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ARTICLE

Replication confers β cell immaturity
Sapna Puri1, Nilotpal Roy1, Holger A. Russ 1,5, Laura Leonhardt1, Esra K. French2, Ritu Roy3, Henrik Bengtsson3,

Donald K. Scott4, Andrew F. Stewart4 & Matthias Hebrok1

Pancreatic β cells are highly specialized to regulate systemic glucose levels by secreting

insulin. In adults, increase in β-cell mass is limited due to brakes on cell replication. In

contrast, proliferation is robust in neonatal β cells that are functionally immature as defined

by a lower set point for glucose-stimulated insulin secretion. Here we show that β-cell
proliferation and immaturity are linked by tuning expression of physiologically relevant, non-

oncogenic levels of c-Myc. Adult β cells induced to replicate adopt gene expression and

metabolic profiles resembling those of immature neonatal β that proliferate readily. We

directly demonstrate that priming insulin-producing cells to enter the cell cycle promotes a

functionally immature phenotype. We suggest that there exists a balance between mature

functionality and the ability to expand, as the phenotypic state of the β cell reverts to a less

functional one in response to proliferative cues.
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The adult pancreatic β cell is highly evolved to efficiently
control glucose homeostasis, and loss of β-cell function
leads to diabetes. Towards expanding existing pools of cells

(either from cadaveric donors or differentiation of stem cells) for
cell replacement therapies, efforts have been directed towards
identifying factors (synthetic or biological) that can trigger β-cell
replication. Such efforts have underscored the resistance of adult
β cells to replication. In contrast, early postnatal stages in mice
(the first days or weeks of life) and humans (< 5 years)1 con-
stitute a time of significant expansion of the β-cell pool. β cells
immediately after birth, however, are functionally immature;
immature β cells have higher basal insulin secretion, resulting in
insulin secretion at low levels of glucose2–4. The temporal
separation of mature, glucose-sensitive insulin secretion, and
replicative potential has led to the speculation that there exists an
inverse relation between the maturation state and the ability of
the β cell to divide.

Despite compelling evidence that these two β-cell features are
negatively correlated, it has been difficult to dissect the functional
state of a β cell that is either undergoing replication, or is com-
petent to divide, primarily due to the small fraction of cells that
are actively in the replicative phase of the cell cycle even in
neonatal stages. Recently, gene expression analysis in sorted,
replicating β cells found that multiple genes involved in pro-
liferation were upregulated5, while genes involved in maintaining
the β-cell state were not, explaining the relative reduction in gene
expression of maturation markers. These observations raised the
important question as to whether proliferation and maturity are
mutually exclusive states in β cells. Understanding the mechan-
isms that control the balance between functional maturity and
proliferative capacity should inform efforts to improve function
in β cells derived from human embryonic stem cells (hESC) and
human-derived induced pluripotent stem cells (hiPSC). It should
also instruct efforts to manipulate β-cell proliferation in vivo in
humans with small-molecule activators to prevent progression
from glucose intolerance to type 2 diabetes.

To address the connection between proliferation and func-
tional mature state, we manipulated the expression of c-Myc6, a
cell cycle regulator, in β cells. Immortalized rodent β-cell lines
have high c-Myc, and depletion of the protein leads to pro-
liferative arrest7. Furthermore, proliferative silence in human β
cells can be overcome through the ectopic expression of c-
Myc7. The transcription factor has thus emerged as a key reg-
ulator of β-cell proliferation at physiological and non-
transformative levels. We demonstrate that an inverse rela-
tionship exists between replicative capacity and cellular func-
tion in the β cell by modulating c-Myc expression. Deletion of
endogenous c-Myc in β cells in vivo reduces the proliferating
pool of cells in postnatal stages. Conversely, stabilization of c-
Myc in β cells in vivo not only promotes replication, but con-
comitantly diverts β cells towards an immature phenotype,
mimicking β cell functionality soon after birth8. Increased
expression of c-Myc in hESC-derived β cells promotes repli-
cation as well, providing a platform to test the role of regulators
of replication in a human system.

Results
c-Myc activity plays a role in β-cell identity and function. c-
Myc drives replication in INS-1, a rodent β-cell line that expresses
the glucose-sensing and insulin-secretory machinery, with rea-
sonable insulin-secretion function7. Depletion or pharmacologic
inhibition of c-Myc in INS-1 leads to reduced proliferation7.
Based on the predicted inverse relation between proliferative
capacity and β-cell maturity, we postulated that reduced cell cycle
entry would result in improved insulin secretion. INS-1 cells were

treated with 10058-F4 (Myci), an inhibitor that blocks c-
Myc–Max interaction9. Compared to control, Myci treatment
resulted in reduced cell density (Fig. 1a and Supplementary
Fig. 1a) and increased expression of β-cell genes that confer
mature features (Fig. 1b), suggesting that blocking c-Myc activity
improves maturation at the expense of proliferative potential.
Glucose-stimulated insulin secretion (GSIS) was significantly
improved from twofold in control cells to 4.5-fold in Myci-treated
cells, in part due to reduced insulin secretion in basal glucose,
indicating that c-Myc activity negatively impacts cellular function
(Fig. 1c, d).

c-Myc inhibition was also probed using a Myc-targeting siRNA
(siMyc). A substantial reduction of c-Myc mRNA and protein
upon transfection with siMyc (Supplementary Fig. 1b, c) led to
reduced cell density (Fig. 1e and Supplementary Fig. 1d) and
diminished expression of proliferation genes Ki67 and Pcna
(Supplementary Fig. 1e), but increased expression of β-cell genes
(Fig. 1f). siMyc cells showed reduced insulin release under basal
conditions and a greater response at high glucose (Fig. 1g, h, 3.5-
fold versus 1.75-fold), confirming inhibiting c-Myc in a β-cell line
leads to reduced proliferation, increased expression of β-cell
markers, and improved secretory capacity.

In rodents, β-cell proliferation is robust in early postnatal
stages. To investigate if c-Myc plays a role in vivo during this time
frame within β cells, we first quantified Myc protein in islets
isolated from juvenile and adult animals. We found increased
Myc protein expression in juvenile islets, along with increased
mRNA expression of a cell cycle regulator Cyclin a (Ccna)
(Fig. 1i, j and Supplementary Fig. 1f), providing correlative
evidence of higher c-Myc in replication-competent β cells.
Maturation markers Pdx1, Nkx6.1, and Neurod1 were signifi-
cantly upregulated in adult islets, and Mafa and Ucn3 showed a
trend towards increased expression (Fig. 1j).

Second, a β-cell-specific Cre line (Ins-Cre) was crossed with a
c-Myc conditional knockout mouse line (Mycflox/flox, denoted as
Myc−/−)10. At postnatal day 16, a time of significant expansion,
animals with either one copy or both copies of c-Myc deleted had
reduced BrdU-positive β cells (Fig. 1k). Adult knockout animals
displayed a trend towards glucose intolerance and reduced
replicative machinery (Supplementary Fig. 1g, h). These data
provide direct evidence that c-Myc plays a role in normal β-cell
expansion early in life.

c-Myc induces proliferation in adult β cells. Strategies that
enhance proliferation in β cells have been explored as a potential
avenue for cell replacement therapies. Our data suggested, how-
ever, that modifying the proliferative capacity of β cells impacts
function. To test if increased proliferation in vivo leads to
decreased function, we exploited an inducible transgenic mouse
model that expresses c-Myc under the Insulin promoter (Ins-c-
Myc). In this system, c-Myc is highly elevated by tamoxifen
(TAM), resulting in apoptosis and diabetes11–14. Previous work
has demonstrated leaky low-level c-Myc activity in the Ins-c-Myc
mouse without TAM11,15. Nuclear c-Myc was detected in β cells
in untreated adult Ins-c-Myc mice (Fig. 2a and Supplementary
Fig. 2a, b) which also presented with a greater than fivefold
increase in BrdU labeling index over controls (Fig. 2b, c). In
addition, c-Myc-positive cells co-labeled with Ki67, demonstrat-
ing active replication (Fig. 2d). Untreated Ins-c-Myc mice dis-
played greater islet mass (Fig. 2e, f) that further increased over the
lifetime of animals (Supplementary Fig. 2c, d). Cell cycle reg-
ulators activated by c-Myc7 were significantly upregulated in Ins-
c-Myc β cells (Fig. 2g and Supplementary Fig. 2e). Together, these
data indicate low-level activity of c-Myc in Ins-c-Myc cells leads to
β-cell proliferation.
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To test the effects of c-Myc on human β cells, c-Myc was
delivered by adenovirus into hESC-derived insulin-producing
cells16. Cells transduced with c-Myc had increased Ki67 staining
as compared to control adenoviruses (Fig. 2h). These data
emphasize the pro-proliferative effect of c-Myc in human β cells,
strengthening the conclusion that c-Myc is a regulator of β-cell
replication.

β-cell proliferation leads to modified glucose regulation.
Higher replication and dysregulated insulin secretion are

hallmarks of juvenile β cells2–4. After establishing the pro-
proliferative effect of c-Myc in β cells, we asked if c-Myc-induced
proliferation affected β-cell maturity. Intraperitoneal glucose
tolerance testing (IPGTT) revealed accelerated glucose clearance
in Ins-c-Myc mice (Fig. 3a and Supplementary Fig. 3a). Although
total β-cell mass was increased (Fig. 2e, f), there was no significant
difference in islet insulin content (Fig. 3b). In vivo GSIS revealed
a trend towards hyperinsulinemia under fasting conditions in
transgenic animals (Fig. 3c, 0 min). In support of increased
insulin levels under non-stimulatory conditions, random post-
prandial glucose measurements indicated life-long hypoglycemia
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Fig. 1 c-Myc plays a role in β-cell proliferation and function. a Cell density of INS-1 cells upon Myc inhibition with 40 µM Myci for 2 days as compared to
control (DMSO) treatment. Scale bar, 100 μm. b Quantitative PCR to detect gene expression of key β-cell regulatory transcription factors upon Myc
inhibition (Myci, 40 µM) after 2 days of inhibitor treatment, n= 3 per group. **p< 0.005, ***p< 0.0005, Student’s t test. c Control (DMSO, n= 4) or
Myci-treated (40 µM, 3 days, n= 4) INS-1 cells were subjected to glucose-stimulated insulin secretion (GSIS) under basal (2.8 mM glucose) followed by
stimulatory (16.7 mM with 100 µM IBMX) conditions. *p< 0.05, **p< 0.005, ***p< 0.0005, Student’s t test. d Fold change in GSIS in INS-1 cells treated
with Myci (n= 4) as compared to controls (n= 4). Error bars indicate± SD. **p< 0.005, Student’s t test. e Cell density of INS-1 cells transfected with
siMyc as compared to control samples transfected with a scrambled siRNA (siScr) for 5 days. Scale bar, 100 μm. f Quantitative PCR analysis of INS-1 cells
to evaluate gene expression of several β-cell transcription factors upon reduction of c-Myc (siScr, n= 6, siMyc, n= 4–6). *p< 0.05, ***p< 0.0005,
Student’s t test. g Secretory response in INS-1 cells depleted of c-Myc (siMyc) as compared to control (siScr) cells. n= 3 per group. **p< 0.005, Student’s
t test. h GSIS measured in INS-1 cells with siMyc as compared to siScr samples. n= 3 per group. Error bars indicate± SD, p= 0.05, Student’s t test. i
Western blot analysis of Myc levels in juvenile (3 weeks old, n= 5) islets versus adult (3 months old, n= 6) islets from wild-type mice. p= 0.08, Student’s t
test. j Quantitative PCR of β-cell maturation genes in adult islets (3 months old, n= 5) as compared to juvenile (3-weeks-old islets, n= 5) along with a cell
cycle gene. *p< 0.05, **p< 0.005, Student’s t test. k BrdU incorporation (expressed as %BrdU per Insulin + ve cells) in p16 pups to quantify actively
replicating β cells in the transgenic (Ins-Cre;Myc+/−, n= 3 or Ins-Cre;Myc−/−, n= 4) animals as compared to control (n= 4) littermates. ***p< 0.0005,
Student’s t test

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-02939-0 ARTICLE

NATURE COMMUNICATIONS |  (2018) 9:485 |DOI: 10.1038/s41467-018-02939-0 |www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


in Ins-c-Myc mice (Fig. 3d). Similarly, fasted blood glucose levels
were markedly reduced in transgenic mice (Supplementary Fig. 3b).
Pancreas weight was unchanged while body weight was reduced in
Ins-c-Myc mice at 18 months (Supplementary Fig. 3c). To test
function independently of systemic effects, isolated islets were
challenged with glucose. Transgenic islets secreted high quantities of
insulin at low glucose and had a stunted secretory response (Fig. 3e,
f). Similar to what is observed in fetal and neonatal islets17,18, Ins-c-
Myc islets could mount a secretory response in the presence of
glucagon, Glp-1 or forskolin (Fig. 3g). Overall, these data suggest
that β cells poised to proliferate demonstrate high basal insulin
secretion and an impaired secretory response.

β cells in Ins-c-Myc islets have an immature phenotype. A key
feature of mature β cells is the presence of insulin-containing

secretory granules that at the ultra-structural level have a char-
acteristic electron-dense core surrounded by a clear halo. While
these features were clearly visible in control β cells (Fig. 4a), Ins-c-
Myc β cells displayed increased proportion of immature secretory
granules (less dense cores, with poorly defined halos) (Fig. 4a, b).
Immature granules harbor proinsulin19–21, an insulin precursor,
and are typically localized to the peri-nuclear region. In line with
the increased immature granules in Ins-c-Myc islets, proinsulin
content was significantly increased (Fig. 4c), and the staining was
modified to a diffuse cytoplasmic localization (Fig. 4d). Loss of
processing enzymes that convert proinsulin to insulin leads to
accumulation of immature proinsulin granules19. The processing
enzyme prohormone convertase Pc1/3 (Pcsk1) had reduced
expression in transgenic islets (Fig. 4e), suggesting that accumu-
lation of proinsulin in Ins-c-Myc β cells resulted from reduced
processing of proinsulin into mature insulin. Finally, GSIS
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revealed increased proinsulin secretion at basal glucose from
transgenic islets (Fig. 4f). Collectively, these observations indicate
that c-Myc activity leads to immature insulin processing and
packaging within the β cell.

mRNA analysis of β-cell genes in islets from adult mice
revealed that although Ins1 and Ins2 were unchanged, Pdx1,
Nkx6.1, Mafa, Neurod1, Nkx2.2, Pax6, and Isl1 were reduced in
the transgenic sample (Supplementary Fig. 4a). Ucn3, Glut-2, and
the glucose sensor Gck were also reduced, pointing to diminished
maturity. By immunostaining, Glut-2 was unchanged at three
months in the transgenic mice but lost at later stages
(Supplementary Fig. 4b). These data indicate that persistent
replicative competence leads to progressive loss of β cell
maturation. Chromatin immunoprecipitation revealed direct
binding of Myc to canonical binding sites found in the upstream
genomic sequences of key β-cell genes including Pdx1, Pcsk1,
Neurod1, and Ins2 (Fig. 4g). No canonical binding sites were
found up to 10 kb upstream of Nkx6.1, Mafa, and Ins1 genes.

As shown above, the features of β cells with elevated c-Myc
overlap with those of cells in neonatal mice2,22: β cells proliferate,
contain immature secretory granules, and exhibit high insulin
secretion in low glucose2,23. To uncover mechanisms underlying
such mutual exclusion between functional maturity and

replicative capacity, RNA sequencing was conducted on isolated
Ins-c-Myc and control islets (Fig. 5a and Supplementary Fig. 5a).
A nominal p-value cutoff at 10−6 revealed downregulation of 290
RNAs and upregulation of 175 RNAs in the Ins-c-Myc islets
(Supplementary Data 1). A comparison of genes dysregulated in
the Ins-c-Myc data set to published datasets of genes differentially
expressed during β-cell maturation2 revealed that approximately
30% of “immature” genes (upregulated in P1 islets) were
upregulated in c-Myc islets (Supplementary Fig. 5b, c). Impor-
tantly, out of 81 transcripts upregulated during postnatal
maturation, 74% were downregulated in the Ins-c-Myc dataset
(Supplementary Fig. 5c). The above comparison suggests that
genes associated with functional maturation during normal β-cell
development are suppressed in the continued presence of c-Myc.

β-cell maturation involves not only increased expression of
insulin-secretion genes but also the repression of disallowed genes
that can lead to erroneous insulin secretion24. A subset of
disallowed genes was upregulated in Ins-c-Myc islets, including
Slc16a1 (Mct1) (3.3-fold upregulated) and Hexokinase 3 (Hk3, 3.7
fold upregulated) (Supplementary Fig. 5d, e)24,25. In addition to
genes influencing β-cell metabolism, mRNAs encoding cell cycle
proteins were also upregulated in the transgenic samples
(Supplementary Fig. 5f). These data provide evidence that c-
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Myc-expressing β cells mimic gene expression profiles of
neonatal, immature β cells.

c-Myc causes a shift to a state poised for proliferation. Gene
ontology (GO) analysis of c-Myc islets revealed changes in

processes important for cell growth and proliferation, including
upregulation of ribosomal proteins (Fig. 5b and Supplementary
Fig. 5g). As expected, gene set enrichment analysis (GSEA)
revealed an enrichment of Myc targets in transgenic islets
(Fig. 5c). Several genes identified as Myc targets were involved in
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RNA metabolism (Pabpc1, Pabpc4), mitochondrial function
(Got2, Hspd1, Prdx3), biosynthetic reactions (Srm, Impdh2, Ctps,
Tfdp1, Ran, Gnb2l1), protein folding (Cct2, Cct5), and ribosome
biogenesis and function (Nop16, Rps2, Rpl14, Fbl, Eef1b2, Rplp0,
Rps6, Rpl6, Npm1, Rpl22, Rps5, Rps3, Rpl34, Snrpd2, Rpl18, Rps10,
Mrpl23).

Aside from direct Myc targets, other biosynthetic pathways
significantly upregulated in transgenic samples included “Seleno-
cysteine metabolic processes” (GO:0016259), “Ribosome

biogenesis” (GO:0042254), “Cytoplasmic translation”
(GO:0002181), and “Regulation of translation” (GO:0006417),
among others. Genes involved in “Synaptic signaling”
(GO:0099536), “Regulation of nervous system development”
(GO:0051960), and “Neuron projection morphogenesis”
(GO:0048812), among others, were significantly downregulated
(Fig. 5d). Thus, pathways encompassing genes involved in RNA
and protein metabolism, and processes critical for cell replication
were significantly enriched in transgenic islets (Fig. 5e, f). These
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findings indicated that c-Myc in the β cell increases metabolic
activity, including biosynthetic processes that are precursors to
cell division. An upregulation of such biosynthetic pathways
should result in increased levels of RNA within cells, which
correlates with entry into the cell cycle (transition from G0 to G1)
26. Increased total RNA was detected in transgenic islet cells
(Fig. 5g).

In addition to early postnatal stages, another period of β-cell
replication occurs during pregnancy27–30. We hypothesized that if
c-Myc primes β cells for replication, proliferative cues during
pregnancy would further increase the fraction of β cells entering
the cell cycle. At 14.5 days of gestation, Ins-c-Myc pregnant
animals had higher numbers of BrdU-positive β cells as compared
to Ins-c-Myc non-pregnant and control pregnant age-matched
animals (Fig. 5h). Ins-c-Myc pregnant animals had a ~tenfold
increase in the fraction of β cells actively incorporating BrdU
compared to non-pregnant control animals (3.1± 0.5% versus
0.31± 0.07%, p value = 0.0002, Student’s t test) at the same age.
Furthermore, Ins-c-Myc non-pregnant animals showed levels of
proliferating β cells similar to those found in pregnant controls.
These data indicate that increased c-Myc activity primes β cells to
respond positively to physiological cues that stimulate cell cycle
entry.

Differential chromatin marks on Myc targets in human β cells.
In order to extend our findings to humans, we analyzed existing
data to identify histone marks using chromatin immunoprecipi-
tation (ChIP) on β cells from juvenile and adult donors (Sup-
plementary Fig. 6a)31. If MYC is active in juvenile human β cells
as in mouse, an enrichment of H3K4 trimethylation, an activating
mark, is expected in the promoter regions of MYC. Analysis of
the transcriptional start site of c-MYC revealed that H3K4 tri-
methylation (H3K4Me3) peaks were indeed sharper and more
numerous in the juvenile donor sample, pointing to transcrip-
tional activation over the adult sample (Fig. 6a). Using data from
the murine GSEA analysis (Fig. 5c) and genes from literature, we
analyzed the distribution of H3K4Me3 peaks in MYC target genes
(Fig. 6b, c and Supplementary Fig. 6b). Genes highlighted in
purple (48% of the genes examined) showed differential
H3K4Me3 around the transcriptional start site. In other words,
genes positively regulated by MYC had increased activating
H3K4Me3 chromatin marks in the juvenile versus adult sample,
while the opposite was true for genes downregulated by MYC. A
subset of the target genes (RCC1, ODC1) had increased H3K4Me3
and increased H3K27 acetylation in the juvenile sample, sug-
gesting activation of enhancer elements (Fig. 6d). In addition to
canonical MYC target genes, the disallowed genes Hk3 and Mct1
also showed an enrichment of H3K4Me3 in the juvenile sample
(Supplementary Fig. 6b). The analysis of chromosomal signatures
therefore suggests MYC target activation and functional imma-
turity in juvenile murine and human samples alike (Fig. 6e).

Discussion
It is well known that replicative capacity of β cells diminishes with
age in humans and rodents32–36. The inverse correlation between
proliferation and functional maturation in β cells has, however,
been difficult to prove, due to the small fraction of adult repli-
cating cells. We demonstrate that priming β cells to replicate leads
to a compromised functional state, and c-Myc serves as an inverse
dual regulator of β-cell proliferation and maturity (Fig. 6e). The
Ins-c-Myc mouse model with ectopic activity of c-Myc generates a
large pool of β cells that can potentially enter the cell cycle, and
serves as a tool to interrogate the role of replication in quiescent β
cells.

Changes in gene expression revealed increases in the biosyn-
thetic machinery, cell cycle components and expression of
replication markers, indicating that cells were primed for pro-
liferation. The GO analysis of the Ins-c-Myc β cells revealed that
the most significantly upregulated biological process included
ribosome biogenesis and function. One property of neonatal cells
is increased protein synthesis under basal glucose conditions4.
Cells that are poised for division increase bio-energetic functions
in order to expand the resource pool for replication, and c-Myc is
a key regulator of these processes6. Total RNA content increase in
c-Myc cells further suggested a shift from G0 to a G1 state, poised
for entry into the cell cycle. These observations were in line with
the observations in juvenile β cells, where a greater fraction of
cells is in the cell cycle. c-Myc expression was elevated in juvenile
samples, providing correlative evidence for the protein. Genetic
depletion of c-Myc led to a ~50% reduction in the proliferative
pool during postnatal expansion, demonstrating a role for this
protein in the replicative phase of β-cell development.

As another example, during gestation in rodent models, β cells
enter the cell cycle in response to proliferative cues in order to
compensate for metabolic demands of the female27–30,37. What is
significant is that during pregnancy in mice, an increase in β-cell
mass is accompanied by increased c-Myc expression29. Several of
the same cell cycle regulators that we see upregulated in the Ins-c-
Myc β cells, namely cyclins A, D3, E, and cdk4, are also increased
during pregnancy29. Thus, c-Myc could be playing a critical role
in the β cell expansion that occurs during pregnancy. Our data
demonstrate that in the presence of a physiological stimulus such
as pregnancy, c-Myc β cells further increase the pool of repli-
cating cells, supporting the idea that cells are poised to replicate
and in a permissive environment are more likely to expand.

Examination of the functional state of β cells with c-Myc
revealed numerous observations—β cells secreted high insulin in
low glucose leading to hypoglycemia, exhibited poor GSIS, and
had compromised expression of important function-maintaining
genes, closely resembling an immature functional state. Further-
more, disallowed genes Mct1 and Hk3 were significantly upre-
gulated. Overexpression of Mct1, a monocarboxylate transporter,
in β cells leads to increased pyruvate-induced insulin secretion38.
The disallowed hexokinases (hexokinase I, II, and III) are low Km
enzymes that induce high insulin secretion under basal condi-
tions. The primary glucose sensor in β cells, glucokinase (hex-
okinase IV), a high Km enzyme that responds to elevated levels of
glucose to facilitate appropriate insulin secretion, was reduced
(Supplementary Fig. 4a). Combined effects of increased glucose-
sensing enzymes and Mct1 could lead to hyperinsulinemia in low
glucose.

Several of the changes that the β cell undergoes upon expres-
sion of c-Myc mimic what is seen in dedifferentiated β cells—
reduced expression of canonical transcription factors including
Pdx1, Nkx6.1, andMafa, upregulation of disallowed genes such as
Mct1 and Hk3, and reduced expression of the glucose sensors
Glut-2 and Gck. Unsurprisingly, there are overlaps between
immature and dedifferentiated phenotypes at the transcriptome
level39–41. The functional outputs of these phenomena differ,
however, as immature β cells have poor control of the secretory
machinery in the absence of a bolus of glucose, resulting in sys-
temic hypoglycemia, as opposed to dedifferentiation, which
eventually leads to diabetes due to severe stunting of either insulin
expression or secretion in the presence of high glucose. Thus,
immaturity and dedifferentiation present two related, yet distinct,
facets of β cell dysfunction.

Aberrant proinsulin processing and dense core secretory
granule morphology illustrate other examples of the c-Myc-
induced immature phenotype. The expression of the proinsulin-
processing enzyme Pc1/3 is low early in postnatal life42, which
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results in the higher proportion of immature secretory granules
present soon after birth. Adult Ins-c-Myc islets had reduced
expression of Pc1/3, which may contribute to the accumulation of
proinsulin and immature secretory granules, reminiscent of early
postnatal β cells (Fig. 4)21,43.

In vitro, the bidirectional switch between functionally imma-
ture, proliferative β cells and mature, fully functional, non-
proliferative β cells is reversible. Rapidly replicating INS-1 cells

increased expression of β-cell regulators, demonstrated reduced
basal insulin secretion, and had improved GSIS upon c-Myc
silencing. Such an inverse relationship between proliferation and
functional competence has been suggested for a human β-cell line
as well44. c-Myc promoted replication in human ES-derived β
cells, supporting the conclusions from the rodent models. A role
for c-MYC in β-cell maturation and proliferation in humans is
unknown, although analysis of the active chromatin marks on

15 30 22

22
0

0

9

0

0

9

16

0

0

15

15

0

0

16

0
30

25

23

23
0

0

10

0
10

0

0
25

0

0

0

0
chr8 chr22

chr1

chr2

chr14

id id
ALB
CEBPA
COL1A1

COL6A3
FN1

CAD
FASN

CDK4
HSPD1
CTPS
EEF1B2

FBL
CDKN2A
CCT2

RPL14

SRM
IMPDH2
GOT2

NOP16

BCAT1

NCL

CCT5

RPL22

PRDX3
MRPL23
ENO1
GNB2L1
RPL18

RAN
TFDP1

COL1A2
COL3A1

TRP53

ODC1
CCNA2

FKBP4

RPS2

CCNE1

PABPC1

PABPC4

HSPE1
EIF2A
NME1
RPS15A
RPL34
RPS3
SNRPD2

LSM7
HSPA4
RCC1
RPL3
RPL6

NPM1
RPL23

RPS6
RPS5

RPS10
RPLP0

W
T

W
T

M
Y

C
M

Y
C

M
Y

C

IRF9

RCC1

SERPINE1

chr1
RCC1

ODC1
chr2

chr12

chr7

MYC

Row min Row max

RPL3 FKBP4
128744000

Ju
ve

ni
le

Ju
ve

ni
le

A
du

lt

A
du

lt
Ju

ve
ni

le
A

du
lt

Ju
ve

ni
le

A
du

lt
Ju

ve
ni

le
A

du
lt

Ju
ve

ni
le

A
du

lt
Ju

ve
ni

le
A

du
lt

Ju
ve

ni
le

A
du

lt
Ju

ve
ni

le
A

du
lt

128755000

20,569 bp 20,423 bp

7522 bp

27,719 bp

26,718 bp

βNeonatal

βMyc

βAdult

Replicating Primed Quiescent

Immature function
proliferative

Immature function
primed to enter cell cycle

Mature function
quiescent

37,426 bp

5578 bp

8821 bp

10,314 bp

c-Myc
a c

b

d

e

H3K4me3 H3K27Ac

128766000 128777000 39705000 39716000

24628000

28825000

10577000

ODC1

28840000

10591000

Replication Function

10605000 10619000

28855000 28870000

24633000 24638000

39727000 39738000 2901000

100770000

28823000

10580000 10584000

28842000 28861000 28880000

100775000 100780000

2907000 2913000

15

Fig. 6 Analysis of human ChIP data reveals activated marks on c-Myc targets in juvenile samples. a H3K4Me3 ChIP-peak distribution across the c-Myc
promoter in β cells isolated from a juvenile (5 years) and an adult (48 years) donor. b RNA-seq data demonstrating levels of several c-Myc targets in islets
from Ins-c-Myc and control animals. Genes marked in purple show differential H3K4 trimethylation marks in the juvenile donor samples as compared to the
adult sample. c H3K4Me3 ChIP-peak distribution in RPL3, IRF9, FKBP4, and SERPINE1 genes in a juvenile (5 years) and adult (48 years) sample. d H3K4Me3
and HeK27Ac marks in the juvenile (5 years and 0.8 years respectively) samples as compared to the adult (48 years and 66 years respectively) samples of
c-Myc target genes RCC1 and ODC1. e Schematic representing a key role of c-Myc is the early stages of life, at a time of increased proliferation and
immature function within β cells. With age, a reduction in c-Myc occurs concomitant with acquisition of maturation features and loss of replicative
capacity. In the Ins-c-Myc animals, β cells continue to express c-Myc well into adulthood and throughout life, leading to a persistence of replicative capacity,
and a failure of the cells to undergo maturation, thus leading to dysregulated glucose levels

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-02939-0 ARTICLE

NATURE COMMUNICATIONS |  (2018) 9:485 |DOI: 10.1038/s41467-018-02939-0 |www.nature.com/naturecommunications 9

www.nature.com/naturecommunications
www.nature.com/naturecommunications


genomes of juvenile and adult individuals suggested that MYC
activity was increased at younger ages. Future work will define the
exact role MYC plays in human β-cell function and expansion.

In conclusion, this study highlights a balance within the β cell
—the ability to replicate compromises function. A transient loss
of function is permissible if a small percentage of cells replicate, as
occurs in adult islets. When a large fraction of β cells, however, is
poised to divide, and cellular bioenergetics favor growth, overall
β cell function deteriorates, leading to dysregulated insulin pro-
cessing and release. In therapeutic terms, these findings suggest
that agents activating human β-cell replication can be useful, as
long as such activity is reversible.

Methods
Animals, glucose tolerance test, and hormone measurement. Ins-c-MycERTAM

(Ins-c-Myc) and theMycflox/flox mice were obtained from Dr. Gerard Evans and Dr.
Zhonghui Guan respectively. Physiological analyses including IPGTT were carried
out on three-month-old male and female Ins-c-Myc mice unless otherwise noted.
Only males were used for IPGTT analyses in three-month-old Ins-Cre;Mycflox/flox

and Ins-Cre;Mycflox/+ animals. After a 16–18 h fast, mice were weighed, blood
glucose level measured using the Contour Glucometer, and injected intra-
peritoneally with a 1M glucose solution at 10 µl per g body weight. Blood glucose
was measured every 30 min for 2 h after injection. For in vivo hormone mea-
surement, blood was collected either before and after a glucose challenge from the
tail vein, spun down to collect serum, and stored at −80 °C with protease inhibitors
(Roche). Insulin concentration was calculated using the Insulin EIA kit (ALPCO).
All transgenic mouse experiments were performed in the absence of TAM. All
animals were maintained in the barrier facility according to protocols approved by
the Committee on Animal Research at the University of California, San Francisco.

Glucose-stimulated insulin secretion. Ten-size-matched islets (control or
transgenic) were incubated in KRB with 2.8 mM glucose for 30 min with gentle
shaking. The supernatant was discarded and islets incubated in KRB with 2.8 mM
for 1 h. The supernatant was collected and frozen at −20 °C with protease inhibi-
tors. Islets were subsequently incubated with 16.7 mM glucose for 1 h followed by
16.7 mM glucose and either 10 nM glucagon (Sigma), 100 nM Glp-1 or 10 µM
foskolin (Sigma) for another hour. Supernatants were collected and stored at −20 °
C with protease inhibitors. Total insulin was extracted overnight in acid/alcohol
buffer, followed by DNA extraction45. For insulin secretion from INS-1 cells46,
5 days after transfection, cells were treated as follows- cells were rinsed with KRB
without glucose, and incubated with KRB + 2.8 mM (low) glucose for 2 h. Fol-
lowing the pre-incubation with low glucose, cells were incubated with 2.8 mM
glucose in KRB for 2 h, and the supernatant collected for insulin quantification.
Subsequently, cells were incubated with high (16.7 mM + 100 µM IBMX) glucose
for another 2 h, and the supernatant collected. At the end of the high glucose
incubation, acid/ethanol extraction was carried out overnight at 4 °C for quanti-
fication of total insulin levels. Total DNA was extracted from the cells for nor-
malization of secretory capacity. Measurement of insulin was carried out using the
Insulin Rodent Chemiluminescence ELISA kit (ALPCO). Proinsulin levels were
detected using the Mouse Proinsulin ELISA kit (ALPCO).

Cell culture and cell density quantification. INS-1 cells (a kind gift from Dr.
Chris Newgard) were grown in RPMI-1640 medium supplemented with 10% fetal
calf serum, 10 mM HEPES, 2 mM L-glutamine, 1 mM sodium pyruvate and 0.05
mM 2-mercaptoethanol46. Cells were grown in 6 wells plates and transfected with
siRNA (AllStars Negative Control siRNA, Qiagen, or siRNA against rat c-Myc,
Dharmacon) using Lipofectamine 2000. INS-1 cells were treated with 40 µM
10058-F4 (Sigma) for the time indicated. Cell density was quantified by Cell Titer
Glo Viability assay (Promega) and DNA quantification was carried out using the
Quant-iT PicoGreen dsDNA Assay Kit (Life Technologies).

Histology, immunofluorescence, and islet size quantification. Pancreata were
fixed in Z-Fix (Anatech) for 12–16 h at 4 °C and processed for paraffin embedding.
Pancreatic sections were de-paraffinized, rehydrated and subjected to antigen
retrieval by boiling in a water bath in Citrate buffer for 5 min, followed by no
boiling for 30 s, and another 3 min of boiling. After cooling to room temperature,
slides were washed in water followed by PBS, and incubated in blocking reagent
(1% BSA in PBS) for 30 min, followed by incubation with the appropriate primary
antibodies in the blocking reagent overnight at 4 °C. Slides were washed three times
in PBS for 5 min each, followed by incubation for 30 min at room temperature in
the appropriate secondary antibodies in blocking reagent. For immuno-
fluorescence, slides were washed in PBS (three times for 5 min each) and mounted
using VectaShield HardSet mounting medium with DAPI (Vector Laboratories)47.
For immunohistochemistry, slides were further incubated for 30 min in ABC
solution (Vectorlabs), washed in PBS, and developed using DAB reagent (Vec-
torlabs) as per manufacturer’s instructions. The primary antibodies used were:

rabbit anti-c-Myc, 1:200 (#5605, Cell Signaling); mouse anti-Insulin, 1:500 (I2018,
Sigma); guinea pig anti-Insulin, 1:500 (#A0564, Dako); rabbit anti-Glut-2, 1:500
(#07-1402, Millipore); rat anti-BrDU, 1:200 (#MCA2060, AbD Serotec); mouse
anti-proinsulin, 1:200 (clone GS9A8, Developmental Studies Hybridoma Bank,
University of Iowa); and mouse anti-Ki76, 1:200 (#550609, BD Biosciences). Pri-
mary antibodies were detected with Alexa-488, Alexa-555 and Alexa-633 con-
jugated secondary antibodies (#A11029, #A11034, #A11073, #A21428, #A21435,
#A21422, #A21105, Invitrogen) or biotinylated anti-rabbit (#111-065-003, Jackson
ImmunoResearch) and anti-guinea pig (#BA-7000, Vector Labs) antibodies, all
used at 1:200 dilutions. For islet mass quantification, sections 100 μm apart were
stained with anti-insulin antibody and total islet area quantified as a percent of
total pancreatic area. Bright field images were acquired using a Zeiss Axio Imager
D1 microscope. Zeiss Axioscope2 wide field and Zeiss ApoTome microscopes were
used to visualize fluorescence. Unless otherwise noted, all photomicrographs
shown are representative of at least three independent samples of the indicated
genotype.

BrdU incorporation. BrdU (Sigma B9285) was reconstituted at 10 mg per ml in
saline solution and administered intra-peritoneally at 50 µg per g of body weight.
Mice were euthanized after 6 h, pancreata were isolated, fixed in Z-Fix for 12–16 h
at 4 °C, and processed for paraffin embedding. Pancreatic sections were de-par-
affinized, rehydrated and treated for 20 min with 2 N HCl at 37 °C, followed by
washes with water and PBS. Slides were then processed for immunostaining as
follows—sections were incubated in blocking reagent (1% BSA in PBS) for 30 min,
followed by incubation with the appropriate primary antibodies in the blocking
reagent overnight at 4 °C. Slides were washed three times in PBS for 5 min each,
followed by incubation for 30 min at room temperature in the appropriate sec-
ondary antibodies in blocking reagent. Slides were washed again in PBS (three
times for 5 min each) and mounted using VectaShield HardSet mounting medium
with DAPI (Vector Laboratories)47. BrdU-positive cells were counted and repre-
sented as a percent of insulin positive cells and per islet.

Western blotting. For westerns, isolated islets or INS-1 cells grown in six well
plates were homogenized in RIPA buffer and resolved on SDS-PAGE. Primary
antibodies used were rabbit anti-c-Myc, 1:1000 (#5605, Cell Signaling, Boston, MA)
and mouse anti-Gapdh, 1:5000 (#sc-32233, Santa Cruz). Secondary antibodies were
anti-rabbit IRDye 800CW (#827-08365, Odyssey) and anti-mouse IRDye 680LT
(#827-11080, Odyssey). Western analysis for cell cycle proteins on islets isolated
from mice was carried out using the following antibodies—anti-Cdk1, 1:1000
(#9112, Cell Signaling Technologies), anti-Cdk2, 1:500 (#163, Santa Cruz Bio-
technology), anti-Cdk4, 1:1000 (#260, Santa Cruz Biotechnology), anti-Cdk6, 1:500
(#3126, Abcam Inc.), anti-Cyclin A, 1:500 (#4710, Sigma), anti-Cyclin D3, 1:500
(#28283, Abcam Inc.), anti-Cyclin E, 1:500 (#481, Santa Cruz Biotechnology), anti-
tubulin, 1:2000 (Calbiochem) and anti-actin, 1:2000 (Sigma).7.

Quantitative PCR and gene expression array. RNA isolation was carried out
using the RNeasy kit (Qiagen) as per manufacturer’s instructions. cDNA pre-
paration was carried out using the SuperScript III First Strand synthesis kit
(Thermo Fisher Scientific), and quantitative PCR (qPCR) were performed using
Fast SyBr green mix (Thermo Fisher Scientific) as per manufacturer’s instruc-
tions48. RNA expression of target genes was normalized to Cyclophilin A
expression for mouse samples. Fast SyBr green was used for all qPCR reactions.
One control was set to 1 and all other controls and test samples were normalized to
that sample. Primer sequences are included in Supplementary Table 1.

RNA sequencing and data analysis. RNA-seq data was analyzed under the
Aroma framework (http://CRAN.R-project.org/package = aroma.core) in R/Bio-
conductor49 (http://www.R-project.org/). The data were annotated with ENSEMBL
Genome Reference Consortium Mouse Reference 38 release 79 (GRCm38.79)
assembly, identifying each feature (tag) by its ENSEMBL gene ID. The alignment
for each sample was read using the TopHat v2 aligner in aroma.seq package
(https://github.com/HenrikBengtsson/aroma.seq). Groups were compared by per-
forming exact test for negative-binomially distributed count data using edgeR
package50. A nominal min-value cut-off of 10−6 was used to determine significantly
differentially expressed genes. The RNA-seq data have been deposited in NCBI
GEO under the accession code GSE107617.

Pyronin Y staining. Islets were dissociated in Dissociation buffer for 30 min at 37 °
C with shaking every 10 min. The cells were passed through a 40 µm filter, spun
down, and incubated with 1 ml FACS buffer with 28 mM glucose and 1 µg per ml
Hoechst 33342 (HO) for 45 min at 37 °C. Subsequently, cells were spun down, and
fresh 1 ml FACS buffer with 2.8 mM glucose was added with 1 µg per ml HO and 1
µg per ml Pyronin Y (PY) for 40 min at 37 °C, covered with foil. The cells were put
on ice until run on the analyzer.

hESC culture and differentiation. hESC-derived β-like cells were generated using
our recently published differentiation approach with improvements at the last two
stages16. Clusters containing β-like cells were dissociated at day 16 by Accumax
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treatment, re-aggregated using Aggrewells (StemCell Technologies) in the presence
of 5 µM ROCK inhibitor and incubated for 3 days with adenoviruses. Three days
later, clusters were dissociated, fixed for ~15 min in 4% PFA and stained with direct
conjugated antibodies against human C-peptide (#05-1109, Millipore, conjugated
using a commercial available antibody labeling kit (Invitrogen)) and human Ki67
(#550609, BD Bioscience). Flow cytometry was used to analyze Ki67 co-expression
in c-peptide positive cells.

Chromatin immunoprecipitation. Islets were dispersed into single cells in Cell
Dissociation Buffer (Gibco) and subsequent ChIP was performed using the True
MicroChIP kit (Diagenode). Briefly, cells were fixed in 1% formaldehyde (28906,
Thermo Fisher) for 10min at RT and quenched with 125mM glycine. Fixed cells
were resuspended in lysis buffer and sheared using the Bioruptor Pro (Diagenode)
for 2 × 10 cycles of 30 s “ON”/30 s “OFF” at high power setting to obtain fragments
of 150–500 bp. 1/20 of sheared chromatin was kept aside as input and the remaining
chromatin was incubated overnight with 1 µg rabbit IgG antibody (provided in kit)
or 3 µg anti c-Myc antibody (ab56, Abcam). Antibody-chromatin complexes were
pulled down using Protein A-coated magnetic beads and de-crosslinked for 4 h. The
DNA was purified using MicroChIP DiaPure columns (Diagenode) and quantitative
PCR performed using the FastStart Universal SYBR Green Master (Roche). Percent
input values were calculated as 100 × 2(Ct[adjusted input]-Ct[IP]). Primers were designed
to amplify regions surrounding the canonical Myc binding motif (CACGTG) found
up to 10 kb upstream of the transcriptional start site of the genes of interest. Primer
sequences are included in Supplementary Table 1.

Human chromatin immunoprecipitation data analyses. Raw reads from Arda
et al.31 were downloaded from NCBI GEO [GSE79469]. The raw reads were
aligned with hg19 assembly by using bowtie for Illumina. MACS2 was used for
peak calling. Peaks were annotated by peak2gene for their locations relative to
adjacent genes. Peaks were visualized by EaSeq [reference: http://www.nature.com/
nsmb/journal/v23/n4/full/nsmb.3180.html].

Statistics. Data are presented as mean± SD or mean± SEM and subjected to two-
tailed unpaired t test. A p value of 0.05 or lower was considered to be significant.

Data availability. All relevant data pertaining to this study are available within the
article as well as Supplementary Information files, and from the corresponding
author upon request.
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