since the result could be collected in a random
order. Three major components/processes will be described in this chapter:

— the distribution client, |

— the ray tracing server,

— the collection server.
4.2.1. The distribution client
This is the main control process. Its functions are:
4.2.1.1. Checking Status of Workstation

The ray tracing servers and the collection server were started before the kis-
tribution client. Before work is given out to a workstation its availability must be
checked. A remote procediire call of the first layer type Wil,l b;z issued to the next
workstatioh in a list of available machines to get back the idle time. These
machines are connected to the network. A threshold of idle time value is used to
determine availability. The percent of idle time is calculated based on the resuit
returned by this RPC call. The returned value will be compared to the threshold

value..
4.2.1.2. Distributing Units of Work

Once the status of the workstation is determined as being available, a unit of
work will be distributed to this processor. Otherwise, the status 6f the next pro-
cessor in the list will be checked. A unit of work is a block of scanlines. Work
is given out in order, starting with block 0, and ending with the last block. The

blocksize is a compilation constant in the distribution client.



32

4.2.1.3. Checking Progress and Recovering Errors

After all work has been distributed, the distribution client will start checking
progress by issuing another RPC to the process that collects the ray tracing
results. The collection server will be discussed as the third process, in a later sec-
tion. The collection server responds to this progress query by sending a list of
the result units that have been collected. If this list indicates that there are still
some result units that have not arrived, then the time stamped by the distributioﬁ
client when these units were distributed will be checked against the current timé.
An estimate for completing a unit of work will be used to determine that fhe~
result may have been lost, or a workstation became unavailable, etc... If the
estimated time for completing units of work is much less than the elapsed time

since the work was distributed, then thesé work units will be redistributed.
4.2.14. Initiatiné Image Reconstruction Process

Upon receiving the indication that all scanline results have been collected
from the collection server, the distribution client will issue a call to the Collect

server to construct the completed image.
4.2.1.5. Unregistering Services

When the collection server finishes the image reconstruction, it will notifyr
the distribution client. Upon getting this notification, the- distribution client will
start the cleaning up process before exiting, by issuing calls to unregister services
on the ray tracing servers and the collection server, and terminating processes on:

the servers.



33

4.2.2. The ray tracing server

The ray tracing server carries out the actual work of tracing rays. Multiple
processors are used as ray tracing servers for this project. All of these servers

have the same set of functions:
4.2.2.1. Generating Input for Ray Trace Routines

From the user-defined viewing parameters, a file consisting of viewpoint and
ray directions are generated. Among viewing parameters are view point, view up,

view direction vectors, view angles, view plane, etc....
4.2.2.2. Tracing Rays

The ray trace routines are executed for the block of scanlines requested.

Results are written into a temporary file.
4.2.2.3. Sending Results to the collection server

As soon as the ray tracing server finishes tracing the block of scanlines, it
will initiate an RPC call to the collection server (discussed in the next section) to

send the result to the common destination.
4.2.3. The collection server

In the RPC paradigm, while the thread of control is intertwined between two
processes, only one process can be active ét a time. If the Distribute server is to
wait for the ray tracing servers in order to collect the result, it could not do any
other job, such as continuing the work distribution. Hence, the ray trace server
upon receiving the processing request, has to reply immediately, i.e. send a void

message to the distribution client, before starting to perform the actual requested



work.

The result, generated by the ray tracing server, is stored on the server side as
separate files for each unit of work done. A record of the completed scanlines is
kept in order to allow the user to reconstruct the final image. This could be
cumbersome for the user. In addition to the two processes just described, a third
one is introduced, the collection .server, as an answer- to this issue. Among its

functions are:
4.2.3.1. Collecting Results

The ray tracing servers, when finished with the work requested, will send the
results to this collection server. These; results will be written into a file in the
order they come in. (The r;asults of blocks of scmﬁnes do not‘necessarily arrive.
at the colléction server in the same order they are given out by the distribution

client.)
4.2.3.2. Updating Progress Report

A list of the blocks of scanlines collected will be kept as the progress report.
When a request arrives from the distribution client querying the progress, this list

is sent as the reply.
4.2.3.3. Reconstructing Image

A data structure which contains information such as the starting and ending
position in the result file for each block of scanlines is maintain‘ed by this server
for image reconstruction. Run-length encoding is used by the ray trace routine,
therefore, for blocks of the same number of scanlines, the number of bytes

needed to store the results could be different in length. Upon receiving the



35

progress report from this collection server, with a success result indicating that all
results have been collected, the distribution client will issue-an RPC call to this

collect server to reconstruct the final image.

4.3. Flow of Control

The following two figures serve as a more detailed description of the distri-
buted architecture. The communication among the three combonents is summar-
ized in Figure 4.1. Figure 4.2 illustrates the control thread of the entire task in
which concurrency is provided within a synchronous procedure call paradigm and

how error recovery is accomplished.



36

Distribution client Ray tracing server

Collection server

,
'@lPTogr&E Collect ®] Reconstruct- @] Kill
| | =sDe
Can D
e ) ©

Figure 4.1 : Distributed Architecture



Distribution client

37

wait

: @4- reconstruction

®—> continue

recover
work lost

clean up

©~ uawegis

ter services "@
[

@+

es search for

Ay__‘ - —»-| available CPU -’®

4
continue .

O] et Y

progress report request server

: to trace rays

C H
@_’ continue continue -—@

t -
request image

Figure 4.1.1



Ray tracing server

_ received
request

Y

@l Status

®

Ray trace

©|kin

send void
result bac_:k

unregister

service

find percent | send void
idlefme result back _
determine generate input
availability ‘ ' '
trace rays
send status _
result back ) ‘
: sendresults | o (F)
to storage @
continue | @

Figure 4.1.2




Collection server

39

received request

Y

[send progress
result back

to file

Y

() |Progress @l Collect  (®)| Reconstruct @l Kill

write results |

send void
result back > @ ;

\

update progress

report

reconstruct

unregister
service

y

update
reconstruction
information

image

send void
result back

send void
result back

Figure 4.1.3



Unregister RPC

Flow of control

Figure 4.2

o g g o 5 :
& & & & o m 2 B
: I3 3 EEEN
‘8 8 38 S 3 S 8§ 8§ & «m
.mu,.v e e L L L PR b L LTt g = = = - N - . - = = - o o amy ~ PERY - PR o N - = PR - o - - - -
B @ .
© m % W o
2y 2 % [
g 3=i - E
S 2 < v 5
R L L L T T PR p— ~f— datbotodeana- >
| :
3 Ay RY¥ ”ﬂ AYRYE
m.- e - - - - - —— - S—- - e w0 - 1lr|+llrlIU’
g | | g
il g ¥ . 3
AVRY .
i AR 3
L2 2 | i
A »ﬂ .,ja
-] T
sm-”u“l' _.lL -ty - - = LIl lllll LI.lVll-lllllnLul lllllllllllll kllllll
)



41

4.4. RPC Programming Issues
4.4.1. Chosen Protocol

Among the five different network communication protocols, Sun’s RPC only
sﬁpports two of them: datagrams and streams. Less overhead is- incurred by
datagrams (UDP). Datagram communiéation.dogs not use- cénnections, each
~message is addressed individually. If the address is correct, the message will usu-
ally be received. There is a system dependent limitation on the size of the mes-
sage. The upper limit for message length is 1Kbyte on the VAX. Depending on
the size of the blocks of scanlines and the format of the oﬁtput, the result from
the ray tracing server could be longer than the upper limit for UDP. The
datagram protocol is not reliable. Lengthy messages are sent using the reliable
stream protocol, provided by TCP/IP (Transmission Control Protocol). TCP is
also chosen for its reliability, any messages received with errors will be vrevtransmit-
ted, and for the fact that the timeout per try, as well as the number of tries for

each call, can be controlled.
4.4.2. Chosen layer of RPC

Since socket manipulation is necessary, the ihird la);ér of RPC is utilized.
4.4.2.1. On the dis;tribution client

There is a limitation on the number of open socket descriptors, i.e. the
number of communication channels. (According to the library functioh descrip-
tion “servers - inet server data base”, at the time this thesis was written, Sun limits
this number to 27). One has to adapt to one of the two alternatives: release the

socket after every call, or leave the communication channel open once it is



42

established and only close it upon the last call to the server. With the first alter-
native, the communication will still linger for at least 4 seconds after a close call
was issﬁed to shutdown the socket. For this reason the second alternative was
chosen; the client handles established for the first call will be saved and reused
- until the last call is made to unregister the service. At that time these handles will

be destroyed."
4.4.2.2. On the ray tracing servers

Due to the synchronous nature of RPC, a void reply is sent to the Distribute
client immediately after the ray tracing servers receive messages to trace rays, so

that concurrency can occur.
4.4.3. Chosen XDR
A standard network data format plays an important role in a heterogenuous

environment. Three different XDR routines are utilized to accomplish this.

These routines are built using the existing XDR library.
4.4.3.1. Input to Ray Trace Routines.

For the call to request the ray tracing server to trace rays, an XDR routine is
used to serialize the érgument data structure (input). The input is sent as a byte
stream, and it consists of the scanline block number; the names for the octree
scene descriptionvﬁle,.and the viewing parameter file. XDR for this input struc-

ture utilized the integer and string XDR primitives.
4.4.3.2. Output from Ray Trace Routines

The output from the ray tracing server is transfered to the collection server

as another data structure. This output consists of a scanline block number, the



43

number of bytés of the result, and the pixels that make up the scanlines. Integer

XDR, and opaque XDR are used.
4.4.3.3. Progress in Collecting Results

The last type of data structure which is sent over the network is the progress
report structure. This structure is an array whose index is the scanline block
number. Each element of this array is of type boolean, which indicates the status

of the block: collected or not. Only boolean XDR is needed.
4.4.4. Miscellaneous

Two further issues were encountered du.ring the.design:
4.4.4.1. Broadcast RPC

This option of RPC could be used in searching for more than one available:
processors in one call. Broadcast RPC expects more than one reply, while normal
RPC expects only one. For simplicity, one mechanism of RPC, the normal RPC,
is used through out the entire project. Mismatch of RPC library versions between
client and servers are not notified by broadcast RPC due to its implementation

which treats unsuccessful reponses as garbage, and filters them out.
4.4.4.2. Batching RPC

Normal RPC is designed such that the clients Wéit for the servers to reply,
i.e. clients must be silent while servers process a call. Batching_facilities provide
the possibility for clients to continue computing while waiting forv replies. No mes-
sages will be sent by the servers, so failures are not notified. As a result, clients

have to provide error checking. Batching was not used.



Chapter 5

Result and Effectiveness Analysis

5.1. Performance of an Asynchronous Distributed Environment

The Unix time command was used to obtain the elapsed CPU and the real

time for the timing alnalysis.

Data was collected for ray tracing a specific picture, an image of a metallic
gold sphere (Figure 5.1). Using the ray tracing program, in a uni-processor
environment, data was collected on different CPUs. Time taken to generate this
image ranged from 1.72 to 3.31 hours for a group of Sun 3 workstations. These
non-distributed timings were used to estimate the speed up ratios for the distri-

buted case.

For the same image, data was collected using different numbers of ray trac-
ir.xg' servers and different work unit sizes. CPU and Real time estimates were done
using the time taken for the least powerful server in each case, using the non-
distributed method, plus the estimated overhead. The overhead were estimated
based upoh the result of running prof on the executables. pirof is the Unix com-
mand for obtaining procedure level execution time profiles of prdgrams. The
diﬁ'erencés between the results collected and estimated were tabulated using the

estimates as the bases.

Statistics in seconds are listed in table 5.1. In table 5.2, these data were inter-

preted in speedup ratios. Note that in most cases the speed-up ratios are in



45

between n-1 and n, where n is the number of servers used in each case. Data was

collected for up to 7 servers, the limit of servers available to the work of this

thesis.



Table 5.1 Time results (seconds)

] Real time CPU time

WorkUnit | #servers "2 1 Act | % diff | Est | Act | % aiff

2 4107 | 4090 0.4 | 4047 | 3898 3.7 |

3 3699 | 4228 | +10.1 | 3619 | 3531 2.4
20 sl 4 2666 | 3176 +8.1 | 2586 | 2574 0.5

5 2170 | 2286 | +16.1 | 2090 | 2146 | -16.5

6 2162 | 2087 3.6 | 2082 | 1918 -1.9

7 ] 1666 | 1753 .| +5.0 | 1586 | 1501 -5.1 |

2 4180 | 4265 +2.0 | 4100 | 3930 4.1

3 3483 | 3929 | +11.3 | 3403 | 3304 2.9
10 sl 4 2748 | 2790 +1.5 | 2668 | 2575 -3.5

5 2187 | 2194 +0.3 | 2107 | 1998 -5.2

6 1920 | 1955 +1.8 | 1840 | 1753 4.7 |

7 1678 | 1755 +4.4 | 1598 | 1522 | -4.8

4 2762 | 2898 +4.7 | 2682 | 2568 4.2
54l 5 2242 | 2478 +9.5 | 2162 | 2082 -3.7

6 1963 | 2071 -+5.2 | 1883 | 1744 7.4

7 - 1705 | 1857 +8.2 | 1625 | 1543 | -5.0

Table 5.2 Time results (speed—up ratios)
) Real time CPU time

WorkUnit | # server; Est | Act | % diff | Est | Act | % diff

2 194 | 194 | +0.0 1.97 | 2.04 +3.4

3 2.75 | 2.40 -14.6 2.87 | 2.88 +0.3
20 st 4 3.81 | 3.20 -19.1 [ 3.93 | 3.94 +0.4

S 468 | 4.44 5.4 486 | 4.73 2.6

6 4.71 | 4.87 +3.3 4.87 | 5.29 +8.6

7 6.09 | 5.79 -5.2 641 | 6.78 | +5.7

2 190 | 1.86 2.2 1.94 | 2.02 +5.7

3 2.92 | 2.58 -13.2 | 2.98 | 3.07 +3.1
10 sl 4 3.70 | 3.64 -1.6 | 3.81 | 3.94 +3.5

5 4.65 | 4.64 0.2 482 | 5.08 +5.4

6 529 | 5.19 -1.9 553 | 5.8 +5.0

7 6.05 | 5.79 4.5 6.35 | 6.67 | +5

4 3.68 | 3.50 5.1 393 | 3.95 +0.6
55l 5 4.53 | 4.10 -10.5 4.70 | 4.88 +3.7

6 5.17 | 4.90 5.5 539 1 582 1 +8.0

7 5.97 | 5.48 -8.9 6.26 | 6.599 | +5.5

46



47

5.2. Factors that might effect Performance

There are several factors that effect the time taken to generate an image.

These are:
5.2.1. Number of ray tracing servers

It is only logical that this number has to be greatef than one. Together with
the number of scanlines that makes up the block (unit of wofk), the number of
servers and the blocksize determine the maximum number of work units which
each server will be requested to do in order to complete an image of a given reso-
lution. For example, for a 512 X 400 image, if the blocksiée is 20, there will be 20
work units to be distributed. If there are 5 servers available, and if there is no
error. recovery needed, then' each serve.r will be requested to perform 5 work.
units. In the case where work balancing is not done ideally, some servers will
need to perform more work than others, for example, if there are 6 servers, and
there are 20 work units, if there is no error recovery the time required to com-
plete the image is the time taken for those servers that received requests for 4
units.

The number of active descriptors or the nufnber of communication channels
is limited to 28, lesS one for the Collect server, due to a reason mentioned earlier.
The number of accessible servers are also limited. The maximum number servers

. used is seven.
5.2.2. Size of Work Units

The number of scanlines that makes up a block, a unit of work, is another

factor that affects the performance. Small blocks take less time to be



48

accomplished, and if work loss occurs less time is required to redo one unit of
work. More overhead for making RPC calls will be needed since the number of
calls increases. RPC overhead will be discussed in a later section. Work balanc-

ing is one of the keys for choosing the blocksize. |
5.2.3. Differences in Individual Server Performance

A group of Sun workstations were used as ray tracing servers. These works-
tations possess different computing power, hence the time taken to finish one

work unit varies from server to server.
5.2.4. Work Balancing

Among the factors that affect the efficiency of the method implemented is
the need to obtain an even work distribution for all servers, i.e. all servers

optimally receive the same number of work units.
5.3. Models Used in Estimating Performance

For performance guidelines, three models were used:
1. A single CPU in a non-distributed environment.
2. More than one CPU in a distributed environment with i'nﬁnifely fast
data transfer rate. :
3. A data transfer rate of 10 KBytes per second across the network was

assumed in the last model. Each pixel required 4 bytes.

For the chosen picture, the resolution is 512 X 400, and a total of 800
KBytes were transfered across the network. The estimated data transfer time was
80 seconds. In model two, programs’ profiles were used to estimate the RPC and

I/0 overhead. In addition to this overhead, the waiting time between calls to



49

obtain the servers’ status had to be included.

5.4. Estimated Time versus Obtained CPU Results

The obtaihed CPU re’sﬁlts were compared against the time taken for the least:
powerful server among the group of servers to perform the work requested. The
estimated data was calculafed using the CPU times of the slowest servers and the
overhead described in model 2. The measured time was consistently lower than

_the estimated CPU time.

5.5. Estimated Time versus Obtained Real-time Results

The obtained Real-time results were compared against the time taken for the least
powerful server among the group of servers to perform the wor;l; requested, plus
the time taken for the server availability checks, plus the- data transfer time
described in model 3. ‘As expected, the differences in the estimated and collected

results were larger than the CPU results.
5.6. Justification for Differences in Comparison

In calculating the estimated data, it is assumed that the servers will be dedi-
cated for ray tracing. However, in reality, the Sun workstations were also being
used for other tasks. As the result, the results collected could be significantly

different from the estimate-values._

For the distributed environment, one must take into account the overhead of
RPC, XDR, I/0 etc.... Files’ profiles (see appendix B), obtained using prof were
analyzed and the results were tabulated in table 5.3 (in seconds) and table 5.4 (in

percentage). As expected, the overhead increases as the number of servers



increases. In addition, as the size of work unit grows, the overhead grows.

50

Table 5.3 CPU profile (seconds)
WorkUnit | #servers | RPC+XDR | XDR | 10 | Wait | Overhead | Total
2 5 1 11| 50 67 3989
3 6 0 12 35 53 3531
20 sl 4 6 1 12 25 43 2574
5 8 1 | 12 20 39 2046
6 -8 1 13 20 41 1918
7 6 .1 13 15 34 1505
2 7 1 13 10 120 3930
3 9 1 13 70 91 3304
10 sl 4 9 1 14 50 72 2575
5 8 1 12 40 60 1998
6 12 1 10 35 57 1753
7 11 1 13 30 54 1522
4 17 . 2 15 100 132 2568
55l 5 16 2 14 | 80 110 2082
6 19 2 14 80 11 1744
7 20 1 14 60 94 1543
Table 5.4 CPU profile (percentage)
WorkUnit | #servers | RPC+XDR | XDR | IO | Wait | Overhead | Total
2 0.13 0.02 | 0.28 | 1.25 1.68 | 100.00
3 0.16 0.01 | 035 | 0.9 1.50 .100.00
20 sl 4 0.23 0.02 | 047 | 0.97 1.67 100.00
5 0.38 0.04 | 0.57 | 0.98 1.91 100.00 |
6 0.41 0.03 | 0.68 | 1.04 2.14 100.00
7 0.39 004 0.8 | 1.00 2:26 100.00
2 0.17 0.02 | 0.34 | 2.54 3.05 100.00
3 0.27 0.02 }0.38 | 2.11 2.75 { 100.00
10 sl 4 - 0.33 005 | 053] 194 2.80 100.00
5 0.41 0.05 | 0.61 | 2.00 3.00 100.00 |
6 0.68 0.06 | 0.57 | -2.00 3.25 - 100.00
7 0.70 0.08 | 0.87 | 1.97 3.55 100.00
4 0.63 0.07 | 0.56 | 3.89 5.14 | 100.00
5l 5 0.76 0.08 | 0.67 | 3.84 5.28 100.00
6 1.07 0.10 | 0.80 | 4.01 . 591 100.00
7 1.27 0.08 | 0.92 | 3.89 | 6.09 100.00




51

5.6.1. RPC Overhead

Time taken to establish communication links between clients and servers is
parf of the overhead. Up to 15.00% of the total overhead, or up to 1.30% of the
total time taken to finish tracing the picture, was spent as RPC cost. As
expected, the RPC overhead increases as the size of work unit decreases due to

the increase in the number of RPC calls made.
5.6.2. XDR Cost

Decoding and encoding the input and output arguments by the client and
servers contributes to the diferences between the estimates and the collected
results. Approximate 10.00% of the RPC cost was.spent in eXternal Data
Representatidn encoding and decoding. In table 5.3 and 5.4, XDR cost was

included in the RPC cost.

5.6.3. Sleeping Periods between Status Calls

The output of the RPC calls that check for status availability is in cummula-
tive numbers, hence it is required to make two calls and take the difference in the
two results. For each status availability check a sleeping interval of 5 seconds
(real time) is used. These waiting periods are shown in the wait column of table

5.3 and 5.4.
5.6.4. 1/0 Operations

A significant portion of the time taken to accomplish an image is spent on
input and output operations. Viewing parameters are read in from a file. Input

generated for the ray tracing routine are written into a file and later are read in.



52

Output from the ray tracing routine is written into a file before being sent to the
| Collect server. On the Collect server, at first, the result is written into a file in
random order. Finally, after receiving the.request to reconstruct the file, 1/0
operations are invoked for data transfer. This I/O cost could taken up to 1.00%

of the total CPU time collected to trace the chosen picture.
5.6.5. Progress Checking

Error checking is important. Fortunately, during the data Acollection’ stage
there was no incidence in which a ray tracing server went down in the middle of
carrying the requested work. Error checking could play a significant roll m perfor-
mance evaluation, especially when work lost occurs often and recoveries are fre-

?

‘quently needed.






Chapter 6

Conclusion

6.1. Meet Design Goals

Improvements were -achieved using the proposed method. CPU time.speed-
up ratios of up to 6.78 were obtained in the case where seven servers were used.
Distributed processing was proven to be effective in ray tracing. The work done

on this thesis could be improved to achieve even higher speed up ratios.

6.2. Further Improvements

6.2.1. Upper limit on the number of servers

Due to the availability of the number of Sun workstations, the maximum
numi')er of servers used was limited to seven. This limit could be higher. With
more servers available, the number of distributing cycles would be reduced
because the CPU time to do the work completely dominates the overhead. An
ideal situation couldA be met in which each server would have to perform the work

on one work unit.

If the number of servers increased the size of the work unit could be reduced so

that all available servers would be utilized.

54



55

6.2.2. Screen Saver for Status Check

The workstation status check could be done using a different method, so
that the time spent in the sleeping periods between to RPC status calls could be
eliminated. A good alternative for checking the status is a screen saver program,

used to monitor the time elapsed since the keyboard was touched.

6.2.3. Work Balancing

The distributing process as set up is synchronous, i.e. work is given out to
serverl, server2,...., servern (last server in list), then back to serverl. Due to the
variation in performances among workstations, there were servers that sat idle.

while waiting for the next request.

To minimize the idle time among servers, i.e. to achieve even higher speed

up ratio, it is worthwhile to consider the two alternatives:

1. Using servers of the same performance.

2. Keeping tracks of the pool of available servers: As soon as the ray trac-
ing server finished sending the result to the collection server, it should notify the
distribution client of its availability. The Aistribution client would then put this
server in the pool. After the first cycle, work would be given to the first available

server in this pool.

6.2.4. Eliminate Image Reconstruction

A significant amount of time is spent for reconstruction of the final image,

due to the asynchronous nature in collecting results. If servers of similar



56 -

performance are used, there is a good chance that the result will be received in

order, hence no reconstruction would be needed.



References

[Appel68]
Appel, A., Some techniques for Shading Machine Renderings of Solids.

AFIPS 1968 Spring Joint Computer Conference, pp 3745.

[Cook84] |
Cook Robert L., T. Porter, L. Carpenter, Distributed Ray Tracing. ACM
SIGGRAPH Co‘nference Proceedings, July 23-27, 1984 Minneapolis, Min-
nesota, vol. 18, n. 3, pp 13-144.. |
[Dippe84]
Dippe, M., J. Swensen, An adaptive Subdivision Algorithm and Parallel
Architecture for Realistic Image Synthesis. ACM SIGGRAPH Conference
Proceedings, July 23-27, 1984 Minneapolis, Minnesota, vol. 18, n. 3, pp 148-
158. |
[Foley82]
Foley, J. D., and A. van Dam, Fundamentals of Interactive Computer

Graphics. Addison-Wesley Publishing Company Inc., 1982. pg 585. 1982.

[Glassner84]
Glassner, A. Space Subdivisions for Fast Ray Tracing, IEEE CG&A, vol.
4, n. 10, October 1984, pp 15-22.

[Haines86]

Haines, Eric A., and Donald P. Greenberg, The Light Buffer: A Shadow-

57



58

Testingf Accelerator. IEEE CG&A, vol. 6, n. 9, September 1986, pp 6-16.
[Kobayashi87]
Kobayashi, H., T. Nakamura and Y. Shigei, Parallel Processing of an object
space for image synth‘esié using ray tracing. The Visual Computer, 1987(3),
pp1322.
[Meagher82]
Meagher, Donald, Geometric Modeling Using Octree Encoding. Computer
Graphics and Image Processing, vol. 19, 1982, pp 129-147. |
[Rogers85]
Rogers, D. F., frocedural- Elements for Computer Graphics. McGréwFHﬂl

Book Company, New York. 1985, pg 296.

[Roth82] _
Roth, S. D., Ray Casting for Mo'deling Solids. Computer Graphics and

Image Processing, vol. 18, 1982, pp 109-144.

[SunXDRS86]
Sun Microsystems, External Data.Rei)resgntation Protocol Specification.
Sun 3.0 Documents, Revision B of 17 February 1986 Sun Microsystems,
2550 Garcia Avenue, Mountain View, CA 94043.

[SunIPC86]

Sun Microsystems, InterProcess Communication Primer. "Sun 3.0 Docu-
ments, Revision B of 17 February 1986. Sun Microsystems, 2550 Garcia

Avenue, Mountain View, CA 94043.



59

[SunNFS86]
Sun Microsystems, Network File System Protocol Specification. Sun 3.0
Documents, Revision B of 17 February 1986. Sun Microsystems, 2550 Gar-

cia Avenue, Mountain View, CA 94043.

[SunRPC86]
Sun' Microsystems, Remote Procedure Call Programming Guide. Sun 3.0
Documents, Revision B of 17 February 1986. Sun Microsystems, 2550 Gar-

cia Avenue, Mountain View, CA 94043.

[Ward86]
Ward, G., The RADIANCE Synthetic Imaging System. Lawrence Berkeley

Laboratory Publication, 1986.
[Whitted80]
Whitted, T., An Improved Hlumimation Model for Shaded Display. Com-

munication of the ACM, vol. 23, n. 6, June 1980, pp 343-349.



Appendix A: Program Listings

61



Notice of Copyright

The software written for this thesis, Distribute Processing in Ray Tracing, is
-copyright (C) 1988, Regents of the University of California. Anyone may repro-

duce the software in:this distribution, in whole or in part, provided that:

(1) Any copy or redistribution of this software must show the Regents of the
University of California, through its Lawrence Berkeley Laboratory, as the

source, and must include this notice;

(2) Any use of this software must reference this distribution, state that the
software copyright is held by the Regents of the University of California,

and that the software is used by their permission.

It is acknowledged that the U.S. Government has rights in this software
under Contract DE-AC03-76SFO0098 between the U.S. Department of Energy and

the University of California.

This software is provided “as is”, with no warranties of any kind whatsoever,
no support, promise of updates, or printed documentation. The Regents of the
Univérsity of California shall have no liability with respéct to the infringement of

copyrights by this software, or any part thereof.

62



color.h

/* Copyright (c) 1986 Regents of the University -of California */

/*

color.h — header for routines using pixel color values.

12/31/85

another for storage. Calculation is done with three floats
for speed. Stored color values use 4 bytes which contain
three single byte mantissas and a common exponent. .

/
#define RED 0
#defilne GRN 1
#define: BLU 2
#define EXP 3
#define COLXS 128

typedef unsigned char BYTE;
typedet BYTE COLR[4];
#define copycolr(cl,c2)

typedef float COLOR[3};
#define colval(col,pri)
#define setcolor(col,r,g,b)
#define copycolor(cl,c2)
#define scalecolor(col,sf)
#define addcolor(cl,c2)
#define multcolor(cl,c2)
" #define WHTCOLOR
#define BLKCOLOR
#define WHTCOLR
#define BLKCOLR

extern double intens();

Jun 30 13:26 1989

E ]
.
E ]
-
* Two color representations are used, one for calculation and
-
]
L ]
E J

/* excess used for exponenmt-*/
/% 8-bit unsigned integer */
/* red, green, blue, exponent */

(c1[0]=c2{0],c1[1]=c2[1], \
c1[2]=c2[2),c1[3]=c2[3])

/* red, green, blue */
((col){pri))
((col)[RED]=(r),(col)[GRN]=(g),(col)[BLU]=(b))
((eD)[0]=(c2)[0], (cD)[1]=(c2)[1].(c1){[2]=(c2)[2])
((coD)[0]*=(sf), (coD)[1]*=(sf), (col)[2]*=(s0))
(c1{0]+=c2{0},c1[1]+=c2{1],c1{2}+=c2[2])
(c1{0]*=c2[0],c1{1]*=c2[1],c1[2]*=c2{2))
{1.0,1.0,1.0y

{0.0,0.0,0.0}

255,255,255, COLXS}
0,0,0,0}

color.h

Page 1 of color.h



distribute.h : . : distribute.h

/#“*“““#Qt‘.i‘iﬁtt‘#t‘t##t‘##‘*#t#“tt3*!!“‘ttlt#‘t‘t“‘#‘#‘.t‘tttittt“/

/t

/* FILE : distribute.h

/* '

/* DATE : 8/27/87

/*

/* AUTHOR : Mydung Thi Tran

/‘

/* DESCRIPTION : this include file contains :

/* — PROGRAM NUMBER, PROGRAM VERSION, PROCEDURE NUMBER
/* ' which are used in various Remote Procedure Calls.
/* — constants for exit codes,

/* — constants for resolutions, threshold etc....,

/* — structures for xdr routines.

/‘

/‘!‘t’t"“‘.““!““'t“t!t"“*‘“““"I!‘ltt“’t““t"!tit.“‘.““t!‘t/

#include <stdio.h>-
#Include <netdb.h>
#include <sys /time.h>
#include <signal.h>
#Include <errno.h>
#Include <rpc/rpc.h>
#Include <rpcsve /rstat.h>
- #include <sys/wait.h>
#Include <sys /socket.h>
#Include "color.h”

extern long random(}; /* forward declaration for random call */

/* program numbers, versions, procedure numbers */

#define RAY_PROG 21000000 /* program number for SUN servers */

#define RAY_VERS ~ 2 /* program version for SUN servers */

#define RAY STAT_PROC 20 /* procedure for CPU status info s/
#define RAY RTRACE_PROQ1 /* procedure for tracing rays */

#define RAY_KILL_PROC 22 /* procedure for unregister service */

#define COL_PROG 31000000 /* prog.# for collection server on VAX */
#define COL_VERS : 3 /* version # " */
#define COL_QUERY_PROC 30 /* procedure for completion list query s/
#define COL_COLCT_PROC 31 /* procedure for collecting scanline result */
#define COL_KILL_PROC k72 /* procedure for unmap child server service */
#define COL._RECON_PROC 33 /* procedure for reconstructing raster image */

/* contanis for distributed processing * /

#define MAXNUMOFHOST 2. /* maximum number of mrkstétions */

#define XRES 512 /* x resolution */

#define YRES 400 /* 'y resolution */

#define BLOCKSIZE 20 /* number of scanlines in each block */
#define BLOCK (XRES*BLOCKSIZE)

#define. NUMBLOCK (YRES /BLOCKSIZE)

#define THRESHOLD_PRCT 50 /* threshold value for percent idle time */
#defilne SCANLINE LIMIT 40 /* time taken to trace each scanline */
#define TIME_LIMIT (SCANLINE_LIMIT * BLOCKSIZE) ’

#define NOT_YET 0 /* scanline to be done */
#define DONE 1 /* scanline already done */
#define YES_QUERY 1 /* yes, query for progress */
#define NO_QUERY 0 /* no, don’t query for progress */

Jun 30 13:26 1989 Page 1 of distribute.h



distribute.h » o . . : distribute.h

#define REDO 1 /* some scanlines need to be redone */
#define IMAGE_COMPLETE 0 /* result for entire image collected */
#define IDLE 1 /* workstation is idle */

#define BUSY 0 /* workstation is busy */

/* constants for ray tracing routine */

#define FTINY le-7 /* small real number */
#define FHUGE lel0 /* large real number */
#define dstrpix 0.67 /* square pixel distribution */
#define PI 3.141592653589979323846

#define DOT(v1,v2) (vl[O]‘v2[0]+v1[1]‘v2{1]+v1[2]‘v2[2])
#define frandom() (random() /2147483648

#define pixjitter() (dstrpix * (0.5 — frandomO))

/* constants for exit codes */

#defilne SUCCESS 1 - /* congragulation, you have succeeded */
#define FAILURE 0 /* sorry */ -

typedef char HOSTNAME[20};

typedef COLR SCANBUF[XIRES*BLOCKSIZE]

typedef double FVECT{3};

/* the following structures are for xdr routines */

struct input_rt /* input to RTRACE */
int curr_block; /* current block number */
char *scene_file; /% scene description filename */
char *view_file; /* viewing parameter filename */
B '
sﬁct output_rt /* output from RTRACE */
{ .
int done_block; /* finished scanline */
Int block _length; /* length of result in # of COLR items */
SCANBUFesult; /* result for the scanline */
5 ,
struct block _info /* info for image reconstruction */
Int length; /* number of pixel written to file */
long start_position; /* offset from beginning of file */
)
65

Jun 30 13:26 1989 - Page 2 of distribute.h



distribute_client.c : : B distribute_client.c

/*ttiitttt*ttﬁ“*tt*t%‘ﬂ#t##tttt*“*‘#t#&tﬁﬁt!*t‘tt‘#“t3!‘!“!‘3*‘#‘.#‘#*3**‘/

/%

/* PROGRAM
/*

/* AUTHOR
/®

/* DATE
/®

/* DESCRIPTION :
LJ

"

/*

/%

/*

/%

/*

/*

/*

/*

/*

/%

/*

/*

/*

/*

/®

/*

/*

/*

/*

/*

/*

/*

/®

/* INPUT :
/*

/*

/*

/* .

/* OUTPUT
/% '

; distribute_client.c

: Mydung Thi Tran

: 8/13/87

this is part one of three parts of the work of my thesis:
— part 1: distribution client, run on the VAX,
which will be described in details ,
— part 2: ray tracing server, run on SUN workstations,
"raytracing _server.c”,
— part 3: collection server, run on VAX,
in the file- "collection_server.c”.

The goal is to apply distribute processing in ray tracing,
part 1 is the main control program, which distributes work
of generating a still image, to a group of workstations,

the number of workstations is four (4). Work is given out
by blocks of scanlines. Before work is distributed to the
workstation, the workstation’s status will be checked by

the distribution client for availability. When the ray
tracing server finish tracing block of scanlines, it will
contact the collection server to send result black. Upon
finishing collecting result, collection server will update
progress report, The distribution client, after finish

giving out all blocks will query the collection server for
report, if any block took too long: to- send result: back,
ie., trouble might occur on that workstations, that block
of scanlines will be redistributed to one of the available
server. :

The communication mechanism used is remote procedure call.

should be called with the following arguments:
+ a filename for the collect, ntrace servers name list,
+ a. filename for the octree scene description (*.oct),
+ a filename for the viewing parameter- file (*.view).

;s none.

/.““““Ott““."‘"‘.“‘“““‘..“.““"““.“‘.lt.."-“‘.‘.‘...t“t"’

#include “distribute.h”

bool_t
bool _t
CLIENT
CLIENT
HOSTNAME
HOSTNAME
Int

struct

struct

struct

struct

main(arge, argv)
int argc;
char *argv[];

Jun 30 13:26 1989

scan_listtNUMBLOCK]; /% list of blocks to distribued */
progressiINUMBLOCK]; ~ /* progress report */
sclients(MA XNUMOFHOST]; /% handles for rtrace servers */
*client_collect; /* handle for collect server */
collect_server; /* collect server name */
wslistfMA XNUMOFHOST]); /* list of rtrace servers */
time_distributed(NUMBLOCK]; /* time start block of scanlines®/
block _info reconstructiNUMBLOCK]; /* image reconstruction info */
timeval *timeptr; /* argument for gettimeofday */
timezone *tzoneptr; /* " */
input_rt *rt_input; /* argument for rtrace */
main
66

Page 1 of distribute_client.c



»

distribute;client.c

{

Jun 30 13:26 1989

/* declarations for main() */

double atof(); /* convert ascii to double */
FILE  *host_fp; /* host list file pointer */
int i, j; /* loop control variables */
int exitcode; /* exit code */

extern HOSTNAME wslist[];
extern HOSTNAME collect_server;

/* end of declarations for main() */
/* - . /

/* boundary checks */
it (argc < 4) /* enough arguments specified? */

{ fprintf(stderr, “usage: %s followed by: \a", argv([0]);
fprintf(stderr, "host list, scene file, viewing para. file. \n");
exit (FAILURE);

}

it (argc > S5) /* too many arguments ? */
{ fprintf(stderr, "%s: too many arguments specified \a", argv([0]);
exit (FAILURE);
}

/% print starting time */
fprintf(stdout, "Start distribute image at: \n");

. system("date™);

/* initialization */

/* host names */
it ((host_fp = fopen(argv(l], "r")) == NULL)

fprintf(stderr, “fopen: host list error in main\n");
exit(FAILURE);
}

If (fscanf(host_fp, "%s", collect_server) != 1)

fprintf(stderr, “fscanf: error in main\n");
exit(FAILURE);
}

for (i = 0; i < MAXNUMOFHOST; i++)
It (fscanf(host_fp, "%s", wslist[i]) 1= 1)

fprintf(stderr, “fscanf: error in main\n");
exit(FAILURE);

/* client handles */

client_collect = NULL;

for (x = 0; i < MAXNUMOFHOST; 1++)
clients[i] = NULL;

/% list of scanline to be distributed */
for (i = 0; i < NUMBLOCK; i++)
scan_list[i] = NOT_YET;

67

distribute_client.c

..main

Page 2 of distribute_client.c



distribute_client.c - -  distribute_client.c

/* allocate memory space for pointers to structures */
timeptr = (struct timeval *)malloc(sizeof(struct timeval));
tzoneptr = (struct timezone *)malloc(sizeof(struct timezone));
rt_input = (struct input_rt *)malloc(slzeof(struct input_rt));

If ((imeptr == NULL) || (tzoneptr == NULL) || (rt_input == NULL))

fprintf(stderr, "malloc: error in main\n");
exit(FAILURE);
}

/* filename for scene description */
rt_input—>scene_file = argv[2];

/* filename for viewing parameters */
rt_input—>view _file = argv{3];

/% trace rays */
exitcode = image();

/* clean up . */

/* deallocate memory space */
free(timeptr);

free(tzoneptr);

free(rt_input);

/* done */
if (exitcode = 0)

fprintf(stdout, "Sorry, you need to rerun the program.\n");
exxt(FAILURE)
eise

fprintf(stdout, "Complete unage at: \n"),
system("date™);
exit(SUCCESS);

} /* end of main() */

/‘

ROUTINE : image()

DESCRIPTION : For any block of scanlines that has not been done, an RPC
will be made to one of the group of SUN servers, to check
for availablitity. If the server is busy, the next one in
the group will be checked until an idle server if found
The idle server then is given the work of ray tracing the
block of scanlines. Once all blocks for the entire image
are distributed, an RPC call to the collection server (see
main for details), will be issued to query for progress.

If complete resuls has not been collected, one of the two
actions will be taken:
1— if time linits for ray trace the block has not exceeded,
a waiting period is necessary,
2— if time ran out, redistribute the unfinished block(s).
When all results are collected, another RPC to the collection

68

Jun 30 13:26 1989 : . Page 3 of distribute_client.c



.

distribute_client.c : - | ) distribute_client.c

server is sissued to reconstruct image.
If the final raster image is achieved, RPC calls are issued
to stop all servers before exiting sucessfully.

s/

image ()

{ /* declarations for image() */

bool_t  xdr_progress(); /* xdr routine for progress report */
bool_t  redistribute; /* redo scanline */

bool_t  query; /* is this Ist query for progress */
imt = pid; /* child process id */

int i, m; : /* loop control variable */

int currenttime; /* for checking result overdue */

int time_elapsed; /* " ‘ */
Int - kill _rtrace; /* call to unregister rtrace servers */
int kill _collect; /* call to unregister collect server */
Int . queryerr; /* query call for completion status */
int . reconstruct_err; ~ /* call to reconstruct image */

Int return_code = 1; /* return code */

extern bool_t progress(];

extern bool t scan_list(];

extern HOSTNAME collect _server;
extern HOSTNAME wslist[];
extern Int time_distributed(j;
extern struct timeval *timeptr;
extern struct timezone *tzoneptr;

/* end of declarations for image() */

/* */

/* initialize’ the progress flag */
query = YES_QUERY;
redistribute = REDO;

/* this is the distribution client */
while (query == YES_QUERY)

{ /* begin of while loop */

/* distribute work to available wkstation, record .mmmg time */
it (redistribute == REDO) .

it (distribute () == 0)

fprintf(stderr, “distribute: error in lmage \n")
return_code = 0;

}

/* reset redistribute flag */
redistribute = IMAGE_COMPLETE;
}

/* make rpc call for list of scanline done */
It ((queryerr = callrpctcp(collect_server, COL_PROG, COL_QUERY_PROC,
COL_VERS, xdr_void, 0, xdr_progress, progress)) != 0)

69

image

Jun 30 13:26 1989 | Page 4 of distribute_client.c



distribute_client.c . distribute_client.c

..image
clnt_perrno(queryerr); /* why failed */ ‘
fprintf(stderr, "callrpctcp: query error in image\n"); -
return_code = 0;

/* reset the query flag */
query = NO_QUERY;

/* check for overdue scanlines */
for (m = 0; m < NUMBLOCK; m++)
{ /* begin of for loop */
scan_listfm] | progress[m];
i (scan_list{m] == NOT_YET)

/* get current time */
i (getumeofday(nmeptr, tzoneptr) l= 0)

fprintf(stderr, "gettimeofday: error in.image\n");
return_code = O;

currenttime = (Int)timeptr—>tv_sec;
time_elapsed = currenttime — time_distributed[m];

/* check to see if it is overdue */
i (time_elapsed > TIME_LIMIT)
{

/* set progress flags */
redistribute = REDO;
query = YES_QUERY;

} /* end of if TIME_LIMIT */
else
{ /*® begin of else */
/* wait awhile */
sleep(2*BLOCKSIZE);

/* requery for progress */
it ((queryerr = callrpctcp(collect_server, COL PROG
COL_QUERY_PROC, COL_VERS,. xdr_void, 0,

xdr_progress, progress)) != 0)
cint_perrno(queryerr); /* why fail */
fprintf(stderr, "callrpctcp; query error in image\n");
return_code = 0;

}

/® recheck */

m.—

/* end of else */

Yy 7/ ‘end of if NOT_YET */
} /* end of for loop */
} /* end of while loop */
/* ask child server to reconstruct image */

it ((reconstruct_err =~ callrpctcp(collect_server, COL_PROG,
COL_RECON_PROC, COL_VERS, xdr_void, 0, xdr_void, 0)) != 0)

clnt_perrno(reconstruct_err); /*why failed */
fprintf(stderr, "callrpctcp: reconstruct error in image\n”);
return_code = 0;

70

Jun 30 13:26 1989 : Page 5 of distribute_client.c



distribute_client.c | . distribute_client.c

...image
/* send signal to kill servers */
for (i = 0; i < MAXNUMOFHOST; i++)
it ((kill_rtrace = callrpctep(wslist[il, RAY_PROG, RAY_KILL_PROC,
RAY_VERS, xdr_void, 0, xdr_void, 0)) != 0)
clnt_permo(kill_rtrace);
fprintf(stderr, “callrpctcp: unregister rtrace error in image\n”);
return_code = 0;
}
It ((kill_collect = callrpctcp(collect_server, COL_PROG, COL_KILL_ PROC,
COL_VERS, xdr_void, 0, xdr_void, 0)) != 0)
{ v
clnt_permo(kill _collect);
fprintf(stderr, "callrpctcp: unregister collect error in image\n");
return_code = 0; '
.} _
/* done, exit */
return return_code;
} /* end of image() */
/*
ROUTINE : distribute()
DESCRIPTION : This routine is executed by the distribution client.
It checks the status of the remote machine for availability
by comparing the CPU idle time in the last 5 seconds with the
threshold percentage. The work of tracing a block is then
given to the remote machine if the status return indicates
awailability. The block number and starting time are
maintained for synchronization.
 distribute() . distribute

{ /* declarations for distribute() */

Int is /* loop comrol.vuriable ./

/* RPC call for availability status check. */

bool_t  avail; /* available flag */

Int statuserr; . /* status call */

Int i /* index into remote machine list */

1,
extern HOSTNAME wslist]];
extern CLIENT *clients[]; L

/* SUN RPC RTRACE variables */

bool_t  xdr_rtinput(); /* xdr for arguments to RTRACE */
Int rtraceerr; /* return value of RPC RTRACE */
extern bool_t scan_list(];

extern  Int time_distributed[];

extern struct input_rt *rt_input;

A end of declarations for distribute() */

7

Jun 30 13:26 1989 Page 6 of dislribute___client.c



distribute_client.c : distribute_client.c

...distribute
/‘ . | . * /

/* distribute work to available remote machines */
for (j = 0; j < NUMBLOCK; )
{ /* begin of for loop */ -

/* check for scanline to be distributed */
it (scan_list[j] == NOT_YET)

{ /% begin of if scanline NOT_YET distributed */

/* check for boundary for hostlist index, reset if needed */
ir (x >= MAXNUMOFHOST)
i=0;

/* make RPC call to check status of reéemote machine */
If ((statuserr = callrpctcp(wslisti], RAY_PROG, RAY_STAT_PROC,
RAY_VERS, xdr_void, 0, xdr_bool, &avail)) 1= 0) .

{ _
clients{i] = NULL; '
clnt_perrno(statuserr); /* why failed */
fprintf(stderr, “callrpctcp: status check error in distribute\n™);
} goto next_server;

/* check status info */
it (avail == BUSY)
{

fprintf (stdout,” "%s .is not available \n", wslist{i]);
goto next_server; _

eise
{ /* begin of else for server available */

/* record time distributed */
It (gettimeofday(timeptr, tzomeptr) = 0)

fprintf(stderr, "gettimeofday: error in dlstribute\n")
goto next_server;

time_distributed(j] = (Int)timeptr—>tv_sec;
rt_input—>curr_block = j;

/* make RPC call to trace rays for the current scanline */
it ((rtraceerr = callrpctep(wslistfij, RAY_PROG,RAY_RTRACE_PROC,
RAY_VERS, xdr_rtinput, rt_input, xdr_void, 0)) != 0)

{
clnt_permo(rtraceerr); /* why failed */
fprintf(stderr, “callrpctcp: rtrace error in distribute\n™);
goto next_server;
}
/* set up to do next block of scanlines */
i+

} /* end of else for server available */

/* set up 1o go to next remote machine */
next_server: i++;

Jun 30 13:26 1989 : : Page 7 of distribute_client.c



distribute_client.c

distribute_client.c

...distribute
} /* end of scanline is NOT_YET distributed */
" else o ’
jot+; /* go to next block of scanlines */
} /* end of for loop */
. return(l);
} /* end of distribute() */
. | /*
ROUTINE : callrpctep()
- DESCRIPTION : this routine is the intermediate RPC layer to the SUN
workstations to do the followings: .
— to check workstations’ status & determine awailability,
— to distribute work, i.e. tracing one scanline.
The body of this routine contains the lowest level RPCs,

*/
callrpctcp(host, prognum, procnum, versnum, inproc, in, outproc, out) callrpctcp
char *host;
char *in, *out;
int prognum, procaum, versnum;

xdrproc_t inproc, outproc;

{ /* declarations for callrpctcp() */

enum
int

int
struct
struct
struct
extern
extern

extern:

clnt_stat clnt_stat;

1

socket = RPC_ANYSOCK;
hostent *hp;

sockaddr_in server_addr;

timeval total_timeout;
HOSTNAME wslist{];
HOSTNAME collect_server;
CLIENT *clients{], *client_collect;

/* end of declarations for callrpctcp() */

/*

/*

/‘
/‘
/t
/.
1*

return value of call */
loop control variable */
socket chosen by system */
host entry */

info on server address */
time out provision */

*/

/® test to appropriate client handle */
/* is this a call to the collection server 7 */
it (strcmp(host, collect_server) == 0)

It (client_collect == NULL)

Jun 30 13:26 1989

/* get host entry */

it ((bp = gethostbyname(host)) == NULL)

fprintf(stderr, "gethostbyname: error in callrpctcp\n™); '

return(-1);

}
beopy(hp—>h_addr,(caddr_t)&server_addr.sin_addr,hp—>h_length);

server_addr.sin_family = AF_INET;

server_addr.sin_port = htons(0);

Page 8 of distribute_client.c



distribute_client.c . distribute_client.c

/* create client socket, memory stream, and client handle */
if ((client_collect = cinttcp_create(&server_addr, prognum,
versnum, &socket, BUFSIZ, BUFSIZ)) == NULL)

clnt_pcreateerror(“cinttcp_create”);
return(-1);

/* end if client handle has not been created */
/% make the call */

total_timeout.tv_sec = 10*BLOCKSIZE;
total timeout.tv_usec = 0;
clat_ stat = clat call(chent collect, procnum, inproc, in,

. outproc, out, total_timeout);
it (cInt_stat != RPC_SUCCESS)

clnt_perror(client_collect, "rpc");
return(-1);

/* destroy client handle if needed */
it (procnum == COL_KILL PROC)
clnt_destroy(client_collect);

return((int)clnt_stat);
} /* end if this is the call to the collection server */

/* or if this is the call to ray tracing servers on the SUNs s/
for-'(i = 0; i < MAXNUMOFHOST; i++ )
{ /* begin of for loop */
/* search for the appropriate SUN server */
if (strcmp(host, wslist[i]) == 0)

/* check to see if client handle has been created ? */
e (clients[i] == NULL)
{ /* not yet, create handle */
it ((hp = gethostbyname(host)) == NULL)

fprintf(stderr,"gethostbyname: error in calrpctcp\n”);
return(-1);

bcopy(hp-—>h_addr,(caddr t)&server_addr.sin_addr,
p_>h length):

server_addr.sin_family = AF INET,

server_addr.sin_port = htons(0);

/‘ create client socket, memory stream and client handle */
it ((clients[i] = clnttcp_create(&server_addr, prognum,.
versnum, &socket, BUFSIZ, BUFSIZ)) == NULL)
{

perror(“cinttcp_create”™);
return(-—1);

} /* end if handle has not been created */
/* make the call */
total timeout.tv_sec = TIME_LIMIT;
total timeout.tv_ _usec = 0;
clnt_stat = clnt_call(clients[i], procnum, inproc, in,

outproc, out, total timeout);
it (clnt_stat != RPC_SUCCESS)

perror(clients[i], “rpc");
74

..callrpctcp

Jun 30 13:26 1989 Page 9 of distribute_client.c



distribute_client.c : : distribute_client.c

...callrpctcp

return(-1);

/* destroy client handle, if needed */
it (procnum == RAY KILL PROC)
cint_destroy(clients[i]);

return((int)clnt_stat);
} /* end if stremp */

} /* end of for loop */
} /* end of callrpctep() */
/e

ROUTINE : xdr_ntinput()

DESCRIPTION : this is the eXternal Data Representation routine for the
arguments to SUN RPC RTRACE.
The input argument to RTRACE consists of:
~ an integer for the number of block of scanlines,
— a filename for the scene description file,
— a filename for the viewing parameters.
For part one, executes by the distribution client, this XDR
will encode the argument before sending it over to the server.

bool _t .
xdr_rtinput(xdrs, rt_input) . . xdr_;rttnput

XDR *xdrs;
struct input_rt *rt_input;

{ /* declaration for xdr_rtinput() */
Int k; /* loop control.variable */
/* end of declaration for xdr_rtinput() */

/® */
It (!xdr_int(xdrs, &rt_input—>curr_block))
return(FALSE);

It (Ixdr_string(xdrs, &rt mput->scene file, 20))
rel:um(l-‘ALSE), :

~ If (Ixdr_string(xdrs, &rt_input—>view_file, 20))
retirn(FALSE);

return(TRUE);
} /* end of xdr_ninput() */
/.

ROUTINE : xdr_progress()

DESCRIPTION : this is the eXtemal Data Representation for the array of
boolean type of NUMBLOCK elements, which contains information
on whether or not the scanline result has been recorded in
the rasterfile, This routine is called to decode the

75

Jun 30 13:26 1989 Page 10 of distribute_client.c



distribute_client.c | | . distribute_client.c

progress report structure received from the collection

server. .
bool_t
xdr_progress(xdrs, progress) xdr_pr ogress
XDR *xdrs; '

bool_t progressyNUMBLOCK];
{ /* declaration for xdr_progress() */
Int k; /* loop: control variable */

/* end of declaration for xdr_progress() */

for (k = 0; k < NUMBLOCK; k++) '
It (!xdr_bool(xdrs, &progress[k]))

) retirn(FALSE);

return(TRUE);
-} /* end of xdr_progress() */
/*

, 76
Jun 30 13:26 1989 . Page 11 of distribute_client.c



&

raytracing_server.c

raytracing_server.c

~

/t#“tt*“t.!“ttt!!'i*"t“‘#"““tt“t‘tt#t!l#tti#t"“t“#‘tl#’tt*##tttt#/

/t
/* FILENAME : raytracing_server.c
/l

/* AUTHOR : Mydung Thi Tran

/% '

/* DATE : 8/10/87

/*

/* DESCRIPTION : this is part two of three parts of my thesis work.

/* Details of part one can be found in the file

/* “distribute _client.c"

/* Details of part three can be found in the file

/* “raytracing_server.c

/* Part two, executed by the SUN workstations, these servers
/* carry out the ray tracing work and sending result of a
/* : block of scanlines back to its client, the distribution
/* server of part one. -

/t

/* INPUT : none

/* :

/* OQUTPUT : none

/t

/t"*’.l““*‘.‘tt‘t#“!‘ﬁ“““*“t"‘l't"t‘t‘t‘*!t“tt"‘*#t*'ttt‘tttt#‘ﬁ#/

#lnclude "distribute.h”

bool_t statistics();
bool _t xdr_rtinput(};
bool_t . xdr_rtoutput();

char collect_server([20];
char inputfile{20];

char resultfile{20];

char viewfile[20};

char octree{20];

char rt_com(512];

int dist_rt();

int rtrace_work();

Int blocksize;

long header_length = -1;
struct input_rt *rt_input;
struct output_rt *rt_output;

CLIENT “client_callback = NULL;

main()

{ /* declarations of main() */

/‘
/‘
/t
/‘
/*
/®
/‘
/‘

/*

/®
/*
VAd
Vid
Yid
/‘

register SVCXPRT *transp;

status check routine forward declaration*/
XDR routine for argument to RTRACE */
" , */
host name for call back RPC */
rtrace input filename */
rtrace result filename */
viewing parameter file */
octree scene description file */
ray tracing command */ -
dispatch routine forward declaration */
ray tracing routine forward declaration */
number of scanlines per block */
result file header's length */
input argument to RTRACE */
output argument to RTRACE */
/% client handle for sending result RPC */

main

/* service transport handle */

/* end of declarations of main() */

/“t“""O“.t“"““‘..t““/

/* allocate memory for arguments to RTRACE */
rt_input = (struct input_rt *)malloc(sizeof(struct input_rt));
rt_output = (struct output_rt *)malloc(sizeof(struct output_rt));

/* initialize host name for call back RPC and the blocksize */

strcpy(collect_server, "Tbl—csam™);
blocksize = BLOCKSIZE;

Jun 30 13:26 1989

Page 1 of raytracing_server.c



raytracing_server.c raytracing_server.c
...main
/* create server socket, memory stream and service handle */
if ((transp = svctep_create(RPC_ANYSOCK, BUFSIZ, BUFSIZ)) == NULL)
fprintf(stderr, "svctcp_create: error in main \n");
exit(1); .
/* erase any trace, make sure this is the update version */
pmap_unset(RAY_PROG, RAY_VERS);
/* register service */
if (Isvc_register(transp, RAY_PROG, RAY_VERS, dist_rt, IPPROTO_TCP))
fprintf(stderr, “svc_register: error in main \n");
exit(1);
/* never return */
sve_run ();
/* should not reach this point */
fprintf(stderr, "svc_run returned: error in main \n");
exit(—1);
} /* end of main() */
/!
ROUTINE = : dist_r()
DESCRIPTION. : this is the actual dispatch routine for distributed processing
. in ray tracing. When this routine is called, one of following
will be taken care:
I— RAY_STAT: check for cpu awvailability,
2—- RAY=RTRACE: decode input argument for ray tracing
routine, carry out the work, call the collection
: server to send block of scanlines result back,
3—- RAY _KILL: clean up, i.e. free memory, unmap service,
4— defauls: print "nomatch” error message.
dist_rt(rqstp, transp) dist_rt

register struct svc_req *rqstp; _ /* contains procedure number */
register SVCXPRT *transp; /* service transport handle */
{ /* declarations for dist_ri() */

bool_t  avail; /* CPU status check */

char ws_name{[20]; /* name of host */

int gethost_err; _

int maxlength = 20; /* max # of elem in name array */
int callbackerr; /* sending . scanline result call */

int rtpid; /* child process id */

extern. char collect_server(};

extern struct input_rt *rt_input;
extern struct output rt *rt _output;
extern bool_t statistics();

extern bool t xdr_rtinput();

extern bool_t xdr_rtoutput();

Jun 30 13:26 1989

Page 2 of rayrfacing_saver.c



raytracing_server.c : " . raytracing_server.c

...dist_rt
/* end of declarations for dist_n() */

/‘..“*‘1.#tl““.i‘tﬂ!tttttt“t /

switch ((int) rqstp—>rq_proc)
{ /* begin of switch */

case RAY_STAT_PROC: /* check for CPU awailability */
{ /* begin of case RAY_STAT_PROC */

/* get workstation name */
it ((gethost_err = gethostnaxne(ws name, maxlength)) l= 0')

fprintf(stderr, "gethostname: error in dist_rt \n");
return(0);

/* actual work, i.e. getting workstation status */
avail = statistics(ws_name);

/* send result back to client */
It (Isvc_sendreply(transp, xdr_bool, &avail))

fprintf(stderr, “svc_sendreply: error in dist_rt \n");
return (0);

return(1);
} /* end of case RAY_STAT_PROC */
case RAY_RTRACE_i’ROC: /* trace rays for one s:.;anlii:e */
{ /* begin of case RAY_RTRACE_PROC */

/* get arguments */
if (Isvc_getargs(transp, xdr _rtinput, rt_input))

E fprintf(stderr, "svc_getargs: error in dist_rt \n");
sveerr_decode(transp);
return(0);

/* send woid returi back to control program */
it (!svc_sendreply(transp, xdr_void, 0))

fprintf(stderr, "svc_sendreply: error in dist_rt\n");
return(0);

/* carry out actual work, i.e. tracing rays */
/* generate input and trace rays for scanline */
If (rtrace_work(rt_input, rt_output)l= 0)

fprintf(stderr, “rtrace_work: error in dist_rt\n");
return(0);

/* RPC call to send back results to collection server on VAX */
It ((callbackerr = callrpctep(collect_server, COL_PROG, COL_COLCT_PROC,
COL_VERS, xdr_rtoutput, rt_output, xdr_void, 0) = 0)

clnt perror(callbackerr),
fpnntf(stderr, "can’t make rpc call send back resuit \n");

return(0);
79

Jun 30 13:26 1989 , " Page 3 of raytracing_server.c



raytracing_server.c . raytracing_server.c

..dist_rt
}
return(1);
} /* end of case RAY_RTRACE_PROC */
case RAY_KILL_PROC: /* kill service */
{ /* begin of case RAY KILL_PROC */
it (!svc_sendreply(transp,xdr_void, 0))
fprintf(stderr, "svc_sendreply: error in dist_rt \n");
return(0);
/* deallocate memory space used for pointers to- structures */
free(rt_input);
free(rt_output);
/% unmap service */ :
svc_unregiste(RAY_PROG, RAY_VERS);
/* done, exit */
exit(1); '
} /* end of case RAY_KILL_PROC */
default: /* no procedure number matched */
{ /* begin of case default */
svecerr noproc(trangp); .
return(0);
} /* end of case default */
} /* end of switch */
} /* end of dist_n() */
G
ROUTINE s statistics()
DESCRIPTION : remote machine status will be checked by calling the highest
_ level of RPC “rstat”. “"rstat” will be called twice, since all
values return by it is accumulative, the difference will be
calculated for CPU idle time and percentage of this idle time
will be compared to the THRESHOLD value. This function will
return BUSY if the percent of idletime is less than THRESHOLD,
IDLE, otherwise. ’
bool_t : ‘ . e
statistics(wsname) . Staustics
char **wsname; -
{ /* declaration for statistics() */

Jun 30 13:26 1989 . Page 4 of raytracing_server.c



raytracing_server.c raytracing_server.c
o - ...Statistics
long ‘cpul_idletime; /* idle time in units of 20 milliseconds */
long cpu2_idletime; /* idle time obtained by second call */
long cpu_idletime; /* difference between two calls */
long currentl _sec; /% time in seconds at first call */
long current2_sec; /* time at second call */
long sec_bet2call; /* time elapsed between 2 calls */
Int percent_idle; /* peicent of idletime */
struct statstime statptr; /* return result */
/* end of declarations for statistics() */
/* */
/* first call */
rstat(wsname, &statptr);
/* set up variables after first call */
cpul _idletime = statptr.cp_time{CP_IDLE];
currentl_sec = statptr.curtime.tv_sec;
/* wait awhile */
sleep(5);
/* second call */
rstat(wsname, &statptr);
1* set up variables after second call */
cpu2_idletime = statptr.cp: time[CP_IDLE];
curreat?_sec = statptr.curtime.tv_sec;
/* get the difference between the 2 calls */
" cpu_idletime = cpu2_idletime ~ cpul_idletime;
sec_bet2call = current2_sec — currentl_sec;
/* convert to same units and calculate percentage */
percent_idle = (Ilnt)((cpu_idletime * 2) / sec_bet2call);
/* determine availibility */
it (percent_idle > THRESHOLD_PRCT)
fprintf(stderr, "%s is available \n", wsname);
return(IDLE);
else
{ :
fprintf(stderr, "%s is busy \n", wsname);
return(BUSY);
}
} /* end of statistics() */
/l
ROUTINE : rtrace_work()
DESCRIPTION : read viewing parameters from a file, generates input
(6 floating point numbers for viewpoint and direction
of rays for "rtrace”, the actual ray trace routine,
rtrace_work

rtrace_work(in,out)

l 81

Jun 30 13:26 1989

Page 5 of raytracing_server.c



raytracing_server.c . raytracing_server.c

...rtrace_work

struct ‘input_rt *in;
struct output_rt *out;

{ /* declaration for rtrace_work() */
int i; /* loop control variable */
int numread; /* # bytes read from result */
int rtrace_pid; /* process id for rtrace */
int wait_pid; /® process id for child */
char sbufrlPZS]‘ /* buffer for file header */
FILE *view_fp; /* viewing parameter file */
FILE *input_fp; /* input to rtrace */
FILE *result_fp; /* ‘temp result for scanline */

extern long header length;
extern  char octree{];
extern char viewfile[];
extern.  char inpufile{];
extern char resultfile{];
extern  char rt_com{];

/* end of declaration for rtrace_work() */

/* : */

/* print scanline number for user’s interest */
fprintf(stdout, "start block number: %d \n", in—>curr_block);

/* set up the command for tracing rays */
strcpy(octree, in—>scene_file);
setcommand();

/® generate input for ntrace */
strepy(viewfile, in—>view_file);
if (gen_input() != 0)

fprintf(stderr, "gen_input: error in rtrace_work\n");

return(-1);

/* spawn new process to retain a copy of executable image */
rtrace_pid = fork();

if (rtrace_pid == 0) /* child: trace rays */
execl(” bin /sh”, “sh”, "-c", rt_com, 0); ' O
_exit(0);

It (rtrace_pid > 0) /* parent got a copy to cont */

wait_pid = wait(0); /* wait for. child competion */
it (wait_pid > 0)
kill(wait_pid, SIGQUIT);

/* store return result */
out—>done_block = in->curr_block;
result_fp = fopen(resultfile, "r");

/* discard header, store header length if needed */
If (header_length = —1)

while(fgets(sbuf, sizeof(sbuf), result_fp) != NULL &&

sbuff0] = \n")
& .

Jun 30 13:26 1989 ' - Page 6 of raytracing_server.c



raytracing_server.c . raytracing_server.c

...rtrace_work

ir (f,gets(sbuf, sizeof(sbuf), result_fp) == NULL ||
sscanf(sbuf, "=Y %d +X %d\n", &yres, &xres) != 2)

fpﬁntf(stden, "fgets: discard header error \n");
- return(—1);

}
/* get header length 10 store */
header_length = ftell(result_fp);

else

/* get just beyond the header */
fseek(result_fp, header_length, 0);

/* get result */

numread = fread(out->result, sizeof(COLR), BLOCK, result_fp);
out—>block_length = numread;

fclose(resultfile);

/* finish actual work */
return(0); :

}

} /* end of ntrace_work() */

/ ]
ROUTINE : setcommand()

DESCRIPTION : the command for ray tracing a block of scanlines is set up
by calling this routine. This command consists of:

— the name of the ray tracing routine, "rtrace”,

— the input and output format option, "—ffc",
the first [ stands for format, the second f stands for
float (input: floating point numbers), and the c stands
for COLR (output: special format, RED, BLUE, GREEN,
EXPONENT) :

— the x and y resolution option, "-x XRES" & "—y YRES",
both of these numbers should be included so that the
result buffer will be flushed properly, and the header
of the output file wil be generated correctly,

— the octree scene dexcription filename,

~ the input filename, this file contains the ray
origin and ray directions, :

— the output filename, so that result could be copied
into a buffer to send back to the collection server.

setcommand() setcommand

{ /* declarations for setcommand() */

char hostname[20]; /* name of ray trace server */
FILE *input_fp; /* input to ray trace file pointer */

extern char octree[];

extern char viewfilef];
extern char inputfile{};
extern char resultfile(];
extern char rt_com(];
extern int blocksize;

Jun 30 13:26 1989 Page 7 of raytracing_server.c



raytracing_server.c

raytracing_server.c

...setcommand

/* end of declarations for setcommand() */

/t

=/

/* initialise filenames */
strcpy(inputfile, "for™);
strepy(resultfile, “from");

/* initialize command */
switch (blocksize) {
case 5:

break;
case 10:

strepy(rt_com, - “rtrace —ffc —x 512 -y § 7);

strepy(rt_com, “rtrace —ffc —x 512 -y 10 7);

break;
case 20:

strepy(rt _com, “rtrace —ffc. —x 512.-y 20 7);

break;
} /* end of switch statement */

/* add octree scene filename */
strcat(rt_com, octree);

/* get hostname to distinguish input and result files %/

gethostname(hostname, 20);
strcat(inputfile, hostname);
strcat(resultfile, hostname);

/* set up-the rest of the command */

strcat(rt_com, " < 7);
strcat(rt_com, inputfile);
streat(rt_com, * > 7);
strcat(rt_com, resultfile);

/* finish */
return(0);

} /* end of setcommand() ‘ /
/.

ROUTINE : gen_inpus()

DESCRIPTION : input to "rtrace®, the ray tracing routine, is generated
and written into a file in this routine. “rtrace” ‘s input
consists of 512 sets of data for 512 pixels in a scanline.
Each set consists of 3 floating points for the viewpoint,
and 3 floating points for the ray direction.

>/

gen_input()

{ /% declarations for gen_inpus() */

gen_jnput

double anghor, angvert; /* horizontal, vertical view angles */

. double h, v;
~ FILE *view_fp;
FILE *input_fp;

Jun 30 13:26 1989

/* horizontal, vertical offsets */
/* viewing parameter file pointer */
/* rtrace input file pointer */

Page 8 of raytracing_server.c



raytracing_server.c . . ~ raytracing_server.c

...gen_input

float view[3]; /* view point coordinate */

float direction{3]; /* ray direction */

FVECT vp, vdir, vup; /* view point, direction, up vectors */
FVECT vhine, wvine; /* hor, vert increments on view plane */
Int i; o /* loop comtrol variable */

int x Y _ /* pixel position */

int y0, yl; /* initial, final scanline # of block */

* int point, up, dir; /* # floating point numbers read */

int angle; /* . s/
int bview, bdir; /* # floating point numbers written */

extern char  inputfile[];
extern char  viewfilef};
extern struct input_rt *rt_input;

/* end of declaratioﬁs Jor gen_input() */

/% — et/

/* open files */

view_fp = fopen(viewfile, "r");

input_fp = fopen(inputfile, "w");

it ((view_fp == NULL) || (input_fp == NULL))

fprintf(stderr, "fopen: error in gen_input\n”);
return(-1);

/* get viewing parameter from file */

point = fscanf(view_fp, "%lf%U%If", &vp{0], &vp[l], &vp[2]);

dir = fscanf(view_fp, "%If%If%If", &vdir[0), &vdirfl], &vdir{2]);
up = fscanf(view_fp, "%IU%U%If", &vup(0], &vup(i], &wvup[2)]);-
angle = fscanf(view_fp, "%lf%If", &anghor, &angvert); -

It ((point t= 3) || (dir != 3) || (up != 3) || (angle I= 2))
fprintf(stderr, “fscanf: viewpara file error in gen_input\n”);
return(-1);.

/* done with viewpara file */

fclose(view_fp);

/* set up view point */
view[0] = (Hoat)vp[0];

view[l] = (Boat)vp{l];

ew([2] = (float)vp|2);

/* calculate viewing direction increments */
setview(view, vdir, vup, anghor, angvert, vhinc, vvinc);

/* set up values for first and last scanlines of block */
yO0 = rt_input—>curr_block * BLOCKSIZE;
yl = y0 + BLOCKSIZE;

/* start genarating input */
/* loop until the last scanline of block */
for (y = y0; y < yl; y++) '

/* loop until last pixel of scanline */
for (x = 0; x < XRES; x++)

Jun 30 13:26 1989 ' : , Page 9 of raytracing_server.c



raytracing_server.c

/.

raytracing_server.c
...gen_jinput
{ /* begin of for x loop */
/* set up ray direction */
h = x — XRES / 20; /* horizontal offset */
v =y - YRES / 2.0; /* vertical offset */
for (i = 0; i < 3; i++)
direction{i] = (Hoat)(vdir{i] + h*vhinc[i] + v*vvinc[i]);
/* write viewpoint and direction to rtrace’s inputfile */
bview = fwrite(view, sizeof(float), 3, input_fp);
bdir = fwrite(direction, sizeof(float), 3, input_fp);
it ((bview I= 3) || (bdir != 3))
fprintf(stderr, “fwrite: error in gen_input\n”);
return(-1);
} /¢ end of for x-loop */
/* finish generate input */
fclose(input_fp);
return(0);
) B end of gen_input() */
ROUTINE s setview()
DESCRIPTION : calculate the vertical and horizontal increment
Jor input to rtrace command. This routine is éxtracted
from GREG's routine in the file called “image.c”
Jound in the directory ™ /ray /",
*/
setview

setview(vp, vdir, vup, anghor, angvert, vhinc, vvinc)

FVECT
double

{

vp, vdir, vub, vhine; vvine;
anghor, angvert;

/* begin of declarations of setview() */

double  tan(), normalize();
double dt;

/* end of declaration of setview() */

/‘ ', . _ N _ ‘/

/* normalize view direction vector */
If (normalize(vdir) == 0.0)

fprintf(stderr, “zero view direction\n”);

return(~-1);

/* compute horizontal direction */
fcross(vhine, vdir, vup);

/* normalize view up vector */
it (normalize(vhinc) == 0.0)

fprintf(stderr, “illegal view. up .vector\n");
return(-1);
86

Jun 30 13:26 1989

Page 10 of raytracing_server.c



raytracing_server.c

}

/* compute vertical direction */
feross(vvine, vhinc, vdir);

dt = 2.0 * tan(anghor*(PI /180.0/2.0));

it (dt <= FTINY || dt >= FHUGE)
fprintf(stderr, “illegal horizontal view angle\n”);
return(-1); '

dt /= XRES;
vhinc[0] *= dt;
vhinc[1] *= dt;
vhinc[2] *= dt;

dt = 2.0 * tan(angvert*(PI /180.0/2.0));

it (dt <= FTINY || dt >= FHUGE)
fprintf(stderr, “illegal vertical view angle \n");
return(-1);

dt /= YRES;
winc{O} *= dt;
vvinc|[l] *= dt;
vvincf2] *= dt;

} /% end of setview() */ s

raytracing_server.c

...setview

/ E
ROUTINE : normalize{)

DESCRIPTION : normalize a vector. This is an exact copy of the
routine “normalize” found in ~/ray /Int [fvect.c

double

normalize(v) :
register FVECT(v);

{ /* declaration for normalize() */

double len;
double  sqrt();

/* end of declaration for normalize() */

len = DOT(v,v);
if (len <= FTINY*FTINY)
return(0.0);

it (lem >= (1.0-FTINY)*(1.0-FTINY) &&
len <= (1.+FTINY)*(1.0+FTINY))
return(1.0);

len = sqrt(len);
v[0] /= len;
v[l] /= len;
v[2] /= len;

Jun 30 13:26 1989

normalize

Page 11 of raytracing_server.c

*/



raytracing_server.c

return(len);

} /* end of normalize() */

raytracing_server.c

...normalize

/*
ROUTINE. s feross()
DESCRIPTION : calculate the cross product of two vectors vl X v2

s/
fcross(vres, vl, v2) fCT’ 0SS
register FVECT vres, v1, v2; ’
{ /* begin of feross() */

vres[0] = vif1]*v2[2] - v1[2]*v2[1];
vres[1] = v1[2]*v2{0] -~ v1[0]*v2[2]; .
vres2] = v1[0]*v2{1] — vi[1]*v2[0];
}  /* end of feross() */
/t
ROUTINE s callrpetep()
DESCRIPTION : dispatch routine for sending result back to the child
process on the VAX side,

*/
callrpctep(host, prognum, procnum, versnum,.inproc, in, outproc, out) CalleCpr
char *host;
char *in, *out;

Int prognum, versnum, procnum;
xdrproc_t inproc, outproc; :
{ /* declarations for callrpctep() */
enum cint_stat cint_stat;
int socket = RPC_ANYSOCK;
struct sockaddr_in server_addr,
struct hostent *hp; /% host entry */
struct timeval total_timeout; /* timeout provi:ions ®/

exten  CLIENT *client_callback;
/* end of declarations for callrpctep() */
/*

*/

/* has socket and client handle been created ? */
It (client_callback == NULL)

/* get host entry */
If ((hp = gethostbyname(host)) == NULL)

fprintf(stderr, "can’t get address for host \n");
return(-1);

beopy(hp—>h_addr, (caddr_t)&server_addr.sin_addr, hp—>h_length);

server_addr.sin family = AF_INET;
88

Jun 30 13:26 1989

Page 12 of raytracing_server.c



raytracing_server.c

/i

server_addr.sin_port = htons(0);

/* create client socket, memory stream, and client handle */

If ((client_callback = clnttcp_create(&server_addr,

prognum, versnum, &socket, BUFSIZ, BUFSIZ)) == NULL)

clnt_pcreateerror("clnttcp _create”);
return(-1);

}
total_timeout.tv_sec = 20;
total timeout.tv_ _usec = 0;

/* call dispatch routine */
clnt_stat =-clnt _call(client_callback, procnum, inproc, in,
outproc, out, total timeout);
if (clnt_stat !=- RPC_SUCCESS)
clnt perror(chent callback, "rpc");
return(-1);
return((Int)cint_stat);

/* end of callrpctep() */

raytracing_server.c

...callrpctcp

ROUTINE : xdr_rtinput()

DESCRIPTION : eXternal Data Representation for input to "nrace”.
This routine is called to decode the input argument.

The input consists of the followings:
-~ an integer for the block number,

— a filename for the scene decription . file,
-~ a filename for the viewing parameter file.

*/

bool _t
xdr_rtinput(xdrs, rt_input)

XDR *xdrs;
struct input_rt *rt_input;

{

/* declaration for xdr_rtinput() */
ht k; _ /* loop control variable */
/* end of declaration for xdr_ntinpur() */

/* s/

If (Ixdr_int(xdrs, &rt_input—>curr_block))
return(FALSE);

it (!xdr_string(xdrs, &rt_input~>scene_file, 20))
return(FALSE) '

If (Ixdr_string(xdrs, &rt_input—>view_file, 20))
return(FALSE);

return(TRUE);
89

Jun 30 13:26 1989

xdr_rtinput

Page 13 of raytracing_server.c



raytracing_server.c , . raytracing_server.c

...Xdr_rtinput
} /* end of xdr_ninput() */

/I

ROUTINE : xdr_rtoutput()

DESCRIPTION : eXternal Data Representation routine for the result of a
scanline sent from Sun workstations back to VAX side.
This routine is called to encode the result before
sending it to the collection server.
The result consists of the followings:
— an integer for the number of the block done,
— an integer for the number of "COLR" items store as
the result, this number is not necessary equal to
" the number of pixels in the block (512 * ABLQOCKSIZE),
due to' run—length encoding,
— an array of pixel values. Each value is stored as
four. unsigned chars: RED, BLUE, GREEN, EXPONENT.,

bool _t :
xdr_ttoutput(xdrs, rt_out) _ xdr_rtoutput
XDR *xdrs; ‘ ' )

- struct output_rt *rt_out;
/* declaration for xdr_rtoutput() */
int . .maxsize;
/* end of declaration for xdr_rtoutput() */
maxsize = XRES * 4 * BLOCKSIZE;

it (!xdr_int(xdrs, &rt_out—>done_block))
return (FALSE);

it (!xdr_int(xdrs, &rt_out—>block_length))
return (FALSE);

It (!xdr_opaque(xdrs, rt_out—>result, maxsize))
return (FALSE);

return (TRUE);
} /* end of xdr_nouwput() */
/ '

s/

Jun 30 13:26 1989 Page 14 of raytracing_server.c

*/



collect_server.c | o collect_server.c

/‘“t‘t‘.ﬁ“!!‘t“#‘#lttt“t!*#t‘*‘**"*t‘t‘*‘****‘ﬂ““‘“tt#“‘tt‘ttt'**““/ )

/t

/* PROGRAM : collect_server.c

/* : '

/* AUTHOR : Mydung Thi Tran

/* : '

/* DATE ¢ 7/27/87
s .

/* DESCRIPTION : this is part three of 3 parts of my thesis work:

/* — part 1: the distribution client can be found in the
/* file "distribute_client.c".

/* — part 2: the ray tracing server, can be found in the
/" file “raytrace_server.c”.

/* This routine is executed the result collection server.

/* It listens to call back from the ray tracing servers for
/* * result. The results, values for pixels of a scanline,

/* are written into the output file, specified by the external
/> file pointer “output_fp", these scanlines are written in

/* - random order at first and when all scanlines are written,
/* image will then be reconstructed using information stored
/* in the data structure “result”, which contained 3 fields:
/* v scanline number, location in raster output file, length of
/* scanline (necessary due to run—length encoding).

/* For synchronization purposes, distribution client (part 1)
/* will invoke a remote procedure call to this server, to
VA request for list of scanline completed. Checking for image
/* completion is done in the distribution client, any overdue
/* scanline will be redistributed.

/* :

/* INPUT ; should be called with:

/* — name for random outputfile,

/* : — name for raster outputfile.

/*

/* OUTPUT > — random outputfile,

/* — raster outputfile,

/*

/““““.“".““"..‘i"‘““““"3"“‘!““‘“““t‘.““‘"“‘.t‘tit“‘/

- #include "distribute.h”

bool _t xdr_rtoutput(); /* xdr routine for output argument to rtrace */
bool_t progressfINUMBLOCK]; /* progress report structure */

char outputfile[20]; /* random output filename */

char rasterfile{20]; /* raster output filename */

FILE *output_fp; /* random file pointer */

FILE *raster_fp; /* raster file pomter ¢/

int obtain_report(); /* dispatch routine forward declarauon */

long next_offset = 0; /* offset from begmmng of random ﬁle'/

struct block _info reconstmct[NUMBLOCK] /* image reconstruction info */
struct output rt *rt_output; /* result sent back from nrtrace servers */
main(arge, argv) main
Int argc;

char  *argv[];
{ /* declaration for main() */
register SVCXPRT *transprt; /* serw;ce transport handle */

/* end of declaration for main() */

91

Jun 30 13:26 1989 | . Page 1 of collect_server.c



collect_server.c : collect_server.c

...main
L ‘ S

/* initialize filenames and pointer memory. allocation */
strepy(outputfile, argv[l1]);

strepy(rasterfile, argv[2]);

rt_output = (struct output_rt *)malloc(sizeof(struct output_rt));
It (rt_output == NULL)

fprintf(stderr, "malloc: error in main of collect\n");
exit(—-1);
/* create server socket, memory stream and service handle */
if ((transprt = svctcp_create(RPC_ANYSOCK, BUFSIZ, BUFSIZ)) == NULL)
fprintf(stderr, “svctcp_create: error in main of collect \n");
exit(1);
/* erase anytrace, make sure this is the update version */

pmap_unset(COL_PROG, COL_VERS);

/* register service, call back procedures from remote machines */
if(!svc_register(transprt, COL._PROG,COL_VERS,obtain_report,IPPROTO_TCP))

fprintf(stderr, "svc_register: -error in main of collect \n");
exit(1);

/* run service routine */

sve._run();

/* should not reach this point */

fprintf(stderr, "Error: svc_run returned \a");

exit(~1);

} /* end of main() */

/* ,
ROUTINE  : obtain_report()
DESCRIPTION : this is the collection service dispatch routine, one of the
Jollowing five cases will be taken care:

I—~ COL_COLCT: collect result from ray tracing servers in
random order, write to a ﬁle update progress
report structure, ’

2—- COL_KILL: unmap service, stop the server,

3— COL_QUERY: send progress report to distribution cheuz

4- COL RECON reconstruct image, rewrite the result in
random file to raster order,

S5— default: print “"nomatch” error message.

obtain_report(rgstp, 'transprt) obtain_r eport
register struct svc_req *rqstp; /* contains procedure number */

register SVCXPRT *transprt; /* service traansport handle */

{ /* declarations for obtain_report() */

Jun 30 13:26 1989 : Page 2 of collect_server.c



1L

collect_server.c collect_server.c
, ...obtain_report
int i; /* loop control variables */ '
Int length, howlong; /* # of pixels for result scanline */
int px_2write; /* # of pixels to write to rstrfile* /
int px_written; /* # of pixels written to rsirfile */
Int block _done; /* # of done scanline */
long offset; /* starting position in randomfile */
long file_length; /* starting position 4 nxt scanline* /
bool_t  xdr_rtoutput(); /* xdr for output from rtrace */
bool_t  xdr_progress(); /* xdr for progress report */
COLR  buff[BLOCK]; - /* temp storage 4 file transfer */
void svc_unregister();
extern char outputfile{];
extern char rasterfile[];
extern FILE *output_fp;
extern FILE *raster_fp;
extern bool_t progress{];
extern long next_offset;
extern struct output_rt *rt_output;
extern struct block_info reconstruct(];

/* end of declarations for obtain_report() */

/* */

switch ((Int)rgstp—->rq_proc)
{ /* begin of switch */

case COL_COLCT_PROC:

{

Jun 30 13:26 1989

/* collect réult */
/* begin of case COL_COLCT_PROC */

/* get argumerts, ie. result from rtrace */
it (Isvc_getargs(transprt, xdr_rtoutput, rt_output))

sveerr_decode(transprt);
return(0);
/* which scanline is done ? */
block_done = rt_output—>done_block;

/* update progress report structure */ -
progressfblock_done] = DONE;

/* write result to random file */ ‘ .
it ((output_fp = fopen(outputfile, "a")) =~ NULL) - -

fprintf(stderr, "fopen: random file in obtain_report\n”);
return(0); ‘

}
length = rt_output—>block _length;
fwrite(rt_output—>result, sizeof(COLR), length, output_fp);
fclose(output_fp);

/* update structure for image reconstruction */
reconstructblock _done].length = length;

/* record it as start position for image reconstruct */
reconstruct{block_done].start_position = next_offset;

/* set up offset for next scanline */
next_offset = next_offset + (length * sizeof(COLR));

93

Page 3 of collect_server.c -



collect_server.c | | , collect_server.c

/* send signal of completion */
if (!svc_sendreply(transprt, xdr_void, 0))

fprintf(stderr, "svc_sendreply: error in obtain_report\n");
return(0);

/* print message for user’s interest */

fprintf(stdout, "Block %d collected\n®, block_done);

/* finish, exit */
return(1);

} /* end of case COL_COLCT_PROC */
case COL_KILL_PROC: /* unregister service . * /
{ /* begin of case COL_KILL_PROC */

/* send signal back to client */
It (!svc_sendreply(transprt, xdr_void, 0))

fpﬁntf(stderr, "sirc_sendreply: error in obtain_report \n");
return(0);

/* unmap service */

sve_unregistef(COL_PROG, COL_VERS);

/* done, exit */
exit(1); ’

} /* end of case COL_KILL _PROC */
case COL_QUERY_PROC: /* check progess report */
{ /% begin of c_aserCOL._QUERY_PROC */

/* send the boolean array marking scanline done back */
i (Isvc_sendreply(transprt, xdr_progress, progress))

fprintf(stderr, "svc_senareply: error in obtain_report \n®);
return(0); ‘
/* exit */
return(l);
} /* end of case COL_QUERY_PROC */
case COL_RECON_PROC: /* reconstruct image */
{ /* begin of case COL_RECON_PROC */

/* open random and raster files */
It ((output_fp = fopen(outputfile, “r")) == NULL)

fprintf (stderr, "fopen: random file in obtain_report\n 7);
reurn (0);

it ((raster_fp = fopen(rasterfile, "w")) == NULL)
fprintf (stderr, “fopen: raster file in obtain_report\n”);

return(0); v
94

...obtain_report

Jun 30 13:26 1989 : Page 4 of collect_server.c



coliect_server.c collect_server.c

...obtain_report

}
/* do until the last block of scanlines */
fori = 0; i < NUMBLOCK; i++)
. { /% begin of for loop */

/* find the starting point for scanline */
offset = reconstruct(i].start_position;

/* get the scanline length */
howlong = reconstruct(i].length;

/* search for the right place in random file */
It (fseek(output_fp, offset, 0) != 0)

fprintf(stderr,"fseek: random file in obt_reprt\n");.
return (0);

/* get info for the entire scanline */
px_2write = fread(buff, sizeof(COLR), howlong, output_fp);
it (px_2write != howlong)

fprintf(stderr, "fread: copy file in obt_report\n”);
return(0);

/* write into the final raster file */

px_written = fwrite(buff, sizeof(COLR), px_2write,
raster_fp);

i (px_written = px_2write)

fprintf(stderr, "fwrite: copy file in obt_report\n~); '
return(0); '
/* print message for user's interest * /.
fprintf(stdout, "block %d written \n", i);.
} /* end of for loop */

/* close all file pointers */
it (fclose(raster_fp) != 0)

fprintf (stderr, “fclose: raster file in obt_report\n”);
return(0); :

i (fclose(output_fp) != 0)
fpﬁntf (stderr, "fclose: random file in obt_report\n”);
return(0); ‘

/* send signal for completion */

it (Isve_sendreply(transprt, xdr_void, 0))
fprintf(stderr, "svc_sendreply: error in obtain_report \n");

return(0);

/% exit */
return(1);

95
Jun 30 13:26 1989 : » Page 5 of collect_server.c



collect_server.c . : collect_server.c

} /* end of case. COL_RECON_PROC */ ...obtain_report
default:
¢ svcerr_noproc(transprt);
retarn(0);
) A e}nd of switch */ |
} /* end of receive_report() */ <

p - ,- , |
ROUTINE : xdr_rtoutput() |

DESCRIPTION : eXternal Data Representation routine. for the result of-a
scanline sent from Sun workstations back to VAX side.
This routine is called to decode the result sent back.
The result consists of the followings:
— an integer for the number of the block done,
— an integer for the number of "COLR" items contained
in block of results (this number could be different
from (BLOCKSIZE * 512) due to run—length encoding,
~ array of pixel valaues, each pixel is expressed as
four unsigned chars: 1 RED, 1 BLUE, GREEN, 1 EXPONENT.

bool _t : '
xdr_rtoutput(xdrs,rt_out) : . xdr_rtout put

XDR *xdrs;
struct output_rt *rt_out;

{ /* declaration for xdr_rtoutput() */
u_int maxsize; /* maximum number of clements */

/* end of declaration for xdr_rtoutput() */

/* : - */
maxsize = XRES * 4 * BLOCKSIZE;
I(!xdr_int(xdrs, &rt_out->done_block))
return(FALSE);

it (!xdr_int(xdrs, &rt_out—>block_length))
return(FALSE); ,

if(!xdr_opaque(xdrs, rt_out—>result, maxsize))
return(FALSE);

return(TRUE);

} /* end of xdr_output() */

/*
ROUTINE : xdr_progress()

DESCRIPTION : this is the eXternal Data Representation for the array of
boolean type of YRES elements, which contains information
on whether or not the scanline result has been recorded in
the rasterfile. "DONE" or 1 means the result had beer written

9%

Jun 30 13:26 1989 Page 6 of collect_server.c



collect_server.c ' - . -~ collect_server.c

into the file. "NOT_YET" or 0 indicates that the result has
not been received. This routine is called to encode the
progress before sending it to the distribution client,

*/

bool _t
xdr_progress(xdrs, progress) - ' x-dr_progress

XDR *xdrs;
bool _t progressfNUMBLOCK];

{ /% -declarations for xdr_progress() */
Int k; /* loop control variable */
/* end of declamtbm for xdr_progress() s/
/* =/

for (k = 0; k < NUMBLOCK; k++)
{ it (Ixdr_bool(xdrs, &progress[k]))
return(FALSE);
return(TRUE);

} /* end of xdr_progress() */

/. » : : . */

Jun 30 13:26 1989 ’ R ' Page 7 of collect_server.c



Appendix B: Program Profiles

98



distribute.p | ) ~ distribute.p

/* profile for "distribute_client.c”

%time cumsecs #call ms/call name
14.8 0.17 64 2.66 _write
12,2 0.31 72 1.94 _select
6.1 0.38 65 1.08 _read
5.2 0.4 10 6.00 _connect
5.2 0.50 871 0.07 _ntohl
3.5 0.54 62 0.65 _callrpctcp
3.5 0.58 _xdrrec_create
2.6 0.61 “clnttcp_create
2.6 0.64 clntudp bufcreate
2.6 0.67 1 30.00 _distribute
2.6 0.70 103 0.29 “malloc
2.6 0.73 _pmap_getport
2.6 0.76 15 2.00 _socket
2.6 0.79 ‘ _vfork:
1.7 0.81 7 2.86 __doprmt
17 0.83 45 0.44 _gettimeofday
17 0.85 1 20.00 _main
17 0.87 5 4.00 _recv
17 0.89 5 4.00 _sendto
17 0.91 _xdr_bool
1.7 0.93 mcount
1.3 0.95 _xdr_long
13 0.96 “xdr_u_int
0.9 0.97 “authnone_create
0.9 0.98 2 5.00 _forintf
0.9 0.99 6 1.67 _ioctl
0.9 1.00 ’ _monstartup
0.9 1.01 17 0.59 _morecore
0.9 102 2 5.00 _open
0.9 1.03 -5 2.00 _res_mkquery
09 104 19 0.53 _sbrk
0.9 1.05 5 © 200 _send
- 0.9 1.06 45 0.22 _setitimer
0.9 107 172. 0.06 _stremp
0.9 1.08 : _xdr_enum
0.9 1.09 “xdr_opaque
0.9 110 16 0.63 _xdr_progress
0.9 L _xdr_u_long
0.9 1.12 “xdr_void
0.9 L13 _xdrmem__create
0.9 114 _xdrrec_endofrecord
0.9 115 , _xdrrec_skiprecord L
0.0 1.15 5 0.00 _ “doscan T
0.0 1.15 3 0.00 __filbuf ' o
0.0 1.15 2 0.00 ___findiop .
0.0 115 3 0.00 __flsbuf
0.0 L1is 344 0.00 _becopy
0.0 115 b 0.00 _bzero.
0.0 L15 3 0.00 close
0.0 115 b} 0.00 _dn_comp
0.0 1.15 6 0.00 _dn_expand
0.0 L1s5 10 0.00 _dn_find
0.0 115 5 0.00 _dn_skip
0.0 115 2 0.00 _execl
0.0 L15 2 0.00 _execy
0.0 1.15 2 0.00 _execve
0.0 1.15 1 0.00 _fclose
0.0 L1 1 0.00 _fflush
0.0 L15 3 0.00 _fgets
0.0 L15 2 0.00 _fopen
0.0 L15 101 0.00 _free
00 LIS 5 0.00 _fscanf

Jun 30 13:50 1989 - . : Page 1 of distribute.p



aistripute.p

>
>
f"f"‘,!“'f“!*‘f‘f"f"f‘f‘f‘f‘f"f“!“!“f‘!’“f“f“!“!“f“f‘f"f“f‘f“f“f“‘f“
g oy by g by Py by by by by ey
aoacooooooooooooaooooooooacaoooa

Jun 30 13:50 1989

8Num~w&u

0.00

OO OLOD

OSSOSO ODs
SIISIIIISSSY

_fstat
_gethostbyname

sigpause
_sigsetmask
_sigvec
_Sleep
_sprintf.
_Strlen
_strncmp
_simepy
_System
_ungetc
_wait
_xdr_rtinput

100

aistripute.p

Page 2 of distribute.p



raytrace.p . réytrace.p

/* profile for "raytracing _server.c” */

%time cumsecs #call ms/call name

18.9 14.27 307500 0.05 Fmuld

17.0 27.10 307350 0.4 Faddd

10.7 35.16 1 8059.88 _profil

8.8 41.78 mcount

6.3 46.51 d_exte

6.1 51.09 102400 0.04 _fwrite

5.8 55.45 5 871.99 _gen_input

5.4 59.51 d_usel

4.6 63.01 102400 0.03 Fitd

4.2 66.15 d_rcp

34 68.75 153615 0.02 - Fdtos

23 70.52 102522 0.02 _memcpy

1.7 71.84 376 3.51 _write

15 72.97 102470 0.01 Fsubd

1.3 73.95 d_norm

0.4 74.25 50 6.00 Fdivd

0.3 74.49 21 11.43 _open

0.2 74.67 52 346 _read

0.2 74.83 110 1.45 Fcmpd

0.1 74.93 in 0.32 _bcopy

0.1 75.01 d_pack

0.1 75.08 : _rewind

0.1 75.14 12 5.00 _svc_getregset
0.1 75.18 1 40.00 _cintudp_create
0.1 75.22 31 1.29 _close

0.1 75.26 ptwo

0.0 75.29 Frintd

0.0 75.32 Frints

0.0. 75.35 20 1.50 Fscaleid

0.0 75.38 5 6.00 _ ftell

0.0 75.40 4 5.00 _flock

0.0 75.42 5 4.00 _fork

0.0 75.44 _getenv -
0.0 75.46 2 10.00 _gethostbyname :
0.0 75.48 6 3.33 _lseek

0.0 75.50 18 1.11  _recvfrom

0.0 75.52 46 0.43 _select

0.0 75.54 18 1.11 _sendto

0.0 75.56 2 10.00 _xdrrec_create
0.0 75.58 16 1.25 _xdrrec_endofrecord
0.0 75.59 Fund

0.0 75.60 s1 020 _bzero

0.0 75.60 11 0.00 _ _authenticate
0.0 75.60 25 0.00 _ _doscan

0.0 75.60 37 0.00 __fibuf

0.0 75.60 17 0.00 __findbuf

0.0 - 7560 17 0.00 _ _findiop

0.0 75.60 45 0.00 _ _fp_normalize
0.0 75.60 45 0.00 __fp_rightshift
0.0 75.60 15 0.00 __ fp_set_exception
0.0 75.60 75 0.00 __mul_65536
0.0 75.60 45 0.00 __pack_double
0.0 75.60 48 0.00 _ _rpc_dtablesize
0.0 75.60 23 0.00 __seterr_reply
0.0 75.60 11 0.00 __svcauth_null
0.0 75.60. 7 0.00 __wrtchk

0.0 75.60 160 0.00 _ _xflsbuf

0.0 75.60 3 0.00 __yp_dobind
0.0 75.60 1 0.00 _accept

0.0 75.60 8 0.00 _authnone_create
0.0 75.60 12 0.00 _bind

0.0 75.60 9 0.00 _bindresvport

101

Jun 30 14:29 1989 ' ‘ Page 1 of raytrace.p



rayirace.p ' - raytrace.p

0.0 75.60 3 0.00 _calloc

0.0 75.60 10 0.00 _callrpc:

0.0 75.60 5 0.00 _callrpetep

0.0 75.60 1 0.00 _clnttcp_create
0.0 75.60 7 0.00 _clntudp_bufcreate
0.0 75.60 1 0.00 _connect

0.0 75.60 15 0.00 _decimal_to_binary_fraction
0.0 75.60 30 0.00 . _decimal_to_-binary_integer
0.0 75.60 55 0.00 ~decimal_to_double
0.0 75.60 45 0.00 _decimal_to_unpacked
0.0 75.60 11 0.00 _dist_rt

0.0 75.60 2 0.00 _endhostent

0.0 75.60 1 0.00 _exit

0.0 75.60 17 0.00 _ fclose

0.0 75.60 1 0.00 _fent

0.0 75.60 10 - 0.00 _feross

0.0 75.60 12 0.00 _fllush

0.0 75.60 20 0.00.. _fgets

0.0 75.60 - 55 0.00 _file_to_decimal.
0.0 75.60 1 0.00 _fimitfp_

0.0 75.60 17 0.00 _fopen

0.0 75.60 10 0.00 _fprintf

0.0 75.60 5 0.00 _fread

0.0 75.60 32 0.00 _free

0.0 75.60 20 0.00 _fscanf

0.0 75.60 15 0.00 _fstat

0.0 75.60 3 0.00 _get myaddress
0.0 75.60 1 0.00 _getdomainname
0.0 75.60 1 0.00 _getdtablesize
0.0 75.60 10 0.00 _gethostname
0.0 75.60 1 0.00 _getpagesize

0.0 75.60 - 12 0.00 _getpid

0.0 75.60 4 0.00 _getsockname
0.0 75.60 10 0.00 gettimeofday
0.0 75.60 2 0.00 _inet_addr

0.0 75.60 30 0.00 ioctl

0.0 75.60 17 - 0.00 _isatty

0.0 75.60 5 0.00 _kill

0.0 75.60 1 0.00 _listen’

0.0 75.60 1 0.00 _main

0.0 75.60 68 0.00 _malloc

0.0 75.60 20 0.00 _memccpy

0.0 75.60 10 0.00 _memchr

0.0 75.60 10 0.00 _normalize

0.0 75.60 1 0.00 _on_exit

0.0 75.60 2 0.00 _pmap_getport
0.0 75.60 1 0.00 _pmap_set

0.0 75.60 2 0.00 _pmap_unset
0.0 75.60 5 0.00° _rtrace_work
0.0 75.60 6 0.00 _sbrk

0.0 75.60 5 0.00 _setcommand
0.0 75.60 2 0.00 _scthostent

0.0 75.60 15 0.00 _setitimer

0.0 75.60 5 0.00° _setview

0.0 75.60 5 0.00 _sigblock

0.0 75.60 5 0.00 _sigpause

0.0 75.60 5 0.00 _sigsetmask

0.0 75.60 10 0.00 _sigvec

0.0 75.60 S 0.00 _sleep

0.0 75.60 13 0.00 _socket

0.0 75.60 3 0.00 _sprintf

0.0 75.60 5 0.00 _sscanf

0.0 75.60 5 0.00 _ statistics

0.0 75.60 35 0.00 _strcat

0.0 75.60 11 0.00 _strcmp

102

Jun 30 14:29 1989 Page 2 of raytrace.p



G

raytrace.p
00  75.60
00  75.60
00  75.60
00  75.60
00 7560
0.0 75.60
00  75.60
00  75.60
00 7560
00  75.60
00  75.60
00  75.60
100  75.60
00 ~ 75.60
00  175.60
00 7560
0.0  75.60
00 7560
00 7560
0.0 75.60
0.0 75.60
0.0  75.60
0.0 7560
00  75.60
00  75.60
00  75.60
0.0 75.60
0.0 75.60
00  75.60
00  75.60
00 7560
00  75.60
0.0  75.60
00  75.60
0.0 7560
0.0 75.60
00  75.60
0.0 75.60
00  75.60
00 7560
00  75.60
00  75.60
00  75.60
00  75.60
00  75.60
00  75.60
Jun 30 14:29 1989

NowouREu B85 0208

—
= WWNRNO

0.00
0.00

O(X)
0.00

0.00

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

_strepy

_strlen

_stmcpy

_strpbrk
_Svc_register
svc_run

sve sendreply
svc_unregister
svcfd_create
svctcp_create
ngetc
_usingypmap

wait

waitd
xdr_accepted _reply
xdr_bool -
xdr bytes
xdr_callhdr
xdr_callmsg
xdr_datum
xdr_enum
xdr_int

xdr_long
xdr_opaque
xdr_opaque_auth
xdr_pmap
xdr_replymsg
xdr_rtinput
xdr_rtoutput
xdr_string
xdr_u_int

xdr_u long
xdr_u_short
“xdr_union

xdr_ "void

xdr_ _ypdomain_wrap_string
xdr_ypmap_wrap_string
xdr_ypreq_key
xdr_ypresp_val
xdrmem_ create
xdrrec_eof
_xdrrec sk:precord
xprt register
_yp_get_default_ domaux
"yp_match

_ypprot_err

||ll|'ll||l|ll"'|lllll|||'=|||l|

103

raytrace.p

Page 3 of raytrace.p



collect.p

/*profile for “collect_server.c™ */

Y%time

35.3
27.2
16.5
1

0.2

COEEOLOEOOLO
Qb b b b b b ek b b

0.0

cumsecs

4.66

8.25
10.43
12.18
12.35
12.50
12.62
12.71
12.78
12.83
12.87
12.90
12.93
12.96
12.99
13.01
13.03
13.05
13.07
13.09
13.11
13.12
13.13
13.14
13.15
13.16
13.17
13.18
13.19
13.20
13.20
13.20
13.20
13.20
13.20
13.20
13.20
13.20
13.20
13.20
13.20
13.20
13.20
13.20
13.20
13.20
13.20
13.20
13.20
13.20
13.20
13.20
13.20
13.20
13.20
13.20

#call ms/call name

1239
385

1129

2985

SuER.Y S5 NB

7Y
NWw - Ba

6

=3 NN~ 00  FURURUR - ~ IR 1 -1 - 73 \ § ] \ SR

Jun 30 14:21 1989

3.76
9.33

1.93

0.59

2.25
3.18

0.11
0.02

125
10.00 -

0.71
0.50
0.36
0.34
0.06
043

10.00

3.33
1.43

_read
_write
_select
_bcopy
_svcfd_create
~ _xdrrec_endofrecord
mcount
__doprt
_open
_xdrrec_create
__fsbuf
_ntohl
_xdr_ callmsg
sbrk
sendto
close
fwrite
Iseek
malloc’
_monstartup
_xdr_replymsg
__flbuf
_fstat
_get_myaddress
_getsockname
_pmap_unset
_recvirom
_socket
_Svc_getreq
_xdr_opaque_auth
__findiop
_accept
_bind
_fclose
_fllush
_fopen.
_fprindf
_fread
_free
_fseek
_getpagesize
_getpid
_gettimeofday
hton!
htons
ioctl
isatty
listen
main
morecore
ntohs
_obtain_report
_profil

__strepy
_xdr_progress

_xdr_rtoutput

e

104

collect.p

Page 1 of collect.p



B T,

=

LAWRENCE BERKELEY LABORATORY
TECHNICAL INFORMATION DEPARTMENT
1 CYCLOTRON ROAD
BERKELEY, CALIFORNIA 94720

, =,





