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Doubly Robust and Efficient Estimation of Marginal Structural 
Models for the Hazard Function

Wenjing Zheng*, Maya Petersen, and Mark van der Laan
School of Public Health, University of California, Berkeley

Abstract

In social and health sciences, many research questions involve understanding the causal effect of a 

longitudinal treatment on mortality (or time-to-event outcomes in general). Often, treatment status 

may change in response to past covariates that are risk factors for mortality, and in turn, treatment 

status may also affect such subsequent covariates. In these situations, Marginal Structural Models 

(MSMs), introduced by Robins (1997), are well-established and widely used tools to account for 

time-varying confounding. In particular, a MSM can be used to specify the intervention-specific 
counterfactual hazard function, i.e. the hazard for the outcome of a subject in an ideal experiment 

where he/she was assigned to follow a given intervention on their treatment variables. The 

parameters of this hazard MSM are traditionally estimated using the Inverse Probability Weighted 

estimation (IPTW, van der Laan and Petersen (2007), Robins et al. (2000b), Robins (1999), Robins 

et al. (2008)). This estimator is easy to implement and admits Wald-type confidence intervals. 

However, its consistency hinges on the correct specification of the treatment allocation 

probabilities, and the estimates are generally sensitive to large treatment weights (especially in the 

presence of strong confounding), which are difficult to stabilize for dynamic treatment regimes. In 

this paper, we present a pooled targeted maximum likelihood estimator (TMLE, van der Laan and 

Rubin (2006)) for MSM for the hazard function under longitudinal dynamic treatment regimes. 

The proposed estimator is semiparametric efficient and doubly robust, hence offers bias reduction 

and efficiency gain over the incumbent IPTW estimator. Moreover, the substitution principle 

rooted in the TMLE potentially mitigates the sensitivity to large treatment weights in IPTW. We 

compare the performance of the proposed estimator with the IPTW and a non-targeted substitution 

estimator in a simulation study.

1 Introduction

In social and health sciences, many research questions involve understanding the causal 

effect of a longitudinal treatment on a time-to-event outcome (say mortality). Often, 

treatment status may change in response to past covariates that are risk factors for mortality, 

and in turn, treatment status may also affect such subsequent covariates. Moreover, right 

censoring may also be present in a study of this nature, typically in response to past 

covariates and treatment. In these situations, conventional time-dependent regression 

methods, which predict mortality rate at each time based on history up to that time, may fail 

to properly account for this time-varying confounding of the treatment effect (e.g. Robins et 
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al. (2000b)). Marginal Structural Models (MSMs), introduced by Robins (1997), are well-

established and widely used tools in this setting.

To define the causal effect of a longitudinal treatment on mortality, we can use a formal 

causal framework (e.g. Robins (1986), Pearl (2009)). In it, we formulate the research 

question of interest in terms of an ideal experiment that randomizes interventions on the 

treatment variables of interest. The comparative effect of the different interventions is 

assessed by comparing the distribution of the would-be (counterfactual) outcome processes 

under said interventions. The MSMs specify the marginal distribution of this intervention-
specific counterfactual outcome processes.

In survival analysis, the effect of treatment interventions on mortality can be assessed by 

studying how the hazard of the intervention-specific counter-factual mean outcome changes 

as a function of time and the intervention, possibly conditional on a set of baseline 

covariates. In many applications, this hazard function may be high-dimensional, in which 

case a MSM for the hazard can be used to summarize its key features. This hazard MSM can 

provide adequate dimension reduction over a potentially complicated hazard function, and 

may also mitigate near positivity violations (due to lack of experimental support for an 

intervention) by extrapolation.

Depending on the research questions of interest, the interventions can be static — treatment 

option is the same for all subjects, or they can be dynamic — treatment option is a function 

of past covariates. For example, among HIV+ patients who failed their first line 

antiretroviral regimen, we wish to evaluate how their survival depends on when the regimen 

modification takes place. On the one hand, we may be interested in comparing the lengths of 

delay in regimen modification: Petersen et al. (2008) and Petersen et al. (2014b) defined 

static interventions by fixed lengths of delay and used a hazard MSM to assess how the 

survival changes as a function of the length of delay. On the other hand, we can take a 

patient-centered approach (perhaps more inline with clinical practice) and conceptualize the 

delay in regimen modification as a function of past CD4 T-cell counts: in (van der Laan and 

Petersen, 2007), dynamic interventions prescribe regimen modification only after CD4 

counts dropped below a given threshold, and a hazard MSM assesses how the survival 

changes as a function of such CD4 count thresholds. Other examples of hazard MSMs 

include the study of the effect of “when to initiate” antiretroviral therapy on survival, under 

static interventions (Hernan et al. (2000)), using Case-Cohort designs (Cole et al. (2012)), or 

under CD4-based dynamic interventions (Cain et al. (2010) and HIV-CAUSAL-

Collaboration et al. (2011)).

The parameters of an MSM are traditionally estimated using Inverse Probability of 

Treatment Weighted estimation (IPTW, Robins et al. (2000b), Robins (1999), van der Laan 

and Petersen (2007), Robins et al. (2008)). This estimator is intuitive, can be implemented 

using standard software, and admits influence curve based variance estimates and confidence 

intervals. However, its consistency hinges on correct specification of the conditional 

treatment probabilities. Moreover, in the presence of strong confounding, the inverse 

probability weights can become unwieldily large, thus producing very unstable estimates. In 

the case of static intervention, this instability can be attenuated by introducing marginal 
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kernel weights that down-weight treatment options with little data support; but this solution 

has limited applicability for dynamic interventions prescribed by time-varying history.

To address the sensitivity to model misspecification of IPTW, a doubly robust and efficient 

Augmented-IPTW (A-IPTW) estimator for a MSM under static interventions was proposed 

in Robins and Rotnitzky (1992), Robins (2000) and Robins et al. (2000a). Under this 

framework, estimators are defined as solutions to the estimating equation given by the 

efficient influence curve, which also depends on nuisance parameters orthogonal to the 

treatment probabilities. Robins (2000), Robins (2002) and Bang and Robins (2005) offered 

an innovative insight that the corresponding efficient influence curves for the MSM for the 

intervention-specific mean can be expressed in terms of sequential conditional expectations. 

This observation allowed for construction of an A-IPTW with estimation of minimal 

nuisance parameters beyond the treatment mechanism. While A-IPTW estimator provides 

efficiency gain and bias reduction over a misspecified IPTW estimator, as an estimation 

equation-based method, it still suffers from the same general sensitivity to large inverse 

probability weights, and it may involve solving estimating equations that have no unique 

solution.

To improve the stability of the estimates, the targeted maximum likelihood estimation 

(TMLE, van der Laan and Rubin (2006) and Gruber and van der Laan (2010)) provides a 

general doubly robust and efficient estimator using the plug-in principle, which incorporates 

global information encoded in the parameter map and the model. A TMLE estimator for 

longitudinal static MSMs using a stratified approach was proposed by Schnitzer et al. 

(2014). A stratified TMLE uses the longitudinal TMLE for mean outcomes (van der Laan 

and Gruber (2012)) to separately estimate each intervention-specific mean; these means are 

then used to fit MSMs for the hazard and survival functions. This estimator readily improves 

upon IPTW in both robustness and efficiency. However, in applications with numerous 

interventions of interest, the stratified TMLE is vulnerable to insufficient support for certain 

interventions, as it does not directly target the MSM parameters to take advantage of the 

extrapolation across interventions. Most recently, Petersen et al. (2014a), building on the 

results from Robins (2000), Robins (2002) and Bang and Robins (2005), presented a pooled 

TMLE estimator for a longitudinal dynamic MSM for intervention-specific means (in 

particular, for survival functions). This estimator directly targets the parameters of the MSM, 

and pools over all interventions of interest in the updating step, potentially weakening the 

data support needed to achieve efficiency and double robustness.

This paper builds upon the work of Petersen et al. (2014a) to present a pooled TMLE for the 

MSM for the hazard function under longitudinal dynamic interventions. The efficient 

influence curve of the hazard MSM requires that a plug-in estimator be updated iteratively 

until convergence, but we show that, in practice, a stopping rule based on the relative sizes of 

the empirical mean of efficient score equation and the estimated standard error will suffice to 

produce MSM estimates with the desired theoretical properties. The proposed estimator is 

efficient and doubly robust, hence offers an improvement over traditional IPTW estimator; it 

directly targets the MSM parameters by pooling across interventions to update the initial 

nuisance parameter estimates, hence is less sensitive to data support issues than the stratified 

TMLE.
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In practice, when the research question of interest directly concerns the survival function and 

one can correctly specify its MSM, using a TMLE for the survival MSM, as proposed in 

Petersen et al. (2014a), would be a more straightforward approach than using our proposed 

estimator for the hazard MSM. However, in many applications the hazard function itself (or 

failure rate, as coined in some disciplines) is of substantive interest, since it describes how 

the rate of mortality changes with time. Moreover, in some cases, one may have more 

domain knowledge to specify the hazard MSM than to specify the survival MSM. In 

particular, the survival function is cumulative and hence must be monotonic in time, whereas 

the hazard function can take different shapes, and hence can capture more domain 

information (such as a decreasing hazard, or a U-shaped hazard with spikes at the beginning 

and end time points). In applications where the research question is best served (or the 

domain knowledge is best used) by studying the hazard function, our proposed estimator 

which directly estimates the parameters of a hazard MSM would be a more targeted 

approach. In addition to these application considerations, the hazard MSM also allows for 

the use of more stable weights that only need to be defined among subjects that are still 

alive.

Organization of paper

This paper is organized as follows. Section 2, describes the data structure and defines the 

parameter using a nonparametric causal framework. Section 3 first reviews the non-targeted 

substitution estimator (a.k.a. G-computation estimator) and the IPTW estimator for the 

parameters of interest, and then presents the efficient influence curve, and describes the 

proposed TMLE estimator. Section 4 evaluates the performance of these three estimators in 

a simulation study mimicking an observational cohort study. This paper concludes with a 

summary.

2 Parameters of Interest

Consider a longitudinal data structure

where K +1 is a user-supplied maximum follow-up time of interest. Here, L0 denotes the 

baseline covariates; At encodes the treatment variable  and the censoring indicator , 

where  indicates the subject was right censored at or before time t; and Lt denotes all 

the time-varying covariates measured between At−1 and At. In particular, Lt includes the 

counting outcome process Yt ⊂ Lt, where Yt = 1 indicates event (say death) has occurred at 

or before time t. For notational convenience, after death or censoring, all variables are 

encoded by carrying forward the last observation. We shall use the boldface notation Lt ≡ 

(L0,…,Lt), Lj,t ≡ (Lj,…,Lt) and L−1 ≡ Ø; similarly for their realizations ℓt ≡ (ℓ0,…,ℓt), ℓj,t 

≡ (ℓj,…, ℓt). Analogous notations apply to the vector At. The observed data consist of n 
independent and identically distributed (i.i.d.) copies of O drawn from a distribution P0. Let 

ℳ be a statistical model for P0; the assumptions on this statistical model are limited to true 

user knowledge, in particular, we avoid strong and restrictive parametric assumptions.
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To illustrate these notations and the subsequent concepts, let us consider an example from 

HIV research (van der Laan and Petersen (2007)). In HIV+ patients with virologic failure on 

first line antiretroviral therapy (ART), current guidelines (DHHS (2014)) recommend 

prompt switch to a second line regimen. However, delayed switch is common in resource 

limited settings. Suppose we wish to assess the effect of delayed switch on mortality (e.g. 

van der Laan and Petersen (2007), (Petersen et al. (2008), Petersen et al. (2014b)). Our 

sample consists of n individuals drawn from a target population of HIV+ patients with 

confirmed virologic failure on their first line ART. The baseline t = 0 is the time of 

confirmed failure, and data is collected on a monthly basis thereafter. Variable Lt 

encompasses time varying covariates at time t, including CD4+ T cell counts and Yt, an 

indicator of death by time t. Variable L0 consists of the baseline values of these covariates at 

t = 0, as well as time-independent variables such as patient demography and history prior to 

virologic failure. The treatment variable  is the indicator of switching to second line 

regimen by time t. For simplicity sake, for now we assume no right censoring in this 

example.

2.1 Causal Model and Causal Parameters

The causal assumptions implied in the notation of O can be made explicit by a 

nonparametric structural equations model (NPSEM, Pearl (2009)):

This causal model assumes that each variable X in the observed data structure is an unknown 

deterministic function fX of certain observed variables, which we refer to as the parents of X 
and denote by Pa(X), and some unmeasured exogenous random factors UX. This causal 

model defines a random variable with distribution PO,U on a unit.

In practice, additional exclusion restriction assumptions informed by subject matter 

knowledge can be represented by limiting the variables in Pa(X). In the HIV example, at 

each time t, the investigators may specify that CD4 counts, death, and regimen modification 

all depend on the patient’s entire observed past and unmeasured factors. But if they know 

that the decision to switch regimen is based only on the most recent CD4 measurement, then 

 may be restricted to exclude all earlier CD4 measurements.

As we alluded to in section 1, research questions can be formalized in terms of intervention 

rules on the treatment variables. An intervention rule d is a function that deterministically 

assigns treatment at time t based on covariate history according to At = d (Lt). This rule may 

be static — assigning the same treatment option at regardless of covariate history, i.e. At = d 
(Lt) at; or it may be dynamic — assigning different treatment options to different covariate 

histories. We will use the boldface notation At = d(Lt) to denote the vector (Ak = d 
(Lk))k=0,…t; this means that each of the variables Ak, from k = 0 to t, was assigned value 

according to rule d and its covariate history. In the HIV example, a static rule would be to 

always switch regimen at m months after virologic failure, and a dynamic rule would be to 
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switch ART at the first time t when the patient’s CD4 counts drop below a pre-specified 

threshold θ.

Given a set  of intervention rules of interest, investigators are often concerned about their 

comparative causal effect on the outcome process Yt. To be more precise, consider an ideal 

experiment where all subjects are assigned treatment under an intervention rule d and right 

censoring is also prevented; the covariates, on the other hand, take the value that they may in 

response to rule d. We call the variables At the intervention variables, as they are the ones 

that are subject to manipulation. This ideal experiment can be formalized in the NPSEM by 

setting the equations for At to At = d (Lt), and replacing the input At−1 in  with d(Lt−1), 

which are treatment assignments from time 0 to t−1 under rule d and history Lt−1. As a 

result, the only random endogenous variables of the system are the covariates; we use Lt(d) 

to denote the time varying covariates that result under the intervention rule d, in particular 

Yt(d) is the indicator of death under such a regimen. The comparative causal effect of rule d1 

vs rule d2 can be assessed by comparing the distributions of the outcome processes Yt(d1) vs 

Yt(d2).

Suppose we wish to understand how the outcome process Yt(d) changes as a function of d, t 
and some baseline covariate V ⊂ L0. To this end, we study the intervention-specific hazard 
function

(1)

on the space , where  is the set of rules we wish to compare, τ = {1,…K + 1} 

contains all the follow-up times of interest, and  is the outcome space of V.

Studying the entire function (d,t,V) ↦λ(d,t,V) is often difficult due to feasibility of 

computation, interpretation of results, and other challenges associated with high-

dimensionality. Instead, we can study a more tractable, simplified model/summary of this 

function which captures how λ changes as a function of (d,t,V) in only a few summarizing 

parameters. More specifically, following the marginal structural working model framework 

in Neugebauer and van der Laan (2007), let mψ(d,t,V) be a working MSM for λ(d,t,V), 

parameterized by . To be concrete, from here on, we will use a generalized linear 

hazard MSM with logit link,

where ϕ(d,t,V) is the vector of linear predictors. However, it is important to note that the 

methods presented here can be generalized to other working MSM.

In addition to specifying the working MSM, we also specify a user-supplied kernel weight 

function h(d,t,V), and the standard log-likelihood loss. Formally, the causal parameter of 
interest is defined as
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(2)

In words, our causal parameter of interest is the vector of coefficients of the MSM weighted 

by h. Under the working MSM framework, this parameter can be understood as the best 
(assessed by the loss function) weighted (by h) approximation (given by the working model 

mψ) of the hazard function λ. Embedded in the definition of the parameter are the stabilizing 

weights h(d,t,V). To mitigate positivity violations, h(d,t,V) can be chosen to down weight a 

rule d which has little data support at time t within strata of marginal covariates V. But the 

effectiveness of this stabilization will be limited when d uses time-varying tailoring 

variables.

Continuing our HIV example, suppose we wish to assess how delay in switching regimen 

affect mortality. Let dm denote the rule that dictates switching regimen at m months after 

virologic failure. That is, At = dm(Lt) = 0 for t < m and At = dm(Lt) = 1 for t ≥ m, given Yt = 

0. Let  be the set of all possible switching times we wish to compare, i.e. 

. If we are only interested in the marginal hazard, then we set V = 

Ø. Or, if we wish to assess the hazard function stratified by CD4 at the time of virologic 

failure, then we can set V = 1{CD40 < 500 cells/μℓ}. For simplicity, let us continue this 

example with the former option, and let the weights be h(d,t) = 1. For this example, we 

choose the logistic working model to be mψ(dm,t,V) = expit(ψ0 + ψ1t + ψ2max(t−m,0)), 

where max(t−m,0) = 0 if the patient has not switched by time t−1, and max(t−m,0) = t−m 
encodes how long the patient has been on his second line regimen if he has already 

switched.

2.2 Statistical Parameter

Thus far, we have used the NPSEM to formulate the parameter of interest Ψ(PO,U) in (2). 

This parameter is a function of the distributions of Lt(d) and Yt(d), which are generated 

within an ideal experiment. Unfortunately, such ideal experiments are not always possible in 

real life. Then, what are the sufficient assumptions on the data-generating process under 

which the parameter Ψ(PO,U) can be estimated using the observed data?

To answer this question, we review the expression in (2) and note that P(Yt−1(d)=0|

L0)=1−E(Yt−1(d)|L0) and

(3)
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Consequently, to identify Ψ(PO,U) as a function of the data generating distribution P0, it 

suffices to establish the identification of the time-dependent causal dose-response curve 

.

To this end, we make the sequential randomization assumption (Robins (1986)):

(4)

and the positivity assumption

(5)

for every , k ∈ τ, and  with h(d,t,V) > 0. Assumption (4) specifies that at each 

k, the variable Ak is randomized conditional on its parent variables. In our HIV example, 

this can be satisfied if the parent variables of Ak contain all common determinants of 

mortality and the decision to switch regimen. Assumption (5) requires that under P0, for 

each rule d and its compatible covariate history for which the weight h(d,k,V) is non-zero, 

there is non-zero probability that the subject’s treatment will continue to follow this rule. In 

our HIV example with h(d,t,V) = 1, given one has not yet switched regimen, there should be 

non-zero probability that the patient will switch at any given time m in . Assumption (5) 

would be violated if, say,  contains the rule to switch at 6 months but no patient in the 

study population actually switches at 6 months post-failure. This assumption would also be 

violated if, say, all patients with switch regimen at month 1.

Under assumptions (4) and (5), we obtain identification of the intervention-specific mean:

(6)

We are reminded that ℓ1,j – 1 ≡ (ℓ1, ℓj –1). This is generally known as the G-computation 

formula (Robins (1986)) for the intervention-specific mean. This in turn identifies the 

intervention-specific hazard function:

(7)

Consequently, the causal parameter of interest Ψ(PO,U) in (2) is identified as a function of 

the observed data distribution given by
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(8)

Note that the sequential randomization assumption (4) is an untestable assumption on the 

data-generating process under which we can claim the causal parameter (2) equals the 

statistical parameter (8). It provides a guiding principle to judge the causal interpretation of 

the statistical parameter. By contrast, the positivity assumption (5) is a testable assumption 

on the data-generating distribution P0 under which the statistical parameter (8) is well-

defined.

The remainder of this paper focuses on statistical inference for ψ0.

3 Estimators for ψ0

Recall that the observed data consist of n i.i.d. copies of O ~ P0 ∈ ℳ. Before we introduce 

the proposed efficient and doubly robust estimator, we will review two available estimators 

for ψ0: the non-targeted substitution G-computation estimator (Robins (1986), Taubman et 

al. (2009)) and the aforementioned IPTW estimator. The proposed targeted maximum 

likelihood estimator uses either of these to obtain an initial estimator of ψ0. But before we 

proceed, we shall agree on the following notation.

3.1 Notations

We use Pn to denote the empirical distribution of n i.i.d. copies of O ~ P0. Given a function 

O ↦ f (O), Pnf denotes the empirical mean . More generally, for any P 
∈ ℳ, Pf ≡ EPf(O).

For a generic P ∈ ℳ. We use  to denote the marginal distribution of L0. Generalizing the 

functional in (6), for a given t ∈ τ and d ∈ D, denote at P ∈ ℳ:

(9)

and . In the above notation, the superscript t signals the expectant outcome 

variable Yt and the subscript k signals the length of the conditioning covariate history. Under 

assumptions (4) and (5), , which is the 

conditional mean of Yt(d) given an observed past that has followed the rule d up to time k

−1. For simplicity, we may sometimes write  instead of  when referring to the 

functional evaluated at a generic P ∈ ℳ, and  instead of  when 
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the functional is evaluated at P0 ∈ ℳ. Bang and Robins (2005) made a key observation that 

these functionals satisfy the relation

(10)

For a counting outcome process, these functionals are also monotonic in t, i.e. for a given k, 

 for all t ≥ k. We denote the components corresponding to the non-intervention 

variables as . For the intervention variables, we 

denote the treatment allocation probabilities P(Ak | Lk,Ak−1) as g(Ak | Lk,Ak−1), and the 

product  as g(At | Lt). For our purposes, the couple (Q,g) readily 

specifies a distribution P ∈ ℳ, so sometimes we may abuse notation and write P = (Q,g). At 

the data generating distribution P0, we adopt the subscripts Q0 and g0.

3.2 G-computation Estimator

The G-computation formula in (6) readily delivers a non-targeted substitution estimator (as 

opposed to the targeted substitution estimator that is TMLE), which is generally known as 

the parametric G-computation (Gcomp) estimator. More precisely, using the notations in 

section 3.1, the statistical parameter Ψ(P0) in (8) can be expressed as Ψ(Q0). Therefore, 

fitting the hazard MSM using a non-targeted estimator Qn of Q0 yields a non-targeted 

substitution estimator Ψ(Qn) of Ψ(Q0).

Recall that Q0 consists of the marginal distribution of L0, , and the conditional 

means of Yt(d),  defined in (9). To estimate the marginal distribution , we 

can use the empirical distribution of L0, denoted . To estimate the conditional means 

, one approach is to estimate the conditional densities for each Lt given its parents 

and use the definition in (9). While this density-based approach ensures that the 

monotonicity in t of  is preserved, the dimension of the nuisance parameter and the 

computational cost grows with the dimension of Lt and the number of time points. One way 

to implement this approach is to use simplifying parametric modeling assumptions on these 

nuisance parameters. We refer to Taubman et al. (2009) and Young et al. (2011) for 

expositions of this technique.

Another approach to estimate the conditional means  is to minimize estimation of 

nuisance parameters by exploiting the recursive relation (10) noted by Bang and Robins 

(2005), which allows one to use the many available regression techniques (parametric or 

data-adaptive) in the literature. We can implement this regression-based approach by running 

the following two-level algorithm. Recall that in our notation , d is the intervention 

of interest, t is the time of the expectant outcome, and k is the length of the conditioning 

history.
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1.
Starting at t = K +1, estimate the conditional means 

as follows:

a. Initiate at k = t: Recall that 

 and . We 

obtain an estimator  of  by regressing Yt on the 

observed values Lt−1 and  among observations that remain 

uncensored by time t−1, and evaluate the fitted function at the 

observed Lt−1 and the intervened values , for these 

uncensored observations. For a subject that has died before time t, 
the value is deterministically set to 1. We can organize the data by 

having one row for each patient i and each regimen d.

b. At each subsequent k = t−1,…,1: At the previous step, we have thus 

far obtained an estimator  of . To obtain an 

estimator  of , we regress  on the observed 

values Lk−1 and  among those observations that remained 

uncensored by time k−1, and evaluate the fitted function at the 

observed Lk−1 and the intervened values  on these 

uncensored observations. For observations that had died before time 

k, the value is deterministically set to 1.

c. After iterating step (b) in order of decreasing k, we have obtained a 

sequence of means .

2. Repeat step 1 in order of decreasing t, from t = K to t = 1. At the end, we will 

have obtained estimators 

For each history k, monotonicity in t ≥ k of the expectations, i.e. , can be 

enforced in step 1.b with respect to  obtained at the previous t + 1 level through a 

simple sequential truncation. To do this, for subjects that have not died or censored, we set 

 whenever . Other more sophisticated approaches are available, but 

they are outside the scope of this paper.

At the end of this algorithm, we have the sequence of conditional means 

 for each of the n observations. Pooling together these estimates 

 over all d and t, we have one row per patient i, rule  and t ∈ τ. The G-

computation estimator  is obtained by fitting a weighted logistic regression 

of  according to the MSM, with weights .
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Consistency of  relies on consistency of Qn. In the density-based approach, this 

means consistent estimation of all the conditional densities of Lt given its parents; in the 

regression approach, this means consistent estimation of the conditional means . In 

either case, correct specification of Q0 under a finite dimensional parametric model is rarely 

possible in practice. Alternatively, we may use machine learning algorithms, such as Super 

Learner. This option is more enticing, especially when used with the regression-based 

approach, since there are more data-adaptive techniques available to estimate a conditional 

mean via regression. However, unlike the Inverse Probability of Treatment Weighted 

Estimator (section 3.3) and the Targeted Maximum Likelihood Estimator (section 3.4) which 

satisfy a central limit theorem under appropriate empirical process conditions, analogous 

results for  are not available, regardless of model size. In addition, a non-targeted 

estimator Qn of Q0 is obtained by minimizing a global loss function for Q0, not for Ψ(Q0). 

This means, in particular, that the bias-variance tradeoff in Qn is optimized for the high-

dimensional nuisance parameter Q0, instead of a much lower-dimensional parameter of 

interest Ψ(Q0). The proposed targeted estimator in section 3.4 aims to address these two 

issues by providing a substitution estimator that is asymptotically linear (under appropriate 

regularity conditions), and optimizes the bias-variance tradeoff of Qn towards Ψ(Q0) via an 

updating step.

3.3 Inverse Probability of Treatment Weighted Estimator

Inverse probability of treatment weighted estimation is the standard methodology for 

estimating the parameters of a marginal structural model in the presence of time-varying 

confounding (Robins et al. (2000b)), due to its ease of implementation and its asymptotic 

linearity, which allows for construction of Wald-type confidence intervals.

To begin, we first note that the parameter in (8) can be rewritten in an IPTW form:

(11)

The IPTW estimator  is obtained by fitting a weighted logistic regression of Yt 

according to the MSM, with weights , where 

gn is an estimator for g0.

The asymptotic theory of the IPTW estimator is well understood in the literature. We refer 

the reader to Robins (1999), van der Laan and Robins (2003) and van der Laan and Petersen 

(2007), where the last reference specifically addresses dynamic intervention rules. In 

summary,  described above satisfies the estimating equation PnDIPTW (ψ,gn) = 0, 

where
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(12)

with . The estimator  is well-defined if it is a unique 

minimizer, and it is a consistent estimator of ψ0 provided gn is a consistent estimator of g0. 

Moreover,  is asymptotically linear with influence curve

(13)

where

The sample covariance matrix of the estimated influence curve is given by 

. The variance of 

 can be estimated using . Consequently, we can construct Wald 

confidence intervals of level (1−α) as , where ξ1−α/2 is 

the (1−α/2)-quantile of the standard normal distribution. These confidence intervals ought to 

be conservative when g0 is estimated using a correctly specified parametric model. But no 

such theoretical guarantee for data-adaptive estimation of g. Note that this influence curve 

based variance estimate assumes that the weights h(d,t,V) are known functions; when these 

weights are estimated, this variance estimate should be interpreted as estimating the variance 

of an estimator of MSM parameters defined by the estimated weights.

Though both G-computation estimator and IPTW estimator properly account for time-

varying confounding, the popularity of IPTW over G-computation estimator is apparent 

from its straightforward implementation and its theoretical validity for confidence intervals. 

Moreover, the treatment probabilities g0 may arguably be easier to specify correctly than the 

sequential conditional means . However, the IPTW estimator may be generally more 

susceptible to near positivity violations due to the inverse probability weighting in (11). 

Often, the kernel functions h(d,t,V) are chosen to stabilize these inverse probability weights. 

This remedy, however, is less effective when the rules d are dynamic and use time varying 

covariates as tailoring variables, since the marginal function h(d,t,V) cannot depend on the 

time varying covariates Lt.
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3.4 Targeted Maximum Likelihood Estimator

As discussed earlier, consistency of the IPTW estimator relies on consistency of gn, while 

consistency of the G-computation estimator relies on consistency of Qn. In this section, we 

propose a semiparametric efficient estimator that is robust against misspecification of either 

Q0 or g0. These theoretical promises hinge on the use of one important ingredient — the 

efficient influence curve for ψ0.

3.4.1 The Efficient Influence Curve—Central to our methods is viewing the parameter 

of interest ψ0 as the value of the map Ψ : ℳ → ℝJ evaluated at P0, where Ψ(P) is given by 

equation (8), with the corresponding functionals at P ∈ ℳ. It is also straightforward to note 

from (8) that Ψ(P) = Ψ(Q). From its definition, we see that ψ = Ψ(P) satisfies the 

characterizing equation

(14)

The mapping Ψ is pathwise differentiable on ℳ; its efficient influence curve (EIC) sheds 

light on the asymptotic properties of all regular and asymptotically linear estimators of 

Ψ(P0). The latter statement is formalized in the following lemma. We refer the reader to 

Bickel et al. (1997), van der Laan and Robins (2003) van der Vaart and Wellner (1996) for 

definitions and proofs about properties of efficient influence curves in general. The efficient 

influence curve for the mapping P ↦Ψ(P) in (8) can be derived using the characterizing 

equation (14) via the functional delta method; this derivation can be found in Petersen et al. 

(2014a) and Schnitzer et al. (2014), we provide it in the appendix for completeness sake.

Lemma 1 (Efficient influence curve for Ψ): Suppose the mapping Ψ: ℳ → ℝJ is well-

defined at P, in the sense that it is a unique minimizer and hence characterized by the 

equation U(Ψ(P),Q,P) = 0. Then, its efficient influence curve at P = (Q,g), denoted D*(Q,g), 

is given by D* (Ψ(Q),Q,g), where

(15)

with
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with .

The variance VarP D* (Ψ(Q),Q,g)(O) is a generalized Cramér-Rao lower bound for the 

asymptotic variance of any regular and asymptotically linear estimator of Ψ(P).

Moreover, if either Q = Q0 or g = g0, then P0D*(Ψ(Q),Q,g) = 0 implies that Ψ(Q) = Ψ(Q0).

Proof: See appendix for derivation of (15) and proof of double robustness; see chapters 2 

and 3 of Bickel et al. (1997), chapters 1 and 2 of van der Laan and Robins (2003) and 

chapter 3 of Tsiatis (2006) for the statement regarding variance bounds.   □

Now, we are ready to describe the implementation of a TMLE estimator using D*.

3.4.2 The Loss Function, the Fluctuation Model, and the Algorithm—In a 

glimpse, our strategy consists in targetedly updating given initial estimators Qn of Q0 by 

minimizing a pre-specified loss along a least favorable (with respect to ψ0) submodel 

through Qn; iterate this updating procedure until the estimating equation  is 

solved at some final targeted estimate  of Q0, and then evaluate Ψ at this .

More specifically, for each , t = K + 1,…,1 and k ≤ t, the relation in (10) allows us to 

consider  as a conditional expectation of , therefore we specify the quasi negative 

log likelihood loss for , indexed by its expectant :

(16)

We suppressed the indexing by  in the notation. The corresponding least favorable 

submodel through , parametrized as  (recall that J is the dimension of 

the parameter ψ0), is chosen to satisfy the score condition
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In particular, we can choose

(17)

where . Note that the dependency of 

on ψ and g are suppressed in the notation.

Before describing the algorithm, we make the following observation. Due to the form of the 

efficient influence curve, the direction of fluctuation  depends on the parameter ψ 

itself; consequently, the implementation of the TMLE for the hazard MSM conceals more 

subtleties than its counterpart for the survival MSM in Schnitzer et al. (2014) and Petersen et 

al. (2014a). For one, in addition to non-targeted initial estimates Qn and gn, an initial 

estimate of ψ0 is also needed to perform the first update for Qn. One should choose a 

consistent initial estimator (albeit not doubly robust), such as the G-computation or the 

IPTW estimator. Since iterations will be performed, choosing either one of these should 

have the same asymptotic implications. However, it may make a difference in finite sample 

performance when Qn is misspecified, since the fluctuation serves to provide bias reduction 

over such misspecified Qn. The second subtlety is that this TMLE estimator requires 

iterative updates, wherein each iteration uses the previously obtained updated estimate of ψ0 

to steer the direction of fluctuation. The goal of these iterations is to produce targeted 

estimators  of Q0 that satisfy the efficient score equation  in order to 

achieve proper bias reduction. However, once the residual term  becomes 

smaller than the standard error of the estimator, computational efforts spent to further 

minimize it will only yield diminishing returns on bias reduction, as can be evidenced by 

studying the linear expansion of the proposed estimator. Therefore, we use as stopping rule 

, where  is estimated using .

With these issues in mind, we are now ready to describe the algorithm.

1. Obtain initial estimators gn of g0 and Qn of Q0. For the latter, estimate the 

marginal distribution of L0 using the empirical distribution, and estimate the 

conditional means  using the regression-based technique of Bang and 

Robins (2005) described in section 3.2. Obtain initial estimator ψn of ψ0 using 

either the IPTW estimator  or the G-computation estimator Ψ(Qn).
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2.
Given initial estimators ψn, gn and , 

we sequentially update the conditional means  in a two-level algorithm as 

follows:

a. (a) Starting at t = K +1, estimate the sequence 

 in order of decreasing k as follows (recall 

that ):

i. At each k = t,…,1: We have an initial estimator  of 

, and at the previous step, we have obtained an 

updated estimator , of which  which 

 is the expectation. The updated estimator 

is given by  where

We can obtain this coefficient by regressing the 

expectant  on  with offset logit 

 and weights

among observations that remained uncensored by time k
−1. For observations that had died before time k, the 

value of the updated estimator is deterministically set to 

1.

ii. After iterating step (i) in order of decreasing k, we have 

obtained updated estimators .

b. Repeat step (a) in order of decreasing t, from t = K to t = 1.

3. At the end of the two-level algorithm in step (2) above, we have obtained 

targeted estimators .In particular, 

we have  for each of the n observations. Pool 

together these estimates  over all d and t, and we have one row per 

patient i, rule  and t ∈ τ. We can then update the parameter estimate 

using ; this can be implemented by fitting a weighted logistic 
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regression of  according to the MSM, with weights 

.

4. Repeat step 2 and 3 using  and  as initial estimators. Iterate this procedure 

until the stopping criteria , where 

, is satisfied.

5. The final updates  and  are the targeted maximum likelihood estimators 

for Q0 and ψ0, respectively.

3.4.3 Statistical Inference of TMLE—As we alluded to earlier, given the pre-specified 

loss function (16), the corresponding least favorable submodel (17) is chosen so that, by 

design, the TMLE estimator  satisfies . From this property stems the 

doubly robust and locally efficient properties of .

Specifically, under regularity and empirical process conditions (e.g. van der Laan and Rose 

(2011)), if both  and gn are consistent estimators, then  is asymptotically linear with 

influence curve D*(Q0,g0); if gn converges to g0, but  converges to some Q* (which may 

be correctly specified or otherwise), then the influence curve of  equals D*(Q0,g0) minus 

its projection onto the tangent space of ℳ for g0. In either case,  converges 

weakly to a normal distribution with each diagonal element of the covariance matrix equal 

or greater than its counterpart on the covariance matrix of D*(ψ0,Q*,g0). Consequently, the 

asymptotic variance of  can be conservatively estimated using , the sample 

covariance matrix of . We can construct asymptotically conservative 

confidence intervals of level (1−α) as . The same comments as for 

IPTW regarding the estimated kernel weights also apply here.

4 Simulation Study

In this section, we evaluate the relative performances of the G-computation estimator, IPTW 

estimator and TMLE estimator for the parameters of a marginal structural model for the 

hazard function. For each estimator, we assess the bias, variance, mean squared error (MSE) 

and coverage estimates for the influence-curve based 95% confidence intervals.

4.1 Data Generating Process

We use a data generating process that resembles the running example, but now including 

right censoring. A sample consists of n i.i.d. copies of
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with K + 1 = 5. The baseline variable W encodes sex, the baseline age and disease stage, the 

time varying covariate CD4t encodes the most recent CD4 count measurement at time t, and 

Yt is the indicator of death by time t. The intervention variables are , where the 

treatment variable  is the indicator of having switched regimen by time t, and the 

censoring variable  indicates loss to follow up by time t.

We briefly summarize the data generating process here, and defer the details of the data 

generating distributions are given in the appendix. First, we draw the baseline time 

independent covariates W. At each time t ≥ 0, if still alive and uncensored by t−1, then first 

draw mortality status Yt based on W, past CD4 counts CD4t−1 and past switching status 

 (note at time t = 0, Yt = 0 by default). If still alive, then draw the CD4 count 

measurement for time t based on baseline covariate W, prior CD4 counts CD4t−1, and 

treatment status at previous time point . After drawing CD4, draw censoring by loss to 

followup  based on W and current CD4 counts. If still uncensored and have not switched 

regimen, draw indicator of whether to switch regiment at time t based on W and current CD4 

counts CD4t.

4.2 Target Parameter

An intervention rule of interest dm switches regimen at m months after confirmed virologic 

failure and prevents right censoring, given the subject is still alive. The set of regimens of 

interest are indexed by switching times of interest, . Note that 

each dm is in fact a static rule assigning , where  at t < m and  at t ≥ m. 

We summarize the hazard function λ(dm,t) = P(Yt(dm) = 1 | Yt−1(dm) = 0) as

and use kernel weights

where t* is the first time point where all subjects have either died or censored. Both 

 and t* are estimated from data, but are treated as given in our parameter 

definition. This weight mitigates near positivity violation by down-weighting rules with little 

support in data.

Under the given data-generating distribution, the probabilities of regimen switch are 

bounded between 0.15 and 0.57. The probabilities of right censoring are bounded between 

0.11 and 0.2. The theoretical bounds for the cumulative function g for an individual across 

all regimens of interest are between 0.0069 and 0.22.

4.3 Estimators

We use the regression-based approach in section 3.2 to estimate the initial estimator Qn of 

Q0. A correctly specified  is obtained by regressing  on W and the entire past 
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covariate history Lk−1 ≡ (CD40,…,CD4k−1) and treatment history . A misspecified 

 uses an intercept model. A correctly specified gn estimates the conditional censoring 

probabilities and the treatment allocation probabilities by adjusting for W and CD4t. A 

misspecified gn uses an intercept model. Both gn and Qn are fitted using a logistic regression 

model.

We implement the Gcomp and the IPTW estimators as described in their respective sections. 

To implement the TMLE estimator as described in 3.4, we use the IPTW estimator as an 

initial estimate of ψ0. In both IPTW and TMLE, the product of g in the denominator is 

truncated below at 0.01. The iterations in TMLE stops at either 

, or at the 17th iteration, whichever comes first. For TMLE and 

IPTW, the asymptotic variances are estimated by the sample covariance of their respective 

influence curves,  and ; consequently, finite sample variance of these estimators 

can be approximated using the sample variance of their influence curves divided by n. As we 

mentioned in section 3, there are no influence curve based variance estimators for the 

Gcomp. But in the spirit of exploration, we implemented a naive version of such variance 

estimators for the Gcomp by using the variance estimate for the TMLE but using the initial 

estimators for Q, instead of the updated ones. It is important to remember that the G-comp’s 

IC-based variances estimates are not backed by empirical process theory.

4.4 Results

We assess bias, variance, MSE and coverage probability of the confidence intervals of the 

estimators over 500 samples. The true values of the target parameters are approximated by 

generating large datasets where the treatment variables are assigned according to the 

regimens of interest and the covariates and outcomes are drawn according to the specified 

data-generating distributions. We display here the results for the TMLE implemented with 

IPTW as initial estimator. While we had also implemented the TMLE with Gcomp as initial 

estimator. The results between the two TMLEs are similar up to the displayed digits of 

significance, so we omit the Gcomp version here for clarity of exposition.

The TMLE implementations in all simulations ended by the stopping rule after one or two 

iterations, and are deemed convergent for our purposes. In these tables “IC-varEst” indicates 

the average of the influence-curve based variance estimates, “Coverage” indicates the 

empirical coverage of the influence-curve based Wald confidence intervals, and “Coverage 

truevarCI” indicates the empirical coverage of the Wald confidence intervals given by the 

true sample variance of the estimator.

The simulation results are displayed in table 1 (for sample size n = 500) and table 2 (for 

sample size n = 2000). When both Q0 and g0 are correctly specified, theoretical results 

predict that Gcomp, IPTW and TMLE are all consistent. Indeed, the MSE is reduced at the 

rate of sample size increase for all three estimators. At both sample sizes, the efficiency of 

TMLE and IPTW are quite similar under this data generating distribution. When one of the 

nuisance parameters are misspecified, lemma 1 predicts that the double robustness properties 

of TMLE should provide bias reduction. Indeed, when gn is misspecified and Qn is correctly 
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specified, TMLE provides significant bias reduction over the misspecified IPTW, with only 

slight increase in variance, hence leading to overall smaller MSE. The benefit of this bias-

variance trade-off is more apparent across sample sizes, since the overall MSE of the TMLE 

estimators will decrease at the speed of sample size growth, whereas those of IPTW will 

stabilize. When Qn is misspecified and gn is correct, TMLE also provides substantial bias 

reduction over the misspecified Gcomp. Though this TMLE may have a larger variance than 

the biased Gcomp, the bias reduction is significant enough to yield smaller MSE for TMLE 

and ensure MSE converges at the rate of sample size increase.

In addition to parameter estimation, we are also interested in providing variance estimate 

and confidence intervals for our estimators. When both Q0 and g0 are correctly specified, 

both IPTW and TMLE are asymptotically normal, and hence one should achieve the desired 

coverage using Wald confidence intervals based on influence curve-based variance estimates 

(‘IC-varEst’). Firstly we see that IC-varEst tends to underestimate the true variance of the 

estimators, but the approximation gets better with sample size. At sample size 500, the Wald 

95% confidence intervals of TMLE have empirical coverage that is below the nominal 

coverage. Is this low coverage attributed to the IC-based variance estimates or to an 

underlying problem with achieving asymptotic normality? To answer this, we construct a 

confidence intervals using the true variance of the estimators (as estimated by the sample 

variance across the 500 simulations). The coverage of these confidence intervals is reported 

under “Coverage: true varCI”. We see that this second set of confidence intervals have 

coverage close to the 95% confidence level, given the moderate sample size. This suggest 

that the suboptimal coverage of the IC-based confidence intervals is attributed to the 

performance of the IC-based variance estimator, not to the asymptotic normality. Indeed, at 

sample size 2000, the coverage of the IC-based confidence intervals of TMLE approximate 

the nominal coverage. This underscores the need for variance estimators with improved 

finite sample performance, possibly exploiting high-order derivatives of the parameter 

estimators, but this is beyond the scope of this paper. We remind the readers that we also 

report here a IC-based variance estimate and corresponding confidence intervals for the 

Gcomp, only for the sake of comparison, as the performance of these are not backed up by 

theoretical results.

5 Summary

In this paper, we have presented a doubly robust and efficient substitution estimator that 

directly targets a longitudinal dynamic (or static) marginal structural model for the hazard 

function. This work builds upon the pooled TMLE methodology in Petersen et al. (2014a) 

for the survival function, as well as earlier work by Robins (2000), Robins (2002) and Bang 

and Robins (2005).

Unlike TMLE for MSM for survival functions or means, TMLE for MSM for a hazard 

function is a bona fide iterated estimator and requires an initial estimator of the parameter of 

interest. There is no theoretical predictions on which initial estimator is more advantageous. 

The simulations have also offer little evidence in favor of either. This seems to suggests that 

the choice of initial estimator has little effect, at least in moderate and large sample sizes. In 

terms of computing costs, like the TMLE for survival MSM, the main computational 
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resources for TMLE for hazard MSM are expended to obtain the initial estimators for 

; these costs are heavily dependent on sample size and the algorithms used to fit 

these estimators, but only have to be performed once. Beyond those, each iteration of TMLE 

updates fit O(K2) logistical models of dimension J. TMLE for survival MSM only performs 

one iteration of such updates, whereas TMLE for hazard MSM may perform more than one 

(though in our simulation two iterations was enough). Further simulations are needed to 

assess the actual added computational burden in situations with big datasets, large number of 

outcome times, or that require higher number of iterations.

The proposed TMLE estimator offers theoretical advantages over the popular IPTW 

estimator and a non-targeted substitution Gcomp estimator: 1) it offers protection against 

model misspecifications, 2) it is locally efficient, 3) it may also provide protection against 

unstable probability weights. The bias reduction over a misspecified IPTW or Gcomp 

estimator is clear in the simulation studies even for a moderate sample size. We also see that 

the influence curve based variance estimate of IPTW and TMLE tend to be conservative 

estimates (underestimate) of the true variance, but this variance estimate can be improved 

with increased sample size. As mentioned in section 3.4, under certain empirical process 

conditions, these influence-curve based estimators provide conservative variances estimates 

when only one of the nuisance parameters are correctly specified. Such conditions depend 

on the rates of convergence for the nuisance parameter estimates and the complexity of the 

correctly specified model. In the case of IPTW, the consistencies of both the parameter 

estimate and the variance estimate hinge on correct specification of the treatment 

mechanisms. Influence curve based estimates provide a viable alternative or complement to 

bootstrapping when the computing burden of the latter is high. But their empirical process 

conditions also suggest that a more sophisticated theory-based variance estimates, as well as 

appropriate diagnostics, are needed for the TMLE and the IPTW estimator. Future research 

priorities should focus on variance estimation and inference methods that remain resilient in 

the face of moderate confounding and multiple time points.
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6 Paper Appendix

6.1 Derivation of Efficient Influence Curve

In order to apply the functional delta method, we first rewrite the characterizing equation 

(14) as
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(18)

Since 0 = U(Ψ(P),Q,P), it follows from implicit differentiation that

Straightforward computations shows that indeed

This proves the expression for M(ψ,Q,P) in (15).

Next, note that  can be 

obtained by a simple application of the functional delta method method, using the efficient 

influence functions for  and  obtained in Petersen et al. (2014a). Therefore, we have

Now, we show the robustness property. If Q = Q0, the result is trivial by definition of Ψ(Q) 

and . We only need to check the second case. When g = g0, at each t, the sum from k = 1 

to k = t forms a telescopic sum, leaving only the first and the last term. Using expression in 

(18) to rewrite DL0(Ψ(Q),Q), we have, up to a constant normalizing matrix,
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Therefore, Ψ(Q) = Ψ(Q0).

6.2 Data Generating Distribution for the Simulation Study

The baseline covariate W consists of W = (W1,W2,W3,W4), where W1 = I(30 ≤ age ≤ 39), 

W2 = I(age > 39), W3 indicates sex, and W4 = disease stage.

Let ε1,t be errors drawn from a standard normal distribution. The data generating 

distributions are given as follows:
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