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The current state of the world – stricken by a Coronavirus pandemic that spread across the 

globe harming millions of lives in a matter of months – is a humbling reminder that we have barely 

scraped the surface of understanding complex biological systems.  

The central theme of this work is the idea that human health is a function of many complex 

biological machineries working synergistically, together constituting the human superorganism. 

The dissertation begins with a description of the computational advancements required to 
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understand the complexity of the human microbiota and its role in human health; this is followed 

by a review of the role of our commensal microbiota in nonalcoholic steatohepatitis, alcoholic 

steatohepatitis and liver cirrhosis, and hepatocellular carcinoma.  

Chapters 2, 3, and 4 report original research studies highlighting the potential of leveraging 

high-throughput molecular assays and supervised algorithms to develop new microbiome-based 

diagnostic, prognostic, and therapeutic modalities to improve the management of metabolic 

diseases. These chapters also underscore the importance of multi-omics approaches to probe 

biological systems for a system-wide understanding.  

Chapter 5 introduces Qemistree – a new tool that adapts statistical concepts from microbial 

ecology for the analysis of high-dimensional metabolomics data. Qemistree underscores the 

importance of mapping existing analytical solutions across omics domains in order to integrate 

heterogeneous data layers and comprehensively understand biological systems. 

 



1 

Chapter 1. Introduction 

 This introduction is divided ino two sections. The first section is a an opinion piece 

recognizing the current knowledge gaps preventing targeted microbiome perturbation.  

The second chapter describes gut–liver communications describing evidence from animal 

and human studies, compares liver disease spectrum and highlights key points for designing 

microbiome-based studies for liver disease research. This serves as a transition to my research on 

finding early-stage microbial biomarkers of liver disease. 

 

 
 
 
 
	  



 
 
 

2 

1.1. Are microbiome studies ready for hypothesis-driven research? 

Hypothesis-driven research has led to many scientific advances, but hypotheses cannot be 

tested in isolation: rather, they require a framework of aggregated scientific knowledge to allow 

questions to be posed meaningfully. This framework is largely still lacking in microbiome studies, 

and the only way to create it is by discovery- and tool-driven research projects. Here we describe 

the value of several such projects from our own laboratories, including the American Gut Project, 

the Earth Microbiome Project (which is an umbrella project integrating many smaller hypothesis-

driven projects), and the knowledgebase-driven tools GNPS and Qiita. We argue that an 

investment of community resources in these infrastructure tasks, and in the controls and standards 

that underpin them, will greatly enhance the investment of hypothesis-driven research programs. 

 

1.1.1 Introduction 

Microbiome research is making dramatic progress, with thousands of papers now published 

each year linking specific microbes and/or host-microbe co-metabolites to specific diseases, 

physiological properties, or environmental parameters. Much of this research is performed in a 

traditional, hypothesis-driven way, or at least presented as a rational reconstruction that fits this 

model, much as Darwin re-wrote much of his discovery-driven work as hypothesis driven to 

increase its respectability under the influence of contemporary philosophers of science such as 

William Whewell (1). However, it should be noted that hypothesis-driven science was not always 

so respectable -- Isaac Newton famously wrote “Hypotheses non fingo”, or “I feign no 

hypotheses”, in an essay appended to the second edition of the Principia (2) -- so the tradition of 

modifying how science is framed in order to meet respectability criteria dates back at least 300 



 
 
 

3 

years. In any case, what can be framed as a singular hypothesis suffers important limitations based 

on what we can measure, and what we already know. 

Ten years ago Chris Anderson, editor of Wired magazine, set off an international debate 

with his article “The End of Theory: The Data Deluge Makes the Scientific Method Obsolete” (3). 

The idea was that with enough data, hypotheses will emerge from the data (“Let the data speak for 

itself”) has become widely discussed in the rapidly growing data science profession. A thoughtful 

review of this topic was written in EMBO Reports in 2015-”Could Big Data be the end of theory 

in science? A few remarks on the epistemology of data-driven science” (4). As the author points 

out: 

Francis Bacon, the “father of the scientific method” himself, in his Novum 
Organum (1620), argued that scientific knowledge should not be based on 
preconceived notions but on experimental data. Deductive reasoning, he argued, is 
eventually limited because setting a premise in advance of an experiment would 
constrain the reasoning so as to match that premise. Instead, he advocated a bottom-
up approach: In contrast to deductive reasoning, which has dominated science since 
Aristotle, inductive reasoning should be based on facts to generalize their meaning, 
drawing inferences from observations and data. 

 

One constant in microbiome research has been that most factors that we would intuitively 

suspect to drive differences in the microbiome are of minor importance. For example, although 

long-term dietary changes have a major effect on the microbiome, short-term changes don’t(5,6). 

Similarly, sex has a very limited impact on microbiomes across the human body (7,8) and has a 

much weaker effect than many other variables such as age (even within adults) and the time of 

year the sample was collected (9,10). Perhaps more surprisingly, factors such as temperature and 

pH have a much smaller impact on environmental microbiomes than salinity (11,12), and even the 

saline vs. non-saline difference is much smaller than the host-associated vs free-living difference 

(12,13). Samples from different sites of the same person’s body can be more different from one 
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another in terms of their overall microbial communities than radically different free-living 

microbial communities, such as soils versus oceans (12). Differences of this magnitude can also 

occur within the gut of a single person, with sufficiently large perturbation (DOI: 

10.1101/277970). 

As a consequence, it is easy to incorrectly frame hypotheses, especially when supervised 

ordination and classification techniques are used in experiments with many confounding variables. 

For example, suppose that for mouse experiments we don’t know that cage effects are important 

in the microbiome (14), then we profile the microbiomes in each of two cages of each of two 

different genotypes of mice. Our results are likely to be driven by which pair of cages happens to 

resemble each other more closely. If the variable of cage is not measured, or not tested in an 

unsupervised model, we might never know that our results are driven by this important 

confounding variable! There may be many more important confounding variables that we are not 

yet aware of, so longitudinal studies with meticulous metadata annotation will be crucial for 

defining which environmental factors matter. This is especially important in the context of clinical 

samples, where single data points are often collected and obtaining contextual information in 

retrospect is exceedingly difficult (15). 

Similarly, a frequent practice is to discard unannotated microbes or unannotated molecules, 

focusing on the subset of microbes or molecules that can be matched to an existing database. 

Because databases of both microbes and molecules are heavily biased (microbes, by studies of 

known pathogens which come from only a small number of taxonomic groups, and molecules, by 

commercially available compounds), the entities that actually best discriminate among classes of 

samples may be lost in the analysis: often, only 60% of sequences and 2% of molecular features 

from an untargeted metabolomics experiment can be annotated by existing references (16,17). 
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However, a rational reconstruction of why the annotatable microbes or molecules are plausible can 

always be developed by creative scientists looking to respond to their reviewers’ criticism that 

their manuscript is “too descriptive”. 

 

1.1.2 The need for maps 

An important metaphor in science and information visualization is the idea of the map, 

whether of real spaces or of abstract spaces. Indeed, as data volumes increase, it is frequent that 

the field moves from tests of hypotheses among sites, to tests of these hypotheses with replicates 

at each site, to spatially or temporally explicit sampling, to detailed spatial maps. This progression 

has already occurred in 16S rRNA amplicon-based microbiome studies over the past decade 

(12,18), and has increasingly been taking place in mass spectrometry-based metabolome studies 

over the past four years (19-24). 

The value of spatial maps is so self-evident that the results are often cursed by obviousness. 

For example, the finding that metabolomes cluster by individual, as revealed by principal 

coordinates analysis (PCoA), is interesting (Figure 1.1.1A). However, the finding that a given 

molecule such as lauryl sulphate (m/z 355.219) covers one individual, but is absent from the other 

individual is obvious (Figure 1.1.1B), especially when you know that individual subject A uses a 

stereotypically gendered product such as Nivea for Men, which is the source of the molecule 

(20).  How such personal lifestyle (often hygiene, health or beautification related) influences the 

microbiome is not known; it is also not known how even some basic parameters such as, skin 

temperature, skin pH, amount of sebum influences the microbial communities on the skin. 

Similarly, the finding that samples from four individuals differ to a statistically significant extent 

in their levels of specific purines and that within an individual, such molecules are also non-
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randomly distributed, might well be an intriguing finding prompting more investigation. However, 

a spatial map with dense sampling of the same individuals (Figure 1.1.1C) makes it obvious that 

the molecule is something that is touched and consumed, and sometimes spilled, allowing one to 

guess that it is probably caffeine and that one person likely spends time in the ocean based on the 

distribution of Synechococcus spp. (Figure 1.1.1D) (both of which are in fact the case) (22). 
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Figure 1.1.1 Spatial analysis based on metabolomics of skin samples and a human habitat. A) Principal 
coordinates analysis (Hellinger distance) of metabolomics data of skin swabs obtained from several hundreds 
locations on the human body of four volunteers. B) The detection of lauryl sulfate (m/z 355.219) from the 
shampoo Nivea for Men on a male volunteer. C) The distribution of caffeine (m/z 195.088) on four individuals 
and the office environment. D) The distribution of Synechococcus spp. on within that same office environment. 
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However, the fact remains that for most microbes and for most molecules, we have no idea 

where they are in and on the human body, in natural environments, or in human-impacted 

environments including built environments. Just as John Snow’s map of cholera instantly led to 

the hypothesis that this disease was water-borne and stemmed from the Broad Street pump, 

reinforced by the map’s revelation that the block that drank alcohol had no incidence of disease 

(25). The power of maps is shown by the history that this visual display of disease incidences by 

street became the foundation for the science and practice of epidemiology. In an analogous manner, 

systematically collected maps of microbes and of molecules across different spatial scales will 

dramatically improve our ability to make useful inferences from this data. Integration of these 

maps with other data layers ranging from air pollution to food deserts and neighborhood 

walkability, together with zoomable user interfaces (consider the utility of Google Maps versus 

earlier fixed-scale maps on DVD), will fundamentally transform the types of questions that can be 

asked of microbiome and metabolomics data. 

The value of abstract maps, whether ordinations such as principal coordinates analysis 

(PCoA), non-metric multidimensional scaling (NMDS), t-distributed stochastic neighbor 

embedding (t-SNE), network diagrams obtained from object similarity (sequence or spectrum), or 

from co-occurrence across samples, is also considerable. In particular, when the right data frame 

and metrics are chosen, the key result is often immediately obvious. Consider, for example, the 

starting and ending time point of a fecal transplantation series (26) (Figure 1.1.2A), where it’s 

obvious that the clusters are statistically significantly different, but it is not obvious what direction 

this difference is in or what it means. However, when we perform a meta-analysis and put these 

samples in the context of the Human Microbiome Project data (8), one of the most important 

abstract maps in human microbiome science, we see immediately that the difference between start 
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and endpoint is much greater than the difference between healthy and diseased samples, and when 

we add the intermediate timepoints we see that the transition occurs very rapidly. These types of 

examples prompt similar data collection and visualization techniques in metabolomics, in order to 

understand how we can identify a desirable metabolomic state (for example, by comparing healthy 

and sick individuals), and guide an undesirable state into a desirable one by optimizing the 

trajectory towards the desired state in a series of perturbations. Only the existence of a map can 

allow rational hypotheses about what to try, especially in the context of n=1 studies or in cases 

where response heterogeneity among individuals is extreme. 

  

1.1.3 The need for tools 

We have seen, quite literally, the value of maps. But how do we build them? The key to 

acquiring high-resolution data, whether spatially or temporally resolved, or dense enough in an 

abstract space, is to make sampling fast, cheap, and sufficiently precise. Unfortunately, the trade-

offs among these approaches are typically not well understood.  

In DNA sequencing, a common question is whether, given a fixed sequencing budget, it is 

better to have more sequences per sample, or more samples. In general the answer to this question 

depends on the hypothesis to be tested. But, as noted above, all too frequently the “hypothesis” is 

retrofitted to an arbitrarily collected dataset. What guidelines can be provided for aspiring 

microbial cartographers? 

In our experience, for amplicon sequencing, the value of having more samples has always 

outweighed the value of having more sequences per sample, down to surprisingly low thresholds. 

For example, Figure 1.1.3 shows the Earth Microbiome Project dataset (12) sampled at 500,000 

sequences per sample, 1000 sequences per sample, and just 200 sequences per sample. The overall 
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pattern, e.g. the host/non-host split and the saline/non-saline split, are much clearer with more 

samples than with more precision about the location of each sample in PCoA space. Multinomial 

sampling considerations make it immediately clear why this is true: with 100 sequences per 

sample, the standard error in inferring the proportion of a taxon at 5% frequency is 

~sqrt(100*.95*.05) or 2.18, or about 50% error in proportion; the standard error at a taxon at 1% 

frequency is about ±1, or about 100% error. Consequently, even low-abundance taxa are sampled 

with enough accuracy to place a sample in the context of an overall map with surprisingly few 

sequences. Logically, this must be true, or all ordination diagrams in microbial ecology before the 

advent of next-generation sequencing would have been useless, yet many revealed biologically 

interesting principles. The goal for better amplicon maps should therefore be to process vast 

numbers of additional samples inexpensively, exploiting the power of modern sequencers. 
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Figure 1.1.2 Untangling the meaning of complex microbial interactions through meta-analyses. (A) Principal 
coordinates analysis (unweighted UniFrac) of Clostridium difficile Infection subjects, before and after a fecal 
transplant, along with the fecal donor and 10 untreated subjects (26).  (B) Principal coordinates analysis 
(unweighted UniFrac) of the Human Microbiome Project (HMP) (8) combined with the data in panel A, the 
longitudinal samples for subjects 1-4 are connected as lines displaying the temporal variability and the shift from 
a disjointed untreated state of the patients vs. the healthy frame of the HMP. 
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Figure 1.1.3 Broader sampling improves maps of the microbial world, even with low resolution. All panels show 
principal coordinates analysis of unweighted UniFrac distances between samples.  (A) Samples rarefied to 
500,000 sequences, showing only those exceeding this threshold sampling depth. (B) Samples rarefied to 1000 
sequences. (C) Samples rarefied to 200 sequences. Even with few observations per sample, the overall 
relationships among sample types are preserved; in contrast, the overall pattern is lost with too few samples no 
matter how exquisitely characterized. 
 

Shotgun metagenomics, however, poses a different challenge, because typically only a 

small fraction of the sequences can be confidently associated with known taxonomy or function. 

Further, the goals are often different because of the value of genome assembly in identifying 
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biosynthetic pathways, allowing taxonomic resolution at the species or strain level, and generating 

high-resolution single nucleotide polymorphism (SNP) profiles to characterize novel strains and 

to confirm functional variants (27). As a result, although the same sampling principles as for 

amplicon data apply if the goal is to provide a high-level taxonomic profile, far more sequences 

must be collected to have the same level of confidence in the result. Consequently, the most 

important areas for tool development in shotgun metagenomics are either several additional orders 

of magnitude drop in sequencing cost, reference databases that are more comprehensive and 

unbiased, and algorithms that are more efficient and accurate in read alignment, genome assembly 

and separation. In particular, methods that can identify genetic variation from lower-coverage data, 

and methods for estimating features of interest from less data or with efficient target capture, are 

of significant necessity. Another important consideration in shotgun metagenomics requires host 

DNA depletion, both experimentally and computationally, because total DNA extracts from 

biological specimens can be dominated by host DNA that is not picked up by standard PCR primers 

for bacterial/archaeal amplicon sequencing (28). 

The challenges in metabolomics are somewhat different (29). Sequencing has reduced in 

cost by nine orders of magnitude per data volume. In comparison, mass spectrometry, during the 

same time, has only reduced in cost of data volume collection by two orders of magnitude (29). 

However the main limitation is the enormous diversity in chemistry. Unlike just four bases one 

has to “identify” to enable sequencing, there are hundreds to thousands of molecules that need to 

be identified from a list of millions, if the molecule is known to exist at all. The chemical diversity 

also impacts the choice of extraction solvents during sample preparation, type of separation 

methods, type of instruments used and data analysis approaches. Further, because the multiplexing 

strategies that are successful in both amplicon- and shotgun-based sequencing approaches are not 
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available in mass spectrometry, instrument time is directly proportional to the number of samples. 

Consequently, although it is easy to slip a few more samples into a mass spec run, instrument time 

is limiting for large-scale projects. As was the case  with sequencing a decade ago, the vast 

majority of molecular features that are found in a sample are currently unidentified, and many are 

likely technical artifacts of various steps in the process, e.g. adducts formed in the gas phase, 

solvent artifacts (30) and multimers of the same compound (29). Better methods and incentives 

for aggregating community knowledge (17) (e.g. retention of knowledge of the large number of 

manual annotations performed by the community) and for automatically assigning unknown mass 

peaks and fragmentation spectra to molecules and have an estimation of error rates (31), as opposed 

to heuristics subject to personal interpretation rules (32), are urgently needed. Global Natural 

Products Social molecular networking (GNPS) (17) offers alternative solutions for  computational 

mass spectrometry infrastructure.  Spectral datasets can be publicly deposited with a unique 

identifier and transformed to “living data” as they will be continuously searched against reference 

libraries to update users on new identifications. Furthermore, annotations can also be made by the 

scientific community within GNPS and propagated to all other data sets in the public domain with 

notifying subscribers on new annotations. This living data concept is crucial way  to ensure that 

collected metabolomics data can still be useful over time. Other examples include automated 

species metabolome references (33) and the Molecular Explorer (17) for cross-searching annotated 

MS/MS spectra between datasets. Connections between several datasets, within the same 

knowledge base or between different spectral repositories such as Metabolights (34) and 

Metabolomics Workbench (35), can be made to highlight annotated compounds found in several 

data sets  Such analysis is a trivial task in sequencing but still novel in mass spectrometry.   
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Integration of taxonomic, genomic and metabolomic data remains an important unsolved 

challenge. Although genome mining is successful for identifying the sources of individual natural 

products, matching up the overall taxonomic or functional profile to a molecular profile remains 

challenging because of procedural and analytical differences in data acquisition. In particular, the 

likelihood of time lags in chemical production or in genomic response to environmental changes, 

which may appear on different timescales, make integrated analysis of snapshot data extremely 

challenging (36). In cases where microbial and molecular composition is driven by a dominant 

effect (e.g. a dataset composed of soil  and fecal samples),  the molecular and metagenomic 

datasets will appear concordant by Procrustes analysis (37), which measures the fit of one 

ordination space to another.  It is likely that an integrated systems biology approach that maps all 

data layers onto common pathways will be needed. This task is complicated at present not only 

because most genes, pathways, and molecules are unknown (especially those involving 

biotransformations of environmental or food inputs) but also because, even for the known 

components of the system, we still lack coherent ontological conventions across databases which 

may aid in connecting these data layers. Integrating this extended universe of possible molecules 

and their transformations across space, time, and species in complex ecologies will require 

fundamentally new approaches, and orders of magnitude more computing power, than are 

available today. 

 

1.1.4 The need for standards 

Another branch of non-hypothesis-driven research, but critically important to framing 

precise hypotheses, is the development of standards. In microbiome science these broadly take 

three tracks: procedural standards for sample collection and handling, analytical standards for 
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determining the accuracy and fidelity of readouts, and annotation standards for integrating results 

across studies. 

The lack of agreed-on standards stems from the origin of much of microbiome science in 

the discipline of ecology, where the fundamental questions revolved around finding new kinds of 

organisms to fill out the phylogenetic tree of life, and around finding statistically significant 

differences in microbial diversity or composition among sets of samples within the context of an 

individual study. Because the goal was to test whether any difference existed in the microbiome 

or metabolome as a function of disease, physiological, or environmental state, biases (including 

missing taxa, or missing classes of molecules) were not terribly important as long as a difference 

could be discovered. 

However, this situation diverges radically from the present situation, where physicians and 

engineers expect to be able to measure the correct, absolute abundance of all microbes or molecules 

in a given sample simultaneously. The realities of nucleic acid or organic extraction, detection 

methods for sequences and molecules, and downstream data processing simply do not support this 

important goal. However, in general, we don’t even know how far we are from it, or what the 

specific blind spots are. Consequently, without consistent and well-defined measurements 

underpinned by a mechanistic causal model of change, the state of microbiome-based predictions 

is much more like astrology than like astronomy. 

In order to move from pre-science to science in predicting microbiome changes, we need 

known reference standards that can be spiked into samples at different stages, from original 

specimen to DNA or molecule, that are agreed on, widely used in the field, and have an 

inexhaustible supply. Previous efforts, such as the HMP standards, have been limited by 

insufficient availability of materials, taxonomic complexity, or both. KatharoSeq in particular (38) 
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benefits from having different spike-in standards at the level of the primary sample and at the level 

of DNA, allowing different sources of contamination to be tracked down. Comparable 

development in mass spectrometry, perhaps with isotope-labeled molecules or molecules 

otherwise unlikely to occur in biological specimens and that can be introduced at different steps, 

would be of tremendous value. 

Sample collection and storage can introduce biases of varying degrees in specimen readout 

(39-41), but for most sample types the precise implications of different forms of degradation are 

unknown. Consequently, the conservative recommendation is always to expensively collect 

pristine samples (e.g. flash-frozen in liquid nitrogen), even while more practical methods would 

often suffice. For a few sample types, such as amplicon processing of stool, considerable data is 

now available on a range of conditions (41-44), and researchers can make more informed decisions 

about which methods to use. However, we know much less about the implications of sample 

degradation for most other types of biospecimens, and for the implications for reading out different 

molecular fractions with mass spectrometry (although see (45)). Understanding these principles 

would greatly expand accessibility of these techniques to field, clinical, and self-collected 

specimens (by patients and citizen-scientists), as the American Gut Project is already doing for 

amplicon collection from stool. 

Finally, integrating samples from different studies remains extremely challenging because 

of differences in annotation (often called “metadata”). For example, different studies may refer to 

“stool”, “feces”, “gut”, or other synonyms or rely on different units of measurement (e.g., Celsius 

vs. Fahrenheit). Efforts such as the Genomic Standards Consortium MIxS family of standards (46), 

the Earth Microbiome Project Ontology (EMPO) (12), and other annotation schemes assist 

considerably in these tasks, but have been applied to relatively few datasets to date. The potential 
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for natural language processing (NLP) and/or data-based methods for automatically applying 

annotations, perhaps semi-supervised by human guidance, is considerable. These types of 

strategies were successful in Qiita for inferring EMPO annotations for tens of thousands of samples 

in Qiita primarily based off the researcher reported “sample_type.” Resources like Qiita, which 

allow researchers to deposit microbiome studies, provide mechanisms to help researchers use 

standard compliant metadata. However, further development is necessary to enable researchers to 

“discover” the types of variables and controlled vocabularies that are in common across the 

resource. 

  

1.1.5 Conclusions 

Although hypothesis-driven science has immense value, it depends to a considerable 

degree on a framework of maps, tools, and standards whose development often does not fit 

meaningfully into a hypothesis-driven framework and is therefore heavily criticized in settings 

such as grant review panels. However, without these types of development, hypotheses more 

explicit than “differences in the microbiome” or “elevation or depletion of specific taxa or 

molecules” cannot be tested, and completely new ideas about how to read out or control the 

microbiome will not be developed. 

Extraordinary advances in data collection technologies leave us in a world where we 

regularly make millions of observations of organisms about which we know virtually nothing -- 

as exemplified by the recent 'discovery' of the most abundant phage in the human gut via 

metagenome mining (47). The amount of information contained in these observations in principle 

is enough to allow us to fine-tune more labor-intensive experiments to test critical questions with 

great efficiency. In practice, though, much of this information remains inaccessible. In order to 
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bring about a future of precision medicine and precision ecological remediation, where we can 

specify precise microbiome changes and bring them about through defined interventions, a vast 

amount of non-hypothesis-driven research, often dismissed as “technical work” or “fishing 

expeditions”, remains to be done. 
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1.2. The gut-liver axis and the intersection with the microbiome 

In the past decade, an exciting realization has been that diverse liver diseases—ranging 

from NASH, alcoholic steatohepatitis and cirrhosis, to hepatocellular carcinoma—fall along a 

spectrum. Work on the biology of the gut-liver axis has assisted in understanding the basic biology 

of both alcoholic fatty liver disease and NAFLD. Of immense importance is the advancement in 

understanding of the role of the microbiome, driven by high-throughput DNA sequencing and 

improved computational techniques that enable the complexity of the microbiome to be 

interrogated, together with improved experimental designs. Here, we review gut–liver 

communications in liver disease, explore the molecular, genetic and microbiome relationships, and 

discuss prospects for exploiting the microbiome to determine liver disease stage and to predict the 

effects of pharmaceutical, dietary and other interventions at a population and individual level. 

Although much work remains to be done in understanding the relationship between the 

microbiome and liver disease, rapid progress towards clinical applications is being made, 

especially in study designs that complement human intervention studies with mechanistic work in 

mice that have been humanized in multiple respects, including the genetic, immunological and 

microbiome characteristics of individual patients. These ‘avatar mice’ could be especially useful 

for guiding new microbiome-based or microbiome-informed therapies. 

 

1.2.1 Introduction  

The crosstalk between the gut and liver is increasingly recognized, strengthened by the 

parallel rise in incidence of liver diseases and gastrointestinal and immune disorders (1, 2). The 

most common type of liver disease, NAFLD, affects >65 million Americans with a cost burden of 

US$103 billion annually within the USA (3). To manage the socioeconomic burden of 
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gastrointestinal-associated liver diseases by developing new therapeutic modalities, specific 

molecular events that facilitate interaction between the gut and the liver must be elucidated. As we 

begin to appreciate these links, animal models (4–6) and well-designed clinical studies (7–9) are 

already revealing key components of these interactions.  

The present understanding of the etiology of the spectrum of liver diseases (Figure 1.2.1) 

is underpinned by proinflammatory changes in the host. Intestinal dysbiosis (anomalous or 

imbalanced gut microbial composition) and increased intestinal permeability leads to translocation 

of microbes and microbial products including cell wall components (endotoxins from Gram-

negative bacteria, b-glucan from fungi) and DNA, together referred to as microbial-(or pathogen-

) associated molecular patterns (MAMPs or PAMPs). These patterns are recognized by immune 

receptors on liver cells (such as Kupffer cells and hepatic stellate cells) and intestinal lamina 

propria (an immune cell-rich tissue beneath the intestinal epithelium), which initiate and maintain 

inflammatory cascades that ultimately lead to liver damage in the form of fibrosis (10–13). This 

damage can progress from cirrhosis (severe fibrosis) to hepatocellular carcinoma (HCC), the most 

predominant form (>80%) of primary liver cancer (14). Previously demonstrated associations 

between intestinal health and several different types of neoplasia suggest a potential role of the 

microbiota in HCC (15, 16). Additionally, the liver and microbiota engage in co-metabolism of 

xenobiotics including carcinogens which can independently predispose the host to HCC (17, 18).  
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Figure 1.2.1 Physiological manifestations of liver injury along a spectrum of progression. Risk factors such as 
alcohol abuse, unbalanced diet, infection (HBV or HCV) or immune dysfunction (PBC/PSC) can independently 
lead to liver injury. Individuals who abuse alcohol and individuals with obesity often develop steatosis (fatty 
liver), which is characterized by increased intestinal permeability and dysbiosis. Subsequently, bile acid and 
choline homeostasis is disturbed along with increased translocation of MAMPs across the gut-barrier, leading to 
steatohepatitis, the progressive form of liver damage. Both, steatosis-dependent and steatosis-independent liver 
damage can progress to cirrhosis (end-stage liver damage), which is marked by translocation of viable bacteria 
to the liver and severe inflammation. As liver function is progressively compromised, tumor-promoting 
metabolites and xenobiotics accumulate. These could activate oncogenic pathways causing hepatocellular 
carcinoma, the most predominant form of primary liver cancers.  
(MAMPs: Microbial-associated molecular patterns; ALD: Alcoholic liver disease; NAFLD: Nonalcoholic fatty 
liver disease; ASH: Alcoholic steatohepatitis; NASH: Nonalcoholic steatohepatitis; HBV: Hepatitis B virus; 
HCV: Hepatitis C virus; PSC: Primary sclerosing cholangitis; PBC: Primary biliary cholangitis) 
 

The missing links in the complex interaction network between host and microorganisms 

are being discovered piece by piece using various experimental designs (detailed later). These 

findings encourage microbiome-oriented therapeutic modalities to treat liver-associated and other 

metabolic diseases. Here, we review the current understanding of the aetiology of liver diseases 

and highlight the open research questions (Box 1.2.1) to motivate focused research in this area 

with special attention to the role of the microbiome. 

 

1.2.2 How do the liver and gut communicate? 

The gut and liver communicate via tight bidirectional links through the biliary tract, portal 

vein and systemic circulation (Figure 1.2.2). The liver communicates with the intestine by 



 
 
 

28 

releasing bile acids and many bioactive mediators into the biliary tract and the systemic circulation. 

In the intestine, host and microbes metabolize endogenous (bile acids, amino acids) as well as 

exogenous (from diet and environmental exposure) substrates, the products of which translocate 

to the liver through the portal vein and influence liver functions (19). Some crucial links between 

the gut and liver are discussed herein. 

 

Figure 1.2.2 Bidirectional communication between gut and liver. The liver transports bile salts and antimicrobial 
molecules (IgA, angiogenin 1) to the intestinal lumen through the biliary tract. This process maintains gut 
eubiosis by controlling unrestricted bacterial overgrowth. Bile salts also act as important signaling molecules via 
nuclear receptors (such as FXR, TGR5) to modulate hepatic bile acid synthesis, glucose metabolism, lipid 
metabolism and energy utilization from diet. On the other hand, gut-products such as host and/or microbial 
metabolites and MAMPs translocate to the liver via the portal vein and influence liver functions. Additionally, 
systemic circulation extends the gut–liver axis by transporting liver metabolites from dietary, endogenous or 
xenobiotic substances (for example, FFAs, choline metabolites, ethanol metabolites) to the intestine through the 
capillary system. Owing to this medium of transport and ease of diffusion of systemic mediators across blood 
capillaries, these factors could affect the intestinal barrier both, positively (for example, butyrate) or negatively 
(for example, acetaldehyde) 
(TMA: Trimethylamine; TMAO: Trimethylamine N-oxide; MAMPs: Pathogen-associated molecular patterns; 
VLDL: Very low-density lipoprotein; FXR: Farnesoid X receptor; TGR5: Takeda G-protein coupled receptor 5; 
FFA: Free fatty acid) 
 

Enterohepatic circulation of bile acids: Bile acids (BAs) are amphipathic molecules 

synthesized from cholesterol in the pericentral hepatocytes. These primary BAs are conjugated to 

glycine or taurine and released in the biliary tract. On reaching the small intestine through the 
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duodenum, BAs, together with other biliary components, facilitate emulsification and absorption 

of dietary fats, cholesterol and fat-soluble vitamins. About 95% of the BAs are actively reabsorbed 

in the terminal ileum and transported back to the liver (20, 21). The remaining 5% are 

deconjugated, dehydrogenated and dehydroxylated by the colonic  microbiota to form secondary 

bile acids, which reach the liver via passive absorption into the portal circulation (22). The liver 

recycles BAs and secretes them back to the biliary tract completing the so-called enterohepatic 

circulation, that is, a system of exchange between the gut and the liver.  

A carrier-mediated process transports hydrophilic primary BAs across cell membranes for 

uptake into intestinal epithelial cells. Regulatory effects of BAs have been best studied with respect 

to farnesoid X receptor (FXR) and takeda G-protein-coupled receptor 5 (TGR5). BAs bind to FXR 

in the enterocytes and induce transcription of an enterokine, fibroblast growth factor 19 (FGF19; 

FGF15 in mouse). FGF19 reaches the liver through the portal vein and downregulates de novo bile 

acid synthesis by inhibiting CYP7A1 in hepatocytes, forming a feedback system for modulating 

BA production (23). FXR activation is known to affect glucose and lipid metabolism (24, 25). 

Additionally, BAs bind to TGR5 on the plasma membrane and act on tissues beyond enterohepatic 

circulation. This binding mediates host energy expenditure (26, 27), glucose homeostasis(28) and 

anti-inflammatory immune responses (29, 30). 

BAs and the gut microbiota closely interact and modulate each other; BAs exert direct 

control on the intestinal microbiota. By binding to FXR, they induce production of antimicrobial 

peptides such as angogenin1 and RNAse family member 4, which are directly involved in 

inhibiting gut microbial overgrowth and subsequent gut barrier dysfunction (31, 32). Intestinal 

dysbiosis shifts the balance between primary and secondary bile acids and their subsequent 

enterohepatic cycling, the metabolic effects of which are not comprehensively understood. 
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However, because of differences in the affinity of these two classes of BAs for FXR, these shifts 

have been associated with changes in hepatic bile acid synthesis and metabolic stress (22, 33–35). 

An imbalance in BAs and gut bacteria elicits a cascade of host immune responses relevant to the 

progression of liver diseases. 

Intestinal permeability: The central components of the intestinal barrier are enterocytes 

that are tightly bound to adjacent cells by apical junctional proteins that include claudins, 

occludins, E-cadherins, desmosomes, and junctional adhesion molecules (36). This barrier restricts 

movement of microbes and molecules from the gut lumen, while allowing permselective, active 

transport of nutrients across the tight junctions. The intestinal barrier is further strengthened by 

several additional lines of defense. Mucins (heavily glycosylated protein aggregates) form a 

physical barrier between luminal bacteria and the underlying epithelial layer (37), and antibacterial 

lectins, such as regenerating islet-derived protein III-gamma (REG3G), which are produced by 

intestinal Paneth cells to target bacteria associated with mucosal lining (38, 39). Moreover, 

immunoglobulins (specifically secretory IgA) produced by plasma cells and transported into the 

lumen through the intestinal epithelial cells  neutralize microbial pathogens by blockading 

epithelial receptors (40). Finally,  commensal bacteria are closely associated with the gut mucosa, 

and reinforce barrier integrity by stimulating cell-mediated immunity via Toll-like receptor-

mediated signaling (38, 41) or by producing metabolites that directly strengthen tight junctions 

(short-chain fatty acids or SCFAs) (42–44) and inhibit other microbes (45–47). 

Breakdown of one or more of these barrier components compromises gut-barrier integrity. 

The major drivers of increased permeability include gut inflammation and dysbiosis (48, 49), 

which have been linked to consumption of a high-fat Western diet (50–52), chronic alcohol 

consumption (53–55), prolonged antibiotic usage (56) and immune-mediated inflammatory 
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diseases such as IBD (57). An important association between the gut microbiota, inflammation 

and gut-barrier integrity is provided by Akkermansia muciniphila, a Gram-negative anaerobe that 

colonizes the intestinal mucus layer. Reduced abundance of A. muciniphila has been associated 

with thinning of mucus layer and increased inflammation, which promotes both, alcoholic and 

nonalcoholic liver damage (58, 59). When the gut barrier is compromised, microbes and microbe-

derived molecules can translocate to the liver through the portal system, causing inflammation and 

hepatic injury (13). Some translocated intestinal products might also directly interact with host 

factors and contribute to exacerbation of liver disease (Figure 1.2.3) (60–65).  
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Figure 1.2.3 Interplay between the liver and gut microbiome in alcoholic liver disease  and NAFLD. Intestinal 
dysbiosis and bacterial overgrowth is observed in both ALD (a) and NAFLD (b). Bacterial overgrowth causes 
an increase in secondary BAs, which disrupts FXR-mediated modulation of BA levels, leading to an overall 
increase in hepatic BA synthesis. A reduction in hepatic phosphatidylcholine is also seen in both ALD and 
NAFLD, which causes triglyceride accumulation in the liver (fatty liver). While ALD-associated dysbiosis is 
characterized by reduction in Lactobacillus and Candida overgrowth, patients with NAFLD have higher 
abundance of Lactobacillus (effects on fungal population remain to be investigated). In ALD and NAFLD, 
increased ethanol and its metabolite acetaldehyde in the intestinal lumen mediates weakening of intestinal tight 
junctions. Consequently, increased translocation of MAMPs (seen in ALD and NAFLD) and gut metabolites 
such as acetaldehyde, acetate (seen in ALD) and TMA (seen in NAFLD) elicits intestinal and hepatic 
inflammatory responses, leading to progressive liver damage.  
(AMP: Antimicrobial peptides; BA: Bile acids; EtOH: Ethanol; FXR: Farnesoid X receptor; HFD: High-fat diet; 
LCFA: Long-chain fatty acids; TMA: Trimethylamine; TMAO: Trimethylamine N-oxide) 
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Systemic circulation: Bacteria and MAMPs: Intestinal permeability is characterized by 

compromised tight junctions between enterocytes, and is consistently seen across the spectrum of 

liver diseases (66, 67). Liver damage is associated with small intestinal bacterial overgrowth 

(SIBO) and dysbiosis of the lower gastrointestinal tract (68). Together, these processes lead to 

increased translocation of MAMPs into the portal circulation. On reaching the liver, MAMPs 

induce localized inflammation through pattern-recognition receptors (PRRs) on Kupffer cells (69) 

and hepatic stellate cells (70, 71). Endotoxin-mediated activation of Toll-like receptor (TLR)4 (69, 

70) along with TLR9 (activated by methylated DNA)(71) and TLR2 (activated by Gram-positive 

bacteria) (72) are the primary drivers of immune response in liver disease. TLR signaling in 

Kupffer cells activates a downstream proinflammatory cascade, leading to MyD88-mediated 

activation of NF-kB (13). Additionally, TLR4 signaling also promotes fibrosis by downregulating 

Bambi (a decoy receptor for TGF-b) in hepatic stellate cells (13). These steps lead to expression 

of inflammatory cytokines, oxidative and endoplasmic reticulum (ER) stress, and subsequent liver 

damage (73). 

Choline metabolites: Choline is a macronutrient that is important for liver function, brain 

development, nerve function, muscle movement and maintaining a healthy metabolism (74); 

notably, rodents fed a choline-deficient diet have been used to model human NASH (75–77). 

Choline is processed into phosphatidylcholine (lecithin) by the host, which assists in excretion of 

very-low-density lipoproteins (VLDL) particles from the liver. This process prevents hepatic 

accumulation of triglycerides (liver steatosis) (78). Additionally, choline can also be converted to 

trimethylamine (TMA) by intestinal bacteria; TMA can translocate to the liver through the portal 

circulation where it is converted to trimethylamine N-oxide (TMAO) (79). The significance of 

methylamines is increasingly being recognized with respect to liver, cardiometabolic and more 
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recently, neurological disorders (79, 80). Increased systemic circulation of TMAO is concomitant 

with reduced levels of host-produced phosphatidylcholine, an imbalance characteristic of intestinal 

dysbiosis. TMAO has been linked with liver damage due to increased triglyceride accumulation 

(hepatic steatosis) (9, 79, 81–83) and, consequently, NAFLD (9).  

Free fatty acids: Free fatty acids include SCFAs and long-chain fatty acids (LCFAs). 

Butyrate, propionate (produced by bacterial fermentation) and acetate (produced by both host and 

bacteria) are the dominant SCFAs in the large intestine. Butyrate is an energy source for the 

enterocytes and facilitates maintenance of the intestinal barrier (42–44). Alcohol-induced liver 

injury is suggested to be marked by reduced levels of butyrate and propionate (84, 85) and 

increased levels of acetate (possibly produced by ethanol metabolism in the lumen, but 

predominantly derived from ethanol metabolism in the liver). Increased levels of acetaldehyde can 

weaken gut barrier 86 and induce hepatic stress on translocation of intestinal antigens to the liver 

(87, 88). Butyrate supplementation in the form of a glycerol ester, tributyrin, reduced ethanol-

induced intestinal permeability and subsequent liver injury in mice on a short-term alcohol diet 

(85). However, how tributyrin mechanistically protects the intestinal barrier remains to be 

established.  

Luminal species of LCFAs include pentadecanoic acid (C15:0), palmitic acid (C16:0), 

heptadecanoic acid (C17:0), and stearic acid (C18:0). In mice fed alcohol chronically, C15:0 and 

C17:0, which are only produced by bacterial fermentation, are markedly reduced when compared 

with control mice on isocaloric diet (84, 89). There is also an overall reduction in total saturated 

LCFA levels which is associated with decreased luminal abundance of lactobacilli (known 

metabolizers of saturated LCFAs) (84).   To our knowledge, restoring Lactobacillus spp. by LCFA 

supplementation has not been experimentally demonstrated. However, dietary supplementation of 
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Lactobacillus rhamnosus has been shown to increase luminal LCFA levels (89), suggesting that 

Lactobacillus-induced increase in intestinal FFAs contribute to its probiotic effects (90–96). 

Ethanol and acetaldehyde: The mucosa of the gastrointestinal tract absorbs ethanol by 

simple diffusion. Within the gastrointestinal tract, the majority of ethanol from food and beverages 

is absorbed by the stomach (~20%) and small intestine (~70%) (97, 98). Although, microbial 

fermentation contributes to luminal ethanol concentration, the biggest share of alcohol in the large 

intestine comes from the systemic circulation (13).  

Gut microbiota and enterocytes express alcohol-metabolizing enzymes such as alcohol 

dehydrogenase, which co-metabolizes ethanol into acetaldehyde and, to a lesser-studied extent, 

acetate. The liver also responds to circulating levels of ethanol by upregulating its ethanol 

metabolism pathway (87, 88). The importance of microbes for xenobiotics metabolism was 

underscored by a study that demonstrated an increase in hepatic expression of ethanol metabolizing 

genes in germ-free mice, and exacerbation in hepatic steatosis (87). 

Non-alcoholic and alcoholic liver diseases (Table 1.2.1) are characterized by increased 

luminal and circulating levels of ethanol and its metabolites, acetaldehyde and acetate (65, 99). 

These metabolites have independently been associated with liver damage (62–64). Acetaldehyde 

has been implicated in weakening the intestinal tight junctions, compromising the gut barrier and 

enabling translocation of microbial products (100–105). It has also been associated with 

downregulating the expression of antimicrobial peptides (AMPs) in the intestine (106, 107), and 

eliciting inflammatory and adaptive host immune responses (108–110). Additionally, alcoholic 

liver disease (ALD) is marked by reduced levels of intestinal butyrate (84, 111, 112) (an energy 

source for enterocytes), which is linked to weakening of intestinal tight junctions and, hence, 

permeability (85, 113–115). 
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1.2.3 Microbiome and specific liver disease  

NAFLD: NAFLD refers to a spectrum of liver disease that can be broadly classified into 

two categories: nonalcoholic fatty liver (NAFL), the non-progressive form of NAFLD, and NASH, 

the progressive form of NAFLD (116). NASH is generally linked to type 2 diabetes mellitus, 

cardiovascular risk factors and obesity (117, 118), although NAFLD has also been reported in lean 

individuals, emphasizing that genetic and environmental factors also contribute to disease 

development (119–122). 

Several studies have stressed the role of the gut microbiota in NAFLD but causality is yet 

to be established (123). Patients with NAFLD have a higher prevalence of SIBO (66, 124) and 

microbial dysbiosis (125). Using 16S amplicon sequencing, Boursier et al.(125) found that the 

bacterial genera, Bacteroides and Ruminococcus were substantially increased, and Prevotella was 

reduced in patients with NASH (stage 2 fibrosis or higher) compared to those without NASH. 

Loomba et al. (7) utilized whole-genome metagenomics to characterize the gut microbiota in 

patients with NAFLD with and without advanced fibrosis (stages 3 and 4) and showed an increased 

abundance of Escherichia coli and Bacteroides vulgatus in patients with advanced fibrosis. An 

enrichment of Escherichia (genera) was also seen in paediatric patients with NASH compared with 

children with obesity but without NASH (65). Consistent with preclinical studies, these studies 

indicate an association between Gram-negative bacteria and progression of liver fibrosis (126). 

Genetically modified mouse models have been used to study NAFLD-associated gut 

dysbiosis and permeability for mechanistic insights in liver disease progression. Rahman et al. 

(127) used JAM-A (junctional adhesion molecule-A protein)-knockout mice to demonstrate that 

deficiency in this tight junction protein with a diet rich in saturated fats, fructose and cholesterol 

leads to increased intestinal permeability and liver inflammation. This inflammation could be 
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alleviated by administering antibiotics, underscoring the importance of microbial translocation in 

promoting immune response in the liver. Another group used mice deficient in Muc2 (predominant 

mucin in the intestinal mucus layer) and found that there was a compensatory increase in intestinal 

levels of antimicrobial protein-coding genes, Reg3b and leading to an overall protective response 

against NAFLD (107). 

The contribution of liver-damaging inflammation in response to translocation of microbes 

and MAMPs has been elucidated (49). Using inflammasome-deficient mouse models (NLRP3-/- 

or  NLRP6-/-), Henao-Mejia et al. conclude that there is an accumulation of MAMPs  in portal 

circulation, which enhanced the expression of hepatic TNF, thereby promoting liver inflammation 

and NASH progression. Furthermore, cohousing inflammasome-deficient mice with wild-type 

controls exacerbated diet-induced hepatic steatosis and obesity in healthy cage mates, suggesting 

transferability of disease via the microbiota.  

Increasing links between NAFLD and the gut microbiome at both the observational and 

mechanistic levels make the gut microbiota an attractive source of biomarkers for early diagnosis 

of NAFLD. In a comparison between children with obesity with and without NASH, Zhu and 

colleagues (65) observed markedly elevated gut microbial production of ethanol in those with 

NASH. Adults with NAFLD also show increased serum TMAO (9) and hepatic bile acid synthesis 

(35), and decreased production of phosphatidylcholine (128). Furthermore, Loomba et al. observed 

differences in carbon and amino acid metabolism in gut microbiome of patients with NAFLD-

associated advanced fibrosis (7). This proof-of-concept study provides preliminary evidence to 

support the utility of a microbiome-derived metagenomics signature to detect advanced fibrosis as 

well as candidacy for anti-fibrotic treatment trials in NAFLD. 
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Alcoholic liver disease: The manifestation of ALD in patients who chronically abuse 

alcohol is a consequence of multifactorial interactions involving genetics, immune system, gut 

microbiome and environmental factors (100, 129–131). Like NAFLD, the non-progressive form 

of ALD is characterized by accumulation of fat inside the liver (fatty liver or steatosis), whereas 

the progressive form is marked by inflammation and liver injury (alcoholic steatohepatitis or 

ASH).  

Our understanding of the compositional and mechanistic contributions of the gut 

microbiota in ALD is improving. As in NAFLD, SIBO has been demonstrated as an important 

hallmark of alcohol-associated liver disease in humans (35) and mouse models (106, 131). 

Intestinal dysbiosis in individuals who abuse alcohol is characterized by marked enrichment of 

Enterobactericaeae (family) and reduction in abundances of Bacteroidetes and Lactobacillus 

(genera) (106, 132–134). It has also been demonstrated that alcohol-induced dysbiosis is only 

partially reversible by alcohol withdrawal or probiotic (oral supplementation of Lactobacillus 

plantarum 8PA3 and Bifidobacterium bifidum) treatment (94, 113). Interestingly, patients 

dependent on alcohol also displayed reduced fungal diversity and Candida overgrowth, presenting 

the first evidence of the role of gut mycobiome in pathogenesis of liver diseases (8).  

Genetically modified murine models have advanced our mechanistic understanding of the 

contribution of various components of the gut-barrier in the etiology and progression of ALD. 

Using Reg3b-/- or Reg3g-/- mice, it was found that REG3 lectins protected against alcoholic 

steatohepatitis by reducing mucosa-associated microbiota, thereby preventing translocation of 

viable bacteria (135). Muc2-deficient mice were protected against alcohol-induced liver 

inflammation (similar to HFD-induced inflammation in NAFLD model) due to a compensatory 
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increase in Reg3g and Reg3b lectins (107). Furthermore, IgA-knockout in mice led to increased 

levels of IgM and a net protective effect against ASH progression (136). 

In response to ethanol-induced gut-barrier dysfunction and translocation, TLRs and other 

PRRs activate hepatic Kupffer cells and macrophages, as was demonstrated in male Wistar rats 

(137). This step initiates inflammatory cascades releasing TNF, IL-1, IL-10, IL-12 and TGF-β 

(138–140). Using TLR4 chimeric mice, it was shown that endotoxin-induced release of TGF-β is 

mediated by a MyD88-NF-κB-dependent pathway, providing an explanatory mechanism for 

endotoxin-induced liver inflammation (69). Furthermore, increased translocation of fungal β-

glucan also induced liver inflammation via CLEC7A receptor on hepatic Kupffer cells such that 

treatment of mice with antifungal agents reduced intestinal fungal overgrowth, decreased β-glucan 

translocation and ameliorated ethanol-induced liver disease (8).  

Alongside immunological responses to barrier dysfunction, ALD is also marked by system-

wide changes in many bioactive compounds. Alcohol consumption leads to an increase in hepatic 

bile acid synthesis in humans and mice (141, 142).This increase could be explained by dysbiosis-

associated disruption in FXR activation in enterocytes as FXR-deficient mice were more likely to 

develop ethanol-induced steatohepatitis (143), and treatment with an FXR agonist (WAY-362450) 

had protective effects against liver damage (144). Alcohol-associated dysbiosis in mice was further 

linked to reduced LCFA biosynthesis such that LCFA supplementation restored eubiosis. In fact, 

a statistically significant correlation between Lactobacillus spp. and bacterial LCFA (C15:0 and 

C17:0) was found in patients with ALD but not in healthy individuals as controls (84). Butyrate (a 

SCFA) production was also negatively altered following ethanol exposure and administration of 

butyrate in the form of tributyrin mitigated alcohol-induced liver injury in mice (85). 
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With increasing evidence of mechanistic links between the gut microbiota and liver disease 

progression, fecal microbiota transplantation (FMT) is being explored as a therapeutic option for 

ALD (68, 131). However, larger, carefully designed trials across multiple ethnic groups are needed 

before FMT can be considered safe in routine clinical practice for managing ALD. 

Cirrhosis: Cirrhosis (or end-stage liver disease) is an extreme manifestation of chronic 

liver injury characterized by loss of liver cells, thick fibrous scar and regenerating nodules; this 

topic has been extensively reviewed elsewhere so we only provide a brief discussion here (145). 

NAFLD, ALD, primary biliary cholangitis (PBC; Box 1.2.2), primary sclerosing cholangitis (PSC; 

Box 1.2.3) or hepatitis can each progress to cirrhosis and constitute its subtypes. ASH and NASH 

have emerged as the second and third leading causes of cirrhosis in adults in the USA (after chronic 

hepatitis C infection) and based on the etiology there is a variable risk of developing HCC (146–

148). 

Alterations in the gut microbiota including dysbiosis and SIBO have been associated with 

and its complications (149–152). Treatment for portal systemic encephalopathy and 

decompensated cirrhosis includes treatment with nonsystemic antibiotics such as rifaximin to 

reduce intestinal microbiota overgrowth (153–155).  Gut microbiome alterations were observed in 

patients with alcohol-associated and hepatitis-associated cirrhosis in a Chinese cohort (156), with 

an invasion of the lower intestinal tract by microbes associated with the oral cavity such as 

Veillonella and Steptococcus. Concordant with these findings, Chen and colleagues also found an 

over-representation of genera including Veillonella, Megasphaera, Dialister, Atopobium and 

Prevotella in the duodenum of patients with cirrhosis. The genera Neisseria and Gemella were 

discriminative between HBV-related and PBC-related cirrhosis (152). In 2017, Bajaj and 

colleagues observed statistically significant fungal dysbiosis in patients with cirrhosis and showed 
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that Bacteroidetes to Ascomycota ratio could independently predict hospitalization in these patients 

(157).  

All experimental models of liver fibrosis result in gut microbial dysbiosis and increased 

intestinal permeability, and treatment of gastrointestinal tract with nonabsorbable antibiotics (such 

as rifaximin, neomycin) improved survival by immunomodulation, reducing translocation and 

incidences of infection (158). Mice with genetic ablations of the receptors for bacterial product 

ligands (TLR2, TLR4, TLR9, and NLP3) are protected from experimental liver fibrosis (158). The 

current treatment philosophy involves decreasing the bacterial product ligands or blocking their 

receptors, which results in decreased inflammatory and fibrogenic signaling in the liver, although 

no antifibrotic drug is currently available for routine clinical practice. 

Hepatocellular carcinoma: The etiology of non-viral HCC follows a so-called multiple-

hit pathway, whereby liver steatosis, followed by oxidative stress, ER stress together with 

intestinal dysbiosis and inflammation contribute to the final manifestation of cancer. The gut 

microbiota dramatically changes in composition in hosts with HCC. Clostridium species have been 

found to be enriched in obesity-induced mouse models of HCC (159, 160), but clinical studies of 

patients with HCC detected an overgrowth of intestinal Escherichia coli (161). Murine models and 

human studies have reported a migration of Helicobacter species to HCC tumor tissues (162–165). 

Notably, members of this genus are known to promote tumor-development by activating NF-kB 

and WNT signaling and suppressing anti-tumor immunity, and might have a potential role in HCC 

development (162, 166).  

To get insights into the molecular events explaining the progression of liver disease to 

HCC, various murine models (using diet, toxin plus diet- and genetics plus diet) have been 

explored. However, most of these models have proven suboptimal because they either do not 
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develop all intermediate pathological & metabolic stages, or they manifest HCC incompletely 

(Febbraio and Karin, unpublished data). We have highlighted some frequently-used rodent models 

of liver disease, their usage and caveats in Table 1.2.2 to aide future research. 

Accumulating evidence suggests that HCC-associated dysbiosis is accompanied by gut-

barrier dysfunction, bacterial translocation, systemic circulation of their tumor-promoting 

metabolites and activation of proinflammatory and oncogenic signaling pathways (167). The 

intestinal poly-immunoglobulin receptor (PIgR) regulates the transport of IgA into the intestinal 

lumen and maintains microbial homeostasis (168). PIgR-/- mice modelling NASH-induced HCC 

had increased levels of systemic and liver IgA, and a concomitant increase in hepatic tumorigenesis 

due to localized inhibition of liver cytotoxic T cells that prevent HCC development (169). 

Furthermore, the application of broad spectrum antibiotics (such as ampicillin, amoxicillin) has 

been shown to attenuate liver inflammation and HCC-development in mice (159, 170), 

highlighting the role of the intestinal microbiome in liver tumorigenesis. In another mouse model 

in which HCC was induced by diethylnitrosamine (a carcinogen), activation of TLR4 due to LPS 

translocation upregulated the hepatic mitogen EREG in hepatic stellate cells and activated NF-kB, 

resulting in enhanced tumor cell proliferation (170). Additionally, the secondary bile acid 

deoxycholic acid (increased in dietary or genetic obesity), a metabolic byproduct of gut bacteria, 

was shown to upregulate proinflammatory genes, such as IL6 and TNF, to provoke a senescence-

associated secretory phenotype (SASP) in hepatic stellate cells suggesting that SASP could be 

playing a key role in at least obesity-linked HCC development (159, 171–173). 

In addition to its role in HCC development, the gut microbiome also modulates pro-

tumorigenic adaptive immune response via type 17 T helper (Th17) cells, which produce the 

proinflammatory cytokine IL-17A (174–176). The therapeutic efficacy of the anticancer drug 
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cyclophosphamide depended on the interplay between Th17 signaling and gut microbiome such 

that germ-free tumor-bearing mice or mice given non-absorbable antibiotics had reduced Th17 

response and a subsequent resistance to therapeutic effects of cyclophosphamide was seen (177). 

Increased understanding of the role of the gut microbiota has motivated successful 

microbiome-based therapeutic modalities for HCC, such as treatment with synthetic bile acids to 

reduce HCC risk in patients with NAFLD (178), non-selective beta-blockers in the intestinal 

mucosa which prevent bacterial translocation and liver inflammation (179) and administration of 

probiotics in rodents models of HCC slowed tumor growth and reduced tumor size (180). 

 

1.2.4 Experimental design of microbiome studies  

Given the intense interest in the past decade in links between the microbiome and liver 

disease, we provide a brief overview of experimental models useful for researchers entering this 

field.  

Association studies and case–control design: Much of our knowledge of the human 

microbiome comes from association studies that use either a cross-sectional or case–control 

design. Well-designed case–control studies are critical to demonstrate a potential relationship 

between microbes and a disease of interest. However, these studies cannot establish causality, and 

are often subject to confounding variables such as differences in diet or medication between cases 

and controls. Most studies are conducted at a single time point in a population with the disease, 

and no long-term follow-up is performed. Consequently, these studies can only identify microbes 

that differentiate individuals with the disease and the control population. Although these microbes 

identified might have been causative agents, it is nearly impossible to separate this association 

from secondary effects associated with the condition. For example, medication plays a major part 
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in shaping the microbiome; a study of patients with type II diabetes mellitus found that treatment 

with metformin had a larger effect on the microbiome than the disease (181). Similarly, we 

hypothesize the physiology of the disease might also contribute to changes in community structure.  

Association studies are also often confounded by the selection of poor controls. The 

microbiome is dynamic (182, 183), and cumulative exposures over an individual’s life, shaped by 

their diet (184), lifestyle (185), medical history (181, 186), genetics (187) and other factors (188) 

create a unique community. Thus, if cases and controls are not correctly selected, association 

studies might detect differences due to confounding factors. Matching cases and controls based on 

age and sex is often not sufficient. In cases in which this matching to control for confounding 

variables is not possible, it is critically important to collect information about potential 

confounding factors.  

  Comparisons across current cross-sectional studies are also challenging due to large effects 

caused by inter-study differences in technical parameters, including sample collection, storage, 

primer selection and analysis techniques (188). Differences across studies increase the challenge 

of meta-analysis and make identifying causative clades more difficult (189). Some of these 

problems can be ameliorated by using consistent methodology between (188, 189). Efforts like the 

Microbiome Quality Control Project are exploring sources of technical variation (190), while 

analysis platforms like Qiita (www.qitta.ucsd.edu) provide a database of consistently annotated 

studies for comparison. 

Twin studies: Twin studies provide a potential antidote to some of the problems with 

association studies. Twin pairs are naturally controlled for age and some early life exposures.(191) 

Monozygotic twin pairs also share the same genetic background, further limiting potential 

confounders (191). Twin studies can be leveraged in two ways. First, identifying differences 
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between discordant and concordant twin pairs represent more powerful association studies, due to 

the partial internal control. Although these studies are particularly useful in young children due to 

shared environment, the approach can also be used with adults (192). Second, twin studies are 

critical to examine genetic control of the microbiome. A study published in 2016 of the UK Twins 

cohort suggested strong association of the microbiome and genes, including those associated with 

dietary preference and serum lipids (193). Twin studies provide a unique opportunity to assess if 

the familial risk factors are either genetic or environmental in nature. These studies have been 

applied to study heritability for studying hepatic steatosis and fibrosis now that advanced magnetic 

resonance imaging based assessment can be used to phenotype individuals (119, 194). However, 

the sample size requirements for microbiome assessment in twins is large compared to the sample 

sizes heeded to study heritability may making recruitment for such a study challenging (120, 193). 

Twin studies may not be appropriate for other rare causes of liver diseases e.g. alpha-1 antitrypsin 

deficiency, cirrhosis, primary biliary cholangitis, and for such low prevalence diseases a trio family 

design would be more appropriate and would provide the highest power with the most efficient 

study design to detect association of a trait such as the role of microbiome on the risk of liver 

diseases (121). 

Longitudinal studies: As the cost of microbiome analysis decreases, longitudinal studies 

are becoming more common. Understanding temporal fluctuation in the microbiome, and the role 

of microbes in contributing to disease etiology, will rely on studies over time. Work suggests that 

community instability might, in and of itself, be a characteristic of an unhealthy ecosystem (195, 

196). Prospective studies, such as an investigation  examining death from HCC in individuals with 

NAFLD, have helped identify the role of exposures and etiological factors in contributing to 

disease outcomes (197). Currently, the appropriate sampling frequency for understanding the 
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microbiome in prospective studies is unknown, in part due to an overall lack of long term follow 

up with microbiome studies. Initially, sample collection during standard clinic visits may provide 

information about the population-scale changes in the population. However,  incorporating 

microbiome samples into these long-term studies will help examine the role of microbial 

communities—either at a single time point or the community dynamics—as a contributing factor 

to complex conditions (198).  

Animal models: Model animals also have an important role in shaping our understanding 

of the microbiome in disease (Table 1.2.2). Although rodent microbial communities are distinct 

from the human microbiota, there are some shared physiological and microbial traits (199). Both 

rodent and human communities are dominated by the same set of bacterial phyla, although a 

smaller percentage of genera are shared (199). As such, experimental findings implicating 

individual organisms or genera in rodents should be taken with caution until they are validated in 

humans. Instead, rodent models can show phenotypic consequences of microbiome manipulation. 

This aspect makes rodent models a useful model system to investigate causality, explore 

interactions and test early interventions.  

Both antibiotics and probiotics have been used to study the effect of changing the 

conventional mouse microbiome on a phenotypic outcome. Broad spectrum antibiotics decrease 

the total bacterial load, as well as causing major perturbations in the microbial communities (200). 

In some cases, such as in liver disease models, this approach can demonstrate the role of bacterial 

products like LPS in modulating inflammation (127). In other cases, like a reported addiction 

model, it can be used to demonstrate the importance of an intact microbiome in regulating behavior 

(201). Probiotics can also be used to investigate the effect of a specific bacteria or bacterial cocktail 
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within a controlled environment. A study of alcoholic fatty liver disease demonstrated an 

attenuation of the microbiome-mediated inflammation when a probiotic was used (106). 

Gnotobiotic or germ-free mice can be used in multiple contexts. Comparisons of specific 

pathogen-free laboratory mice and germ-free mice can be used to examine the role of the 

microbiome in modulating an expressed or induced phenotype (202, 203). More importantly, 

gnotobiotic mice can be humanized with a donor’s stool. This approach creates a system in which 

an individual’s microbiota can be tested, either for its ability to modulate a disease phenotype or 

as a target for intervention (192, 202). For instance, in a small study, mice received their 

microbiome from a donor with either severe alcoholic hepatitis or no liver disease. Following 

alcohol treatment, the mice with the microbiome from the patient with alcoholic hepatitis showed 

greater liver damage than mice that received stool from the healthy donor (204).  

Well-designed mouse models that combine our current understanding of liver disease with 

humanized microbiomes offer some of the greatest potential for preclinical interventions. Avatar, 

or sometimes called patient-derived xenograft (PDX) mice, are widely used in the cancer 

community to test the efficacy of chemotherapeutics for individual tumors, including HCC (205, 

206). This model better re-capitulates the complexity of a tumor than cell culture. Avatar mice can 

be further personalized by introducing a human immune system into an immunocompromised 

mouse, along with the tumor (205). Generating this model in germ-free mice with a humanized 

microbiome and immune system expands our capacity to understand the role of the microbiome 

in modulating cancer. For example, this model could be used to study whether the microbiome of 

a patient with ALD leads to more tumor growth than the microbiome from a healthy individual as 

control.  
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1.2.5 Conclusions  

An accumulating body of research suggests that the disparate observations in liver-disease-

related studies can be unified and explained by the microbiome. It is now widely accepted that 

liver damage can result from extensive interplay between gut microbiota via specialized molecules 

(such as TMA, acetaldehyde and LPS) and host-immune system via Kupffer-cell-mediated liver 

inflammation. However, a comprehensive understanding of the interactions between the 

microbiome and the liver still evades us. Animal models, particularly rodents, have been 

instrumental in elucidating many important mechanistic pathways in liver disease etiology. The 

introduction of the microbiome into these models will provide a more complete view of the cancer 

ecosystem. Because microbiome research is sensitive to technical variability that often masks 

underlying biological signals, there is a need for consistency in technical platforms and 

standardized protocols, so that findings from different laboratories (and model organisms) can be 

replicated and validated. Additionally, it is critical to use an animal model that mimics human 

disease as closely as possible in all its physiological and metabolic manifestations.  

We are slowly advancing from observation-based studies in humans as research establishes 

grounds for microbiome-based therapeutic modalities such as FMT and probiotic interventions. 

However, effectively translating and applying findings accrued through animal models to humans 

requires well-designed, large-scale clinical trials spanning multiple disease etiologies and patient 

characteristics. As the role of microbiota in liver disease development, prognosis and treatment is 

increasingly recognized, we emphasize the need for focused, microbiome-aware efforts to 

efficiently tackle the socioeconomic burden of this spectrum of liver diseases.  
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1.2.9 Supplemental information 

Box 1.2.1 Open research questions  

Mounting evidence implicates the gut microbiome in the development and progression of 

different forms of liver disease. However, several questions remain open and must be answered to 

advance the field. 

• Is there a set of microbes (beneficial or harmful) that can read out the current extent, or 

predict the future extent, of disease progression in patients with alcoholic liver disease and 

NAFLD? 

• Can microbiome research using a consistent set of methodologies, including multi-omics 

profiling, provide a consistent mechanistic picture that unifies our understanding of the 

relationships among forms of liver disease? 

• Can fecal microbiota transplantation, or collections of probiotic strains isolated from 

human feces, be expanded as a therapeutic modality for liver disease? Does introducing a 

humanized microbiome into a hepatocellular carcinoma avatar mouse improve its fidelity 

in terms of responding to therapeutic options like an individual patient? 

 

Box 1.2.2 Primary biliary cholangitis  

Primary biliary cholangitis (PBC) is characterized by inflammation-mediated damage to 

the small bile ducts inside the liver, which gradually progresses to liver fibrosis and cirrhosis (207). 

Previously considered a typical autoimmune disorder, the modified etiological understanding of 
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PBC considers proinflammatory changes in the gut-microbiota, intestinal bile acid disruptions and 

gut-barrier dysfunction (207–210). Consequently, microbe-associated molecular patterns ascend 

the biliary duct, perpetuating infection. An immune attack against the biliary epithelial cells is 

mediated by antibodies that recognize E2 subunit of pyruvate dehydrogenase complex (PDC-E2) 

due to cross-reactivity with conserved proteins in Escherichia coli,(207) Lactobacillus delbrueckii 

(211) and Novosphingobium aromaticivorans (212) In fact, genetically susceptible mouse strains 

developed liver lesions mimicking PBC when infected with Novosphingobium aromaticivoransm, 

which further implicates a role for the microbiome in this disease (213). Ursodeoxycholic acid, a 

tertiary bile acid produced by Ruminococcus, has been approved for PBC treatment (214). Thus, 

microbiome-based treatment modalities hold promise for managing PBC and should be studied 

further. 

 

Box 1.2.3 Primary sclerosing cholangitis  

Primary sclerosing cholangitis (PSC) is also an immune-mediated disease of the bile ducts 

(207). However, unlike PBC, PSC can affect bile ducts, both inside and outside of the liver. Gut 

dysbiosis-mediated bile dysregulation, intestinal permeability and translocation of 

proinflammatory molecules in the portal vein characterizes PSC (207, 215, 216). The immune 

reaction in PSC is mediated by autoantibodies, including  perinuclear antineutrophil cytoplasmic 

antibody, that recognize the ubiquitously expressed bacterial antigen FtsZ (217). Furthermore, 

increase in microbe-associated Toll-like receptor expression and T helper type 17 (Th17) cells has 

been reported in PSC, which strongly suggests microbiome involvement in disease pathogenesis 

(218, 219). PSC is closely associated with IBD (220), in particular ulcerative colitis and shares 

some of its characteristic features (such as increased levels of  Th17 cells in the gut). Thus, a 
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common disease mechanism might be at play, and novel treatment avenues by targeting microbe-

associated immune pathways can be explored. 

 
Table1.2.1 Comparison of alcoholic and nonalcoholic liver disease 

Factor  Alcoholic liver disease  NAFLD 

Small intestinal 
bacterial overgrowth Observed (106, 221, 222) Observed (66) 

Gut microbiota 

 
­ Enterobactericeae (humans) (132, 133) 
 
¯ Lactobacillus (133, 222) (humans and 
mice), Bacteroidetes (humans) (132, 
134), Akkermansia muciniphila (humans 
and mice) (58) 

 
Gut microbiota protects against alcohol-
induced liver injury (87) 

 
Reduced fungal diversity; Candida 
overgrowth (8) 

­ Enterobactericeae (humans) (65, 223), 
Lactobacillus (humans) (223, 224), 
Bacteroides (humans and mice) (125, 
160), Ruminococcus (humans) (125) 
 
¯ Prevotella (humans) (125, 223) , 
Akkermansia muciniphila (mice) (59) 
 
Gut microbiota mediates high-fat-diet-
induced liver steatosis (225, 226) 
 
Fungal dysbiosis not demonstrated 

Reversibility of gut 
dysbiosis 

Partial reversibility on abstinence (94, 
113) Reversibility not demonstrated 

Inflammation 

 
­ Intestinal TNF (mice) (103) 
 
­ Systemic inflammatory markers 
(humans) (48, 227) 
 

­ Intestinal TNF, IFNγ, IL-6 (humans 
and mice) (223, 228) 
 
­ Systemic inflammatory markers 
(humans) (229) 

Transferability via 
microbiome 

FMT from patients alcoholic hepatitis 
caused severe liver inflammation and 
injury in mice (204) 

 
FMT from ALD-resistant to ALD-
susceptible mice prevented liver injury in 
recipient (131) 
 

Co-housing inflammasome deficient, 
NASH mice with wild-type mice 
exacerbated liver steatosis wild-type cage 
mates(49) 
 
FMT from NAFLD-susceptible mice 
promoted liver injury in recipient(230) 

Translocation 

­ PAMPs translocation (endotoxins (48, 
231–233), β-glucan (8), viral or bacterial 
DNA (231, 234) (humans and mice) 
 

­ PAMPs translocation (endotoxins (232, 
235), viral or bacterial DNA (236) 
(humans and mice) 

Bile acids 

­ Total plasma bile acids (humans) (237) 
 
­ Hepatic bile acid synthesis (humans 
and mice) (141, 142) 

­ Total serum bile acids (humans) (238) 
 
­ Hepatic bile acid synthesis (humans), 
total fecal bile acids, primary to 
secondary bile acid ratio (35)  
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Table1.2.1 Comparison of alcoholic and nonalcoholic liver disease (continued) 
Factor  Alcoholic liver disease  NAFLD 

Choline 

¯ Phosphatidylcholine in plasma and 
liver (rats) (239, 240) 
 
(Changes in trimethylamine not 
demonstrated) 
 

¯ Phosphatidylcholine in plasma (mice) 
(241) 
 
­ Intestinal trimethylamine (mice) (241) 

Free-fatty acids 

¯ Bacterial fatty-acid biosynthesis (mice) 
(84) 
 
LCFA and SCFA supplementation 
reduced ethanol-induced liver injury 
(mice) (84, 115)  

 

­ Free-fatty acids in the liver (242) 

Ethanol 

­ Blood ethanol, luminal acetaldehyde 
(130) 
 
­ Systemic acetate (84, 241) 
 

­ Blood ethanol (65, 243, 244) 

ALD, alcoholic liver disease; FMT, faecal microbiota transplantation; LCFA, long-chain fatty acid; PAMPs, 
pathogen-associated molecular patterns; SCFA, short-chain fatty acid.  
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Table 1.2.2 Experimental mouse models for liver disease 

Model Description Liver pathology Microbiome Features 

Diet 

High-fat diet Diet using higher 
saturated fat, or 
supplemented with 
cholesterol, compared 
with chow 

Induces fatty liver and 
hepatic steatosis 
Associated with 
metabolic syndrome 
phenotype (245) 

Common model for inducing 
dysbiosis; associated with changes 
in the microbiome 

Choline-deficient diet A high-fat diet with 
choline and 
methionine omitted 

Induces fatty liver, 
steatosis and 
inflammation and 
fibrosis 
The model does not 
contribute to 
metabolic syndrome 
(5) 

Small study suggests diet-induced 
changes (246)  

Ethanol-supplemented 
liquid diet 

A model of chronic 
alcohol abuse 
administered as an 
isocaloric diet in 
which ethanol or 
maltose and dextrose 
are supplemented 
Diet can be 
administered orally 
(Lieber-DeCarli 
(247)) or 
intragastrically 
(Tsukamoto-French 
(248))  

Oral supplementation 
leads to inflammation 
and fatty liver, 
representing a good 
model for early ALD 
Intragastric 
administration leads 
to severe steatosis and 
mild fibrosis (4) 

Diet affects the abundance of 
several taxa and is associated with 
changes in the microbiome (58) 
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Table 1.2.2 Experimental mouse models for liver disease (continued) 
Model Description Liver pathology Microbiome Features 

Genetic manipulations 

Knockout model A mouse line in 
which both copies 
of a gene have 
been removed 

Pathology depends on the 
targeted gene 
For example, 
Fxr-/- mice have more fatty 
liver accumulation on a 
high-fat diet (32),  
Muc2-/- are protected from 
diet-induced liver injury 
(107),  
Gsta4−/−, Ppara−/− 
double knockout mice 
have increased 
inflammation and fibrosis 
compared with either 
single mutant or wild-
type (249)   

The microbiome of lineage-derived 
mice is distinct from wild-type 
mice, which is likely to be an effect 
of microbiome drift within the 
colonies, rather than a direct effect 
of the genotype (250)  

Littermate controls Mice from a 
heterozygous 
cross that lead to 
wild type and 
knockout 
littermates 

Much of the mouse microbiome is 
acquired through vertical 
transmission; littermates are better 
microbial controls (251) 

Cre-Lox localized 
mutation 

A genetic cross 
that enables tissue-
specific knockout 
of a gene 

Pathology is dependent 
on the gene 
A Cre/Lox model of liver-
specific E-cadherin 
knockout shows 
pathology like primary 
sclerosing cholangitis, 
and increases 
susceptibility to cancer 
(252) 
The loss of TLR5 in 
hepatocytes leads to 
increased inflammation 
and fibrosis in a high-fat-
diet-induced model of 
NASH (253) 

Microbiome considerations depend 
on the how the controls are selected 

Avatar Mice Mice transplanted 
with solid state 
tumors from 
patients with 
cancer 

Human hepatocellular 
carcinoma can be 
transplanted into the 
mouse (254)  

There is no specific effect on the 
microbiome 
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Table 1.2.2 Experimental mouse models for liver disease (continued) 
Model Description Liver pathology Microbiome Features 

Microbiome 

Antibiotic treatment Treatment with a 
broad-spectrum 
antibiotic 

No direct effect on liver 
disease; 
antibiotics can moderate 
the effect of other 
interventions 

Antibiotics can have off target 
effects and substantially alter the 
microbial community in addition to 
decreasing the bacterial load (200) 

Probiotic 
manipulation 

Microbial 
supplementation 
to modify the 
microbiota 

No direct effect on liver 
disease; 
probiotics can modulate 
the effect of other 
treatments:  Lactobacillus 
to ameliorate alcohol-
induced liver injury) (106) 

Can lead to the over-abundance of 
a specific organism or correct 
defects in the community; however, 
not all probiotics colonize 

Germ-Free Mice Raised without 
any bacterial 
community 

Germ-free mice have 
immune defects (255)  
These mice are also more 
susceptible to alcohol-
induced liver injury (87)  

Useful to demonstrate the 
importance of bacterial 
communities for a phenotype 

Monoculture 
gnotobiotic mice 

Germ free mice 
that have been 
colonized with a 
single bacterium 
or defined 
bacterial 
community 

No direct effect; depends 
on the community 
transplanted and challenge 

Can test whether the defined 
community can modulate the 
phenotype 

Mouse transplant Bacterial 
communities 
from mice 
transplanted into 
germ-free mice 

No direct effect; depends 
on the community 
transplanted and challenge 

Demonstrates whether mouse 
phenotype is transferable or can be 
modulated through the microbial 
community 

Humanized mice Germ-free mice 
that have been 
gavaged with the 
microbiota from 
a human donor 

No direct effect; depends 
on the community 
transplanted and challenge 

Demonstrates whether human 
phenotype is transferable or can be 
through the microbial community 
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Chapter 2. A gut microbiome signature for cirrhosis 

due to nonalcoholic fatty liver disease 

The presence of cirrhosis in nonalcoholic-fatty-liver-disease (NAFLD) is the most 

important predictor of liver-related mortality. Limited data exist concerning the diagnostic 

accuracy of gut-microbiome-derived signatures for detecting NAFLD-cirrhosis. Here we report  

16S  gut-microbiome compositions of 203 uniquely well-characterized participants from a 

prospective twin and family cohort, including 98 probands encompassing the entire spectrum of 

NAFLD and 105 of their first-degree relatives , assessed by advanced magnetic-resonance-

imaging . We show  strong familial correlation of gut-microbiome profiles, driven by shared 

housing. We report  a panel of 30 features, including 27 bacterial features with discriminatory 

ability to detect NAFLD-cirrhosis using a  Random Forest classifier model.  In a derivation cohort 

of probands, the model has  a robust diagnostic accuracy (AUROC of 0.92) for detecting NAFLD-

cirrhosis, confirmed in a validation cohort of relatives of proband with NAFLD-cirrhosis (AUROC 

of 0.87). This study provides evidence for a fecal-microbiome-derived signature to detect NAFLD-

cirrhosis. 

 

2.1 Introduction 

NAFLD is the most prevalent cause of chronic liver disease worldwide (1, 2). NAFLD-

cirrhosis represents the most severe stage of the disease, carries a significant risk of hepatocellular 

carcinoma (HCC), and is consistently identified as the most important predictor of liver-related 

morbidity-mortality in NAFLD (3, 4). However, non-invasive, accurate and easy-to-perform 

modalities for early detection of NAFLD-cirrhosis remain a major unmet need in the field. Over 
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the last decade, the gut-liver axis has emerged as a pivotal component of NAFLD (5–10) and 

represents a potential source of non-invasive biomarkers for the detection and stage of liver disease 

(11, 12).  Limited data are available regarding the diagnostic accuracy of a stool microbiome-

derived signature for detecting NAFLD-cirrhosis. 

We previously demonstrated that first-degree relatives of probands with NAFLD-cirrhosis 

have a high risk of AF (13). However, factors associated with progression towards NAFLD-

cirrhosis among families remain obscure. Although earlier studies reported familial aggregation of 

NAFLD and NAFLD-related cirrhosis (14–18), and demonstrated that both liver steatosis and 

fibrosis are heritable (19, 20), known genetic risk only accounts for ~10-30% of the variance 

observed in NAFLD (21–24) . This suggests an additional role for environmental factors, which 

predominate over genetic factors in shaping the human gut-microbiome (25–27).  Heritability of 

gut-microbiome features has been reported in twins studies, but limited data exist regarding the 

similarity of gut-microbiome composition among family members, and whether similar 

microbiomes associate with disease traits especially in the entire spectrum of NAFLD including 

NAFLD-cirrhosis. 

 

2.2 Results 

Using a uniquely phenotyped twin and family study design including well-characterized 

participants with and without NAFLD, assessed using  MRI-proton-density-fat-fraction (MRI-

PDFF) for quantifying hepatic steatosis (28) and MR-elastography (MRE) for quantifying liver 

fibrosis (29–32),  we examined familial correlation of gut-microbiome composition and tested 

whether a non-invasive stool-microbiome-derived signature accurately detects NAFLD-cirrhosis. 

This study leverages from a prospectively recruited case-control study design. This cross-sectional 
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analysis included 203 well-characterized, prospectively recruited participants, encompassing the 

entire spectrum of NAFLD divided into three groups (NAFLD-cirrhosis, NAFLD without 

advanced fibrosis, non-NAFLD controls) paired with their first-degree relatives. Subjects included 

26 probands with NAFLD-cirrhosis and 37 of their first-degree relatives, 18 probands with 

NAFLD (MRI-PDDF ≥ 5%) without advanced fibrosis (AF) (MRE < 3.63 kPa) and 17 of their 

first-degree relatives, and 54 non-NAFLD normal controls (MRI-PDFF < 5%) and 44 of their first-

degree relatives. The detailed derivation of the study cohort is shown in Figure 2.S1.  The detailed 

demographic, biochemical, imaging data of the probands and first-degree relatives stratified by the 

metabolic and liver phenotype of the probands are provided in Supplementary Table 1 and 

Supplementary Table 21, respectively. 

	  

                                                
1https://static-content.springer.com/esm/art%3A10.1038%2Fs41467-019-09455-
9/MediaObjects/41467_2019_9455_MOESM1_ESM.pdf 
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Figure 2.1 Familial association and shared microbiome among relatives is driven by shared housing. 
Distribution of spearman correlation coefficients between relatives (n=86) and unrelated pairs (n=18232) 
in the familial cohort, plotted for each 16S tag sequence (a) and phyla (b). The box plots show the quartiles 
and whiskers show the rest of the distribution (1.5 inter-quartile range). This analysis was done after 
filtering rare 16S sequences to avoid spurious correlations due to sparsity (total abundance < 10E-6 across 
all samples in each disease group). The correlation among related individuals was significantly higher at 
both 16S tag sequences (p=5E-67) and phylum (p=0.023) levels. Similar plot showing the distribution of 
unweighted UniFrac distances between related and unrelated pairs stratified by disease status (c). The beta-
diversity was significantly lower among related individuals (p=3.22E-05), non-NAFLD controls and 
relative (n=38 pairs) (p=0.0011) and probands with NAFLD without AF and relatives (n=15) (p=0.0156) 
when compared to the same among unrelated pairs, while the difference between NALFD-cirrhosis patients 
and relatives (n=33) and unrelated pairs was not statistically significant (p>0.1). When stratified by shared 
housing (d), beta-diversity was significantly lower among related individuals sharing a house (n=35 pairs) 
(p=0.0455). Additionally, related individuals not sharing a house (n=51 pairs) had significantly lower beta-
diversity compared to unrelated pairs (p=0.028).  Two sided p-values were determined by Kruskal-Wallis 
test. 
 

We identified a significant familial correlation of the gut-microbiome composition 

involving shared housing.  The gut-microbiome profile showed significant correlation within 

related pairs compared to random-unrelated pairs at the level of the phyla (p=0.023) Figure 2.1a 

and at the level of 16S tag sequences (p=5E-67) Figure 2.1b. In our analyses at the phylum level, 

this familial correlation was mainly driven by significant correlation of Bacteroidetes (r=0.22, 

p=0.01) and Actinobacteria (0.29, p=0.002) between related individuals. Furthermore, 
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phylogenetic dissimilarity assessed by unweighted UniFrac distances among related pairs was 

significantly lower than in random-unrelated pairs (p=3.0E-05). When stratified by the liver 

phenotype of the proband, the phylogenetic dissimilarity remained significantly lower among non-

NAFLD controls and relatives (p=0.001) and probands with NAFLD without AF and relatives 

(p=0.015) compared to unrelated pairs, while no significant difference was observed among 

probands with NAFLD-cirrhosis and relatives (p=0.107) Figure 2.1c. These results suggest that 

familial gut-microbiome similarities are independent of mild/moderate liver phenotype but are 

impacted by severe stages of liver disease. Finally, related individuals with shared-housing had a 

lower phylogenetic dissimilarity than those who did not share housing (p=0.045) Figure 2.1d. 

These results confirm a strong impact of the environment in the familial similarity of the gut-

microbiome (25–27) and demonstrate that shared-housing is a major determinant that should be 

controlled for in study designs assessing the microbiome in liver disease. 

The gut-microbiome profile of NAFLD-cirrhosis was first assessed in a derivation cohort 

including the 3 groups of probands encompassing the entire spectrum of NAFLD. As shown in 

previous studies (11, 12), α-diversity as measured by Faith’s phylogenetic diversity decreased with 

increase in liver damage severity (Figure 2.2a). The β-diversity (unweighted UniFrac distances) 

was lower among individuals with moderate liver damage (NAFLD without AF) compared to non-

NAFLD controls (p=1.1 E-18), whereas it was higher among individuals with severe liver damage 

(NAFLD-cirrhosis) compared to probands with moderate liver damage (NAFLD without AF) 

(p=3.3E-15) Figure 2.2b. This suggests an hourglass signature of disease severity in the gut-

microbiome, with an initial decrease in phylogenetic diversity associated with a moderate stage of 

the disease that progress towards a phylogenetic dispersion in individuals with severe stages of 

disease such as NAFLD-cirrhosis. Further investigations with larger sample sizes are needed to 
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determine whether this phylogenetic dispersion reflects a distinct profile among NAFLD-cirrhotic 

patients, and whether it is associated with specific NAFLD-cirrhosis related outcomes.  

 
Figure 2.2 Gut microbiome alteration in NAFLD-cirrhosis. Comparison between non-NAFLD controls 
(n=51), NAFLD without advanced fibrosis (n=17), and NAFLD-cirrhosis probands (n=25) with respect to 
(a) alpha-diversity using Faith’s Phylogenetic Diversity. Non-NAFLD controls have significantly higher 
alpha-diversity compared to probands with NAFLD without AF (p=0.0163) and NAFLD-cirrhosis 
(p=0.0020) (b) Similar plot for beta-diversity using unweighted UniFrac distance metric. The beta-diversity 
among probands with NAFLD without AF was significantly lower than that among non-NAFLD controls 
(p=1.14E-18) and probands with NAFLD-cirrhosis (p=3.32E-15). The box plots show the quartiles and 
whiskers show the rest of the distribution (1.5 interquartile range). (c) Gut microbiome composition of non-
NAFLD controls and NALFD-cirrhosis probands shows differences at bacterial genus level. Two sided p-
value were determined by Kruskal-Wallis test. 
 

Several taxa were differentially abundant in NAFLD-cirrhosis compared to non-NAFLD 

controls. At the genus level, the NAFLD-cirrhosis group was enriched with Streptococcus and 

Megasphaera, whereas Bacillus and Lactococcus were enriched in the non-NAFLD controls 

Figure 2.2c. Source data are provided as a Source Data file2. Species belonging to the family 

Enterobacteriaceae and the genera Streptococcus and Gallibacterium were the most enriched in 

                                                
2https://static-content.springer.com/esm/art%3A10.1038%2Fs41467-019-09455-
9/MediaObjects/41467_2019_9455_MOESM4_ESM.pdf 
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NAFLD-cirrhosis, while Faecalibacterium prausnitzii and species belonging to the genus, 

Catenibacterium and the families Rikenellaceae, Mogibacterium, Peptostreptococcaceae were 

enriched in non-NAFLD controls. These results are consistent with the study performed by 

Ponziani and colleagues in an Italian cohort showing higher Enterobacteriaceae and Streptococcus 

in NAFLD-cirrhosis with and without HCC. In addition, it confirms a shift towards more Gram-

negative microbes in advanced fibrosis stages, as previously reported in NAFLD (5, 7, 9).    

 
Figure 2.3 Relative abundance of predictive microbial features in NAFLD-cirrhosis and non-NAFLD 
controls. The bacterial features most predictive of NAFLD-cirrhosis (n=25) versus non-NAFLD controls 
(n=51) sorted by decreasing importance score in the Random Forest classification model. Features 
increased (a) and decreased (b) in NAFLD-cirrhosis probands are shown. The feature table is normalized 
to a total abundance of 1 per sample and relative abundances are plotted on a log10 scale. Each bacterial 
feature is a unique 16S tag sequence labeled to the highest possible taxonomic rank assigned using QIIME. 
The box plots show the quartiles and whiskers show the rest of the distribution (1.5 interquartile range). 
The notches show a 95% confidence interval. Features that are differentially abundant in addition to being 
important predictors are marked by asterisk (*).  Differential abundance was tested using permutation-
based, ranked mean test, comparing mean difference between the two groups (33). FDR (<0.1) was 
controlled using DS-FDR method (34). 
 

A stool-microbiome signature accurately detects NAFLD-cirrhosis. A Random Forest 

model comprised of 30 features (including 27 bacterial features and age, sex and body mass index 
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(BMI)) identifies probands with NAFLD-cirrhosis. The bacterial features most important for 

predicting NAFLD-cirrhosis  are shown in Figure 2.3. In a derivation cohort of probands, the 

model had a robust diagnostic accuracy, with an AUROC of 0.92 (±0.05) after cross-validation for 

detecting NAFLD-cirrhosis Figure 2.4a.  The diagnostic accuracy of the model was then confirmed 

in a validation cohort of first-degree relatives of proband with NAFLD-cirrhosis with good 

diagnostic accuracy, with an AUROC of 0.87 for the detection of advanced fibrosis with a high 

negative predictive value of 91.6% Figure 2.4b. . In addition, we performed sensitivity analyses in 

another validation group enriched with mild to moderate stage of NAFLD including probands with 

NAFLD without AF. The diagnostic accuracy of the model was confirmed and yielded a very good 

diagnostic accuracy with an AUROC of 86% Figure 2.S2. 

 
Figure 2.4 High diagnostic accuracy of a gut-microbiome signature for the detection of NAFLD-cirrhosis. 
Receiver operating characteristic (ROC) curves evaluating ability to predict advanced Fibrosis using 
Random Forest classification. Each curve represents the sensitivity and specificity to distinguish subjects 
with advanced fibrosis (1) from non-NALFD controls (0). (a) Mean ROC curve from cross-validation 
within training data consisting of NAFLD-cirrhosis probands (n=24) and non-NAFLD controls (n=47). 
Cross-validation was performed by iteratively (10 times) training the Random Forest model with 70:30 
train/test split on this training data. (b) ROC curve representing diagnostic accuracy of Random Forest 
classification model tested on first-degree relatives of NAFLD-cirrhosis probands (n=32). The negative 
predictive value (NPPV) of the model was 91.6% and the positive predictive value was 62.5%. 

In conclusion, using a unique twin and family study design including well-characterized 

participants with and without NAFLD, we identified a specific stool-microbiome-derived 
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signature of NAFLD-cirrhosis that yielded a robust diagnostic accuracy for the detection of 

NAFLD-cirrhosis. Hence, this conveniently assessed microbial biomarker presents an adjunct tool 

to current invasive approaches to determine the stage of liver disease. 

We previously demonstrated that a microbial biomarker can detect AF in biopsy-proven 

NAFLD (5). The fundamental difference between the previous study and the present study is the 

clinical context of use of the gut-microbiome signature. In the present study, the clinical question 

is to accurately differentiate using a non-invasive gut-microbiome signature who among the first-

degree relatives have advanced form of NAFLD and who are unaffected in a general setting as 

opposed to a liver clinic setting. The context of use is critical for biomarker development as 

suggested by the BEST Guidelines by FDA. In order to address this clinically important question, 

this study leverages 2 distinct levels of innovations. 1. Study design: This innovative study 

leverages from a unique prospectively recruited case-control study design. This cross-sectional 

analysis included 203 well-characterized participants, encompassing the entire spectrum of 

NAFLD divided into three groups (NAFLD-cirrhosis, NAFLD without advanced fibrosis, non-

NAFLD controls) paired with their first-degree relatives. 2. Discovery of shared housing effect: 

the familial cohort design enabled us to discover the effect of shared housing on the gut-

microbiome signature related to NAFLD-cirrhosis. This unique familial cohort study design led 

us to a new discovery that shared housing had a dominant effect on microbiome. This novel effect 

would not be apparent from previous study in NAFLD among unrelated individuals. Hence, this 

study is novel due to its clinical context of use, study design, and co-housing effect on gut 

microbiome in families with NAFLD-cirrhosis. 

We acknowledge the following limitations of this study. This is a single-center study 

performed in a center with expertise in clinical investigation of NAFLD with advanced MRI-based 
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phenotyping, and the generalizability of the findings in other clinical settings remains to be 

established. 16S rRNA sequencing may not have captured additional insights associated with the 

disease status available at the species or strain level. Finally, the association does not suggest 

causality, and additional studies are needed to assess whether these microbial species impact gut 

permeability and/or induce NAFLD progression through cross-talk between serum metabolites and 

the liver (35). However, the strengths of the study include a prospective study design, detailed 

phenotyping of participants using the most accurate non-invasive imaging modalities available, 

and assessment of accuracy using AUROC in both a derivation and validation cohort. Further 

multi-center studies including a larger number of individuals are needed to validate the clinical 

utility of the proposed microbiome-derived signature to detect NAFLD-cirrhosis.   

 

2.3 Materials and methods 

Study design 

This is a cross-sectional analysis of a prospective family cohort study of participants from 

the Familial Cirrhosis cohort and Twins and Family cohort who were participating in a biobank 

initiative and prospectively recruited at the University of California at San Diego (UCSD) NAFLD 

Research Center between December 2011 and December 2017. All participants underwent a 

standardized exhaustive clinical research visit including detailed medical history, physical 

examination, and testing to rule out other causes of chronic liver diseases (see inclusion and 

exclusion criteria for further details), fasting laboratory tests at the University of California at San 

Diego (UCSD) NAFLD Research Center (36). Participants also underwent an advanced magnetic 

resonance examination including magnetic resonance imaging proton-density-fat-fraction (MRI-

PDFF) and magnetic resonance elastography (MRE) at the UCSD MR3T Research Laboratory for 
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the screening of NAFLD and advanced fibrosis (29). Participants from the Familial Cirrhosis 

cohort also underwent an ultrasound-based vibration controlled transient elastography (VCTE) 

assessment using a FibroScan. At the time of each research visit, patients provided stool samples. 

These were collected and immediately stored in a -80*C freezer.  Written informed consent was 

obtained from every participant. 

 

Study participants 

Probands with NAFLD-cirrhosis and first-degree relatives: This study included 26 

probands with NAFLD-cirrhosis and 37 of their first-degree relatives from the Familial Cirrhosis 

cohort prospectively recruited at the UCSD NAFLD Research Center13. Probands with NAFLD-

cirrhosis had documented evidence of NAFLD with either biopsy-proven or meeting imaging 

criteria for cirrhosis. Definition for NAFLD was based upon American Association for the Study 

of Liver Study (AASLD) Practice Guidelines (37).  The study was approved by the UCSD 

Institutional Review Board, protocol number 140084.   

Inclusion and exclusion criteria of the Familial cirrhosis cohort: Probands and first-

degree relatives had to be at least 18 years old. Probands were required to have a documented 

diagnosis of NAFLD-cirrhosis either by liver biopsy or by documented imaging evidence by a 

protocol-specified criterion. First-degree relatives (sibling, child, or parent) with written informed 

consent who did not meet any exclusion criteria were included in the study.  

Exclusion criteria included: regular and excessive alcohol consumption within 2 years of 

recruitment (≥14 drinks/week for men or ≥7 drinks/week for women); use of hepatotoxic drugs or 

drugs known to cause hepatic steatosis; evidence of liver diseases other than NAFLD, including 

viral hepatitis (detected with positive serum hepatitis B surface antigen or hepatitis C viral RNA), 
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Wilson’s disease, hemochromatosis, alpha-1 antitrypsin deficiency, autoimmune hepatitis, and 

cholestatic or vascular liver disease; clinical or laboratory evidence of chronic illnesses associated 

with hepatic steatosis, including human immunodeficiency virus infection (HIV), celiac disease, 

cystic fibrosis, lipodystrophy, dysbetalipoproteinemia, and glycogen storage diseases; evidence of 

active substance abuse, significant systemic illnesses, contraindication(s) to MRI, pregnant or 

trying to become pregnant, or any other condition which, in the investigator’s opinion, may affect 

the patient’s competence or compliance in completing the study. 

Proband with NAFLD without advanced fibrosis and non-NAFLD control and first-

degree relatives: The study included 140 participants from the Twin and Family study 

corresponding to 100 twins (50 twin-pairs; 30 monozygotic twin-pairs, 20 dizygotic twin-pairs) 

and 40 siblings or parents-offspring.  The non-NAFLD controls included 54 probands and 44 first-

degree relatives and the group with NAFLD without AF included 18 probands and 17 first-degree 

relatives of community-dwelling controls either twin, sib-sib or parent-offspring pairs(13, 19, 36). 

These twin, sib-sib, and parent-offspring pairs were prospectively recruited and they reside in 

southern California. Twins without evidence of NAFLD (MRI-PDFF<5%) and advanced fibrosis 

(MRE <3.63 kPa) were considered as non-NAFLD control and twins with evidence of NAFLD 

(MRI-PDFF ≥ 5%) without evidence of advanced fibrosis (MRE <3.63 kPa) and their twin pair 

were randomly assigned as proband or first-degree relatives. The study was approved by the UCSD 

Institutional Review Board number 111282.   

Inclusion and exclusion criteria for Twin and Family cohort: Patients were included if 

they were twins, siblings or parent-offspring at least 18 years old, willing and able to complete all 

research procedures and observations.  For each twin pair, a detailed assessment of twinship status 

(ie, monozygotic (MZ) or dizygotic (DZ)) was obtained. The majority of twin-pairs (34) were 
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diagnosed by their physician as either MZ or DZ by genetic testing. Furthermore, twin-ship status 

was confirmed by using a previously published questionnaire (19, 20). 

Participants were excluded from the study if they met any of the following 

criteria:  significant alcohol intake (>10 g/day in females or >20 g/day in males) for at least 3 

consecutive months over the previous 12 months or if the quantity of alcohol consumed could not 

be reliably ascertained; clinical or biochemical evidence of liver diseases other than NAFLD (eg, 

viral hepatitis, HIV, coeliac disease, cystic fibrosis, autoimmune hepatitis); metabolic and/or 

genetic liver disease (eg, Wilson’s disease, haemochromatosis, polycystic liver disease, alpha-1-

antitrypsin deficiency, dysbetalipoproteinaemia); clinical or laboratory evidence of systemic 

infection or any other clinical evidence of liver disease associated with hepatic steatosis; use of 

drugs known to cause hepatic steatosis (eg amiodarone, glucocorticoids, methotrexate, L-

asparaginase and valproic acid) for at least 3 months in the last past 6 months; history of bariatric 

surgery; presence of systemic infectious illnesses; females who were pregnant or nursing at the 

time of the study; contraindications to MRI (eg metal implants, severe claustrophobia, body 

circumference greater than the imaging chamber); any other condition(s) which, based on the 

principal investigator’s opinion, may significantly affect the participant’s compliance, 

competence, or ability to complete the study.  
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Clinical assessments and laboratory test 

All participants underwent a standardized clinical research visit at the UCSD NAFLD 

Research Center. A detailed history was obtained from all participants. A physical exam, which 

included vital signs, height, weight, and anthropometric measurements, was performed by a trained 

clinical investigator. Body mass index was defined as the body weight (in kilograms) divided by 

height (in meters) squared. Alcohol consumption was documented outside clinical visits and 

confirmed in the research clinic using the Alcohol Use Disorders Identifications Test and the 

Skinner questionnaire. A detailed history of medications was obtained and no patient took 

medications known or suspected to cause steatosis or steatohepatitis. Other causes of liver disease 

and secondary causes of hepatic steatosis were systemically ruled out using detailed history and 

laboratory data. After completion of the earlier described elements of the history and physical 

examination, participants had a comprehensive fasting laboratory including metabolic and liver 

assessment previously described in references (19, 20, 35, 36). 

 

MRI assessment 

MRI was performed at the UCSD MR3T Research Laboratory using the 3T research 

scanner (GE Signa EXCITE HDxt; GE Healthcare, Waukesha, WI) with all participants in the 

supine position. MRI-PDFF was used to measure hepatic fat content and MRE was used to measure 

liver fibrosis. The details of the MRI protocol have been previously described in references (38, 

39). The image analysts were blinded to all clinical and biochemical data including the study group 

of the participants. 
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Ultrasound-based VCTE assessment   

VCTE was performed by a trained technician, using the FibroScan® 502 Touch model (M 

Probe; XL Probe; Echosens, Paris, France). VCTE measurement was obtained in the supine 

position with the right arm fully adducted by scanning the area of abdomen at the location of the 

right liver lobe during a 10 seconds breath hold. Participants were asked to fast at least 3 hours 

prior to the exam. The details of VCTE assessment have been previously described in references 

(30, 40). The threshold used for the classification of cirrhosis (stage 4) was VCTE > 11.8 kPa as 

previously determined in reference (30). Among the first-degree relatives of proband with 

NAFLD-cirrhosis, 11 did not have an MRE assessment due to contraindication and the presence 

of advanced fibrosis was determined using a VCTE threshold> 11.8 kPa as previously determined 

in reference (30).    

Liver biopsy was not used for hepatic fat content and fibrosis assessment of controls and 

first-degree relatives as they were asymptomatic with no suspected liver disease and therefore 

performing a liver biopsy would have been unethical.  A non-invasive, accurate quantitative 

imaging method was used to estimate liver fat and fibrosis. We have previously shown that MRI-

PDFF is a highly precise, accurate, and reproducible non-invasive biomarker for the quantification 

of liver fat content (41, 42). In addition, MRE is the most accurate, currently available, non-

invasive quantitative biomarker of liver fibrosis (30, 43). MRE has been shown to be have 

excellent diagnostic accuracy in differentiating between normal liver and mild fibrosis (stage 0–2) 

and between non-advanced fibrosis and advanced fibrosis (stage 3–4) (44, 45). 
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Definition of NAFLD 

Participants were considered to have NAFLD if they had hepatic steatosis (MRI-PDFF 

≥5%) and no secondary causes of hepatic steatosis due to factors including the use of steatogenic 

medications, other liver diseases, and significant alcohol intake (see Exclusion Criteria above for 

details). 

 

Definition of cirrhosis and advanced fibrosis 

Participants were considered to have NAFLD-related cirrhosis if they had NAFLD 

according to the definition above, and have biopsy proven cirrhosis (histology fibrosis stage 4). 

We have previously validated that a liver stiffness cut point of >3.63 kPa on MRE provides an 

accuracy of 0.92 for the detection of advanced fibrosis, and it is the most accurate non-invasive 

test for the diagnosis of advanced fibrosis (46–48). Advanced fibrosis among first-degree relatives 

was determined by either imaging evidence of nodularity and presence of intraabdominal varices 

or other evidence imaging evidence of portal hypertension or liver stiffness assessment with MRE 

threshold ≥ 3.63 kPa or if MRE were not performed using transient elastography assessment with 

VCTE threshold ≥ 11.8 kPa.   

 

Microbiome composition by 16S rRNA gene amplicon analysis 

DNA extraction and 16S rRNA amplicon sequencing were done using Earth Microbiome 

Project (EMP) standard protocols (http://www.earthmicrobiome.org/protocols-and-standards/16s) 

and previously described in references (49, 50). In brief, DNA was extracted using the Qiagen 

MagAttract PowerSoil DNA kit as previously described) (51). Amplicon PCR was performed on 

the V4 region of the 16S rRNA gene using the primer pair 515f to 806r with Golay error-correcting 
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barcodes on the reverse primer. Amplicons were barcoded and pooled in equal concentrations for 

sequencing. The amplicon pool was purified with the MO BIO UltraClean PCR cleanup kit and 

sequenced on the Illumina MiSeq sequencing platform. Sequence data were demultiplexed and 

minimally quality filtered using the QIIME 1.9.1 script split_libraries_fastq.py, with a Phred 

quality threshold of 3 and default parameters to generate per-study FASTA sequence files (52). 

 

Statistical analysis 

Development of a model utilizing stool derived 16S gut-microbiome profiles to predict 

NAFLD-cirrhosis.  To build a model capable of distinguishing samples belonging to NAFLD-

cirrhosis from those of non-NAFLD-controls, we developed a custom machine learning process 

that employed Random Forest (RF) analysis (53). The set of input features for model building 

consisted of 16S sequences and patient metadata features. Features from stool microbiome data 

consisted of the number of 16S sequences (~5700 features) and the patient metadata consisted of 

age, gender and BMI. The first step in building an RF model consisted of training RF and then 

selecting features with the most important score > 0.005 (27 features) in a second step. The final 

random forest model included the 27 bacterial features and important patient metadata (age, sex, 

and BMI) for a total of 30 predictive features. 

Patients’ demographic, anthropometric, clinical, and biochemical characteristics were 

summarized. Categorical variables were shown as counts and percentages, and associations were 

tested using a chi-squared test or Fisher’s exact test. Normally distributed continuous variables 

were shown as mean (± standard deviation), and differences between groups were analyzed using 

a two-independent sample t- test or Wilcoxon-Mann-Whitney test. Statistical analysis of cohort 
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characteristics were performed using SPSS 25.0 (IBM, Chicago, IL). A two-sided p-value <0.05 

was considered statistically significant. 

Sample size estimation: Based upon our previous study including 16 individuals with 

NASH-cirrhosis/advanced fibrosis and 33 controls, we could identify significant differences 

compared to 33 controls (5). The patient data and species abundance had an AUROC of 0.88. 

Therefore, the study including 26 participants with NAFLD-cirrhosis and 72 controls would be 

adequate to detect clinically meaningful differences between the sub-groups with a power of at 

least 80% with a two-tailed p-value of less than 0.01. 
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2.8 Supplemental figures 

 
Figure 2.S1 Study flow-chart. A total of 203 participants from the Twin and Family study (n=140) and Familial 
cirrhosis study (n=63) with 16S gut-microbiome profiling were included in the study. *3 twin pairs were 
concordant for advanced fibrosis and 1 twin had NAFLD- cirrhosis were not assigned in a control group but was 
included in familial correlation analyses. ** stool samples were not available for the first-degree relative of 10 
non-NAFLD controls and 1 proband with NAFLD without advanced fibrosis, the single probands were included 
in the gut-microbiome signature analysis. ***2 first degree relative did not have liver stiffness assessment (MRE 
of VCTE but were included in the familial correlation analysis), 11 first-degree relatives did not had an MRE 
assessment due to CI and were assessed using VCTE using a threshold of 11.8 kPa for the detection of cirrhosis. 
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Figure 2.S2 Sensitivity analyses of the diagnostic accuracy of the gut-microbiome signature for the detection of 
advanced fibrosis. Receiver operating characteristic (ROC) curves evaluating ability to predict advanced 
Fibrosis using Random Forest classification. This curve represents the sensitivity and specificity to distinguish 
subjects with advanced fibrosis (1) from those without advanced fibrosis (0). The predictive model was trained 
on probands with NAFLD-cirrhosis (n=24) and non-NAFLD controls (n=47). We validated the prediction on a 
cohort comprising of NAFLD patients without advanced fibrosis (n=17) and first first-degree relatives of 
NAFLD-cirrhosis probands (n=32). The model predicted the presence of advanced fibrosis with an accuracy of 
86%. 
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Chapter 3. Intermittent hypoxia and hypercapnia, a 

hallmark of obstructive sleep apnea, alters the gut 

microbiome and metabolome 

Obstructive sleep apnea (OSA) is a common disorder characterized by episodic obstruction 

to breathing due to upper airway collapse during sleep. OSA has been associated with adverse 

cardiovascular and metabolic outcomes, although data regarding potential causal pathways are still 

evolving. As O2 and CO2 affect the ecology of the gut microbiota and the microbiota has been shown 

to contribute to various cardio-metabolic disorders, we hypothesized that OSA alters the gut 

ecosystem which exacerbates the downstream physiological consequences. Here, we model human 

OSA and its cardiovascular consequences using Ldlr-/- mice fed a high-fat diet and exposed to 

intermittent hypoxia and hypercapnia (IHH). The gut microbiome and metabolome were 

characterized longitudinally (using 16S rRNA amplicon sequencing and untargeted LC-MS/MS 

mass-spectrometry) and seen to co-vary during IHH. Joint analysis of microbiome and 

metabolome data revealed marked compositional changes in both microbial (>10%, most 

remarkably, Clostridia) and molecular (>22%) species in the gut. Moreover, molecules altered in 

abundance included microbe-dependent bile acids, enterolignans and fatty acids, highlighting the 

impact of IHH on host-commensal co-metabolism in the gut. Thus, we present the first evidence 

that IHH perturbs the gut microbiome functionally, setting the stage for understanding its 

involvement in associated cardio-metabolic disorders. 
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3.1 Introduction 

Intestinal dysbiosis marks various cardiovascular diseases comorbid with OSA. It has not 

been systematically studied if dysbiosis due to hypoxic stress in OSA is causally linked to these 

comorbidities. We take advantage of a longitudinal study design and paired ‘-omics to investigate 

correlations in microbial and molecular dynamics in the gut to ascertain the contribution of 

microbes on intestinal metabolism. We observe microbe-dependent changes in the gut metabolome 

that will guide future research on unrecognized mechanistic links between gut microbes and 

comorbidities of OSA. Additionally, we highlight novel, non-invasive biomarkers for OSA-linked 

pathologies. 

Obstructive sleep apnea (OSA) afflicts nearly 12% of the adult population in the USA with 

a cost burden of nearly $149.6 billion, according to a recent study commissioned by the American 

Academy of Sleep Medicine (1).  Timely diagnosis and treatment of OSA improves not only sleep 

and cognitive function but also management of comorbid cardiometabolic diseases (CMDs). 

Therefore, identifying downstream consequences of OSA would aid in development of effective 

treatment modalities, reducing overall health care utilization. 

OSA is marked by changes in oxygen and carbon dioxide-inspired concentrations which impacts 

the gut microbial community (2).  Since the gut microbiota play a key role in metabolism of dietary 

precursors including lipids, cholesterol and choline, it impacts the cardiometabolic health of the 

host (3). Gut dysbiosis has already been linked to an array of metabolic disorders such as 

hypertension, T2 diabetes, hepatic steatosis and atherosclerosis (4, 5). Additionally, previous work 

has identified specific gut bacteria to be significantly correlated with plasma cholesterol and 

apolipoprotein levels (6). Thus, probing this commensal ecosystem may provide a valuable avenue 

of investigation to understand the mechanism of pathogenesis of cardiovascular consequences of 
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OSA.  In this study, we investigated the taxonomic and molecular alterations in gut microbiome 

that potentially mediate the interplay between OSA and related CMDs.  

 

3.2 Results 

We used atherosclerosis-prone (Ldlr-/-) adult mice fed high-fat diet (HFD) enriched in 

cholesterol and milk fat (resembling western dietary practices) to evaluate atherosclerosis risk in 

OSA. We previously demonstrated that IHH increases atherosclerosis plaque formation in this 

model (7). As episodic hypoxia and hypercapnia mimic the changes in blood gases that occur in 

OSA-driven downstream consequences (8), these mice were exposed to IHH (treatment group; 

n=8) or air (control group; n=8) and examined longitudinally for 6 weeks (Methods, Figure 3.S1). 

Fecal samples, representative of the gut ecosystem, were collected at baseline and twice each week 

thereafter, and the microbiome and metabolome were profiled using 16S rRNA amplicon 

sequencing and LC-MS/MS-based untargeted mass-spectrometry, respectively. These data were 

processed (Methods) to obtain relative abundances of microbial and molecular species per sample 

(referred to as feature tables henceforth), which were used for comparing OSA-mimicking and 

control mice.  

First, we performed principal coordinate analysis (PCoA) on the microbiome and 

metabolome feature tables to identify major factors driving the clustering of samples. Figure 3.1 

shows the PCoA plotted against time to visualize the dynamics of clustering based on gut 

microbiome (unweighted UniFrac distances (9); Figure 3.1a and metabolome (Gower distances (9, 

10)); Figure 3.1b,c as duration of IHH-exposure increases. Here, the first fecal sample represents 

the baseline gut composition before animals were switched to a HFD. There is a rapid shift in both 

microbial and molecular composition due to HFD alone, consistent with similar previous findings 
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(11–13). Moreover, starting from a highly congruent gut composition, IHH-exposed mice 

significantly diverge from controls with increasing exposure duration (PERMANOVA test 

performed per time point, Table S13). This demonstrates that prolonged IHH-exposure (analogous 

to chronic OSA) cumulatively perturbs the gut microbiome and metabolome. We tested the 

relationship between the two omics datasets by superimposing the principal coordinates computed 

from microbiome and metabolome data (Procrustes analysis (14); Figure 3.1d, e). The ordination 

spaces are correlated (Mantel test r-statistic = 0.36, p < 0.001), and changes in metabolome and 

microbiome of samples within the treatment groups over time are proportional, suggesting 

microbe-dependent changes in intestinal metabolism on chronic OSA. 

 

Figure 3.1 Principal coordinate analysis (PCoA) and Procrustes analysis of gut microbiome and metabolome. 
a) PCoA of microbiome (16S rRNA sequencing) data using unweighted UniFrac distances b, c) PCoA of 
metabolome (untargeted LC-MS/MS mass-spectrometry) data using Gower distances d, e) Procrustes analysis 
of microbiome and metabolome datasets d) with baseline samples e) without baseline samples. Here, coordinates 
for a sample obtained using microbiome data (black line) are connected to coordinates for the same sample 
obtained using metabolome data (pink line). This analysis stretches, rotates and superimposes ordinations 
generated from one dataset over the other, while preserving distances within each individual matrix. The goal is 
to find the best fit between two matrices to infer whether one dataset coherently captures the properties of the 
other. (IHH: intermittent hypoxia and hypercapnia) 

                                                
3https://msystems.asm.org/content/3/3/e00020-18 
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We then tested for specific microbes and metabolites that changed with OSA. More than 

80 (of ~730) microbial features differed significantly between the IHH-exposed group and controls 

(by permutation test with discrete FDR correction (15)).  Figure 3.S2a presents a global overview 

of these changes in gut microbiota per sample (sorted by duration of treatment). Table S23 provides 

a list of these differentially represented bacteria that potentially contribute to alterations in gut 

metabolism due to IHH.  Figure 3.2a-f displays trends in relative abundances of bacteria showing 

the largest differences, which belong to the Mogibacteriaceae (family), Oscillospira (genus), 

Lachnospiraceae (family) and Clostridiaceae (family). Previous studies have consistently 

associated these taxonomic groups with metabolic and inflammatory disturbances in the host (16, 

17), which suggests that related mechanisms may be at play in driving the consequences of hypoxic 

and hypercapnic stress. 
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Figure 3.2 Changes in the gut microbes and molecules due to IHH exposure.  a-f) Top differentially abundant 
sOTUs elevated in the control group (a,b,c) and treatment group (d,e,f). The sOTUs belonging to the families 
Clostridiaceae (a,c) and Coriobacteriaceae (b) were elevated in controls, whereas those belonging to the genus 
Oscillospira (d) and families Lachnospiraceae (e), Mogibacteriaceae (f) were higher in IHH-exposed mice. g-n) 
Trends in abundance of significantly differential bile acids. These differential bile acids include unconjugated 
primary bile acids: alpha-muricholic acid (g), chenodeoxycholic acid (h) and cholic acid (i), secondary bile acids: 
lithocholic acid (j) deoxycholic acid (k) and, conjugated secondary bile acid: taurodeoxycholic acid (l). m,n) 
Trends in abundance of significantly differential xenoestrogens, enterodiol (m) and enterolactone (n). (IHH: 
intermittent hypoxia and hypercapnia) 
 

Using the same statistical approach, we found that more than 380 (out of ~1700) molecular 

species differed significantly in relative abundance in animals exposed to IHH. Figure 3.S2b 

provides a global representation of these differentially abundant molecules in samples belonging 

to treatment and control groups and sorted by treatment duration (Table S33 provides a 

comprehensive list of these molecules). To gain insight into the structures of these differentially 

abundant metabolites, we performed molecular networking using Global Natural Products Social 

Molecular Networking (GNPS) (18). The molecular network is constructed using a cosine 

similarity measure between tandem mass spectral data, then visualized using Cytoscape (19) 

                                                
3https://msystems.asm.org/content/3/3/e00020-18 
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(Figure 3.S3). Each node in the network, which represents a consensus MS/MS spectrum, was 

searched against public libraries in GNPS. In total, we annotated about 400 molecular compounds 

in GNPS including bile acids, fatty acids and phytoestrogens. Additionally, all key compounds 

discussed in this work were defined to the highest level of annotation according to the 

metabolomics standards initiative using commercial standards (Figure 3.S4,5, Table S43) (20).  

Interestingly, the top differentially abundant features detected between IHH and control mice, 

included molecules known to depend on gut microbes for their production. Below, we discuss 

some of these metabolites and their implications with respect to consequences of OSA. 

Alterations in bile acids: We observed significant alterations in bile acids (BAs) between 

IHH-exposed mice and control groups (Table S33). Figure 3.2g-n displays these trends in primary 

(Figure 3.2g-i) and secondary (Figure 3.2j-l) bile acids with increasing IHH exposure duration. 

Primary BAs are amphipathic molecules synthesized in the liver from cholesterol. These are 

conjugated to glycine or taurine and released in the biliary tract. Together with other biliary 

components, these facilitate in emulsification and transportation of dietary fats, cholesterol, and 

fat-soluble vitamins. About 95% of the BAs are reabsorbed in the terminal ileum and recycled. 

The remaining 5% reach the colon and are deconjugated, dehydrogenated and dehydroxylated by 

the intestinal bacteria to form secondary BAs (21). BAs, including microbially-generated BAs, are 

potent signaling molecules that interact with the Farnesoid X receptor (FXR) (expressed in the 

liver and intestine) which modulates BA synthesis by the liver (22). Perturbations in gut microbial 

populations disrupt normal signaling properties that regulate BA production, and can profoundly 

alter the BA composition in the gut. A range of diseases, including cardiometabolic diseases, are 
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characterized by aberrant BA profiles (23), and prolonged perturbations in the BA pool could also 

be a factor in mediating the consequences of OSA.  

Elevations in phytoestrogens: The dietary hormones, enterolactone (mammalian lignan) 

and enterodiol (oxidation product of enterolactone) were significantly elevated in the exposed mice 

compared to controls. Figure 3.2m, n shows the trends in their abundances with increasing duration 

of IHH-exposure. These molecules are phytoestrogens i.e. plant-derived hormones that structurally 

mimic estrogen and are produced by intestinal microbiota on bioconversion of dietary lignans. 

Owing to their affinity to estrogen receptors (producing estrogenic or/and antiestrogenic effects 

(24)), they perturb many hormone-dependent systems in the body and have been linked to adverse 

metabolic, reproductive and neurological outcomes (25). Sex-specific differences in OSA 

diagnostic symptoms and risk factors suggest hormonal involvement (26, 27). However, the 

contribution of microbes in maintaining hormonal homeostasis has not yet been investigated. 

Therefore, these findings motivate novel avenues of research for biomarkers and therapeutic 

targets to manage the metabolic consequences of OSA.  

Alterations in fatty-acids: In addition to changes in bile acids and phytoestrogens, we 

also detected differentially abundant fatty acid-related chemical families (Table S33). For example, 

we noted a significant reduction in molecular features matched to elaidic acid. Elaidic acid is an 

unsaturated fatty acid that increases plasma cholesteryl ester transfer protein (CETP) activity that 

modulates systemic levels of LDL and HDL cholesterol. A decrease in elaidic acid in the IHH-

exposed group suggests reduction in plasma CETP activity, a mechanism associated with adverse 

cardiovascular effects (28).  Similarly, phytomonic, jasmonic, hexadecanoic, linoleic acid, and 

conjugated linoleic acids were also reduced in exposed mice compared to controls. Out of these, 
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phytomonic acid and conjugated linoleic acid are known to be microbially produced (29, 30), 

suggesting that changes in the microbiome could be contributing to these changes in metabolome. 

In summary, we demonstrate that IHH, a hallmark of OSA, changes the microbiota and the 

chemistry in the gut. We have highlighted the changes of bile acids, phytoestrogens and fatty acids 

under OSA-related conditions leading to CMDs. The present results reveal a previously 

unrecognized mechanistic link between OSA and gut microbes. It suggests that targeting gut 

microbiota and their metabolites may serve as a potential therapeutic approach for the treatment 

of cardiometabolic consequences of OSA patients. 

 

3.3 Materials and methods 

Animals 

 Atherosclerosis-prone ten-week old male Ldlr-/-  mice on C57BL/6J background (Stock 

Numbers 002207; The Jackson Laboratory, Bar Harbor, ME) were used in this study (31).  Ldlr 

deficiency was confirmed by PCR according to the vendor's instructions.  All animal protocols 

were approved by the Animal Care Committee of the University of California San Diego and 

followed the Guide for the Care and Use of Laboratory Animals of the National Institutes of 

Health. 

 

High Fat Diet Treatment 

Starting at 10 weeks of age, male mice were provided with a high fat diet (HFD) containing 

1.25% cholesterol and 21% milk fat (4.5 Kcal/g; TD96121; Harlan-Teklad Madison, WI) for 6 

weeks while being exposed to either IHH or room air.   
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Intermittent Hypoxia and Hypercapnia Exposure  

Intermittent hypoxia and hypercapnia (IHH) was maintained in a computer-controlled 

atmosphere chamber system (OxyCycler, Reming Bioinstruments, Redfield, NY) as previously 

described (32).  IHH exposure was introduced to the mice in short periods (∼4 min) of 

synchronized reduction of O2 (from 21% to 8%) and elevation of CO2 (from ~0.5% to 8%) separated 

by alternating periods (∼4 min) of normoxia ([O2] = 21%) and normocapnia ([CO2] = ∼0.5%) with 

1-2 min ramp intervals for 10 hours per day during the light cycle, for 6 weeks.  This treatment 

protocol mimics the severe clinical condition observed in obstructive sleep apnea patients.  Mice 

on the same HFD but in room air were used as controls.   

As the experimental setup requires IHH-exposed mice in a controlled atmosphere chamber 

and controls in room air, we ensured that the effect of treatment is not confounded by the effect of 

distinct housing conditions. To do so, we used two cages per treatment group, and we compared 

the relative effect size of treatment and cages with redundancy analysis (RDA), which estimates 

the independent effect size of each covariate on microbiome composition variation based on 

unweighted UniFrac Distance (33). The RDA results showed that treatment had a higher effect 

size than the cages, more specifically, that treatment contributed to 11.6% of the microbiome 

community variation, while cages had an independent effect size of around 9.8%; with respect to 

the metabolome, treatment contributed to 6.2% of the variation, while cages only about 0.7% 

 
LC-MS/MS data acquisition 

Prior to LC-MS/MS analysis, fecal samples were prepared using the following extraction 

procedures.  For extraction, 500 μL of 50/50 methanol/H2O was added to all fecal samples and 

vortexed.  Fecal pellets in extraction solvent were placed in an ultrasonic bath and sonicated for 

30 minutes to break apart the pellet, then allowed to incubate for an additional 30 
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minutes.  Extracted samples were the centrifuged to separate insoluble material and 450 uL of each 

liquid extract was subsequently transferred to a 96-deep-well plate and dried completely using 

centrifugal evaporation (Centrivap, Labconco, Kansas City, MO).  The dried extracts were 

resuspended in 150 µL of methanol/H2O (1/1, v/v) including 1 µM amitriptyline as an autosampler 

injection standard. After resuspension, the samples were transferred into 96-well plates and 

analyzed on a Vanquish ultra-high performance liquid chromatography (UPLC) system coupled 

to a Q-Exactive orbital ion trap (Thermo Fisher Scientific, Bremen, Germany). For the 

chromatographic separation, a C18 core-shell column (Kinetex, 50 x 2 mm, 1.7 um particle size, 

100 A pore size, Phenomenex, Torrance, USA) with a flowrate of 0.5 mL/min (Solvent A: H2O + 

0.1 % formic acid (FA), Solvent B: Acetonitrile (ACN) + 0.1 % FA) was used. After injection, the 

samples were eluted during a linear gradient from 0-0.5 min, 5 % B, 0.5-4 min 5-50 % B, 4-5 min 

50-99 % B, followed by a 2 min washout phase at 99% B and a 2 min re-equilibration phase at 5 

% B. For online MS/MS measurements, the flow was directed to heated ESI source (HESI). The 

electrospray ionization (ESI) parameters were set to 35 L/min sheath gas flow, 10 L/min auxiliary 

gas flow, 2 L/min sweep gas flow and 400 °C auxiliary gas temperature. The spray voltage was 

set to 3.5 kV and the inlet capillary was set to 250 °C. 50 V S-lens radio frequency (RF) level was 

applied. Product ion spectra were recorded in data dependent acquisition (DDA) mode. Both MS1 

survey scans (m/z 150-1500) and up to 5 MS/MS scans of the most abundant ions per duty cycle 

were measured with a resolution (R) of 17,500 with 1 micro-scan in positive mode. The maximum 

ion injection time was set to 100 ms. MS/MS precursor selection windows were set to m/z 3 with 

m/z 0.5 offset. Normalized collision energy was stepwise increased from 20 to 30 to 40 % with z 

= 2 as default charge state. MS/MS experiments were automatically triggered at the apex of a peak 

within 2 to 15 s from their first occurrence. Dynamic exclusion was set to 5 s.  
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LC-MS/MS data analysis 

Feature detection: Thermo raw datasets were converted to mzXML in centroid mode 

using MSConvert (part of proteowizard) (34, 35). All mzXML files were cropped with m/z range 

of 75.00 - 1000.00 Da. MS1-based feature detection and MS2-based molecular networking was 

performed using GNPS workflow (https://gnps.ucsd.edu/) (18). The parameters used are detailed 

here: http://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=c6438af750784d919dcd0ee0a783b4fc. 

Feature extraction parameters were optimized using MZmine2 (http://mzmine.sourceforge.net/) 

(36)  with a signal threshold of 2.0e5 and 0.3 s minimum peak width. The mass tolerance was set 

to 10 ppm and the maximum allowed retention time deviation was set to 10 s. For chromatographic 

deconvolution the local minimum search algorithm was used with minimum relative peak height 

of 1% and minimum retention time range of 0.6 s. Maximum peak width was set to 1 min. After 

isotope peak removal, the peak lists of all samples were aligned with the above-mentioned 

retention time and mass tolerances. After the creation of a feature matrix containing the feature 

retention times, exact mass and peak areas of the corresponding extracted ion chromatograms, 

metadata of the samples (treatment type and duration) was added. The signal intensity of the 

features was normalized (probabilistic quotient normalization or PQN)(37) to internal standard 

(mz 278.189; RT 3.81  minutes) for subsequent analysis.  

MS/MS annotations: Molecular features, in the form of MS/MS spectra, were putatively 

identified using MS2-based spectral library matches. False Discovery Rate (FDR) was estimated 

using a decoy database approach (38) in GNPS and was found to be less than 1 % above a cosine 

similarity score of 0.6. (GNPS job link: 

https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=feac48de4c9f45d485403e3feb7a470d) 

Therefore, we use a cosine score of 0.65 here. For level 1 annotation, as defined by the 2007 
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metabolomics standards initiative, differentially abundant metabolites we purchased authentic 

standards of alpha-muricholic acid, chenodeoxycholic acid, cholic acid, lithocholic acid, 

deoxycholic acid, taurodeoxycholic acid and xenoestrogens, enterodiol and enterolactone from 

Cayman chemical, MI, USA and analyzed using identical LC-MS/MS method described above. 

We then compared and verified the matching of exact masses, fragmentation patterns and retention 

times of those compounds to ensure correct annotations (Figure 3.S2, 3). 

Statistical analysis: QIIME 1.9.1 was used to perform principal coordinate analysis 

(PCoA) (beta_diversity.py; Gower dissimilarity metric (39)) and PERMANOVA test 

(compare_categories.py). The PCoA plots were visualized in EMPeror (40). Differential 

abundance analysis was performed using discrete FDR (15). 

 

16S rRNA sequencing 

DNA extraction and 16S rRNA amplicon sequencing was done using EMP standard 

protocols (http://www.earthmicrobiome.org/protocols-and-standards/16s) (41). In brief, DNA was 

extracted using the MO BIO PowerSoil DNA extraction kit (Carlsbad, CA). Amplicon PCR was 

performed on the V4 region of the 16S rRNA gene using the primer pair 515f–806r with Golay 

error-correcting barcodes on the reverse primer.  Amplicons were barcoded and pooled in equal 

concentrations for sequencing. The amplicon pool was purified with the MoBio UltraClean PCR 

Clean-up kit and sequenced on the Illumina HiSeq 2500 sequencing platform. Sequence data were 

demultiplexed and minimally quality filtered using the QIIME 1.9.1 script split_libraries_fastq.py 

with Phred quality threshold of 3 and default parameters to generate per-study FASTA sequence 

files. 
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16S marker gene data analysis 

Feature detection and identification: The raw sequence data were processed using Deblur 

workflow (42) with default parameters in Qiita (https://qiita.ucsd.edu/). This generated a sub-

Operational Taxonomic Units (sOTU) abundance per sample BIOM table (42, 43). Taxonomies 

for sOTUs were assigned using a sklearn-based taxonomy classifier (feature-classifier plugin) in 

QIIME 2 (44). The sOTU table was rarefied to a depth of 2000 sequences/sample to control 

for  sequencing effort (45). A phylogeny was inferred using SATe-enabled Phylogenetic 

Placement (46) which was used to insert 16S Deblur sOTUs into the Greengenes 13_8 at 99% 

phylogeny.   

Statistical analysis: QIIME 2 was used to perform principal coordinate analysis (PCoA) 

(unweighted UniFrac distances (47)). QIIME 1.9.1 was used for PERMANOVA test 

(compare_categories.py), Mantel test (compare_distance_matrices.py) and Procrustes analysis 

(transform_coordinate_matrices.py). The PCoA and Procrustes plots were visualized in EMPeror. 

(40) Differential abundance analysis was performed using discrete FDR (15).  
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3.8 Supplemental figures 

 
Figure 3.S1 Schematic illustration of treatment paradigm and sample collection. Groups of 8-week old male 
Ldlr-/- mice were transferred to the treatment room for 2 weeks of acclimatization with room air (RA) and regular 
chow (RC) food. At 10 weeks of age, mice were switched to high fat diet (HFD) and treated with or without 
intermittent hypoxia and hypercapnia (IHH). The IHH treatment group received 10 hrs/day IHH in the light 
cycle for 6 weeks (The blue line was the O2 set point and the green was the actual level of O2. The red line was 
the CO2 set point and light blue was the actual level of CO2). The control groups remained in room air for the 
same period. Fecal pellets were collected at baseline and twice per week thereafter and were used for microbiome 
and metabolome analyses. (IHH: intermittent hypoxia and hypercapnia) 
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Figure 3.S2 Global overview of changes in gut microbiota and metabolome. a) Heatmap of 87 differential 
microbial sOTUs between IHH-exposed and control mice. b) Heatmap of 382 differential molecular features 
between IHH-exposed and control mice. (IHH: intermittent hypoxia and hypercapnia) 
 

 
Figure 3.S3 Molecular network of LC-MS/MS metabolomic data generated on GNPS (rendered using Cytoscape 
3.4 (19)). Highlighted by boxes are clusters in which differentially abundant metabolites of interest are observed. 
Color-coding represents the treatment group and its overlap with authentic standards. (IHH: intermittent hypoxia 
and hypercapnia) 
 



 
 
 

125 

 
Figure 3.S4. Comparisons of MS/MS fragmentation spectra I. MS/MS fragmentation spectra displayed for 
annotated molecules. Fragmentation spectra originating from the most abundant ion is picked for each molecule 
to display (refer to table S43). MS/MS spectrum observed in samples and commercial standards shown on the 
top and on the bottom for each compound, respectively. 
 

                                                
3https://msystems.asm.org/content/3/3/e00020-18 
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Figure 3.S5. Comparisons of MS/MS fragmentation spectra II. MS/MS fragmentation spectra displayed for 
annotated molecules. Fragmentation spectra originating from the most abundant ion is picked for each molecule 
to display (refer to the table S43). MS/MS spectrum observed in samples and commercial standards shown on 
the top and on the bottom for each compound, respectively. 
 

 

 

 

                                                
3https://msystems.asm.org/content/3/3/e00020-18 
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Chapter 4. Intermittent hypoxia and hypercapnia 

reproducibly change the gut microbiome and 

metabolome across rodent model systems 

Studying perturbations in the gut ecosystem using animal models of disease continues to 

provide valuable insights into the role of the microbiome in various physiological and pathological 

conditions. However, understanding whether these changes are consistent across animal models 

of different genetic backgrounds, and hence potentially translatable to human populations remains 

a major unmet challenge in the field. Nonetheless, in relatively limited cases have the same 

interventions been studied in two animal models in the same laboratory. Moreover, such studies 

typically examine only one data layer and one-time point. Here, we show the power of utilizing 

time series microbiome (measured by 16S rRNA amplicon profiling) and metabolome (measured 

by untargeted LC-MS/MS) data to relate two different mouse models of atherosclerosis: ApoE-/- and 

Ldlr-/- that are exposed to intermittent hypoxia and hypercapnia (IHH) longitudinally (for 10 weeks 

and 6 weeks, respectively) to model chronic obstructive sleep apnea. Using Random Forest 

classifiers trained on each data layer, we show excellent accuracy values in predicting IHH-

exposure within ApoE-/- and Ldlr-/- knockout models, and in cross-applying predictive features found 

in one animal model to the other.  Some of the key microbes and metabolites that predicted IHH-

exposure across animal models included bacterial species from the family Clostridiaceae, 

muricholic acid (a bile acid) and vaccenic acid (a fatty acid), providing a refined set of biomarkers 

reproducibly associated with this intervention. The results highlight that time series, multi-omics 

data can be used to relate different animal models of disease to one another using supervised 
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machine learning techniques, and can provide a pathway towards identifying robust microbiome 

and metabolome features that underpin translation from animal models to understanding human 

disease. 

 

4.1 Introduction 

Reproducibility of microbiome research is a major topic of contemporary interest. 

Although it is often possible to distinguish individuals with specific diseases within a study, the 

differences are often inconsistent across cohorts, often due to systematic variation in analytical 

conditions. Here we study the same intervention in two different mouse models of cardiovascular 

disease (atherosclerosis) by profiling the microbiome and metabolome in stool specimens over 

time. We demonstrate that shared microbial and metabolic changes are involved in both models 

with the intervention. We then introduce a pipeline for finding similar results in other studies. This 

work will help find common features identified across different model systems, which are most 

likely to apply in humans. 

Obstructive sleep apnea (OSA) is a common sleep disorder marked by obstructed breathing 

due to episodic upper airway collapse. Chronic OSA is associated with adverse cardio-metabolic 

outcomes such as atherosclerosis (1); however, potential causal pathways remain elusive.  We 

previously modeled human OSA and its cardiovascular consequences in Ldlr  knockout (Ldlr-/-; 

atherosclerosis model) mice by exposing individuals to intermittent hypoxia and hypercapnia 

(IHH), a hallmark of OSA (2). IHH is a clinically important exposure because it markedly 

promotes atherosclerotic lesions in the pulmonary arteries and aorta in not only Ldlr-/- mice but also 

ApoE knockout (ApoE-/-) mice, another widely-used atherosclerosis model (3, 4), thereby 

mimicking the adverse cardiovascular changes that occur in OSA patients (5). In Ldlr-/- mice, we 
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reported significant shifts in the bacterial and chemical composition of the gut on IHH-exposure. 

The key chemical alterations included changes in microbe-dependent metabolites such as gut-

derived estrogen-like molecules (phytoestrogens) and bile acids. These observations revealed an 

unrecognized link between IHH and gut microbes, thereby holding immense potential for 

translation in OSA patients. However, a key challenge in microbiome research is understanding if 

different animal models, or animal models and human subjects are characterized by common 

changes in the microbiome and metabolome (6, 7). As a first step, finding reproducible alterations 

across multiple animal models would provide confidence in the generalizability of the findings 

and accrue evidence for clinical relevance.  

Here, we use machine learning predictive models to address the reproducibility of the 

perturbations associated with IHH exposure in the gut ecosystem using both Ldlr-/- and ApoE-/- mouse 

models (Figure 4.S1). To model OSA and its cardiovascular conditions, all mice were either 

exposed to IHH (treatment group) or air (control group) and fed a high-fat diet (HFD) (3, 4). 

Individuals were studied longitudinally for 6 weeks (Ldlr-/-) or 10 weeks (ApoE-/-) to understand the 

impact prolonged IHH-exposure (analogous to chronic OSA in humans). Furthermore, multiple 

cages per treatment group were used to untangle the effect of treatment with the effect of distinct 

housing conditions (8). Starting with 10 weeks of age (baseline), fecal pellets were collected twice 

every week, and profiled for microbiome and metabolome using 16S rRNA amplicon sequencing 

and liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based untargeted mass 

spectrometry, respectively. These data layers were processed per recommended practices (9) to 

obtain  relative abundances of microbial and molecular species per sample for all downstream 

analyses (see methods).  
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Predictive models that classify microbiome and metabolome responses to interventions 

have proven extremely useful in disease diagnosis and biomarker discovery (10), (11). Yet, these 

have been surprisingly hard to generalize across populations or model systems (12), (13, 14). In 

this work, we use Random Forest (RF) classification to investigate the cross-applicability of our 

previous findings in Ldlr-/- mice (2) to ApoE-/- mice and vice-versa. RF is an ensemble machine 

learning algorithm that fits many decision trees on random subsamples of original data, and then 

aggregates the results of each decision tree to improve the prediction accuracy (15). The level of 

accuracy is often expressed using the area under the curve (AUC) of true-positive versus false-

positive rates, known as a receiver operating characteristic (ROC). RF has consistently been 

reported to perform well in high-dimensional datasets i.e. datasets with many features (microbial 

reads or metabolites) such as ours, making it our algorithm of choice for this work (16–18) . We 

had previously shown that machine learning classifiers trained on Inflammatory Bowel Disease 

(IBD) cases and healthy controls in humans can distinguish between IBD cases and controls in 

dogs using cross-sectional microbiome data (19). To our knowledge, however, this type of cross-

model classification task has not been performed with metabolomics data, or with data collected 

longitudinally.  

 

4.2 Results  

Unsupervised comparison of the gut microbiome and metabolome in ApoE-/- and Ldlr-/- 

mouse models: First, we performed Principal Coordinate Analysis (PCoA) to get a visual 

overview of the characteristic microbiome and metabolome of the two animal models. PCoA is an 

unsupervised method routinely used to explore major factors that drive the clustering of data points 

in high-dimensional datasets by projecting the samples in a reduced-dimensional space (as 2D or 
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3D graph) (20). Figure 4.1 displays the PCoA results plotted along time to visualize the dynamics 

of diet and IHH-associated changes in the gut ecosystem. This analysis shows that the Ldlr-/- and 

ApoE-/- mice in our study have very distinct gut microbial (Figure 4.1a and b) and chemical signature 

(Figure 4.1c and d) which is captured by the first principal axis (axis 1) in both data layers. These 

plots also capture a rapid shift in the baseline gut microbial and chemical composition in response 

to HFD which has also been reported previously (21, 22). We performed PCoA without baseline 

samples, to better visualize the impact of IHH-exposure alone (Figure 4.S2). We observed that 

despite underlying differences in the two genotypes, axis 2 consistently captured IHH-induced 

shifts in both the gut microbiome and metabolome highlighting common shifts in the gut 

ecosystem due to IHH exposure.  
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Figure 4.1. Principal-coordinate analysis (PCoA) of the gut microbiome and metabolome in ApoE-/- and Ldlr-/- 
mouse models. (a and b) PCoA of the microbiome (16S rRNA sequencing) data using unweighted UniFrac 
distances. (c and d) PCoA of the metabolome (untargeted LC-MS/MS) data using Bray-Curtis distances. The 
ordination is visualized along the duration of treatment (starting at 10 weeks of age, with an interval of 0.5 week). 
Axis 1, principal coordinate 1; IHH, intermittent hypoxia and hypercapnia; HFD, high-fat diet. 
 

When comparing the overall sharedness of microbial features, out of 635 unique 16S 

deblured sequences (23) in Ldlr-/- (and 582 in ApoE-/-) gut microbiome, the two animal models only 

shared 248 unique sequences. The chemical space was also distinct with the two models sharing 

only 137 out of 267 and 374 metabolomic features in Ldlr-/- and ApoE-/- mice, respectively (see 

methods). Interestingly,  Ldlr-/- and ApoE-/- mice have more similar microbiomes (PERMANOVA 

(24) pseudo-F 13.2605, p<0.001) at baseline (10 weeks of age) i.e. before the HFD-induced shift 

is observed, compared to later time points (pseudo-F 19.9059 at 12 weeks of age). We note a 

similar divergence in the gut metabolome (pseudo-F 46.9112 and 66.1165 at baseline and 12 weeks 
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of age) of the two animal models as well. Together, these results suggest a differential impact of 

high-fat diet on the gut ecosystem of the Ldlr-/- and ApoE-/- mice, making the mouse models more 

distinct over time.  

It is important to note that the two animal models are temporally separated for sample 

collection and data acquisition (for both 16S rRNA sequencing and LC-MS/MS mass-

spectrometry), which likely contributes to the strong distinction between the models observed here. 

We quantified the effects of covariates such as genotypes (or processing batches), age of 

individuals, housing conditions and individual variability on the microbiome and metabolome 

composition by performing effect size analysis on our dataset (see ‘Effect size analyses’ section 

in methods). While the largest effect on the microbial and chemical composition was linked to the 

mouse model, the type of exposure (IHH or air) impacted each data layer within both models 

significantly. Moreover, the effect sizes varied based on the animal model highlighting the 

distinctive characteristics of the gut ecosystem in the two models (Table S14).  

Gut microbiome- and metabolome-based prediction of IHH exposure within and 

across animal models: Our unsupervised analysis showed that the gut ecosystems of ApoE-/- and 

Ldlr-/- mice, despite being inherently distinct, consistently shift in response to IHH-exposure. We 

applied supervised machine learning in order to capture the consistent shifts associated with IHH-

exposure in both animal models (Figure 4.S2). Specifically, we built RF classifiers using IHH-

associated microbial and chemical composition in ApoE-/- and tested its performance in predicting 

IHH-exposure in Ldlr-/- and vice-versa. This informed us if the changes we observe in one model 

are reproducible to the other, which would make the findings more relevant for translation in OSA 

patients.  

                                                
4https://msystems.asm.org/content/4/2/e00058-19  
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To examine the predictive potential of microbiome data, we trained RF classifiers on 

relative abundances of 16S tag sequences shared between the two mouse models (443 features 

after removing low prevalence sequences [see methods]). Within each animal model, the 

classifiers yielded nearly perfect prediction (99% area under the receiver operator characteristic 

curve or AUC) of IHH-exposure (Figure 4.2). We then predicted the same in Ldlr-/- using RF trained 

on microbiome signature in ApoE-/- (Figure 4.2a) and vice-versa (Figure 4.2c), still achieving very 

high cross-model prediction accuracies (95% and 89% AUC, respectively). Similarly, we used 

metabolomics data for training RF models on relative abundance of MS1 spectral ions (377 

features after removing low prevalence ions [see methods]). Metabolome-based RF classifiers also 

predicted IHH-exposure within animal models accurately (99% AUC), and maintained impressive 

cross-model prediction accuracies (97% when trained on Ldlr-/-  and tested on ApoE-/- [Figure 4.2b]; 

84% vice-versa [Figure 4.2d]). Together, these analyses suggest that IHH-exposure alters both the 

gut microbial and chemical composition distinguishably in each animal model. Moreover, the 

changes induced by IHH-exposure are consistent across Ldlr-/-  and ApoE-/- models, despite the 

underlying differences between the two genotypes (Figure 4.1, Figure 4.S2). It is worth noting that 

we hugely benefited from our  longitudinal sample collection scheme as we had more data points 

available for learning, despite limited number of animals (i.e. n=8 for Ldlr-/- and n=12 for ApoE-/-) 

per group. We accounted for the longitudinal samples from the same individual in our analyses by 

ensuring that observations for each individual appeared either in the training or validation dataset 

but not both. This prevented over-optimistic cross-validation accuracy scores as a result of the 

model overfitting to the characteristics of the individual itself rather than the treatment. (The 

relatively lower accuracy of ApoE-/- -based metabolomics RF model can be attributed to fewer 

numbers of samples compared to Ldlr-/-; Figure 4.S1).  
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Figure 4.2. Receiver operating characteristic (ROC) curves evaluating ability to predict exposure to IHH using 
Random Forest model. Green curves represent classification accuracy within each mouse model. Purple ROC 
curves correspond to a model trained using gut microbiome (a) and metabolome (b) data from ApoE-/- mouse 
model to predict IHH exposure in Ldlr-/- mice. Red curves show the same for microbiome (c) and metabolome 
(d) data from Ldlr-/- mice tested on ApoE-/- mice. IHH, intermittent hypoxia and hypercapnia. 
 

Longitudinal dynamics of IHH-associated changes in the gut ecosystem: Next, we used 

these longitudinal data sets to learn how the duration of IHH-exposure impacts the gut microbiome 

and metabolome over time; and if this is consistent across the mouse models. The goal was to 

compare the dynamics of changes in the gut ecosystem with chronic IHH exposure in the ApoE-/- 
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and Ldlr-/- mice. We tested this by assessing the capability of the RF classifier to distinguish IHH 

samples from control at each time point. In ApoE-/- mice, the classification AUC using gut 

microbiome data is high (constantly 1) at each time point starting at 11 weeks of age. The 

microbiome in Ldlr-/- mice, however, appears more predictive only at later time points, with its 

classification AUC improving from 0.71 at week 11 to more than 0.99 beyond week 14. We also 

observed a similar lag in gut metabolome changes in Ldlr-/- compared to ApoE-/- animals (Table S24). 

Importantly, this is concordant with our previous finding that the atherosclerotic lesions evolved 

slowly and mildly in Ldlr-/- mice as compared to ApoE-/- mice (4). Therefore, observing this trend in 

both ‘omics layers provides supporting evidence that the atherosclerosis phenotype in these 

animals is linked to perturbations in their gut ecosystem. Moreover, the gut microbiome and 

metabolome changes occur quickly after IHH-exposure, before atherosclerotic lesions were 

observed, which was reported to be 4 weeks for ApoE-/- and 6 weeks for Ldlr-/- post IHH exposure 

(4).  

Reproducible biomarkers of IHH exposure: The subsequent goal of this analysis was to 

narrow down the list of fecal biomarkers that are reproducibly predictive of IHH-exposure, thereby 

guiding future mechanistic and clinical studies. The RF classifiers used to distinguish IHH-

exposed and control animals described above provided us with a ranked list of bacterial and 

chemical features important for prediction (classifier trained on ApoE-/- microbiome and 

metabolome data: Tables S3; classifier trained on Ldlr-/- data: Table S4)4. We examined the features 

that were top ranked predictors (top 30 ranks) in both Ldlr- and ApoE-based classifiers. To 

investigate if there were some key biomarkers that could single-handedly distinguish IHH from 

control, we used the abundance of each of these features individually to plot ROC curves and 

                                                
4https://msystems.asm.org/content/4/2/e00058-19 
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compute AUCs. Indeed, some of these microbial (Figure 4.3a) and chemical (Figure 4.3d) features 

could alone detect IHH-exposure within each mouse model highly accurately (AUC>0.75; see 

Table S5, 6 for the AUC values per feature and model)4. 

 
 

Figure 4.3. Individual microbes and metabolites that distinguish the IHH from control groups in both ApoE-/- and 
Ldlr-/- mice. (a) The ROC curves using each individual microbe abundance. Each curve represents the sensitivity 
and specificity as a function of the abundance of a single microbe to distinguish IHH and control groups. The 
curves for microbes enriched in IHH are above the diagonal line while those for microbes depleted in IHH are 
below the diagonal line. The two microbial features that have highest AUC (the values in the parentheses) in 
both mouse models are highlighted by color (both from the order of Clostridiales). The AUC here is defined as 
the area under the curve if the curve is above the diagonal line, or one minus the area under the curve for the 
curve below the diagonal line.  (b, c) The abundance trends of these 2 microbes in each mouse model over time. 
(d, e, f) Similar plots for metabolites. ROC, receiver operating characteristic; IHH, intermittent hypoxia and 
hypercapnia; AUC, Area under the ROC curve. 
 

We used our longitudinal data to compare trends of these predictive features in IHH-

exposed and control groups in both animal models (Figure 4.3b, c, e, f). These predictors included 

                                                
4https://msystems.asm.org/content/4/2/e00058-19  
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bacterial strains from the families Clostridiaceae and molecules identified as muricholic acid (bile 

acid; level 1 identification [(25)]) and vaccenic acid (fatty acid; level 2 identification). The goal 

was to investigate if these microbial and chemical species changed in the same direction on IHH-

exposure in both ApoE-/- and Ldlr-/- mice or had idiosyncratic responses to IHH exposure based on 

the genetic background of the host. Figure 4.3c, e, and f show trends in these consistently altered 

features. These microbes and metabolites highlight key IHH-related changes in the gut 

microenvironment, and could guide subsequent reconstitution experiments in germ-free mice to 

establish causality. It is noteworthy that one unclassified species from the order Clostridiales 

(Figure 4.3b), despite being highly predictive within each animal, was depleted in IHH in ApoE-/- 

mice but enriched in Ldlr-/- mice. This, together with the high cross-genotype prediction accuracy 

using all features (Figure 4.2), suggests that although the microbiome and metabolome changes 

induced by IHH are reproducible across mouse models overall, there do exist animal model-

specific changes as well. Hence, multi-animal model studies such as this are highly advantageous 

in precisely identifying biomarkers associated with an intervention of interest. 

 

4.3 Discussion  

We examined the reproducibility of IHH-associated alterations in the gut microbiome and 

metabolome of Ldlr-/- and ApoE-/- mouse models, crucial for understanding links between OSA and 

associated cardiovascular pathologies. As both APOE and LDLR are important in clearing 

cholesterol and triglyceride-rich particles from the blood, both models show elevated plasma 

cholesterol levels. However, they develop atherosclerotic plaques to different extents under high-

fat dietary conditions (26–28). Concordant with these phenotypic differences, we highlight 

throughout that the gut ecosystem of the two models is also intrinsically distinct. As technical 
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variables such as origin of animals, housing conditions, experimental batches and data acquisition 

protocols are important considerations for meta-analyses such as ours (29, 30), we ensured that all 

animals were housed and handled in the same facility and data were acquired using identical 

protocols to minimize confounding effects. Furthermore, we used supervised machine learning to 

identify features specifically associated with IHH-exposure in both animal models reproducibly. 

To our knowledge, the impact of IHH on the gut microbiome and metabolome in the 

context of atherosclerosis has not been investigated before, making our work exploratory in nature. 

Intermittent hypoxia alone (without hypercapnia or HFD) has been reported to significantly alter 

the microbiome in wild-type mice (31) and guinea-pigs (32) which lends support to our findings 

with IHH-exposure. Another study modeled human OSA and its cardiovascular consequences in 

HFD-fed rats by inflating a tracheal balloon during the sleep cycle (33). The authors reported that 

HFD and OSA synergistically caused hypertension and gut-dysbiosis in these rats.  This study also 

noted perturbations in members of the order Clostridiales in response to HFD. Curiously, we also 

observe a member of this order to be highly predictive of IHH, yet changing in different directions 

in ApoE-/- and Ldlr-/- animals, hinting that this may be due to the differential impact of HFD on the 

two models (Figure 4.1b). In addition to genotype-specific changes, we also report consistent 

changes to unclassified strains belonging to the families Ruminococcaceae, Mogibacteriaceae, 

Lachnospiraceae and Clostridiaceae (Figure 4.S3). These taxonomic groups have been associated 

with cardiovascular, metabolic and inflammatory conditions previously (34–36), which indicates 

shared mechanistic pathways in OSA-associated cardiovascular conditions. Furthermore, our work 

is the first to profile OSA-associated changes in the gut metabolome at this scale. We observed 

reproducible perturbations in clinically relevant biomolecules in both ApoE-/- and Ldlr-/- mice. For 

example, Vaccenic acid, a trans-fatty acid that has been reported to lower LDL cholesterol and 
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triglyceride levels in rats (37) was found to decrease under IHH-exposure in both models. 

Similarly, bile acid molecules such as muricholic acid and taurocholic acid were more abundant 

in IHH-exposed versus control animals. Bile acids are crucial for not only facilitating transport of 

dietary fats and cholesterol in the host but also regulating host energy expenditure, glucose 

homeostasis and anti-inflammatory immune responses (38–42). Many metabolic and 

cardiovascular conditions (43) have been associated with aberrant bile acid profiles, suggesting 

that prolonged perturbations in these key molecules could contribute to downstream adverse 

cardiovascular consequences of OSA as well.  

In summary, our work provides reproducible candidate biomarkers of IHH-exposure in 

animal models (and potentially OSA in humans) and will be most applicable to designing 

diagnostic and treatment modalities. Furthermore, by identifying consistent alterations across 

different model systems, we outline a general pipeline to select for biomarkers and therapeutic 

targets applicable to other intervention studies as well. We have made these information rich 

datasets publicly available to promote collaborative progress in this area of research. 

 

4.4 Materials and Methods 

Animals 

Atherosclerosis-prone ten-week old male Ldlr-/- (n=16) and ApoE-/- (n=24) mice on C57BL/6J 

background (Stock Numbers 002207 and 002052 respectively; The Jackson Laboratory, Bar 

Harbor, ME) were used in this study (44). Ldlr and ApoE deficiencies were confirmed by PCR 

according to the vendor's instructions. Animals were either exposed to intermittent hypoxia and 

hypercapnia (n=8 and n=12 for Ldlr-/- and ApoE-/- animals, respectively) or air (control group) and 

fed with a high fat diet. All animal protocols were approved by the Animal Care Committee of the 
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University of California San Diego and followed the Guide for the Care and Use of Laboratory 

Animals of the National Institutes of Health. 

  

High-Fat Diet Treatment  

Mice were fed with regular chow consisting of 0.01% cholesterol and 4.4% fat (TD.8604; 

Envigo-Teklad, Madison, WI) until initiation of dietary and IHH treatments.  Starting at 10 weeks 

of age, male mice were provided with a high fat diet (HFD) containing 1.25% cholesterol and 21% 

milk fat (4.5 Kcal/g; TD.96121; Envigo-Teklad Madison, WI) while being exposed to either IHH 

or room air.  Body weight of each mouse was measured twice a week.  Food intake of animals in 

each cage was recorded twice a week. 

  

Intermittent Hypoxia and Hypercapnia Exposure 

Intermittent hypoxia and hypercapnia (IHH) was maintained in a computer-controlled 

atmosphere chamber system (OxyCycler, Reming Bioinstruments, Redfield, NY) as previously 

described (4).  IHH exposure was introduced to the mice in short periods (∼4 min) of synchronized 

reduction of O2 (from 21% to 8%) and increasing of CO2 (from ~0.5% to 8%) separated by 

alternating periods (∼4 min) of normoxia ([O2] = 21%) and normocapnia ([CO2] = ∼0.5%) with 1–

2 min ramp intervals for 10 hours per day during the light cycle.  This treatment protocol mimics 

the severe clinical condition observed in obstructive sleep apnea patients.  Mice on the same HFD 

but in room air were used as controls. Fecal samples were collected at baseline and twice each 

week for 6 weeks (Ldlr-/-) or 10 weeks (ApoE-/-). 
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16S rRNA sequence processing 

We performed 16S sequencing on fecal samples from Ldlr-/- and ApoE-/- mice for all the time 

points. DNA extraction and 16S rRNA amplicon sequencing were done using Earth Microbiome 

Project (EMP) standard protocols (http://www.earthmicrobiome.org/protocols-and-

standards/16s).(45) In brief, DNA was extracted using the MO BIO PowerSoil DNA extraction kit 

(Carlsbad, CA). Amplicon PCR was performed on the V4 region of the 16S rRNA gene (Platinum 

Hot Start PCR 2X Master Mix, Invitrogen RED 13000014) using the primer pair 515f to 806r with 

Golay error-correcting barcodes on the reverse primer. Amplicons were barcoded and pooled in 

equal concentrations for sequencing. The amplicon pool was purified with the MO BIO UltraClean 

PCR cleanup kit and sequenced on the Illumina HiSeq 2500 sequencing platform. Sequence data 

were demultiplexed and minimally quality filtered using the QIIME 1.9.1 script 

split_libraries_fastq.py, with a Phred quality threshold of 3 and default parameters to generate per-

study FASTA sequence files. 

The raw sequence data were processed using the Deblur workflow (23) with default 

parameters in Qiita (46). This generated a sub-operational taxonomic unit (sOTU) abundance per 

sample (BIOM format) (47). Taxonomies for sOTUs were assigned using the sklearn-based 

taxonomy classifier trained on the Greengenes 13_8 99% OTUs (feature classifier plug-in) in 

QIIME 2. (48) The sOTU table was rarefied to a depth of 2,000 sequences/sample to control for 

sequencing effort. (49) A phylogeny was inferred using SATé-enabled phylogenetic placement, 

(50) which was used to insert 16S Deblur sOTUs into Greengenes 13_8 at a 99% phylogeny. 
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LC-MS/MS data processing  

We acquired LC-MS/MS data on fecal samples from Ldlr-/- (for 10 through 16 weeks of age) 

and ApoE-/- (at ages 10, 12, 14.5, 17, and 19.5 weeks)  mice using identical protocol. Details of data 

acquisition parameters are specified in (2). Briefly, fecal pellets (30 to 50 mg approximately) were 

extracted in 500 µl of 50:50 methanol-H2O solvent, followed by centrifugation to separate 

insoluble material. The extracts were dried completely by centrifugal evaporation (CentriVap 

centrifugal vacuum concentrator; Labconco, Kansas City, MO) and resuspended in 150 µl of 

methanol-H2O (1:1, vol/vol). After resuspension, the samples were analysed on a Vanquish 

ultrahigh-performance liquid chromatography (UPLC) system coupled to a Q Exactive orbital ion 

trap (Thermo Fisher Scientific, Bremen, Germany). A C18 core shell column (Kinetex column, 50 

by 2 mm, 1.7-µm particle size, 100-Å pore size; Phenomenex, Torrance, CA) with a flow rate of 

0.5 ml/min (solvent A, H2O-0.1% formic acid [FA]; solvent B, acetonitrile-0.1% FA) was used 

for chromatographic separation (2). 

The raw data sets were converted to m/z extensible markup language (mzXML) in centroid 

mode using MSConvert (part of ProteoWizard)(51)(52). All mzXML files were cropped with an 

m/z range of 75.00 to 1,000.00 Da.  Feature extraction was performed in MZmine2 

(http://mzmine.sourceforge.net/) (53) with a signal intensity threshold of 2.0e5 and minimum peak 

width of  0.3-s. The maximum allowed mass and retention time tolerances were 10 ppm and 10 s, 

respectively. Local minimum search algorithm with a minimum relative peak height of 1% was 

used for chromatographic deconvolution; maximum peak width was set to 1 min. The detected 

peaks were aligned across all samples using the above-mentioned retention time and mass 

tolerances producing the final feature table used in these analyses. (see MZmine2 batch file: 
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https://github.com/knightlab-

analyses/crossmodel_prediction/blob/master/data/metabolome/fileS7.mzmine2_batch.xml). 

We performed molecular networking (54, 55) in GNPS (https://gnps.ucsd.edu/) to 

putatively identify molecular features using MS/MS-based spectral library matches. The 

parameters used for molecular networking are at the following URL: 

https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=3dbc660b9bdd4f699d31750d99b25463. 

Additionally, we purchased analytical standards for bile acids of interest (based on previous work 

(2, 55); alpha/beta-muricholic acid, chenodeoxycholic acid, cholic acid, lithocholic acid, 

deoxycholic acid, taurodeoxycholic acid) from Cayman Chemical (Ann Arbor, MI). We analyzed 

them using the same LC-MS/MS method described above to compare and verify the exact masses, 

fragmentation patterns, and retention times to ensure level 1 annotations, as defined by the 2007 

metabolomics standards initiative (25). 

 

Sharedness of microbial and metabolomic features across animal models  

We calculated the sharedness of microbial features as follows. To quality-control the 16S 

sequences obtained per animal model, we retained only reads that were prevalent within each 

model i.e. above a sum relative abundance threshold of 10E-06 and present in at least 1% of the 

samples, thus avoiding sequencing noise. The number of such reads in Ldlr-/- and ApoE-/-  animals was 

635 and 582, respectively. Out of these, 248 sequences were shared between the two models. 

Therefore, the percentage of microbiome features shared between the animal models was 39% of 

unique microbial features found in Ldlr-/- (and 42% of those in ApoE-/-) models. 

For metabolomic data, we quality-controlled the chemical features by retaining those above 

a sum relative abundance threshold of 10E-01 and present in at least 10% of all samples for each 
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animal model individually. There were 267 and 374 such features in Ldlr-/- and ApoE-/-  animals, 

respectively. Out of these, 137 metabolites were shared between the two models. Thus, the 

percentage shared between the animal models were 51% of total features in Ldlr-/- (and 36% of 

those in ApoE-/-) knockout models. 

 

Effect size analyses  

Effect sizes were calculated over the individual genotype, mice, cage number, age, 

exposure type. For each of these covariates, we applied the mixed directional FDR (mdFDR) (56) 

methodology to test for the significance of each pairwise comparison among the groups. For each 

significant pairwise comparison via PERMANOVA (24), we computed the effect size using 

Cohen’s d (57) or the absolute difference between the mean of each group divided by the pooled 

standard deviation. As diversity estimators we used unweighted UniFrac and Bray-Curtis distances 

matrices for the 16S rRNA sequencing and LC-MS/MS mass-spectrometry, respectively. 

For the microbiome data layer (Table S14), when taking both genotypes together, we see 

that the first three largest effect sizes are mouse number, age and cage number, followed by 

genotype and exposure type. It is important to note that the maximum difference (effect size) on 

the first three covariates are related to genotype differences. For example, the maximum difference 

in mouse number is between two mice [mouse numbers 105 (ApoE-/-) vs. 32 (Ldlr-/-); Figure 4.S1] 

that belong to two different genotypes and exposure types. To untangle the effect of genotype, we 

stratified our dataset by genotypes and calculated effect sizes of each of the covariates within each 

model. It is noteworthy that effects of covariates are ranked differently within each model, hinting 

                                                
4https://msystems.asm.org/content/4/2/e00058-19  



 
 
 

151 

towards underlying differences in the characteristics of the microbial community. Nevertheless, 

the effect of exposure is ranked comparably across models. 

Similarly, we calculate effect sizes of the above mentioned covariates for the metabolome 

data layer (Table S14). When taking both genotypes together, consistent with the microbiome 

results, mouse number, age and cage number have the largest effect sizes, and the groups with the 

maximum effects belong to different genotypes [e.g. mouse number 114 (ApoE-/-) vs. 17 (Ldlr-/-)]. 

We then stratified the data by genotype and observed that different covariates had distinct effects 

within each genotype. Interestingly, our analysis shows that unlike in Ldlr-/- mice, individual 

variability was not significant in ApoE-/- mice.  

 

Supervised classification  

Random Forest (RF) classifier was trained and evaluated with cross validation for each 

mouse model, using microbial or chemical features as predictors. During cross validation, all the 

samples from the same mouse appeared only in either training or validation data but not both to 

avoid over-optimistic cross-validation accuracy scores as a result of the classifier learning 

idiosyncrasies of the individual itself rather than the treatment. The classifiers trained for each 

mouse model were then applied on the samples of the other mouse model for cross-genotype 

prediction. For the longitudinal prediction, we trained and evaluated a RF classifier on the samples 

collected at each time point for AUC computation. To assess the capability of individual 16S 

sequences and metabolites to separate IHH-exposed from control animals, we used the abundance 

of each feature as the score to plot ROC curve and compute AUC, and highlighted the features that 

can single-handedly distinguish IHH on ROC plots. These analyses were done using the scikit-

learn Python package. 



 
 
 

152 

4.5 Acknowledgements 

We thank Lingjing Jiang for very helpful suggestions and discussions regarding statistical 

analyses. We acknowledge NIH Grants GMS10RR029121 and 5P41GM103484-07 for the shared 

instrumentation and computational infrastructure that enabled this work.  

 

4.6 Author contributions 

Chapter 4, in full, is a reprint of previously published material: Tripathi, A., Xu, Z. Z., Xue, 

J., Poulsen, O., Gonzalez, A., Humphrey, G., Meehan, M. J., Melnik, A. V., Ackermann, G., Zhou, 

D., Malhotra, A., Haddad, G. G., Dorrestein, P. C., & Knight, R. (2019). Intermittent Hypoxia and 

Hypercapnia Reproducibly Change the Gut Microbiome and Metabolome across Rodent Model 

Systems. mSystems, 4(2). 

A.T. and Z.Z.X. contributed equally to this article. All authors worked together to finalize 

and approve this manuscript.The co-authors listed above supervised or provided support for the 

research and have given permission for the inclusion of the work in this dissertation.  

 

4.7 Competing interests 

The authors declare no competing financial interests. 

 

4.8 Data and code availability 

The data generated in this study are available publicly under the following accession 

numbers: for metabolomics data: MSV000081482 (Ldlr knockout animal), MSV000082813 

(ApoE knockout animal),  MSV000081853 (commercial standards); and for microbiome data: 

ERP106495 (Ldlr knockout animals; EBI database) and ERP110592 (ApoE knockout animals). 



 
 
 

153 

Data analysis has been documented in Jupyter notebooks available on GitHub 

(https://github.com/knightlab-analyses/crossmodel_prediction)	  
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4.9 Supplemental figures 

 
Figure 4.S1 Schematic illustration of treatment paradigm and sample collection. Groups of 8-week old male 
Ldlr-/- mice or ApoE-/- mice were transferred to the treatment room for 2 weeks of acclimatization with room air 
and regular chow food. At 10 weeks of age, mice were switched to high-fat diet (HFD) and treated with or 
without intermittent hypoxia and hypercapnia (IHH). The IHH treatment group received 10 hrs/day IHH in the 
light cycle for 6 weeks in Ldlr-/- mice or for 10 weeks in ApoE-/- mice (The blue line is the O2 set point and the 
green was the actual level of O2. The red line is the CO2 set point and light blue was the actual level of CO2). The 
control groups remained in room air for the same period. All the mice are reared in the same animal facility room 
thus have the same microbial exposure. Fecal pellets were collected at baseline and twice per week thereafter 
and were used for microbiome and metabolome analyses. All the time points were analyzed except for 
metabolome of ApoE-/- mice (only fecal samples at the age of 10, 12, 14.5, 17 and 19.5 weeks were analyzed). 
Mice belonging to each treatment group were split between multiple cages to untangle cage effects with the 
effect of the treatment. For Ldlr-/- mice, IHH: mouse numbers 17-20 and 21-24 were kept in cage numbers 5 and 
6, respectively; Air: mouse 25-28 and 29-32 were kept in cage numbers 7 and 8, respectively. For ApoE-/- mice, 
IHH: mouse numbers 97-100, 101-104, and 105-108 were kept in cage numbers A18, A19, and A20, 
respectively; Air: mouse numbers 109-112, 113-116, and 117-120 were kept in cage numbers A21, A23 and 
A23, respectively. Comprehensive sample metadata is available publicly [see data availability]. 
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Figure 4.S2 Principal-coordinate analysis (PCoA) of the gut microbiome and metabolome in ApoE-/- and Ldlr-/- 
mouse models without baseline samples. (a) PCoA of the gut microbiome using unweighted UniFrac after 
removal of samples collected at 10 and 10.5 weeks of age. (b) Similar PCoA for gut metabolome using Bray-
Curtis distances. Baseline samples were removed from this plot to better visualize the impact of IHH-exposure 
alone. Axis 1 explains the variability due to the animal models and axis 2 consistently captures the IHH-
associated changes in the microbiome and metabolome in both models. Axis 1, principal coordinate 1; IHH, 
intermittent hypoxia and hypercapnia 
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Chapter 5. Chemically-informed analyses of 

metabolomics mass spectrometry data with Qemistree 

Untargeted mass spectrometry is employed to detect small molecules in complex 

biospecimens, generating data that are difficult to interpret. We developed Qemistree, a data 

exploration strategy based on hierarchical organization of molecular fingerprints predicted from 

fragmentation spectra, represented in the context of sample metadata and chemical ontologies. By 

expressing molecular relationships as a tree, we can apply ecological tools, designed around the 

relatedness of DNA sequences, to study chemical composition.  

 

5.1 Introduction 

Molecular networking (1), introduced in 2012, was one of the first data organization 

approaches to visualize the relationships between fragmentation spectra for similar molecules from 

tandem mass spectrometry data in the context of metadata. It formed the basis for the web-based 

mass spectrometry infrastructure, Global Natural Products Social Molecular Networking (2) 

(GNPS, https://gnps.ucsd.edu/) which sees ~200,000 new accessions per month. Molecular 

networking is used for a range of applications (3) in drug discovery, environmental monitoring, 

medicine, and agriculture. While molecular networking is useful for visualizing closely related 

molecular families, the inference of chemical relationships at a dataset-wide level and in the 

context of diverse metadata requires complementary representation strategies. To address this 

need, we developed an approach that uses fragmentation trees (4) and supervised machine learning 

(5) to calculate all pairwise chemical relationships and visualizes it in the context of sample 

metadata and molecular annotations. We show that a chemical tree enables the application of 
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various tree-based tools, originally developed for analyzing DNA sequencing data (6–9), for 

exploring mass-spectrometry data. 

We introduce Qemistree, pronounced chemis-tree, a software that constructs a chemical 

tree from fragmentation spectra based on predicted molecular fingerprints (10).  Molecular 

fingerprints are vectors where each position encodes a substructural property of the molecule. 

Recent methods allow us to predict molecular fingerprints from tandem mass spectra (11–15). In 

Qemistree, we use SIRIUS (16) and CSI:FingerID (13) to obtain predicted molecular fingerprints. 

The users first perform feature detection (17, 18) to generate a list of observed ions, referred to as 

chemical features henceforth, to be analyzed by Qemistree (Figure 5.S1). SIRIUS then determines 

the molecular formula of each feature using the isotope and fragmentation patterns, and estimates 

the best fragmentation tree explaining the fragmentation spectrum. Subsequently, CSI:FingerID 

operates on the fragmentation trees using kernel support vector machines to predict molecular 

properties (2936 properties; Supplementary Table 15). We use these molecular fingerprints to 

calculate pairwise distances between chemical features that are hierarchically clustered to generate 

a tree representing their structural relationships. Although alternative approaches to hierarchically 

cluster features based on cosine similarity of fragmentation spectra exist (19–21), we use 

molecular fingerprints as it allows us to compare features based on a diverse range of structural 

properties predicted by CSI:FingerID. Additionally, as CSI:FingerID was shown to perform well 

for automatic in silico structural annotation (22), we leverage it to search molecular structural 

databases to provide complementary insights into structures when no match is obtained against 

spectral libraries. Subsequently, we use ClassyFire (23) to assign a 5-level chemical taxonomy 

                                                
5https://www.biorxiv.org/content/10.1101/2020.05.04.077636v1.supplementary-material  
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(kingdom, superclass, class, subclass, and direct parent) to all molecules annotated via spectral 

library matching and in silico prediction.  

Phylogenetic tools such as iTOL (24) can be used to visualize Qemistree trees interactively 

in the context of sample information and feature annotations for easy data exploration. The outputs 

of Qemistree can also be plugged into other workflows in QIIME 2 (25) (many of which were 

originally developed for microbiome sequence analysis) or in R, Python etc. for system-wide 

metabolomic data analyses (6, 7, 9, 26). Qemistree is available to the microbiome community as a 

QIIME 2 plugin (https://github.com/biocore/q2-qemistree) and the metabolomics community as a 

workflow on GNPS (2) (https://ccms-ucsd.github.io/GNPSDocumentation/qemistree/). The 

chemical tree from the GNPS workflow can be explored interactively (e.g. 

https://qemistree.ucsd.edu/). 

 

5.2 Results 

To verify that molecular fingerprint-based trees correctly capture the chemical 

relationships between molecules, we generated an evaluation dataset with two human fecal 

samples, a tomato seedling sample, and a human serum sample. Mixtures of these samples were 

prepared by combining them in gradually increasing proportions to generate a set of diverse but 

related metabolite profiles and untargeted tandem mass spectrometry was used to profile the 

chemical composition of these samples. Mass-spectrometry was performed twice using different 

chromatographic gradients causing a non-uniform retention time shift between the two runs. The 

data processing of these two experiments leads to the same molecules being detected as different 

chemical features in downstream analysis. In Figure 5.1a we highlight how these technical 

variations make the same samples appear chemically disjointed. 
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Figure 5.1 Qemistree mitigates aspects of technical artifacts by co-clustering structurally similar molecules 
across mass spectrometry runs. a) Sample (y-axis) by molecule (x-axis) heatmap of 2 fecal samples, tomato 
seedling samples, and serum samples in the evaluation dataset grouped by chromatography conditions. b) A 
chemical tree based on predicted molecular fingerprints representing the structural relationships between 
compounds detected in the evaluation dataset. Outer ring shows the relative abundance of molecules stratified 
by mass spectrometry run; inner ring shows the same stratified by fecal, serum and tomato samples in the 
evaluation dataset. Structurally similar molecules detected as different chemical features due to shift in retention 
time across mass spectrometry runs are clustered together; we highlight some examples of these artificially 
duplicated features around the tree. All structures shown are spectral reference library matches obtained from 
feature-based molecular networking (17) in GNPS: 
(https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=efda476c72724b29a91693a108fa5a9d; Metabolomics 
Standard Initiative (MSI) level 3 annotation) (27).  
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Using Qemistree, we map each of the spectra in the two chromatographic conditions 

(batches) to a molecular fingerprint, and organize these in a tree structure (Figure 5.1b). Because 

molecular fingerprints are independent of retention time shifts, spectra are clustered based on their 

chemical similarity. This tree structure can be decorated using sample type descriptions, 

chromatographic conditions, and spectral library matches obtained from molecular networking in 

GNPS. Figure 5.1 shows that similar chemical features are detected exclusively in one of the two 

batches. However, based on the molecular fingerprints, these chemical features were arranged as 

neighboring tips in the tree regardless of the retention time shifts. This result shows how Qemistree 

can reconcile and facilitate the comparison of datasets acquired on different chromatographic 

gradients. 

We demonstrate the use of a chemical hierarchy in performing chemically-

informed  comparisons of metabolomics profiles. In standard metabolomic statistical analyses, 

each molecule is assumed unrelated to the other molecules in the dataset. Some of the pitfalls of 

this assumption are highlighted in Figure 5.2a. Consider a scenario where we want to compare 

samples 1-3. An analysis schema that does not account for the chemical relationships among the 

molecules in these samples (Figure 5.2a, left), will assume that the sugars in samples 2 and 3 are 

as chemically related to the lipids in sample 1 as they are to each other. This would lead to the 

naive conclusion that samples 1 and 2, and samples 2 and 3 are equally distinct, yet they are not 

from a chemical perspective. On the other hand, if we account for the fact that sugar molecules are 

more chemically related to one another than they are to lipids, we can obtain a chemically-informed 

sample-to-sample comparison. Sedio and coworkers developed the chemical structural 

compositional similarity (CSCS) metric (28) to account for relationships between molecules based 

on the similarity of their fragmentation spectra. While CSCS compares samples based on modified 
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cosine scores obtained from molecular networking, we calculate chemical relationships based on 

structurally-informed molecular fingerprints. We express these relationships in the form of a 

hierarchy which enables the use of other tree-based tools for downstream data analyses. For 

example, in Figure 5.2a, we show that by using a tree of structural relationships between molecules 

in samples 1-3, we can apply UniFrac (9), a tree-informed distance metric and demonstrate that 

the composition of sample 1 is distinct from samples 2 and 3.  
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Figure 5.2 The pitfalls of assuming equal relatedness of molecules and the advantages of a chemical tree for 
sample comparison. a) A scenario where the goal is to compare the chemical composition in samples 1 
(sphingosine and phosphatidylcholine), 2 (glucose, galactose, and fructose), and 3 (sucrose and lactulose). When 
we do not account for the chemical relationships between the molecules, i.e. assume that the lipid molecules in 
sample 1 are equally related to the sugars in samples 2 and 3 (left), we conclude that samples 1, 2, and 3 are 
similarly distinct. If we account for sugar molecules being more chemically related to one another than sugars 
are to lipid molecules (right), we can obtain a chemically-meaningful distance between samples. This is 
exemplified through a principal coordinates analysis (PCoA) of the computed UniFrac (9) (tree-based) distances 
among samples; we see that samples 2 and 3 are more similar to each other, and sample 1 which is chemically 
distinct is separated along the primary axis of variation, when distances are computed using the chemical tree. 
b, c) PCoA of samples in the evaluation dataset colored by chromatography conditions. PCoA plot using tree-
agnostic (Bray-Curtis (29)) distances which do not account for the chemical relationship between features 
detected across chromatography conditions (b) and tree-based (Weighted UniFrac (9)) distances which are based 
on the hierarchical relationships between molecules in the evaluation dataset (c).  
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The importance of comparing samples by accounting for their molecular relatedness is 

highlighted when we contrast the results from ignoring the tree structure (Figure 5.2b) to those 

which integrate it (Figure 5.2c). With the structural context provided by Qemistree, the differences 

between replicates across batches are comparable to the within-batch differences (Figure 5.S2). 

The retention time shift in this dataset leads to a strong technical signal that obscures the biological 

relationships among the samples (permutational ANOVA; tree agnostic (29) pseudo-F=120.75, 

p=0.001 vs. tree informed (9) pseudo-F=18.2239, p=0.001). We observed and remediated a similar 

pattern originating from plate-to-plate variation in a recently published study investigating the 

metabolome and microbiome of captive cheetahs (30) (Figure 5.S3). In this study, placing the 

molecules in a tree using Qemistree reduced the observed technical variation (Figure 5.S3a, c), 

and highlighted the dietary effect that was expected (Figure 5.S3b, d). These results show how 

systematic and spurious molecular differences can be mitigated in an unsupervised manner using 

chemically-informed distance measures based on a tree structure.   

As a case study, we used Qemistree to explore chemical diversity in a set of food samples 

collected as a part of the Global FoodOmics initiative (http://globalfoodomics.org). We selected a 

diverse range of food ingredients to represent animal, plant, and fungal groupings(31). We first 

performed feature-based molecular networking using MZmine (17, 18) to obtain spectral library 

matches for a subset of the chemical features (~20% annotated with cosine cutoff  > 0.7). 

Understanding the chemical relationships between different foods is challenging because most 

molecules within foods are unannotated. Using Qemistree, we collated GNPS spectral library 

matches and in silico predictions from CSI:FingerID to annotate ~91% of the chemical features 

(total 634 features after quality filtering) with molecular structures. Using ClassyFire (23), we 

assigned a chemical taxonomy to 60% of these structures; the remaining 40% returned no 
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ClassyFire taxonomy. Labeling annotations allowed us to retrieve subtrees of distinct chemical 

classes (Figure 5.3a) such as flavonoids, alkaloids, phospholipids, acyl-carnitines, and O-glycosyl 

compounds in food products. We propagated ClassyFire annotations of chemical features (tree 

tips) to each internal node of the tree and labeled the nodes by pie charts depicting the distribution 

in chemical superclasses (Figure 5.S4a) and classes (Figure 5.S4b) of its tips. The molecular 

fingerprint-based hierarchy of chemical features agreed well with ClassyFire taxonomy 

assignment, further demonstrating that molecular fingerprints can meaningfully capture structural 

relationships among molecules in a hierarchical manner. Furthermore, Qemistree coupled the 

chemical tree to sample metadata, revealing distinct chemical classes expected for each sample 

type. Branches representing acyl-carnitines were exclusively found in animal products (shades of 

blue; Figure 5.3a). In contrast, honey, although categorized as an animal product, shared most of 

its chemical space with plant products, reflective of the plant nectar and pollen-based diet of honey 

bees. We observed a clade of flavonoids in both plant products and honey (Figures 5.3a, S4b), but 

no other animal-based foods. 
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Figure 5.3 A chemical hierarchy of food-derived compounds based on predicted molecular fingerprints. a) A 
chemical tree based on molecular fingerprints representing the structural relationships between chemical features 
(tree tips) detected in food products (single ingredient i.e. simple foods; N=119). The outer ring shows the 
relative abundance of each compound across a diverse range of food sources. We highlight clusters of 
compounds that are characteristic of specific food sources. (b-d) A hierarchy of the compounds observed in 
simple foods (above) and seven complex samples: two meals of orange chicken, a cooked cucumber and the 
sauce from a meal (schmorgurken), sour cream, blueberry kefir, and egg scramble with chorizo (N=126). The 
inner ring shows the relative abundance of each compound across simple animal products, plant products, fungi 
and algae (other) and the 7 complex foods (black). The absolute abundances of compounds in blueberry kefir 
(b), scrambled eggs with chorizo (c), and orange chicken (d) (outer bars) are overlaid on the (e) A subtree 
showing the absolute abundance of acyl carnitines in blueberry kefir and its primary ingredients (blueberry and 
milk). Similar subtrees showing phosphoethanolamine in scrambled eggs with chorizo (f), and phosphocholine 
in orange chicken (g).  
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While it is expected that a complex food such as blueberry kefir contains molecules from 

both blueberries and dairy, we can now visualize how individual ingredients and food preparation 

contribute to the chemical composition of complex foods. We noted that metabolite signatures that 

stem directly from particular ingredients, such as phosphoethanolamine from eggs, are present in 

egg scramble (Figure 5.3c), but not in the other two foods highlighted (Figure 5.3b, d). We can 

also observe the addition of ingredients in foods that were not listed as present in the initial set of 

ingredients. We were able to retrieve that there is black pepper in the egg scramble with chorizo 

and orange chicken, but that this signal is absent from the blueberry kefir (Figure 5.S5). 

We show that our tree-based approach coherently captures chemical ontologies and 

relationships among molecules and samples in various publicly available datasets. Qemistree 

depends on representing chemical features as molecular fingerprints, and shares limitations with 

the underlying fingerprint prediction tool CSI:FingerID. For example, fingerprint prediction 

depends on the quality and coverage of MS/MS spectral databases available for training the 

predictive models, and these will improve as databases are enriched with more compound classes. 

Qemistree is also applicable in negative ionization mode; however, less molecular fingerprints can 

be confidently predicted due to less publicly available reference spectra, resulting in less extensive 

trees. 

In summary, we introduce a new tree-based approach for computing and representing 

chemical features detected in untargeted metabolomics studies. A hierarchy enables us to leverage 

existing tree-based tools, and can be augmented with structural and environmental annotations, 

greatly facilitating analysis and interpretation. We anticipate that Qemistree, as a data organization 

strategy, will be broadly applicable across fields that perform global chemical analysis, from 
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medicine to environmental microbiology to food science, and well beyond the examples shown 

here.  

 

5.3 Materials and methods 

Qemistree algorithm 

The Qemistree workflow uses MS1-based feature tables and MS1, MS2 fragment ion 

information (MGF file format) as inputs (Figure 5.S1).  These inputs can be generated by 

processing untargeted mass spectrometry data using MZmine (17) following the Feature-Based 

Molecular Networking method (18) (example batch file that can be used to perform feature 

detection and generate the inputs for Qemistree can be found here: MSV000085226). The files 

exported from MZmine with the Export/Submit to GNPS and SIRIUS Export module, and are then 

imported into QIIME2 (25) as the following semantic types: FeatureTable[Frequency] (for the 

feature table) and MassSpectrometryFeatures (for the ion information).  

 
# PREPROCESSING: 

Use mzXML files from the instrument 

Perform feature detection using MZMine2 

Export sirius MGF and feature table (row m/z, row ID, feature area under the curve per sample) 

Convert the feature table to FeatureTable[Frequency] for QIIME2 

Create a FeatureData[Molecules] file for QIIME2 using ‘row ID’ and ‘row m/z’ 

Import the MGF file as MassSpectrometryFeatures for QIIME2 

 
We use SIRIUS (version 4.0.1), ZODIAC (34) and CSI:FingerID to predict molecular 

substructures within mass spectrometry features in the MGF files imported as 

MassSpectrometryFeatures. SIRIUS computes fragmentation trees for each molecular formula 
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candidate of a feature (using PubChem database by default) and ranks these by score. SIRIUS uses 

MS1 spectrum in the MGF file to determine the candidate ion adduct(s) to be used for the 

fragmentation tree computation of each feature. ZODIAC takes the top SIRIUS candidates as input 

and re-ranks molecular formula candidates considering reciprocal compound similarities in the 

dataset to increase correct molecular formula assignments. Subsequently, CSI:FingerID predicts 

molecular fingerprints  for each feature based on the molecular formula with the highest ZODIAC 

score. 

Note that all spectra provided to the Qemistree pipeline do not necessarily produce a 

fingerprint. Indeed, SIRIUS does not compute fragmentation trees for multiply charged 

compounds and CSI:FingerID does not predict molecular fingerprints from spectra with less than 

3 explained peaks. To ensure that high confidence molecular formulas are used in Qemistree, we 

only consider compounds with a ZODIAC score above 0.98 (described in ref. 34). 

 
# SUBSTRUCTURE PREDICTION: 

For each feature with MS2 spectra in the MGF file: 

Compute fragmentation trees (using Sirius) 

       Re-rank molecular formula candidates on the complete dataset (using Zodiac) 

Predict fingerprints based on best molecular formula assignment (using CSI:FingerID) 

 
A dataset M (i.e. a set of exports from MZmine) is a matrix of size n rows by l columns. 

Each row represents a molecule (m1, m2, … mn), and each column represents a molecular 

substructure feature. As such, each molecule mi is composed of a vector (with length l) of predicted 

probability values (one for each SIRIUS-generated molecular substructure). We remove from our 

analyses the features without a corresponding vector mi. In our tests, we have observed that for 

each dataset 10-15% of the input features are discarded. 
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For indexing purposes, we relabel each molecule mi with the MD5-checksum of the 

predicted fingerprint vector. The motivation to apply the MD5 hashing function is to assign a 

unique identifier to each feature, which is particularly useful when comparing datasets 

independently processed using Mzmine.  If two distinct molecules (i, j) have identical checksums 

i.e. md5(mi) = md5(mj), then we aggregate those two vectors such that all rows in M are unique. 

This operation is also propagated down to the table of molecular intensities, in that context 

intensities are added together. 

To co-analyze multiple datasets M1, M2, … Mk , we combine the matrices into a new dataset 

M*. For any two repeated molecules mi and mj in M* we merge their intensities and values as 

described before. Lastly, we create a hierarchy of chemical relationships T using a distance matrix 

D measuring the distance between all pairs of molecules in M*. For qualitative substructure 

comparisons, we use the Jaccard distance metric and a threshold of 0.5. Otherwise, we use the 

Euclidean distance with the original probability vectors. With D, we cluster the molecules in a 

hierarchical fashion using the unweighted pair group method with arithmetic mean (UPGMA). 

The tips in the resulting tree T have a one-to-one correspondence with all the molecules mi in M*. 

 
# HIERARCHY CREATION (meta-analysis) 

For each fingerprint, feature table in DATASETS: 

Collate fingerprints into a matrix of features by fingerprints 

Match the tuple to have the exact same features and same order 

Merge all the fingerprints and feature tables  

(use MD5 hash  of fingerprint vectors to merge identical fingerprints) 

Compute a distance matrix between features using fingerprints (quantitatively or qualitatively) 

Build a hierarchical tree based on the distance matrix 
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Evaluation dataset 

Sample preparation and extraction: Four samples were used in the gradient 

benchmarking dataset: 1) the “serum” sample consists of the NIST SRM 1950 reference sample 

made of human serum spiked with compounds (35) 2) Two human fecal samples from the 

American Gut Project(36) obtained from a single male individual with a 35 days interval (Sample 

fecal-1 “ 11-10-2013, and fecal-2 : 12-14-2013), and 3) the “tomato” seedling sample (Solanum 

lycopersicum plant) was prepared using 3 weeks post-germination specimens (fresh whole 

seedlings were used). The NIST SRM 1950 sample (1mL), two fecal samples (210 mg of fresh 

material each), and the tomato seedlings (800 mg of fresh material) were dissolved in 1 mL of 7/3 

methanol/water in a 1 mL polypropylene round-bottom tube (QIAGEN), and homogenized in a 

tissue-lyser (Tissue Lyser II, QIAGEN) at 25 Hz for 5 min. The tubes were then centrifuged at 

15,000 rpm for 15 min, and 600 µL of the supernatant was collected and loaded on solid-phase 

extraction cartridges (Oasis HLB, Waters) made of hydrophilic-lipophilic balance stationary phase 

(30 mg and 30 µm particle size), that were first activated with 100% methanol, and 100% water 

(1mL each). After loading the supernatants on the cartridges, washing elution was carried out with 

95/5 methanol/water (1 mL), and the samples were eluted with 7/3 methanol/water (2mL), 

followed by 100% methanol (1mL). The samples were dried down with a vacuum concentrator 

(Centrivap, Labconco) and resuspended in 2.5 mL of 7/3 methanol/water containing 0.5 µM of 

amitriptyline as an internal standard. Samples were prepared by mixing the four different samples 

in various proportions. The resulting extracts were analyzed by mass spectrometry but also used 

to prepare mixtures of these samples in different ratios. For example, the serum and tomato 

samples were mixed in the following ratios: 100/0, 75/25, 50/50, 25/75, 0/100.  
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Liquid chromatography and mass spectrometry experiments: Samples were analyzed 

using ultra high performance liquid chromatography (Vanquish, Thermo Scientific) coupled to a 

quadrupole-Orbitrap mass spectrometer (Q Exactive, Thermo Scientific). The quadrupole-

Orbitrap mass spectrometer (Q Exactive, Thermo Scientific) was fitted with an electrospray source 

(HESI-II) operating in positive ionisation mode. The source used the following parameters: spray 

voltage, +3500 V; heater temperature, 437.5°C; capillary temperature, 268.75°C; S-lens RF, 50 

(arb. units); sheath gas flow rate, 52.5 (arb. units); and auxiliary gas flow rate, 13.75 (arb. units). 

The samples were acquired in non-targeted MS2 acquisition mode, with up to four MS2 scans of 

the most abundant ions per MS1 scan. The spectra were recorded from 0.48 to 17 min. The 

following parameters were used for full MS scan: resolution (35,000), Automatic Gain Control 

target (1.0 x 106), maximum injection time (125 ms), scan range (150-1500 m/z). For the data-

dependent in MS2, the following parameters were used: resolution (17,500), AGC target (2.5 x 105), 

maximum injection time (125 ms), loop count (4), isolation window (1.5 m/z) fixed first mass (70 

m/z). (70-1500 m/z) and up to four MS/MS scans of the most abundant ions per duty cycle. Higher-

energy collision induced dissociation was performed with a normalized collision energy of 30 (20, 

35, 50). The data-dependent settings were set as follows: minimum AGC (1.25x 104 [intensity 

threshold 1.0 x 105]), apex trigger 3 to 15 s, charge exclusion 3-8 and > 8, exclude isotopes (on), 

dynamic exclusion (14.0 s).  

Mass spectrometry data processing: Thermo mass spectrometry data (.RAW) were 

converted to m/z extensible markup language (mzML) (37) in centroid mode using MSConvert 

ProteoWizard (38) (release 201812). The mzML files were processed with MZmine toolbox (17) 

(version 2.38) on Ubuntu 18.04 LTS 64-bits workstation (intel Xeon 5E-2637, 3.5 GHz, 8 cores, 

64 Go of RAM) following the Feature-Based Molecular Networking method (18). 
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Global FoodOmics dataset 

Sample preparation and extraction: Samples were collected, extracted, and MS data 

were acquired as a part of the Global FoodOmics project according to the sampling and data 

acquisition protocols described in Gauglitz et al., 2020 Food Chemistry. Briefly, 126 food samples 

were selected from the Global FoodOmics dataset. 119 simple food samples (simple in contrast to 

complex and defined as a single-ingredient food) were selected to cover a broad spectrum of fruits, 

vegetables, meat and fungi. Each food was represented in at least triplicate in the data subset. 

Additionally 7 complex samples were selected that contained simple foods from the simple food 

subset in their ingredient lists. The complex foods were from two separate meals of orange chicken, 

a cooked cucumber and the sauce from a meal (schmorgurken; in a tomato and sour cream sauce), 

sour cream, blueberry kefir, and egg scramble with chorizo. Sample metadata describes the food 

samples based on a food hierarchy beginning with plant vs. animal vs. fungus 

(sample_type_group1) and increasing in detail down to persian cucumber vs. cherry tomato etc. 

(sample_type_group6). 

Briefly, samples were extracted in 95% LC-MS grade Ethanol; 5% LC-MS grade water. 

Samples were analyzed using the same LC-MS/MS setup and software as described above for the 

maXis II QTOF mass spectrometer (Bruker Daltonics), using a Phenomenex Kinetex C18 1.7 µm 

(100A) 100 x 2.1 column equipped with a guard cartridge (Phenomenex). The instrument tuning 

and internal calibrant remained the same as described above. MS spectra were acquired in a 

positive ion mode in the range m/z 50–1,500. The mobile phases consisted of A (100% water + 

0.1% formic acid) and B (100% acetonitrile + 0.1% formic acid), and the flow rate was set to 0.5 

µL/min throughout the experiment, and the column maintained at 40℃.  
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Mass spectrometry data processing: The mass spectrometry data (.d) were converted to 

.mzXML with lock mass calibration applied using CompassXport batch mode in Data Analysis 

4.4 software (Bruker Daltonics, Bremen, Germany) running on a Windows 10 PC. The mass 

spectrometry data was processed with MZmine toolbox (17) (version 2.38) using the parameters 

outlined in an XML batch file (see Data availability).  

Multivariate comparisons: To evaluate the benefits of using a tree for multivariate 

analysis, we generated pairwise sample distances using Bray-Curtis (29) (tree-agnostic) and 

Weighted UniFrac(9) (tree-informed). Both of these metrics compare samples quantitatively i.e. 

based on the abundances of each feature. Notably, UniFrac weights the distances based on the 

shared branches of the tree used for computation. 
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5.7 Data and code availability  

The mass spectrometry data, metadata, and methods for the evaluation dataset have been 

deposited on the GNPS/MassIVE public repository (2, 33) under the accession number 

MSV000083306. The parameters used for molecular networking are available on GNPS: 

https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=efda476c72724b29a91693a108fa5a9d. The 

chemical hierarchy generated by Qemistree (version 2020.1.2) is available on iTOL(24): 

https://itol.embl.de/tree/709513416494381587432576. The mass spectrometry data, metadata, and 

methods for Global Foodomics dataset have been deposited on the GNPS/MassIVE public 

repository (2, 33) under the accession number MSV000085226. The parameters used for molecular 

networking are available on GNPS: 

https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=ceb28a199d6b4f4fbf08490d9c96d631. The 

chemical hierarchy generated by Qemistree (version 2020.1.2) is available on iTOL(24): 

https://itol.embl.de/tree/13711034118313741584046018.  All source code is publicly available 

under BSD-2-Clause on GitHub: https://github.com/biocore/q2-qemistree. Qemistree is also 

available as an advanced analysis workflow on GNPS: https://ccms-

ucsd.github.io/GNPSDocumentation/qemistree/ 
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5.8 Supplemental figures 

 

Figure 5.S1 End-to-end Qemistree analysis using GNPS and QIIME2. Qemistree analysis can be performed 
using two required input files: 1) A table of molecule (or chemical feature) abundances per sample and 2) an 
MGF file with MS1 and MS2 ion information. These inputs can be generated by processing mass spectrometry 
files (.mzXML) through MZmine for feature detection. In Qemistree, these input files are processed through 
SIRIUS and CSI:FingerID to generate molecular fingerprints and in silico structural annotations (SMILES) per 
MS feature. We use the predicted molecular fingerprints to generate a phenetic tree of relationships between MS 
features based on sub-structural similarity. This tree can be visualized in iTOL for further data exploration. If 
the user inputs a sample metadata file, they can also visualize the abundances of each MS feature stratified by 
sample grouping of interest. Additionally, the qemistree queries ClassyFire to classify the structural annotations 
into chemical ‘kingdom’, ‘superclass’, ‘class’, ‘subclass’ and ‘direct parent’. We further allow the users to input 
a file with MS/MS spectral library matches (optional) into the workflow such that these library matches 
(typically, 2-20% of all MS features), instead of in silico annotation, are used for ClassyFire queries whenever 
available. All the outputs of the qemistree workflow can be analyzed further using QIIME 2 tools (such as tree-
based alpha and beta diversity, mmvec (26), songbird (32)) or explored in Python, R etc. as needed.  
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Figure 5.S2 Qemistree reduces the differences between biological replicates across mass-spectrometry runs. A 
comparison of distances between sample replicates within and across chromatography gradients when using tree-
agnostic (Bray-Curtis) distances and tree-based (Weighted UniFrac) distances. 
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Figure 5.S3 Qemistree mitigates plate-to-plate variation in fecal metabolomics study to highlight a biologically-
relevant effect. a) Principal coordinate analysis (PCoA) of tree-agnostic distances (Bray-Curtis) colored by plate 
number (pseudo-F=32.39, p=0.001). b) PCoA of tree-informed distances (Weighted UniFrac) colored by plate 
number (pseudo-F=15.67, p=0.001). The same PCoA of (c) Bray-Curtis distances (pseudo-F=33.50, p=0.001) 
and (d) Weighted UniFrac distances (pseudo-F=48.42, p=0.001) colored by cheetah location which governed 
the diet of cheetahs. Data is available on the GNPS/MassIVE public repository (2, 33) accession number 
MSV000082969. CBC: Cheetah Breeding Center; WD: Wildlife Discoveries 
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Figure 5.S4 Qemistree highlights chemical taxonomy of food-derived compounds. Chemical hierarchy of 
compounds (tree tips) detected in simple food products (single ingredient foods, N=119). The tree is pruned to 
only tips that were assigned a chemical class using ClassyFire. Internal nodes are labeled by pie charts of the 
superclass (a) and class (b) level taxonomy of children tips. For instance, if a node has 10 children tips and 8 of 
them are assigned to class A and 2 to class B, then the pie chart will have two colors, with the angle being 8:2. 
Outer ring shows the relative abundance of each compound across simple animal products, plant products, and 
other (fungi and algae). The chemical hierarchy can be further explored using the following iTOL (24) link: 
https://itol.embl.de/tree/7095134164128581587333337.  For example, we observed two clades of chemical 
features classified as fatty acyls (b) such that the fatty acyl features found primarily in animal products are acyl 
carnitines (b; right) and the ones found in both plant and animal products are derivatives of linoleic acid (b; left).  
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Figure 5.S5  Chemical hierarchy of the compounds observed in simple foods and seven complex samples. a,b,c) 
2 meals of orange chicken, a cooked cucumber and the sauce from a meal (schmorgurken), sour cream, blueberry 
kefir, and egg scramble with chorizo (N=126). Analogous to Figure 5.3b-d, the inner ring shows the relative 
abundance of each compound across simple animal products, plant products, fungi and algae (other) and complex 
foods. The absolute abundances of compounds in blueberry kefir (a), scrambled eggs with chorizo (b), and 
orange chicken (c) (outer bars) are overlaid on the tree to illustrate the shared and unique chemistry of complex 
foods. We highlight a classifier subtree annotated as benzodioxoles, compounds found in black pepper (in black) 
that are almost exclusively detected in complex foods. We overlay the absolute abundance of benzodioxoles in 
complex foods and their primary ingredients. These alkaloids are detected in scrambled eggs with chorizo (b) 
and orange chicken (c) but not in blueberry kefir (a) or the primary ingredients of these complex foods. This 
indicates that they are added during cooking, a likely assumption given the prevalence of black pepper in the 
western diet. The presence in an egg dish and meat dish coupled with the lack of signal in blueberry kefir also 
corresponds with the traditional use of this spice.   
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Chapter 6. Conclusions 

In traditional microbiology studies, it is common to study microbes in isolation by culturing 

them in standard laboratory conditions. In nature, however, microbes exist in diverse communities 

dynamically responding to environmental changes. The growing appreciation of the latter led to 

the emergence of the field of microbiome. Over the past two decades, microbiome research has 

witnessed rapid analytical, computational and theoretical advancements which extend our 

blinkered view of ‘self’ to include our microbiota — the diverse and dynamic microbial 

communities living on and within us (1). The human microbiome — the genetic pool of the 

microbiota — accounts for 99% of all the genes that constitute the human superorganism. Our 

microbiome coevolved with our genome to support us in a plethora of physiological functions 

(such as nutrient absorption from diet, protection from pathogens etc.) that are still being 

discovered. Association studies have shown that imbalances in the microbiome composition is 

linked to a wide range of illnesses such as gastrointestinal disorders, cardiovascular disease, 

metabolic disease as well as brain and developmental disorders. 

In my doctoral research, I pursued an increased understanding of the microbial ecosystem 

by pairing microbial composition to its functional readout. For this, I studied microbiome data in 

the context of its metabolome – the hundreds to thousands of small molecules associated with the 

microbial community. With our starkly altered lifestyles compared to our ancestors, complex 

metabolic diseases such as Type 2 diabetes, chronic liver disease, heart disease, obstructive 

pulmonary disease and many forms of cancer are on an all-time rise. Therefore, I focused on 

understanding how we could reduce this pertinent health burden by leveraging our understanding 

of the gut ecosystem. Specifically, the primary driving question on my first few research projects 

was, “Does the gut ecosystem encode information for metabolic health assessment?” 
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In Chapter 2, I studied a cohort of non-alcoholic fatty liver disease (NAFLD) patients and 

their first-degree relatives i.e twins, parents and siblings. It has been shown that the relatives of 

NAFLD patients are at a higher risk of liver disease development (2).  The most important clinical 

challenge in this context is to determine optimal strategies for screening NAFLD using accurate, 

non-invasive, widely available and easy-to-perform screening tests. In this work, we report a 

proof-of-concept that gut microbiome could be a viable and scalable source of biomarkers to 

accurately diagnose NAFLD in high-risk populations. 

In Chapter 3 and 4, I investigated the impact of chronic obstructive sleep apnea (OSA) on 

the gut microbiome and metabolome. Nearly 12% of the adult population in the United States has 

OSA, which poses an annual cost burden of nearly $149.6 billion (3). Strikingly, 90% of the 

patients remain undiagnosed due to the lack of cheap and widely applicable diagnostic tests. In 

chapter 3, we used a mouse model system to show that intermittent hypoxia and hypercapnia 

(IHH), -- a hallmark of obstructive sleep apnea -- leads to marked changes in both the microbial 

composition and its metabolism. Therefore, stool-based tests could be a viable alternative to 

expensive overnight sleep studies for OSA diagnosis. To develop robust diagnostic biomarkers, 

understanding whether disease-associated changes in the microbiome are consistent across animal 

models of different genetic backgrounds, and hence potentially translatable to human populations 

is essential. In Chapter 4, we demonstrated the consistency of our previous findings by predicting 

IHH-exposure across different disease models. We also introduced a pipeline to identify robust 

microbiome and metabolome features that are most likely to apply in humans.  

         In the process of working with paired microbiome and metabolome data, I realized that the 

metabolomic community is in need of effective tools and standardized data analysis pipelines. I 

dedicated the last two years of my doctoral research towards developing new analytical solutions 
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for metabolomics data analysis. I developed a software to improve comparative analysis of high-

dimensional chemical profiles by adapting the analytical concepts from microbial ecology. 

Chapter 5 introduces this tool Qemistree (pronounced chemis-tree) which organizes the thousands 

of detected molecular features into a “tree-like” hierarchy. Qemistree enables the application of 

phylogeny-based metrics, which have been highly advantageous for microbiome data analyses, to 

study chemical diversity in metabolomics data. For example, using Qemistree, we can calculate 

Faith’s phylogenetic diversity (4) to study chemical diversity within a sample or pairwise UniFrac 

distances (5) to compare diversity across samples. Qemistree also integrates multiple annotation 

tools (molecular networking, Sirius, CSI: FingerID, ClassyFire) to boost the annotation of 

unknown metabolites, and has been proving useful in exploring the chemistry in complex 

biospecimens. Qemistree is an open-source software which is available to both the microbiome 

and metabolome community as a QIIME2 (6) plugin and a GNPS (7) workflow with the hope that 

it foments collaborative progress in the two omics fields.  

Biomedical research is largely a data-driven endeavor. With advancements in high-

throughput technologies like next-generation sequencing and high-resolution mass-spectrometry, 

researchers are able to collect vast and complex data layers such as genomics, proteomics, 

transcriptomics, and metabolomics collectively known as omics data. Omics data are characterized 

by many shared challenges such as high dimensionality and high analytical variance which can be 

tackled using the same analytical solutions. For example, operations such as data normalization 

and scaling (to apply statistical models), projecting samples in lower dimensions (to visualize 

overall trends in how samples relate to one another) and testing for the differential abundance of 

analytes (to find biomarkers of health and disease), are routinely applied across all omics datasets. 

However, omics data layers are typically analyzed using tools developed independently within 
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each discipline. Tools like Qemistree highlight the value of mapping existing analytical solutions 

across omics domains to advance multi-omics data integration.   

Going forward, I want to expand my understanding of other omics domains, and develop 

tools that enable biomedical researchers to reproducibly analyze multiple-omics datasets to 

improve our understanding of complex biological machineries. My doctoral training has 

prepared me for the next steps — I am thrilled to act as a catalyst for discoveries in biomedical 

research. 
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