
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Power network verication and optimization at planning stages

Permalink
https://escholarship.org/uc/item/5w01k0rh

Author
Du, Peng

Publication Date
2012

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5w01k0rh
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Power Network Verification and Optimization
at Planning Stages

A dissertation submitted in partial satisfaction of the

requirements for the degree

Doctor of Philosophy

in

Computer Science

by

Peng Du

Committee in charge:

Professor Chung-Kuan Cheng, Chair
Professor Fan Chung Graham
Professor Ronald Graham
Professor Jeffrey Remmel
Professor Jason Schweinsberg

2012

Copyright

Peng Du, 2012

All rights reserved.

The dissertation of Peng Du is approved, and it is ac-

ceptable in quality and form for publication on microfilm

and electronically:

Chair

University of California, San Diego

2012

iii

DEDICATION

To my parents.

iv

EPIGRAPH

Train yourself to let go

of everything you fear to lose.

—Master Yoda

v

TABLE OF CONTENTS

Signature Page . iii

Dedication . iv

Epigraph . v

Table of Contents . vi

List of Figures . viii

List of Tables . x

Acknowledgements . xi

Vita . xiii

Abstract of the Dissertation . xv

Chapter 1 Introduction . 1
1.1 Previous Works on Verification and Optimization 2
1.2 Contribution of our methods 4

Chapter 2 Power Network Verification 7
2.1 Single Current Source . 9

2.1.1 Problem Formulation 9
2.1.2 Stage Partition 10
2.1.3 Worst-case Generation by Dynamic Programming 12
2.1.4 Dynamic Programming Speedup 12
2.1.5 Acceleration of the Verification Algorithm 18
2.1.6 Experimental Results and Summary 22

2.2 Multiple Current Sources 29
2.2.1 Problem Formulation 29
2.2.2 Hierarchical Current Constraints 30
2.2.3 Linear Programming on Submodular Polyhedron . 33
2.2.4 Method one: Dynamic Programming 38
2.2.5 Method two: Network Flow with Side Constraints 44
2.2.6 Method three: Submodular Flow 49
2.2.7 Experimental Results and Summary 51

vi

Chapter 3 Power Grid Sizing . 55
3.1 Problem Formulation . 56
3.2 Voltage Drops versus Effective Resistances 57
3.3 Semidefinite Programming Reduction 58
3.4 Optimal Sizing by Convex Programming 59

3.4.1 Lanczos Algorithm for Objective Evaluation . . . 59
3.4.2 Derivative of Effective Resistances 61

3.5 Experimental Results on Regular Grids 62
3.6 Experimental Results on Practical Networks 64

Chapter 4 Optimization for dynamic power distribution network 69
4.1 Problem Formulation . 70
4.2 The Overall Flow . 72
4.3 Sensitivity Evaluation by Adjoint Network 73
4.4 Adaptive DFT Method for Circuit Simulation 76

4.4.1 Discrete Fourier Transform 78
4.4.2 Matrix Solver in Frequency Domain 78
4.4.3 Adaptive Flow for Frequency Partition 79
4.4.4 Time Complexity 80

4.5 Matrix Exponential Method for Circuit Simulation 81
4.5.1 Circuit Status Equation 81
4.5.2 Fast Explicit Numerical Integration Method . . . 84
4.5.3 Overall Numerical Integration Method 88
4.5.4 Stability and Error Analysis 90
4.5.5 Comparison with Euler Method 91

4.6 Nonlinear Programming Solver 93
4.7 Experimental Results . 97

Chapter 5 Conclusion . 103
5.1 Power Network Verification 104
5.2 Power Network Optimization 104

Bibliography . 106

vii

LIST OF FIGURES

Figure 1.1: A power distribution system from VRM to die. 2

Figure 2.1: The division of [0, T] into m = 5 intervals. 10
Figure 2.2: The greedy input Gj(k, i) in the time interval [tj, tj+1]. 11
Figure 2.3: The quadrangle inequality for the function W 18
Figure 2.4: Lumped model of a power distribution system. 22
Figure 2.5: Impedance of the power distribution system. 24
Figure 2.6: Impulse response of the power distribution system. 24
Figure 2.7: Worst-case noise responses of the power distribution system at

tr = 100ps and tr = 10ns. 25
Figure 2.8: Worst-case load currents at tr = 100ps and tr = 10ns. 25
Figure 2.9: Zoom-in part of the worst-case load currents at tr = 100ps and

tr = 10ns around 50µs. 26
Figure 2.10: Spectrum of the worst-case load currents at tr = 100ps and

tr = 10ns. 26
Figure 2.11: Worst-case voltage drop as a function of transition time. 27
Figure 2.12: Run time comparison of O(n2) and O(n log n) algorithm. 28
Figure 2.13: The flow network for the HCC in Table 2.2. 31
Figure 2.14: An example for the relationship between D and P (D). 37
Figure 2.15: The division of [0, T] into twelve intervals. 38
Figure 2.16: The greedy sum of load currents in the time interval [tj, tj+1]. . 39
Figure 2.17: The quadrangle inequality for the weight function. 42
Figure 2.18: The relation between L and Q. 43
Figure 2.19: Flow network construction. 46
Figure 2.20: The impulse responses of the power grid. 51
Figure 2.21: Zoom-in part of the impulse responses. 51
Figure 2.22: The worst-case currents with two different transition times. . . 52
Figure 2.23: The voltage noise waveform for tr = 5ps. 53
Figure 2.24: The comparison of running time for different pairs of (n, s). . . 53

Figure 3.1: Optimization result for regular 2D power grids. 63
Figure 3.2: Effective resistances for a regular 10× 10 grid. 63
Figure 3.3: A power grid model with four layers. 65
Figure 3.4: Sizing result for the practical power grid. 66
Figure 3.5: Voltage map of layer M1. 66
Figure 3.6: Sizing result when width range changes. 67
Figure 3.7: Voltage drops for different area distributions. 67

Figure 4.1: The overall flow of worst noise optimization. 72
Figure 4.2: The flow of predicting worst noise. 73
Figure 4.3: Sensitivity calculation relative to ~I(t). 74

viii

Figure 4.4: Sensitivity calculation relative to ~C, ~R. 75
Figure 4.5: Compute output v(t) in [Fl, Fu] with period T , where f0 = 1/T

and Fl ≤ kf0 ≤ Fu. 76
Figure 4.6: Adaptive DFT flow for PDN simulation. 77
Figure 4.7: Example Circuit . 83
Figure 4.8: Numerical Solution and Forward Euler 83
Figure 4.9: Numerical Solution and Backward Euler 83
Figure 4.10: Comparison between our method and forward Euler 92
Figure 4.11: Our method with different step sizes 92
Figure 4.12: A zoom-in view of figure 4.11 93
Figure 4.13: Results of Power Network Design 1 94
Figure 4.14: Power Network Model . 97
Figure 4.15: Optimal resistances distribution. 99
Figure 4.16: Optimal capacitance distribution 100
Figure 4.17: The worst-case profiles of current sources. 101
Figure 4.18: Voltage profile at the origin. 102

ix

LIST OF TABLES

Table 2.1: Circuit parameters of the power distribution system shown in
Figure 2.4. 23

Table 2.2: An HCC example with seven load currents and twelve constraints 30
Table 2.3: The hierarchical current constraints. 52

Table 3.1: Comparison for the maximum effective resistance 64
Table 3.2: The network parameters of a power grid 65
Table 3.3: Comparison for different width ranges 67

Table 4.1: Runtime of Our Method and Backward Euler Method 94

x

ACKNOWLEDGEMENTS

Foremost, I would like to express my appreciation to my advisor Prof.

Chung-Kuan Cheng for his support of my Ph.D study and research. Through

my graduate period, he helped me in all the time of research with his patience,

enthusiasm and a lot of ideas. He made great efforts to provide encouragement

and give wise advice to me. I would not achieve any valuable result without him.

Chapter 2, in part, is a reprint of the material as it appears in International

Symposium on Quality of Electronic Design(ISQED) 2010. Peng Du; Xiang Hu;

Shih-Hung Weng; Amirali Arani; Xiaoming Chen; A. Ege Engin; Chung-Kuan

Cheng, IEEE, 2010. The dissertation author was the primary investigator and

author of this paper.

Chapter 3, in full, is a reprint of the material as it appears in IEEE In-

ternational Conference on ASIC 2011. Peng Du; Shih-Hung Weng; Xiang Hu;

Chung-Kuan Cheng, IEEE, 2011. The dissertation author was the primary inves-

tigator and author of this paper.

Chapter 4, in part, is currently being prepared for submission for publication

of the material. Peng Du; Shih-Hung Weng; Xiang Hu; Chung-Kuan Cheng. The

dissertation author was the primary investigator and author of this material. The

section four, in part, is a reprint of the material as it appears in Asia and South

Pacific Design Automation Conference(ASPDAC) 2010. Xiang Hu; Wenbo Zhao;

Peng Du; Amirali Arani; Chung-Kuan Cheng, IEEE, 2010. The dissertation author

was a cooperative author of this paper. The section five, in part, is a reprint of the

material as it appears in IEEE Symposium on Circuits and Systems(ISCAS) 2011.

Shih-Hung Weng; Peng Du; Cheng-Kuan Cheng, IEEE, 2011. The dissertation

author was a cooperative author of this paper.

I would like to thank Prof. Fan Chung Graham and Ronald Graham who

foster my interest in mathematics. Their vigor and wisdom for solving hard prob-

lems will encourage me to do a better job in my future life. I thank Prof. Jeff

Remmel who shows me a lot of beautiful combinatorial results. His ideas on general

theory of partitions with forbidden patterns and symmetric functions provide me

with excellent examples on successful research. I thank Prof. Jason Schweinsberg

xi

for his fruitful and intriguing probability course. His prudent and earnest attitude

on mathematics always inspires me to learn and grow.

I am grateful to Prof. T. C. Hu for getting me involved in the interesting

Blackjack project. I learned a lot from his kindness assistance on how we divide

a large project into achievable steps. I also thank Prof. Andrew Kahng for his

insightful comments on my projects.

My sincere thanks go to my colleagues Wenbo Zhao, Xiang Hu, and Shih-

Hung Weng for discussing and sharing ideas with me. They help me get through

difficult times and make my graduate study fun and exciting. I also wish to thank

my colleagues Amirali Shayan, Xiaoming Chen, A. Ege Engin, my friends Kunfan

Cheng, Jianjian Gao, Hao Zheng, He Zhu, Quan Chen, Yulei Zhang, Yuanzhe

Wang, Guang Sun, Yijiang Shen and all the folks I have been worked with.

Last but not the least, I would like to thank my parents: Baocun Du and

Zhixiong Zhao, for supporting me throughout my life.

xii

VITA

1997-2001 B. S. in Computer Science, Zhejiang University, China

2001-2004 M. S. in Computer Science, Zhejiang University, China

2004-2005 Research Assistant in Information Engineering, The Chinese
University of Hong Kong, China

2006-2009 M. A. in Applied Mathematics, University of California, San
Diego, USA

2006-2012 Ph. D. in Computer Science, University of California, San
Diego, USA

PUBLICATIONS

C. K. Cheng, P. Du, A. B. Kahng, S. H. Weng, “Low-Power Gated Bus Synthesis
for 3D IC via Rectilinear Shortest-path Steiner Graph”, International Symposium
on Physical Design(ISPD), 2012.

P. Du, W. Zhao, S. H. Weng, C. K. Cheng, R. L. Graham, “Character Design and
Stamp Algorithms for Character Projection Electron-Beam Lithography”, Asia
and South Pacific Design Automation Conference(ASPDAC), 2012.

C. K. Cheng, P. Du, A. B. Kahng, G. K. H. Pang, Y. Wang, N. Wong: “More real-
istic power grid verification based on hierarchical current and power constraints”,
International Symposium on Physical Design(ISPD), 2011.

P. Du, S. H. Weng, X. Hu, C. K. Cheng, “Power Grid Sizing via Convex Program-
ming”, IEEE International Conference on ASIC, 2011.

S. H. Weng, P. Du, C. K. Cheng, “A Fast and Stable Explicit Integration Method
by Matrix Exponential Operator for Large Scale Circuit Simulation”, IEEE Sym-
posium on Circuits and Systems(ISCAS), 2011.

X. Hu, W. Zhao, P. Du, A. Arani, C. K. Cheng, “An adaptive parallel flow for
power distribution network simulation using discrete Fourier transform”, Asia and
South Pacific Design Automation Conference(ASPDAC), 2010.

X. Hu, P. Du, C. K. Cheng, “Exploring the Rogue Wave Phenomenon in 3D
Power Distribution Networks”, IEEE Electrical Performance of Electronic Pack-
aging(EPEP), 2010.

xiii

P. Du, X. Hu, S. H. Weng, A. Arani, X. Chen, A. E. Engin, C. K. Cheng, “Worst-
case noise prediction with non-zero current transition times for early power dis-
tribution system verification”, International Symposium on Quality of Electronic
Design(ISQED), 2010.

X. Hu, W. Zhao, P. Du, Y. Zhang, A. Arani, C. Pan, A. E. Engin, C. K. Cheng,
“On the Bound of Time-Domain Power Supply Noise Based on Frequency-Domain
Target Impedance”, IEEE System Level Interconnect Prediction(SLIP), 2009.

K. Zhou, P. Du, L. Wang, Y. Matsushita, J. Shi, B. Guo, H. Y. Shum, “Decorating
Surfaces with Bidirectional Texture Functions”, IEEE Transactions on Visualiza-
tion and Computer Graphics(TVCG), 2005.

xiv

ABSTRACT OF THE DISSERTATION

Power Network Verification and Optimization
at Planning Stages

by

Peng Du

Doctor of Philosophy in Computer Science

University of California, San Diego, 2012

Professor Chung-Kuan Cheng, Chair

Power integrity has become a critical issue in nano-scale VLSI design. With

technology scaling, the circuit integration density grows rapidly. However, the

number of IO’s dedicated for power does not scale up accordingly due to limited

advancement in packaging technology. The increase of total current causes large

voltage drops in the on-chip power grid, and the increase of clock frequencies results

in large Ldi/dt noise due to the inductive effect of the power grid. Voltage drops

degrade circuit timing performance while voltage bounces may cause reliability

issues. On the other hand, the decrease in supply voltage leads to a smaller noise

margin which makes the design of on-chip power grid an even more challenging

task. As a result, full-chip power grid verification and optimization have become

xv

essential for reliable chip design.

In the first part of this thesis, we propose novel methods of generating the

worst-case noise for early power distribution system verification. These methods

take into account the effect of the transition time of load currents, and thus allow

a more realistic worst-case noise prediction. In the case of one current source,

we introduce a dynamic programming algorithm on the time-domain impulse re-

sponse of the power distribution system, and a modified Knuth-Yao Quadrangle

Inequality Speedup is developed which reduces the time complexity of the algo-

rithm to O(nm log n), where n is the number of discretized current values and

m is the number of zeros of the system impulse response. In the case of multi-

ple current sources, the dynamic programming algorithm is extended to generate

the worst-case noise subject to a set of hierarchical current constraints. We show

that the hierarchical constraints can be generalized into submodular polyhedron

constraint and our algorithms still work. Furthermore, for other general magni-

tude and slope constraints of current sources, we propose the solutions by network

flow and submodular flow which are more efficient than direct linear programming

solution.

The second part of the thesis describes a power grid sizing method to mini-

mize the worst voltage drop over all test locations and current source distributions.

We reduce the original problem into a convex programming problem whose objec-

tive is to minimize the maximum effective resistance between the current entry

node and all current exit nodes under the constraint of constant total wire area.

In order to solve the convex programming problem efficiently, we adopt a Krylov

space method to evaluate the effective resistances simultaneously and deduce a

simple formula to update the derivative of effective resistance relative to pertur-

bation of wire widths gradually. The proposed optimization method can also be

applied to power grids in the real world, which are required to have small effec-

tive resistances among power stations for reducing the power losses during long

distance transmission.

Finally, we propose a method for dynamic power distribution network veri-

fication and optimization at early design stages. This approach predicts and mini-

xvi

mizes the worst total voltage violation area for all outputs of a given on-chip power

grid with multiple current sources. We assume duty-cycle constraints, group mag-

nitude constraints and transition time constraints on current sources which makes

the prediction more realistic. Simultaneously, we minimize the worst violation area

through the allocation of decoupling capacitors (Decap) and controlled equivalent

series resistors (ESR). Based on the simulation of adjoint network, the sensitivity

of the violation area relative to current sources, Decap and ESR can be derived

and the sequential quadratic programming method is adopted for optimization.

xvii

Chapter 1

Introduction

A power distribution system PDS (or power distribution network (PDN))

includes the voltage regulator module (VRM), motherboard, package and on-chip

power grid (shown in Figure 1.1). The voltage regulator converts the system power

supply to a voltage Vdd used for the integrated circuits. The board and package

power planes connect the voltage regulator to the on-chip power grids, which supply

the voltage to load circuits. Decoupling capacitors are placed hierarchically along

the power distribution systems. Each hierarchy of the decoupling capacitors is

effect within a certain range of frequencies to maintain low impedance for the

PDS over the whole operation frequency. The PDS is typically modeled by RLC

components or electromagnetic (EM) models, such as S-parameters. For early

design-stage analysis, a lumped RLC circuit model can accurately describe the

characteristics of a power distribution system [PMF08]. In this work, we first

focus on the lumped PDS model and extend the proposed approaches to distributed

models with multiple current sources afterwards.

In this chapter, we discuss about the motivation and previous works on

power network verification and optimization in Section 1.1. Then we introduce the

main framework of our methods in Section 1.2. The contribution and improvement

of our work over previous methods are also described in Section 1.2.

1

2

VRM

Printed Circuit Board

On-board

decoupling

capacitor

On-package

decoupling

capacitorDie

Figure 1.1: A power distribution system from VRM to die.

1.1 Previous Works on Verification and Opti-

mization

With increasing clock frequency and decreasing supply voltage, power in-

tegrity becomes a critical issue. Due to the increasing number of signal I/O’s which

swallow the routing sources used for power delivery, design of off-chip power dis-

tribution networks is getting more and more challenging as well as on-chip power

grid design. Traditional design methodologies focused on the frequency-domain

behavior of power distribution systems and a lot of efforts have been made to min-

imize the PDS input impedance. However, the frequency-domain impedance does

not always reflect the time-domain PDS noise [HZZ+09]. As a result, time-domain

verification of power distribution systems has become essential to reliable design.

A typical way of performing PDS verification is based on simulation. For

such an approach, one needs to know all the possible current waveforms drawn by

the load circuits. However, PDS verification must be performed at the early-design

stage, when full knowledge of the load currents is hardly available. To address

this problem, efforts of finding the worst-case noise of a PDS without complete

current information have been taken. A vectorless approach was introduced in

[KN03] and extended in its following works [GN09, FNK07]. This approach gives

an upper bound of the worst-case noise based on the current constraints without

any simulation. In [HZZ+09], the worst-case noise was predicted based on the

3

ideal PDS step response. However, all those works assumed that the current has

a zero transition time. In [FCN08], the worst-case current was generated by the

accumulated step responses. Although it considered the maximum change between

time units as a bound, the transition time within each time unit is still assumed to

be zero. Such an assumption makes the worst-case current unrealizable, and leads

to an overly pessimistic prediction for the worst-case noise, as will be shown later.

Power grid sizing is one of effective ways to optimize power network de-

sign. Many previous works [WC02][SVGY01][GK06][WMS05] have made a lot of

effort on power grid sizing. Wang and Chen [WC02] proposed a sequential network

simplex algorithm to size the widths of metal layers in a power network in order

to minimize the total area with the IR drop constraint satisfied. In [SVGY01],

Boyd et al. regarded the current demand as a random distribution and devise a

heuristic method to determine the optimal wire widths for a power network sub-

ject to limits on voltage drops, total wire area, etc. Gupta and Kahng [GK06]

derived a close form solution of IR drop based on the bull’s eye phenomenon in

the mesh-structured power grid. Wang and Marek-Sadowska [WMS05] proposed a

multi-grid method to optimize power grids and decoupling capacitances simultane-

ously. Recently, convex programming methods play an important role on solving

circuit optimization problems [VBG98][JC] because of its stability and efficiency.

Vandenberghe et al. [VBG98] measure the signal propagation delay through the

circuit as the dominant time constant which is a quasi-convex function of con-

ductances and capacitances. Johnson and Chertkov [JC] optimized the power

dissipation within the transmission network subject to the constraint on the cost

of building the network. They have successfully reduced this problem into solving

a sequence of convex programming problems.

With technology scaling, the power network is experiencing unprecedented

noise, which causes significant delay variation of devices, or even logic failure. Re-

cently, adding decoupling capacitors (Decap) between the power network and the

ground becomes an effective and widely adopted approach to reduce the power net-

work noise. In order to refine the Decap values, adjoint network methods have been

applied to calculate the sensitivity of the violation area for circuit node with respect

4

to Decap change [SGS03][SSN03]. The sensitivity is then used as a sub-module

in the nonlinear optimization solver. Because of the large number of simulations

required for each iteration step, the computational complexity could be very high.

To reduce the computational complexity, the merged adjoint network method was

introduced and applied to calculate the sensitivity of the overall violation area with

respective to Decap [LQT+06][FLH+04]. The idea is based on the superposition

principle of linear circuits.

1.2 Contribution of our methods

In the first part of Chapter 2, we propose a novel method of predicting

the worst-case noise of a power distribution system with single current source.

This method takes into account the effect of the transition time of load currents,

and thus allows a more realistic worst-case noise prediction. A dynamic program-

ming algorithm is introduced on the time-domain impulse response of the power

distribution system, and a modified Knuth-Yao Quadrangle Inequality Speedup

is developed which reduces the time complexity of the algorithm to O(nm log n),

where n is the number of discretized current values and m is the number of zeros of

the system impulse response. With the algorithm, the worst-case noise behavior of

the power distribution system is investigated with respect to the transition time.

Experimental results show that assuming a zero current transition time leads to

an overly pessimistic worst-case noise prediction.

In the second part of Chapter 2, we consider the power distribution network

verification problem with multiple current sources. The proposed approach takes

into account nonzero transition times of load currents and handles a set of hier-

archical constraints for current magnitudes. The hierarchical current constraints

not only give upper bounds on individual current sources, but also specify upper

bounds on the total currents of separate groups of circuit blocks. We extend the

dynamic programming algorithm adopted for single current source case to generate

the worst-case currents. Then the algorithm is accelerated by a similar Knuth-Yao

Quadrangle Inequality method. Moreover, we relax the hierarchical constraints

5

into submodular polyhedron constraints and our algorithms still work. If more

general constraints are assumed for magnitude and slope of current sources, we in-

troduce two algorithms via network flow and submodular flow to predict the worst

case noise which have more time complexity than dynamic programming, but are

much faster than the naive linear programming solution.

In Chapter 3, we devise a power grid sizing method to optimize the worst

possible IR drop on an on-chip power network without explicit deriving the current

distribution. We utilize the total current density/magnitude given in the design

specification as the constraint for optimization of power grids. The optimization

with only the total current density/magnitude constraint enables the early stage

power grid verification and also avoids the effort of logic simulation for measuring

average density/magnitude of every current source. Our method reduces the sizing

problem into an effective resistance optimization problem which can be solved by

convex programming efficiently. Experimental results show that our method can

achieve up to 40% improvement for regular 2D grids and 7.32% improvement for

a four layers power grid with only top two layers tunable over uniform sizing.

Furthermore, the proposed optimization method can be applied not only to on-

chip power grids, but also to power grids in the real world, which also need to reduce

effective resistances among power stations for decreasing power losses during long

distance transmission.

In Chapter 4, we predict and minimize the worst total voltage violation area

for all outputs with multiple current stimuli. The proposed approach takes into

account duty-cycle constraints, group magnitude constraints and transition time

constraints on current sources which make the verification more realistic. The

developed algorithm is based on the adjoint network approach and is thus not lim-

ited by the power grid models (e.g, RC, RLC, regular, irregular). By alternatively

shifting between verification and optimization, we minimize the worst violation

area through the allocation of decoupling capacitors (Decap) and controlled equiv-

alent series resistors (ESR). In order to simulate the original network and adjoint

network efficiently, we adopt two methods including adaptive DFT and exponential

method which are much faster than standard SPICE library. Finally, we use the

6

sequential quadratic programming method to solve our non-linear programming

problem.

Chapter 2

Power Network Verification

The goal of this chapter is to provide a practical solution for package and

board designers to perform a verification of the power distribution system without

knowing the exact on-chip load current information. Traditional power distribu-

tion network (PDN) analysis methods emphasize the frequency domain, and a

great deal of work has been done to minimize PDN impedance. However, small

PDN impedance does not always lead to small noise [HZZ+09]. Thus, power grid

verification needs to be performed directly in the time domain.

Today, time-domain verification is usually based on exhaustive simulation.

For such an approach, one needs to know all the possible current waveforms drawn

by the circuits. Then power grid verification becomes a problem of finding the

worst-case noise over all possible load currents. However, the full knowledge of

current profiles drawn by the load circuits is usually not available before the com-

pletion of chip design. Even if the chip design is fixed, it is difficult to determine all

the possible input patterns for the circuit and obtain the corresponding output cur-

rents. Furthermore, one needs to simulate the power distribution system with all

the identified current waveforms for a full robustness check, which is prohibitively

expensive.

The concept of “current constraints” was introduced in [KN03] to capture

the uncertainty of the load currents and overcome the limitations of the simulation-

based approach. This concept is reasonable because chip designers always have

some knowledge about the circuit currents even though they may not know the

7

8

complete information. This knowledge may be based on the information from

previous designs or from the system-level simulation at early design stage. Package

and board designers can use such information for the early verification of the power

distribution system. With this concept, the early power grid verification problem

can be formulated as computing the worst-case noise under current constraints.

In [KN03] and its follow-up work [GN09, FNK07], a vectorless approach

was proposed which formulated the verification problem as a set of linear pro-

gramming instances and gave an upper bound of the worst-case noise subject to

current constraints. However, only the current magnitudes were considered as

the constraints, while the current transition times were assumed to be zero. In

[FCN08], the currents were described using wavelets and the worst-case current

was generated by accumulated step responses. Although the maximum current

variations between time units were considered as constraints, the transition times

of the current changes were still assumed to be zero. Based on our experiments,

the assumption of zero transition time will lead to overly pessimistic worst-case

noise. As a result, an additional current constraint on the minimum transition time

is incorporated in our work to find the worst-case noise of the power distribution

system.

We divide the power grid verification problem into two cases in 2.1 and 2.2

respectively. First, a single current source is assumed and we devise a dynamic pro-

gramming algorithm to construct a current profile which generates the worst-case

voltage. Both slope constraint and magnitude constraint on the current source are

considered. We also improve the efficiency of our algorithm by a modified Knuth-

Yao inequality. Second, we extend the verification problem into multiple current

sources and a special class of magnitude constraint, called hierarchical constraints,

is assumed. A greedy algorithm of linear programming under hierarchical con-

straints is proposed and further extended into submodular polyhedron. Then we

modify the dynamic programming for single current source and generate worst-case

output for multiple current sources with hierarchical constraints and total slope

constraint. If current sources satisfy more general constraints on magnitude and

slope, we develop two other strategies based on network flow and submodular flow

9

to construct worst current profiles.

2.1 Single Current Source

2.1.1 Problem Formulation

The aim is to identify the worst-case noise under the current constraints.

One of the constraints on the load current regards the amplitude, which can be

expressed as:

0 ≤ i(t) ≤ b, ∀t ≥ 0, (2.1)

where b represents the upper bound of the transient current i(t). Under such a

constraint, the current transition time, denoted by tr, is defined as the time that

the current takes to finish a transition from 0 to b or vice versa. We add another

constraint that the transition time of the current has a lower bound of tb, i.e.,

tr ≥ tb. The constraint on the minimum transition time can be expressed in the

form of the constraint on the maximum current slope as:

− b
tb
≤ di(t)

dt
≤ b

tb
, ∀t ≥ 0, (2.2)

where b/tb is the maximum absolute value of the current slope.

We denote the noise of the power distribution system by v(t). For noise

analysis, the voltage source Vdd is considered as zero. Thus, v(t) can be calculated

by convoluting the input current with the system impulse response as:

v(t) =

∫ t

0

z(τ)i(t− τ) dτ, (2.3)

where z(τ) is the impulse response of the power distribution system. Since the

convolution operation has an accumulative effect on v(t), we set the integration

time, which is denoted by T , to be such that the impulse response has died down

to some negligible value. By replacing the current i(t− τ) in (2.3) with a general

function f(τ) and changing the notation τ to t, we can formulate the problem of

finding the worst-case noise as:

max v(T) =
∫ T

0
z(t)f(t) dt

10

s.t. 0 ≤ f(t) ≤ b, ∀t ≥ 0,

−C ≤ df(t)
dt
≤ C, ∀t ≥ 0, (2.4)

where C = b/tb is the upper bound of the slope of f(t). Once f(t) is identified, the

corresponding worst-case load current can be generated by letting i(t) = f(T − t).
Notice that the problem formulation in (4.17) calculates the worst-case noise

for the maximum voltage drop according to the current direction shown in Figure

2.4. The inductive effect of power distribution system may cause Ldi/dt noise,

which includes both voltage drop and overshoot. For maximum voltage overshoot,

the problem can be formulated simply by minimizing the object function in (4.17)

under the same constraints. In the following of this section, we focus on generating

the worst-case noise for the maximum voltage drop only.

2.1.2 Stage Partition

To solve the optimization problem (2.3), we first divide the time range

[0, T] into m intervals [t0 = 0, t1], [t1, t2], . . . , [tm−1, tm = T] such that z(t) is either

positive or negative in each interval as shown in Figure 2.15. We also choose n+ 1

sample points u0 = 0, u1, . . . , un−1, un = b in the range of the current [0, b] where

n depends on the precision requirement.

z(t)

tt1 t2 t3 t4 t5=Tt0=0

Figure 2.1: The division of [0, T] into m = 5 intervals.

Given a time interval [tj, tj+1], we define Gj(k, i) to be the worst-case f(t)

starting with uk at time tj and ending with ui at time tj+1. Let Vj(k, i) be the

corresponding worst-case noise and we have Vj(k, i) =
∫ tj+1

tj
z(t)(Gj(k, i)(t)) dt. We

can compute Gj(k, i) easily by a greedy algorithm. As shown in Figure 2.2(a) and

11

Gj(k,i)

ttj+1tj

b

uk

ui

Slope=C
Slope=-C

P1 P2

(a) z(t) is positive between tj and tj+1.

Gj(k,i)

ttj+1tj
b

uk ui Slope=-C
Slope=C

P

(b) z(t) is positive between tj and tj+1.

Gj(k,i)

ttj+1tj
b

uk
uiSlope=CSlope=-C

P1 P2
(c) z(t) is negative between tj and tj+1.

Gj(k,i)

ttj+1tj
b

uk uiSlope=-C Slope=CP
(d) z(t) is negative between tj and tj+1.

Figure 2.2: The greedy input Gj(k, i) in the time interval [tj, tj+1].

2.2(b), if z(t) is positive in [tj, tj+1], we draw a line starting from uk with slope C

and another line ending at ui with slope −C. If these two lines intersect at a point

P below the upper bound b of the current, Gj(k, i) should be uk → P → ui as in

Figure 2.2(b). Otherwise, let P1 and P2 be the intersection points between these

two lines and the upper bound b respectively. We take uk → P1 → P2 → ui as

in 2.2(a) to be Gj(k, i). If z(t) is negative in [tj, tj+1], Gj(k, i) can be constructed

similarly as shown in Figure 2.2(c) and 2.2(d). Without loss of generality, we use

the case in Figure 2.2(a) to prove the correctness of the greedy algorithm. Let

G′j(k, i) be any non-greedy f(t) as the dotted curve in Figure 2.2(a), then we have

G′j(k, i) ≤ Gj(k, i) in the interval [tj, tj+1]. Since z(t) is positive in [tj, tj+1], we

have
∫ tj+1

tj
z(t)(G′j(k, i)(t)) ≤ Vj(k, i), which shows Gj(k, i) is the worst-case f(t)

with certain constraints showed before.

12

2.1.3 Worst-case Generation by Dynamic Programming

Let OPT (j, i) with j ∈ [0,m] and i ∈ [0, n] be the worst-case noise gener-

ated by the currents stopping at time tj with value ui. The base case and recursive

formula for the function OPT should be

OPT (0, i) = 0 for all i ∈ [0, n]

OPT (j + 1, i) = max
0≤k≤n

(OPT (j, k) + Vj(k, i)) (2.5)

which gives us a dynamic programming algorithm to compute all values of the

function OPT and the maximum v(T) is the largest one in the set {OPT (m, i) : i ∈
[0, n]}. Notice that the dynamic programming algorithm only considers the time

stages 0, t1, t2, . . . , tm−1, T , which reduces the time complexity of the computation

significantly. We also have the following theorem for the worst-case f(t).

Theorem 1. Suppose fm(t) is the worst-case f(t) which maximizes v(T), we have
dfm(t)
dt

= 0, C or − C.

Proof. fm(t) is constructed by a bunch of greedy Gj(k, i) through the OPT func-

tion. The slope of each Gj(k, i) can only take values 0, C,−C as shown in Figure

2.16. So fm(t) has the same property, i.e. dfm(t)
dt

= 0, Cor − C.

2.1.4 Dynamic Programming Speedup

In this section, we survey several ideas proposed in [Yao80][EGG88] which

leads to our acceleration algorithm for power network verification. The basic strat-

egy for dynamic programming speedup is to reduce the redundancy in the number

of total states, the number of states which a specific state depends on and the time

complexity of each state transition. The paper [Yao80] considers the problem of

optimal binary search tree and proposes a general speedup technique via quad-

rangle inequality on weight function. Eppstein et al. [EGG88] extends the idea

to many other types of dynamic programming problems with monotonic weight

functions.

13

We first consider a dynamic programming problem with the following re-

cursive formula:

d(i, i) = 0,

d(i, j) = min
i<k≤j

{d(i, k − 1) + d(k, j)}+ w(i, j), (2.6)

where 1 ≤ i, j ≤ n and w(i, j) is a giving weight function satisfying the quadrangle

inequality:

w(i1, j1) + w(i2, j2) ≤ w(i1, j2) + w(i2, j1) (2.7)

for any i1 ≤ i2 ≤ j1 ≤ j2. A naive method takes O(n3) time to evaluate the

function d(i, j) which can be reduced into O(n2) via decreasing the number of

states considered in transition.

Lemma 1. The function d(i, j) also satisfies the quadrangle inequality, i.e.

d(i1, j1) + d(i2, j2) ≤ d(i1, j2) + d(i2, j1)

for any i1 ≤ i2 ≤ j1 ≤ j2.

Proof. We prove the lemma by induction on l = j2 − i1. If l = 1, then either

i1 = i2 or j1 = j2 and the quadrangle inequality holds trivially. Now we show the

inequality by dividing the values of i1, i2, j1, j2 into the following cases:

• i1 < i2 = j1 < j2: Let k be an index satisfying d(i1, j2) = d(i1, k − 1) +

d(k, j2) + w(i1, j2). Without loss of generality, we assume k ≤ j1. Then we

have

d(i1, j1) + d(i2, j2)

= d(i1, j1) + d(j1, j2)

≤ w(i1, j1) + d(i1, k − 1) + d(k, j1) + d(j1, j2)

≤ w(i1, j2) + d(i1, k − 1) + d(k, j1) + d(j1, j2)

≤ w(i1, j2) + d(i1, k − 1) + d(k, j2)

= d(i1, j2)

= d(i1, j2) + d(i2, j1)

14

• i1 < i2 < j1 < j2: Let k1 be an index satisfying d(i1, j2) = d(i1, k1 − 1) +

d(k1, j2) + w(i1, j2) and k2 be an index satisfying d(i2, j1) = d(i2, k2 − 1) +

d(k2, j1) + w(i2, j1). Without loss of generality, we assume k1 ≤ k2 which

implies i1 < k1 ≤ k2 ≤ j1. Then we have

d(i1, j1) + d(i2, j2)

≤ (d(i1, k1 − 1) + d(k1, j1) + w(i1, j1)) + (d(i2, k2 − 1) +

d(k2, j2) + w(i2, j2))

≤ (w(i1, j2) + w(i2, j1)) + (d(i1, k1 − 1) + d(i2, k2 − 1)) +

(d(k1, j1) + d(k2, j2))

≤ (w(i1, j2) + w(i2, j1)) + (d(i1, k1 − 1) + d(i2, k2 − 1)) +

(d(k1, j2) + d(k2, j1))

= (d(i1, k1 − 1) + d(k1, j2) + w(i1, j2)) + (d(i2, k2 − 1) +

d(k2, j1) + w(i2, j1))

= d(i1, j2) + d(i2, j1)

We define dk(i, j) to be the kth candidate of d(i, j) and s(i, j) to be the best

candidate index which generates d(i, j), i.e.

dk(i, j) = d(i, k − 1) + d(k, j) + w(i, j)

s(i, j) = max{k|d(i, j) = dk(i, j)}

Lemma 2. The function s(i, j) is monotonic in both dimensions, i.e.

s(i, j) ≤ s(i, j + 1) ≤ s(i+ 1, j + 1)

Proof. By symmetry, we only show the inequality s(i, j) ≤ s(i, j + 1) holds. If

i = j, the inequality is trivial. Let k1, k2 be two indexes satisfying i < k1 ≤ k2 ≤ j

15

and dk2(i, j) ≤ dk1(i, j), we have

dk2(i, j + 1)

= d(i, k2 − 1) + d(k2, j + 1) + w(i, j + 1)

= (d(i, k2 − 1) + d(k2, j) + w(i, j)) + (d(k2, j + 1)− d(k2, j)) +

(w(i, j + 1)− w(i, j))

= dk2(i, j) + (d(k2, j + 1)− d(k2, j)) + (w(i, j + 1)− w(i, j))

≤ dk1(i, j) + (d(k2, j + 1)− d(k2, j)) + (w(i, j + 1)− w(i, j))

= d(i, k1 − 1) + (d(k1, j) + d(k2, j + 1)− d(k2, j)) + w(i, j + 1)

≤ d(i, k1 − 1) + d(k1, j + 1) + w(i, j + 1)

= dk1(i, j + 1)

which means that if k2 is a larger and better candidate than k1 for d(i, j), then it

will be a better candidate than k1 for d(i, j+1). Therefore, based on the definition

of the function s, we conclude that s(i, j) ≤ s(i, j + 1).

Now we can achieve an optimized recursive formula for the function d(i, j)

as follows:

d(i, i) = 0

d(i, j) = min
s(i−1,j)≤k≤s(i,j+1)

{d(i, k − 1) + d(k, j)}+ w(i, j)

We evaluate the two dimensional array d(i, j) corresponding to the increasing order

of the value j − i, i.e. from the main diagonal line nearest to the origin, to the

main diagonal line farthest to the origin, by taking (i, j) as coordinates in a 2D

plane. Since the total cost for computing d(i, j) in a diagonal line is O(n), we can

obtain all values of d(i, j) in O(n2) time.

The formulation 2.6 shows up in many practical applications. The original

one given in [Yao80] is the optimal binary search tree problem. In an instance of

optimal binary search tree problem, n keys a1 ≤ a2 ≤ · · · ≤ an are given and for

each key ai, there is a weight ci. The objective is to organize the keys into a binary

16

search tree so that the sum of cili for all i is minimal where li is the depth of ai

in the tree. If we define d(i, j) to be the cost of the best binary search tree to

organize the keys from ai to aj, we can write the recursive formula for d(i, j) as

follows:

d(i, j) = min
i<k<j

{d(i, k − 1) + d(k + 1, j)}+ w(i, j),

where w(i, j) = ci + ci+1 + · · ·+ cj. Clearly, w(i, j) satisfies quadrangle inequality

since w(i1, j1)+w(i2, j2) = w(i1, j2)+w(i2, j1) for any i1 ≤ i2 ≤ j1 ≤ j2. Therefore,

d(i, j) can be evaluated in O(n2) time rather than O(n3) by naive computing.

Eppstein et al. [EGG88] considers the one dimensional recursive formula

shown below:

f(1) = 0,

f(j) = min
1≤i<j

{f(i) + w(i, j)}, 1 < j ≤ n, (2.8)

where w(i, j) satisfies the quadrangle inequality. We define g(i, j) = f(i) + w(i, j)

which is the ith candidate for evaluating f(j). Then g(i, j) also satisfies the quad-

rangle inequality and we can prove the following monotonic property of g(i, j):

Lemma 3. If 1 ≤ i1 < i2 ≤ n and g(i2, j) ≤ g(i1, j), then for any k > j, we have

g(i2, k) ≤ g(i1, k).

Proof.

g(i2, k)

= f(i2) + w(i2, k)

= (f(i2) + w(i2, j)) + (w(i2, k)− w(i2, j))

= g(i2, j) + (w(i2, k)− w(i2, j))

≤ g(i1, j) + (w(i2, k)− w(i2, j))

= f(i1) + (w(i1, j) + w(i2, k))− w(i2, j)

≤ f(i1) + (w(i2, j) + w(i1, k))− w(i2, j)

= f(i1) + w(i1, k)

= g(i1, k)

17

The lemma means that if i2 is a better candidate index than i1 for f(j),

then it will be a better candidate index than i1 for any f(k) with k > j. We define

i∗j = max{i|f(j) = f(i) + w(i, j)} to be the largest best candidate index for f(j)

and we have i∗1 ≤ i∗2 ≤ · · · ≤ i∗n based on the lemma. We define p(i1, i2) for i1 < i2

to be the first j so that i2 becomes a better candidate index than i1 for f(j).

During the computation process of f(j), we maintain a candidate index dequeue L

and a dequeue S such that L contains current available candidate indexes sorting

in increasing order and S contains the values of p(i1, i2) for every adjacent pairs

i1, i2 in L. L and S are initialized as empty and we obtain the values of f(j) in

the increasing order of j. When evaluating f(j0) for a specific index j0, we first

remove the head elements of L and S as long as the head of S is equal to j0. Then

i∗j0 will be the first index in L. The second step is to remove the tail elements of

L and S as long as p(it, j0), where it is the tail element of L, is less than or equal

to the tail element of S. Since each candidate index is inserted into and removed

from the dequeue L at most once, the total time complexity for evaluating f(j)

is O(nT) where T is the unit time of computing the function p(i1, i2). Generally,

p(i1, i2) can be found by binary search and T is bounded by O(log n). In some

special cases, we can obtain p(i1, i2) in constant time. Hence, the total running

time is O(n log n) or O(n) rather than O(n2) by evaluating the recursive formula

naively.

Many scheduling problem can be solved by dynamic programming algo-

rithms with form . For example, given n jobs J1, J2, . . . , Jn with processing time

Pi and weight Ci for job Ji running on a single processor sequentially. We can

divide the jobs into several blocks B1, B2, . . . , Bm. The time R(Bj) for processing

a block Bj includes a processor initial time T , plus the total processing time for

jobs in Bj. The finishing time F (Ji) for a job Ji in Bj is equal to
∑

1≤k≤j R(Bk)

and the cost for Ji is Ci ∗ F (Ji). The objective is to find a block partition so that

the total cost is smallest. If Ji is the last job of a block Bj, we define f(i) to be

the smallest cost for jobs before Ji (including Ji), plus
∑

i<k≤nCk ∗F (Ji). We can

18

derive the recursive formula of f(i) as below:

f(i) = min
1≤k<i

{f(k) + w(k, i)},

where w(k, i) = (T +
∑

k<r≤i(Pr))(
∑

k<r≤n(Cr)). We can show that the weight

function w satisfies quadrangle inequality and the acceleration method described

above applies.

2.1.5 Acceleration of the Verification Algorithm

If we compute all values of the OPT function directly using the recursive

formula, the time complexity is O(n2m). In this section, we will prove some useful

properties of our problem which lead to an accelerated dynamic programming

algorithm with only O(nm log n) time complexity.

ttj+1tj

b

uk1

ui1

f(t)

P1

P2

ui2

uk2

Q1

Q2

Figure 2.3: The quadrangle inequality for the function W .

Without loss of generality, we assume z(t) is negative in the time interval

[tj, tj+1]. Let Wj(k, i) be the absolute value of Vj(k, i) and Fj(k, i) be the candidate

corresponding to k for OPT (j + 1, i), i.e. Fj(k, i) = OPT (j, k) −Wj(k, i). Some

useful properties of the functions W and F are given as follows:

Lemma 4. Wj(k2, i2)−Wj(k1, i2) ≤ Wj(k2, i1)−Wj(k1, i1) for any 0 ≤ k1 < k2 ≤ n

and 0 ≤ i1 < i2 ≤ n.

19

Proof. In Figure 2.17, Wj(k2, i2) is the current of the area below uk2 → Q1 → ui2

convoluted with |z(t)| and Wj(k1, i2) is the current of the area below uk1 → P1 →
ui2 convoluted with |z(t)|. Therefore, Wj(k2, i2) − Wj(k1, i2) is the current of

the quadrangle area uk2, Q1, P1, uk1 convoluted with |z(t)|. Similarly, Wj(k2, i1)−
Wj(k1, i1) is the current of the quadrangle area uk2, Q2, P2, uk1 convoluted with

|z(t)|, which is larger than or equal to Wj(k2, i2)−Wj(k1, i2) since uk2, Q2, P2, uk1

contains uk2, Q1, P1, uk1.

Note that lemma 8 is the quadrangle inequality as in [Yao80] for the function

W . However, the speedup method using in [Yao80] is not suitable for our case since

we can not deduce the quadrangle inequality for the function OPT from the one

for W . Here we give a novel alternative of the Knuth-Yao speedup based on

the following lemma and reduce the complexity of our algorithm from O(n2m) to

O(nm log n) successfully.

Lemma 5. Suppose k1 < k2, i1 ∈ [0, n] and Fj(k1, i1) ≤ Fj(k2, i1), then for any

i2 > i1, we have Fj(k1, i2) ≤ Fj(k2, i2).

Proof.

Fj(k1, i2)

= OPT (j, k1)−Wj(k1, i2)

= (OPT (j, k1)−Wj(k1, i1)) + (Wj(k1, i1)−Wj(k1, i2))

= Fj(k1, i1) + (Wj(k1, i1)−Wj(k1, i2))

≤ Fj(k2, i1) + (Wj(k1, i1)−Wj(k1, i2)) by the condition

≤ Fj(k2, i1) + (Wj(k2, i1)−Wj(k2, i2)) by lemma 8

= OPT (j, k2)−Wj(k2, i2)

= Fj(k2, i2)

Based on lemma 9, suppose k1 < k2, we can find the smallest i0 such that

Fj(k1, i) ≤ Fj(k2, i) whenever i ≥ i0 within O(log n) time by the binary search.

We define this function as i0 = GetTransPos(j, k1, k2).

20

Let S be the sequence of candidates k from small to large for the worst-

case noise OPT (j + 1, i). Let Q be a priority queue which has three operations

GetMin,DeleteMin and Add. Q.GetMin() and Q.DeleteMin() will return and

delete the minimum element of the queue respectively. Q.Add(e) means inserting

the element e to the queue. All these three operations can be finished in the time

complexity of O(log n). Each element of Q contains three fields. The first field

is the key for the priority and it indicates the position i0 as we showed in the

end of the last section. The last two fields are k1, k2 corresponding to i0. Now

our accelerated dynamic programming algorithm can be shown in the pseduocode

“algorithm GetOPT”, which runs in the time complexity of O(n log n) instead of

O(n2) for the naive computation of the function OPT .

Algorithm 1: GetOPT

Input: OPT (j, i) for all i ∈ [0, n]

Output: OPT (j + 1, i) for all i ∈ [0, n]

S={0, 1, . . . , n};1

Q={[GetTransPos(j, k1, k2), k1, k2] : k1, k2 are adjacent in S};2

for i = 0, . . . , n do3

[i0, k1, k2] = Q.GetMin();4

while i0 == i do5

Q.DeleteMin();6

if k1, k2 are adjacent in S then7

Delete k1 in S;8

Find k3 next to k2 on the left in S;9

Q.Add([GetTransPos(j, k3, k2), k3, k2]);10

end11

[i0, k1, k2] = Q.GetMin();12

end13

q=The first element in S;14

OPT (j + 1, i) = OPT (j, q)−Wj(q, i);15

end16

21

The correctness proof of the algorithm is given as follows. First we claim

that for each iteration i, the sequence S contains all possible candidates k to

compute OPT (j + 1, i) after step 13 in algorithm GetOPT . Initially, S contains

all values from 0 to n as in step 1. For each adjacent pair k1, k2 in S, the priority

queue Q stores a node with three fields indicating k1,k2 and the first position i0

after which k2 will be a better candidate, i.e. Fj(k2, i) ≥ Fj(k1, i) whenever i ≥ i0.

In step 4, we retrieve the node [i0, k1, k2] from Q with minimum i0. If i0 is equal to

i, we know that k1 will not be a better candidate than k2 for the present and future

i. Therefore, it is reasonable to delete k1 in S showed in step 8. After the deletion,

the element k3 next to k1 on the left originally will be adjacent to k2 in S now.

To maintain the properties of Q, we add the new node for the adjacent pair k3, k2

as in step 10. It should be noticed that some adjacent pair will be unavailable

anymore during the deletion. For example, if k1 is deleted, the information for

the pair k3, k1 becomes useless. If we come across such pairs in Q, we can detect

them in step 7 and skip the operations from step 8 to 10. After the iteration from

step 5 to 13, we delete all impossible candidates from now on and the claim that

S contains all possible candidates k has been proved.

Based on the previous argument, we also see that after step 13, for any

k1, k2 ∈ S and k1 < k2, Fj(k1, i) is larger than Fj(k2, i) since otherwise k1 should

be deleted in or before the iteration i, i.e. Fj(·, i) monotonically decreases. Hence

in steps 14 and 15, we can take the first element in S to compute OPT (j + 1, i)

since it is the best candidate.

Theorem 2. The algorithm GetOPT runs in the time complexity of O(n log n).

Proof. We can implement the sequence S by a doubly-linked list and we also need

a pointer array which gives the position of each k in S. Now step 8 and 9 only take

constant time. Furthermore, we notice that each candidate k can only be deleted

once. Hence the operations from step 6 to 12 will run at most n times in the whole

process of algorithm GetOPT . Based on our knowledge that all three operations of

the priority queue runs in O(log n) time and computing the function GetTransPos

also takes O(log n) time, we have shown that the total time complexity of algorithm

GetOPT is O(n log n).

22

Theorem 3. We can compute the OPT function within time O(nm log n).

Proof. We only need to initiate OPT (0, i) = 0 for all i ∈ [0, n] with respect to

equation 2.17 and call the algorithm GetOPT m times for j = 1, 2, . . . ,m increas-

ingly.

2.1.6 Experimental Results and Summary

In this section, the lumped power distribution system model as shown in

Figure 2.4 is studied with the proposed approach. Without loss of generality, the

worst-case noise behavior of the power supply is investigated and we only consider

the power network as shown in Figure 2.4. Vdd is the external system power supply.

+

-
Vdd i(t)

Board Package & ChipVRM

RrLr RbLb Lp Rp
Lbd LpdRbd

Rd
Cbd Cpd

Cd
Rpd

Vdd+v(t)

Figure 2.4: Lumped model of a power distribution system.

Rr and Lr represent the output impedance of the VRM and the impedance of the

current path from the VRM to the on-board decoupling capacitors. Rb and Lb

represent the impedance of the current path from board capacitors to the package,

the impedance of the board-package interface, and the impedance of the package

planes. Rp and Lp represent the impedance of the current path from on-package

decoupling capacitors to die and the on-chip power grid. Cbd and Cpd are the

on-board and on-package decoupling capacitors, respectively, while Rbd, Lbd, Rpd

and Lpd represent the associated equivalent series resistance (ESR) and equivalent

series inductance (ESL) of Cbd and Cpd, respectively. Similarly, Cd and Rd signify

the effective on-chip decoupling capacitor and the associated ESR, respectively.

Note that Cd includes the intrinsic capacitance of the non-switching transistors in

a circuit and the dedicated decoupling capacitance [SPKF05]. The ESL of Cd is

ignored since it is negligible for on-chip decoupling capacitors. The switching of

the load circuit is represented by the current source i(t). The impedance between

23

the on-chip decoupling capacitor and the load current is ignored assuming that the

decoupling capacitor is placed sufficiently close to the load circuit [PSKF08].

Consider a microprocessor where we assume the peak value of the load cur-

rent is 50A. The values of the circuit components are listed in Table 2.1. Figure

2.5 plots the impedance of the power distribution system. There are three peaks

at 19.8KHz, 465KHz and 166MHz, which correspond to the anti-resonance at

VRM-board, board-package and package-die interface, respectively. The values of

these peaks are 2.09mΩ, 1.69mΩ and 3.23mΩ, respectively. Figure 2.6 displays

the impulse response of the power distribution system up to 10ns. Due to the

anti-resonance peaks in the impedance, the impulse response oscillates with time.

Notice that Figure 2.6 only shows the oscillation corresponding to the highest

resonant frequency. The oscillations that correspond to middle and low resonant

frequencies can be observed with longer time. For accurate worst-case noise calcu-

lation, the simulation time should be long enough until the impulse response dies

down to a negligible value.

Table 2.1: Circuit parameters of the power distribution system shown in Figure

2.4.

Circuit
Value

Circuit
Value

parameter parameter
Rr 1mΩ Lr 10nH
Cbd 5mF Rbd 0.5mΩ
Lbd 0.3nH Rb 0.3mΩ
Lb 0.2nH Cpd 250µF
Rpd 0.8mΩ Lpd 1pH
Rp 0.1mΩ Lp 1pH
Cd 500nF Rd 0.5mΩ

Based on the impulse response, the developed algorithm is applied to gen-

erate the worst-case noise with two transition time: tr = 100ps and tr = 10ns.

The worst-case noise responses of these two cases are plotted in Figure 2.7. Note

that the worst-case noise responses for the maximum voltage drop are generated

here. At tr = 100ps, the maximum voltage drop is 183.3mV , and is 124.3mV when

24

10
0

10
2

10
4

10
6

10
8

10
10

0.5

1

1.5

2

2.5

3

3.5

Im
pe

da
nc

e
(m

Ω
)

Frequency (Hz)

Figure 2.5: Impedance of the power distribution system.

0 0.5 1 1.5 2

x 10
−8

−1

−0.5

0

0.5

1

1.5

2
x 10

6

Time (sec)

Im
pu

ls
e

re
sp

on
se

 (
V

)

Figure 2.6: Impulse response of the power distribution system.

25

tr = 10ns. Figure 2.8 and Figure 2.10 compare the time-domain worst-case cur-

rents and their spectrum, respectively. The worst-case currents typically follow the

oscillation pattern of the PDS impulse response. However, at large transition time,

the transition of the current takes too long to follow the high-frequency oscillation

of the impulse response. This results in a sawtooth shaped waveform as shown in

Figure 2.9 which is the zoom-in part of Figure 2.8 around 50µs. From Figure 2.10

it can be seen that the majority of the current energy is actually at around the

lowest resonant frequency as the oscillations corresponding to the middle and high

resonant frequency die down much faster.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x 10
−4

−200

−150

−100

−50

0

50

Time (sec)

W
or

st
−

ca
se

 n
oi

se
 r

es
po

ns
e

(m
V

)

t
r
=0.1ns

t
r
=10ns

Figure 2.7: Worst-case noise responses of the power distribution system at

tr = 100ps and tr = 10ns.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x 10
−4

0

10

20

30

40

50

Time (sec)

W
or

st
−

ca
se

 lo
ad

 c
ur

re
nt

 (
A

)

t
r
=0.1ns

t
r
=10ns

Figure 2.8: Worst-case load currents at tr = 100ps and tr = 10ns.

The maximum voltage drop is plotted as a function of transition time in

Figure 2.11. The worst-case noise is a monotonically decreasing function of tran-

26

4.997 4.9975 4.998 4.9985 4.999 4.9995 5 5.0005 5.001 5.0015 5.002

x 10
−5

0

5

10

15

20

25

30

35

40

45

50

Time (sec)

W
or

st
−

ca
se

 lo
ad

 c
ur

re
nt

 (
A

)

t
r
=0.1ns

t
r
=10ns

Figure 2.9: Zoom-in part of the worst-case load currents at tr = 100ps and

tr = 10ns around 50µs.

10
4

10
5

10
6

10
7

10
8

10
9

0

2

4

6

8

10

12

14

16

18

Frequency (Hz)

W
or

st
−

ca
se

 c
ur

re
nt

 s
pe

ct
ru

m
 (

A
)

t
r
=0.1ns

t
r
=10ns

Figure 2.10: Spectrum of the worst-case load currents at tr = 100ps and

tr = 10ns.

27

sition time. This can be explained from our problem formulation: the smaller the

transition time is, the more chances there are that the positive part of the impulse

response is multiplied by a large value of current or vice versa. When the transition

time is zero, our results match those in [HZZ+09] and the worst-case noise is the

largest. This result demonstrates that assuming a zero transition time will result

in a worst-case noise that is overly pessimistic.

0 2 4 6 8 10
120

130

140

150

160

170

180

190

Transition time (ns)

M
ax

im
um

 v
ol

ta
ge

 d
ro

p
(m

V
)

Figure 2.11: Worst-case voltage drop as a function of transition time.

The run time of the proposed algorithm is tested in this sub-section. The

algorithm has been implemented in C++ and is tested in a Pentium(R) 4 3.00GHz

computer with 1.00GB memory. The number of sample points of the impulse

response z(t) is one million and the number of zero-crossing points m equals to 12.

Figure 2.12 compares the run time of the original and accelerated algorithm as a

function of the number of discretized current values n. The run time follows the

n2m and nm log n trends for the original and accelerated algorithms, respectively,

as discussed in the above sections. The run time of the accelerated algorithm is

much smaller than that of the original one, especially when n is large.

28

0 50 100 150 200
0

100

200

300

400

500

600

Number of discritized current values

R
un

 ti
m

e
(s

ec
)

O(n2m) algorithm
O(nmlogn) algorithm

Figure 2.12: Run time comparison of O(n2) and O(n log n) algorithm.

29

2.2 Multiple Current Sources

2.2.1 Problem Formulation

Our aim is to identify the worst-case noise under the current constraints.

As discussed in section 2.2.2, one class of the constraints on the load currents

~I(t) = (I1(t), I2(t), . . . , In(t))T regards the amplitude, which can be expressed as:

A~I(t) ≤ ~B, (2.9)

Ik(t) ≥ 0, 0 ≤ k ≤ n, (2.10)

where A is an m × n matrix satisfying HCC condition and ~B = (B1, B2, . . . , Bm)

is a vector of constant upper bounds. Since the transition time of the total load

current is assumed to be non-zero, we add another constraint for the slope of the

total load current as follows,

−C ≤ d
∑n

k=1 Ik(t)

dt
≤ C, ∀t ≥ 0, (2.11)

where C is a constant upper bound.

We denote the noise of the power grid by v(t). For noise analysis, the voltage

source Vdd is considered as zero. Thus, v(t) can be evaluated by the summation of

convoluting the input currents with impulse responses as:

v(t) =
n∑
k=1

∫ t

0

Zk(τ)Ik(t− τ) dτ, (2.12)

where (Z1(t), Z2(t), . . . , Zn(t)) are the impulse responses of the power grid. Since

the convolution operation has an accumulative effect on v(t), we set the integration

time, which is denoted by T , to be such that the impulse responses have died down

to some negligible value. Now we can formulate the problem of finding the worst-

case noise as:

max v(T) =
n∑
k=1

∫ T

0

Zk(t)Ik(t) dt

s.t. A~I(t) ≤ ~B,

Ik(t) ≥ 0, 1 ≤ k ≤ n,

−C ≤ d
∑n

k=1 Ik(t)

dt
≤ C, ∀t ≥ 0, (2.13)

30

where we replace Ik(T − t) with Ik(t) since it has no effect on this optimization

problem.

2.2.2 Hierarchical Current Constraints

Suppose our on-chip power grid has n nonnegative load currents which are

denoted by I1(t),I2(t),. . . ,In(t). Given a fixed time point t0, we denote Ik(t0) by

Ik where 1 ≤ k ≤ n for convenience. If S is a subset of {1, 2, . . . , n} and B is

a constant upper bound, we define a constraint on load currents corresponding

to S and B to be L(S,B)
.
=
∑

k∈S Ik ≤ B. A Hierarchical Current Constraints

(HCC) is a collection of constraints L(S1, B1), L(S2, B2), . . . , L(Sm, Bm) where one

of Si ∩ Sj = ∅, Si ⊂ Sj and Sj ⊂ Si holds for each pair of Si and Sj. An example

of HCC is showed in Table 2.2.

Table 2.2: An HCC example with seven load currents and twelve constraints

Notation Constraint
L({1}, B1), . . . , L({7}, B7) I1 ≤ B1, . . . , I7 ≤ B7

L({1, 2}, B8) I1 + I2 ≤ B8

L({3, 4, 5}, B9) I3 + I4 + I5 ≤ B9

L({1, 2, 3, 4, 5}, B10) I1 + I2 + I3 + I4 + I5 ≤ B10

L({6, 7}, B11) I6 + I7 ≤ B11

L({1, 2, . . . , 7}, B12) I1 + I2 + · · ·+ I7 ≤ B12

In the following, we will give several properties of the set of load currents

constrained by HCC. These properties lead to our efficient algorithm for worst case

generation.

Definition 1. Since HCC is a special class of linear constraints, we say that an

m× n matrix A satisfies HCC condition if and only if A~I ≤ ~B is an HCC where

~I denotes (I1, I2, . . . , In)T and ~B denotes (B1, B2, . . . , Bm)T .

Definition 2. A maximal feasible solution for an HCC is a feasible solution

(If1 , I
f
2 , . . . , I

f
n) with the property that there does not exist ε > 0 and 1 ≤ k ≤ n

such that (If1 , I
f
2 , . . . , I

f
k + ε, . . . , Ifn) is feasible.

31

Lemma 6. Suppose ~If1 = (If11 , I
f1
2 , . . . , I

f1
n) and ~If2 = (If21 , I

f2
2 , . . . , I

f2
n) are two

maximal feasible solutions for an HCC, we have
∑n

k=1 I
f1
k =

∑n
k=1 I

f2
k . This value

will be called the feasible upper bound of the HCC.

s t

B1

B2

∞

∞

∞

∞

∞

∞

∞

B3

B4

B5

B6

B7

B8

B9

B10

B11

B12

Figure 2.13: The flow network for the HCC in Table 2.2.

Proof. We construct a corresponding flow network G for the HCC as showed in

Figure 2.13. Each constraint is represented by a node and two extra nodes s, t are

added to the network for source and sink respectively. For each pair of constraints

L(S1, B1) and L(S2, B2), if S1 ⊂ S2 and there is no constraint L(S3, B3) such that

S1 ⊂ S3 ⊂ S2, we add an edge in G from the node for L(S1, B1) to the node

for L(S2, B2) with capacity B1. In other words, G without s and t has the same

topological structure as the Hasse diagram of the partial order set (S,⊆) where S
denotes the collection of all sets of load currents showed in the HCC and ⊆ denotes

the relation of set containment. We connect s to all minimal elements in the partial

order set with capacity infinity. We also connect all maximal elements to t with

capacity corresponding to the constraint upper bound for that element. Clearly,

feasible solutions for the HCC have a one-to-one correspondence with feasible flows

in network G. Therefore, based on Ford-Fulkerson algorithm [CLRS01], a maximal

feasible solution corresponds to a maximum flow since the flow has no augmenting

path. Because the value of the maximum flow is unique for the network G, we

conclude that
∑n

k=1 I
f1
k =

∑n
k=1 I

f2
k .

Given an HCC L(S1, B1), L(S2, B2), . . . , L(Sm, Bm) represented by A~I ≤ ~B,

32

we consider the following linear programming problem:

max ~C~I

s.t. A~I ≤ ~B,
n∑
k=1

Ik = D, (2.14)

where ~C = (c1, c2, . . . , cn) is a vector of constant coefficients and D is a positive

constant. We denote the optimal solution for problem 2.14 by ~I∗ = (I∗1 , I
∗
2 , . . . , I

∗
n)

which can be found by the following greedy algorithm. First, we reorder the

coordinates of ~C as ci1 ≥ ci2 ≥ · · · ≥ cin . Suppose I∗i1 , . . . , I
∗
ik

are known, we choose

I∗ik+1
to be the largest Î such that (I∗i1 , . . . , I

∗
ik
, Î , 0, . . . , 0) is a feasible solution.

Notice that there is a solution for problem 2.14 if and only if D is less than or equal

to the feasible upper bound of A~I ≤ ~B. Moreover, the optimal solution ~I∗ only

depends on the order (i1, i2, . . . , in) of the coordinates of ~C instead of the values

of them. Therefore, we can define a function ~I∗ = GetOptCurrents(A, ~B,D, ~P)

where ~P = (i1, i2, . . . , in) gives the order of the coordinates of ~C.

Theorem 4. The load currents ~I∗ computed by the greedy algorithm is an optimal

solution for problem 2.14.

Proof. At first, we reset the indices of the inputs so that c1 ≥ c2 ≥ · · · ≥ cn.

Let (I∗1 , . . . , I
∗
n) be the feasible solution computed by the greedy algorithm and

(Ĩ1, . . . , Ĩn) be an optimal solution. Suppose k is the first place where these two

solutions are different, i.e. Ĩ1 = I∗1 , . . . , Ĩk−1 = I∗k−1 and Ĩk < I∗k . Let S =

{Si1 , Si2 , . . . , Sit} be the collection of sets containing k. Since the joint of any two

sets in S is non-empty, we can assume Si1 ⊂ Si2 ⊂ · · · ⊂ Sit based on the definition

of HCC. Suppose Sip is the first set in the sequence Si1 , Si2 . . . , Sit containing an

index k′ such that k′ > k and Ĩk′ > 0. If no such Sip exists, we take k′ to be any

index satisfying k′ > k and Ĩk′ > 0 where k′ exists since
∑n

q=1 Ĩq =
∑n

q=1 I
∗
q = D

and Ĩk < I∗k . Let δ = min{I∗k−Ĩk, Ĩk′}. We can construct a new optimal solution by

changing Ĩk to Ĩk+δ and changing Ĩk′ to Ĩk′−δ in (Ĩ1, . . . , Ĩn). By doing this process

finite times, we can form an optimal solution with the first k coordinates equal

to the greedy one. Finally, we make the conclusion that (I∗1 , . . . , I
∗
n) is optimal by

induction.

33

2.2.3 Linear Programming on Submodular Polyhedron

In this section, we describe the general theoretical framework in [Fuj05] be-

hind the hierarchical constraint and the greedy algorithm presented in the previous

section. Through this framework, we can generalize our worst-case generation al-

gorithms in subsequent sections from hierarchical constraints to submodular poly-

hedron. We will build the framework in three steps: (1). Give the definitions of the

submodular system and submodular polyhedron, and show hierarchical constraints

can be extended into a submodular polyhedron; (2). Present the formulation of

linear programming on submodular polyhedron and the optimality condition for

it; (3). Describe the greedy algorithm for solving the linear programming problem.

In the whole section, we use E to denote a nonempty finite set called ground set

and define D to be a family of subsets of E forming a distributive lattice with set

union and intersection as join and meet of lattice operations. Clearly, D need to

be closed under the set union and intersection.

Definition 3. A function f : D → R is submodular on the distributive lattice D

if and only if

f(X ∪ Y) + f(X ∩ Y) ≤ f(X) + f(Y), ∀X, Y ∈ D

Definition 4. We call a pair (D , f) a submodular system on E if

• D is a distributive lattice on E with ∅ ∈ D and E ∈ D ;

• f is a submodular function on D with f(∅) = 0;

In this case, we call f the rank function of the submodular system.

Definition 5. We define RE to be the function space containing all functions

mapping E to R. For any x ∈ RE and X ∈ D , we define x(X) =
∑

e∈X x(e).

Definition 6. We define the submodular polyhedron P (f) in RE associated with

the submodular system (D , f) by

P (f) = {x ∈ RE : x(X) ≤ f(X), ∀X ∈ D}

34

Similarly, we define the base polyhedron associated with (D , f) by

B(f) = {x ∈ P (f), x(E) = f(E)}

We notice that a hierarchical family of subsets of E does not naturally form

a distributive lattice on E since it is not closed on set union. However, a real-valued

function f on a hierarchical family can be extended to a submodular function on

a distributive lattice and the polyhedron determined by the corresponding hierar-

chical constraints is a submodular polyhedron.

Definition 7. A family F of subsets of E is called an intersecting family if for

each intersecting X, Y ∈ F (i.e., X∩Y 6= ∅), we have X∪Y ∈ F and X∩Y ∈ F .

A function f : F → R on the intersection family mathscrF is called intersecting-

submodular if for any intersecting X, Y ∈ F , we have the submodularity inequality:

f(X ∪ Y) + f(X ∩ Y) ≤ f(X) + f(Y)

Lemma 7. A hierarchical family F is an intersection family and any real-valued

function f on F is intersection-submodular.

Proof. For any intersecting X, Y ∈ F , we have X ⊆ Y or Y ⊆ X by the definition

of hierarchical family. Hence X ∪ Y and X ∩ Y equal to X or Y which belongs

to F . We conclude that F is an intersection family. Moreover, any real-valued

function f on F satisfies f(X ∪ Y) + f(X ∩ Y) = f(X) + f(Y) which shows f is

intersection-submodular.

The following important theorem shown in [Fuj05] gives a claim that the

polyhedron determined by a intersection-submodular function is actually a sub-

modular polyhedron. In particular, the polyhedron determined by hierarchical

constraints is a submodular polyhedron.

Theorem 5. Let F be an intersection family with ∅ ∈ F and E ∈ F . Let f be

an intersecting-submodular function on F . We define the polyhedron determined

by f as

P (f) = {x ∈ RE : x(X) ≤ f(X), ∀X ∈ F}

35

Then there exists a unique submodular system (D1, f1) on E such that

P (f) = P (f1)

Moreover, if f is integer-valued, then f1 is also integer-valued.

Now we consider the following linear programming problem for a submod-

ular system (D , f) on E:

min
∑
e∈E

w(e)x(e)

s.t. x ∈ B(f), (2.15)

where w : E → R is a given weight function. We derive the condition for the

existence of a finite optimal solution for 2.15 before we give the greedy algorithm

for solving it.

Based on the partial order set theory, for each distributive lattice D on E

with ∅, E ∈ D , we can construct a partial order set P (D) on partitions of E to

represent it. We describe the detail of the process as follows:

Definition 8. A chain C of D is defined as a sequence of monotone increasing

elements of D , i.e.

C : S0 ⊂ S1 ⊂ · · · ⊂ Sk

C is called a maximal chain if there is no chain containing C as a proper subse-

quence. Clearly, we have S0 = ∅ and Sk = E for a maximal chain C.

Definition 9. For each e ∈ E, we define D(e) as the unique minimal element of

D containing e, i.e.

D(e) =
⋂
{X ∈ D : e ∈ X}

Definition 10. We define G(D) = (E,A) to be the directed graph on vertex set

E with arc set

A = {(e, e′) : e ∈ E, e′ ∈ D(e)}.

If we decompose the graph G(D) into strongly connected components G1, . . . , Gk ⊆
E which forms a partition of the vertex set E, then there exists a natural partial

36

order �D on {G1, G2, . . . , Gk} where Gi �D Gj if and only if there is a directed

path from a vertex of Gj to a vertex of Gi. Let Π(D) = {G1, G2, . . . , Gk} and

we define P (D) = (Π(D),�D) as the poset derived from distributive lattice D .

The following two theorems characterize the one to one relationship between a

distributive lattice D and the poset P (D) derived from it.

Definition 11. For a poset P = (P,�), a set J ⊆ P is called an ideal of P if

e ∈ J and e′ � e implies that e′ ∈ J .

Theorem 6. Let D be a distributive lattice on E with ∅, E ∈ D and P (D) be the

poset derived from D . Then the following two properties hold:

• For any ideal J of P (D), we have⋃
F∈J

F ∈ D .

• For any X ∈ D , there exists an ideal J of P (D) such that

X =
⋃
F∈J

F.

The two properties give the one to one correspondence between the elements

of D and ideals of P (D). Conversely, for any poset P = (P,�) on a partition P

of E, we can obtain a distributive lattice D defined by

D = {
⋃
F∈J

F : J is an ideal of P}

Therefore, the construction is two-directional and there is a one to one mapping

between the set of distributive lattice D on E with ∅, E ∈ D and that of posets

P = (P,�) on partitions P of E.

Theorem 7. For a distributive lattice D on E with ∅, E ∈ D , let

C : ∅ = S0 ⊂ S1 ⊂ · · · ⊂ Sk = E

be an arbitrary maximal chain of mathscrD. Then we have

Π(D) = {Si − Si−1 : i = 1, 2, . . . , k}.

In particular, the lengths of all maximal chains of D are equal to |Π(D)|.

37

(a) A distributive lattice D . (b) The corresponding P (D).

Figure 2.14: An example for the relationship between D and P (D).

Figure 2.14 gives an example for a distributive lattice D and its corre-

sponding poset P (D) on a partition of E. The poset P (D) contains five ideals

∅,{{1, 2}},{{1, 2}, {3}},{{1, 2}, {4, 5}} and {{1, 2}, {3}, {4, 5}} which corresponds

to the elements ∅,{1, 2},{1, 2, 3},{1, 2, 4, 5} and {1, 2, 3, 4, 5} in D . There are

two maximal chains ∅ ⊂ {1, 2} ⊂ {1, 2, 3} ⊂ {1, 2, 3, 4, 5} and ∅ ⊂ {1, 2} ⊂
{1, 2, 4, 5} ⊂ {1, 2, 3, 4, 5} in the distributive lattice D where the collection of the

difference of adjacent elements for both chains is {1, 2},{3} and {4, 5}, i.e. the

element set of P (D). Now we are ready to give the optimality condition of the

linear programming formulation 2.15 by the following theorem:

Theorem 8. The linear programming 2.15 has a finite optimal solution if and only

if the weight function w satisfies the following two properties:

• (1): For any two elements e1 and e2 in E with e1, e2 ∈ S for some S ∈ P (D),

we have w(e1) = w(e2).

• (2): For any two elements e1 and e2 in E with e1 ∈ S1, e2 ∈ S2 for some

S1, S2 ∈ P (D) satisfying S1 �D S2, we have w(e1) ≤ w(e2).

We call w is compatible with P (D) if both properties hold.

38

Given a weight function w compatible with P (D), we can find the function

x achieving the optimal solution for 2.15 via the following greedy algorithm:

• Step one: Find a linear extension (S1, S2, . . . , Sk) of the poset P (D) where k

is the size of Π(D).

• Step two: We define T0 = ∅ and Ti = Si∪Ti−1 for 1 ≤ i ≤ k. For each element

e ∈ Si, we assign x(e) = f(Ti)− f(Ti−1). Notice that the set {S1, S2, . . . , Si}
is an ideal of P (D) for any 1 ≤ i ≤ k. Therefore Ti for any 0 ≤ i ≤ k is an

element of D and f(Ti) is well-defined.

2.2.4 Method one: Dynamic Programming

Z(t)

t

t1

t2

t3

t4

t12=Tt0=0 t7

t6

t5

t8

t9

t10

t11

Z1(t)

Z2(t)

Figure 2.15: The division of [0, T] into twelve intervals.

In order to solve the optimization problem (2.13), we first divide the time

range [0, T] intom intervals [t0 = 0, t1], [t1, t2], . . . , [tm−1, tm = T] where t1, . . . , tm−1

are the positions in the time axis corresponding to either a zero-crossing point of

some impulse response or the intersection point of two impulse responses. Figure

2.15 gives an example of two impulse responses divided into twelve time intervals.

We also choose s+1 sample points u0 = 0, u1, . . . , us−1, us = Fb in the range of the

current [0, Fb] where s depends on the precision requirement and Fb is the feasible

upper bound corresponding to the HCC A~I(t) ≤ ~B.

Definition 12. Given a time interval [tj, tj+1], we define the weight function

Wj(k, i) as the worst-case noise generated by the load currents starting with sum

uk at time tj and ending with sum ui at time tj+1. The corresponding optimal load

39

ttj+1tj

uk

ui

Slope = C

Slope = -C

Fb

*

1 ()fI t

*

2 ()fI t

*

3 ()fI t

*

4
()
f

I t

1

BI

2

BI

3

BI

4

BI

5

BI

6

BI

7

BI

*
7

1

()
k

kI t

!

Sb
P1 P2

1()gI t

2 ()gI t

3
()
g

I t

ft gt

(a) The choice of optimal load currents.

ttj+1tj

uk1

ui2

Slope = C

Slope = -C

Fb

1

B
I

2

B
I

3

B
I

4

B
I

5

B
I

6

B
I

7

B
I

*
7

1

()
k

k
I t

!

Slope = -C

Slope = C

uk2

uk3

ui1

ui3

Sb

(b) Other cases for various endpoints.

Figure 2.16: The greedy sum of load currents in the time interval [tj, tj+1].

currents are defined as (I∗1 (t), I∗2 (t), . . . , I∗n(t)) where t ∈ [tj, tj+1] and we have

Wj(k, i) =
n∑
q=1

∫ tj+1

tj

Zq(t)I
∗
q (t) dt (2.16)

Let the optimal function OPT (j, i) with j ∈ [0,m] and i ∈ [0, s] be the

worst-case noise generated by the currents stopping at time tj with sum ui. The

base case and recursive formula for the function OPT should be

OPT (0, i) = 0 for all i ∈ [0, s]

OPT (j + 1, i) = max
0≤k≤n

(OPT (j, k) +Wj(k, i)) (2.17)

which gives us a dynamic programming algorithm to compute all values of the

function OPT and the maximum v(T) is the largest one in the set {OPT (m, i) :

i ∈ [0, s]}. Notice that the dynamic programming algorithm only consider the time

stages 0, t1, t2, . . . , tm−1, T instead of every sampled time points, which reduces the

time complexity of the computation significantly.

We can choose the optimal load currents (I∗1 (t), . . . , I∗n(t)) in (2.16) satis-

fying constraints in (2.13) by a greedy algorithm. Since the order and sign of

the impulse responses will not change in interval [tj, tj+1], we reset the indices

so that Z1(t) ≥ · · · ≥ Zp(t) ≥ 0 ≥ Zp+1(t) ≥ · · · ≥ Zn(t) for convenience.

Let ~IB = (IB1 , . . . , I
B
n) be the solution of GetOptCurrents(A, ~B, Fb, ~P) where

40

~P = (1, 2, . . . , n). We define Sb as
∑p

q=1 I
B
q , i.e. the sum of elements in ~IB

corresponding to nonnegative impulse responses. As shown in Figure 2.16(a) for

the sum of optimal currents where n = 7 and p = 4, both of uk and ui are less

than Sb. In this case, we draw a line starting from uk with slope H and another

line ending at ui with slope −H. Suppose these two lines intersect with Sb at

points P1 and P2 respectively, we take the line segments uk → P1 → P2 → ui

as the sum of optimal currents. Given a time point tf ∈ [tj, tj+1], by theorem

4, we set I∗5 (tf) = I∗6 (tf) = I∗7 (tf) = 0 and choose (I∗1 (tf), . . . , I
∗
4 (tf)) greedily

from (IB1 , . . . , I
B
4) until the sum is achieved. Other cases where the endpoints

uk and ui are in various regions are showed in Figure 2.16(b). The red, green

and blue line segments give the sum of optimal currents for uk1 < Sb < ui1,

uk2 > Sb > ui2 and uk3, ui3 > Sb respectively. Once (I∗1 (t), . . . , I∗n(t)) are cho-

sen, the weight function can be evaluated by equation (2.16). Note that if we

choose any other non-greedy curve to be the sum of optimal currents as the dotted

curve from uk to ui in Figure 2.16(a), the inequality Ĩq(t) ≤ I∗q (t) will hold for

any t ∈ [tj, tj+1] and q ∈ {1, 2, . . . , 7} where (Ĩ1(t), . . . , Ĩ7(t)) are chosen by the

same greedy strategy on the non-greedy curve as (I∗1 (tf), . . . , I
∗
7 (tf)). An example

of assignment of (Ĩ1(t), . . . , Ĩ7(t)) on a time point tg is given in Figure 2.16(a).

Let W
′
j (k, i) =

∑n
q=1

∫ tj+1

tj
Zq(t)Ĩq(t) dt. Since Z1(t), . . . , Z4(t) are nonnegative in

[tj, tj+1], we have W
′
j (k, i) ≤ Wj(k, i) which shows the correctness of our greedy

choice of weight function.

If all values the OPT function are evaluated directly using the recursive

formula, the time complexity is O(s2m). In this section, we will use the modified

Knuth-Yao quadrangle inequality speedup proposed in [DHW+10, Yao80] to ac-

celerate our dynamic programming algorithm. It takes only O(sm log s) time to

compute the OPT function.

We first fix j and rewrite the recursive formula as

OPT (j + 1, i) = max(OPT1(j + 1, i), OPT2(j + 1, i))

where

OPT1(j + 1, i) = max
0≤uk≤Sb

(OPT (j, k) +Wj(k, i))

41

and

OPT2(j + 1, i) = max
Sb<uk≤Fb

(OPT (j, k) +Wj(k, i)).

Suppose uk > Sb if and only if k ≥ r, we will give the speedup method only for

OPT2(j + 1, i) with i ≥ r. Other cases for OPT1 and OPT2 can be computed

similarly. The quadrangle inequality satisfied by the weight function is given as

the following lemma:

Lemma 8. Wj(k1, i2)−Wj(k2, i2) ≤ Wj(k1, i1)−Wj(k2, i1) for any r ≤ k1 < k2 ≤ s

and r ≤ i1 < i2 ≤ s.

proof 1. As in Figure 2.17, Wj(k1, i2) is the greedily chosen currents corresponding

to the area below line segments uk1 → P1 → ui2 convoluted with (Z1(t), . . . , Zn(t)).

Wj(k2, i2) is the greedily chosen currents corresponding to the area below line seg-

ments uk2 → Q1 → ui2 convoluted with (Z1(t), . . . , Zn(t)). Therefore, the left hand

side is the currents corresponding to the quadrangle area uk2, Q1, P1, uk1 convoluted

with (|Z1(t)|, . . . , |Zn(t)|). Similarly, the right hand side is the currents correspond-

ing to the quadrangle area uk2, Q2, P2, uk1 convoluted with (|Z1(t)|, . . . , |Zn(t)|).

The inequality holds since the quadrangle uk2, Q2, P2, uk1 contains uk2, Q1, P1, uk1.

Definition 13. We define Fj(k, i) to be the candidate corresponding to k for

OPT (j + 1, i), i.e. Fj(k, i) = OPT (j, k) +Wj(k, i).

Lemma 9. Suppose r ≤ k1 < k2 ≤ s and r ≤ i1 ≤ s, Fj(k1, i1) ≤ Fj(k2, i1) implies

Fj(k1, i2) ≤ Fj(k2, i2) for any i2 > i1.

proof 2.

Fj(k1, i2)

= OPT (j, k1) +Wj(k1, i2)

= (OPT (j, k1) +Wj(k1, i1)) + (Wj(k1, i2)−Wj(k1, i1))

= Fj(k1, i1) + (Wj(k1, i2)−Wj(k1, i1))

≤ Fj(k2, i1) + (Wj(k1, i2)−Wj(k1, i1)) by conditions

≤ Fj(k2, i1) + (Wj(k2, i2)−Wj(k2, i1)) by lemma 8

= OPT (j, k2) +Wj(k2, i2)

= Fj(k2, i2)

42

uk1

ui1

P1

ui2

uk2

Q1

Q2

ttj+1tj

Fb

*
7

1

()
k

k
I t

!

Sb
P2

…

Figure 2.17: The quadrangle inequality for the weight function.

Lemma 9 shows that if k2 is a better candidate than k1 for OPT2(j+ 1, i1),

then for any i2 > i1, k2 is still a better candidate. Therefore, we can find the

smallest i0 ≥ r such that Fj(k1, i) ≤ Fj(k2, i) whenever i ≥ i0 within O(log s)

time by binary search. i0 is called the transition position for candidates k1 and

k2 and we will define a function i0 = GTP (j, k1, k2) where GTP stands for “Get

Transition Position”.

In order to compute OPT2(j + 1, i) for all r ≤ i ≤ s, our algorithm it-

erates i from r to s and maintains a list L containing all available candidates k

sorted from large to small on the value of Fj(k, i). The algorithm also maintains

a priority queue Q containing the transition position for every adjacent pair of

candidates in L. Each element of Q have three fields, two for the candidates k1, k2

and another for the key GTP (k1, k2). The priority queue supports three opera-

tions GetMin,DelMin and Insert. Q.GetMin() and Q.DelMin() will return and

delete the minimum element of the queue respectively. Q.Insert(e) will insert the

element e to the queue. As we know, all these operations for priority queue can

be implemented in time O(log s). An example indicating the relation between L

and Q is showed in Figure 2.18. Now we will describe our dynamic programming

speedup by the following pseudocode which evaluates OPT2(j + 1, i) for r ≤ i ≤ s

by OPT (j, i) for r ≤ i ≤ s.

43

L={r, r + 1, . . . , s};
Q={[GTP (j, k, k + 1), k, k + 1] : r ≤ k ≤ s− 1};
for i = r, . . . , s

[i0, k1, k2] = Q.GetMin();

while i0 == i

Q.DelMin();

if k1, k2 are adjacent in L

Delete k1 in L;

Find k3 left adjacent to k2 in L;

Q.Add([GTP (j, k3, k2), k3, k2]);

end

[i0, k1, k2] = Q.GetMin();

end

q=The first element in L;

OPT2(j + 1, i) = OPT (j, q) +Wj(q, i);

end

…… ……
1k 2k 3k 4k 2qk 1qk qk

GTP(k1,k2)

k1

k2

Key

Value

GTP(k2,k3)

k2

k3

……

GTP(kq-1,kq)

kq-1

kq

Candidate List L

Priority Queue Q

Figure 2.18: The relation between L and Q.

Theorem 9. After the while loop of the pseudocode, L contains all possible can-

didates to compute OPT2(j + 1, i) and Fj(k1, i) ≥ Fj(k2, i) for any k1, k2 ∈ L and

k1 < k2.

Proof. In the for loop for a fixed i, we first retrieve the node [i0, k1, k2] from Q

with minimum i0. If i0 is equal to i, we know that k1 will not be a better candidate

44

than k2 for the present and future i. Therefore, it is reasonable to delete k1 in L.

After the deletion, the element k3 left adjacent to k1 originally will be adjacent to

k2 in L now. To maintain the properties of Q, we add a new node for the adjacent

pair k3, k2. Note that some adjacent pairs will be unavailable anymore during the

deletion. For example, if k1 has been deleted, the information recorded in Q for the

pair k3, k1 becomes useless. If we come across such pairs in Q, i.e. the condition in

the if line does not hold, we just skip the operations for deletion. After the while

loop, we delete all impossible candidates from now on and the first claim holds.

We also observe that if k1 < k2 and Fj(k1, i) < Fj(k2, i), k1 should be deleted in

or before the iteration i, which shows the correctness of the second claim.

Based on theorem 9, for each iteration of i, we can evaluate OPT2(j + 1, i)

as OPT (j, q) +Wj(q, i) since the first element q in L is the best candidate.

Theorem 10. The accelerated dynamic programming algorithm given by the pseu-

docode runs in time O(s log s).

Proof. The candidate list L is implemented by a doubly-linked list in which the op-

erations of deleting an element and finding the left adjacent element take constant

time. We observe that each candidate k can only be deleted once, which implies

that the pseudocode perform at most O(s) operations of the priority queue. More-

over, we call the GTP function at most O(s) times, each of which takes O(log s)

time. Therefore, the total time complexity of the pseudocode is O(s log s).

We conclude that the OPT function can be computed within timeO(sm log s)

since we can initiate OPT (0, i) = 0 for all i ∈ [0, s] and run the pseducode for

j = 1, 2, . . . ,m increasingly.

2.2.5 Method two: Network Flow with Side Constraints

In this section, we extend our formulation on worst case generation in two

places: (1). Any group of current sources can have an upper bound instead of

the case where groups form a hierarchical structure; (2). Each individual current

source can have its own slope constraint rather than a slope constraint on the

45

sum of current sources. The new assumptions make the prediction more realistic.

However, our original dynamic programming algorithm does not work for this case

and we propose a network flow algorithm to generate the worst case noise. At first,

the problem can be formally formulated as the following form:

max v(T) =
n∑
k=1

∫ T

0

Zk(t)Ik(t) dt

s.t. A~I(t) ≤ ~B,

Ik(t) ≥ 0, 1 ≤ k ≤ n,

−Ck ≤
d(Ik(t))

dt
≤ Ck, 1 ≤ k ≤ n, (2.18)

where A is any 0−1 matrix indicating groups of currents and Ck is the slope upper

bound for the kth current source. We split time range [0, T] into m equal intervals

[t0 = 0, t1], [t1, t2], . . . , [tm−1, tm] where ∆t = T/m and ti = i ∗∆t. In each interval

[ti−1, ti], we approximate the impulse response Zk(t) on it by a constant denoted

by Zk(i). Correspondingly, we represent the current source Ik(t) by m discrete

variables Ik(1), Ik(2), . . . , Ik(m). Now we can reformulate the problem as below:

max v(T) =
n∑
k=1

m∑
i=1

Zk(i)Ik(i)

s.t. A~I(i) ≤ ~B, 1 ≤ i ≤ m

Ik(i) ≥ 0, 1 ≤ k ≤ n, 1 ≤ i ≤ m

−Ck∆t ≤ Ik(i)− Ik(i− 1) ≤ Ck∆t, 1 ≤ k ≤ n, 1 ≤ i ≤ m, (2.19)

which is a standard linear programming problem which can be solved by libraries

such as CPLEX and Gurobi. However, since the number of sample points need

to be large enough in order to achieve acceptable precision, the time complex-

ity of linear programming solver becomes infeasible for practical circuits. If we

omit the group constraint A~I(i) ≤ ~B in 2.19, the problem can be simplified as a

minimum-cost maximum-flow problem. Figure 2.19 shows the construction of the

flow network with n current sources andm sample points on time range. We assume

the current source Ik(t) has an upper bound Uk which is determined by the group

constraints. For each current source Ik(t), a directed path vk0 → vk1 → · · · → vkm

46

is created in the network where the flow on the edge vk(i−1) → vki corresponds to

the variable Ik(i), and the capacity and cost of the edge vk(i−1) → vki is Uk and

Zk(i) respectively. In order to represent the slope constraint for current sources,

an auxiliary path w0 → w1 → · · · → wm is added to collect abundant flows and

inject extra flows from/to other paths. We assign infinity and zero as the capacity

and cost of an edge wi−1 → wi for any 1 ≤ i ≤ m. For each 1 ≤ i ≤ m − 1 and

1 ≤ k ≤ n, two edges wi → vki and vki → wi are inserted into the network with

capacity Ck∆t and cost zero. We add two other extra nodes s and t indicating the

source and the sink of the network. For each node u in {vk0 : 1 ≤ k ≤ n} ∪ {w0},
we put an edge s → u with capacity infinity and cost zero. For each node u in

{vkm : 1 ≤ k ≤ n} ∪ {wm}, we an edge u→ t with capacity infinity and cost zero.

It is easy to see that a maximum cost flow from s to t corresponds to an optimal

solution of the problem 2.19.

v10

w0 t t

v11 v12 v1m

v20 v2m

vn0 vnm

w1 w2 wm

Figure 2.19: Flow network construction.

When we restrict that the current sources satisfies the group constraint

A~I(i) ≤ ~B, we consider the following general minimum-cost maximum-flow prob-

lem with side constraints (Note that we can negate the edge costs in order to

transform a maximum-cost flow problem into a minimum-cost problem):

min ~w · ~x

s.t. A~x ≤ ~b,

G~x = ~d,

~l ≤ ~x ≤ ~u, (2.20)

47

We describe the notations in 2.20 as follows:

• ~w: the cost function of edges;

• ~x: the flow variables of edges;

• A~x ≤ ~b: the group constraint where A is a 0-1 matrix and ~b is a constant

vector of upper bounds;

• G~x = ~d: G is the incidence matrix of the network and d is the vector of

supplies and demands;

• ~l ≤ ~x ≤ ~u: l and u are constant vectors denoting the lower bound and upper

bound of edge capacities;

Without the group (side) constraint A~x ≤ ~b in 2.20, it reduces into a standard

minimum-cost maximum-flow problem which can be solved efficiently. We define

a vector set X to represent all feasible flow vector x satisfying flow conservation

constraints, i.e.

X = {~x : G~x = ~d and ~l ≤ ~x ≤ ~u}

Then the linear programming problem 2.20 can be rewritten as:

min
~x∈X

~w · ~x

s.t. A~x ≤ ~b, (2.21)

By the Lagrange duality theory introduced in [BV04a], we define the Lagrange

dual function of the optimization problem 2.21 as:

L(~µ, ~x) = ~w · ~x+ ~µ · (A~x−~b), ~µ ≥ 0 , ~x ∈ X

Notice that max~µ L(~µ, ~x) equals to ~w · ~x if ~x satisfies A~x ≤ ~b, and positive infinity

otherwise. We conclude that the problem can be written as:

min
~x∈X

max
~µ≥0

L(~µ, ~x)

48

Since the strong duality property holds for linear programming problems, we can

change the order of min and max in the previous formula. We define a function

g(~µ) = min~x∈X L(~µ, ~x) and obtain an equivalent optimization problem as below:

max
~µ≥0

g(~µ) = min
~x∈X

max
~µ≥0

L(~µ, ~x)

Lemma 10. The function g(~µ) is a concave function on ~µ.

Proof. For each fixed ~x, L(~µ, ~x) is an affine function on ~µ which is both convex and

concave. Therefore, g(~µ) is concave since it is the pointwise infimum of a family

of concave functions.

Lemma 11. For a fixed ~µ, g(~µ) can be evaluated by the minimum-cost maximum-

flow algorithm.

Proof. By definition, g(~µ) is the solution of the following optimization problem:

min
~x

~w · ~x+ ~µ(A~x−~b)

s.t. G~x = ~d,

~l ≤ ~x ≤ ~u, (2.22)

which is a minimum-cost maximum-flow problem since the objective function is a

linear function on ~x and the constraints contain only the flow conservation, plus

lower and upper bounds of flow variables.

By the lemmas 10 and 11, the problem of minimizing g(~µ) becomes a convex

programming problem which can be solved by the subgradient method introduced

in [AMO93]. For the concave function g(~µ), a vector ~v is called a subgradient of

g(~µ) at a fixed vector ~µ0) if for any vector ~µ, we have g(~µ)− g(~µ0) ≤ ~v · (~µ− ~µ0).

The following lemma gives an explicit formula for a subgradient vector of g(~µ) at

~µ0).

Lemma 12. For a fixed vector ~µ0, let ~x∗ be a vector satisfying g(~µ0) = ~w · ~x∗ +

~µ0(A~x∗ −~b). Then ~v = A~x∗ −~b is a subgradient vector of g(~µ) at ~µ0.

49

Proof.

g(~µ)− g(~µ0))

≤ (~w · ~x∗ + ~µ(A~x∗ −~b))− g(~µ0)

= ~µ(A~x∗ −~b)− ~µ0(A~x∗ −~b)

= ~v(~µ− ~µ0)

By a similar iterative process as gradient decent method, we can optimize

g(~µ) via the pseudocode as follows:

Set a random initial vector ~µ0;

k = 0;

while θk > ε

Evaluate g(~µk) by the minimum-cost maximum-flow algorithm;

Let ~x∗ be a vector satisfying g(~µk) = ~w · ~x∗ + ~µk(A~x
∗ −~b);

~v = A~x∗ −~b;
~µk+1 = ~µk + θk~v;

k = k + 1;

end

return g(~µk);

where ε is the error tolerant constant and (θ0, θ1, . . . , θk, . . .) is a predefined se-

quence satisfying θk → 0 and
∑k

j=1 θj → ∞ as k → ∞. A valid sequence of θk

can be obtained by defining θk = 1/(k + 1). The book [AMO93] introduces more

algorithms for solving minimum-cost maximum-flow problem with side constraints

such as Dantzig-Wolfe decomposition or generalized linear programming, and the

simplex method with an advanced starting basis technique by Bixby.

2.2.6 Method three: Submodular Flow

In this section, we consider the worst-case generation problem with more

constraints on the slopes of groups of current inputs with hierarchical structure.

50

We use the same notations and samples of range [0, T] as the previous section. The

modified problem formulation is described as follows:

max v(T) =
n∑
k=1

m∑
i=1

Zk(i)Ik(i)

s.t. A~I(i) ≤ ~B, 1 ≤ i ≤ m

Ik(i) ≥ 0, 1 ≤ k ≤ n, 1 ≤ i ≤ m∑
k∈F

(Ik(i)− Ik(i− 1)) ≤ C(F)∆t,

F ∈ F , 1 ≤ i ≤ m, (2.23)

where F is a hierarchical family of subsets of {1, 2, . . . , n} and C(F) is a non-

negative valued function on F . We utilize the same flow network construction in

Figure 2.19 without the auxiliary path and omit the group constraint A~I(i) ≤ ~B

at first. Then we can reduce the original problem as the following minimum-cost

maximum-flow problem with an extra constraint on the vector of supplies and

demands corresponding to the slope constraints.

min ~w · ~x

s.t. G~x = ~d,

~l ≤ ~x ≤ ~u,∑
k∈F

~dk ≤ C ′(F), F ∈ F ′, (2.24)

where ~w, ~x,G,~l, ~u have the same meaning as 2.20, ~d becomes a variable rather

than constant vector in 2.20, F ′ is a hierarchical family of subsets of the network’s

vertex set determined by the family F and the function C ′(F) is directly induced

by the function C(F). Based on the discussion in section 2.2.3, the constraints∑
k∈F

~dk ≤ C ′(F) can be treated as ~d belongs to a submodular polyhedron. There-

fore, the formulation 2.24 is a standard submodular flow problem which can be

solved efficiently as described in [BV04a]. In order to embed the group constraint

A~I(i) ≤ ~B, we can use the same technique via Lagrange duality and solve the whole

problem by combining subgradient method with submodular flow algorithm.

51

2.2.7 Experimental Results and Summary

We implemented our algorithm using C/C++ on a 64-bit linux machine

with a 3.0GHz Intel Xeon processor. An industrial power grid with size 0.4mm

by 0.4mm and four metal layers are considered in our experiment. n ports are

uniformly chosen across the power grid and the impulse response of each port is

generated by SPICE simulation.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
−8

−2

−1.5

−1

−0.5

0

0.5

1

1.5
x 10

13

Time (sec)

Im
pu

ls
e

re
sp

on
se

s
(V

)

Figure 2.20: The impulse responses of the power grid.

1.78 1.782 1.784 1.786 1.788 1.79 1.792 1.794 1.796 1.798 1.8

x 10
−8

−1.5

−1

−0.5

0

0.5

1

1.5

2
x 10

10

Time (sec)

Im
pu

ls
e

re
sp

on
se

s
(V

)

Z
1
(t) Z

2
(t) Z

3
(t) Z

4
(t) Z

5
(t)

Figure 2.21: Zoom-in part of the impulse responses.

In order to demonstrate the effectiveness of our algorithm clearly, we choose

a situation with n = 5. The impulse responses of the five ports are shown in

Figure 2.20 with T = 20ns, and a close look between 17.8ns and 18.0ns is given in

Figure 2.21. We can see the magnitude of the impulse responses dies down as the

time increase and m is found to be 13935. The hierarchical current constraints for

52

this example is shown in Table 2.3 where we use mA as the unit of current.

Table 2.3: The hierarchical current constraints.

Notation Constraint
L({1}, 1.0), . . . , L({5}, 1.0) I1 ≤ 1.0, . . . , I5 ≤ 1.0
L({1, 2, 3}, 2.0) I1 + I2 + I3 ≤ 2.0
L({4, 5}, 1.5) I4 + I5 ≤ 1.5
L({1, 2, 3, 4, 5}, 2.5) I1 + I2 + I3 + I4 + I5 ≤ 2.5

We denote the slope constraint C by the transition time tr where C equals

the feasible upper bound of HCC in Table 2.3 divided by tr. Then our algorithm is

applied to generate the worst-case noise for two test cases with tr = 5ps and tr =

20ps respectively. The summation of the worst-case current stimuli corresponding

to the time range in Figure 2.21 is shown in Figure 2.22 where we can see the

feasible upper bound 2.5mA is almost unreachable when tr = 20ps. It proves

that assuming zero transition time will give unrealistic worst-case noise prediction.

Figure 2.23 plots the transient voltage noise waveform of the power grid with the

worst-case current stimuli when tr = 5ps. The peak worst-case noise is at t = T .

2 2.02 2.04 2.06 2.08 2.1 2.12 2.14 2.16 2.18 2.2

x 10
−9

0

0.5

1.0

1.5

2.0

2.5

3.0

Time (sec)

W
or

st
−

ca
se

 c
ur

re
nt

 s
um

 (
m

A
)

tr=5ps tr=20ps

Figure 2.22: The worst-case currents with two different transition times.

Finally the run time of the algorithm for different pairs of n and s is given

in Figure 2.24. It shows that the number of inputs is not the bottleneck of our

algorithm because of theorem 4 and greedy evaluation of weight function. As a

result, our algorithm works efficiently for an n which is large enough for on-chip

power grid verification.

53

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
−8

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time (sec)

V
ol

ta
ge

 n
oi

se
 (

V
)

Figure 2.23: The voltage noise waveform for tr = 5ps.

(5,100) (5,300) (5,500) (50,200) (50,400) (100,100) (100,300) (100,500)
0

1

2

3

4

5

6

7

8

9

10

Pair of (n,s)

R
un

ni
ng

 ti
m

e
(s

ec
)

Figure 2.24: The comparison of running time for different pairs of (n, s).

54

Chapter 2, in part, is a reprint of the material as it appears in International

Symposium on Quality of Electronic Design(ISQED) 2010. Peng Du; Xiang Hu;

Shih-Hung Weng; Amirali Arani; Xiaoming Chen; A. Ege Engin; Chung-Kuan

Cheng, IEEE, 2010. The dissertation author was the primary investigator and

author of this paper.

Chapter 3

Power Grid Sizing

Since power integrity has become a critical issue in the VLSI design, gen-

erating a robust on-chip power/ground network to fulfill the design requirements

has become a challenging task. As the manufacture technology scaling down, the

growing transistor density and high clock frequency increase the supply current re-

quirement, and cause large IR drop on the power/ground network. Although many

advanced packaging technologies, e.g. flip-chip and C4 bump, have been applied

for improving the quality of power delivery, the pushing of the supply voltage for

low power designs reduces the noise margin.

Most previous works require a given average current density or peak mag-

nitude as the constraint for each individual current source on a power grid to

formulate an optimization problem. The average current density and peak mag-

nitude rely on the logic simulation of a set of vector patterns. Although the logic

simulation is fast, it is unlikely to cover all cases by exhaustive simulation. The

unexpected vectors might induce IR drop violation in an optimized power grid

design.

By contrast, the total current density or peak magnitude of a chip is al-

ready given as a design specification at the beginning. In this work, we relax the

optimization problem by only considering the total current density/magnitude. By

doing so, we can save the effort of logic simulation and are able to perform early

stage power grid design verification before placement and routing. We devise a siz-

ing method to minimize the worst possible IR drop on a fixed power grid topology.

55

56

We use the concept of effective resistance on a power grid to reduce the sizing op-

timization problem into a min-max convex programming problem. Experimental

results show that our method can achieve 40% improvement for regular 2D grids

and 7.32% improvement for a four layers power grid with only the top two layers

tunable over uniform sizing.

3.1 Problem Formulation

Let N(V,E) be an electrical network where V = {v1, v2, . . . , vn} and E =

{e1, e2, . . . , em} denote nodes and edges of the network respectively. For each edge

e ∈ E, we use g(e) to denote the conductance of edge e where g is a function from

E to R+. In our power grid model, we assume currents flow into the network at a

single node u and flow out at a set of nodes W ⊆ V . We use a function I : W →
R+ to denote a current source distribution on node set W with normalization

constraint
∑

v∈W I(w) = 1. Let D(v, g, I) be the voltage drop between u and

v for given conductance assignment g and current profile I. Our objective is to

minimize the worst voltage drop of the power grid over all locations v and current

distributions I by allocating a fixed total conductance among the edges. Without

loss of generality, we can assume that the total conductance to be allocated is one.

Formally, our problem can be formulated as:

min
g:E→R+

max
I:W→R+

max
v∈V

D(v, g, I)

s.t.
∑
e∈E

g(e) = 1 (3.1)

The original form of the objective function of problem (3.1) is non-differentiable

and hard to predict directly. Hence we can not expect general non-linear program-

ming methods to solve problem (3.1) efficiently. In Section 3.2, we simplify the

prediction of worst voltage drop by computing the largest effective resistance of

the network and prove problem (3.1) can be reduced into a convex programming

problem.

57

3.2 Voltage Drops versus Effective Resistances

In this section, we first deduce an effective resistance representation of the

objective function of problem (3.1). Then we will solve the problem of minimizing

the largest effective resistance of the network, which is equivalent to (3.1), by

convex programming techniques.

First we define Iw : W → R+ as the current profile corresponding to a

single current source at node w, i.e. Iw(w) = 1 and Iw(v) = 0 when v 6= w. The

objective function of (3.1) can be simplified as:

max
I:W→R+

max
v∈V

D(v, g, I)

= max
v∈V

max
I:W→R+

D(v, g, I)

= max
v∈V

max
Iw:w∈W

D(v, g, Iw)

= max
w∈W

D(w, g, Iw)

= max
w∈W

Ruw, (3.2)

where Ruw denotes the effective resistance between nodes u and w. The second

equality can be proven by superposition since for a fixed node v, the voltage drop

at it can be separated by contributions of current sources at different positions.

Then there must be a position w ∈ W who contributes most when unit current

goes through it and we can pick Iw to generate worst voltage drop at v. The reason

for the third equality is the fact that D(v, g, Iw) ≤ D(w, g, Iw). Now we have the

following optimization problem equivalent to (3.1):

min
g:E→R+

max
w∈W

Ruw

s.t.
∑
e∈E

g(e) = 1 (3.3)

The constraint of the optimization problem (3.3) is obviously convex since

it is a linear function on g. Therefore, to show (3.3) is a convex programming

problem, we only need to prove Ruw is a convex function on g since the maximum

of finite convex functions is still convex. Let G = A · Dg · AT be the weighted

Laplacian matrix of the network N where Dg is the diagonal matrix formed by

g(e1), g(e2), . . . , g(em) and A is the incidence matrix of N . Since g(e) ≥ 0 for all e ∈

58

E, G is positive semidefinite. By KCL,KVL and Ohm’s law (see [GBS06],[S.B06]),

we can deduce that

Ruw = (eu − ew)T (G+~1~1T/n)−1(eu − ew), (3.4)

where ~1 ∈ Rn is the vector with one everywhere and ew ∈ Rn denotes the ith unit

vector if w = vi. Since elements of G is linear on g and G+~1~1T/n is semidefinite,

we conclude Ruw is a convex function on g (see [BV04b],§3.1.7).

3.3 Semidefinite Programming Reduction

If the scale of the power grid is relatively small (e.g. hundreds of nodes

and edges), we can reformulate the problem (3.3) into a semidefinite programming

problem as follows:

min
g:E→R+

max
{i:vi∈W}

(ETY E)ii

s.t.
∑
e∈E

g(e) = 1[
G+~1~1T/n I

I Y

]
� 0, (3.5)

where E ∈ Mn×n(R) is the matrix whose ith column equals to eu − evi and Y ∈
Mn×n(R) is a relaxation matrix. When the optimal solution of problem (3.5) is

achieved, we have Y = (G + ~1~1T/n)−1 by the theory of Schur complement (see

[BV04b],§A.5.5). Hence, problem (3.5) is a semidefinite programming problem

(SDP) equivalent to problem (3.3). We can solve problem (3.5) by standard SDP

solvers such as CVX [GB11].

59

3.4 Optimal Sizing by Convex Programming

In order to solve the sizing problem with large scalability, we first rewrite

problem (3.3) as below:

min
g:E→R+

λ

s.t.
∑
e∈E

g(e) = 1

λ ≥ Ruw, ∀w ∈ W (3.6)

Since the objective function and constrains of (3.6) are smooth, we can adopt

interior point method (see [BV04b],§11) or gradient descent method to solve it.

The main obstacle on efficiency of solving problem (3.6) is the time complexity of

evaluating the effective resistance and the derivative of effective resistance relative

to perturbation of wire widths. We will introduce a Krylov space method which

can compute the effective resistances between node u to all other nodes at the

same time in section 3.4.1. If the scale of the power grid is large, we evaluate

the derivative of effective resistance numerically by comparing effective resistances

for two adjacent conductances distribution. Otherwise, we introduce an efficient

method to gradually compute and update the derivative of effective resistance in

section 3.4.2.

3.4.1 Lanczos Algorithm for Objective Evaluation

In this section, we will adopt a modified Lanczos algorithm first introduced

in [Car10] to evaluate the effective resistance efficiently. First we define G̃ to be

the matrix obtained by deleting the row and column corresponding to node u in

the matrix G. Then the effective resistance Ruw is the diagonal element of G̃−1

corresponding to the node w. Hence evaluating the effective resistance Ruw for all

w ∈ W can be reduced into computing the diagonal elements of the inverse of G̃.

By computing the Krylov space of matrix G̃ up to the iteration m, we have the

following equation:

G̃Qm = QmTm + βm+1qm+1e
T
m, (3.7)

60

where Tm has the form

Tm =



α1 β2

β2 α2 β3

.

βm−1 αm−1 βm

βm αm


(3.8)

and Qm is a unitary matrix, and eTm is the unit vector with one at the mth position.

By the idea of the standard Lanczos algorithm, we can approximate the matrix G̃

as

G̃ ≈ QmTmQ
T
m (3.9)

Therefore, the calculation of the diagonal of the inverse of G̃ can be approximated

using the same expression:

diag(G̃−1) ≈ diag(QmT
−1
m QT

m) (3.10)

In order to evaluate the right-hand side of equation (3.10) efficiently, we decompose

the matrix Tm as:

Tm = LmDmL
T
m, (3.11)

where Lm is a matrix with the form:

Lm =



1 0

c1 1 0
.

cm−2 1 0

cm 1


(3.12)

and Dm is a diagonal matrix. The values of c1, c2, . . . , cm−1 and the diagonal

elements of Dm can be directly computed by the equation (3.11). Now we can

rewrite the diagonal terms of the inverse of G̃ as:

diag(G̃−1) ≈ diag((QmLmDmL
T
mQ

T
m)−1)

= diag(Qm(LTm)−1D−1
m L−1

m QT
m)

= diag(PmD
−1
m P T

m), (3.13)

61

where Pm = Qm(LTm)−1. Since the matrix Pm can be evaluated iteratively from

the process of the Lanczos algorithm [Car10] and D−1
m is a diagonal matrix, we can

efficiently obtain all diagonal elements of G̃−1 by computing the right-hand side of

equation (3.13).

3.4.2 Derivative of Effective Resistances

In this section, we will deduce a simple formula to evaluate the sensitivity

of effective resistance relative to perturbation of wire widths. Without loss of

generality, we assume u = vn and the matrix G̃ is equal to the matrix G with

the last row and column deleted. Let B be the matrix equal to A with the last

row deleted and we have G̃ = B ·Dg · BT . By the similar argument to obtain the

formula (3.4), we can deduce that

Ruw = eTw · G̃−1 · ew (3.14)

Let Ei,ε be the n × n matrix with ε being the ith diagonal term of E and zero

elsewhere. The derivative of Ruw relative to an edge conductance g(ei) can be

computed as:

∂Ruw

∂g(ei)

= lim
ε→0

eTw((B(Dg + Ei,ε)B
T)−1 − G̃−1)ew

ε

By the Sherman-Morrison formula, we can deduce that

(B(Dg + Ei,ε)B
T)−1

= (G̃+BEi,εB
T)−1

= (G̃+ ε~vi~vi
T)−1

= G̃−1 − ε(G̃−1~vi)(G̃
−1~vi)

T

1 + ε~vi
T G̃−1~vi

,

62

where ~vi denotes the ith column vector of B. Therefore, the derivative of Ruw

relative to g(ei) can be simplified as:

∂Ruw

∂g(ei)

= lim
ε→0

−eTw(G̃−1~vi)(G̃
−1~vi)

T ew

1 + ε~vi
T G̃−1~vi

= −(eTwG̃
−1~vi)(e

T
wG̃
−1~vi)

T

= −(eTwG̃
−1~vi)

2 (3.15)

In the process of optimization, we can update G̃−1 gradually by Woodbury matrix

identity. Suppose k conductances g(ei1), g(ei2), . . . , g(eik) have been changed in an

iteration of optimization, we define B̃ as the matrix B with columns i1, i2, . . . , ik

deleted and D̃g as the diagonal matrix formed by g(ei1), g(ei2), . . . , g(eik). Let

G̃o, G̃n be the matrix G̃ corresponding to the original and updated conductances

respectively. We can evaluate the inverse of G̃n from the inverse of G̃o as:

G̃−1
n

= (G̃o + B̃D̃gB̃
T)−1

= G̃−1
o − G̃−1

o B̃R−1B̃T G̃−1
o , (3.16)

where R = D̃−1
g + B̃T G̃−1

o B̃. Hence, the evaluation of formula (3.16) involves

computing the inverse of a k × k matrix R and multiplication of matrices whose

total time complexity is O(k3)+O(n2k) rather than O(n3) by evaluating the inverse

of G̃−1
n directly.

3.5 Experimental Results on Regular Grids

We assume a regular 2D grid has R rows and C columns, and u locates at the

top-right corner of the grid. We adopt the semidefinite programming formulation

(3.5) and the package CVX [GB11] to find the optimal solution. For the largest case

with 10 rows and 10 columns, the CVX solver takes 15 minutes and 82 iterations

to converge. Figure 3.1(a) and 3.1(b) gives the optimal conductances distribution

for 3× 10 and 10× 10 grids respectively. The blue nodes in these figures indicate

63

the wire segment endpoints and the width of each segment is proportional to the

conductance assigned to it. We can observe that most conductance resource has

been assigned to the top-right corner and bottom-left corner since the maximum

effective resistance is generally obtained from u to the bottom-left node. Figure 3.2

gives the effective resistance map from the top-right node to all other nodes. The

blue and green surfaces show the effective resistances for uniform and optimized

wire widths respectively. We observe that both surfaces achieve the largest effective

resistance at the bottom-left node and the green surface is below the blue surface

on every node. The green surface is totally flat which reflects the optimality of our

solution.

(a) Optimal wire widths (3× 10).

(b) Optimal wire widths (10×10).

Figure 3.1: Optimization result for regular 2D power grids.

0

5

10 0

5

10
0

100

200

300

400

500

600

Y Position
X Position

E
ffe

ct
iv

e
R

es
is

ta
nc

e

Figure 3.2: Effective resistances for a regular 10× 10 grid.

64

Table 3.1 compares the maximum effective resistance (i.e. maxw∈W Ruw) for

uniform conductances distribution (column “MaxR(uni)”) and for optimal conduc-

tances distribution (column “MaxR(opt)”). The column ’improvement’ indicates

the improvement on maximum effective resistance of the optimal solution relative

to uniform conductances distribution. We can see that for large R,C values, our

optimized sizing results can achieve up to 40% improvement over uniform sizing.

Table 3.1: Comparison for the maximum effective resistance

(R,C) MaxR(uni) MaxR(opt) improvement
(3,3) 18.00 16.00 11.11%
(4,4) 44.57 36.00 19.23%
(4,6) 85.95 64.00 25.54%
(6,4) 85.95 64.00 25.54%
(5,5) 85.45 64.00 25.11%
(5,7) 142.21 100.00 29.68%
(7,5) 142.21 100.00 29.68%
(3,10) 174.19 121.00 30.53%
(10,3) 174.19 121.00 30.53%
(6,10) 304.71 196.00 35.68%
(10,10) 542.10 324.89 40.07%

3.6 Experimental Results on Practical Networks

Figure 3.3 shows a practical power grid model with four metal layers which

are denoted by M1,M3,M6 and AP . The whole die size of this power grid is

200um× 200um. The network parameters including directions, pitches and initial

wire sizes of each layer are shown in Table 3.2. For each layer, wires are placed

in the corresponding direction with distance “Pitch” between two adjacent wires.

The wires in adjacent layers are connected by ideal vias with zero resistance on

intersection points. The initial wire widths for each layer is indicated in the column

“Initial Width” of Table 3.2, which is proportional to the initial conductance of

wires. In this setup, the number of wires for layers M1-AP are 81, 26, 11, 6 respec-

tively which is computed by (200/P itch+1). The total number of nodes for layers

65

M1-AP are 2106(81×26), 2392(81×26+26×11), 352(26×11+11×6), 66(11×6)

respectively.

Table 3.2: The network parameters of a power grid

Layer Direction Pitch Initial
Width

Width
Range

M1 Horizontal 2.5um 0.17um N/A
M3 Vertical 8.0um 0.25um N/A
M6 Horizontal 20um 4.2um 2um-

8um
AP Vertical 40um 10um 3um-

16um

For our power grid model, the voltage source (i.e. the node u) locates at

the top-right corner of layer AP . The current sources are distributed at layer M1,

i.e. the set W contains all nodes in M1. We can only tune wire widths of M6 and

AP with width range constraints indicated in Column “Width Range” of Table 3.2

in order to minimize the worst voltage drop.

Figure 3.3: A power grid model with four layers.

We program a convex programming solver in Matlab using gradient descent

method and run it on a machine with Intel Core i3 2.40GHz CPU and 4GB memory.

It takes 26 minutes and 70 iterations for our solver to converge to the optimal

solution within 0.1% relative error for the practical power grid. The peak memory

usage when running the solver is 321MB. Figure 3.4 gives the optimal sizing result

for our power grid model where red lines and green lines indicate the wire widths

66

of AP and M6 respectively. We can see that the middle wires become narrower

and the outside wires become wider for both layers after optimization. Figure

3.5 shows the voltage map on layer M1 of the sizing result corresponding to the

current distribution which generates the worst voltage drop, i.e. all current sources

gather at the origin in M1. The worst voltage drop for the optimized sizing result

is 0.2830V which is 7.32% improvement relative to the worst voltage drop 0.3054V

for the uniform sizing. Since the worst voltage drop is achieved on bottom-left

corner as opposed to the top-right voltage source, the whole width distribution

is symmetric. Figure 3.6 gives two more sizing results when the width range of

M6 and AP changes respectively and Table 3.3 lists the worst voltage drops for

different width range alternation. Figure 3.7 shows the worst voltage drops when

the area resource is transformed between layer M6 to AP. The “Adjust Percentage”

indicates the ratio of adjustment on M6. The curve is monotonically decreasing

which means that assigning more resource to M6 gives smaller worst voltage drop.

Figure 3.4: Sizing result for the practical power grid.

Figure 3.5: Voltage map of layer M1.

67

(a) M6 width range =

4um-6um.

(b) AP width range =

7um-12um.

Figure 3.6: Sizing result when width range changes.

Figure 3.7: Voltage drops for different area distributions.

Table 3.3: Comparison for different width ranges

Width
Range (M6)

Width
Range (AP)

Voltage
Drop

2um-8um 3um-16um 0.2830V
3um-7um 3um-16um 0.2855V
4um-6um 3um-16um 0.2891V
2um-8um 5um-14um 0.2858V
2um-8um 7um-12um 0.2888V
3um-7um 5um-14um 0.2885V
3um-7um 7um-12um 0.2920V
4um-6um 5um-14um 0.2927V
4um-6um 7um-12um 0.2967V

68

Chapter 3, in full, is a reprint of the material as it appears in IEEE In-

ternational Conference on ASIC 2011. Peng Du; Shih-Hung Weng; Xiang Hu;

Chung-Kuan Cheng, IEEE, 2011. The dissertation author was the primary inves-

tigator and author of this paper.

Chapter 4

Optimization for dynamic power

distribution network

In this chapter, we propose a whole flow for early-stage verification and op-

timization of dynamic power distribution network. The verification part generates

the worst current profile satisfying duty-cycle constraints, group magnitude con-

straints and transition time constraints which makes the prediction more realistic.

The optimization part optimizes the worst violation area by allocating decoupling

capacitors (Decap) and controlled equivalent series resistors (ESR). We run the

verification and optimization flow alternatively in order to find the best network

parameters which minimizes the worst violation area. An adjoint network tech-

nique is adopted to evaluate the sensitivity of the worst violation area relative to

current sources and network parameters. Then the sequential quadratic program-

ming method is adopted for solving the proposed non-linear programming problem.

In order to simulate the original network and adjoint network for large scale cir-

cuits, we introduce two methods including adaptive DFT and matrix exponential

which are much faster than SPICE library.

69

70

4.1 Problem Formulation

We consider the power grid noise as the violation area at a circuit node i,

which is defined as:

gi =

∫ T

0

(Vmin − vi(t))χ(vi(t) < Vmin)dt, (4.1)

where Vmin is a prescribed voltage lower bound, vi(t) is the voltage curve of node

i and χ is the indicator function. Our objective is to minimize the worst case

of the sum of violation areas over N output nodes by tuning Decap and ESR.

The worst case is evaluated subject to three type of constraints assumed for load

currents described as follows. Suppose there are n current sources denoted by

I1(t), I2(t), . . . , In(t) where t ∈ [0, T]. One class of constraints concerning the

burden of circuits with respect to time intervals [t0 = 0, t1], [t2, t3], . . . , [tm−1, tm =

T] is formulated as:

Ik(t) ≥ 0, 1 ≤ k ≤ n

I1(t) ≤ B1,1, . . . , In(t) ≤ B1,n, t ∈ [t0, t1]

I1(t) ≤ B2,1, . . . , In(t) ≤ B2,n, t ∈ [t1, t2]

.

I1(t) ≤ Bm,1, . . . , In(t) ≤ Bm,n, t ∈ [tm−1, tm], (4.2)

where Bi,j is the upper bound of Ij(t) on time interval [ti−1, ti]. In order to take

into account the correlation between current sources, we assume there are p groups

G1, G2, . . . , Gp ⊆ {1, . . . , n} such that the sum of currents in Gi is bounded above

by a constant Di, i.e. ∑
k∈Gi

Ik(t) ≤ Di, 1 ≤ i ≤ p (4.3)

Since the transition time of load currents is non-zero in practice, we add other

constraints for the slope of load currents as follows,

−Lk ≤
dIk(t)

dt
≤ Lk, 1 ≤ k ≤ n, (4.4)

71

where Lk is a constant upper bound.

We denote the amount of Decap and ESR at each candidate location i ∈
[1,M] by Ci and Ri respectively where M is the number of candidate locations.

For the power grid optimization, we choose Ci and Ri for every location so that

the worst voltage violation area with respect to three kinds of current constraints

discussed above is minimized. There are also budge constraint on total Decap and

space constraint on each location which is shown below:

M∑
i=1

Ci ≤ Q, (Decap budget constraint)

0 ≤ Ci ≤MC
i , (Space constraint on Decap)

0 ≤ Ri ≤MR
i , (Space constraint on ESR), (4.5)

where MC
i and MR

i for 1 ≤ i ≤ M are constant upper bound for Decap and ESR

on location i, respectively.

Let ~I(t) = (I1(t), . . . , In(t)), ~C = (C1, . . . , CM) and ~R = (R1, . . . , RM). We

define gi(~I(t), ~C, ~R) as the voltage violation area on node i with respect to these

three vectors. Therefore, the evaluation of worst case violation area when Decap

and ESR are fixed can be formulated as following optimization problem:

max
~I(t)

N∑
i=1

gi(~I(t), ~C, ~R)

s.t. Duty Cycle Constraints (4.2),

Group Magnitude Constraints (4.3),

Transition Time Constraints (4.4). (4.6)

We use gw(~C, ~R) = max~I(t)
∑n

i=1 gi(
~I(t), ~C, ~R) to denote the worst case noise ob-

tained from previous optimization problem and our final objective can be formu-

lated as:

min
~C,~R

gw(~C, ~R)

s.t.
M∑
i=1

Ci ≤ Q,

0 ≤ Ci ≤MC
i ,

0 ≤ Ri ≤MR
i . (4.7)

72

4.2 The Overall Flow

PDN

Topology

PDN

Parameters

(Initial and)

Current

Sources

(Initial)

Evaluate

Output current

,)(
w
Cg R
� �

C
�

R
�

()I t
�

Evaluate sensitivity SP of

relative to

by adjoint network

Update with respect

to SP in order to

achieve smaller total

violation area

SP = 0 ?

Yes

,C R
� �

,)(
w
Cg R
� �

,C R
� �

No

,C R
� �

Figure 4.1: The overall flow of worst noise optimization.

The whole flow of our worst noise optimization is shown in Figure 4.1.

The input of the optimization procedure is a PDN netlist which includes PDN

topology, initial Decaps ~C, ESRs ~R and current sources ~I(t). We first evaluate

the worst total violation area gw(~C, ~R) with current sources satisfying constraints

(4.2),(4.3),(4.4) and ~C, ~R fixed. The detail of computing gw(~C, ~R) is shown in

Figure 4.2. Secondly, we fixed the current sources achieving gw(~C, ~R) and evaluate

the sensitivity of gw(~C, ~R) relative to ~C, ~R by adjoint network. Finally, we update

~C, ~R corresponding to the sensitivity under constraints (4.5) and finish the opti-

mization process until zero sensitivity is obtained. In practice, we adopt sequential

quadratic programming method to find best possible ~C and ~R.

Figure 4.2 describes the flow of evaluating gw(~C, ~R). At first, we construct

a PDN network based on current ~C, ~R and obtain the total voltage violation area

G =
∑N

i=1 gi(
~I(t), ~C, ~R) by simulation. After that, we compute the sensitivity of

G relative to ~I(t) and update ~I(t) correspondingly to achieve worse total violation

area. The process continues until zero sensitivity is achieved and we return current

73

Reconstruct the PDN

network with current

Decap and ESR values

Evaluate by simulation

Evaluate sensitivity SI of

relative to by adjoint

network

Update with respect

to SI in order to achieve

larger total violation area

SI = 0 ?

No

Yes

1

(,() ,)
N

i

i

I t C Rg
=

∑
�� �

1

(,() ,)
N

i

i

I t C Rg
=

∑
�� �

()I t
�

()I t
�

Return current
1

(,() ,)
N

i

i

I t C Rg
=

∑
�� �

Figure 4.2: The flow of predicting worst noise.

G as gw(~C, ~R) which is the worst total voltage violation area.

4.3 Sensitivity Evaluation by Adjoint Network

In this section, we deduce the formulas for evaluating sensitivities of volt-

age violation area gi(~I(t), ~C, ~R) relative to ~I(t), ~C and ~R respectively by adjoint

network approach. We define SB to be the set of all branches of the power grid.

For each B ∈ SB, we use vB(t), iB(t) and ṽB(t), ĩB(t) to denote the voltage and

current of branch B in original network and adjoint network respectively.

• Sensitivity of gi(~I(t), ~C, ~R) with respect to ~I(t) :

As in Figure 4.3, our objective is to evaluate the sensitivity of violation

area gi of voltage vi(t) in branch B2 relative to the current source Ij(t) in

branch B1. We first add a variation ∆Ij(t) to the current source Ij(t) which

forms the original network in Figure 4.3(a). The adjoint network shown in

Figure 4.3(b) is constructed by adding a current source −χ(vi(T − t) < Vmin)

in branch B2 and leaving the branch B1 open. Note that χ indicates the

74

... ...

... ...

vi(t)Ij(t)+ Ij(t)

... ...

... ...

B1 B2

+

-

(a) Original network.

... ...

... ...

... ...

... ...

B1 B2

- (vi(T-t)<Vmin)

open

+

-

(b) Adjoint network.

Figure 4.3: Sensitivity calculation relative to ~I(t).

characteristic function. Now we have the following two formulas concerning

the branch voltages and currents in branches B1 and B2.∫ T

0

(ṽB1(T − t)iB1(t)− vB1(t)̃iB1(T − t))dt

=

∫ T

0

ṽB1(T − t)(Ij(t) + ∆Ij(t))dt

=

∫ T

0

ṽB1(T − t)Ij(t)dt

+

∫ T

0

ṽB1(T − t)∆Ij(t)dt (4.8)

∫ T

0

(ṽB2(T − t)iB2(t)− vB2(t)̃iB2(T − t))dt

=

∫ T

0

vi(t)χ(vi(t) < Vmin)dt

=

∫ T

0

Vminχ(vi(t) < Vmin)dt− gi (4.9)

By applying Tellegen’s theorem, we have∑
B∈SB

∫ T
0

(ṽB(T − t)iB(t)

− vB(t)̃iB(T − t))dt = 0. (4.10)

By plugging 4.8 and 4.9 into 4.10, we obtain

gi =

∫ T

0

ṽB1(T − t)∆Ij(t)dt+M1 (4.11)

75

Therefore, the sensitivity of gi relative to Ij(t) can be derived as

∂gi
∂Ij(t)

= ṽB1(T − t), ∀t ∈ [0, T] (4.12)

• Sensitivity of gi(~I(t), ~C, ~R) with respect to ~C, ~R :

... ...

... ...

vi(t)

... ...

... ...

B1 B2

+

-

Rk+ Rk B3Cj+ Cj

(a) Original network.

... ...

... ...

... ...

... ...

B1 B2

+

-

Rk B3Cj

- (vi(T-t)<Vmin)

(b) Adjoint network.

Figure 4.4: Sensitivity calculation relative to ~C, ~R.

In order to evaluate the sensitivities of violation area gi of voltage vi(t) in

branch B2 relative to Decap Cj in branch B1 and ESR Rk in branch B3, we

construct the original network and adjoint network as in Figure 4.4(a) and

4.4(b) respectively. By the similar argument as previous section, we have

gi = −ṽB1(T)Cjv
B1(0)

+

∫ T

0

ṽB1(T − t)v̇B1(t)∆Cjdt

−
∫ T

0

iB3(t)̃iB3(T − t)∆Rkdt, (4.13)

and the sensitivities are derived as

∂gi
∂Cj

=

∫ T

0

ṽB1(T − t)v̇B1(t)dt (4.14)

∂gi
∂Rk

= −
∫ T

0

iB3(t)̃iB3(T − t)dt (4.15)

76

4.4 Adaptive DFT Method for Circuit Simula-

tion

In this section, the adaptive simulation method based on DFT is introduced.

A PDN is usually extracted as a linear circuit model which contains resistors

(R’s), inductors (L’s), capacitors (C’s), and independent and dependent sources.

The switching currents of load transistors are usually modeled as input current

sources. The current profiles are extracted based on the switching activities of

the load circuits and are usually given as a set of discrete values at uniform time

points.

The basic DFT flow is the core of the adaptive simulation method. Fig-

ure 4.5 describes the basic DFT flow which computes the output voltage for the

input with a frequency range of [Fl, Fu] and a period of T . The input is the

frequency-domain current which is converted from the time-domain input current

by using DFT. A complex matrix is generated from the PDN linear circuit at each

frequency sampling point. Then the complex matrix is solved at each frequency

point to obtain the frequency-domain voltage response of the output. Finally, the

time-domain output voltage is obtained by applying inverse DFT (IDFT) to its

frequency-domain representation.

k1f0=Fl k2=k1+1 knf0=Fu
Parallel Processing

Matrix Solver

IDFT

Input current I(f) PDN linear model

I(kf0) Modified Nodal

Analysis Matrix A(kf0)
V(k1) V(k2) V(kn)

A(kf0) • V(kf0) = I(kf0)

PDN output voltage response v(t)

Figure 4.5: Compute output v(t) in [Fl, Fu] with period T , where f0 = 1/T and

Fl ≤ kf0 ≤ Fu.
Based on the wrapping effect of DFT, enough padding zeros must be added

at the end of the original input in order to eliminate the wrap-around effect. The

number of padding zeros can be very large depending on the system characteristics

of the PDN. In addition, a small time interval has to be used to cover the whole

77

frequency range of the input current. This means that if we compute the output

for the whole frequency range, the total number of sampling points to be solved

will be large and the simulation time will be long.

Figure 4.6 illustrates the adaptive flow to address the problem above. The

basic idea is to obtain the different parts of the output voltage by simulating the

PDN with different periods and sampling intervals of the input. The tail of the

PDN output voltage is always a low-frequency oscillation due to the “low-pass”

nature of power distribution networks. This means that even though the period

needs to be long, the tail can be captured accurately with a large sampling interval.

For the main part of the output, a small sampling interval is needed to cover the

whole frequency range of the input. However, the period can be short since the

wrap-around effect can be canceled out by subtracting the captured tail from the

output. With recursive partition, the total number of sampling points can be

reduced significantly with little loss of accuracy.

Compute output vi(t) in [0, FreqUpBd[i]] with Period[i]

FreqUpBd[i] > 0?

Initialize Period[0], Interval[0]

Tail of vi(t) < ε1?

FreqUpBd[i+1] = 1 / Interval[i+1]

FreqUpBd[i+1] = 0Compute Interval[i+1] based on vi(t)

Compute Period[i+1] based on vi(t)

For each 0<=j<i, erase the wrap around effect of

vi([Period[i-1], Period[i]]) on vj(t)

Output v0(t)

FreqUpBd[0]= 1 / Interval[0], i = 0

Input current I(f) in frequency domain

i=i+1

NO

YES

YESNO

i=i-1

i > 0?
YES

NO

Figure 4.6: Adaptive DFT flow for PDN simulation.

78

4.4.1 Discrete Fourier Transform

Given an input current i(tn) with N discrete values at evenly spaced time

points, i.e., tn = nt0 for n = 0· · ·N − 1, where t0 is the time interval. Its discrete

Fourier transform can be represented as

I(fk) =
1

N

N−1∑
n=0

i(tn)e−j2πnk/N , k = 0· · ·N − 1. (4.16)

The input current is usually time limited, which means that beyond the duration

of the input data the current is zero. The DFT equation implies that the input

is extended to a periodic function iT (tn) with a period T , where T = Nt0, i.e.,

iT (tn+NT) = i(tn) for arbitrary integer n. The discrete Fourier transform of iT (tn),

IF (fk), is also periodic with period F , where F = 1/t0 = N/T . In Eqn.(4.16), I(fk)

is the value of IF (fk) within one period. It has N distinct values at evenly spaced

frequency points fk, i.e., fk = kf0 for k = 0· · ·N − 1, where f0 = 1/T = F/N .

The input of the adaptive flow, i.e., I(f), is the frequency-domain current,

which is converted by using DFT from the original input current with an enough

number of padding zeros, i.e., a long enough period T . This current is regarded as

the reference input since its interval in both time-domain and frequency-domain is

small enough. At each call of the “output computation” as shown in Figure 4.5,

the frequency-domain information of the input can be simply obtained from the

reference input based on the period T and sampling interval t0.

Similarly, inverse discrete Fourier transform (IDFT) is used to convert

the frequency-domain voltage response back to time domain, as represented in

Eqn.(4.17):

v(tn) =
N−1∑
k=0

V (fk)e
j2πnk/N , n = 0, . . ., N − 1. (4.17)

4.4.2 Matrix Solver in Frequency Domain

Given the circuit netlist extracted from the PDN model, a matrix is gener-

ated and a set of linear equations in frequency domain can be established as

A(f)x(f) = b(f), (4.18)

79

where A(f) is the generated complex matrix, x(f) is a vector containing the volt-

age at each node of the PDN, and b(f) is a vector which includes the input cur-

rent sources. By solving these linear equations, frequency-domain nodal voltage

responses of the PDN can be obtained.

In this section, modified nodal analysis (MNA) is used to generate the

matrix. With modified nodal analysis, the matrix can be generated by a simple

stamping process. For circuit elements with frequency dependent values, simply

stamping the corresponding values to the matrix can obtain the MNA matrix at

each frequency sample point fk.

Various efficient and robust linear matrix solvers can be used to solve the

equations. For the cases with small matrix size, direct matrix solvers such as KLU

are good choices. However, the computation time of direct matrix solvers becomes

unacceptably long for large matrix sizes. In those cases, linear iterative solvers

can be applied, such as Generalized Minimal Residual (GMRES) and Conjugate

Gradient (CG). To have faster convergence, preconditioners such as Incomplete LU

(ILU) are applied before solving the matrix. Since the process of solving the matrix

at each frequency point is totally independent of each other, parallel computation

can be applied.

4.4.3 Adaptive Flow for Frequency Partition

In this subsection, the adaptive flow is described in details. As shown in Fig-

ure 4.6, The flow starts with initial “Period[0]”, “Interval[0]” and “FreqUpBd[0]”,

where “Period[i]”, “Interval[i]” and “FreqUpBd[i]” denote the period of the in-

put, the sampling interval and the upper bound of the input frequency range at

each iteration, respectively. Note that Interval[i] = 1/FreqUpBd[i]. At each it-

eration, an tentative time-domain output vi(t) is computed within the frequency

range of [0,FreqUpBd]. The upper bound of the frequency range and the sampling

interval for the next iteration, i.e., FreqUpBd[i + 1] and Interval[i + 1], are ob-

tained by estimating the oscillation frequency of the tail of vi(t). The period for the

next iteration, i.e., Period[i+ 1] can also be obtained by estimating the damping

rate of the oscillation at the end of vi(t). Based on Interval[i+1] and Period[i+1],

80

the flow goes to the next iteration and the lower-frequency part in the range of

[0, F reqUpBd[i + 1]] is processed. The iteration ends when FreqUpBd[i + 1] is

equal to FreqUpBd[i] or zero. Each iteration captures the tail that oscillates with

one resonant frequency of the PDN. Then starting from the last iteration, the tail

obtained at each iteration is subtracted from the output obtained from the previ-

ous iterations. In this way, the wrap-around effect in the output of each iteration

is eliminated. The final result is obtained by the combination of the output at the

first iteration and the tails obtained at the following iterations.

4.4.4 Time Complexity

From the flow description above it can be seen that the period and sampling

interval used for the output computation at each iteration is adjusted dynamically.

Although the period needed to capture the lower-frequency tail may be longer, the

sampling interval can be larger. Thus, we do not have to use the smallest interval

and longest period for the calculation over entire frequency range. And the total

simulation time can be reduced.

The simulation time of the flow is determined by the total number of sam-

pling points solved. Let Ti and ∆ti denote the period and sampling interval at

each iteration, respectively. The time complexity of the adaptive flow is

Adaptive flow time complexity = O(
k−1∑
i=0

(Ti/∆ti)), (4.19)

where k is the number of iterations. In Eqn.(4.19), T0 < T1 < · · · < Tk−1, and

∆t0 < ∆t1 < · · · < ∆tk−1. On the other hand, the time complexity of the non-

adaptive DFT flow is

Non-adaptive flow time complexity = O(Tk−1/∆t0)). (4.20)

Usually even the highest resonant frequency of the PDN is in the range of 100MHz,

which is much smaller than the frequency range of the input. Thus, ∆ti, i =

1, . . . , k − 1, can be much larger than ∆t0, resulting in a significant reduction in

the adaptive flow simulation time.

81

4.5 Matrix Exponential Method for Circuit Sim-

ulation

In this section, we propose an explicit numerical integration method by ma-

trix exponential to perform the transient analysis without suffering the stability

issue. Instead of using traditional polynomial approximation for the numerical

integration, our method uses the numerical solution of the ordinary differential

equations of the circuit to avoid the stability problem and keep the accuracy. We

devise a matrix partition algorithm to reduce the computation time of matrix ex-

ponential and keep sparsity of the partitioned matrices. Our numerical integration

method can still have the efficiency of explicit methods by the spare matrix-vector

multiplication.

4.5.1 Circuit Status Equation

In this section, we present a numerical solution of ordinary differential

equations of the circuit, and also show the benefits of this numerical solution. In

general, we can express an electronic circuit using ordinary differential equations

in time domain as follows:

Ċx(t) = Gx(t) + b(t), (4.21)

where the x(t) is the vector of nodal voltages and branch currents, b(t) is the

input voltage and current sources, G is the matrix describing the resistances and

incidence between voltages and currents, and C describes capacitances and induc-

tances [TWKA06].

The exact solution of equation (4.21) can be derived as

x(t) = eAt
∫ t

t0

e−Aτu(τ)dτ + eA(t−t0)x(t0), (4.22)

where A is C−1G, and u(t) is C−1b(t). Because the analytic form of the exact

solution is difficult to obtain, we approximate the solution by only calculating x(t)

for some discrete value of t. Therefore, in equation (4.22), we assume t0 = T and

82

t = T + h, then the equations can be rewritten as

x(T + h) = eAhx(T) + eA(T+h)

∫ T+h

T

e−Aτu(τ)dτ, (4.23)

where h is the chosen time step size. We can assume the value of each input source

is constant within every time step. Note that this assumption can be hold when

h is small enough. Thus, equation (4.23) can be approximated by the following

equation.

x(T + h) = eAhx(T) + (eAh − I)A−1u(T) (4.24)

Equation (4.24) shows a numerical solution of equation (4.21). By this equation,

we can have the voltage of a node at each time instant in an explicit way. This

numerical solution is A-stable because it will tend to a fixed point exponentially

when the eigenvalue of A is less than zero, which is usually hold for electronic cir-

cuits. Intuitively, this approximation is more accurate than forward and backward

Euler, because forward and backward Euler can be derived from approximating

eAh as (I + Ah) and (I−Ah)−1.

Figure 4.7 illustrates an example to demonstrate the benefits of equation

(4.24). The configuration of the circuit is: R1 = 0.1Ω , R2 = 50Ω , R3 = R4 =

0.03Ω , L = 45pH, C = 1fF , and Cgnd = 1pF. The input voltage ramps from 0V

to 1V and the transition time is 1ns. We apply forward Euler, backward Euler

and the numerical solution to perform transient analysis. Figure 4.8 shows the

numerical solution and forward Euler where the time step sizes are both 5×10−13.

The numerical solution is stable while forward Euler method causes a divergence.

Figure 4.9 shows a close look of the numerical solution and backward Euler. The

time step size of the numerical solution is also 5 × 10−13. We can see that the

result of backward Euler method is almost the same as of the numerical solution

only when step size is 1 × 10−14. The numerical solution is more accurate than

backward Euler.

Although the numerical solution is stable and accurate, there are two prob-

lems we have to overcome. First, computing exponential of a large scale matrix

is difficult. Even we can derive the matrix exponential, it is usually a full matrix

83

Figure 4.7: Example Circuit

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3
x 10

−7

Time (10−9 sec)

V
ol

ta
ge

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

0.5

1

1.5

2

2.5

3
x 10

−7

Time (10−9 sec)

V
ol

ta
ge

Numerical Solution

FE

Figure 4.8: Numerical Solution and Forward Euler

0.25 0.3 0.35 0.4 0.45

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

x 10
−7

Time (10−9 sec)

V
ol

ta
ge

Numerical Solution

BE (h=5x10−13)

BE (h=1x10−14)

Figure 4.9: Numerical Solution and Backward Euler

84

which increases the complexity of matrix multiplication. However, the basic oper-

ation of explicit methods is the matrix multiplication. Therefore, the performance

of explicit methods will significantly deteriorate with the matrix exponential.

Second, C−1 and A−1 are not easy to derive. Devgan and Rohrer [DR93]

proposed an method to handle C−1 without doing the matrix inverse. The matrix

C can be split into a diagonal matrix Λ and an off-diagonal matrix Nn. Then,

equation (4.21) can be rewritten as

Λẋ(T + h) = Gx(T + h) + [b(T + h) + Nnẋ(T)].

The term ẋ(T) has already known when we calculate the value of T + h. Because

Λ is a diagonal matrix, the inverse is just the reciprocal of its diagonal term. The

matrix A and vector u(t) can be expressed as

A = Λ−1G

u(t) = Λ−1[b(T + h) + Nnẋ(T)]

Although this method can avoid computing C−1, finding A−1 is still the bottleneck

in the numerical integration. We will present how we address these two problems

in next section.

4.5.2 Fast Explicit Numerical Integration Method

In this section, we first present a high-order and efficient matrix exponen-

tial computation method by a matrix partition algorithm. With our method, the

sparsity of the matrix can still be kept. Then, we show a fast numerical integra-

tion method by combining the matrix exponential method and an approximated

numerical solution.

In order to evaluate eAh where A is a sparse and large scale matrix, we first

consider the definition of exponent of matrices as below:

eAh = I + Ah+
(Ah)2

2!
+

(Ah)3

3!
+ . . . (4.25)

Since A may contain millions of rows and columns, it is hard to compute the power

of A efficiently in formula (4.25). The well-known Trotter decomposition

e(A1+A2)h = eA1heA2h +O(h2) (4.26)

85

gives a possible way to partition the matrix A = A1+A2 and approximates eAh by

the product of the exponential operators on the right-hand side in equation (4.26)

with correction terms of the second order of h. Here we use a better approximation

proposed in [HS05], whose correction terms are the fifth-order of h. At first, the

symmetrization of Trotter formula is defined as follows:

S2(h) ≡ e
A1h
2 eA2he

A1h
2 = e(A1+A2)h+R3h3+R5h5+..., (4.27)

where R3 and R5 denotes remainder terms with order 3 and 5 respectively. The

symmetrized approximant has the property

S2(h)S2(−h) = e
A1h
2 eA2he

A1h
2 e

−A1h
2 e−A2he

−A1h
2 = I (4.28)

which gives the reason of the vanishment of the even-order terms in the exponent

of the right-hand side of (4.27).

Now, let s be a constant to be determined later, we define the fourth-order

approximant for eAh by

S(h) ≡ S2(sh)S2((1− 2s)h)S2(sh)

= e(A1+A2)sh+R3s3h3+O(h5)

e(A1+A2)(1−2s)h+R3(1−2s)3h3+O(h5)

e(A1+A2)sh+R3s3h3+O(h5)

= e(A1+A2)h+[2s3+(1−2s)3]R3h3+O(h5) (4.29)

We can remove the term of h3 by assigning the parameter s to satisfy 2s3 + (1 −
2s)3 = 0, i.e. s = 1/(2 − 3

√
2). Furthermore, if A is partitioned into n matrices

where A = A1 + A2 + · · ·+ An, the similar argument also works by

S2(h) ≡ e
A1h
2 . . . e

An−1h

2 eAnhe
An−1h

2 . . . e
A1h
2 (4.30)

and S(h) = S2(sh)S2((1− 2s)h)S2(sh) is still a fourth-order approximant for eAh.

With the previous approximation, we can derive the matrix exponential

accurately by a product of exponent of matrices. It seems to require much time

and work to compute a group of matrix exponentials. In actually, we can elim-

inate the full matrix multiplication operation in the numerical solution by this

86

approximation. The eAhx(T) in equation (4.24) can be rewritten as

eAhx(T) = e
A1sh

2 . . . eAn(1−2s)h . . . e
A1sh

2 x(T).

If eAk is still a sparse matrix after an appropriate partition, then we can use

sparse matrix-vector multiplication to compute eAhx(T) iteratively. We would

like to mention that time complexity of sparse matrix-vector multiplication is low,

and our experimental results show the number of partitioned matrices is limited.

Therefore, by doing so, our method can derive matrix exponential efficiently.

Now, we present our strategy to partition A so that the evaluation of each

eAkh is as efficient as possible and still keeps the sparsity. By the definition of

matrix exponent in (4.25), the computation of powers of Ak becomes the essential

part of the time complexity to evaluate eAkh. Suppose Ak = [aij]1≤i,j≤m, we define

Ak({i, j}) to be a 2× 2 sub-matrix of Ak as

Ak({i, j}) ≡

(
aii aij

aji ajj

)
(4.31)

In our partition, we will choose Ak so that it can be decomposed into Ak =

Ak({i1, j1}) + · · · + Ak({is, js}) where the sets {i1, j1}, . . . , {is, js} are pairwise

disjoint.

We illustrate our partition strategy by a simple 4-by-4 matrix:

A =


a11 a13 a14

a22 a23 a24

a31 a32 a33

a41 a42 a44

 ,

87

which can be partitioned as: A = A1 + A2 + A3, where

A1 =


a11 a13

a22 a24

a31 a33

a42 a44

 ,

A2 =


a23

a32

 ,

A3 =


a14

a41

 .

The A1, A2 and A3 can be decomposed as

A1 = A1({1, 3}) + A1({2, 4})

A2 = A2({2, 3})

A3 = A3({1, 4}).

In the above example, we can find that the sparsity of each Ak is still kept even after

the computation of powers of matrix because every set is independent. Therefore,

with this partition strategy, the eAkh is still a sparse matrix.

In addition, our partition strategy can provide a fast matrix exponential

computation. The evaluation of exponent of Ak can be reduced into evaluation of

exponent of its pairwise disjoint sets separately. Let B be any 2 × 2 matrix with

Schur decomposition

B = U∗ΛU = U∗

(
λ α

0 µ

)
U, (4.32)

where U is unitary and λ, µ are eigenvalues of B. The exponent of B can be

88

computed as

eB = U∗eΛU = U∗


eλ α(eλ−eµ)

λ−µ

0 eµ

U (4.33)

We develop AlgorithmMatrixPartition to partition A into Ak’s with prop-

erties described above by using the union-find data structure. Line 1 in the pseudo-

code constructs a graph G(V,E) with V = {1, 2, . . . ,m} and (u, v) ∈ E if and only

if auv 6= 0. The SizeBound in line 2 gives the independent block size in each Ak

and usually we set it to two since the exponent of 2 × 2 matrices has the close

form (4.33). During each iteration between lines 4 and 14, we create an Ak by

adding elements to it greedily. The forest F initialized in line 6 represents our

union-find data structure. The function SetFriend(F, u, v, SizeBound) called in

line 8 set u and v to be in the same equivalent class and returns true if the size of

new class is less than or equal to SizeBound, otherwise the function returns false.

The matrix Euv used in line 9 is an m×m matrix with one in position (u, v) and

zero elsewhere. The correctness of our algorithm is clear and it runs in time O(|E|)
since the function SetFriend takes constant time by a general implementation of

union-find data structure.

4.5.3 Overall Numerical Integration Method

Now, we present an approximation for the numerical solution to avoid the

matrix inverse of A. The integrand of equation (4.23) can be approximated as

piecewise linear [CL75]. Thus, the new approximated numerical solution can be

expressed as

x(T + h) = eAhx(T) + eAh
h

2
u(T) +

h

2
u(T + h).

We combine the matrix exponential method with this approximation. The

eAh can be decomposed into a serial of sparse matrix exponential. Equation (4.34)

shows our numerical integration method.

x(T + h) = S(h)[x(T) +
h

2
u(T)] +

h

2
u(T + h). (4.34)

89

Algorithm 2: MatrixPartition

Input: An m×m sparse matrix A = [aij]

Output: Matrices A1, . . . ,An with A = A1 + · · ·+ An

Construct graph G(V,E) from nonzero elements of A;1

SizeBound=2;2

k=1;3

while E is not empty do4

Ak = 0;5

Set forest F with m nodes to be empty;6

for each (u, v) ∈ E do7

if SetFriend(F, u, v, SizeBound) then8

Ak = Ak + auvEuv;9

Delete (u, v) from E;10

end11

end12

k = k + 1;13

end14

90

We show the pseudo-code of our numerical integration method in Algorithm

NumericalIntegration. In the algorithm, Ttotal is the time we want to simulate

and ArrayMatrixExp is an array and store a group of matrix exponentials parti-

tioned by Algorithm MatrixPartition. The for-loop performs vector and matrix

multiplication, which is a fast computation.

Algorithm 3: NumericalIntegration

Input: A, u(t), x(0), h, and Ttotal

Output: x(t)

Partition A by Algorithm MatrixPartition;1

ArrayMatrixExp = S(h);2

t=0;3

while t < Ttotal − h do4

v = x(t) + h
2
u(t);5

for each matrix M in ArrayMatrixExp do6

v = Mv;7

end8

x(t+ h) = v + h
2
u(t+ h);9

t = t+ h;10

end11

Suppose the maximum number of non-zero elements of the matrices in

ArrayMatrixExp is m, and the number of input sources is n. The complexity of

our algorithm of each time step is O(|ArrayMatrixExp|mn). Though our method

needs to do |ArrayMatrixExp| times more matrix multiplication than forward

Euler, we can use larger step size without the stability issue and our method has

better performance in overall.

4.5.4 Stability and Error Analysis

In equation (4.34), S(h) must be less than 1 to guarantee the stability of

our method. Because the S(h) is the matrix exponential, the constraint can always

91

be satisfied when the eigenvalue of A is negative that usually is true in electronic

circuits. Thus, our method has no stability issue, and is A-stable.

For the error analysis, we estimate the numerical error of our method to the

numerical solution. The error is the difference between equation(4.34) and (4.24).

We assume S(h) = eAh +O(h5), and u(T) ≈ u(T + h). Then, by equation (4.25),

we expand the eAh of u term in both equations and rewritten them as:

(eAh − I)A−1u(T) = (h+
Ah2

2!
+

A2h3

3!
+ . . .)u(T)

S(h)
h

2
u(T) +

h

2
u(T + h) = (h+

Ah2

2
+

A2h3

2 · 2!
+ . . .)u(T)

The difference of x(T) and u terms are O(h5) and O(h3). Therefore, the overall

numerical error of our method is O(h3).

4.5.5 Comparison with Euler Method

We implemented our numerical integration method by matrix exponent

and then compared it with forward and backward Euler method. All methods are

written in MATLAB except the part of solving matrix in backward Euler method,

for which we use the KLU package [Dav06]. The experiments are performed on a

Linux machine with an Intel Xeon 3.0GHz processor and 16GB memory.

We use different on-chip power network designs as our benchmark circuits.

They are of mesh structure and the R, L and C parameters of the power network

are 0.87Ω/mm, 0.41nH/mm, and 1.08pF/mm, respectively. We also include the

package model in the designs where the lumped R and L are 10mΩ and 0.2pH.

First, we compare the stability of our method and forward Euler method.

The simulation results of a power network with 160, 000 nodes are shown in Figure

4.10. The step size h = 5 × 10−13 is used for both methods. However, this

step size is too large for forward Euler and cause divergence. Then, we applied

h = 1× 10−14 for forward Euler. The runtime of our method is 273.85 seconds. In

contrast, forward Euler method takes 722.11 seconds because it needs smaller time

step size to maintain the stability. Although the computation of forward Euler at

each time step is faster than our method which needs more matrix multiplications,

the stability issue damages this advantage of forward Euler.

92

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time(10−10 sec)

V
ol

ta
ge

our (h=5x10−13)

FE (h=1x10−14)

FE (h=5x10−13)

Figure 4.10: Comparison between our method and forward Euler

Figure 4.11 shows the result with different step sizes of the same power

network design by our method. The step sizes varies from 1× 10−12 to 1× 10−14.

We can find that our method is stable even under a wide range of step sizes.

The error of our method comes from the matrix exponential computation and

the approximation error of equation (4.34). Figure 4.12 shows a close look of the

results. The results of h = 1 × 10−13 and h = 1 × 10−14 are almost the same.

However, the error between h = 1× 10−12 and h = 1× 10−13 are noticeable. This

is because our error is proportional to the powers of the time step size.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Time (10−10 sec)

V
ol

ta
ge

h=1x10−12

h=8x10−13

h=5x10−13

h=1x10−13

h=1x10−14

Figure 4.11: Our method with different step sizes

93

0.4 0.42 0.44 0.46 0.48 0.5 0.52 0.54 0.56 0.58

0.41

0.42

0.43

0.44

0.45

0.46

0.47

0.48

0.49

0.5

0.51

Time (10−10 sec)

V
ol

ta
ge

h=1x10−12

h=8x10−13

h=5x10−13

h=1x10−13

h=1x10−14

Figure 4.12: A zoom-in view of figure 4.11

Finally, we compare our method with backward Euler method. Both meth-

ods use the same time step size of 5 × 10−14. Table 4.1 shows the runtime for

different power network designs. The size of the design is shown in the second col-

umn. Column 3 and 4 show the runtime of our method and backward Euler. The

last column shows the speedup over backward Euler. The number of partitioned

matrix is 7 for all cases. This is because the matrix of the circuit is sparse. We

only need a few matrices to represent the matrix A. The results show our method

is two times faster than backward Euler on average. Also, our method is more

scalable. For the designs with 3.2M and 4M nodes, KLU is failed on factorization.

Figure 4.13 shows the detail of results of our method and backward Euler of power

network design 1. As we can see, our method is more accurate than backward

Euler under the same step size. The result of backward Euler is close to ours only

when the time step goes down to 1× 10−14.

4.6 Nonlinear Programming Solver

We adopt the sequential quadratic programming (SQP) algorithm to solve

our non-linear programming problem 4.6 and 4.7. SQP algorithm is an iterative

method which utilizes Newton’s method and Karush-Kuhn-Tucker (KKT) condi-

tions to derive a general framework to handle non-linear optimization problems.

94

Table 4.1: Runtime of Our Method and Backward Euler Method

Circuit # of Nodes Our(sec) BE(sec) Speedup

Power network 1 160K 1602.68 3617.31 2.25

Power network 2 250K 2350.27 4947.41 2.11

Power network 3 360K 3235.11 6707.04 2.07

Power network 4 640K 5505.72 11654.24 2.12

Power network 5 1M 8364.33 15724.31 1.87

Power network 6 1.4M 11869.03 29072.41 2.4

Power network 7 3.2M 27083.53 fail N/A

Power network 8 4M 33258.37 fail N/A

0.24 0.25 0.26 0.27 0.28 0.29 0.3 0.31

0.325

0.33

0.335

0.34

0.345

0.35

0.355

Time(10−10 sec)

V
ol

ta
ge

BE (h=1x10−14)

BE (h=5x10−14)

BE (h=1x10−13)

our (h=5x10−14)

Figure 4.13: Results of Power Network Design 1

95

We first consider the following formulation of a optimization problem with only

equality constraints:

min
x∈Rn

f(x)

s.t. c(x) = 0 (4.35)

For an unconstraint optimization problem, we can use the first-order optimality

conditions ∇f(x) = 0 to solve a set of first-order optimal points x∗. In the case

of optimization problem with equality constraints as 4.35, KKT conditions state

that if x∗ is a local minimum of the problem 4.35 with regular conditions, then it

satisfies:

∇L (x, λ) = 0,

where L (x, λ) is the Lagrange duality function of problem 4.35 with definition:

L (x, λ) = f(x)− λT c(x)

We define g(x) ≡ ∇f(x), J(x) as the matrix of the Jacobian of constraints and

F (x, λ) ≡ ∇L (x, λ). The KKT condition can be written in the following matrix

form:

F (x, λ) =

(
g(x)− J(x)Tλ

−c(x)

)
= 0 (4.36)

We utilize the Newton’s method to solve the equation 4.36. In the kth iteration of

the Newton’s method, the following equation will be computed to obtain xk+1, λk+1

from xk, λk. (
xk+1

λk+1

)
=

(
xk

λk

)
+

(
∆xk

∆λk

)
, where

(
∆xk

∆λk

)
=
−F (x, λ)

F ′(x, λ)
(4.37)

Let H(x, λ) be the Hessian matrix of L (x, λ) on x, i.e. H(x, λ) = ∇xx
2L (x, λ).

We can represent the differentiation of F as the following formula:

F ′(x, λ) =

(
H(x, λ) −J(x)T

−J(x) 0

)
(4.38)

96

Let Hk, Jk, gk and ck be the evaluations of functions H(x, λ), J(x), g(x) and c(x) on

xk and λk. The iteration steps ∆xk and ∆λk in 4.37 can be computed by solving

the following equations:(
Hk −JTk
−Jk 0

)(
∆xk

∆λk

)
= −

(
gk − JTk λ
−ck

)
(4.39)

We scale the equation 4.39 and obtain a equivalent symmetric form:(
Hk JTk

Jk 0

)(
∆xk

−∆λk

)
= −

(
gk − JTk λk

ck

)
(4.40)

The next objective is to represent the equation 4.39 as a first-order optimality

conditions of an optimization problem by using the KKT conditions again. We

notice that λk+1 = λk + ∆λk and the equation 4.40 can be simplified as:(
Hk JTk

Jk 0

)(
∆xk

−λk+1

)
= −

(
gk

ck

)
(4.41)

We consider the following quadratic programming problem on d whose first-order

optimality conditions are exactly the equation 4.41, and ∆xk, λk+1 are the primal

and dual solution of the quadratic program.

min
d∈Rn

f(xk) + gTk d+
1

2
dTHkd

s.t. ck + JTk d = 0 (4.42)

The similar deduction can be applied for the general optimization problem with

inequality constraints. We write a formulation of these problems as follows:

min
x∈Rn

f(x)

s.t. c(x) = 0

h(x) >= 0 (4.43)

The Lagrange duality function of problem 4.43 is:

L (x, λ, µ) = f(x)− λT c(x)− µTh(x)

97

At the kth iteration with current primal solution xk and dual solutions λk, µk,

the SQP algorithm will update them based on the primal solution ∆xk and dual

solutions λk+1, µk+1 of the following quadratic optimization problem:

min
d∈Rn

L (xk, λk, µk) +∇L (xk, λk, µk)
Td+

1

2
dT∇2

xxL (xk, λk, µk)d

s.t. c(xk) +∇c(xk)Td = 0

h(xk) +∇h(xk)
Td ≥ 0 (4.44)

4.7 Experimental Results

Origin

Vdd

Figure 4.14: Power Network Model

Figure 4.14 shows the power network model for our experiments including

resistances, capacitances and current sources. The Vdd are placed at the top-

right corner of the power network with voltage 1V . The controlled-ESRs connect

adjacent network nodes and Decaps connect network nodes with the ground. Time-

varying current sources are placed at some nodes, characterizing the supply current

for active circuit instances. The waveform of current sources is assumed as a

piecewise linear function.

We implement our algorithms for simulation and SQP optimization by Mat-

lab on a machine with 3.0GHz Intel Xeon processor and 4GB memory. We consider

98

a power network with die size 0.4mm by 0.4mm and grid size 200 by 200. The

time range T and unit time ∇t are set to be 1ns and 5ps respectively. Four

current sources I1(t), I2(t), I3, I4(t) are placed on the network at the positions

(90, 0),(90, 90),(190, 0) and (190, 90) respectively with the transition time tr = 20ps

to increase/decrease 1A. The current sources satisfy the following duty cycle con-

straints and Group Magnitude Constraints:

• Time range [0ps, 200ps):

0 ≤ Ik(t) ≤ 1.0, 1 ≤ k ≤ 5

I1(t) + I2(t) ≤ 1.5,

I1(t) + I2(t) + I3(t) + I4(t) + I5(t) ≤ 3.0.

• Time range [200ps, 400ps):

0 ≤ Ik(t) ≤ 2.0, 1 ≤ k ≤ 5

I3(t) + I4(t) ≤ 3.0,

I1(t) + I2(t) + I3(t) + I4(t) + I5(t) ≤ 6.0.

• Time range [400ps, 600ps):

0 ≤ Ik(t) ≤ 1.0, 1 ≤ k ≤ 5

I1(t) + I3(t) ≤ 1.5,

I1(t) + I2(t) + I3(t) + I4(t) + I5(t) ≤ 3.0.

• Time range [600ps, 800ps):

0 ≤ Ik(t) ≤ 3.0, 1 ≤ k ≤ 5

I2(t) + I4(t) ≤ 4.0,

I1(t) + I2(t) + I3(t) + I4(t) + I5(t) ≤ 9.0.

99

0 20 40 60 80 100 120 140 160 180 200
3.85

3.9

3.95

4

Rows

R
es

is
ta

nc
e

(Ω
)

(a) Optimal row resistances.

0 20 40 60 80 100 120 140 160 180 200
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Columns

R
es

is
ta

nc
e

(Ω
)

(b) Optimal column resistances.

Figure 4.15: Optimal resistances distribution.

• Time range [800ps, 1000ps]:

0 ≤ Ik(t) ≤ 2.0, 1 ≤ k ≤ 5

I1(t) + I2(t) ≤ 3.5,

I3(t) + I4(t) ≤ 3.5,

I1(t) + I2(t) + I3(t) + I4(t) + I5(t) ≤ 6.0.

We optimize the voltage violation area with Vmin = −12V at the origin

(0, 0) by tuning resistances and capacitances. We assume resistors at the same row

or column have the same value with respect to the general technical constraint.

The resistors with the horizontal direction are initialized as 4.0Ω and tuned in

the range [2.0Ω, 6.0Ω]. The resistors with the vertical direction are initialized as

1.0Ω and tuned in the range [0.5Ω, 2.0Ω]. The capacitors connected with nodes

are initialized as 1pF and tuned in the range [0.1pF, 10pF].

Figure 4.15 shows the optimal resistance distribution for rows and columns

respectively. We observe that resistances become smaller when it is near the cur-

rent and voltage sources. Since the current sources locate at the top-left corner,

the row resistors are roughly decreasing except for the row 90 corresponding to

the current sources at (90, 0) and (90, 90). The three local minima of column re-

sistors reflect the current sources (90, 0)/(190, 0), (90, 90)/(190, 90) and the Vdd

100

0

50

100

150

200

0

50

100

150

200
1

2

3

4

5

6

7

8

9

10

x 10
−12

ColumnsRows

C
ap

ac
ita

nc
e

(F
)

Figure 4.16: Optimal capacitance distribution

101

0 100 200 300 400 500 600 700 800 900 1000

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

Time (ps)

C
ur

re
nt

 (
A

)

(a) Current source at (90, 0).

0 100 200 300 400 500 600 700 800 900 1000

0.8

1

1.2

1.4

1.6

1.8

2

2.2

Time (ps)

C
ur

re
nt

 (
A

)

(b) Current source at (90, 90).

0 100 200 300 400 500 600 700 800 900 1000

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

Time (ps)

C
ur

re
nt

 (
A

)

(c) Current source at (190, 0).

0 100 200 300 400 500 600 700 800 900 1000

0.8

1

1.2

1.4

1.6

1.8

2

Time (ps)

C
ur

re
nt

 (
A

)

(d) Current source at (190, 90).

Figure 4.17: The worst-case profiles of current sources.

correspondingly. Figure 4.16 illustrates the optimal capacitance at each node.

Generally, the capacitances with location near the current sources are larger. The

smallest capacitor locates at the Vdd position.

Figure 4.17 depicts the worst case current profile for each current source.

The trend of different current sources is nearly same because of the constraints on

five duty cycles. The currents for each duty cycle are distributed into four current

sources in order to generate the worst case violation area of voltage. Figure 4.18

compares the voltage waveform at the origin before and after optimization. We

observe that the violation area has been reduced significantly. Through the optimal

102

0 100 200 300 400 500 600 700 800 900 1000
−21

−20

−19

−18

−17

−16

−15

−14

−13

−12

−11

Time (ps)

V
ol

ta
ge

 (
V

)

Before optimization
After optimization

Figure 4.18: Voltage profile at the origin.

distribution of resistors and capacitors, we also improve the worst voltage drop by

33.80% relative to the uniform distribution.

Chapter 4, in part, is currently being prepared for submission for publication

of the material. Peng Du; Shih-Hung Weng; Xiang Hu; Chung-Kuan Cheng. The

dissertation author was the primary investigator and author of this material. The

section four, in part, is a reprint of the material as it appears in Asia and South

Pacific Design Automation Conference(ASPDAC) 2010. Xiang Hu; Wenbo Zhao;

Peng Du; Amirali Arani; Chung-Kuan Cheng, IEEE, 2010. The dissertation author

was a cooperative author of this paper. The section five, in part, is a reprint of the

material as it appears in IEEE Symposium on Circuits and Systems(ISCAS) 2011.

Shih-Hung Weng; Peng Du; Cheng-Kuan Cheng, IEEE, 2011. The dissertation

author was a cooperative author of this paper.

Chapter 5

Conclusion

In this thesis, we develop a whole flow of power network verification and

optimization at planning stages. We take the worst case voltage drop (or voltage

violation area) as the objective since it degrades the timing performance and re-

liability of circuits. The verification problem asks for predicting the voltage noise

subject to certain current constraints. The optimization problem asks for tuning

circuit parameters (e.g. resistances and capacitances) in order to minimize the

voltage noise.

Based on the prior knowledge of impulse response, we propose a dynamic

programming algorithm to predict the worst case voltage drop and extend it to

multiple current sources with hierarchical constraints. More algorithms including

network flow and submodular flow are adopted to handle the cases with more com-

plicated current constraints than hierarchical constraints. These methods are much

more efficient than the trivial linear programming formulation of the verification

problem.

If the information about impulse response is not available, we devise a

framework for solving both the verification problem and optimization problem

alternatively by computing the sensitivity via adjoint network approach. Fast

circuit simulation methods are developed in order to run the non-linear program

solver efficiently. This frame work can handle complicated current constraints

including duty-cycle constraints, group magnitude constraints and transition time

constraints.

103

104

For the pure resistance network, we reduce the optimization problem into a

convex programming problem by relating the worst case voltage drop with the ef-

fective resistance in the network. We adopt a fast Krylov space method to evaluate

the effective resistance and derive a closed-form formula to update the derivative

of effective resistance relative to resistances gradually. The solver of convex pro-

gramming is much faster than that of non-linear programming and we can obtain

the global optimal solution for this problem.

5.1 Power Network Verification

We divide the power network verification problem into two cases where sin-

gle current source and multiple current sources are assumed respectively. For both

cases, we handle load currents with non-zero transition time and require only a

one-time simulation of the PDS impulse response. In Chapter 2.1, we propose a

dynamic programming algorithm to generate worst case noise and accelerate it us-

ing a Knuth-Yao Quadrangle Inequalities Speedup. With the proposed approach,

the worst-case noise behavior with respect to the transition time has been studied.

The worst-case noise decreases with the transition time, which demonstrates that

assuming a zero transition time will lead to an overly pessimistic worst-case noise

prediction. In Chapter 2.2, we extend the dynamic programming algorithm into

multiple current sources satisfying the hierarchical constraints. Furthermore, we

argue that the hierarchical constraints can be treated as a special case of submod-

ular polyhedron constraint where the dynamic programming algorithm still works.

In order to handle the case where current sources have more general magnitude

and slope constraints, we introduce to methods via network flow and submodular

flow techniques which are much faster than naive linear programming solution.

5.2 Power Network Optimization

For the resistance power network, we propose a power grid sizing method

to minimize the worst voltage drop over all test locations and current source dis-

105

tributions. We reduce the original problem into a convex programming problem

whose objective is to minimize the maximum effective resistance between the cur-

rent entry node and all current exit nodes under the constraint of constant total

wire area. In order to solve the convex programming problem efficiently, we adopt

a Krylov space method to evaluate the effective resistances simultaneously and

deduce a simple formula to update the derivative of effective resistance relative to

perturbation of wire widths gradually. Experimental results show that our method

can achieve up to 40% improvement for regular 2D grids and 7.32% improvement

for a practical power grid with only top two layers tunable over uniform sizing. In

addition, the proposed optimization method can also be applied to power grids in

the real world, which are required to have small effective resistances among power

stations for reducing the power losses during long distance transmission.

For the dynamic power distribution network, we develop an adjoint network

approach to perform early stage verification and optimization. The method assume

multiple current sources with duty-cycle constraints, group magnitude constraints

and transition time constraints which makes the prediction more realistic. More-

over, the worst violation area is optimized by allocating decoupling capacitors and

controlled equivalent series resistors. The flow handles the verification and opti-

mization problems alternatively where the adjoint network technique is used to

evaluate the sensitivity of different objectives. Finally, the sequential quadratic

programming method is adopted for solving the proposed non-linear programming

problem. We also propose two fast circuit simulation methods including adap-

tive DFT and matrix exponential in order to obtain the properties of original and

adjoint network efficiently.

Bibliography

[AMO93] R. Ahuja, T. Magnanti, and J. Orlin. Network Flows: Theory, Algo-
rithms, and Applications. Prentice Hall, 1993.

[BV04a] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge Uni-
versity Press, 2004.

[BV04b] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge Uni-
versity Press, 2004.

[Car10] P. Carrier. Diagonal of inverse of real symmetric and complex diagonal
matrices using Lanczos. In Personal notes, February 2010.

[CL75] L. O. Chua and P. M. Lin. Computer Aided Analysis of Electric Cir-
cuits: Algorithms and Computational Techniques. Prentice-Hall, 1975.

[CLRS01] T. Cormen, C. Leiserson, R. Rivest, and C. Stein. Introduction to
Algorithms (Second ed.). MIT Press and McGraw-Hill, 2001.

[Dav06] T. A. Davis. Direct Method for Sparse Linear Systems. SIAM, 2006.

[DHW+10] P. Du, X. Hu, S. H. Weng, A. Shayan, X. Chen, A. E. Engin, and
C. K. Cheng. Worst-Case Noise Prediction With Non-zero Current
Transition Times for Early Power Distribution System Verification. In
IEEE International Symposium on Quality Electronic Design, 2010.

[DR93] A. Devgan and R. A. Rohrer. Event driven adaptively controlled ex-
plicit simulation of integrated circuits. In ICCAD ’93: Proceedings
of the 1993 IEEE/ACM International Conference on Computer-Aided
Design, pages 136–140, 1993.

[EGG88] D. Eppstein, Z. Galil, and R. Giancarlo. Speeding up Dynamic Pro-
gramming. In In Proc. 29th Symp. Foundations of Computer Science,
pages 488–496, 1988.

[FCN08] I. A. Ferzli, E. Chiprout, and F. N. Najm. Verification and Co-design
of the Package and Die Power Delivery System Using Wavelets. In
Electrical Performance of Electronic Packaging, pages 7–10, 2008.

106

107

[FLH+04] J. Fu, Z. Luo, X. Hong, Y. Cai, S. Tan, and Z. Pan. A fast decoupling
capacitor budgeting algorithm for robust on-chip power delivery. In
Asia and South Pacific Design Automation Conference, pages 505–510,
January 2004.

[FNK07] I. A. Ferzli, F. N. Najm, and L. Kruze. A Geometric Approach for Early
Power Grid Verification Using Current Constraints. In ACM/IEEE
International Conference on Computer-Aided Design, pages 40–47,
November 2007.

[Fuj05] S. Fujishige. Submodular Functions and Optimization. Elsevier Science,
2005.

[GB11] M. Grant and S. Boyd. Cvx: Matlab software for disciplined convex
programming, Feb 2011. http://cvxr.com/cvx/.

[GBS06] A. Ghosh, S. Boyd, and A. Saberi. Minimizing effective resistance
of a graph. In Proceedings of the 17th International Symposium on
Mathematical Theory of Networks and Systems, 2006.

[GK06] P. Gupta and A.B. Kahng. Efficient design and analysis of robust
power distribution meshes. In VLSI Design, 2006. Held jointly with
the 5th International Conference on Embedded Systems and Design,
page 6. IEEE, 2006.

[GN09] N. H. Abdul Ghani and F. N. Najm. Fast Vectorless Power Grid
Verification Using an Approximate Inverse Technique. In ACM/IEEE
Design Automation Conference, pages 184–189, July 2009.

[HS05] N. Hatano and M. Suzuki. Finding exponential product forumulas of
higher orders. Lecture Notes in Physics, 679:36–68, 2005.

[HZZ+09] X. Hu, W. Zhao, Y. Zhang, A. Shayan, C. Pan, A. E. Engin, and C. K.
Cheng. On the Bound of Time-Domain Power Supply Noise Based on
Frequency-Domain Target Impedance. In System Level Interconnect
Prediction Workshop, pages 69–76, July 2009.

[JC] J. K. Johnson and M. Chertkov. A majorization-minimization ap-
proach to design of power transmission networks.

[KN03] D. Kouroussis and F. N. Najm. A Static Pattern-Independent Tech-
nique for Power Grid Voltage Integrity Verification. In ACM/IEEE
Design Automation Conference, pages 99–104, June 2003.

[LQT+06] H. Li, Z. Qi, S. Tan, L. Wu, Y. Cai, and X. Hong. Partitioning-based
approach to fast on-chip decap budgeting and minimization. IEEE
Transactions on CAD, 25(11):2402–2412, November 2006.

108

[PMF08] M. Popovich, A. V. Mezhiba, and E. G. Friedman. Power Distribution
Networks with On-Chip Decoupling Capacitors. Springer, 2008.

[PSKF08] M. Popovich, M. Sotman, A. Kolodny, and E. G. Friedman. Effective
Radii of On-Chip Decoupling Capacitors. IEEE Transaction on Very
Large Scale Integration Systems, 16(7):894–907, July 2008.

[S.B06] S.Boyd. Convex Optimization of Graph Laplacian Eigenvalues. In
Proceedings International Congress of Mathematicians, pages 1311–
1319, 2006.

[SGS03] H. Su, K. Gala, and S. Sapatnekar. Analysis and optimization of
structured power/ground networks. IEEE Transactions on CAD,
22(11):1533–1544, November 2003.

[SPKF05] M. Sotman, M. Popovich, A. Kolodny, and E. G. Friedman. Leveraging
Symbiotic On-Die Decoupling Capacitance. In IEEE Top. Meet. Elect.
Performance of Electronic Packaging, pages 111–114, October 2005.

[SSN03] H. Su, S. Sapatnekar, and S. Nassif. Optimal decoupling capacitor siz-
ing and placement for standard-cell layout designs. IEEE Transactions
on CAD, 22(4):428–436, April 2003.

[SVGY01] S.Boyd, L. Vandenberghe, A. El Gamal, and S. Yun. Design of Robust
Global Power and Ground Networks. In Proceedings ACM Symposium
on Physical Design, pages 60–65. ACM, 2001.

[TWKA06] Y. Tanji, T. Watanabe, H. Kubota, and H. Asai. Large scale rlc circuit
analysis using RLCG-MNA formulation. In DATE ’06: Proceedings
of the Conference on Design, Automation and Test in Europe, pages
45–46, 3001 Leuven, Belgium, Belgium, 2006. European Design and
Automation Association.

[VBG98] L. Vandenberghe, S. Boyd, and A. El Gamal. Optimizing dominant
time constant in RC circuits. Computer Aided Design, IEEE Transac-
tions on, 17(2):110–125, 1998.

[WC02] T.Y. Wang and C.C.P. Chen. Optimization of the power/ground net-
work wire-sizing and spacing based on sequential network simplex al-
gorithm. In Proceedings of the International Symposium on Quality
Electronic Design, pages 157–162. IEEE, 2002.

[WMS05] K. Wang and M. Marek-Sadowska. On-chip power-supply network
optimization using multigrid-based technique. Computer-Aided Design
of Integrated Circuits and Systems, IEEE Transactions on, 24(3):407–
417, 2005.

109

[Yao80] F. Frances Yao. Efficient Dynamic Programming Using Quadrangle
Inequalities. In Twelfth Annual ACM Symposium on Theory of Com-
puting, pages 429–435, 1980.

