UC Irvine
ICS Technical Reports

Title
Modelling Structures Formalism

Permalink
https://escholarship.org/uc/item/5vz814s4

Author
Rowe, Lawrence A.

Publication Date
1974-11-01

Peer reviewed

eScholarship.org

Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/5vz814s4
https://escholarship.org
http://www.cdlib.org/

MODELLING STRUCTURES FORMALISM

Lawrence A. Rowe

This work was partially supported by the Nationmal Science

Foundation under Grant GJ-10145.

‘TECHNICAL REPORT #52 - November 1974

) éﬁ Acknowledgement
I would like to take this opportunity to acknowledge my
thesis advisor Fred Tonge for his valuable contributions to
this work and for his constant guidance during my graduate
studieé. I also want to thank Dave Farber for providing an

environment in which to pursue these research activities.

Introduction

This paper presents a formalism for modelling
structures. -The term modelling strucfures is used in the
sense suggested by D’ imperio [1], namely, a modelling
structure 1is an abstracf, psychological, arrangement or
description of information used in human problem-solving.
The concept of modelling structure is not restricted to
problem-solving using a computer. Data structures, on the
other hand, has traditionally referred to the representation
of information used in problem-solving involving a computer.
Unfortunately, depending on the domain of discourse, the
phrase data structures has many different meanings,
including, machine independent data representations,
language dependent data types, and implementation dependent
data representaions. For this reason, and because we are
interested in how information associated with a problem is’
organized in order to express an algorithm, the formalism
presented deals with the general problem of information
representation, independent of the way it is mapped into a
physical storage medium. Modelling structures are used,
expliecitly or implicitly, in a program written in some
programming language to implement an algébithm. Thus, the
formalism is concerned with how relations among objects can

be represented and operated upon.

A modelling structure is an abstraction of Structural
relations among a collection of objects, called the elements
of the structure, and constraints on the operations that can
be performed on the structure and its elements-. This notion
is formalized by defining a set of “instances of modelling
structures" and operations which transform Qne instance into
another, A modelling structure consists of a subset of the
set of instances and a'subset of the set of operations. In
this way both the static and dynamic aspects of a modelling
structure are described. In the description of this
formalism we distinguish the meta-languagé for defining a
modelling structure and the language for expressing the
operations on instances of modelling structures. For
example, saying that there exists a relation ¢ with some
properties defined for a given modelling st;ucture is part
of the meta-language; while, saying that elements a and b in
a particular ‘instance of a modelling structure are ¢
related (agb) is part of the 1language for expressing
operations on instances of modelling structures. (Appendix
A to this paper describes the notational conventions used.)

The first section of' the paper defines a set of
“instances of modelling structures® and describes a
graphical representation for elements in the set. The set

of transformational operations is also discussed. The next

section formally defines a modelling structure, The third
section describes a number of properties which can be used
for categorizing modelling structures. This includes a
description of a set of primitive operations on instances of
modelling structures (formal Hefinitions for the operators
are given 1in appendix B). To show the adequacy of this
formalism, section four describes using the formalism a
number of known structuﬁes, such as lists, trées, graphs,
énd arrays. This 1is followed by a discussion of possible
uses for this formalism and a sectidn discussing how this
formalism relates to other work in thé area of data

structures.,

Instances of Modelling Structures

An "instance of a modelling structure" is an ordered
pair <n,v>, where n is the name and v is the value. A value
is either a primitive indivisible object or a structured
object. A structured object, or value, is a collection of
objects, together with any structural relations between the
objects. Each object is an instance of a modelling
structure and thus has a name and value. Since this is a
recursive definition (an object is a pair <ﬁ,v> where v is a
collection of objects), we need some given set of

indivisible values, These primitive indivisible values are

instances of the particular data types provided as.primitive
by the programming language in which the modelling
structures formalism is realized, for example, integers,
reals, booleans and strings.

In the descriptions which follow the .term "object" is
used to mean an instance of a modeliing structure.
“Element" is used to mean an instance of a modelling
structure which is a member of the value of another instance
of a modelling structufe‘ An object then is any arbitrary
instance, while an element is an object treated as a member
of a structure. "Structure" is used intefchangably to mean
an instance of a modelling structure or an arbitrary
modellng structure. It should be clear from the context of
its use which meaning applies. Finally, the term %“value" is
used to mean the set of elements of a particuiar structure.

Many instances of modelling structures may have theA
same value, but né two instances have the same name. The
purpose for the name is to insure the uniqueness of each
distinct instance of a modelling structure.

Formally, we define /a set of instances of modelling

structures by

Y = {<n,v> | neﬁ,ve¥; or veV;}

where 1l is a denumerable set of names, \/h is a set of

primitive values, and W; is a set of structured values.

The set of primitive values,“f;, is a set of values
Y. = {vlv is a primitive indivisible valuel

p

The set of structured values is defined by

YS = {<@,R,£,Q,P,M>}

where:
ec Y
v
R = {vlee (OxO)x2"}
&= (0, 1
a = {<n ’Ax,n>}
© is a set of objects, ie€s instances of modelling

structures, which are the elements of the séructure. (For
particular applications of this formalism, it may be_
desirable to add the restriction that a structure may not be
a member of itself nor may it be a member of any of its
elements.) To denote that & is the set of objects for the

structured value <n,v>, we will write 6; or Cﬁn This is

,v>*©
also done for other parts of the elements of Y;. R is a
set of relations defined over the elements of the structure,

The relations are expressed as an ordered pair <<x,y>,§>,

where x,ye are the two elements in the structure which are

related, and ¥ is a set of attributes of tﬁe defined
relation. (For particular iapplications of this formalism
there may be limitations on which elements of V may be in
the attribute sets of relations for a given instance of a
structured value.) D is a set of predicates which indicate
whether an arbitrary element in & is é distinguished
element. A distinguished element is an element in & which
can be accessed based on some structural property. d is a
set of external accesses which are bound to elements in the
structure. Elements in & are primitive values (<n, A >
A y,,01(x)
is an access to element x in y). P is the order predicate
(if any) defined on the elements of . Finally, M is a
predicate indicating whether the value of elements in C?may
be replicated (i.e. are there multiple copies of a value).

If values may not be replidated then
<n,v>,<n",v'>eC n¢n'= viv’

M = true means mnmultiple copies (replication of values) are

allowed in a structure.

Relations between objects are part of the structure.
They are the description of how the structure is put
together. Some structures have elements which are unique in
that particular relations are not defined for them. This

may be a salient piece of information represented in the

structure. Distiﬁguished elements provide a mechanism for
representing an invariant préperty of a modelling structure.
In addition to this conceptual clarity, they also provide a
focus for representing limitations on the operations
performed on a given instance 6f a modelling sfructure. For
example, consider a modelling structure with the one-to-one
relation NEXT defined for all elements in a particular
instance of the structure except x. This element x is
Special or distinguished in that it is the 1last element in
the chain or list. Defining the disﬁinguished element LAST
to be the x such that NEXT(x) is undefihéd specifies the
existence of this unique element. Ihis approach makes clear
those cases where a program accesses only this special
element. Note that if a new object 2z were added to the
modelling structure with NEXT(x) defined as z, then the LAST
element would be z not x. Thus, a distinguished element is
bound to the structure, not to a particular element. A
distinguished element can be bound to one distinct element
or no element. It may not refer to many elements.
Furthermore, a distinguished element is not an object, sco
that it may not be manipulated as one. This means the
predicate is not an object; however, the object returned by
the predicate (i.e. the object referenced by the

diStinguished element at some point in. time) is an object

and may be manipulated as such.

/Associated Wwith each telation is a set of attributes.
An attribute represents a piece qf infoémation associated
with the relation between two specific elements in a
structure. For example, to model a graph where the nodes
correspond to cities and the edges correspond to roads
between the cities, we might define a modelling structure in
which the elements represent the nodes or cities and define
a relation, named for instance ROAD, tb represent the edges
or roads. Associated with each road are a number of
attributes describing the particular road, such as the
distance between the cities, the speed 1limit for‘ cars
traveling on the road and the number of reststops between
the cities. This data is associated with the road, and
therefore the relation, and may be represented by attributes
associated with the ROAD relation. The number of relations
defided on a structure and the number of attributes for a
particular value of a given reiation is not limited.

Distinguished'elements and external accesses are both
mechanisms for referencing a particular element in a
structured value. Whereas distinguished elements are bound
to a structure, external accesses are bound to an element of
a structure. The external access continues to reference the

same element even if the structure is changed. It is bound

to the element throﬁgh ﬁhe structure, so external accesses
are restricted references. They may not be used to
reference objects not in a structure, noé may an external
access to element X in structure Y be used directly to
reference x in structure Z. Note, there is no limit on the
number of distinet structures which én object may be a
member. An external access is an object (unlike
distinguished elements) and can be used as such. This means
they can be put into other StPUCtUP955Y

An instance of a modelling structure is either ordered
or. unordered. If the structure 1is ordered then the
predicate P defines the ordering. Within this forma;ism,
ordering by predicate is the only explicit way to order the
elements of a structure. However, it may be that an
unordered structure is ordered implicitl& by its use. (For
example, the user may consider a structure with relation
NEXT as used above to be ordered on that relationship.) In
this case the wuser nmust maﬁage the structure and its
referencing if a special ordering on a sequence of
references to elements of the structure is desired.

This definition of the set of instances of modelling
structures captures the static nature of a modelling
structure. An instance can be depicted graphically by a

directed graph, where the nodes of the graph correspond to

FRONT

<C,R,H,Z,P,M>=

<{<n1,v1>,<n2,v2>,<n3,v3>,<nu,vu>,<n5,v5>},

{suc,here},{DFRONT},{}, undefined, true)>

where:

AN

suc = {<<<n1,v1>,<n2,v2>>,¢>,<<<n2,v2>,<n3,v >>,4>,

<<<n3,v3>,<nu,vu>>,¢>}

3

here = {<<<n3,v3>,<n5,v >>,¢>}1

5

‘false if A5y 3 g(y)=x

Degront (%) =

true otherwise

Figure 1: Example of Graphical Representation for

Instance of a Modelling Structure

an

the elements in the‘strﬁcture, the labeled edges (~l3331;)

are the named relations and the wavy lines (~\») point to
the distinguished elements. Eigure.1 shows an example of a
graphical representatiog for an instance of a modelling
structure. This graphical representation is very similar to
the one suggested by D Imperio [1].

The set of operations on instances of modelling
structures, namedlg, is a set of partial functions which
transform one instance into another. Examples of operators
are: read the value of an element, insert an element, delete
an, element, and create an access to an element of a
structure. Figure 2 is an example of deleting an element

from a structure (in this case element n.).

3

Modelling Structures

A modelling structure M is a subset of elements from Y
and a subset of elements from .3, the 1latter being the
functions allowable on instances of M. Formally a modelling

structure M is defined to be a pair <VM,FM>, where

VM<;\/
FyS3, feFy = iV, — v,

This definition captures the static and dynamic nature of a

modelling structure. Both the set of allowable instances

PLACE

"1 suc /::i\ sué "3
<:::> here
there
Ny

delete element n

3

Figure 2: Example of Modelling Structure Transformation

Deleting an Element

and the set of allowébie‘operations (which must transform an
allowable instance into another allowable instance) are
necessary to characterize the modelling' structure being
used. For example, the.distinction between a Ystack" and .a
"one-way 1list" is in the operations by whiech objects are
added to and deleted from the structure, in other words the
set of allowable operations. An example in whieh the
distinction is in the set of allowable instances is between
a "one-way list" and a "two-way 1ist."‘

One possible use of this formalism is as a guide in
determining the presence of modelling structures in
programs. The difficult problem with recognizing the use of
an arbitrary modelling structure, in a program written in a
given programming }anguage, is that the characterization of
<VM,FM> is divided between structure definition (state
descriptions) and structure wuse {(process descriptions).
Furthermore, the description of VM is not in general
restricted to structure definiﬁions, nor is the description
of FM restricted to structure uses. ﬁlso, similar modelling
structures may be used in entirely different ways. These
issues are discussed in more detail in the section on using

the proposed formalism.

Properties of Modelling Structures

The previous sections of this paper have presented a
formalization of our conception of modelling structures.
Whi;e this formalization» may be wuseful for . analyzing or
synthesizing modelling structures, it is ihcomplete as a
framework for recognizing modelling structures used in a
program, or for gathering the information necessary to
choose implementation étructures‘ In this section, eight
properties of modelling structures useful for doing these
tasks are discussed, with the emphasis on classification of

modelling structures. The eight properties are:

1+ Number of elements in a structure.

2« Type of elements in a structure.

3. Replication of element values in a structure.
4. Ordering of elements in a structure by their values.
5. Structural relations between elements.
6. Distinguished elements in a structure,.
T. Referencing of elements in a structure.

8. Operations applied to a structure and its elements.

Because we are interested in recognizing whether the
structures used in a program are examples of particular
modelling structures, these properties are concerned with

both the static and dynamié aspects of structures. Each of

these properties is discussed below in more detail.

Statistics on the number of elements in a structure are
not particularly important ' for classifying médelling
structureS» However, this information is extremely

important for choosing efficient implementation structures.

The type of an object is not of direct concern in this
paper, although it has. been alluded to several times. We
believe that in general the type of e;ements in a structure
need not be a property of the modelling structure.
(However, some programming languages impose restrictions on
the types of objects which can be elements of a particular
instance of a modelling structure as a result of

implementation structure representation considerations.)

Replication of element values indicates whether two

elements in a given structure may have the same valide. A

set is an example of a structure with no replication.

Ordering of =elements in a structure presumes a
predicate P. The ordering is specified by providing the
predicate and is maintained "automatically" by the structure

whenever an object is inserted or deleted.

The property of structural relations describes the

relations defined for the structure. The properties of each

relation defined for a structure and the relationship
between the relations influences how the structure is
referenced and changed. There are'fivé distinct properties
of a relation. (In this discussion it is rsometimes
convenient to think of the relation as a mépping from =&
domain to a range.) The first property of a relation
determines whether an element can be related to one, or more
than one, other element in the structure. A relation is
one-one (1-1) if it and its inverse map an element of the
structure to only one other element. A one-many (1-many)
relation maps one eleﬁent to many elements, A relation is
many-one (many-1) if it maps many different elements to the
same element. Note that the inverse of a 1-many relation
must at least be many-1 and vice versas Finally, a
many-many relation is one which maps one element to many and
many elements to one.

The second relation property establishes whether the
relation for the domain and range is total, unique or
partial. A total domain relation implies that all elements
in the structure are in the domain of the relation. A
unique domain relation implies that all elements in the
structure except one are in the domain of the relation; and,
a partial domain relation implies that zero or more elements

in the structure may not be in the domain of the relation.

In a similar fashion the range of the relation is total,
unigue or partial. Thus, the possible choices for this
property are one selection from eacb of the two lists (total
domain, unique domain and partial domain, and total range,
unique range and partial range).

The third property of a relation on a structure is a
graph theoretic concept, namely, connected or not connected.
A relation is connected (more precisely, a structure is
connected with respect to a relation) if from each element
all other elements in the structure can be reached by
successive applications of the relation or its algebraic

inverse (i.e. V<x,y>eqT, <y,x>éﬂ"1

)« Another way to express
this 1is to say that a relation is connected if the
transitive closure of a relation and its igverse includes
all elements in a structure. A relation is not connected if
this condition does not hold.

The last two relation properties are algebraic
concepts, namely, whether the relation 3is reflexive or
symmetric. A relation @ is reflexive if for all elements x
in the structure <<x,x>,£>€v’; Thus, any time an element is
added to the structure,.<<x,x>,¢> is added in each reflexive
relation. A relation ¥ 1is symmetric if for all elements x

and y in the structure such that <<x,y>,$>e<7, then

KLy, x>,4>e T, Thus, whenever <<x,y>,¢> 1is added to a

- 18 -

symmetric relation, {<y,#>,¢> is also added.

There are 288 differqnt combinations of these five
properties, of which 45 are .realizable cases. The other
property combinations result in contradictioné and no
examples can be created. Of the 45 realizable cases, 36 may
be constructed and manipulated by the primitive structure
operations defined below (16 connected and 20 not
connected). The 16 realizable connected cases are listed in
figure 3 and the 20 realizable not .connected cases are
listed in figure 4. 8 out of the 9 cases which cannot be
constrgcted by the primitives are either unique domain-total
range or total domain-unique range. There are no examples
(having one or two nodes) of these cases which can be
constructed in one insert or relate operation. The
realizable cases c¢can be grouped into three <classes:
list-like, tree~-like and graph-like structures. The
list-1like structures are essentially lists and rings and are
defined by 1-1 relations. The tree-like structures are
essentially descendent and ancestor trees and are defined by
l-many and many-1 relations. The graph-like structures are
essentially graphs and are defined by many-many relations.
A complete listing of all distinct cases, examples of how
they can be constructed by the primitive operators and PPL

procedures implementing some of the primitive operators are

total domain total range
unique domain unique range

1-many

partial domain total range
partial domain unique range

many-1

total domain partial range
unique domain partial range

many-many

total domain partial range
unique domain unique range
unigque domain partial range
partial domain total range.
‘partial domain unigque range
partial domain partial range

total domain total range
partial domain partial range
total domain total range
total domain total range

symmetric
symmetric
reflexive
reflexive symmetric

Figure 3: Realizable Connected Cases

total domain
unique domain
partial domain

1-many

partial domain
partial domain

many-1

total domain
unique domain
partial domain

many-many

total domain
total domain
unique domain
unique domain
‘partial domain
partial domain
partial domain
total domain
partial domain
total domain
total domain

Figure 4:

total range
unique range
partial range

total range
unique range

partial range
partial range
partial range

total range
partial range
unique range
partial range
total range
unique range
partial range
total range
partial range
total range
total range

Realizable Not

- 21 -

symmetric
symmetric
reflexive
reflexive symmetric

Connected Cases

presented in a companion working paper [6].

"The distinguished elements in thg structure are
described by predicates defined in terms of the relations

defined for the structure.

An important property of a structure is how its
elements are referenced. The formalism identifies four ways

of referencing elements. These are: selection,

distinguished element, external access'and quanﬁification.
There are two forms of Selection referencing: element
number and name selection. Element number referencing is
used either to access elements in an ordered (in the sense
of the ordering property) structure (get the i-th ele@ent)
or an unordered structure (get the element named i).
Element number referencing is a primitive concept in the
formalism in the sense that the existance of the integers as
element names may be assumed without explicit definition.
In; the unordered case the existence of a relationship
between i and i+1 as integers and the elements referenced i
and 1i+1 1is not explicitly represented. Also, in the
unordered case the element number may be a list of integers,
thus introducing the notion of dimensionality. Element

number referencing is denoted for unordered structures by

<n,v>.i = <n',v’>c¢8’n

- 22 -

and for ordered structures by
<n,v>[i] = <n',v'>é@%

(in most programming language; both forms‘of e;ement number
referencing are depicted by the second form shown,)

The second form of selection referencing bis name
selection. Name selection referencing selects elements from

a structure by their name. It is defined by
<n,v>.n’ = <n',v'>é@;

Distinguished element referencing references the
element which satisfies the distinguished element predicate.

Formally, a distinguished element is

~
]

<n’,v > el D (<n",v">)=true
n X,n

where Dx is a member of‘&%‘

,

Referencing by external access corresponds to binding
an access function to an element in the structure. External
accesses are formalized by a predicate which is true only
for the element it is bound to,

x = <n’",v">eO A (<n",v">)=true
n X,n ‘

v’

where <n ,Ax n> 1is a member of CZn, When the external
. s

access 1is evaluated it returns the element to which it is

bound. External accesses are used for‘ moving through
structures such as 1lists, trees and graphé by following a
sequence of related elements.

The last two mechanisms for referencing elements in a
structure are content based, namely, universal and
existential quantifications Universal quantification

references all elements of a structure, possibly qualified

by a predicate. For example,
Vxe Y such that A

references all elements of the structure Y such that A(x) is
true. Universal quantification might be included in a

programming language as a looping control mechanism, -
forall x in Y suchthat A do

might execute the range of the do repeatedly, with x bound
in turn to each element of Y such that A(x) is true.

The second form of content ©based referencing is
existential quantification. Existential quantification
references an element (if it exists) which satisfies a

predicate. For example,
Ax¢Y such that A

references an x in Y for which A(x) is true. This form of

- 24 -

quantification might be included in a programming language
as a mechanism for searching for an element in a structure,

e
exists x in Y suchthat &

binds to x an element of Y such that A(x) is true. Repeated
execution of this statement does not generate all elements
which qualify. It only finds an x which qualifies if it
exists.

The predicate A used in both forms of quantification,
as shown in the preceding examples, is defined only in terms
of the values of the elementsvin the structure.

Any structure may use quantification referencing.
Universal quantification may be thought‘of as implemented by
coroutines generating the elements of the structure. If the
structure is ordered the elements are generated in order,

otherwise their order is not predictable.

The 1last property of structures is how they may be

transformed, i.e. what operations may be performed on a

structure and its elements. There are eleven primitive

operations: read, insert, delete, replace, createaccess,

relate, unrelate, related, readattr, storeattr and assign.

The result of applying four of these operations (insert,

delete, relate and unrelate) depends on the properties of

-(a)

(b)

stub

@ ,
O ONORO
S

(d)

Figure 5: Sample Structure and relate Operation

the relations defined on the structure. For example, if a
non-empty structure had a 1-1, total domain, total range and
connected relation defined on its eleménts, it would not be
possible to insert a new object into the structure because

how the new element is to be related to thé other elements

is ambiguous. However, in those cases where it is
unambiguous, the operations transform the resultant
structure into a legal structure. This can best be

explained by an example. Suppose there is a 1-1, unique
domain, unique range and connected relation defined on the
elements of a structure, as shown in figure 5(a). A request
‘to relate x to 3 would result in the illegal structure shown
in 5(b). The structure is illegal because 2 related to 3
and x related to 3 implies the relation is not 1-1. Since
the operation requires that x be related to 3, then 2
related’ to 3 must be removed as shown in 5(e). The -
structure shown in 5(c) is also illegal because it is not
connected, nor is it unique domain and unique range. The
rule for reconnecting the structure is to use any stubs, as
shown in 5(c), to reconnect. Since there were only two
possible reconnections, 2 to x and U4 to 1, and a stub 2 to
something, the unambiguous transformation is to reconnect 2
to x. The resulting structure, after x has been inserted

and related, is shown in figure 5(d). The transformation

rule can be stated as:

'Add or delete relations described in the operation. If
the resulting structure is legal then the operation is
complete; otherwise, delete and/or add relations aé
necessary- to restore a 1legal structure. If at any
point an ambiguity arises (i.e. there is more than one
way to delete or add relations as directed by stubs)

the complete operation is undefined.

A rigorous definition for each of the operations is
given in appendix B, For some cases when a relation is not
‘connected there is an uncertainty as to the meanings of
delete and relate. As a result the definitions of these
operators is meaningful only for connected relations.

The first operation is read. It returns the value of
the referenced object.

The insertion operation, insert, inserts an object into
a structure. If the structure is ordered the object 1is
inserted so that the ordering is maintained.

The delete operation removes an element from a
structure and modifies all relations involving it.

The replace operation removes one element from a
structure and replaces it with another. The definition of

replace depends on whether the structure is ordered. If the

structure is unordered the old element is removed (including
external accesses) and the new element is inserted. All the
relations defined for the old element are changed to relate
to the new element. The only difference when the structure
is ordered is that the ordering of elementé,ié redefined in
accordance with the order predicate rather than just by

substitution.

The createaccess operation creates an external access
to an element in a structure.

The relate operation relates elements. If either of
the elements being related is not a member of the structure,
it is also inserted. relate takes two arguments: the
structure in which elements are to be related and an ordered
set of triples <x, ¢ ,y>s For each of the triples in the
ordered set in tufn, X 1s related to y. If at any point
during the processing of the triples an ambiguous -
transformation is encountered, the structure is restored to
its original state, ises the complete operation is
undefined. It should be remarked that in some circumstances
the ordering of the triples may determine whether the
operation is defined or not. After processing each triple
the structure must be legal with respect: to the relation
named 1in the triple. Furthermore, at the completion of

processing the triples, the structure must be 1legal with

g 1-1, unique domain, unique range and connected

T’ many-many, partial domain, partial range and not connected

(a)

(v)

Figure 6: Example Structures and relate Operation

respect to all relatiohs defined on the structure. An
example may clarify these _remarks. Figure 6(a) shows a
structure with three elements and two reiations: g (1-1,
unique domain, unique' range and connected) and g

(many-many, partial domain, partial range and not

connected). The operation
relate(“structure", {<5,0 ,U4>,<8,7,5>,<3,7,4>})

when applied to the structure in 6(a)vis undefined because
after processing the triple <4,7,5> the structure‘would be
illega; (T not connected). Note that after processing the
first triple, <5,¢ ,4>, the structure is legal with respect
to ¢ but not with respect to T. However, at that point the
structure must be legal only with respect to the relation
named in the triple, namely, g~ . After encountering the
illegal transformation while processing the second triple,
the structure is restored to its original state, as shown in
6{(a), and the operator returds "undefined." By reordering

the triples, the operation
relate("structure", {<3,7,4>,<5,5°,4>,<4,5,5>})

is defined and would transform the structure shown in 6(a)
to the one shown in 6(b). Note that processing the first

triple, <3,05,4>, causes U to be inserted into the structure

and processing the second triple causes 5 to be inserted.

The operation
relate(“structure",{<3,¢;M>,<5,v',u>})

applied to the structure in 6(a) would be uﬁdefined, because
at the end of processing all of the triples (both 1legal
transformations) the resulting structure is illegal with
respect to ¢ (with respect to ¥ 5 is not connected and & is
not unicue domain or unique range).

unrelate is the inverse of relate. It removes the
relation between two elements in a structure.

The related operation returns the object related to
another by a particular relation.

readattr returns the attribute associated with a given

relation.

The storeattr operation stores an attribute associated-

with a given relation.

The assién operation changes the value of a structure.
Assign may not change a value of an element if that element
is used in an order predicate for a structure, This insures
that an ordered structure cannot be implicitly rearranged by
an assignment operation.

Figure 7 1lists the primitive operations and their

arguments. These operations are not necessarily complete

read(object)
insert(object,structure)
delete(object,structure)
replace(object,object,structure)

createaccess(object,structure)

relate(structure, {<object,relation,object>,.«.})

unrelate(structure,{<object,relation,dbject>,‘«.})

related(object,relation,structure)

readattr(structure,<element,relation,element>,attribute)

storeattr(structure,<element,relation,element>,
{attribute,object>)

assign(object,object)

Figure T: List of Primitive Operations

nor those that would appear in the syntax of a programming
language., However, given an appropriate syntax and some
other predicates (such as member of or related to), the
meaning of most of the language constructs could be defined

using these primitives.

Adequacy of the Formalism

This section demonstrates the adequacy of the proposed
formalism by showing how a wide variety of modelling
structures can be specified. These structures are specified
in terms of the properties described in the previous section
and the definition of the set of instances Y. Obviously
there are many different representations for each modelling
étructure‘ The purpose.of this section is not to enumerate
different representations, but to show how the formalism can
cleanly represent different modelling structures.

In the examples that follow a mn#w as an argument to a
primitive operation means any reasonable value as an
argument . Primitive operations listed without an argument

list means any reasonable value for each argument«

Set

/

replication

Nos

ordering

no.

relations

none.

distinguished

none.

referencing

quanti

operations

read

insert

delete

elements

fication

replace

36

Ordered Set

replication

now

ordering *

yes.

relations

none.

distinguished elements

none.

referencing
quantification

element number

operations
read
insert

delete

replace

37

Sequence

replication

yes.

ordering

yes.

relations

none.

distinguished elements

none.

referencing
quantification

element number

operations
read
insert

delete

replace

38

Tuple

replication

yes.

ordering

Nos

relations

none.

distinguished elements:

none.

referencing

name selection

operations

read

assign

39

1-way List

replication

yes.

ordering

no.

relations

suc (1-1, unique domain, unique range,

distinguished elements

"head" - suc'1(“head") = undefined
"tail" - suc("tail") = undefined
referencing

external access

distinguished element

operations
read
delete

replace

createaccess

relate

related

- 40 -

connected)

2-way List

/
replication

yes.

ordering

no.

relations
suc (1-1, unique domain, unique range,

pred = suc"1

distinguished elements

"head" - suc-1("head") = undefined
"tail" - suc("tail") = undefined
referencing

external access

distinguished element

operations
read
delete

replace

createaccess

relate

related

- 41 -

connected)

1-way Ring
/
replication

yes.

ordering

nNo«

-

relations

sue (1-1, total domain, total range, connected)

distinguished elements

none.

referencing

external access

operations
read
delete

replace

createaccess

relate

related

2-way Ring
replication

yes.,

ordering

no.

relations
sue (1-1, total

pred = suc”’

distinguished elements

none,

referencing

external access

operations
read
delete

replace

createaccess

relate

related

domain, total range,

connected)

Stack

replication

yes.

ordering

no.

relations

next (1-1, unique domain, unique range,

distinguished elements

"head" - next("head") = undefined
referencing
distinguished element

operations
read
delete

relate(#*,{<¥ next,"head">})

- 44 <

connected)

Queue

replication

yes.) !

ordering

Nos

relations

pred (1-1, unique domain, unique range,

distinguished elements

"in" - pred("in") = undefined
"out" - pred-1("out") = undefined
referencing

distinguished element

operations
read("out")
delete("out"y,*)

relate(*, {<"in",pred,*>})

connected)

Dequeue

/

replication

yes.

ordering

nos

relations

sue (1-1, unique domain, unique range, connected)

pred = suc™ !

distinguished elements

"endi1" - suc'1("end1“) = undefined
"end2" - suc("end2") = undefined
referencing

distinguished element

operations
read("end1")
read ("end2")
delete("end1",#)
delete("end2",#)
relate(*,{<# ,pred,"end1">})

relate(¥#,{<"end2",pred,*>}) .

Vector

replication

yes.

ordering

Nos

relations

none.

distinguished elements

none.

referencing

element number

operations

read

assign

b7

Matrix

replication

yes.

ordering

Nos

relations

nones

distinguished elements

none.

referencing

element number (2-dimensional)

operations

read

assign

- 48 -

Array

replication

yes.

ordering

no.

relations

none.

distinguished elements

none.

referencing

element number (n-dimensional)

operations

read

assign

Tree

replication

yes.

ordering

nos

relations
desec (1-many, partial domain, unique range,
connected)

ansc (many-1, unique domain, partial range,

connected)

-1
ansc = desc

distinguished elements

"root" - anse("root") = undefined

referencing
external access

distinguished element

operations
read

delete

replace

createaccess

relate

related

51

Binary Tree

/

replication

yes.
ordering
nos
relations
left (1-1, partial domain, partial range, not
connected)
right (1-1, partial domain, partial range, not
connected)
ansce ' (many-1, unique domain, partial range,

connected)

anse = left™) U right

distinguished elements

"root" - ansc("root%)

referencing
external access

distinguished element

operations
read

delete

-1

= undefined

replace

createaccess

relate

related

53

Graph

replication

yes.

ordering
nos
relations

Xy (any properties)

distinguished elements

may be defined.

referencing

external access

distingﬁished element

operations
read
insert
delete

replace

createaccess

relate

unrelate

54

related

readattr

storeattr

55

Digraph

replication

yes.

ordering

Nno.s

relations

X, - (any properties)

distinguished elements

may be defined.

referencing
external access

distinguished element

operations
read
insert

delete

replace

-

createaccess

relate
unrelate

related

56

readattr

storeattr

57

Uses for the Formalism

Defining a formalism is not very interesting unless it
can be used, either to analjze or synthesize the objects
with which it is concerned or to elucidate some of their
common properties. Furthermore, the formalism itself should
show an interaction of properties. A formalism composed of
disjoint parts which does not reveal interesting
relationships between the objects with which it deals is not
itself very interesting. He feelA that the formalism
presented here meets this last criterion, part;§u1arly in
the way relations, distinguished elements, referencing and
ordering interrelate to define sets of similar modelling
structures. One purpose for defining this formalism is to
investigate a mechanism for recognizing. whether the
definition and use of a particular instance of a structure
in a program is the use of some known modelling structure,
By developing a catalog of deseriptions for known structures
and an algorithm for deducing froﬁ the program the
properties used for describing structures in the formalism,
it is possible to do this, Notice that the properties used
in the preceding example specifications of modelling
structures can in most cases be easily determined by a
static analysis of a program (assuming a semantically

well-behaved language syntax). Thus, the catalog (including

alternative representations for the same structures) and
algorithm could comprise the modelling structure recognition
component of-the system described in feference 54 Since a
given modelling structure can be expresséd in many different
ways and the general problem of recogniziﬁg ény arbitrary
representation is unsolvable, one measure of the quality of
the formalism is whether a reasonable number of cases can be
recognized.

| There is a problem with the modelling structures
recognition algorithm. Because objects being related using
the relate operation may or may not be members of the
structure and because in general it 1is not possible to
determine whether the object is or is not already a member,
the ability to recognize those modelling structures where
there is a limitation is uncertain (e.g. <x,0,¥Y>, X must be
and y may not be a member of the structure). There are’
three ways to deal with this problem., First, in those cases
where it 1s uncertain, the system could ask the user. A
second possibility would be to build a complicated pattern
matching program to recognize some percentage of the
uncertain cases. In those cases where the pattern matcher
could not determine whether an object is 6r is not already
ih a Sstructure, the recognition algorithm would proceed

assuming that either could be true, implying that some known

modelling structures may not be recognized. The third
possibility would be to constrain the programming laﬁguage
syntax and semantics in a way that forces the programmer to
specify whether an object is or is not already a member.
Each of these alternatives has advantages and disadvantages
and will not be discussed further in this paper.

The catalog of known'modelling structures used by the
recognition algorithm can serve as the store of predefined
modelling structures an experienced programmer may uses
This mechanism can also be used to check the consistency of
structure wuse in a program by comparing the 'structure
description deduced from the program with the catalog
description and by ichecking the inner consistency of the
deduced descriptions themselves. It should also be possible
to recognize-wben the structure actually used is different
from the one the programmer thinks he is using (e.g. if a
supposed list is in fact a stack or queue).

Other areas where this formalism can be used are in
synthesizing and analyzing particular modelling structures.
It can also be useful as a tool for comparing the structure
facilities provided in different programming languages. For
example, what properties and operators aré provided, what
limitations are imposed and what concepts are combined?

v

Another use for this formalism is as the framework and

- 60 -

knowledge base for interactively synthesizing modelling

structures.

Relationship to Previous Work

There has been a significant amount 6f work on data
structures in the iast few years. In this section we
discuss the relationship between some of this previous work
on formalizing and using data structures and our proposed
modelling structures formalism. The work by Kapps [3],
Mealy [4] and Turski [9] has been directed towards a theory
of data structures emphasizing the meaning of data and the
fundamentals éf structures and computation. Many of the
concepts represented in these abstract models are used in
our formalism. Earley [2], Shneiderman and Séheuermann {71,
and Taft and Standish {[8] are representative of the
extensive.work on data definitional facilities and structure
operations 1in programming languages. Because the proposed
formalism will be the basis of a sample programming language
for research on the generation of efficient implementation
structures, it is important to consider how usable such a
language will be. In this paper the emphasis is on the
automatic recognition of structures used in a program.
However, we feel that data definitional facilities based on

our formalism may also prove more usable than some presently

available facilities. Lastly, we discuss the work by
D “Imperio [1] on problem-solving tools, particularly her
modelling stfuctures formalism.

Kapps defines a data structure as a pair <C£>oG,'R>,
where C is a set of storage cells,ds is a sét bf data values
and'ﬁ is a set of relations on C (hence on ﬁ), Computation
is then a process mapping a program data space structure to
another structure, ‘He ‘factors out equivalent data
structures by defining an algebraic category of morphisms
over the class of data structures.

This formalism is used to discuss programming systems
(a subcategory of data structures which are directly
representable in the system), solution of problems (mapping
from the subcategory of input data structures to the
subcategory of solutions to elements in the input
subcategory) and mechanizing the generation of ©problem"

I

solution procedures (mapping the data values to C, mapping
the relations R, and mapping the operations). Kapps
acknowledges that the mapping of relations and operations is
intimately related to and influences the execution
efficiency of the computation, He can not carry this much
further since he does not discuss in detéil the mechanisms

for referencing and operating on data structures. They are

" treated as abstract, presumably partial, functions. Qur

- 62 -

Ve

proposed formalism differs from Kapps'_work on two points.
The first is tﬁat he presumes a physical storage medium (in
his notation €) in which data values are stored, and second,
concepts which are represented explicitly‘in our formalism
are subéumed in unspecified functions and relationsf

Meaiy discusses a theoretical model for data and data
processing. The model is based on entities (objects in the
real world), values (values of attributes of entities), data
maps (mappings of values to attributes of entities) and
procedural maps (operations on data maps which change the
data maps). Structural data maps are special data maps
whose value set is the set of entities (in essence a
é;ructural data map specifies which entities are elements of
the structure). The model also defines access functions
(procedural mechanisms for accessing entities), data
organization (how data is mapped into a physical storage
medium) and data description (specification of data
representation).

Mealy uses this model to discuss problems in three
areas: representation independence, language extension and
variable binding time. Briefly, he argues that programmers
should have more explicit control of data‘representation,
that languages for extending data types are better than

1éhguages with expanded numbers of daté types and 1lastly,

that languages and systéms should make more use of stored,
explicit data descriptions‘_

Mealy’s formalism is different than Kapps® in that
Mealy does not require a.stnucture to be represented in some
storage medium. He represents relations by data maps and
does not explicitly associate them with a specific
structure, He also introduces the notion of access
funetions; although, he does not make a distinction between
accesses based on structural propertiés (our distinguished
elements) and accesses to specific elements (our external
accessgs). Furthermore, his access functions are features
of individual procedures. Similarly to Kapps, he subsumes
some of the aspects explicitly represented in our formalism
(replication, ordering, referencing and operations) in
unspecified mappings.

Turski’s model represents what are termed "unambiguous
structures"® composed of objeects each with a distinect name.
This name can be used as referénces, structural 1links (i.e.
as objects themseives) or preimages of storage allocation
mappings. The model, similar to Mealy, does not présume
storage of the data values. The mapping of a data structure
to ;n addressable storage meduim (via traditional hardware
addressing mechanisms, namely, indexed, relative and

indirect) is described for three classes of structureé:

.

array-like; key-ordered 1list-like and threaded list-like.
Our formalism, 1like Turski’s, uses named objects as its
primitive elements; however, names are restricted to being
used as references.

Moét workers in data structures agree that there are
various levels at which structures and operations on the
structures can be represented. The choice of at what level
of generality the data ‘definitional facilities are realized
in a programming language has a major impact on many aspects
of the language and its use, ineluding but not restricted
to: the ease of expressing programs, the possibilities for
proving programs correct, the transportablitiy of programs,
ﬁrogram execution efficiency, and the reliability and
maintaihability of programs., Obviously, machine and
assembly languages provide the greatest freedom, and require
the greatest effort on the part of the programﬁer, in
describing and using data structures. High level languages
(for example FORTRAN, ALGOL-60, COBOL, SNOBOL, COMIT, SLIPk
and BASIC) provided limited facilities, limiting either the
types of representable structures and/or the available
operations. This reduced the effort required by the
programmer, but also limited the scope of problems wﬁich
could easily be programmed. Unfortunately, this resulted in

a plethora of new languages andvextensidns to 0ld languages

for different problem domains.

As a result research in programming languages turned to
the design of languages and systems with data structuring
facilities which would attract a wider audience of users.
One /effort in this direction was PL/1. It provided
facilities for defining complicated structures, but the use
of these structures was cumbersome because neither the
structures, nor their associated operators, were really a
part of the language as had been the case with the special
purpose high level languages. This 1lead to the design of
the extensible languages (for example ALGOL-68, PPL, ECL and
VERS). It should be pointed out that the virtues of the
éxtensible languages, the ability to construct new data
types and embed new operators in the language, had appeared
much earlier in LISP and to some extent in the IPL series.
This was accomplished by making operators, procedures and
functions syntactically appear the same. Thus whether a
given operator was primitive in the language or had been
added by the user was transparent. The problem now is at
what level of generality the primitives for constructing and
using structures should be defined.

PPL, as described- in the paper by Taft and Standish,
uses the currently popular data defintional facilites:

~

rowing (forming sequences of elehents of the same type using

element number referenéing), structuring (forming finite
sized structures of possiple different types wusing name
selection referencing), uniting (forming. a new data type
which 1is the union of several other types -- when the
structure is created or assigned to, its type is fixed) and
referencing (forming classes of pointers to elements of
other classes). These mechanisms provide a concise; easy to
understand set of © data definitional ' facilities.
Unfortunately, they place a considefable burden on the
programmer when he wants to use certain types of structures,
such as: dynamic collections of dissimilar objects, ordered
structures (the programmer must maintain the structure),
structures with no replication, and multiple relations on
elements in a structure. In other cases it requires a well
documeﬁted, easy to access library of commonly used
structures (sueh as stacks, trees and lists) or the
progrémmér must reprogram these structures each time they
are used.

Shneidernam and Scheuermann discuss a higher level set
of data definitional facilites. They suggest- a facility
which allows arbitrary compositions of structures, with
essentially two primitive ‘types of structures: trees and
lists. They also provide higher level primitive operators

for most of the meaningful operations: insert, delete, copy,

replace; interchange and search. While these facilities
will probably be very useful to those problem domains with
structures similar to the ones defined; the number of users
will most likely be limited.

Earley in his VERS system providés -a rich data
definitional facility and a powerful set of iterative
operators. The data structuring mechanisms provided
include: tuples (corresponds to structured types), sets
(homogeneous, unordered collections of elements), relations
(sets of tuples), functions (binary relations) and sequences
(ordered collections of homogeneous elements with
replication). Sequences are used to model vectors, strings
and lists. With each structure type there are many useful
primitive operators defined, e.g. set union and
intersection, a next and prev operator for sequences and
insert and delete operators for both sets and sequences. It~
is difficult to tell which of the two facilities, Earley’s
or ours, would be most usable over a wide class of problems.
However, it does appear that using Earley s formalism it may
not be as easy to automatically recognize the use of known
structures,

The proposed formalism is eclosest 1to the work of
D “Imperio. Her formalism is based on a set of primitive

nodes (in our terminology Y;) and structures of nodes which

vary in three ways: internal ordering of nodes within a
structure, external accesses to elements in a structure and
references be£ween structures and unitﬁ‘ The basic unit is
a list, described by a structure’s internal ordering
property. External acceés corresponds to oﬁr notion of
distinguished elements (presumably they are explicity
updated by the primitive operations used). References are
essentially access paths between elements of different
structures,. Her formalism is a tool for human
problem~solving, and to our knowledge has not been used as a
basis for a programming language data definitional facility.
We have extended her formalism in several significant ways:
by making the property of internal ordering optional (her
formalism did not require that a structure be ordered but
implicitly it always was by the way the structure was
represented), by allowing multiple relations to be defined
for elements in oﬁe structure, by binding external accesses
to structures, by allowing one object to be in many
structures at once, by allowing structures with no
replication of elements to be defined, by introducing
hierarchy in a different way (allowing structures to be
treated as nodes in other structures) and by allowing the
definition of arbitrary relations between objects

(corresponds in a limited way to her references). We have

also rigorously defined a concise set of primitive

operators.

Summary

A formalism for describing the properties of modelling
structures is defined, including detailed descriptions of
the static (properties) and dynamic (operations) aspects of
a rich c¢lass of structures. The adequacy of the formalism
is demonstrated by the ability to represent a wide variety
of known modelling structures. Some possible uses for the
formalism are proposed and the_ relationship between this
formalism and selected previous work on data structures

discussed.

References

1 *D'Imperio, M. E. Information Structures: Tools in

Problem-Solving. unpublished paper (July 1969).

2 Earley} J. Relational Level Data Structures for
Programming Langhages. Computer Science, u. Cs

Berkeley (1973).

3 Kapps, C¢ A, SPRINT A Programming Language with General
Structure., PhD Thesis Moore School Report No. 71-18,
The Moore School of Electrical Engineering, Univ. of

Penn. (August 1970), p 94-123.

4 Mealy, G. M. Another Look at Data. Proc. AFIPS 1967

FJCC, 31 (May 1967), p 525-5314,

5 Rowe, L.« A~' A Formalization of Modelling Structures and’
the Generation of Efficient Implementation Structures.
Dissertation Proposal, Department of Information and

Computer Science, U. C. Irvine (May 1974).

6 Rowe, | S A, Modelling Structures Formalism -—-
‘Structural Relation Case Examples. unpublished working
paper, Department of Information and Computer Science, U

¥

C. Irvine (December 1974),

Shneiderman, B, and P, Scheuermann. Structured Data

Structures. Comm. ACM 17, 10 (October 1974), p 566-5T74,

Taft, E. A. and T. A. Standish. PPL User’s Manual.

Aiken Lab, Harvard University (January 1971).

Turski, W. M. A Model for Data Structures and its

Applications: ACTA Informatica 1 (1971),p 26-34,

Appendix A: Notational Conventions

The conventions used in this paper are that capital
script 1letters represent sets (a;ﬁxj,u‘.), capital block
letters are predicates (A, B, C,«¢+), small letters are
functions and variables (a, b, c,.ss) and that the greek
letter sigma represents a relation (7).

A relation 7 is a subset of the cartesian product of 2

sets. It can be represented by a set of ordered 2-tuples,
#

T = {<x,y>] x is ¢ related to y }

That an element <x,y> is a member of a particular relation
is denoted by xty or o(x) = Vo

A function or relation f mapping domain adto range'ﬁ is

shown by
f:d -5

Two projection functions are defined, namely, p1 and

pzf Pi projects the i-th component of the ordered tuple.

thus,

/)2(<x,y>)=y

In the operator formalism, set union (U), subtraction

(\) and a procedural assignment (<) are used, eg.

Q‘""QUX

makes @ the set union of & and x. $ denotes the null set

«

and 2 denotes the power set of ((the set of all possible

subsets. of @).

Appendix B: Operator Definitions

In this appendix formal definitions for the eleven
primitive operators are presented. ‘The operators are
defined by procedures which transform a 1egél étructure into
a legal structure. If the structure to be operated on is
illegal (e.g. a total domain relation for a structure is

not total), then the result of applying an operator is

indeterminate. All operators, except read, related and
readattr, return "defined" or ‘“undefined" depending on

whether the operation is performed or not performed. In
those cases where applying an operator returns "undefined"
and the structure was transformed, the undoing of the
operation is not shown.

The definitions rely heavily on the ﬁotational
conventions established in appendix A. Keywords and -
primitive functions are underlined. The meanings for most
of the primitive functions are described Ain the comments
associated with the definitions. There are two primitive
boolean functions, def and undef, used in the definition of
relate that may need more explanation, The functions define
or undefine a relation between two elements of a structure,
However, if the relation to be defined (undefined) has been

undefined (defined) by the processing of a previous triple,

the function returns faise which results in the operator

returning "undefined."

The arguments to the operators are those shown in the

list of primitive operations, (figure 7).

READ

read(x) read the value of x

return PZ(X) return value part of argument

end

insert(x,y)

if er; then return "undefined"

if QQL(My) or Zze@& 3 P2(2)=F2(x) then

if (@y£¢) and (BvﬁRya(v connected or
¢ unique range or g unique domain))

then return "undefined"

V&éﬁy do

if o reflexive or o total domain
or ¥ total range then
e 00U <<x,x>,$>
if Oy=¢ then
if ¢ unique domain then tg ¢ x
if ¢ unique range then hg < x

if Py defined then order(x,y)

0;<r Gy U x

INSERT

insert x into ¥y
may;not insert into_primitive structure

if structure allows repetition or x
is not already in y then put x into y

if structure not empty and there exists
a conneéted or unique domain or range
relation on y, then op not defined

for all relations on y

if thére is a reflexive or total domain
or range relation on y then add x
related to x

if‘structure is empty and

unique domain, then tail (tw) is x
unique range, then head (hg) is x

if v is ordered structure then establish

~ordering of x in structure

put x in object set of y

return "defined" ' - operation is defined

end

p=2X15-N

DELETE

delete(x,y) 1 delete x from y
if st’ r x¢@ then return "undefined" if y is a primitive struéture or x is
P y not an element of y then op is not
defined . »
 VbeRy do ' for all relations on y do
case of |
g 1-1: | T 1 to 1 relation
if A<<v, x>, 9> then . if there exists a v related to x
g T \ <<v,x>,£> : undefine it
if A<x,u>, 3 deT if there exists x related to u
then qe{c\((x,u),g'>)U<<v,u>,¢> undefine it and define v related to u
-else if ¥ unique domain then ti&v otherwise v is tail
exitcase ’ leave case statement
if 3<<x,u>,3>e¢'iggg no y related to x, if there exists x
related to u then
re ¢ \ <<x,ud>,d> ' undefine it
if ¥ unique range then hf?u and if appropriate, u is head

exitcase ' leave case statement

g 1-many: ’ g relation is 1 to many

if ¢ unique range and h¢=x then if unique range énd x is head .then
if Hvi<<x,v>,d>rAavEx}I> only 1 element may be in relation to x
then return "undefined" _ otherwise operation is not defined
else
if A<<x,v>,8>0T then if defined and v exists
TeT\<<x,v> 8> ~ undefine relation and
hgrv make v new head
exitcase leave case statement
Lv, x>, 3T ; ~ let v be the element in relation to x
if x=v then . if x is equal to v and there is more
if Hul<<x,u>, 8 >cAaustx} > than one element related to v then
. then return "undefined"® operation is not defined |
else
if 3<<x,u>,8°>er then if u exists,
T« (T\<<x,u>,8 " >IU<cu,u>,¢> undefine x related to u and define u

related to u
exitcase , leave case statement

V<<x,ud> 8 “deq do : for all elements related to x, unrelate

8-g

T < (o\ <<x,u>,3°>) U <<v,u$,¢>
T<vr\ <Lv,x>,8>
exitcase
¢ many-1:

if ¢ unique domain and t,_.=x then

= - v

if J{v]<<v,x>,8>ernvEx}i>T .
then return "undefined"
else

if J<Kv,x>,8>¢E then
ceq\((v,x>,8>‘
tfev
exitcase
<<x,v>,3>e¢
if x=v then
if J{u]<<u,x>, 8 d>eaautx}|>1

then return "undefined"

»else

and relate v to elements

undefine v related_to X

1eave‘case statement

¢ relation is many to 1

if unique domain and x is tail thén only
1 element may be in relaﬁion to x

otherwise operation is not definéd

if there is only one element in relation
to x, undefine v related to x and make

v the new tail

leaQe case statement

let v be the element related to X

if v equals x and there is more than

1 element related to u then

the operation is not defined

6-g

if 3<<u,x>,$ d>er then

re(o\<<u, x>, 8 >)U<u,ud,$>

exjtcase
V<<u,x>,8 ">¢ do

(@ \<<u, x>, 8 >)WWcu,v>,$>
T« T\ <<x,v>,d>

exitcase

g many-many:

if ¢ reflexive then

<« T\ <<x,x>,4>
V<cx,v>,4>¢T do
T« T\ <<x,v>,3>
if x#v then
if T total range and
AKu,v>,3°>¢qT then
if Wybz

then return "undefined®

else g0 U<V, v>,¢>

otherwise, if only 1 u exists then

~

undefine u related to x and define u
related to u

leave case statement

for all elements in relation to x
undefine relation to x énd relate to v
undefine x related to v

leave case statement

T relation is many to many.

if reflexive, undefine x related to x

- for all v in relation to x

undefine x related to v

if x is not equal to v

if total range and there does not exist
u related to v then if structure has
more than 2 elements operation is not

defined, otherwise define v related to v

01-g

if g unique range and
A<<Cu,v>,8°>¢r then
if hq=x
then hqe—v

else return "undefined"

if ¢ unique range and h¢=x and

1 1>1 then
y
return "undefined"
Y<<v,x>,d% 0 do
Tea\ <<Kv,x>,8>
if g total domain and
AV, ud>,3 " >¢r then
Cif 10 1>2
y

then return “undefined"

else reaU<<v,v>,¢>
if ¥ unique domain and
A<v,u>, 8> then

if thx

if unique range and there does not exist
another element for which v is in range

then if x is the head, make v the head

otherwise more than 1 head
if unique range and no new head then op

is not defined

for all elements that x is in the range
undefine relation with x

if total domain and there does not

exist element for which v is in domain
then operation is not defined; otherwise

if only 2 or less elements define v to v

if unique domain and there does not
element in range of v then if x was head

make v head, otherwise operation is not

11-g

then ta&v

else return "undefined"

if ¢ unique domain and t.=x and

|0y|>1 then return "undefined"

if ¢ connected and i@gl>2 then

if notconn(y) then

return "undefined"
exitcase
endcase
Vin,a>d > A(x)=true do -
ay<—C(y \ <n,A>
if P defined then unorder(x,y)

<« .
(jy C@ \ X
return "defined"

end

defined

if unique domain and x was head, if no
new head then operation not defined

if relation connected and more than 2
elements in structure, must still be
connected, otherwise op not defined
leave case statement

end of case statement

remove external accesses to x

if structure ordered remove ordering of
X ,

remove x from object set of structure

operation is defined

¢i-4

REPLACE

replace(x,y,z)

if z¢Y, or x¢0, or yeO, or

(not(Mz and Buecgapz(u)=p2(y)) then

return "undefined"

YreR, do
Vicu,x>,85%7 do gelr\<<u,x>,8>)0<<u,y> 9>
V<<x,u> 850 do gel(a\<ix,u>,d>)Uccy,ud> 8>
if Pz defined then
unorder(x,z)

order(y,z)

V<n,A>éQz£> A(x)=true do
&z-e Qz \ <n,A>
createaccess(y,z)

g, « (0, \ x) U y

return "defined" #

replacé X with y in structure z

if structure is primitive or x is not in
the structure or y is already in z

or structure does not allow replication

and value of y already in z then op is
not defined

for all relations on the structure
redefine relations involving x to
relate to vy

if stfucture is ordered remove ordering

for x and establish ordering for y

redefine external accesses to x to
access y (use call on primitive
operation createaccess)

remove x from object set and add y

operation is defined

B-13

71-9

createaccess(x,y)

i £
if yeW}

return "undefined"

or xéG; then

createfunction_A(x):true

Qy<- dy U <gen,A>

return "defined"

end

'CREATEACCESS

create an external access to x in y
if y is a primitive structure or x is

not an element of y then the operation
is not defined '

create the access function

add the access to the set of external
accesses for y

operation is defined

S1-9

RELATE

relate(x,y)

| if er; then
return "undefined"
Y<u,o,v>€y do |
if g€R, then
return "undefined"

if not(M_) and 3w9/>2(u)=p2<W) then

if not(M_) and 3w;P2(v)=P2(w) then

case of
ué@x A véC&:
if u=v then
if ((@ 1-many and ¢ unique range) or

(¥ many-1 and ¢ unique domain))

in structure x relate <obj,rel,obji>
triples in vy

x must be a structured object

for each triple in y in order do

relation must be defined for structure

if there is no replication and value of

u already in structure use object
already in structure

same for v

neither u nor v already in structure
if u and v the same object then if
relation is 1-many unique range or

many-1 unique domain and connected then

91-94

and ¢ connected

then return "undefined"

else
if l@xlzo and (g° unique
domain or @ unique range)

then return "undefined"

then exitcase

else return "undefined®

if (g total domain or v total range)

and not(y symmetric or
T reflexive)

then return %"undefined"

if 10_1=0
X

then

iAif § unique range then mf-u

if T unique domain then g;—v

operation is not defined
otherwise, if structure is empty and
unigue domain or unique range then

operation is not defined,

else relate u and v if possible

relation c¢annot be total domain or range

and symmetric or reflexive

if structure empty is u a head or v a

tail?

L1-9

else else if structure not empty, if

if ¢ connected connected then op not defined, otherwise

then return "undefined" if not unique domain or range op is ok

else
if ¢ unique domain or
¥ unique range then

return Yundefined®

not(def(u,r,v)) then relate u to v if possible

-ty

i

return "undefined"

if ¢ reflexive then if relation reflexive relate u to u and

v to v

if not(def(v,r,v)) then

return "undefined®

else return “"undefined"

if ¢ symmetric then if relation symmetric relate v to u

ot(def(v,s,u)) then

if not(def

-
=

return "undefined"

814

exitcase.
ue@, a vel,:
case of
T 1-1:
if A<<u,w>,8>¢T then
if undef(u,g,w)
then
if ¢ connected or
not(y partial domain and
g partial pange)
then
if not(def(v,o,w)) then

return "undefined"

else return "undefined"

if @ unique domain and tg=u then
g;bv
exitcase

g l-many:

leave case statement

u is and v is not in structure

relation is 1 to 1

if u related to something (w), then
unrelate u to w and relate u to v and
v to w

this is.allowed only if connected or

1-1 partial domain partial 'range conn.

v is now tail if u previously was a tail

leave case statement

'relation is 1 to many

61-4

exitcaée
T many-i:
if I<cu,w> & deq iggg
if undef(u,y,w)
then
if not(def(v,r,w)) then

return "“"undefined"

else return "undefined®

if ¢ unique domain and tp=u then

gﬁ%v
exitcase
g many-many:
if ¢ total domain and

not(y symmetric or ¢ reflexive)

then return "undefined"

if o unique domain then

no problems
relation is many to 1 -
if u related to something (w) then

unrelate u to w and relate u to v and

v to w

make v tail is u previously was a tail

leave éase statement

reiation is many to many

if relation is total domain and not
reflexive or symmetric then operation
is not defined

if unique démain and u not tail,

operation is not defined, otherwise v is

new tail

0z-gq

else return "undefined"

if ¢ reflexive then

if not(def(v,o-,v)) then

return "undefined"

if ¢ symmetric then

]

if not(def(v,g,u)) then

return "undefined"
exitcase
endcase

if not(def(u,r,v))

then return "undefined"

exitcase

uEd A ve®
X X

case of

o 1-1:

if reflexive relate v to v~

if symmetric relate v to u

leave case statement
end of nested case

relate u to v, if possible

leave outer case statement

u is not and v is in structure

relation is one to one

if AKw,v>,4>¢T then if v is in relation to something (w)

if undef(w,r,v) then unrelate w to v and relate w to u

then and u to v (must not be connected or

124

if o connected or
not(g partial domain and
§ partial range)

then

if not(def(w,g,u)) then

return “"undefined"

else return "undefined"

if v unique range and h¢=v then
h «u
T
exitcase
g l-many:

if I<kw,v> 3 >0 then

if undef(w,q,v)
then

if not(def(w,o,u)) then

return "undefined"

else return "undefined"

if ¢ unique range and hg=

not partial domain and partial range

make u head if v was previously a head

leave case statement
relation is 1 to many
if v in relation to something (w), then

unrelate w to v and relate w to u and

u to v

make u head if v was previously

[AA

then h¢+u
exitcase
g many-1:
exitcase

g~ many-many:

if g total range and

not(§ symmetric or ¢ reflexive)

then return "undefined"

if ¥ unique range then
if h0.=v

thenl%e@

else return "undefined"
if ¢ reflexive then
if

not(def(u,r,u)) then

return "undefined"
if o symmetric then

if pnot(def(v,vy,u)) then

return "undefined"

leave case statement

relation is many to 1

Just relate u to v

relation is many to many

if relation is total range %nd not
symmetric or reflexive then operation is
not defined

if unique range and v head then

make u new head, elée operation not

defined

if relation reflexive then relate u to u

if relation symmetric then relate v to u

NA |

exitcase

endcase

il

if not(def(u,v,v))

then return "undefined"

exitcase

ue@x A Ve@x.

if 3<<u,v>,8%0 then exitcase

case of
T 1=-1:
return "undefined"
¥ l-many:
if 3<<w,v>,8>¢r then
if undef(w,y,v)
then
if notconn(@x,v) then

return "undefined"

else return "undefined"

if ¢ unique range then

leave case statement
end of nested case statement

relate u to v

leave outer case statement
u and v are in structure

if u already related to v leave case
statement

relation is 1 to 1

operation not defined

relation is 1 to many

if there is something-reléted to v (w),
then unrelate v to-w and relate u to v,
must check that structure is still

/

connected with respect to relation

if unigue range and u=v then operation

-4

if u=v

then return "undefined"

else
if IK<w,ud>,d3>v then

if not(undef(w,i,u)) then

return "undefined"
lheu
exitcase
g many-1:
if 3<<u,w> dr then
if undef(u,g,w)

then

if notconn(@x,G) then

return "undefined"

else return "undefined?®

if § unique domain then
if u=v

then return "undefined"

not defined, and if not u=v, then look
for something (w) related to u, unrelate

w to u and relate u to v

u is new head

leave case statement

relation is many to 1

if u is related to something (w), then
unrelate u to w and relate u to v,
must. check that structure is still

connected with respect to the relation

if unique domain and u=v then operation
not defined, and if not u=zv then look

for v related to something and unrelate

-4

else
if 3IKv,w>,8>cv then
if not(undef(v,o,w))

return "undefined"

tf«v

exitcase
g many-many:
if ¢ unique range and hqzv

then return "undefined"

if g unique domain and ty=u

then return “undefined"

if ¢ symmetric then

if not(def(v,¥,u)) then

return "undefined"
exitcase
endcase

if not(def(u,q,v))

then return "undefined"

it

make v new tail
leave case statement

relation is many to many

if destroying head, then operator is not

defined

if destroying tail, then operator is not

defined

if symmetric then relate v to u

leave case statement
end of nested case statement

relate u to v if possible

97-g

exitcase
endegcase

if ug0 then
O e@qu

X
if Px defined then order(u,x)

if vé@x then

O« O Uwvw
X

X
if Px defined then order(v,x)

VeeR, do
if not(legal(x,0)) then
return "Yundefined®"
return "defined"

end

leave case statement

end of case statement

if u not in structure, then insert it

order u in structure if necessary

same for v

check that structiure is legal with

- respect to each relation

operation is defined

Lg-4

UNRELATE

unrelate(x,y)

if xéV} then return "undefined"
Y<u,q,v>ey do
if u¢Q or veO, gg_véﬁ;

then return “"undefined"

if 3<<u,v>,8%q¢ then
if not(g connected or ¢ many-many
or (T partial domain and
" partial range))

then return "undefined"

if A<<u,w>, 4°>¢r and (g total domain

or (T unique domain and tvfu))

then return "undefined?"

if J<<w,v>,d">v and (g total range

O

r (g unique range and hafv))

then return "undefined"

in structure x unrelate <obj,rel,obj>
triples in vy

structure must not be primitive
for all triples in y in turn do
objects must be in structure and
relation defined for structure
if u related to v do

must be connected, many-many or

partial domain and partial bange

if u related t§ something else and total
domain or (unique domain and u no£ tail)
then op not defined

if something related to v and total
range or {unique range and v not head)

then op not defined

87-g

®

if ¢ reflexive and u=v

then return "undefined"

T« T\ <<u,v>, >

if ¢ symmetric then
v <«<q \ <<v,u>,£>

if o connected then

if notconn(@x,v) then

return "undefined"

return '"defined®

nd

cannot unrelate reflexive relation, u to

u
unrelate u and v
if symmetric unrelate v and u
}
if connected relation check that

structure is still connected

operation is defined

67-gq

related(x,q,y)

AL yeY) or x€0,

return "undefined"

or véﬁ; then

return {ue@y | K<x,ud,3>q}

end

RELATED

return all elements related to x
if y is a primitive structure or x is

not an element of or ¢ is not a relation
for y then the operation is not defined

return the related elements

Og—g

readattr(x,<u,x,v>,y)

if xeY or uél, or veéd or
VZRX or Z<<u,v>,X>e¢ then

return "undefined"

Cif 3<y,z>ed

then return z

else return “undefinedf

READATTR

read the attribute y of the relation
<u,f,v> in structure x

if x is a primitive structure or u or v
is not an element of x or U is not a
relation on x or there does not exist

q relation between u and v then the
operation is not defined

if the attribute exists return it

otherwise the operation is not defined

1e-4

storeattr(x,<u,vr,v>,<y,z>)

if xeY, or u¢O or veO, or
véﬁx or #<u,v>,d>¢ ‘then

return "undefined"

Cif 3<y,wd>ed then
J< 3\ <y,w
S« I U <y,z>
if g symmetric then
if 3<v,u>,>0c then
4= 0\ <y,u>
J« 3 U«y,z>
return "defined"

end

STOREATTR

store attribute <y,w> for relation
<u,g,v> in structure x

if x is a primitive structure or u or v
is not an element of x or o is not a
relation on x or the relation u to v is
not defined then the operation is not
defined-

if the y attribute is currently

defined then remove it

add the attribute <y,z> to the relation
if the relation is symmetric must also

define attribute for symmetric relation

value

operation is defined

(A%

assign{(x,y)

if "P defined in terms of x" then

return "undefined"

storecopy(y,x)

return "defined®

end

ASSIGN

assign a copy of the value of y to x
may not assign to order field of the

structure (it would result in an
implicit reordering)

store a copy of the value of y in the
value of x

operation is defined

	Z699.C3_52
	Z699.C3_521
	Z699.C3_522

