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� The phenomenon of precessing vortex
core (PVC) is investigated
computationally.

� Turbulence closure was with four
alternative Reynolds-stress transport
models.

� Good agreement obtained with
experimental data for turbulent
swirling flow in pipe.

� The simulations correctly capture
self-sustained oscillations in bulk
parameters.

� Flow visualizations reveal
exceptionally well-defined double
helical vortex.
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The phenomenon of precessing vortex core is observed experimentally when swirl is imparted on an axial
flow in a pipe. It manifests as a coherent structure in the form of a helical vortex of regular wavelength
whose axis is coincident with the pipe’s axis. The most striking consequence of this pattern of flow is the
generation of periodic fluctuations in the streamwise distribution of the wall static pressure and skin fric-
tion. While the prediction of the precessing vortex has proved possible with large-eddy simulations, there
is no record of this phenomenon being captured in great detail by Reynolds-averaged Navier-Stokes
methods utilizing turbulence models to close the time-averaged equations. The purpose of the research
reported here was to determine whether the precessing vortex core and its impact on conditions at the
wall can be captured using this approach. The turbulence model used was of the Reynolds-stress trans-
port type which involves the solution of a differential transport equation for each of the six non-zero
components of the Reynolds stress tensor. Previous studies in which such models were used in the pre-
diction of rotating and swirling flows have shown that their performance is largely determined by the
way in which the difficult fluctuating pressure-strain correlations that appear in these equations are
modeled. To this end, four very different alternative models for these correlations were assessed by com-
parisons with experimental data for a swirling pipe flow at relatively high swirl number. It was found that
the models do indeed capture the precessing vortex revealing it to be in the form of an exceptionally
well-defined double vortex. It was also found that the expected periodic fluctuations in static pressure
and wall skin friction, not previously obtained in turbulence model studies, are captured by the present
closures.
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Nomenclature

bij Anisotropy tensor (= uiuj
�

uquq
� 1

3dij)
C1,C2, . . ... . . Turbulence model coefficients
Cf Wall friction coefficient (= sw

0:5qU2
b
)

Cp;m Pressure coefficient at centerline (= p�pref
0:5qU2

b
)

D Pipe diameter
Dij Turbulence model parameter
Dh Hydraulic diameter
f Wall damping function
IIb Second invariant of anisotropy (=bijbij)
k Turbulence kinetic energy
L Pipe length
L Turbulence length scale
Pij,Pk Production rates of uiuj

�
and k

p Static pressure
Re Reynolds number (=UbD

m )
Rij;Rh;ij Reynolds-stress matrix in Cartesian and cylindrical-

polar axes
S Swirl number
Sij Mean rate of strain tensor
Tx;ij Rotation matrix
Ui Velocity vector

U Axial velocity
uiuj
�

Reynolds-stress tensor
W Tangential velocity
Wij Mean vorticity tensor

Greek symbols
e Dissipation rate
m Kinematic viscosity
Uij Pressure-strain correlations
q Density
h Angle in cylindrical-polar coordinates
s Shear stress
f Distance normal to surface

Subscripts
b Bulk
h Hydraulic
ref Reference
t Turbulent
w Wall
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1. Introduction

This paper is concerned with the prediction of turbulent swir-
ling flows in pipes in conditions leading to the formation of coher-
ent structures that significantly modify the physical processes
present. Swirling flows in general are of enormous interest due
to their wide-spread occurrence in nature and in engineering prac-
tice such as in combustion systems (Syred, 2006), swirl chambers
(Hedlund et al., 1999), cyclone separators (Murphy et al., 2007;
Huard et al., 2010), vortex tubes for cyclone cooling (Seibold and
Weigand, 2021), and thermal energy separation by swirl (Kobiela
et al., 2018). They are also a class of flows where turbulence clo-
sures of the type used in engineering design have proved to be
inadequate unless modified in some ad-hoc way (Kobayashi and
Yoda, 1987; Chang and Chen, 1993; Gorbunova et al., 2016). In
the flows of interest here, the imposition of a tangential compo-
nent of velocity on the axial flow gives rise to an interesting phe-
nomenon, namely the generation of a well-defined helical vortex
that precesses around the tube’s centerline. This feature is com-
monly referred to as a precessing vortex core (PVC). The vortex,
whose direction of rotation is the same as that of the direction of
the swirl at inlet to the pipe, is observed to occur when the swirl
number (defined as the ratio of the tangential to axial momentum
fluxes), and the axial Reynolds number are high. From a practical
standpoint, the importance of this feature of the flow stems from
the fact that it leads to the introduction of regular oscillations in
the wall static pressure and in the skin friction that occur at a wave
length that closely correlates with that of the precessing vortex
(Cassidy and Falvey, 1970; Griffiths et al., 1998). Additionally, the
peak-to-peak variations in the amplitudes of these parameters
are observed to be quite large (Brar and Derksen, 2020). Unsteady
pressure fluctuations can cause damage when they cause vibra-
tions to occur especially at a frequency that coincides with the nat-
ural frequency of the pipe (Fick et al., 1996; Yoshida et al., 2009).
Further, when heat and mass transfer processes are present
(Khalatov and Shchukin, 2017), Reynolds analogy suggests that
the precessing vortex will also cause oscillations to occur in the
rates of heat and mass transfer from the walls leading perhaps to
non-uniformity in distribution.
2

The literature on the computation and measurement of swirling
flows is vast and a survey of it is well outside of the scope of this
paper. Instead, we shall confine consideration to the case where
swirl is introduced at inlet to the pipe by means of a swirl genera-
tor such as guide vanes, as opposed to the very different flow that
arises when the pipe itself is rotated around its longitudinal axis.
Consideration is further confined to cases where the flow is nomi-
nally axisymmetric, and where vortex breakdown, leading to the
formation of the central recirculation zone, does not occur.
Seibold et al. (2022) present a comprehensive review of flow and
heat transfer in swirl tubes. Kitoh (1991), using hot-wire anemom-
etry, obtained detailed measurements of the mean velocity compo-
nents and the Reynolds stresses. These measurements revealed a
number of features that directly point to the unsuitability of
eddy-viscosity based turbulence closures in these flows. Among
these features is the generation of very strong turbulence aniso-
tropy due to the extra, swirl-related, rates of production of the Rey-
nolds stresses. The accurate prediction of flows where turbulence
anisotropy plays an important role in determining their behavior
clearly points to the need to account for the normal stresses indi-
vidually rather than by combining them into a single scalar param-
eter namely the turbulence kinetic energy. Another feature
highlighted in Kitoh (1991) is the significant misalignment
between the directions of the mean rates of strain and their asso-
ciated turbulent stresses. This misalignment, which is a feature of
all strongly-three-dimensional turbulent shear layers, is entirely
due to history effects i.e. non-local effects that are produced by
the advective and diffusive transport of the Reynolds stresses. It
should be noted that Boussinesq’s stress–strain relationship, which
forms the basis of eddy-viscosity closures, enforces the alignment
of these directions. It thus follows that the accurate prediction of
swirling flows requires either the abandonment of eddy-viscosity
closures altogether, or limiting their use merely to the representa-
tion of the small-scale dissipative motions that are less influential
in defining the large-scale flow structures and their consequences.
This is amply demonstrated in the study of Guo et al. (2002) who
were the first to report on the prediction of turbulent vortex pre-
cession in a confined flow with swirl. Their particular application
involved a flow in a pipe with an axisymmetric sudden expansion.
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Three-dimensional, time-dependent calculations were performed
with the effects of turbulence accounted for using the very large
eddy simulations (VLES) approach to capture the large-scale flow
structures, and the standard k� e model to represent the small-
scale dissipative motions. The combination of performing the cal-
culations in three-dimensional time-dependent mode and the
reduced reliance on the standard eddy-viscosity model that results
from the VLES approach enabled the capture of a very well defined
precessing vortex core leading to self-sustaining oscillations in
mean velocity and pressure. Li and Tomita (1994) reported mea-
surements of mean velocities and the wall static pressure distribu-
tion for various values of the swirl number. No measurements of
turbulence parameters were obtained, the focus being on the
development of empirical correlations for the streamwise decay
of the swirling motion. An important outcome of this study is the
finding that the swirl number, which is constant in swirling jets
that develop remotely from a solid wall, decays as flow develops
along the pipe’s length. This will be shown below to also occur in
the present computations. Rocklage-Marliani et al. (2003) used
three-dimensional laser-Doppler velocimetry to obtain detailed
measurements of the mean flow and the Reynolds stresses in swir-
ling pipe flow at reasonably high Reynolds number (Re ¼ 280;000),
and over a wide range of swirl numbers in which the main features
of a precessing vortex core (referred to by the authors as’ helically
wound streamlines’) were clearly displayed. The data from this
study will be the focus of the present work. Escue and Cui (2010)
reported on the prediction of this benchmark flow using two dis-
tinctly different turbulence model: the RNG k� e model, and a
Reynolds-stress transport closure. In contrast to all previous pre-
dictions of swirling flows, it was found that the eddy-viscosity
model generally performed better than the stress transport clo-
sure. No explanation was provided for this result, and neither
model succeeded in producing the precessing vortex core or its
effects on the wall shear stress and static pressure.

In this work, we have focused on Reynolds-stress transport
closures in the knowledge that prediction of the precessing vor-
tex core and its consequences will only be possible by properly
accounting for the effects of turbulence anisotropy, and by
allowing for the’history’ effects leading to the non-alignment of
the directions of turbulent stresses and mean rates of strain. Pre-
vious predictions of swirling flows with Reynolds-stress closures
have all indicated that of all the assumptions made to approxi-
mate the unknown terms in the Reynolds-stress equations, the
one that has the greatest bearing on the outcome is the choice
of a model for the fluctuating pressure-strain rate correlations.
Accordingly, we focus here on assessment of four alternative
models for these terms that are quite different in their formula-
tion. Thus, for example, two of the models require the inclusion
of’wall damping’ functions while the other two do away with
these functions and yet produce the correct near-wall behavior.
Other differences are discussed below - the objective being to
determine whether different modeling assumptions lead to dis-
tinctly different predictions.

2. Mathematical formulation

The equations for conservation of mass and momentum for an
incompressible flow with constant fluid properties are:
@Ui

@xi
¼ 0; ð1Þ

@Ui

@t
þ Uj

@Ui

@xj
¼ @

@xj
m

@Ui

@xj
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� �
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� 1
q
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@xi

: ð2Þ
3

The unknown Reynolds stresses in Eq. (2) are obtained from the
solution of differential transport equations for these quantities.
These equations are of the form:
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In the above, Pij is the rate of production term which is exact
and in no need of modeling. The diffusion term consists of three
terms, namely turbulence fluctuations, pressure fluctuations and
molecular diffusion of which only the latter is exact. In this work,
the pressure diffusion term is neglected since the consensus of data
suggests that it makes negligible contribution to the stress bal-
ances. The turbulent diffusion term is modeled as proposed by
Daly and Harlow (1970) i.e. by assuming that the diffusion of a
component of the Reynolds stress tensor is proportional to its spa-
tial gradient:

�uiujuk
� ¼ Cs

k
e
ukul
� @ uiuj

�

@xl
ð4Þ

The coefficient Cs is assigned its usual value of0:22.
The focus here is on the modeling of the fluctuating pressure-

strain correlationsUij. The role of the pressure-strain correlations
term (Uij) is to redistribute the turbulence energy amongst the
three normal-stress components and to reduce the shear stresses.
It is therefore the most direct agency through which the turbulence
anisotropy can be reproduced. The literature contains several pro-
posals for modeling this term. For the purpose of determining their
performance in this flow, we have chosen four of these models that
each provides a distinctive feature that is absent in the others. In
two of the models, Uij is presented as the sum of three terms that
account, respectively, for purely turbulent fluctuations (Uij;1Þ, for
interactions between the turbulent fluctuations and the mean rates
of strain (Uij;2), and for corrections on these two terms to account
for the effects of a solid wall on damping the pressure field in its
vicinity (Uij;w):

Uij ¼ Uij;1 þUij;2 þUij;w ð5Þ
The Uij;1 term is invariably modeled after Rotta’s (1951) return-

to-isotropy proposal:

Uij;1 ¼ �C1
e
k

uiuj
� �2

3
dijk

� �
ð6Þ

A model for the Uij;2 term was proposed by Launder et al. (1975)
and can be written as:

Uij;2 ¼ C2þ8ð Þ
11 Pij � 2

3 dijP
� �� 8C2�2ð Þ

11 Dij � 2
3 dijPij

� �
� 30C2�2ð Þ

55 k @Ui
@xj

þ @Uj

@xi

� �
;

ð7Þ

with

Dij ¼ uiuk
� @Uk

@xj
þ ujuk

� @Uk

@xi
: ð8Þ

There are very few recorded instances where this model has
been shown to produce results that are of accuracy commensurate
with its complexity. In contrast, a truncated version of Eq. (7) has
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proved to be very successful in a wide range of flows and is there-
fore selected for the present study. It is given by:

Uij;2 ¼ �C2 Pij � 2
3
dijPij

� �
: ð9Þ

The wall correction term Uij;w is given by Gibson and Launder
(1978) as:

Uij;w ¼ C 0
1
k
e

uiuj
� �2

3
dij

� �
þ C0

2 Pij � kij
� �	 


f ð10Þ

where f is the wall damping function:

f ¼ Cw
k3=2=e

f
ð11Þ

where k is the turbulent kinetic energy obtained as half the sum
of the normal stresses, Cw is a scaling factor that sets the value of f
to unity at the nearest wall cells, and f is the normal distance to the
nearest wall.

The values assigned to the various coefficients in the above are
listed in Table 1. In that table, the designation LRR indicates that
the model coefficients are assigned the values suggested in
Launder et al. (1975) and Gibson and Launder (1978). This model
has given good results in a variety of flows but has proved unsat-
isfactory in the prediction of a flow that is directly relevant to
the present study, namely that of the free axisymmetric swirling
jet. Launder and Morse (1979), in a computational and experimen-
tal study of this flow, reported that, contrary to the measurements,
the model predicted a spreading rate of the swirling jet that was
lower than that of the equivalent non-swirling jet. The cause for
this erroneous result was traced by Gibson and Younis (1986 a)
to the weighting given to the terms in the pressure-strain models
and an alternative set of coefficients was proposed that was found
to yield much improved results for a variety of complex shear flows
including that of the free swirling jet. In a later study of turbulent
boundary layers developing over axially-rotated circular cylinders,
Gibson and Younis (1986b) extended their model to account for
wall-damping effects. This model is designated in Table 1 as GY.

In another group of models for the pressure-strain correlations,
Uij is modeled via the use of tensor representation theorems to rep-
resent it, a second-order tensor, in terms of combinations of first-
and second-order tensors. The wall damping effects are not
accounted for explicitly as with Eq. (10) but, rather, by adopting
suitable weightings for the various terms in their formulation. Sev-
eral models of this type have been proposed and used to varying
degrees of success. They mostly can be expressed in a unified form
as:

Uij ¼ � C1eþ C�
1Pk

� �
bij þ C2e bikbkj � 1

3 bklbkldij
� �

þ C3 � C�
3II

1
2
b

� �
kSij

þC4k bikSjk þ bjkSik � 2
3 bklSkldij

� �
þC5k bikWjk þ bjkWik

� �
ð12Þ

In the above, bij (=uiuj
�

=uquq
� �1

3dij) is the turbulence anisotropy,
IIb (=bijbij) is the second invariant of anisotropy, and

Wij ¼ 1
2

@Ui
@xj

� @Uj

@xi
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is the mean vorticity tensor.

Different models can be obtained from Eq. (12) by assigning val-
ues to the coefficients that can be deduced by reference to data
Table 1
Coefficients for the LRR and GY models.

Model C1 C2 C0
1

LRR 1.8 0.6 0.5
GY 3.0 0.3 0.75

4

from homogeneous and inhomogeneous shear flows. Here, we
choose two such models. The first is that of Speziale et al. (1991)
(hereafter referred to as SSG) - a model that has found wide-
spread application in a variety of flows including in those with
swirl (Younis et al., 1996). The second is a model that differs from
SSG in two important aspects: the term that is quadratic in the
Reynolds stresses has been excluded on the basis that its presence
is not supported by data on return to isotropy. Also excluded are
the vorticity terms on the basis that their inclusion renders the
model results dependent on the frame of reference chosen to per-
form the calculations (Dafalias and Younis, 2007, 2009). This model
will hereafter referred to as DY. The coefficients assigned to the
SSG and DY models are listed in Table 2.

The last term in Eq. (3) eij is the rate of dissipation of uiuj
�

by vis-
cous action. At high turbulence Reynolds numbers, this term is
modeled by assuming that at high turbulence Reynolds numbers,
viscous dissipation is isotropic thus:

eij ¼ 2
3
dije; ð13Þ

where e is the rate of dissipation of the turbulence kinetic
energy k which is obtained from:

@e
@t

þ Ui
@e
@xi

¼ @

@xi
Ce

k
e
ukui
� @e

@xi

� �
þ Ce1

e
k
Pk � Ce2

e2

k
ð14Þ

where the coefficients have been assigned their standard values
(Tables 1 and 2).

3. Computational details

The experimental data used in this study are those of Rocklage-
Marliani et al. (2003) obtained in a circular pipe with diameter
D ¼ 0:1m and length ofL ¼ 1:5m. The bulk velocity was Ub ¼ 2:8
m/s and the Reynolds number wasRe ¼ 280;000. Measurements
of mean velocities and Reynolds stresses were obtained using
laser-Doppler velocimetery and are reported at 5 axial locations
in the region4 � x=D � 14.

A swirl generator, consisting of a rotating bundle of small tubes,
was used to impose swirl on the axial flow. The strength of swirl is
quantified by the swirl number (S) which represents the ratio of
the tangential to axial momentum fluxes:

S ¼
R
rWU dA

Dh
R
U2 dA

; ð15Þ

where Dh is the hydraulic diameter. In the present experiment,
the initial swirl number wasS ¼ 0:61.

The computations were performed using OpenFOAM - an open
source software tool for computational fluid dynamics
(OpenFOAM, 2018). It utilizes finite-volume discretization to solve
the equations governing the conservation of mass, momentum and
the turbulence parameters which here consisted of all six non-zero
components of the Reynolds-stress tensor, and the energy dissipa-
tion rate. The dependent variables are co-located at the cells cen-
ter, and are solved iteratively using a segregated approach. The
coupling between the continuity and momentum equations is
achieved using the SIMPLE algorithm. Discretization was with
second-order accurate schemes. For the advection terms, the
bounded Gauss-limited linear scheme was used. This scheme,
C0
2 Ce1 Ce2 Ce

0.3 1.45 1.90 0.18
0.5 1.40 1.80 0.15



Table 2
Coefficients for the SSG and DY models.

Model C1 C�
1 C2 C3 C�

3 C4 C5 Ce1 Ce2 Ce

DY 4.0 3.0 0 0.8 2.0 0.6 0 1.45 1.9 0.18
SSG 3.41 1.8 4.2 0.8 1.31 1.25 0.41 1.44 1.83 0.18

Fig. 2. Cross section of the grid used.
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which utilizes central differencing to interpolate values from the
cell center to the centers of its faces, is recommended for the sim-
ulation of incompressible flows as it is formulated to promote the
solutions boundedness and convergence (OpenFOAM, 2018). The
diffusion terms were discretized using the Gauss linear unbounded
scheme whereas the vector quantities were discretized using the
V-limiter scheme. To maintain numerical stability, underrelaxation
was used in the solution of the governing equations with typical
values being 0.2 for the pressure and 0.5 for all the remaining
dependent variables. To expedite convergence and to avoid insta-
bilities arising from incompatible initial conditions, the computa-
tions were started with the k� e model and proceeded until a
converged flow field was obtained before switching over to the
Reynolds-stress transport models. Thereafter, the computations
were continued until the normalized sum of the absolute residuals
for all the variables over the entire field dropped by at least three
orders of magnitude from their initial value. The number of itera-
tions required to achieve this degree of convergence depended
on the pressure-strain model used and was of the order of 1000
iterations with typical simulation times being of the order of 5 h
on two nodes on a central computing network. Each node con-
sisted of two Intel E5-2630 v3 2.4 GHz CPUs each with 8 cores,
16 threads and 64 GB of RAM.

Fig. 1 displays the computational domain, the coordinate axes
and the implemented boundary conditions. In order to be able to
capture the precessing vortex, the computational domain covered
the entire pipe cross-section using the block-structured grid shown
in Fig. 2. The choice of a block-structured grid with a Cartesian
mesh in the central region in preference of a cylindrical-polar mesh
covering the entire cross-section was motivated by the need to
avoid the excessive cell skewness around the centerline and the
singularity there (Hernandez-Perez et al., 2011). This whole-
section approach, which was also adopted in the swirling pipe flow
computations of Guo et al. (2002), is different from what is nor-
mally done in flows that are nominally axisymmetric where the
grid is two-dimensional and covers only a small sector of the full
cross section on the basis that gradients of all dependent variables
are zero in the azimuthal direction.

Solving for the entire cross section requires a special treatment
of the boundary conditions applied at inlet to the domain. There,
measured mean velocities and the Reynolds stress profiles are to
Fig. 1. Computational domain, coordin

5

be specified but these were obtained in the experiment along a sin-
gle radial line on the basis that the flow can be treated as axi-
symmetric. In order to implement the measured profiles across
the complete cross section, polynomial functions were used to fit
the discrete data points to functions that expressed the measured
variables as a function of the radius. The function for axial velocity
was then used to specify this variable at all grid nodes. For the
remaining variables, it was assumed that along the radial axisr,
the cylindrical coordinates x; r; h are coincident with the Cartesian
coordinates, x; y; z respectively, that are used in OpenFOAM. The
tangential velocity function W rð Þ was decomposed into the corre-
sponding components in the Cartesian y� and z� directions and
assigned to each cell surface depending on the midpoint coordi-
nates. Thus the velocity components in the Cartesian coordinate
system Uy and Uz were calculated from:

Uy y rð Þ; z rð Þð Þ ¼ �W rð Þ � sin h ð16Þ

Uz y rð Þ; z rð Þð Þ ¼ W rð Þ � cos h ð17Þ
The Reynolds stresses were also assumed to be axisymmetric in

the swirl coordinates and hence were specified across the entire
inlet plane according to the tensor-transformation rule:

Rh;ij ¼ Tx;ij Rij T
T
x;ij: ð18Þ
ate axes and boundary conditions.
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Rij is the symmetric Reynolds stress matrix and Tx;ij being the
rotation matrix for a rotation h around the x-axis. The superscript
‘‘T” denotes the transposed matrix.
Tx;ij ¼
1 0 0
0 cosh �sinh
0 sinh cosh

0B@
1CA ð19Þ

Also at the inlet plane, a zero axial gradient boundary condition
was applied to the pressure while the dissipation rate was
obtained from the relation:
e ¼ C0:75 � k1:5
L

ð20Þ

where Cl ¼ 0:09 and L is a length scale taken here to be0:05D.
The pipe walls were considered smooth and the boundary con-

ditions there were specified based on conventional’wall function’
approach. In this approach, the logarithmic law of the wall is used
to obtain the resultant wall shear stress using the resultant velocity
at the near-wall cells. The resultant stress was then resolved into
axial and tangential components to provide the flux boundary con-
ditions for the velocities in the respective directions. The normal
gradient of each component of the Reynolds-stress tensor was
set equal to zero while the value of e at near-wall cells was set
equal to the rate of energy production there. The location of the
near-wall cells maintained in the range30 < yþ < 70.

At pipe outlet, a fully-developed flow condition was assumed
and hence the streamwise gradients of all variables except the
pressure were set equal to zero. The pressure outlet boundary con-
dition was set using the OpenFOAM option’fixedMeanOutletInlet’.
With this option, the computed interior pressure field is extrapo-
lated to the outlet plane using the near-cell values, and the distri-
bution adjusted to satisfy overall continuity. In this way, the radial
variation of pressure due to swirl, which is captured naturally in
the interior cells, is correctly reflected at the outlet.
Table 3
Grid convergence study.

N3 N2 N1 U3 U2

Cp 629,640 864,000 1,132,560 1.178 1.169
S 629,640 864,000 1,132,560 0.483 0.489eU 629,640 864,000 1,132,560 1.080 1.084

Fig. 3. Plot of the grid convergence analysis. N solutions on the
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4. Results and discussion

A grid convergence study was conducted in order to quantify
the discretization errors. Computations were thus performed on
a coarse, medium and fine grids having629;640,864;000, and
1;132;560 active grid nodes, respectively. The sensitivity of the
computed solutions were assessed using the Grid Convergence
Index (GCI) method (Roache, 1994; Celik et al., 2008) applied to
three’target’ parameters, namely the wall static pressure coeffi-
cient at inlet (Cp), the swirl number (S), and non-dimensionalized

maximum axial velocity (eU), both evaluated atx=D ¼ 14. The
results of these tests are shown in Table 3. In that table, GCI21fine indi-
cates the percentage the computed target parameter value is dif-
ferent from its asymptotic value. It is also an indication of the
degree to which the solution would change with further grid

refinement (Celik et al., 2008). For Cp andeU , the GCI is below 1%
which indicates that the numerical errors are at a minimum. ForS,
the value is somewhat larger but that is typically obtained for
parameters that are formed as a ratio of two computed quantities.

Also quoted in the table is the parameter U21
ext which gives the

asymptotic value of a particular target parameter as deduced by
performing Richardson extrapolation. The convergence behavior
is clearly illustrated in Fig. 3(a) and 3(b) which show the relation
between the values of Cp and S as obtained with the three grids,
and their asymptotic value. Notable in that figure is the drastic
reduction in slope between the values obtained with the fine grid,
and the asymptotic values indicating the attainment of satisfactory
convergence with the fine grid which was therefore used in all sub-
sequent computations. That mesh consisted of four blocks each
27 � 22 � 396 nodes, and one center block with 22 � 22 � 396
nodes in the radial, tangential and axial directions, respectively.

Fig. 4 compares the predicted and measured cross-stream pro-
files of the mean axial velocity at several axial locations. The pro-
files are non-dimensionalized with the bulk velocityUb. The axial
velocity profiles in Fig. 4 indicate the development of a region of
momentum deficit at r=D ¼ 0:35 which is obtained in both the
measurements and the simulations. The LRRmodel shows an oscil-
U1 U21
ext e21a e21ext GCI21fine

1.166 1.163 0.306 % 0.235 % 0.292 %
0.493 0.507 0.831 % 2.66 % 3.42 %
1.088 1.094 0.443 % 0.533 % 0.670 %

ith grid, j asymptotic value from Richardson extrapolation.



Fig. 4. Predicted and measured mean axial velocity at several streamwise locations. Predictions: , , , . Measurements (Rocklage-Marliani
et al., 2003): �.

Fig. 5. Predicted and measured tangential velocity at several streamwise directions. Predictions: , , , . Measurements (Rocklage-Marliani
et al., 2003): �.

Fig. 6. Predicted and measured streamwise variation of the swirl number. Predictions: , , , . Measurements (Rocklage-Marliani et al.,
2003): N.
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Fig. 7. Predicted streamwise variation of the centerline pressure coefficient. Predictions: , , , .

Fig. 8. Top for each model: vorticity isosurfaces for xx ¼ �200=s. Bottom for each
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latory behavior which seems to exaggerate this deficit and com-
pensate for it at r=D ¼ 0:2 - a deficiency that becomes quite appar-
ent atx=D ¼ 14:0. The centerline velocity is predicted well with all
the models though there appears to be a slight overestimation of
this quantity close to the exit.

Fig. 5 compares the predicted and measured mean tangential
velocity. In the inner region, the velocity profiles are essentially lin-
ear which implies characteristic of a forced vortex rotation which
is to be expected since the swirl generator described by
Rocklage-Marliani et al. (2003) imposes a forced vortex. Kitoh
(1991) used tangential slots to generate the swirl, which, as in this
flow, prevents the occurrence of centerline deflections due to the
presence of guide vanes. In Kitoh (1991), the tangential profile is
also categorized as zones of free (annular) and forced (central
zone) vortex rotation in which the angles that the resultant veloc-
ity, the resultant velocity gradient and the resultant shear stress
make with the axial direction are all different thus confirming
the need for differential transport closures where these directions
are not assumed to be coincident.

Rocklage-Marliani et al. (2003) report values for the swirl num-
ber at three streamwise locations. These are shown in Fig. 6
together with the models results. At inlet to the computational
domain, the swirl number obtained using the measured gradients
of U and W is somewhat lower than the measured value due to
some minor deviations associated with the curve fitting the exper-
imental profiles. As the flow develops, the swirl number decreases
due to momentum loss at the walls by friction and this is obtained
in both the measurements and the models. Close to the exit (at
x=D ¼ 14), some minor departures from the otherwise monotonic
trend is observed in the results of DY and SSG which are the two
models that do not explicitly account for the wall damping effects
through a damping function.

The pressure drop that occurs in between inlet and exit is an
important parameter to be quantified and minimized (El Sayed,
2015). Fig. 7 shows the predicted variation of the static pressure
at the centerline along the streamwise direction. No experimental
measurements are available for comparison. The differences in the
models results are likely due to the different weighting given to the
terms representing the turbulence-turbulence and the turbulence-
mean rate of strain components of the models for the fluctuating
pressure-strain correlations (Eq. (5)). These differences modify
the mean velocities via the momentum diffusion terms and from
there yield differences in the predicted mean pressure fields. The
model: contour plot of the axial velocity Ux at the centerline section.
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Fig. 9. Predicted streamwise variation of the wall-friction coefficient. Predictions: , , , .

Fig. 10. Predicted variation of wall friction coefficient Cf with angular position h at the two streamwise locations: x=L ¼ 0:633 and x=L ¼ 0:667 .
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initial rise in the pressure coefficient is due to the flow adjustment
that inevitably occurs when the prescribed inlet conditions are not
exactly matched, and because the radial component of velocity is
set equal to zero for lack of data. In a non-swirling pipe flow at
the same Re number, it would be anticipated that a decrease in
the pressure coefficient of around DCp � �0:2 would occur over a
similar distance (as suggested by the Darcy–Weisbach equation).
This is what is approximately obtained here as well.

Having examined the profiles of the mean axial and tangential
components of velocity at the limited number of streamwise loca-
9

tions where measurements are available, it is instructive to view
the evolution of the flow field along the entire length of the pipe.
This can conveniently be done by plotting contours of the isosur-
faces of the axial component of vorticity (xx ¼ @W=@y� @V=@zÞ).
These contours are presented in Fig. 8 forxx ¼ �200=s. Also plotted
there are the contours of the axial velocity Ux at the middle section
of the pipey ¼ 0. All the models show the expected vortex preces-
sion around the centerline, most strikingly by the models ofLRR, DY
and SSG that also show that the coherent structure is in the form of
a double helix. This behavior is remarkably similar to the one
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observed in the Delayed Detached Eddy Simulations (DDES) in a
convergent vortex tube (Seibold and Weigand, 2021), and in the
Direct Numerical Simulations (DNS) of swirling pipe flows of
Vaidya et al. (2011) who suggested it to be analogous to that found
in the Taylor-Couette flow that occurs between a stationary outer
cylinder and a rotating inner one.

It was mentioned in the Introduction that an important feature
of the Precessing Vortex Core is its effect on the processes that
occur at the pipe’s wall. The expected consequences of the helical
structures that are apparent in Fig. 8 are that quantities that
depend on the normal gradients of mean velocity will experience
Fig. 11. Predicted and measured normal stresses at various streamwise sections. Predicti
2003): u2

�
, v2

�
; Dw2

�
.

10
periodic fluctuations in the streamwise direction associated with
the passage of peaks and troughs past a fixed point on the pipe’s
wall. This is clearly evident here in Fig. 9 where the streamwise
variation of the wall friction coefficient Cf is plotted at four differ-

ent angular positions within a quarter sector viz. ath ¼ 0
	
, 45�,

67.5�, and 90�. Several differences between the various models
results are apparent. The LRR and GY models incorporate an expli-
cit term to account for the wall damping effects and this is
reflected in their results which show far less’noise’ than is obtained
with the DY and SSG models where these functions are absent.
Concerning the overall behavior at a particular instant in time, it
ons: , , , . Measurements (Rocklage-Marlian et al.,
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can be seen that the variations in the friction coefficient that occur
for the two angular locations h ¼ 0

	
and h ¼ 90

	
are almost coinci-

dent, while the value of this coefficient is smallest ath ¼ 45
	
. By

way of analogy, for a non-swirling flow in a pipe at the sameRe,
the wall-friction coefficient is somewhat lower atCf � 0:0036.

The effects of the precessing vortex core on the circumferential
distribution of the wall friction coefficient are expected to be peri-
odicwith significant variations between the peak and trough values.
Fig. 10 show the variation of the wall friction coefficients with the
angular positionh. The results are plotted at two streamwise loca-
tions viz. x=L ¼ 0:633 and0:667. A phase shift occurs at a roughly
constant anglew. The phase shift is the least for the GY model.
Fig. 12. Predicted and measured shear stresses at various streamwise locations. Predicti
2003): r uv

�
, uw

�
, vw

�
.
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Measurements of the Reynolds normal-stress components are
reported at three sections (x=D ¼ 4;9;14). The profiles are non-
dimensionalized by the square of the bulk velocityU2

b . The pre-
dicted and measured profiles are compared in Fig. 11 where the
profiles prescribed at inlet are also plotted. The correspondence
between predictions and measurements is quite satisfactory for

the two normal-stress components u2
�

and w2
�

considering the pos-
sibility of some errors in the measurements which were obtained
along a single radial line as opposed to the predictions which were
averaged across the entire cross section. For the normal-stress

componentv2
�
, the differences between predictions and measure-
ons: , , , . Measurements(Rocklage-Marlian et al.,
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ments are very substantial with the latter showing very high levels
of this stress component in the near-wall region that persist
throughout the development length. Atx=D ¼ 9:0, for example,

the level of v2
�

near the wall far exceeds that of u2
�

- a behavior that
is not observed in any wall-bounded flow since the effects of a
solid wall on the turbulence field is to dampen the fluctuations
normal to it and redistribute the energy to the components parallel
to the wall.

The predicted and measured profiles of the shear stresses are
compared in Fig. 12. While there is broad consensus among the
results obtained with the various models, significant differences
with the measurements are apparent in the near-wall distribution

of uv
�

especially close to the outlet where the predicted and mea-
sured values are of opposite signs. In this regard, it should be noted

that it is generally the case that the sign of uv
�

is opposite that of
@U=@y and hence, according to the measurements of U presented

in Fig. 4, the sign of the measured uv
�

should be the same as in
the predictions.
5. Concluding remarks

The aim of the work reported in this paper was to discover
whether the interesting phenomenon of precessing vortex core
as manifested by well-defined coherent structures can be captured
by computational approaches that utilize turbulence models to
close the Reynolds-averaged Navier-Stokes equations. Four turbu-
lence models were selected, all being of the differential transport
category, differing only in the way in which the fluctuating
pressure-strain correlations are modeled. Two of the models uti-
lized explicit functions to account for the wall-damping effects
on the fluctuating pressure field, while two accounted for these
effects indirectly through the weightings allocated to the various
terms in their formulation. The purpose of performing the compu-
tations with four models was not to determine which per-
formed’best’ in these flows as it is very often the case that a
model that yields the closest agreement with experiments with
regards to one parameter does not do as well with regards to
another. Rather, by obtaining results with four significantly differ-
ent models, firmer conclusions can be arrived at regarding the
degree of accuracy to which the PVC phenomenon can be predicted
with Reynolds-averaged methods. Comparisons made with exper-
imental measurements showed that all four models reproduce, to
varying degrees of accuracy, the main features of the mean flow
and the turbulence field with the noted exception of the vertical
component of normal stresses. For that parameter, the measure-
ments did not show the expected suppression of this quantity
due to the stabilizing effects of solid-body rotation in contrast to
the models which returned values that are consistent with expec-
tations. On the other hand, the models were uniformly successful
in capturing the structure of precessing vortex with the predicted
contours of isovorticity showing that the coherent structures take
on the form of a double helix rotating about the pipe’s centerline.
The consequences of this on processes that occur at the walls are
quite profound and consisted of well-defined oscillations in static
pressure and wall friction whose prediction has not hitherto been
reported in the literature.

Having established in this study that the flow field due to this
complex phenomenon can be predicted to acceptable engineering
accuracy, it remains to be seen whether the prediction of scalar
transport with its associated wall oscillations in the rates of heat
or mass transport can also be achieved to the same degree of accu-
racy. Unlike in the mean-flow equations, where the contribution
made by the pressure-gradient term to the momentum balance
may mitigate deficiencies in modelling the turbulent transport
12
terms, the equation for scalar transport contains no such agency
and hence the greater emphasis on the accurate modeling of the
turbulent scalar fluxes. There too it may well prove necessary to
abandon eddy-viscosity based closures in favor of differential
transport models for the turbulent scalar fluxes. Consideration of
this matter is worthy of future research.
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