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Nuclear envelope regulates the circadian clock

Luoying Zhang1, Louis J Pt�a�ck1,2, and Ying-Hui Fu1,*
1Department of Neurology; University of California; San Francisco, CA USA; 2Howard Hughes Medical Institute; University of California; San Francisco, CA USA

Daily rhythms of behavior and physi-
ology arise from endogenous circa-

dian clocks. At the molecular level, the
circadian clock consists of intricate tran-
scriptional and post-transcriptional feed-
back loops that drive 24h rhythms in a
vast repertoire of basic cellular processes.
The nuclear envelope, as a fundamental
component of the cell, has been shown to
function as a global transcriptional regu-
latory machinery. Recently we found that
nuclear envelope proteins regulate the
circadian clock both in the mammalian
system and in fruit flies. One of these
proteins, MAN1, impinges on the clock
by binding to the promoter region of the
core clock gene BMAL1 and enhances its
transcription. Here we discuss about
other potential mechanisms employed by
nuclear envelope proteins to regulate the
circadian clock and possible biological
relevance of these modulations.

Introduction

Many organisms exhibit 24-hour or
circadian rhythms in various cellular,
physiological and behavioral processes. In
mammals, circadian rhythms are driven
by a molecular clock consisting of a series
of transcriptional/post-transcriptional
feedback loops with Clock and Bmal1 at
the center of the loops.1,2 CLOCK/
BMAL1 dimers activate the transcription
of 3 Period genes (Per1, 2 and 3) and 2
Cryptochrome genes (Cry1 and Cry2). PER
and CRY dimerize and translocate into
the nucleus, inhibiting the transcriptional
activity of CLOCK/BMAL1. In a second
loop, CLOCK/BMAL1 activates the tran-
scription of retinoic acid-related orphan
receptors, Rev-erba and Rora. The former
inhibits whereas the latter activates the
transcription of Bmal1. A highly similar

molecular clockwork exists in fruit flies,
with CLOCK (CLK) and CYCLE (CYC,
the fly homolog of BMAL1) driving the
transcription of per and timeless (tim) in
one loop, and vrille (vri) and PAR-domain
protein 1e (Pdp1e) in a second loop.3 This
molecular circadian machinery is believed
to contribute to rhythmicity in up to 10%
of the transcriptome.4 Indeed, several core
clock genes have been shown to interact
with chromatin modifying enzymes, serv-
ing as part of the epigenetic mechanism
underlying rhythmic transcription of
clock-controlled genes.5 A recent study
demonstrated circadian rhythm in tempo-
ral and spatial organization of the chro-
mosomes, which is driven by the
molecular clock.6

The nuclear envelope (NE), aside from
being a barrier that separates the nucleus
from the cytoplasm, also regulates spatial
genome organization and gene expression
by interacting with chromatin modifying
enzymes and transcription factors.7 There-
fore, it is tempting to speculate that the
circadian changes in spatial organization
of the chromosomes are mediated by the
NE, and this contributes to circadian-con-
trolled transcription.

A Role for Nuclear Envelope
in Modulating Circadian

Oscillations

To test the hypothesis that the NE
modulates circadian regulation of tran-
scription, we conducted a screen in
human osteosarcoma U2OS cells and
identified 3 nuclear lamina proteins,
Lamin B1 (LMNB1), Lamin B receptor
(LBR) and MAN1 that participate in
determining the circadian period of
molecular oscillation.8 Knocking down
any one of these genes lengthens the
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period, while over-expression shortens the
period. Reducing or increasing LMNB1
in mouse via genetic manipulations delays
or advances the phase of molecular oscilla-
tion, respectively, which is likely a result
of lengthening or shortening of the endog-
enous period. Similarly, reducing or
increasing dLamin (dLam, also known as
Dm0) in flies lengthens or shortens the
behavioral period, respectively. This
implicates an evolutionarily conserved
role of LMNB1/dLam in modulating the
molecular clock. Given that our in vitro
assays were conducted in human osteosar-
coma cell lines, whereas mouse clock was
analyzed using liver tissues, and fly behav-
ioral period is a reflection of the clock in
circadian neurons,9 we can draw the con-
clusion that the effect of LMNB1/dLam
on the clock is likely ubiquitous. This is
also consistent with the ubiquitous expres-
sion of B-type lamin in all somatic cells.10

The effects of LBR and MAN1 on the
clock are more complex. In contrast to cell
culture, over-expressing LBR and MAN1
lengthens behavioral period in flies, while
knocking down MAN1 also lengthens
period,8 suggestive of differential underly-
ing mechanisms which will be discussed in
greater details in subsequent sections.

NE may be important in the transcrip-
tional regulation of not only the core clock
genes, but also other genes that are under
circadian control. In prokaryotes, which
lack the NE, a specific clock gene pro-
moter is not essential for mediating the
transcriptional feedback loop, unlike in
eukaryotes.1,11 In these organisms, the cir-
cadian rhythm of the transcriptome is
believed to be achieved by circadian
changes in DNA topology.11,12 It has also
been shown that approximately
30 » 64% of the transcriptome accumu-
late rhythmically in these organisms,13,14

which is considerably larger than that of
the eukaryotic system.4 A recent study in
mouse found that 43% of all protein cod-
ing genes showed circadian rhythmicity in
transcription somewhere in the body, but
largely in an organ-specific manner.15 It is
possible that NE engages in the regulation
of specific chromosomal regions (and thus
genes) which facilitates the spatial (differ-
ent tissues/cells) and temporal (different
life stages) specificity of circadian gene
expression. This could be accomplished

by tissue/cell type-specific expression of
NE components 16 and interaction with
protein partners, such as chromosome
modifying enzymes and transcription fac-
tors with different spatial and temporal
expression.7

Mechanistic Actions of MAN1
on the Clock

Knocking down MAN1 in cell culture
leads to significantly reduced BMAL1
mRNA and protein levels, with less prom-
inent effects on the other clock genes.8

Consistently, over-expressing MAN1 in
flies increases the mRNA levels of cyc. Pro-
moter-fused reporter assays revealed that
the enhancement of BMAL1 mRNA levels
is a result of increased transcription, while
chromatin immunoprecipitation demon-
strated direct physical association between
MAN1 and BMAL1 promoter. Taken
together, these results implicate a role for
MAN1 as a transcriptional activator that
promotes BMAL1 transcription. This is
particularly interesting since the NE is
generally believed to repress transcrip-
tion.7 MAN1 has been identified to tether
Smads and antagonize BMP/TGFb sig-
naling, resulting in less activation of gene
expression.17-21 We found that both
TGFb1 and TGFb-responsive Smad2
increase BMAL1 transcription, but likely
via a pathway independent from that of

MAN1.8 Because MAN1 expression levels
do not exhibit prominent circadian oscil-
lation, it may function as a permissive sig-
nal to the clock, maintaining a basal level
of BMAL1. The effects of MAN1 can be
overridden by Rev-erba and Rora, which
provides instructive signals to the clock
and drives the oscillation of BMAL1.
Alternatively, chromosomes may be rhyth-
mically tethered to the NE, rendering
rhythmic interaction between MAN1 and
BMAL1 promoter. MAN1 is known to
interact with barrier-to-autointegration
factor (BAF),22 which binds dsDNA,
chromatin, histones and various transcrip-
tion factors.23 It is possible that BAF
exhibits circadian oscillation in protein
levels, sub-nuclear localization, and/or
interaction with MAN1.

In flies over-expressing MAN1, tim
mRNA levels are also significantly
increased, suggesting that cyc is not the
only target of MAN1 in the clock.8 This is
further supported by the observation that
knocking down MAN1 in flies lengthens
the circadian period but the mRNA level
of cyc is not affected. Besides targeting cyc,
MAN1 may also modulate the clock by
regulating tim levels. Although Drosophila
TIM is believed to function mainly in the
circadian clock, TIM in other eukaryotes
plays essential roles in vital functions
including DNA replication and maintain-
ing genome stability.24 Therefore, mis-
regulation of TIM could contribute to the

Figure 1. MAN1 regulates the circadian clock by promoting BMAL1 transcription. The schematic
demonstrates a model for the action of MAN1 on the molecular clock. MAN1 binds to BMAL1 pro-
moter and promotes its transcription, thus exerting effects on the clock. Besides MAN1, LMNB1 and
LBR also participate in modulating the clock, but the molecular mechanisms remain unclear.
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pathology underlying human diseases
caused by MAN1 deficiency.25 It would
be interesting to test whether TIM is
affected by MAN1 manipulations in the
mammalian system.

Potential Mechanistic Actions
of LMNB1 and LBR on the Clock

We found that knocking down
LMNB1 or LBR in cell culture reduces
mRNA and protein levels ofMAN1, while
knocking down MAN1 does not alter
LMNB1 or LBR levels.8 Therefore, the
effects of LMNB1 and LBR on the clock
could be at least partially through MAN1.
However, MAN1, LMNB1 and LBR all
interact with a distinct set of chromatin
binding partners,10 implying that these 3
proteins may also influence the clock via
different mechanisms. This could explain
the different circadian phenotypes
observed in flies over-expressing or defi-
cient for these genes.8

As previously mentioned, MAN1 phys-
ically associates with BAF,22 while both
LMNB1 and LBR can directly bind DNA
and chromatin.10 In addition, B-type
lamin and LBR interacts with histones
H2A/H2B and H3/H4, respectively.26,27

LBR also interacts with heterochromatin
protein HP1,28 which regulates gene
expression by binding to methylated H3
tail.29 Interestingly, LBR/HP1 binding to
H3/H4 is strongly inhibited by CREB-
binding protein (CBP)-mediated acetyla-
tion.27 Moreover, the promoter regions of
Per1, Per2 and Cry1 exhibit circadian
rhythms in H3 acetylation,30 and CBP
has been shown to regulate the clock by
impinging on transcriptional activity of
CLOCK/BMAL1.31,32 Although LBR
levels do not exhibit circadian oscillation,
LBR could exert effects on the transcrip-
tion of clock genes through cooperative
actions with CBP.

Concluding Remarks

Each NE protein interacts with a dis-
tinct set of proteins (including chromatin
modifying enzymes and transcription fac-
tors) to exert its unique effects and some
of these effects are on the core molecular

clockwork and clock-controlled genes
(Fig. 1). The regulation of NE on circa-
dian clock is evolutionarily conserved, and
it may help confer spatial and temporal
specificity to meet the divergent demands
of varying cell types and tissues in differ-
ent organisms at different life stages in
adaptation to the 24-hour solar cycle.
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