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ABSTRACT OF THE THESIS

Interaction-Powered Internet of Things

by

Xiaoying Yang

Master of Science in Electrical and Computer Engineering

University of California, Los Angeles, 2023

Professor Yang Zhang, Chair

As we are quickly heading towards a trillion device Internet-of-Thing (IoT), it becomes

crucial to develop zero-maintenance and long-life ubiquitous IoT systems, eliminating the

need for batteries and maintenance. To address this issue, researchers have been inves-

tigating harvesting energy from various ambient energy sources, such as sunlight, thermal

gradients, and RF sources, to power IoT devices and enable self-sustainability. In this thesis,

we explored generating power from a unique energy source – user interactions, and utilized

the power to enhance the actuation and sensing capabilities of IoT devices. We investigated

the characteristics of interaction energy from everyday objects and the factors that affect

them. We designed a wide variety of mechanical mechanisms that are retrofittable to every-

day objects to harvest kinematic energy from user interactions. To perform IoT sensing and

actuation, we equipped them with motors capable of alternating between harvester and actu-

ator for motorization, and computationally designed retro-reflectors for wireless backscatter.

We evaluated both systems with deployment studies, which proved the efficacy of our sys-

tems as well as shedding light into this interaction-powered approach as a feasible solution

to address energy needed for IoT applications.
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CHAPTER 1

Introduction

1.1 Background

In recent decades, we have been quickly heading towards a Internet-of-Things (IoT) era,

where a trillions of smart devices are expected to deploy in future environments commu-

nicating with each other to form an intelligent IoT network. Sensing serves as the input

for the IoT network, gathering personal and environmental data such as human activities,

noise levels and air quality, to comprehend the surrounding context. Actuation, on the other

hand, acts as the output, carrying out physical actions in response. For example, smart

doors, smart curtains and smart coffee machine automate various processes, minimizing the

effort required to operate these household appliances.

The explosion of these computing devices has prompted the reevaluation of the reliance on

batteries as power sources, which currently serve as the primary energy solution for existing

IoT devices. The need for periodic maintenance of batteries in these trillion-level, diverse

devices results in extremely high labor costs, which presents a major challenge in the large-

scale deployment of IoT devices. In light of this, considerable research has been conducted

on replacing batteries with energy harvesters that can continuously gather energy from the

environment such as sunlight, thermal gradients and RF sources. These efforts contribute

to extending the lifespan of IoT devices and have demonstrated effectiveness.

In contrast, this thesis explores sourcing power from people, specifically harnessing ki-

netic energy generated during people interactions with everyday objects. This kinetic energy
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will undoubtedly be present wherever there are user interactions with objects, such as open-

ing/closing the doors and rotating the tilt wand of window blinds, which can accumulate to

a substantial amount of power. Unlike kinetic harvesters that necessitate deliberate user ac-

tions to generate power for subsequent tasks, interaction power harvesters operates without

altering the original tasks users performs, picking up the energy that otherwise dissipates

while minimizing the interaction overhead.

The core of kinetic energy harvesting lies in the electromagnetic induction effect, con-

verting motions into electricity. Actuation operates oppositely, using electricity to create

motion. This offers unique benefits for using interaction power for IoT actuation - an inter-

action power harvester can be repurposed as an actuator to perform actuation tasks. This

thesis leveraged interaction power for actuation by enabling motors to work as both har-

vesters and actuators seamlessly in a smart environment, allowing self-sustainable robotic

IoT devices (Chapter 3).

The utility of interaction power can be further enhanced by the fact that it inherently

contains substantial information about user activities such as state, direction, rate and count.

This thesis leveraged interaction power as sensory feeds through both explicit and implicit

methods. Information about user activities can be extracted from the interaction power

pattern such as direction and magnitude (Chapter 3). Furthermore, in light to the growing

significance of wireless sensing in IoT, we proposed transforming interaction power into

structured responses to millimeter wave radar using corner reflector mechanisms, facilitating

the implicit utilization of interaction power for user activity detection (Chapter 4).

Overall, the goal of this thesis is to harness interaction power for self-sustainable

IoT sensing and actuation. This thesis designed, developed and evaluated systems for

real-world applications and demonstrated the feasibility of the proposed approach.
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1.2 Thesis Outline

This thesis is organized as follows.

In Chapter 2, we conducted benchmark tests to examine the characteristics of interac-

tion power. We investigated the amounts of energy that could be harvested from everyday

objects and the factors that affect them, including configurations of harvesters and charac-

teristics of user motions. We also measured the energy consumption in automatic operations

of smart home devices. The findings from these tests provide valuable insights into imple-

mentations of smart actuation and sensing systems for IoT applications using interaction

power.

In Chapter 3, we presented the utilization of interaction power as a source of energy for

a fleet of environmental automation devices, achieving self-sustaining automatic operations.

We developed a custom circuit that features power management, programmable motor pow-

erline resistance, PWM motor drive, event-triggered sensing and computation, nonvolatile

memory, and BLE communication. We also developed two phone apps, one for interactive

control and the other for data management. A series of technical validations and a 48-hour

deployment study were conducted to prove the efficacy of our system.

In Chapter 4, we introduced the use of interaction power to facilitate wireless sensing

of human activities in IoT. We demonstrated a computational approach to design passive

reflector mechanisms that can encode activities into characteristic mmWave reflections. We

conducted a study at three different locations, which demonstrated the robustness of our

approach with extremely low false positive rates across distances and angles.

Chapter 5 concludes this thesis by reflecting on our exploration on interaction power

for IoT applications. We also presented our vision for the practical implementation of our

systems and discussed potential avenues for future research on this topic.
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CHAPTER 2

Energy Investigation

2.1 Overview

This chapter aims to investigate the characteristics of interaction power, the factors that

affect energy harvesting, and the power consumption for common IoT actuation tasks. We

conducted benchmark tests to answer: how does the amount of energy harvested from manual

operations compare to that of the energy consumed in automatic operations? These tests

are essential for comprehending interaction power, playing a significant role in guiding the

development of IoT actuation and sensing systems throughout this thesis.

2.2 Apparatus

We conducted benchmark tests to investigate amounts of energy that could be harvested

from everyday objects as well as the factors that affect them. To conduct these tests with

sufficient versatility without losing generalizability, we decided to use a 3D printed device

(Figure 2.1 right). This 3D printed device allowed us to correlate harvested energy with force

(in translational motions) and torque (in rotational motions), in forms that are common to

find in everyday settings (Figure 2.1 left). The device can be put into two configurations.

The first configuration features a handle that moves in a translational manner while the

second configuration features a handle that moves in a rotational manner, both in relation

to the device body. The force and torque needed to actuate the device are set by the

embedded motors, for which we selected the GA12-N20 DC motor with an additional gearbox
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attachment. This type of motor is low-cost and easy to source, because of which they are

common to find in maker projects and commercial products.

Figure 2.1: Translational and rotational motions are the two common types of motion on

everyday objects (left). The device designed to simulate these motions on everyday objects

and used in the energy investigation tests (right).

2.3 Factors

2.3.1 Motor Gear Ratio

One immediate factor that affects energy harvesting is the gear ratio of the gearbox, which is

the ratio between the angular speeds of the driver (input) gear to the driven (output) gear.

Of note that when motors are used as generators, the driven gear is the one that is actuated

by user interactions, and therefore the gear ratio becomes the reciprocal of that of motors

as actuators. Intuitively, larger gear ratios require a larger force to actuate but can induce a

higher amount of energy. We conducted tests to quantify this effect in the context of user-

powered mechanisms. In this test, we used motors with gearboxes of different gear ratios

(500:1, 250:1, 150:1, 100:1, 75:1) and measured their output currents when these motors were

connected in series with a 100 Ohm resistor. These motors were instrumented onto the test

5



device, which was affixed to a lab table with the configuration that supports translational

motions. An experimenter actuated the device from one end to the other and returned to the

original position (i.e., one trial) three times at normal speeds (similar to ones in actuating

everyday objects) during which a force gauge was used to measure force and torque. Figure

2.2 left shows the results, which verified our expectation that the force required and energy

generated are proportional to the gear ratio – motors with larger gear ratios are in general

harder to actuate, but can generate more energy which is roughly linearly proportional to

the gear ratio.

Figure 2.2: Investigation of gear ratio’s effect on harvested energy (left). Investigation of

the effect on harvested energy from the resistance in the motor powerline (right).

2.3.2 User Motion Characteristics

An important factor that affects energy harvesting is the varying user interactions due to

the fact that different users often have different motor capabilities, resulting in different

speeds, acceleration and deceleration rates, etc. This variance could affect the amount of

harvested energy. We conducted a user study (n=5), using the same device in the previous

test. A motor with the gearbox of a 250:1 ratio was used. Its output was connected to

a 100 Ohm resistor. Participants were asked to complete three trials actuating the device

at normal speeds. The output voltage across the resistor was recorded and can be found

in Figure 2.3. Interestingly, we measured a largely consistent amount of generated energy

6



despite that different users manipulated the device at different speeds. However, we found a

large difference between the two motion types – translational motions generate more energy

than rotational motions due to the difference in the number of revolutions by the motor

over the courses of trials. This observation led to the design of having larger gear ratios for

rotational motions than translational ones later in our system implementation.

Figure 2.3: Signal characteristics of interaction-powered motor mechanisms with two motion

types: translational and rotational. Each color denotes data from one participant.

2.3.3 Resistance in Motor Powerline

Resistance in the motor powerline affects the output currents and thus the harvested energy.

In practice, we found that increasing this resistance limits the output currents by motors

and reduces the force and torque to actuate the mechanisms. This correspondence gives us

a way of setting motor force/torque in a finer-grained manner using programmable resistors

than using gearboxes, because gearboxes often have discrete gear ratios and are impossible

to change by software. In this test, we connected the motor in series with a resistor. The

device was configured to support translational motions and we used a gearbox of a 250:1

ratio. A capacitor of 2.5 F was connected to the motor-resistor setup for storing the harvested

7



energy, which can be calculated by measuring the voltage increases using a multimeter. We

gradually changed the amount of current generated by motors by changing the resistance

(from 0 to 150 Ohm with a 25 Ohm interval). This change in induced current also changed

forces needed to actuate the device, which we measured with the force gauge. Figure 2.2

right shows measurements of amounts of energy in response to the change of resistance. We

found that the device was harder to actuate with a lower resistance value (in series) but can

generate more energy. For example, a 100 Ohm resistor can reduce 54% of the total force

required to move the device.

2.4 Energy Measurement

2.4.1 Harvest Energy from Real-World Objects

Previous tests outline the characteristics of interaction-powered harvested energy. To gauge

more precisely how much energy can be harvested from users’ interactions with everyday

objects, we conducted tests on real everyday objects. We included 9 common objects, with

5 involving rotational motions (i.e., fridge door, CNC enclosure, window blinds, toilet lid,

room door) and 4 involving translational motions (i.e., backdrop, drawer, trash can, dimmer

switch). We designed 3D-printed gear mechanisms that turn both types of motions into

motor revolutions (Figure 3.3). Details of these mechanisms will be discussed later in the

paper (Section 3.4.3). We used the motor with a gear ratio of 250:1 in tandem with these

mechanisms. An experimenter manually operated these objects and measured the harvested

energy of each object in one trial. On average, each trial of manually operating these objects

generated 0.56J (SD=0.32) energy. Figure 2.4 shows the voltage across a 100 Ohm resistor

in series with the motors of these objects being manually operated in one direction. We

omit the rest of the trial for them simply mirroring the signals shown around the 0V line. In

general, these half trials took from around 1 to 14 seconds to complete. Objects with longer

strokes (e.g., backdrop, window blinds) generated more power for inducing more revolutions
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Figure 2.4: Voltage-time plot of the 9 objects with gear mechanisms and motors (gear ratio

= 250:1) attached. These objects were manually operated from one extreme position to the

other (i.e., half trials).

of motors, than those with shorter strokes (e.g., dimmer switch, trash can).

2.4.2 Energy Consumed for Actuating Real-World Objects

Previous tests help us understand how much energy can be harvested from user interactions.

Here, we investigate energy consumption in automatic operations – how much energy we need

to actuate objects. With the same set of objects in the previous test, we used a DC power

supply (DCV=4V) to power the motors, which induced sufficient torque to actuate these

objects at normal speeds. We measured the current during the courses of object actuation

in three trials.

On average, these objects consumed 2.77 J (SD=2.03) energy in one trial of their actua-
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tion (i.e., open and close). Similar to insights from the energy harvesting test, objects with

longer strokes consumed more power for taking longer to complete the motion. Even on the

same objects, actuation in different directions could consume different amounts of energy

depending on if gravity contributes or resists the motion. For example, it takes 1.7 J on

average to open a CNC enclosure door, while that number is 0.3 J for closing it. We also

noticed that when the gear mechanisms were blocked by the objects from further movements

at the completion of motion, motors were overloaded and drew a high current (i.e., stall cur-

rent). This stall current measured approximately 120 mA with our motor, and consumed

a lot of energy, for which we later designed our system so it can detect and cut off power

timely to minimize energy wasted on unnecessary actuation.
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CHAPTER 3

Interaction-Powered Mechanisms for Smart

Environment Actuation

3.1 Introduction

Automating objects in physical spaces has long been practiced in ubiquitous computing and

the Internet of Things. Automation not only boosts efficiency but also creates environments

that can be equally accessible to all. These environments feature physical interfaces on the

objects for manipulation or function (e.g., a handle or pedal for movement). Many everyday

objects require users with enough dexterity, motor strength, and often the use of both hands

to interact purposefully. These requirements can be challenging to someone who is not

capable of such interaction due to a physical disability. Thus, automation can be a great

benefit for users with motor impairments and even offer much utility to everyone else – for

example, if someone has their hands occupied at the moment. Existing approaches (like

sliding doors in a supermarket, automatic hand sanitizer dispensers in a building) rely either

on tethered power, which limits the flexibility of deployment, or run on batteries demanding

maintenance efforts. Both of these power solutions are difficult to scale – which we suspect

to be one of the key reasons why we have only seen the success of automation on a few

objects while the majority of everyday objects remain passive.

Prior research has tackled the energy challenges on the sensing front [CD14, CLC10,

ZIJ19a, ZPZ20a] while little has been done on the actuating front – specifically in regards

to actuating objects with intrinsic motion parameters (e.g., drawers with slides, doors with

11



hinges, etc.). This characteristic is a huge challenge as actuating applications require a

large power consumption relative to sensing applications in many orders of magnitude. For

instance, we found anecdotally that the amount of energy consumed to open a door once is

equivalent to the amount of energy required to sense that event for nearly one whole year.

Fortunately, the remedy can be found in the problem. Electric motors consume energy

when actuating objects; however, when used as generator, they are also ideal for harvesting

energy from the current generated by the input actuation – the electromagnetic induction ef-

fect, which generates more than 93 % of all the electricity that powers the world [Dat22]. Our

research uniquely leverages this advantage of motors by enabling them to work as both har-

vesters and actuators seamlessly in a smart environment. Our system intelligently switches

between manual and automation modes depending on the user needs in the environment.

One existing example of such design concept can be found on the commercially available

door closers – energy stored in the spring when the door is being manually opened can later

be used to automatically close it, preserving user time while improving environmental safety,

achieved with a simple and passive device that can last for years [clo22]. Though door closers

create force/torque overheads that might make it harder to use the door than without, the

benefits overcome this potential undercut in usability. We were inspired by examples like

this when we created our system, which generalize the design concept to a wide array of

everyday objects.

This dual usage allows us to explore how we can utilize user interactions as a ubiquitous

and reliable source of power. While prior work has demonstrated the efficacy of environment-

centric harvesters (e.g., solar cells, wind turbines), we turned our focus to people – a rich

source of kinetic energy – because there will undoubtedly be presence of users wherever there

are interactive systems, and user interactions can be turned into power as several seminal

works have demonstrated [ZIJ19a, VH10, DKH20, KPF13]. Unlike prior work which focused

on interactive sensing, this thesis looks into a different and yet important task – actuation

via enhancing objects that have intrinsic movements, with motors that can be repurposed
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into energy harvesters.

We present MiniKers, a series of interaction-powered actuation devices for smart envi-

ronment automation. MiniKers can retrofit to everyday objects with various mechanical

mechanisms (see Figure 3.3 for examples) and feature a custom circuit board, energy-aware

software, and a phone app. Taking the instrumented window blinds for example, MiniKers

harvest energy from a synchronously spinning DC motor each time the tilt wand is turned

manually. This energy is stored in a supercapacitor and then in a small Li-Po battery. This

energy is later extracted from the battery to drive the same DC motor, providing the actu-

ation force that turns the tilt wand and opens/closes the window blinds automatically. The

energy harvesting, regulation, and management are controlled by the custom circuit board

centered around low-power components including a BLE-enabled SoC (Nordic nRF52832).

Simultaneously, our system hitchhikes the energy harvesting mechanism for sensing, turning

the harvested energy into sensory feeds. Specifically, by monitoring the amount of har-

vested energy, MiniKers detect the state of objects as well as fine-grained information such

as magnitude, speed, and frequency.

Overall, the contributions of this chapter include:

• Generalization of the design concept which uses people as power for interactive sys-

tems by harvesting energy from user interactions (i.e., manual operations) to power

automatic operations of everyday objects.

• A custom circuit that uniquely combines sensing, energy harvesting, regulation, man-

agement, and energy-aware actuation for an optimal energy efficiency.

• A system that utilizes this custom circuit with various mechanical mechanisms that

can cheaply retrofit onto everyday objects.

• A technical validation and a deployment study that assess the feasibility of interaction-

powered automation, creating footholds for future work.
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3.2 Related Work

3.2.1 Motorized Smart Environments

MiniKers are related to systems that actuate users’ environments on their behalf, motorizing

objects for remote controls or assisted uses. These systems intersect with research and

commercial efforts in smart homes, automation, remote control, and personal robots. In

the product domain, Clicbot [Key22], Smartians [Stu22], and Microbot-push [Mic22] use

gear mechanisms powered by DC motors to enable remote actuation of everyday objects,

mostly small ones like switches. There have also been automatic door closers [clo22] and

greenhouse auto vent openers [See22] that actuate objects with only passive mechanisms

(i.e., no electronic components). The aforementioned retrofitting devices could result in

additional installation labor which can make built-in control mechanisms preferable if the

”smarts” could be built from scratch (e.g., smart switch [Kas22] or smart lock [Q22]).

In the research domain, there have been two common modalities to achieve environment

automation. People can either have general-purpose robots which can move around the

space for a variety of tasks [KYT19, FEP16, KGP18, BOC18, ERZ01, BCD08, WLC18], or

robotic mechanisms which can be instrumented onto objects for software-controlled actua-

tion [LKC19, LCK20, LSK22, ALC22, HJ14, RAG16, CKL21]. The latter is more closely

related to this work. In this realm of innovations, IoTIZER [CKL21] instruments light and

aesthetically appealing mechanisms onto objects with a toolkit. Robiot [LKC19] motorizes

everyday objects by retrofitting 3D-printed motor mechanisms. Mobiot [ALC22] further mo-

bilizes the objects with 3D-printable structures. In this line of work, Roman [LSK22] enables

handheld objects to be manipulable by robotic arms with 3D-printable add-on mechanisms.

It is possible to structurally modify everyday objects to augment their default functionali-

ties [LCK20, HJ14]. Finally, RetroFab [RAG16] offers an authoring tool to scan an existing

physical interface and automate its controls by adding external mechanical and electronic

components.
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3.2.2 Power from Environments

Energy harvesting has long been exploited by interactive systems and environments in which

these systems reside have many types of energy to leverage. One of the most common energy

sources is light, harvested by photovoltaic panels. On commercial products, light energy

harvesting is often used to extend battery lifetime. These products range from keyboards

[Log21], smart curtains [Swi22] and cleaning robots [JGe17] to trash cans [lab22], street

lights [Int22] and vehicles [Tes22].

In the research domain, a variety of energy sources have been utilized. Light continues

its popularity as a major energy source in ubiquitous computing and IoT, powering sys-

tems for ambient displays [GHC16], hand posture reconstruction [LLP18], and touch sensing

[WXZ20]. It is possible to harvest energy using piezoelectric materials from mechanical oscil-

lations such as vibrations resulting from running motors [ZIJ19a], traffic on road and bridges

[PS13, WJC18], fluctuations of pressure inside water pipes [CLC10], and even temporal am-

bient temperature changes [ZYS14]. Recent advances in 3D printing also facilitate harvesting

such energy using delicate coil-magnet mechanisms that allow the resulting devices to har-

vest vibrations of minute magnitude that were beyond previously possible [KSL20, CR16].

Finally, such oscillations can induce a triboelectric effect that has recently been enhanced by

the exploration of nano-level structures, resulting in sensing systems that could be powered

by sound, the very signal they aim to sense [AZS18, AA18, Lin14]. Less common are mi-

crobial fuel cells (MFC), which have also shown promise in prior work in powering sensing

systems [MGL10, MP22].

To generalize energy harvesting to a wider set of use cases, prior research has investigated

general-purpose platforms and pipelines. For example, Campbell and Dutta [CD14] proposed

a pioneering generic system architecture that runs on energy scavenged from environments

to detect events in buildings. The difference between signals that yield energy and signals

that need to be sensed often means separations between energy harvesters and sensors. In
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the HVAC sensing example shown by the prior work [CD14], light energy has to be harvested

from a solar cell on a window delivering energy to the airflow sensor attached to the HVAC

vent through a long wire. This configuration might be obtrusive to user environments and

undermine the durability. To mitigate this undesirable configuration, prior work looked into

energy and signal that can be bundled together. OptoSense [ZPZ20a] proposes a light-sensing

pipeline that runs on energy harvested also from light, resulting in a fleet of compact and

versatile sensors. In another example, Sozu [ZIJ19a] proposed a general sensing pipeline that

leverages the very harvested energy as the signals for sensing, by transforming this energy

into RF broadcasts.

3.2.3 People as Power

Another popular source of power comes from users themselves – people can be leveraged

as major sources of energy. This creates an inviting opportunity to address the power

constraints on wearable devices [SP04]. For example, the swaying motion of arms can be

harvested by coil-magnet mechanism [WTZ17], and mechanical oscillations induced by foot

stepping can be turned into energy using an array of piezo discs [YGJ21]. Even the seemingly

minute thermal energy dissipated by human skin can be turned into electricity using Peltier

junctions [PSO16]. It is also possible to combine multiple energy sources, as is shown in

Facebit [CRB21], which investigated different types of energy harvested from wearers’ faces,

including motion, breath, and thermal, all of which can be easy to find at the proximity of

masks.

Closer to MiniKers is prior work that exploited user interactions with interactive sys-

tems and objects around. First, there have been commercial products such as self-powered

doorbells [Mat22] and switches [Sen22], which transmit RF broadcasts powered by energy

harvested from button presses. In the research domain, The Peppermill [VH10] demonstrates

a self-powered interaction paradigm. In this example, the device allows users to rotate a knob

to generate power for sensing user interactions, such as button presses. Similarly, Energy-
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Bugs [RSK14] harnesses electricity generated by children shaking energy harvesters with

coil-magnet mechanisms. Using a different class of harvesters, Paper Generators [KPF13]

allow power generation from users performing touch, tap, and rub gestures on paper lever-

aging the triboelectric effect. Recently, Battery-free Game Boy [DKH20] demonstrated an

energy-aware gaming platform that uniquely combines energy generation with game actions

like button presses. Closest to our work are previous systems that aim to harness energy re-

sulting from user interactions with everyday objects. Among the fleet of examples, one class

of devices in Sozu [ZIJ19a] turned user motion (i.e., turning mailbox flags, using pruners,

opening/closing pill bottles, drawers, and doors) into RF broadcasts for sensing applications.

3.3 Design Goals

Based on our review of existing smart environment automation systems and user expectations

as discussed in literature [RPS22, VSC16], we set several design goals for MiniKers, which

we achieved in this research:

Rich input. Unlike personal devices, automation in environments has unique challenges

to overcome because environments are often shared across multiple users, each having their

unique set of capabilities and preferences. This diversity demands interactive systems in

shared environments to accommodate diverse interactions. Ideally, the device should offer

a wide array of interaction modalities (e.g., touch interaction, voice control) or even multi-

modal interactions to fit user needs. This design goal was drawn from the recent success

of commercial smart environment solutions, with which users often have various controls

of smart appliances like lights [Phi22], TV mounts [sol22], window shades [HOM22], and

screens [Som22], using tangible buttons, remotes, apps on smartphone and tablets, or voice.

Compatibility. Practical automation techniques should consider all stakeholders in

the environment. Specifically, there needs to be automation that does not compromise the

functionality and ergonomics of existing objects. This design concept has been demonstrated
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in literature [CKL21, DVT11, Swi22, Stu22, ZIJ19a]. In the context of this project, we aim

to have compact and versatile mechanisms that can easily retrofit existing environments.

Ideally, the core components (e.g., motors and gears) could be readily applicable to a variety

of objects without altering their existing structures and affordances.

Adaptability. Adaptability has been a common feature in smart environment products

such as smart lights, thermostats, irrigation systems, etc. that can adjust brightness, tem-

perature, soil moisture using sensory data from the environment. Similarly, our automation

system needs to have situational awareness to respond intelligently to a different system

and environmental status. For example, the system should adjust intrinsic parameters (e.g.,

motor current) in response to different energy levels and use frequencies. We achieved this

through energy awareness – enabling MiniKers to probe energy supply and consumption at

key points on the circuit board. We implemented a programmable resistance in the motor

powerline and PWM motor drive to adapt the motor current to the system’s energy status.

Low cost and durability. Practical automation systems should be low-cost to be

scalable. With a house that could easily consist of more than 20 objects to automate, the

cost of instrumenting each should not exceed $50, totaling the whole house of automation

with $1000, which is comparable to a middle-end smartphone or a laptop. At the same time,

lowering the price tag should not be at the cost of durability. The system needs to be robust

against exposure to elements (e.g., temperature, humidity, and impact). This design goal has

been sought after in previous IoT systems (e.g., [ZIJ19a, AMM21, CD14]). In this chapter,

we demonstrate and evaluate how MiniKers achieve these with a 48-hour deployment study

on 9 objects across 3 locations of different configurations and functionalities.
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3.4 System Design

3.4.1 Overview

Based on insights from the aforementioned tests, and taking into account our design goals,

we implemented MiniKers system. Our system is composed of: 1) a fully self-sustaining

wireless circuit board, which connects to a mechanism and a motor to capture energy and

actuate; 2) a phone application to support end users with a variety of interactions to activate

the actuation, as well as to keep track of all MiniKers in the environment.

3.4.2 Hardware

Overall Structure. The MiniKers custom circuit (Figure 3.1) was designed to accommo-

date energy characteristics found in the previous investigation studies. The circuit has two

energy storage devices: a rechargeable supercapacitor and a Lithium-ion Polymer (Li-Po)

battery. We used a supercapacitor which has two capacitance options (0.6 F and 2.5 F)

depending on the application – among the 9 objects in Figure 3.3, only the MiniKers for

the backdrop used a supercapacitor of 2.5 F capacitance for the significantly large amount

of energy generated in each manual operation. Similar in concept to the power grid stability

support for renewable sources, supercapacitors and Li-Po batteries (3.7V, 70mAh) provide

stable energy storage to buffer the intermittent user-interaction energy. The Li-Po batteries

can power the motor continuously for more than two hours. This deep energy reservoir

makes the system more tolerant to short energy consumption surge, improving the overall

system’s power reliability.

The circuit features a discharging and a charging mode to support the motor being used

as either an actuator or a generator. Figure 3.2 shows the power architecture of MiniKers

which accommodates the coexistence of these two modes on the motor front end. In the

discharging mode, the motor is driven by a motor driver, drawing power from the battery.
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Figure 3.1: MiniKers circuit board (front and back).
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Figure 3.2: The power architecture of MiniKers.

A MOSFET is used to disconnect the charging line in this mode. In the charging mode, the

motor is driven by user interactions and generates currents, which are regulated by a bridge

rectifier and immediately stored in a supercapacitor. Once the voltage of the supercapacitor

reaches a certain threshold, the boost converter starts working and feeding energy into the

battery.

In addition, our circuit features an FRAM to store energy-related information (i.e., the

voltage of the battery, energy charged into the battery, and energy consumed by the motor

and the rest of the circuit) and time-related information (i.e., timestamps of charging, events

of manual and automatic operations). We used a digital potentiometer (DigiPot) in the

motor powerline to adjust forces/torques required in users’ manual operations of objects.

This DigiPot was disabled in automatic operations. In total, our board costs $45 to make

as a one-off prototype and could be even cheaper in bulk productions.
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Energy-Efficient Implementation. We optimize the energy efficiency of our system

on two fronts: lowering power consumption and increasing harvested energy.

Our boards use a Nordic nRF52832 SoC packaged with Raytac’s MDBT42Q BLE mod-

ule, which features ultra-low idle-mode power consumption (less than 2 µA [Nor22]). We

implemented two standby modes depending on if BLE connectivity is required. The BLE

connectivity allows MiniKers to hitchhike existing interactions on smartphones using our

phone apps. When users are expected to control MiniKers with smartphone interactions,

BLE connectivity should be readily available and thus our system should maintain a peri-

odical BLE advertising (i.e., first standby mode). To reduce power consumption, we tuned

advertising parameters, including TX power (0 dBm), advertising interval (318 ms), and

period (5 s). We also implemented a second standby mode which does not require BLE con-

nectivity but uses event triggers on GPIOs (i.e., hardware interrupt) that monitor physical

interactors such as buttons. We will describe the phone apps and interactions our system

supports later in this chapter (Section 3.4.5).

Other than the SoC, the rest of components are also low-power to minimize the current

draw of the whole circuit (e.g., motor driver: Iq=30 nA, boost converter: Iq=5 nA). We also

configured GPIO pins to be in high-impedance mode when they are idle. To further reduce

power consumption, we used power gates by adding multiple high-side p-channel MOSFET

as power switches to shut off major components including current amplifiers, FRAM, and

DigiPot when they are not in use.

Additionally, we configured a GPIO to capture hardware interrupts triggered by the

motor in the generator mode (i.e., actuated by user interactions) to turn on high-speed ADC

(at 10 FPS). This allows us to preserve the sensing resolution without losing much energy

on ADC in the standby mode when no user interaction happens.

We also found large stall currents that occur at the ends of object motions (e.g., drawer

fully closed/opened) when the motor is stuck. To shorten durations of the stall current to

preserve energy, we implemented stall current detection using thresholding (i.e., stall current
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is often significantly larger than ordinary motor driving current) and cut off power to the

motor immediately once the stall current is detected.

Finally, we implemented features to increase the efficiency of energy harvesting. We used

a low-forward-voltage rectifier, the output of which goes immediately to a supercapacitor

(i.e., the storage capacitor), which has high pulse power capability, capturing as much energy

as possible from the motor. Our system turns on the boost converter only when the voltage

across the storage capacitor exceeds 2 V, forcing the boost converter to operate in the boost

mode which has the highest converting efficiency.

Energy as Sensory Feed. Our system monitors the harvested and consumed energy

which can serve as sensory feeds needed in smart environment applications. Two current

amplifiers are leveraged to sense bi-directional currents through the motor and battery. The

voltage level of the supercapacitor and battery are measured with analog pins on the SoC.

By monitoring the energy flow, MiniKers keep track of the battery level and adapt the

resistance in the motor powerline to keep them self-sustaining. Specifically, our system

could increase the harvested energy per manual operation by decreasing the resistance of the

DigiPot. If self-sustaining is not feasible (i.e., there are more automatic operations than what

the energy harvested from manual operations can sustain), MiniKers’ energy monitoring

capability could be used to request user intervention (e.g., charge/exchange batteries, add

other types of harvesters) as opposed to doing nothing and letting the battery drain out,

which could result in unexpected failures that lead to costly errors.

Without having to use external sensors to probe user and environmental context, our

system can yield quite significant amount of information by observing the energy pattern.

For example, rich information can be inferred by sensing the magnitude and direction of the

motor-induced current, which correlates with the motor status. For example, the current

direction of the motor on a door MiniKers indicates whether the door is being closed or

opened. We will show more sensing modalities in section 3.5.
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Figure 3.3: MiniKers instrumented on 9 everyday objects, enabling self-sustaining automatic

operations. Top row shows objects with rotational movements and bottom row with trans-

lational movements.

3.4.3 Gear Mechanisms

We designed 9 two-gear mechanisms with unique variations to adapt to objects across a

multitude of environments. These mechanisms provide additional gear ratios to facilitate

our motors to actuate objects. We designed these mechanisms to function in a bi-directional

manner in the sense that input and output gears could alter their roles according to the two

different modes of system operation (i.e., manual and automatic). We used an Ultimaker

S5 3D printer to print these gear mechanisms with PLA of 100% infills. We resolved the

following challenges by fine-tuning the mechanical parameters (i.e., module, gear ratio, pivot

axis, material infill, and locations relative to the host objects) of the gear:

• The additional force caused by the gear mechanisms in concert with the motors should
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not be too large for a user to manually operate objects.

• Sufficient force could be provided to actuate objects (many of which could be heavy)

when these mechanisms are put in a reverse configuration.

• For objects with translational motions (e.g., drawers), the mounting height of the pinion

with respect to the rack has to be precisely adjusted to avoid additional force/torque

due to friction while maintaining robust couplings between the two.

• For objects with rotational motions (e.g., toilet lid), the mechanisms have to be pre-

cisely mounted on the axes, or the gears would either jam or lose contact.

3.4.4 Phone App

To facilitate the use of MiniKers, we implemented two phone apps: one that allows users to

control devices (the ”control app”), and one that allows building maintenance and facility

to review historical usage data (the ”management app”). The control app displays the

BLE devices that are in range, filtering out non-MiniKers devices using custom UUIDs. It

allows users to connect to MiniKers and control them remotely with interactions available

on the phone. Besides touch interactions, the control app also supports voice commands. To

start, the user presses a button, then speaks a command, such as “open door”. Upon each

connection with MiniKers, both the control app and the management app retrieve unread

data from the device FRAM. This data includes key timestamps of events, battery voltages,

motor-related currents, and actuation type (automatic or manual). It is then stored in an

SQLite database and uploaded to the app-specific folder under the user’s Dropbox account

as a proof-of-concept implementation of cloud storage.

The management app downloads the database from the server during launches and allows

users to select a device to view its historical data. After selecting a device in the management

app, the user is taken to a calendar view, which displays colored dots on each date to indicate

automatic and manual usage with orange denoting automatic operations and green manual
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Figure 3.4: Left: the data management app (homepage, calendar view, and single day data

display); Right: the control app (Bluetooth scan and control).

operations. This allows users to observe general usage trends at a glance, e.g., on which

days a device was used and roughly how often automatic operations occurred compared to

manual ones. From the calendar page, the user can tap on a day to view its detailed data.

3.4.5 Interaction Modalities

MiniKers support multiple interaction modalities to accommodate for various interactions

affordable in user environments. First, our systems lead out several external analogs and

digital pins that could be quickly turned into touch sensing mechanisms using mechanical

controls (e.g., click, pan, twist, tilt [XLH14]) or capacitive touch which features thin con-

ductive layers resulting in minimal intrusiveness to existing objects (e.g., [SZH12]). Second,

these spared pins and interface bus (i.e., SPI and I2C) we led out can interface MiniKers

with external sensors such as proximity, motion/occupancy, gesture, pressure, heat, hu-

midity, CO2, vibration/acoustics sensors, for additional sensing capabilities. Additionally,

our phone apps extend the interaction modality of MiniKers. Users could use touchscreen

interactions to control MiniKers. We also implemented voice control, a commonly used

interaction modality to assist users with limited upper extremity mobility [PRC19]. Finally,
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MiniKers support assisted actuation, with which our system senses initiations of user man-

ual operations of objects and actuates these objects to complete the rest of the operations,

a common feature on automatic doors.

3.5 Validation

We validated MiniKers with a series of micro-benchmark tests described here. Results from

these tests outline our system’s performance envelope such as power consumption, motor

actuation, and harvesting efficiency. Not only do these results further our understanding of

MiniKers, they also provide benchmarks for future systems in similar application domains to

compare with and improve upon, providing a foothold for ubiquitous self-sustaining smart

environment automation research. Results in this section are validated by a deployment

study which we will discuss in Section 3.6.

Figure 3.5: Current draw of MiniKers during a typical automatic (left) and manual (right)

operation.

3.5.1 Power Consumption

Intuitively, our system consumes different amounts of power when operating under different

modes for differences in power to motors, frequency of ADC, and BLE communication. We

used Nordic PowerProfiler II to profile the current draw from battery of MiniKers over time

in energy harvesting mode (i.e., manual operations) and actuating mode (i.e., automatic op-
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erations). Figure 3.5 shows the results, with key states highlighted. Table 3.1 shows power

consumption of main components. In the standby mode, MiniKers draw 45 µA from the

battery. Of note that the power consumption for the standby mode runs 1) operation of the

SoC and its supporting components (e.g., regulator), and 2) periodic BLE advertising. A

manual operation does not involve BLE communication and has a power consumption that

runs 1) ADC (hardware interrupts by motor revolutions due to user interactions), 2) boost

conversion, 3) writes to FRAM, 4) current measurement, in addition to 5) the SoC opera-

tion. The automatic operation consumes power for 1) powering the motor driver that drives

the motor, 2) BLE communication with the phone app, 3) writing to FRAM, 4) current

measurement, as well as 5) the SoC operation. We found an average power consumption

of 26.6 mJ per transmission of one Kilobyte through BLE with our system. Of note that

the power consumption of enabling the activation of automation (i.e., accommodating the

aforementioned user interactions) is negligible for touchscreen interactions and voice control

hitchhiking existing BLE communications, and other interaction modalities (e.g., mechan-

ical controls, assisted actuation) implemented with hardware interrupt. Accommodating

interactions based on external sensors and capacitive touch could consume more power but

both can be implemented in a low-power manner by careful part and frequency/duty-cycle

selections.

3.5.2 Energy as Sensory Feed

The mere presence of energy can often serve as sufficient sensory feed. In fact, repurposing

energy as sensory feeds has been shown in several previous works [DCD13, CD14, ZIJ19a].

In the context of this research, for example, there will have to be generated energy when a

door panel is in motion, and thus sensing the presence of the generated energy can reveal uses

of the door. Even better, motor mechanisms yield currents that constitute the energy flow,

revealing richer signals of motions – e.g., speed, duration, and direction. And thus by sensing

harvested energy through sensing currents, we can infer much about user environments
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Table 3.1: A breakdown of power consumed by major components (ones labeled PG are

power gated). Measurements were collected when power gates were switched on and when

these components are enabled.

Component (part number) Power (µW)

Motor driver (DRV8837) 1584.6

Current amplifier (MAX9934) 2416.8 (PG)

SoC Mininum System 148.5

FRAM (MB85RC256VPNF) 33 (PG)

DigiPot (AD5273) 3.66 (PG)

Boost converter (BQ25570) 3.8

without external sensors.

We used MiniKers system’s current sensing to measure current outputs by several objects

and compare them with the Nordic Power Profiler II. Figure 3.6 shows the results which

indicate a modest difference between these two sets of measurements though the noise floor

of our built-in current sensing is higher. We used a room door as an example to demonstrate

the sensing ability of MiniKers (Figure 3.7). We used our built-in current sensing to measure

current outputs by objects in their manual operations. Uses of doors indicate utilization

rates of environments, and the states of doors often have social meanings – an opened

door vs. a closed door. Rich sensing is needed and has been researched in prior work

[YT10, SKT16, ZIJ19a, ZPZ20a], and there have been commercialization efforts focusing on

door sensing [Mob22, Aut22]. In the context of room doors, our system detects what angle

does the door open to (Figure 3.7 left); at what speed (Figure 3.7 middle); and in which

direction (Figure 3.7 right), all of which are achieved through repurposing the motor as a

sensor and leveraging the harvested energy as sensory feed.
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Figure 3.6: Comparison of current measurements with MiniKers and Nordic Power Profiler

II (ground truth).

Figure 3.7: Example of using MiniKers’s sensing capability. Left: The integral of motor

current correlates door angle. Center: The speed of opening/closing the door can be inferred

from the magnitude of current. Right: The direction of the current indicates the door status.

3.6 Deployment Study

3.6.1 Procedure

We deployed 9 MiniKers across 3 locations: a lab space, an office, and an apartment, each

featuring common but different functions (Figure 3.8). These locations were occupied during

the deployment and MiniKers were exposed to users and elements expected to be seen in

everyday settings (e.g., humidity, pressure, impact, user interactions). Each MiniKers was

deployed for 48 hours during which one experimenter visited these devices three times a day

(i.e., morning, noon, and evening) for performing trials that were recorded for ground-truth
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Num. of occupants:  
Typical: 7 Max.: 14

Num. of occupants:  
Typical: 4 Max.: 6

Num. of occupants:  
Typical: 1 Max.: 3

CNC Enclosure

Drawer

Backdrop

Trash Can

Dimmer Switch

Room DoorWindow BlindsToilet Lid

Lab space Apartment Office

Fridge Door

Figure 3.8: MiniKers were deployed at 3 locations on 9 objects. 3D models of these 3

locations with details of their configurations are shown. Objects with translational motions

and rotational motions are denoted with squares and circles respectively.

data. Specifically, during each visit, the experimenter performed 25 manual trials of the

object consecutively with a five-second interval in between, followed by 3 automatic trials

using the phone app (i.e., the control app). In manual operations, the experimenter manually

actuated the object from one extreme position to the other (e.g., blind blades tilted at 0º for

minimal light through, and at 90º for maximum light through). We collected the MiniKers

boards at the end of the deployment and parsed the data in the FRAM for analysis.

3.6.2 Results

Across the 3 locations and the 9 MiniKers devices, the averaged energy harvested from each

manual operation was 0.26 J (SD=0.37) and the energy spent in each automatic operation

was 4.46 J (SD=4.47), resulting in approximately a 24:1 ratio. In other words, there need to

be around 24 manual operations of objects before MiniKers gather sufficient energy for one

automatic operation. This is a rough estimation omitting several supporting functionalities

(e.g., communication and system standby) that also consume power, as we have shown and

quantified in the technical validation (i.e., Section 3.5). For this reason, the 24:1 ratio of
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Figure 3.9: Event distribution over time of the Fridge Door during the deployment study.

There are six periods of time in which events are concentrated due to trials performed by the

experimenter. Figures on the top show two zoom-in views of these recorded events. Isolated

events are due to the daily uses by owners of the space.

manual to auto operations is the upper bound of performance if MiniKers are to be deployed

for real-world applications. Nonetheless, this ratio gives us an estimate, which is important

in setting up user expectations and could guide users in their deployments of MiniKers in

the real world. Below we break down this result into details with an in-depth analysis.

Figure 3.9 shows an example of fridge door events over time during the deployment.

Table 3.2 shows harvested and consumed energy per manual and automatic operation for

each object. First, we confirmed the observation from our validation test that more energy

can be harvested from objects with longer motion strokes (either translational or rotational).

Heavier objects (e.g., room door, toilet lid) consumed more power to actuate. In general,

objects that drew more power for actuation generated more power in their manual operations.
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Despite this correlation between the amounts of consumed and harvested energy, the manual-

to-auto ratio still varied a lot across different objects, possible reasons for which could be

differences in objects’ original structures. For instance, some objects like the toilet lid have

higher frictions to be actuated due to the anti-slam mechanism than others. There is also

variation introduced by our gear mechanisms that could contribute to the variation of the

manual-to-auto ratio.

Table 3.2: Average energy harvested and consumed per manual and automatic operation by

the 9 objects.

Object Harvested Energy (J) Consumed Energy (J) Manual-to Energy

per Operation per Actuation -Auto Ratio Efficiency

Room Door 0.26 10.34 40 65%

Trash Can 0.06 1.01 17 57%

Window Blinds 0.09 2.60 28 34%

Dimmer Switch 0.03 0.40 14 45%

Drawer 0.31 2.03 7 68%

Backdrop 1.22 13.32 11 81%

CNC Enclosure 0.18 1.98 11 80%

Fridge Door 0.07 3.03 43 37%

Toilet Lid 0.12 5.41 45 48%

Average (SD) 0.26 (0.37) 4.46 (4.47) 24 (15) 57% (18)

Finally, with our board’s current sensing capability, we can readily measure energy ef-

ficiency by measuring and comparing the energy generated by the motor and charged into

the battery. The efficiency is computed as a ratio between the two. We estimate the energy

generated by the motor by monitoring the voltage increase on the supercapacitor. Energy

dissipated on the rectifier and DigiPot is relatively small and thus neglected in this cal-

culation. On average, we found an energy efficiency of 57% (SD=18). Table 3.2 shows a
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breakdown of this efficiency across all objects. Like the manual-to-auto ratio, this energy

efficiency also varied by object for the same reasons as previously mentioned.

3.7 Discussion

Ultra-Low-Power Standby Mode. We found a non-negligible amount of energy con-

sumed by MiniKers in their standby mode during the deployment study. This energy outlet

is going to be even more significant in longer-term deployments (e.g., year-round). This

power consumption can be lowered (i.e., from 148.5 to 108.9 µW) if controls are not me-

diated through BLE connectivity but with physical interactors (e.g., buttons), which are

common to find on existing automatic devices – automatic doors in most commercial build-

ings would simply use a button as a tangible and readily available interactor for control.

It is also possible to choose microcontrollers with lower power consumption for e.g., the TI

MSP430 series, which have shown promise in many previous energy-constrained computing

systems.

Gear Mechanism Installation. Installing gear mechanisms onto objects with rota-

tional motions (e.g., fridge door, toilet lid) poses a real challenge. These mechanisms must

be precisely mounted on the object’s axis of rotation, or the MiniKers gear transmission

will either jam (gears being too tight that creates unnecessary friction making them hard

to actuate and easy to wear) or lose contact (gears being too lose that creates backlash,

skipping teeth during its rotation). This rotation axis is intrinsic to objects once they are

manufactured. Thus, pinpointing their axes of rotations can only rely on a trial and error

approach and could be laborious. Additionally, some objects might not be properly leveled

against their surroundings and require further adjustments to our mechanical design.

Cope with Intermittency. The current implementation of MiniKers does not provide

mechanisms for recovering computational state after a power failure. Significant work has

been done in the area of ”intermittent computing” [HS17] where energy harvesting and
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battery-free devices will frequently die when energy is not available, then reboot and restore

the previous computational state: examples include the Battery-free Game Boy [DKH20]

which allowed for power failures without changing game state. Using the small Li-Po battery

as a rechargeable energy reservoir improves power stability for our design and allows us

to explore the ideas around these user-powered items without the added complexities of

intermittency. However, future work could pursue full-stack implementations of intermittent

computing to enable a much longer lifetime and battery-free, perpetual operation of MiniKers

in more real-world use scenarios.

Usability and User Behavior. MiniKers were deployed in common everyday envi-

ronments in which occupants used the instrumented objects as they normally would during

the development. The system worked well with only a few breaking parts which could be

improved with superior fabrication techniques (e.g., metal printing) and more permanent

attachments (e.g., screws). We didn’t notice any difficulties of using these objects in man-

ual or automatic operations except for minor issues such as slow actuating speed, and long

Bluetooth scanning time. Though falling out of the scope of our core research contribution,

the lack of a systematic usability study is one of the limitations of this project. The usability

of MiniKers should be properly investigated in our future work, including studies on pop-

ulations with different motor capabilities, frequency of uses in different environments and

applications, and beyond. This investigation will further our understanding of user behavior

in response to enhancements of their environments with automation. Having an option of

automatic operation might alter people’s behavior when for e.g., automatic operations are

considered more sanitary and thus preferable than manual operations that require contact.

Furthermore, future research will investigate how to improve users’ awareness of energy using

for e.g., ambient displays that communicate to users the availability of automatic operations

and alert facility when systems need interventions after recognizing that self-sustaining is

impossible (e.g., the demand for automatic operations is too high).

Long-Term Deployment. While results from this work show promise, we are cautious
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that long-term deployments might reveal insights beyond the scope of this work but are still

valuable for improving the practicality of our proposed people-as-power technique in the real

world. To fully investigate this, we plan to deploy MiniKers for longer terms at our campus

(i.e., year-round) and look for opportunities to collaborate with owners of public spaces such

as shops, grocery stores, and restaurants for deployments in spaces of a wider spectrum of

uses.

Intrusiveness. Though we did not optimize MiniKers for size, it is possible to use

superior fabrication techniques to have gear mechanisms with smaller sizes while maintaining

the same gear ratios. Smaller gear mechanisms require finer teeth and therefore stronger

materials, which can be achieved with metallic materials using casting, milling, or DMLS

3D printing. It is also possible to use motors with higher torques and thus can drive objects

without external gear mechanisms. This correspondingly requires better driving capabilities

from our circuit, which we plan to investigate in the future.

Multiple Energy Sources. Though we center MiniKers around the concept of people-

as-power with the sole energy source being user interactions, it is possible and should be

even more practical, to utilize multiple energy sources in the real world. For example, solar

cells, triboelectric nanogenerators, piezo, and Peltier junctions can be added to MiniKers as

secondary energy sources.
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CHAPTER 4

Interaction-Powered Backscatters for Smart

Environment Sensing

4.1 Introduction

In Chapter 3, we investigated the use of interaction power for IoT actuation. In this chapter,

our focus shifts towards employing interaction power for IoT sensing. Detection of occur-

rences or changes in events, such as human activities, object statuses, and environmental

conditions, offers powerful insights about physical and social contexts, enabling computers

in the environment to respond or anticipate to users’ needs. Recognizing these events has

long been of great interest to researchers. One straightforward approach is to equip sen-

sors onto users or objects and examine unique signals resulted from activities of interest

[LXH16, LH19, BPP09a]. However, there exist challenges in massively deploying these sen-

sors in the environment due to their reliance on batteries which often necessitate frequent

maintenance. Other approaches include remote sensors that detect signals traveling through

spaces, such as WiFi [LLL18, MGD22, TZW19], sound [AYT21], vibration [SCZ20], and

light [INR16, FAL19] to infer event changes in the environment. However, these approaches

usually rely on complicated learning-based inference techniques to leverage the implicit signal

features, and are only capable of detecting a coarsely predefined set of activities, which limits

their practicality due to the high diversity and granularity of activities in the environment.

All of the above factors hinder the large-scale implementation of sensors for smart envi-

ronment sensing, prompting this research to explore alternative methods. Upon examining
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various activities and events in the environment, we observed that the occurrence of an ac-

tivity usually involves physical movements of objects that users interact with. Prior research

has been able to detect the presence of activities by the installation of tagging mechanisms

that can be triggered by motions of objects. In a pioneering research, Mechanobeat [TKF20]

first introduced interaction-powered harmonic oscillation tagging mechanisms to highlight

the use of objects’ physical movement for activity recognition. However, only presence of ac-

tivities can be detected while fine-grained information such as motion direction and speed is

missing. This fine-grained information often constitutes an important contextual clue which

is critical for smart devices to make better inferences about their users and surrounding

environments.

We are inspired to expand the sensing capability by transforming movements of objects

into encoded RF responses, from which fine-grained information about users and environ-

ments can be extracted using a millimeter wave radar from centralized sensor locations such

as a smart light bulb on the ceiling or smart speakers on a countertop. Millimeter wave radar,

typically used in automobile and security applications, has recently drawn the attention of

researchers in HCI for its potential to be integrated into smart devices such as speakers, light

bulbs, and thermostats to localize users and enable gestural input [LGK16, HLG21]. Specif-

ically, we explored using 3D printed corner reflector mechanisms to encode user interactions

with everyday objects. These mechanisms do not rely on electronics or batteries, and can

retrofit to a wide variety of everyday objects hitchhiking their inherent mechanical structures

(e.g., gears, hinges, tracks). By decoding radar responses, fine-grained activity characteris-

tics such as state, direction, rate, and usage can be inferred. We investigated effective corner

reflector mechanism designs and developed the corresponding detection algorithm based on

first-principle signal analysis. We demonstrated our system with 15 everyday objects (Figure

4.4) in indoor and outdoor environments.
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4.2 Related Work

4.2.1 Activity and Event Detection

Prior works detect occurrences of events that generate different types of signals, including

visible light [ZPZ20b, KFA19], vibration [ZLH18, SCZ20], RF broadcasts [LYS15, BPP09b,

WLC21], acoustic signals [AYT21, LXH16], electromagnetic interference (EMI) [GRP10,

CGL15, ZYH18] and air pressure [WPM15, PRA08]. In terms of sensor locations, researchers

have developed wearable sensors to detect human activities [KHT21, SHK17, CGL12]. Com-

mercially available wearable sensors have seen success in health and fitness applications (e.g.,

smart ring [rin23]). Alternatively, sensors can be instrumented on objects of interest such as

doors, microwaves, faucets to monitor their status [ZIJ19b, ZLH18, KP10].

These sensors are often powered by batteries, making their inevitable maintenance a

significant cost of deploying them in the long run. To eliminate the reliance on batteries,

researchers turned to develop self-powered sensors and systems that can harvest energy

from environments [ZIJ19b, ZPZ20b, GPW18] or from people [YSX22, CRB21] to supply

the power for sensing. Another approach to addressing power issue is to design sensors

that contains no electronics and leverages material properties (i.e., type, geometry, motion

pattern) for passive sensing [TKF20, ICG17, LCY19, JWY18], with which our research shares

the same scope.

4.2.2 RF Sensing in HCI

Radio Frequency (RF) sensing has long been sought after, with a majority of work focusing

on the microwave range (e.g., WiFi, 2.4-5 GHz) [ZWX19, WZW16] and millimeter wave range

(30-300 GHz) [LGK16, WLC21, SSG19]. Operating at these special frequencies, RF signals

enables high-fidelity sensing while preserving their innate advantages of being non-contact

and not constrained by lighting conditions [ZZX22, ZLA18].
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RF sensing has been used in a wide array of applications including communications

[NQZ21, QYZ22], user identification and localization [SPB21]. Other sensing modalities of

prior works center around human activity recognition such as posture detection [KXY22,

ZLA18], fall detection [WWN16], vital signal [YPZ16, WZW21], eating behavior [XJG22]

and sleeping posture monitoring [YPZ17]. RF signals has also been used for sensing environ-

mental facets such as sound [OWW21], humidity [DHW18], temperature[CLL20], material

[WZW20, YFS16], and vibration [JGH20].

The recent development of compact and solid-state millimeter wave radars such as Google

Soli [LGK16] opens up opportunities to enable interactive sensing such as hand gestures

recognition [HLG21], tangible interaction sensing [GHP22], and interactive controls [YZ21,

HWW21]. Our system builds upon this growing interest but differs by shifting its focus from

sensing human to sensing objects.

4.3 Sensing Principle

4.3.1 FMCW Radar

Millimeter wave (mmWave) radar, has drawn attention from researchers in HCI due to its

potential to enable a wide array of sensing modalities with a compact sensor form factor and

limited privacy implications. At a frequency as high as 77 GHz, mmWave signals are less

affected by interference from other sources such as Wi-Fi and Bluetooth signals, making it

applicable for both indoor and outdoor environments. Radars can reveal rich information of

targets including range and velocity, and those with beamforming capabilities can even sense

multiple concurrent activities on targets scattered throughout the environment. Though

radars are not as high-resolution as cameras, they can still yield sufficient information about

targets such as shapes, deformation, posture changes for activity detection.

Radars that feature mmWave are usually modulated with Frequency Modulated Contin-

uous Wave (FMCW) technology, which has been documented in prior work [LGK16, HLG21,
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ZZX22] and will not be detailed in this thesis. In short, FMCW radar emits signals with

linearly varying frequency, called chirps, and gets range and velocity of the target by mea-

suring frequency and phase shift of the reflected signals. This chirp mechanism allows the

detection of tiny displacement within a short duration (µs level), which is ideal for sensing

moving objects. Besides, the power of received signals in a radar system with transmission

power Pt, transmitter gain Gt, receiver gain Gr and wavelength λ, measured by Equation

4.1 [qua23], depends on the distance D between radar and the target, specifically its radar

cross section (RCS) σ of the target and a loss factor L.

Pr =
PtGtGrλ

2σ

(4π)3D4L
(4.1)

Though the reflectivity of a target (i.e., its RCS) is not the only factor that affect the

magnitude of received signals, we found in practice that it is the dominant signal that explains

the variance of received signals in the case of objects deployed in the environment. This is

the main sensing principle we leverage in this thesis – correlating the power of received signal

with the RCS change of a target. Of note that the innate reflectivity changes of objects due

to their movements in response to user interactions are modest, ambiguous, and heavily

affected by variances in user motions, and thus we designed reflector mechanisms to encode

these movements to facilitate their detection.

4.3.2 RF Reflector

RF reflectors are conventionally used to enhance RF reflections. They have been used for

communication [NQZ21], localization [SPB21], redirection [QYZ22], along with many novel

use cases in research (e.g., CubeSense [YZ21]). RF reflectors can be as simple as a flat metal

sheet which appears as ”a mirror” to incident waves. Leveraging the rapid development of

wireless technologies such as Wi-Fi and radar, recent research has innovated reflectors with

unique shapes, structures and materials that allow specific control of signal propagation,
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such as metasurfaces [QYZ22, ADT17], 3D-fabricated reflectors [XCY17], frequency selective

surface (FSS) reflectors [JSE20].

Retro-reflectors are a common type of RF reflectors that reflect RF waves back to their

source. Van Atta array is a common retro-reflector that uses conductive antenna pairs with

strategically designed lengths on planar surfaces to adjust the phase of incoming RF signals

[SPB21]. Corner reflectors, commonly made up of three mutually perpendicular plates, are

often used in radar systems for detection [Doe14, ZZK18] and calibration [GVL90]. Incident

waves undergo multiple reflections within the ”corner” and eventually reflected back to their

sources. Note that this redirection of waves can happen only when incident waves land on

certain areas of a corner reflector, denoted by effective aperture area Aeff . The effective

aperture decides RCS, which describes the reflectivity of a corner reflector and is estimated

by Equation 4.2, where λ is wavelength and R is the reflection coefficient derived from Fresnel

equation [Eck71, equ23, ref23].

σ = 4πRA2
eff/λ

2 (4.2)

This equation shows three following factors that can change the magnitude of RCS,

which we considered in the design of reflector mechanisms that encode user interactions into

RCS changes. We selected corner reflectors to implement our reflector mechanisms for their

following merits:

(1) They offer a relatively large RCS compared to their size, leading to a high Signal-to-

Noise Ratio (SNR) and consequently improved detection capabilities.

(2) They provide wide-angle reflection, making them suitable for applications involving

moving objects or unpredictable radar locations in the environment.

(3) Their RCS can be described mathematically, enabling the computational design of

reflectors through first-principle approaches.

(4) Their simple structure and passive operation ensure durability, affordability, and ease
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Figure 4.1: A: Front view of a triangular corner reflector. φ is the Azimuth angle. B: Side

view of the reflector. θ is the Elevation angle. C: Effective aperture area (highlighted in

green) with an incident angle of φ = 45◦, θ = 15◦, 35◦, 55◦, 75◦.

of manufacture.

Factor 1: Material Interface materials can affect magnitude of reflected waves due to the

difference in electrical properties, which can be measured in Equation 4.3 by the reflection

coefficient:

R =

∣∣∣∣∣−εr cos θi +
√

εr − sin2 θi

εr cos θi +
√

εr − sin2 θi

∣∣∣∣∣
2

(4.3)

where θi is the incident angle, and εr is the relative complex permittivity of a material

given by εr = ε′−j σ
2πfε0

with the real part associated with degree of polarization of a material

and the imaginary part the dielectric loss, σ is conductivity of the material, ε0 is the vacuum

permittivity, and f is the frequency of RF waves [equ23]. At radio frequencies, conductive
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materials such as metals exhibit a dominant imaginary part in their relative permittivity

εr due to their high conductivity, which leads to higher reflectivity of radio waves [per23].

Dielectric materials such as plastic, however, absorb radio waves due to lack of free electrons

to radiate incoming signals as opposed to metals, and thus result in greater loss and smaller

RCS [BPB19]. In practice, we found that material is not an effective factor for tuning RCS

because of the limited dynamic range resulted from common materials (e.g., plastic and

metal).

Factor 2: Orientation Aeff is orientation-dependent and can be calculated as intersection

between the open aperture and an inverted image aperture of corner reflector using geomet-

ric optics model [Eck71]. Figure 4.1 shows an example of aperture area varying as the angle

of the incident RF signal changes. To verify RCS changes with orientation, we ran a simu-

lation with CST studio [CST23]. Specifically, we modeled a square corner reflector made of

5 cm perfect-electric-conductor (PEC) and swept both azimuth and elevation around 0-90◦.

Figure 4.2 A shows the simulated radiation pattern in 3D space. There are three side lobes

besides the main lobe due to reflection on the three unit plates when the incident waves

land perpendicular to them. This is aligned with the signal pattern we measured in the real

world which we will discuss in Section 4.4.

Factor 3: Geometry Geometry includes the shape as well as the size of the unit plate on

a corner reflector. Common shapes of a unit plate include triangular, circular and square.

With the same shape, RCS varies with the edge length a, which decides the size of the

unit plate and that of the overall corner reflector. Prior work has also proven σ(a) ∝ a4 at

boresight [Eck71, DB09, Doe14]. To verify the correlation of RCS with a, we ran simulations

for corner reflectors of 1-5 cm (at an 1 cm interval) edge length, and plotted RCS along

the azimuth plane (with an Elevation angle of 35◦). The result is shown in Figure 4.2 B,

indicating that RCS increases with a for most incident Azimuth angles (i.e., 10 - 80◦).

Furthermore, among these three factors (i.e., material, orientation, and geometry) on

RCS of corner reflectors, we utilized orientation and geometry to induce RCS changes.
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Figure 4.2: Simulation results. A: Radiation pattern of a square corner reflector (upper left:

corner reflector model). B: RCS of corner reflector with different sizes (θ = 35◦).

Compared with these two factors, changes of material induce a narrower dynamic range

of RCS and therefore was skipped in the implementation of our reflector mechanism. Our

observation, as shown in Figure 4.2, unveils that rotations of a single corner reflector could

induce RCS changes from a static radar’s perspective. The rotation of one single corner

induces periodic peaks of RF reflection which could reveal the status (i.e., on/off) and rate

(i.e., speed and frequency) of activities. To encode richer information (e.g., direction), we

concatenated multiple corner reflectors with different geometries along the periphery of a

rotatory platform. The platform’s rotation is driven by the movements of objects powered

by user interactions through a linkage gear mechanism. Depending on the direction of

rotation, the RF reflection will manifest as distinct time sequences, which can be exploited

by a detection algorithm to decode directional information.

4.4 Implementation

4.4.1 Overview

Before detailing our system, we discuss some design considerations of reflector mechanisms

that should be taken into account for achieving better sensing performance.
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Figure 4.3: A: A pipe mechanism using magnetic coupling to enable an external rotation

driven by the internal flow. The other set of magnets (shown at bottom left) is attached to

the underside of the reflector. B: Radar sensor setup.

(1) The reflector mechanisms should generate signals with sufficient SNR to make it

distinguishable in an environment, where stationary and dynamic objects (e.g., people and

appliances in a home environment; moving cars and pedestrians in a city environment) con-

stantly exist in the background. Strong and distinctive signals bolster the system’s accuracy

and reliability, ensuring its performance amid unpredictable background noise.

(2) The reflector mechanisms should encode different object status (e.g., on/off, direction,

magnitude) with different signal characteristics (e.g., frequency, amplitude, phase). The

difference between these signal patterns should be distinct and easy to be recognized by the

radar receivers.

(3) The reflector mechanisms should be easy to fabricate, versatile to be instrumented

on various host objects. They should be flexible and low-cost to deploy, and ideally have

compact form factors for minimum intrusiveness.

Based on these considerations, we designed a series of electronic-free, 3D-printed reflector

mechanisms for everyday objects, which can communicate with an millimeter wave radar

wirelessly with rich information of their host objects. Specifically, to avoid interference of

user movements, we encode speed of motions into frequency of signals, at a range much higher
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Figure 4.4: Reflector mechanisms. Red: rotational motion. Green: translational motion.

Blue: flow motion.

than human body movement (e.g., 1-3 steps/s while walking, running or jumping). Gear

ratios were carefully selected in designing gear mechanisms that convert user interactions

(i.e., object movements) into the rotation of our reflector mechanisms.

To detect direction of movements, we encode the direction of the reflector mechanism’s

rotation into the slope polarity of the envelope signal containing the reflection peaks induced

by corner reflectors. By changing the geometry of the corner reflector facing toward the radar

through the rotation of the reflector mechanism, it exhibits a gradual increase or decrease of

RCS depending on the rotation direction (i.e., clockwise vs. counter-clockwise). We adopted

a computational design approach to finalize the configurations of the reflector and proved

its superiority against alternative designs.
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4.4.2 Reflector Mechanism

4.4.2.1 Motion Transformation

We found three common types of movements on objects deployed in the environment: trans-

lational (i.e., sliding contact), rotational (i.e., hinged contact), and flow (i.e., fluid contact).

These motions can be transformed by using mechanisms to achieve a desired rotational speed

of the reflector mechanism.

To ensure optimal signal quality, the rotating speed (or frequency) of our reflector, de-

noted as freflector in revolutions per second (or Hz), must have a high value that gives its

motion signal a sufficient margin against signals induced by human body motion, denoted as

fhuman, and a maximum value that does not exceed fradar/2n, where fradar/2 is the Nyquist

frequency of the maximum frame rate threshold of the radar fradar, and n is the number of

reflectors in the reflector mechanism. This relationship is captured by Equation 4.4. Addi-

tionally, the reflector must revolve at least one complete turn at every trial of the activity

so that the signal can exhibit a gradual change in RCS.

fhuman ≪ freflector < fradar/2n (4.4)

Thus, for short-stroke motions such as hinged objects, which typically operate at a quar-

ter revolution (for opening or closing), we design a mechanism with a 1:16 gear ratio to

simultaneously satisfy both criteria. This allows the transformation of rotational motion to

output a valid freflector by multiplying the interaction speed by 16, ensuring a high enough

frequency to be discriminated from human motion while allowing the reflector mechanism

to revolve 4 times in a single operation. On the other hand, for long-stroke motions such as

sliding objects or continuous stroke motions such as fluid flow, we design a mechanism with

a 1:1 gear ratio, which we found sufficient to yield high-SNR signals.

47



4.4.2.2 Magnetic Coupling

The mechanism for the flow motion of liquid running inside pipes requires a special design

(Figure 4.3 A). For example, the mechanism instrumented on an outdoor faucet has one end

attached to the valve and the other end to the hose. We used magnetic coupling to facilitate

movement between the water wheel driven by the internal water flow and the external fixture

that rotates the reflector without having gaps that often cause leakage in our early iterations.

The water wheel was 3D printed with PLA. We found that the mechanism could achieve high

radial movement with minimal resistance, further reducing the risk of leaks and increasing

durability over time.

4.4.2.3 Reflector Geometry Design

First, we ensured the visibility of reflectors to radars at arbitrary deployment positions by

having an array of corner reflectors on a hemisphere-shaped platform (i.e., a hemisphere-

shaped reflector). Our reflector was designed with a hemisphere shape without sharp edges

to be less intrusive to both users and environment, making it more practical in real-world

applications. The corner reflectors on it ensure a wide range of workable incidence angles,

allowing our reflector mechanisms to work with many radar locations (e.g., smart speakers,

light bulbs).

Second, we select the approach to change reflectivity of the hemisphere-shaped reflector as

it rotates. One straightforward approach is using a shield with various sizes of vents in front

of a corner reflector to control the reflection of incoming signals. Specifically, we designed

a cone-shaped shield with see-through vents that can rotate with gears, and a stationary

corner reflector positioned inside the shield (Figure 4.5 A). We eventually abandoned this

design for its delicate mechanical components, making it more challenging to set up (i.e.,

printing time, material consumption, and installation); and comparatively lower SNRs than

the rest of the candidate designs.
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We found it more feasible to leverage orientation and geometry factors discussed in Sec-

tion 4.3, by concatenating multiple corner reflectors on a rotatory platform to get expected

RF reflectivity pattern. In the following discussions, we use ”pocket” to denote a single cor-

ner reflector on the hemisphere-shaped reflector. Our first prototype divided a hemisphere

into four pockets with various sizes, and each with its edges parallel to those of its adja-

cent pocket (Figure 4.5 B). However, we found that it often yielded many side spikes of RF

reflection, which we suspected were resulting from their unit plates when they were perpen-

dicular to radar incident waves and from the margins between pockets. These side spikes

pose challenges to our signal processing and information decoding algorithms and should be

minimized, for which we decided to conduct another round of iteration.

We took a computational design approach for which we revised our design goal into:

determining a concatenation of n pockets, with each pocket having an edge length of ri,

to have a monotonic RCS change across incident azimuth angles ranging from 0 to 360◦.

Each pocket is described by Pi = (Ci, Ei, Ei
′) with two edge vectors v⃗i and v⃗i

′. Edge vectors

point from centers Ci to points on the hemisphere periphery Ei (Figure 4.6 A). Of note that

Ei+1 = Ei
′. For each incident wave v⃗I(φI ∈ [0, 2π]), we calculate RCS of the reflector across 0

- 360◦ by Equation 4.5, where u(·) is the unit step function neglecting pockets pointing away

from the radar, rcs(·) is derived from simulation in Section 4.3 and → is a vector projection.

Specifically, RCS of a corner reflector is symmetric along the boresight (i.e., Azimuth angle

= 45◦, Elevation angle = 35◦), so we only consider the azimuth plane on the boresight. We

further assumed that only those pockets, whose two edge vectors each form an angle between

0 and 90◦ with the incident vector, are capable of inducing a reflection back to the radar.

RCS(v⃗I) =
n∑

i=1

u(v⃗i · v⃗I)u(v⃗i
′ · v⃗I)rcs(ri, v⃗I → Pi) (4.5)

Corner reflectors, even a small one, can induce strong reflection to the radar compared

to environmental noise, resulting in a ”peak” of radar response as it rotates. Pockets with

different edge lengths yield different ”peak” characteristics, which are what we leverage to
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encode information. This encoding mechanism is akin to amplitude modulation which has

been widely used in communication. We define a new term to describe the hemisphere-shaped

reflector that has a pocket array:

H = RCS(v⃗I)
r1,r2,...,rn

(4.6)

We define peaks (pk1, pk2, ...) induced when H rotates with certain constraints (i.e., the

length of the peak array should be greater than 3) and fit them with a linear regression model

using coefficients m, b and fitting error rmse. Then we solve the following constrained multi-

objective optimization problem to find the optimal combination of pockets pi,

argmin
r1,r2,...,rn

m,−b, nrmse

subject to rmin ≤ ri ≤ R,

0 ≤ ri+1 − ri,

n∑
i=1

2πri
4

≤ 2πR.

where nrmse is the normalized fitting error, which we used to facilitate comparison

between models. rmin is the radius of the smallest pocket bounded by environmental factors

such as distance to the radar and ambient noise to ensure certain SNR (Equation 4.7). R is

the radius of the hemisphere-shaped reflector. Of note that we assume that the hemisphere-

shaped reflector rotates starting with the largest pocket facing the radar, and thus m needs

to be as small as possible for yielding distinctive slope polarity, facilitating the direction

detection. In the opposite rotation direction, m will guarantee to be the largest, assuring

that one solution is optimal for both directions. We also reward a large b which is equivalent

to a strong reflection when the largest pocket is facing the radar, facilitating the detection of

activity presence. This optimization problem is solved by a genetic search algorithm [Cen77]

in Matlab.
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min ri ∝ σi ∝
(SNR)Pnoise(4π)3D4L

PtGtGrλ2
(4.7)

We empirically choose n = 5, rmin = 1 cm,R = 4.4 cm for our reflector design, and a

step of 0.2 cm for the searching space of ri given our fabrication resolution. Figure 4.6 B

shows objective function values at 18 different solutions. We selected one of the solutions by

manually examining their simulated RCS patterns and picked the radius set of 4.4, 4.0, 3.6,

2.8, 2.6 cm for our design (Figure 4.6 C, D). This decision was based on design considerations

such as RCS pattern including the number and magnitude of spikes, peak characteristics as

well as the space efficiency of the pocket arrangement on the hemisphere. This computational

design of reflectors strengthened their signal characteristic and facilitated their detection, for

which we design a first-principle-based algorithm, as we will discuss in Section 4.4.4.

4.4.2.4 Reflector Material Selection

According to the discussion in Section 4.3.2, metals generally create stronger reflection than

dielectric materials such as plastic, allowing more compact reflector designs that can be used

in productization. We reached out to manufacturers and made reflectors out of aluminum

alloy and steel with our computationally designed reflector geometry. Figure 4.7 shows results

indicating that metal-printed reflectors induce strong reflection (2 - 4 times stronger than

that of PLA + aluminum foil) and exhibit more distinctive signal patterns. However, metal

fabrication was time- and cost-intensive due to its limited accessibility to the general public.

This issue could become negligible once the fabrication of these reflectors transitions to a

mass production scale. In this research, we followed a fabrication approach found effective in

a prior work [YZ21] to implement our reflector mechanisms, taking advantage of 3D printing

as a rapid and cost-effective fabrication approach to yield complex and customized shapes.

Specifically, we first 3D-printed reflector substrates out of PLA. To enhance reflectivity, we

then attached a thin, conductive aluminum foil to the pockets of the hemisphere-shaped
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reflector. Our end result is low-cost, durable, and flexible to be deployed in various sizes.

4.4.3 Hardware

Our sensing system is based on TI’s AWR1843 radar operating at 77-81 GHz. The sensor

has three transmitters and four receivers with a 120◦ and 30◦ field of view in the Azimuth

plane and Elevation plane respectively. We configured this radar to operate at a frame rate

of 500 by sequentially emitting 1 chirp per transmitter per frame. We used this configuration

to achieve a high frame rate of RCS sensing while being insensitive to velocity (i.e., speeds

of object movement and reflector rotation) by not having multiple chirps within a frame.

This is because our sensing principle is based on RCS changes rather than movements which

often constitute noise (i.e., human motion) to our sensing. To ensure the separation of

reflector mechanisms (∼9 cm diameter) among objects, we used a chirp configuration of

bandwidth = 1.8 GHz, chirp time = 60 µs, adc samples = 256, resulting in a maximum

sensing range of 22 m and a range resolution of 9.7 cm. At this resolution, multiple objects

could be easily separated so long as their reflector mechanisms are not sharing the same

range-azimuth bin. Specifically, we measured that signals from a reflector are attenuated

by -20dB in a bounding box (i.e., a potential location for another reflector) if the bounding

box is placed 29 cm, 38 cm, 45 cm apart from the reflector at 1 m, 2 m and 3 m ranges.

This measurement confirmed that our radar configuration is adequate for detecting multiple

objects, since many household appliances (e.g., drawer, door) are spaced more than 1 m

apart. The complex (I/Q) data samples are streamed by the DCA1000EVM data capture

module to a laptop over an Ethernet cable for further processing.

4.4.4 Software

The raw ADC data, stored as a stream of 256x8 matrices, is processed with FFT to obtain

range-azimuth profiles, allowing us to locate reflector mechanisms in the environment. We
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measure the average received power within a region of interest (ROI) over time and obtain a

time sequence, to which a sliding window with 512 window length (WL) is applied to examine

the signal characteristics and estimate the object status in real-time. Specifically, we used

the following algorithm to determine the presence of an event, direction, speed, angle, and

uses of target objects, where Thredhigh and Thredlow are threshold values determined by host

object and its environment, PW is minimum peak width used to eliminate spikes of noise.

All the above parameters as well as the ranges and angles of the reflectors instrumented in

the environment are obtained during system calibration. We developed an algorithm for the

detection of the presence and other rich information of events, as shown in Figure 4.11.

To demonstrate the effectiveness of our algorithm, we used data collected from one in-

strumented object (i.e., a CNC enclosure) as an example. Figure 4.8 shows the raw signals

from a single trial of opening and closing, from which we can see that the event occurrence

can be segmented by applying thresholds to the frequency spectrum. Figure 4.8 C and D

show detailed characteristics of the time series, wherein the envelopes of peaks from an open-

ing trial feature a triangular wave pattern with a large peak followed by a decreasing ramp

while a closing trial shows an increasing ramp followed by a sudden drop in signal magni-

tude. Furthermore, we collected data for different interaction scenarios including opening

the CNC enclosure door at angles of 45◦, 90◦, 135◦ and 180◦ as well as at low, medium and

high speed respectively. The results are shown in Figure 4.10, indicating the feasibility of

sensing these fine-grained information about activities with our encoding mechanism and

detection algorithm.

4.5 Evaluation

We deployed 14 mechanisms in two indoor environments (i.e., maker space and office) and

one outdoor environment (i.e., house backyard), as shown in Figure 4.9. Details of these

mechanisms can be found in Figure 4.4. Of note that we omitted the anemometer for the
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difficulty of inducing its ground-truth signals in the study. At each location, the radar

sensor was affixed at a certain location and went through a calibration process prior to the

testing. This process included adjusting orientation, selecting a region of interest, and setting

thresholds. Two experimenters conducted three rounds of testing for each object at each

location. Specifically, one round of testing started with a 10-minute data collection during

which objects were idle and experimenters performed daily activities such as working, talking,

eating, walking, and exercising. Then, an experimenter performed 10 trials of operation on

one object (i.e., one trial includes one complete opening and one closing operation) with

approximately 2 seconds interval, until all objects were tested. The environments were

occupied and exposed to users and elements expected to be seen in everyday settings (e.g.,

users walking in the maker space, windy weather in the backyard).

An example of signals from one round of testing (i.e., 10-minute data and 20 trials)

for the storage container is shown in Figure 4.12. We found that signals resulting from

reflector mechanisms (i.e., the thick oscillations in Figure 4.12 B and C) were much more

distinctive than idle signals (i.e., signals in between oscillations). We also observed that

activities involving RF reflective materials, such as opening or closing a laptop (spikes in

Figure 4.12 A), had a higher chance of triggering false positive detection. This observation

was common across all objects we tested in this study and validated the effectiveness of our

reflector design.

Our dataset consisted of 840 trials of operation, and the results showed a low false positive

rate (only 5 times out of all the 10-minute idle data collection from the 14 mechanisms,

counting 7 hours in total) and a true positive rate of 98.25% for use detection. On average,

direction detection accuracy was 80.2%. The table at the right side of Figure 4.9 shows the

detection accuracies for each object. We found a minimum impact from the variations in

environments and object locations on the detection of object use. A more significant impact

was found on the detection of direction. As the distance between objects and the radar

sensors increased, the direction detection accuracy decreased, for the lower SNR due to the
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larger path loss of radar signals during the transmission.

4.6 Discussion

One obvious limitation is the limited sensing capability on objects out of radar’s line of

sight. The penetration capability of RF waves decreases with their wavelength in the GHz

frequency bands assuming a constant power. However, shorter waves enable sensing with

higher spatial resolutions that allow better differentiation between multiple objects in the

environment as well as smaller reflector form factors. To mitigate this limitation, one possible

solution is to leverage reflections of RF waves on everyday surfaces. This solution has shown

promise in prior works demonstrating Non-line-of-sight (NLOS) radar sensing techniques

[HTY21, WKO21, FLZ21].

Currently, reflectors are registered to locations (i.e., unique combinations of Range, Az-

imuth, and Elevation) of their host objects, thus necessitating a manual calibration process.

However, this calibration is only required at the installation or when object location changes,

which is often infrequent for many objects (e.g., facets, doors, windows). The effort required

for calibration is comparable to setting up new IoT devices. Nonetheless, we recognize this as

a limitation of our current approach. Sensing movable objects is unachievable through this

location-based identification. Looking ahead, hybrid sensing approaches (e.g., with RFID)

and advanced signal processing could potentially facilitate the identification of objects and

thus eliminate the need for calibration.

Another challenge is the design of gear mechanisms that retrofit existing environments.

Particularly for hinged objects, the axis of rotation is difficult to locate. We expect sensor-

aided approaches using vision or IMU sensors on mobile devices to be possible, as shown

in prior work [LKC19, LSK22]. Additionally, the gear mechanisms are bulky in our current

design, however, smaller gearboxes exist and could be achieved with superior fabrication

methods (e.g., metal printing). A long-term solution to eliminate a user’s installation effort
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and to minimize the reflector form factor is to integrate the reflector mechanism into the

manufacture of everyday objects, or to be provided as accessories by the manufacturers as

an optional enhancement (akin to the furniture wall straps).

Though we did not demonstrate concurrent activity sensing, we noted that activities that

are sufficiently separated should be able to be independently detected due to the minimal

interference caused by overlapping of reflection on the range-azimuth map. Nonetheless,

further research is necessary to extensively explore its feasibility. Future work could utilize

advanced beam-forming approaches to distinguish signals from various sources in complex

environments that involve multi-path interference, as well as overcome security challenges

including spoofing and MITM attacks, both of which are limitations of our sensing approach.
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Figure 4.5: Geometry and signals of different reflectors. The weight and printing time are

approximated based on the printing parameters used with the Ultimaker S5 3D Printer

[S523], including a layer height of 0.2 mm and 10 % infill. A: Reflector with cone-shaped

shield. B: Hemisphere-shaped reflector with four parallel pockets. C: Hemisphere-shaped

reflector with computationally designed pockets.
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Figure 4.6: A: Top view of the hemisphere-shaped reflector, pocket arrangement and incident

waves. B: Objective values of 18 solutions. C: Top view of reflector with radius=4.4, 4.0,

3.6, 2.8, 2.6 cm for pocket 1 - 5. D: Simulated RCS (i.e., H) of the reflector, peaks and the

fitted model.

Figure 4.7: Reflectors made of Aluminium, Steel, and PLA; their fabrication details; and

their signals collected from a mmWave radar positioned at 2.6 m away.
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Figure 4.8: A: Signals of a single trial of opening and closing the CNC enclosure. B is

obtained by applying FFT to signals within a window (size=512) that slides along the time

axis and sums the high frequency components (larger than 50 Hz). C and D are signals from

the two specific regions of A, with orange crosshairs representing the detected peaks.
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Figure 4.9: Deployment details. Left: Floor plans of the three locations in the evaluation.

Colored dots are objects instrumented with mechanisms as shown in Figure 4.4. The orange

stars denote the radar sensor with the number indicating its height to the ground (in meters).

Right: Detection accuracies. Note that the treadmill and faucet are unidirectional objects

and were excluded from the evaluation of the direction detection.

Figure 4.10: Fine-grained information about activities including direction (A), angle (B),

and speed (C) can be detected.
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Figure 4.11: Event detection algorithm.
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Figure 4.12: A round of testing for the storage container. Ten minutes of data collected

when no objects were in use in an occupied environment (A). One minute of 10 trials of

operation in a quiet environment (B) and in a busy environment where people were walking

around (C).
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CHAPTER 5

Conclusion

The main goal of this thesis is to explore how interaction power can be utilized as an energy

source to extend the longevity of IoT applications and eliminate the necessity for frequent

battery maintenance. More specifically, this thesis demonstrated preliminary explorations

into employing interaction power for executing actuation and sensing tasks of IoT.

In Chapter 2, we conducted benchmark tests to understand the characteristics of in-

teraction power, from which we established the correlation between the amount of energy

harvested, the configurations of motor harvesters and the patterns of user motions. With

these findings, we presented MiniKers in Chapter 3, an fleet of interaction-powered environ-

ment automation devices. We demonstrated a comprehensive design scheme of MiniKers,

including mechanical designs, circuits and phone apps. We conducted a series of technical

validations and a 48-hour deployment study of 9 objects to prove the efficacy of our sys-

tem. In Chapter 4, we introduced a new method of transforming interaction power to RF

backscatter to mmWave radar for detecting activities in user environments. We proposed

a computational approach to design reflector mechanisms and conducted studies on 15 ob-

jects at three different locations, which demonstrated the robustness of our approach with

extremely low false positive rates.

Our work in this thesis has shown the feasibility of using interaction power for IoT

actuation and sensing. We envision our approach to be integrated into future IoT devices

such as automatic doors, curtains, smart light bulbs, speakers, and service robots, to extend

their lifespan, enhance their capacity to infer user context and thus improve their capability
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to serve.

There are multiple future research opportunities on interaction-powered IoT. A system-

atic study can be conducted to quantify the amount of interaction energy from various body

movements, including actions like pushing, cranking, and stepping, providing foundational

benchmarks for designing harvesters. The usability of interaction-powered IoT devices should

be properly investigated in future work, including frequency of interactions in different envi-

ronments and applications and user perceptions to harvesters. In addition, interaction power,

characterized by its unique property of existing only during interactions, holds promise for

improving security and privacy in IoT applications. We also seek to extend interaction power

to a wider range of computing by delivering interaction power to other device modalities and

thus extending the applications of interaction harvesting.

All in all, this thesis creatively proposed the utilization of people interactions as the

energy sources to power IoT applications, which has the potential to advance the large scale

deployment of IoT technologies.
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