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Genetic Networks Controlling Structural Outcome of
Glucosinolate Activation across Development
Adam M. Wentzell1,2¤a, Ian Boeye2, Zhiyong Zhang2¤b, Daniel J. Kliebenstein1,2*

1 Genetics Graduate Group, University of California Davis, Davis, California, United States of America, 2 Department of Plant Sciences, University of California Davis, Davis,

California, United States of America

Abstract

Most phenotypic variation present in natural populations is under polygenic control, largely determined by genetic
variation at quantitative trait loci (QTLs). These genetic loci frequently interact with the environment, development, and
each other, yet the importance of these interactions on the underlying genetic architecture of quantitative traits is not well
characterized. To better study how epistasis and development may influence quantitative traits, we studied genetic
variation in Arabidopsis glucosinolate activation using the moderately sized Bayreuth6Shahdara recombinant inbred
population, in terms of number of lines. We identified QTLs for glucosinolate activation at three different developmental
stages. Numerous QTLs showed developmental dependency, as well as a large epistatic network, centered on the previously
cloned large-effect glucosinolate activation QTL, ESP. Analysis of Heterogeneous Inbred Families validated seven loci and all
of the QTL6DPG (days post-germination) interactions tested, but was complicated by the extensive epistasis. A comparison
of transcript accumulation data within 211 of these RILs showed an extensive overlap of gene expression QTLs for structural
specifiers and their homologs with the identified glucosinolate activation loci. Finally, we were able to show that two of the
QTLs are the result of whole-genome duplications of a glucosinolate activation gene cluster. These data reveal complex age-
dependent regulation of structural outcomes and suggest that transcriptional regulation is associated with a significant
portion of the underlying ontogenic variation and epistatic interactions in glucosinolate activation.
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Introduction

Most phenotypic variation present in natural populations is

under polygenic control, largely determined by genetic variation at

multiple quantitative trait loci (QTLs), which has motivated

considerable efforts to elucidate the genetic basis of these polygenic

traits [1–3]. A complete understanding of quantitative traits

necessitates identification of the underlying genes and their

associated additive, dominance, and epistatic effects [2]. In

addition, the underlying genetic architecture of many quantitative

traits may vary across development and different environments. As

such, a comprehensive description of a quantitative traits genetic

architecture requires analysis in several developmental or

environmental contexts to assess stability of the genetic architec-

ture [2,4,5].

QTL mapping, which measure the association of genetic markers

with phenotypic variation, is one of the most common approaches

for identifying loci and epistatic interactions controlling polygenic

inheritance [1]. Improved statistical models, marker technology,

and genomic resources have facilitated QTL mapping experiments

for a wide array of quantitative traits, ranging from development

and morphology to metabolism and disease resistance [2,4,5];

However, QTL mapping experiments are often limited to a single

stage in development and one or few environments. As a

consequence, there is little information available to answer the

question of how the underlying genetic architecture varies across

developmental and environmental contexts.

Accurate characterization of a quantitative trait’s underlying

genetic architecture is often limited by practical considerations

that limit the number of progeny included in a mapping analysis.

Small populations are especially problematic in the presence of

epistasis between QTLs, as the pair wise comparisons required to

detect these interactions rapidly exhausts the available genotypic

variation, leading to an underestimation of numbers of loci and

interactions, resulting in an incomplete picture of the genetic

architecture [6,7]. One common type of epistasis occurs when a

trait is controlled by one or few large effect loci and numerous

modifier QTLs of smaller effect, a situation frequently observed in

plant disease resistance [8–16]. In such systems, the effects of any

modifiers are most detectable in those lines containing the

appropriate allele at the large effect locus; however this reduces

by half the population in which to detect these smaller effect loci,

significantly reducing statistical power [5–7]. Thus, resolution of

the underlying genetic basis of complex traits requires the analysis

of large populations across different environments or develop-

mental stages [17,18].

To investigate how development and epistasis can interact to

control the variation in an adaptive trait, we studied the outcome
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of glucosinolate activation within Arabidopsis thaliana using a

moderately sized recombinant inbred population. Glucosinolates

are the inert storage form of a two part phytochemical defense

system found throughout the Brassicaceae, where biologically active

structures are catabolically produced by the enzyme myrosinase

[19–21](Figure 1) . The particular structural outcome, as defined

by the chemical structure of the end product, of glucosinolate

activation plays an important role in plant defense against insect

herbivory [22–25], as well as the nutritional and flavor

characteristics of brassicaceous crops [26]. Further, the structural

outcome shows significant intraspecific diversity such that natural

accessions activate a glucosinolate to either a nitrile or isothiocy-

anate depending upon their genotype. Thus an improved

understanding of the genetic basis of variation in structural

outcomes has important potential implications in evolution and

ecology as well as nutrition and agriculture.

Glucosinolate activation in Arabidopsis provides an excellent

model for studying how development and epistasis influence

quantitative traits, with a molecularly characterized biochemical

pathway comprising demonstrated epistatic interactions and

developmental variation. During glucosinolate activation, the

myrosinase enzyme catabolically generates the unstable intermedi-

ate. The final structural outcome of subsequent rearrangement of

this unstable intermediate is influenced by the presence or absence

of various structural specifier proteins (Figure 1). The Epithiospecifier

Protein (ESP) and an as yet unidentified simple nitrile structural

specifier (AtNSP), promote the formation of simple and epithioni-

triles at the expense of the default isothiocyanate rearrangement via

two biochemically related yet separate rearrangements (Figure 1)

[22,23,27–31]. The Epithiospecifier Modifier (ESM1) epistatically

modulates ESP mediated epithionitrile and simple nitrile rearrange-

ments (Figure 1)[22,23]. The observation of quantitative variation

influencing the developmental regulation of glucosinolate activation

enabled us to explore the stability of QTLs and epistatic interactions

across development [30,32].

We used the Bayreuth (Bay-0)6Shahdara (Sha) recombinant

inbred lines (RILs) [33] to map QTLs controlling the structural

outcome of glucosinolate activation in Arabidopsis. These parental

accessions contain genetic variation for ESP and ESM1 and differ

in developmental regulation of structural outcomes [32]. We

measured structural outcomes at 30, 35 and 42 days post

germination (DPG), and compared the resulting maps to assess

the stability of the underlying genetic architecture across

development. These DPG were chosen because day 30 represents

the end of logarithmic growth in all of the lines, or Stage 1.10,

while day 42 is one week away from the earliest RIL flowering

(Stage 5.10) in our environmental conditions [32,34,35]. Thus, we

can focus on developmental changes in what is typically

considered a static rosette and is also the tissue and stages where

lepidopteran insects predominate on Arabidopsis in the wild [36].

This analysis identified eleven loci and twelve pair wise epistatic

interactions influencing structural outcomes, as well as eight

different QTL6DPG interactions. Heterogeneous Inbred Families

(HIFs) differing only for their genotypes at each QTL locus

validated seven loci and all of the QTL6DPG interactions tested.

Author Summary

A principal interest in biology is to understand how natural
genetic variation translates into phenotypic variation. A
key component of this connection is how the genetic
variation interacts with other sources of variation, such as
environment (G6E), development (G6D), or other genetic
loci (G6G or epistasis). To analyze the molecular under-
pinnings of these quantitative genetics interaction terms,
we investigated the genetic architecture of an adaptive
trait, glucosinolate activation, in Arabidopsis thaliana
during the development of what is considered a static
mature rosette. Variation in glucosinolate activation was
principally controlled by epistatic and G6D interactions.
Epistatic interactions identified both Mendelian epistasis,
where regulatory loci controlled enzymatic loci, and
quantitative interactions between regulatory loci. G6D
appeared to involve master regulatory loci as determined
by trans-eQTL hotspot analysis. Finally, two common
glucosinolate activation QTLs appear to have evolved via
gene loss and sub-functionalization following quadrupli-
cation of an ancestral genomic fragment, potentially by
two whole-genome duplications. Thus, genomic duplica-
tion events may facilitate the formation of quantitative
genetic variation. This study provides insights into the
molecular basis of the link between genetic and pheno-
typic variation in a potentially adaptive trait.

Figure 1. Glucosinolate Activation and the Subsequent Structural Rearrangement. Myrosinase enzymes initiate glucosinolate activation by
hydrolyzing the thioglucose bond, generating an unstable aglycone intermediate (bracketed). This intermediate can spontaneously rearrange into
the isothiocyanate structure. Epithionitrile structural specifiers such as ESP can promote the formation of epithionitrile structures from glucosinolates
with a terminal double bond, and simple nitriles from all other glucosinolates. As yet unidentified Arabidopsis simple nitrile structural specifiers
(AtNSPs) promote the formation of simple nitrile structures from all glucosinolates. In parenthesis are the Bayreuth and Shahdara accession showing
their predominant glucosinolate activation form.
doi:10.1371/journal.pgen.1000234.g001

Genetic Networks For Glucosinolate Activation
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The availability of transcript accumulation data within 211 of

these RILs [37] enabled comparison of expression QTLs (eQTLs)

for structural specifier genes and their homologs, which demon-

strated collocation of eQTL clusters with eleven of the identified

loci. These data reveal complex age dependent regulation of

structural outcomes and suggest that transcriptional regulation is

associated with a significant portion of the underlying variation,

and may explain the epistatic interactions described here.

Results

Structural Outcomes of Glucosinolate Activation in Bay-0
and Sha

Bay-0 and Sha contain different glucosinolates due to variation at

the GSL-AOP and GSL-Elong loci, such that Bay-0 has 3-

hydroxypropyl glucosinolate as its main short chain aliphatic

glucosinolate and Sha has but-3-enyl glucosinolate [38]. These two

accessions also differ in the structures they produce following

activation of these glucosinolates. Bay-0 lacks functional ESP and

produces mixtures of simple nitriles and isothiocyanates, depending

on the age of the plant [32]. In contrast Sha possesses a functional

allele of ESP and produces mixtures of epithionitriles, simple nitriles

and isothiocyanates (Figure 1). In agreement with previously

published analysis, interplanted Sha parental controls had an

increasing epithionitrile proportion during development for both

the exogenous (Figure 2A and C) and endogenous glucosinolate

substrates (Table S4)[32]. In contrast to Sha, the Bay-0 parent

showed little variation in the structural outcome of exogenous allyl

glucosinolate activation between 30, 35 and 42 DPG (Figure 2A and

C). The activation products for the endogenous 3-hydroxypropyl

glucosinolate produced in Bay-0 could not be detected in this

experiment. Thus, there is developmental variation in glucosinolate

activation between the Bay-0 and Sha parental accession which

allows us to investigate how the genetics of glucosinolate activation

interact with plant development.

Distribution of Structural Outcomes in the RIL Population
We measured the structural outcome of glucosinolate activation

using exogenous allyl glucosinolate in the Bay-06Sha RILs and

compared the trait distribution to the interplanted parental

Figure 2. Ontogenic variation of Structural Outcome in Glucosinolate Activation. GC-FID was used to measure the structural outcome
from exogenous allyl glucosinolate activation in the RILs and interplanted Bay-0 (dashed line) and Sha (solid line) parental accessions at 30, 35, and 42
DPG. For the parental analysis, averages with standard errors are shown. For the RILs, The percent simple nitriles were binned into 1 percent intervals
from 0 to 20 percent, and percent epithionitriles were binned in 5 percent intervals from 0 to 100 percent and the number of RILs per bin are shown.
For the RILs, black bars show the distribution as measured at 30 DPG, grey is 35 DPG and white at 42 DPG. A) Simple nitriles in Bay-0 (dashed) and Sha
(solid) parental accessions at 30, 35, and 42 DPG. B) Distribution of simple nitrile formation in the RILs. C) Epithionitrile formation in parental
accessions. D) Distribution of epithionitrile formation in the RILs.
doi:10.1371/journal.pgen.1000234.g002

Genetic Networks For Glucosinolate Activation
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controls. The use of exogenous allyl glucosinolate allowed us to

mask effects of variation in glucosinolate biosynthesis and

accumulation. Considerable transgressive segregation was ob-

served for simple nitrile where there were numerous RILs with

values higher and lower than the Bay-0 or Sha parents (Figure 2B).

Further, there was transgressive segregation for epithionitrile as

evidenced by the RILs with a higher value than the Sha parent

(Figure 2D). This suggests that alleles promoting the formation of

each structure exist in both parents. This is particularly surprising

in the case of epithionitrile proportions, as the Bay-0 parent can

not produce epithionitriles due to a lack of functional ESP and as

such might not be expected to contain genes enhancing

epithionitrile formation.

This population includes 212 lines producing no epithionitrile

structures following activation of allyl glucosinolate (Figure 2D). This

is consistent with the previously observed requirement of a functional

ESP allele for epithionitrile production [27,30,32]. For the sub-

population of RILs with a functional allele of ESP, the distribution

gradually shifted towards increased epithionitrile production from 30

DPG to 42DPG, in a manner consistent with the epithionitrile

increase observed in the Sha parental controls (Figure 2C). However,

individual RILs showed possible differences in the both the direction

of and magnitude of change in epithionitrile production from 30 to 42

DPG, suggesting that there is genetic variation in age dependent

control of epithionitrile proportion from 30 to 42 DPG (Table S4).

These possible differences will however require identification of the

QTL and HIF validation to ensure that this is not random variation

around the mean.

The distribution of nitrile formation within the RILs did not

show a similar ontogenic shift, but there were numerous lines that

had no simple nitrile formation at 42 DPG (Figure 2B). This low or

undetectable amount of simple nitriles is connected to epithioni-

trile proportions approaching complete utilization of the glucosi-

nolate substrate in these RILs at this DPG. This difference in

ontogenic regulation supports the model of simple nitrile and

epithionitrile production as being independent processes compet-

ing for the same substrate.

Heritability of Structural Outcomes
To compare the underlying genetics controlling the biochem-

ically distinct nitrile and epithionitrile glucosinolate activation

outcomes, we estimated heritability for each glucosinolate

activation structure from each measured glucosinolate (Table 1).

Because we were spatially constrained to only a single measure-

ment of each RIL at each DPG, this heritability estimate includes

both RIL and RIL6DPG effects and environmental variance is

not perfectly controlled. The endogenous glucosinolates are each

limited to roughly one quarter of the RILs due to independent

assortment of the GSL.AOP and GSL.Elong biosynthetic loci [38].

Further, the 4-methylsulfinylbutyl glucosinolate which derives

from transgressive segregation at the GSL.AOP and GSL.Elong lacks

a terminal alkene functional group, and can only form simple

nitrile and isothiocyanate structures (Figure 1)[39,40]. For all

detectable exogenous and endogenous glucosinolates, the herita-

bility of simple nitrile and epithionitrile proportions was

approximately 50%, with the sole exception of epithionitrile from

but-3-enyl glucosinolate at 69%.

Structural Proportion QTLs
To identify loci controlling the diversity of structural outcomes in

Bay-0 and Sha, we independently mapped QTLs for all traits at 30,

35, and 42 DPG. Analysis of epithionitrile proportions for

exogenous allyl glucosinolate revealed nine loci (Figure 3A, Table

S3), including seven novel QTLs and the previously identified ESP

and ESM1 loci [22,23]. Three loci (ESP, GSL.Activ.II.13, and ESM1)

were detected in the RILs at all three DPG, although the additive

effect of ESM1 switched direction from promoting nitrile formation

at 42 DPG relative to promoting isothiocyanate formation at 30 and

35 DPG. In spite of the fact that Bay-0 lacks functional ESP, four

QTLs showed a positive impact of the Bay-0 allele on epithionitrile

production, which is consistent with the observed transgressive

segregation in the RILs (Figures 2D and 3A).

We identified ten loci affecting the proportion of simple nitrile

structures produced from exogenous allyl glucosinolate, including

ESP, ESM1 and eight novel loci (Figure 3B, Table S3). The

average allelic substitution effect of these QTLs was 27% and the

median was 20%. ESP, ESM1 and six of the novel loci overlapped

with epithionitrile production QTLs with all but ESP showing the

same direction of allelic effect upon epithionitrile and nitrile

production (Figure 3). Six of the simple nitrile proportion QTLs

were significant at a single DPG, three were detected at two

consecutive DPG, and one locus (GSL.Activ.II.13) was detected in

all three QTL maps. Increased simple nitrile proportions were

fairly evenly distributed between the Bay-0 and Sha alleles

(Figure 3B). One locus (GSL.Activ.IV.16) exhibited significant

additive effects in opposite directions at 30 and 35 DPG

(Figure 3B). Isothiocyanates identified a combination of the nitrile

and epithionitrile QTLs (Figure S1). This suggests that the genetic

architecture underlying glucosinolate activation is much more

complex than the two locus model previously assumed [22,41].

Endogenous Glucosinolate Activation
We proceeded to compare QTLs identified using the exogenous

allyl glucosinolate to those identified with the endogenous but-3-

enyl and 4-methylsulfinylbutyl glucosinolate, the two glucosino-

lates with the highest level of accumulation in this population. The

Table 1. Heritability of Structural Outcomes of Glucosinolate Activation.

Trait P Value Type III Sums of Squares Heritability

Geno DPG Model Geno DPG

% Simple Nitriles ,0.001 0.397 13083.4 6603.8 17.1 50.5

% Epithionitriles ,0.001 ,0.001 874209.6 427015.0 166069.7 48.8

Butenyl % Simple Nitriles ,0.001 ,0.001 54039.5 28550.7 19106.5 52.8

Butenyl % Epithionitriles ,0.001 ,0.001 124753.5 82196.3 15517.3 65.9

4MSO % Simple Nitrile ,0.001 ,0.001 348841.6 178484.9 58429.9 51.2

Geno represents the genotype term in the model. DPG is the days-post-germination factor in the model.
doi:10.1371/journal.pgen.1000234.t001

Genetic Networks For Glucosinolate Activation
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analysis of structural outcomes of endogenous glucosinolate

activation is complicated by independent assortment at the

GSL.Elong and GSL.AOP biosynthetic loci, limiting each measur-

able endogenous glucosinolate to one quarter of these RILs

[38,42,43]. QTL analysis of endogenous but-3-enyl glucosinolate

activation detected three loci and nine epistatic interactions

affecting simple nitrile formation, and only ESP and three epistatic

interactions for epithionitrile proportions. All QTLs were

consistent with those observed using the exogenous allyl

glucosinolate (Figure 3A and Table S3).

QTL analysis of 4-methylsulfinylbutyl glucosinolate activation

identified three loci affecting simple nitrile formation, which were

Figure 3. QTLs Controlling the Structural Outcome of Glucosinolate Activation. The five Arabidopsis chromosomes are depicted as lines in
a pentagonal layout with roman numerals placed at the 0 cM position for each chromosome. Arrows to the outside of each chromosome show the
positions of the identified QTLs. Inside each arrow, 1 indicates that the QTL was detected at 30 DPG, 2 for 35 DPG, 3 for 42 DPG and F for all DPG.
Arrows for loci where the Bay-0 allele has a positive effect point away from the chromosomes while arrows for QTLs with negative allele substitution
values point inward. The QTLs are named according to the nomenclature used in the text. Significant epistatic interactions are illustrated with arrows
inside the pentagon connecting the interacting loci and numbered to indicate the DPG at which the interaction was detected. A) QTLs and epistasis
affecting epithionitrile proportions. B) QTLs and epistasis affecting simple nitrile proportions.
doi:10.1371/journal.pgen.1000234.g003

Genetic Networks For Glucosinolate Activation
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all identified using exogenous allyl glucosinolate (Table S3). The

Sha allele of ESP increased simple nitrile formation from this

glucosinolate, which lacks a terminal double bond and cannot

form epithionitrile structures. In contrast, the non-functional Bay-

0 allele increases simple nitrile formation from the exogenous allyl

glucosinolate, possibly because this eliminates substrate competi-

tion between AtNSP and ESP. As such, the use of exogenous allyl

glucosinolate provides the greatest power to independently map

both structural outcomes utilizing the entire RIL population.

QTL6DPG Interactions
To test how plant age in DPG altered QTL identification, we

conducted an ANOVA analysis of the significant genetic loci using

the data from all three assays in a single model. Each genotype is

replicated within each DPG allowing for a test of marker6DPG

interactions. Analysis of epithionitrile proportions using the full

data set identified five marker6DPG interactions, suggesting that

these loci may be involved in controlling the increase in

epithionitrile formation observed from 30 to 42 DPG (Table S3).

Analysis of simple nitrile proportions in the full data set also

detected five significant QTL6DPG effects, suggesting age

dependent regulation of simple nitrile rearrangements (Table

S3). Three of the marker6DPG interactions significantly affected

both simple nitrile and epithionitrile proportions, possibly as a

consequence of these two rearrangements competing for the same

pool of substrate or co-regulation of the two glucosinolate

activation outcomes. These loci with DPG interactions provide

the potential to begin understanding how ontogenic variation and

genetic variation interact at the molecular level.

Numerous Epistatic Interactions Influence Glucosinolate
Activation

Given the numerous QTLs controlling glucosinolate activation

and the requirement of a functional allele at the ESP locus for

epithionitrile production, we hypothesized that there would be

significant epistasis affecting structural outcomes in this mapping

population. We utilized an ANOVA to test all possible pair wise

QTL interactions for significant epistasis. We identified a total of

eleven different pair wise epistatic interactions for epithionitrile

proportion, including the previously described ESP6ESM1

interaction [22,23] (Figure 3A, Table S3). Consistent with the

requirement of functional ESP for epithionitrile production, all

other QTLs for epithionitrile formation showed a significant

epistatic interaction with ESP for at least one of these data sets

(Table S3). Epistatic interactions involving ESP represent classical

epistasis, where genotypes with the nonfunctional Bay-0 ESP allele

produce no detectable epithionitriles, hiding the function of the

interacting loci (Figure 4A/C). This suggests that the QTLs

epistatic to ESP may function to modulate the activity of the

functional Sha allele of ESP. Interestingly, the highest levels of

epithionitriles were not exclusively observed in RILs with Sha

genotypes at the interacting locus. For example, the ESP6GSL.Ac-

tiv.V.18 interaction produced the highest epithionitrile proportions

in lines with the Bay-0 allele at GSL.Activ.V.18 (Figure 4C).

Figure 4. Phenotypic Consequences of Epistatic Interactions in the Structural Outcome of Glucosinolate Activation. We obtained the
mean phenotypic values for four examples of epistatic interactions controlling the structural outcome of glucosinolate activation. The mean value for
the listed structural outcome and standard error in each genotypic class are shown for each pair wise genotypic class in the displayed interaction.
Different letters indicate statistically significant differences from the other genotypic class within an interaction. A) Interaction of ESP6ESM1 for
percent epithionitriles. B) Interaction of ESP6ESM1 for percent simple nitriles. C) Interaction of ESP6GSL.Activ.V.18 for percent epithionitriles. D)
Interaction of GSL.Activ.IV.166GSL.Activ.I.16 for percent epithionitriles.
doi:10.1371/journal.pgen.1000234.g004

Genetic Networks For Glucosinolate Activation

PLoS Genetics | www.plosgenetics.org 6 October 2008 | Volume 4 | Issue 10 | e1000234



While all epithionitrile QTLs were epistatic to ESP, four

epistatic interactions were detected for epithionitrile proportion

that did not involve ESP (Figure 3B and 4D and Table S3). These

interactions were examples of quantitative epistasis, where the

effects of one locus was modified by the other locus in a

quantitative manner, rather than the absolute dependence of one

locus on the other locus as exhibited by interactions involving ESP

(Figure 4D versus 4A/C). Additionally, these epistatic interactions

formed networks such that GSL.Activ.II.13, GSL.Activ.II.61 and

ESM1 showed all possible pair wise epistatic interactions with each

other as well as with ESP (Figure 3B and Figure 4B). Likewise, a

similar network involves GSL.Activ.I.166GSL.Activ.IV.16 and ESP

(Figure 3). This suggests that complex epistasis may begin to

identify underlying regulatory or protein interaction networks

controlling the structural outcome of glucosinolate activation.

Simple nitrile proportion from exogenous allyl glucosinolate

identified fewer epistatic interactions than epithionitrile formation

with most interactions also involving the ESP locus. The

ESP6ESM1 epistatic interaction affected both simple nitrile and

epithionitrile proportion, but with different effects on each

structural proportion (Figure 4 A and B). The lower number of

epistatic interactions for simple nitrile formation is partly

explained by the lower variation present for simple nitrile

formation within these RILs (Figure 2A/B).

QTL Validation using HIFs
To provide additional support for the identified GSL.Activ

QTLs, we obtained HIFs that contain appropriate variation for

seven of the loci detected in this study (Table S1). For the

GSL.Activ.II.13 and GSL.Activ.III.64 loci, the available HIFs only

contained a non-functional ESP, thus we were unable to test the

effects of these loci on epithionitrile production. We assayed

glucosinolate activation in each HIF line at 24 and 38 DPG, to

confirm the QTLs and any interaction between the QTLs and

DPG. The HIFs confirmed seven of the GSL.Activ QTLs. This

included four loci for epithionitrile formation, two for simple

nitrile production and several for the total production of nitriles or

isothiocyanates (Figure 5, Table 2, Table S5). HIF-241 and HIF-

425 vary for ESP and confirm that a functional Sha allele is

necessary for epithionitrile production (Figure 5A, Table S5).

Interestingly, the efficiency of epithionitrile formation significantly

differs between these two HIFs (P = 0.047 for HIF6ESP genotype

and P = 0.048 for HIF6ESP genotype6DPG), confirming the

presence of background ESP modifiers. The level of validation

observed in the HIF analysis is strongly supportive of the QTL

mapping results, as each HIF genotype was only analyzed in six-

fold replication per DPG whereas each marker genotype in the

RIL study was analyzed in roughly 200-fold replication, lending

more power to the RIL analysis.

The original RIL QTL analysis did not replicate each line

within each DPG, and as such, we designed the HIF analysis to

confirm that these QTLs do interact with the plant age in DPG.

All four confirmed epithionitrile proportion QTLs exhibited

significant genotype6DPG effects (Figure 5, Table 2 and Table

S5). For example, HIF-157 which varies for GSL.Activ.V.18,

showed a significant difference in epithionitrile proportions

between alleles at 24 but not 38 DPG (Figure 5B and Table S5).

In contrast, the locus GSL.Activ.V.48 in HIF-350 showed no

Figure 5. HIF Validation of Novel QTLs. The structural outcome of glucosinolate activation for allyl glucosinolate was assayed in HIFs to confirm
the effect of specific QTLs, as well as QTL6DPG interactions. Average values are shown with standard errors (n = 6 per bar). Significant differences
(P,0.05) are indicated by different letters. A) ESP controls percent epithionitriles in HIF425. B) GSL.Activ.V.18 controls percent epithionitriles in HIF157.
C) GSL.Activ.V.48 controls percent epithionitriles in HIF350. D) GSL.Activ.V.18 controls percent simple nitriles in HIF213.
doi:10.1371/journal.pgen.1000234.g005

Genetic Networks For Glucosinolate Activation
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difference in epithionitrile proportions between alleles at 24 DPG,

but a significant effect at 38 DPG in agreement with the QTL

prediction from the RIL analysis (Figures 3A, 5C and Table S5).

These results confirm that we have identified ontogenic dependent

QTLs in our study.

HIF Analysis Reveals an Additional QTL Tightly Linked to
ESP

QTL mapping analysis of epithionitrile proportion consistently

produced a large peak in the LOD plot at the ESP locus but there

was also frequently a small shoulder (Figure 6A). This could be

explained by residual significance from the large-effect ESP locus

or suggest the presence of a tightly linked QTL in this region. Due

to tight genetic linkage with ESP, we did not include this putative

locus in our statistical models. We did however identify two HIFs

in this region, HIF149 with functional ESP and HIF107 with non-

functional ESP. These HIFs allow us to test for the existence of this

additional locus as well as its potential dependency upon ESP

(Table S1). Analysis of structural outcomes in HIF149 confirmed

the existence of an additional QTL teleomeric of ESP on

Arabidopsis chromosome I. This QTL, GSL.Activ.I.69, affects both

simple nitrile and epithionitrile proportions (Table S5 and

Figure 6B/C). GSL.Activ.I.69 also displays an age dependent effect

on simple nitrile proportion, but not epithionitrile proportion

(Table S5 and Figure 6B/C). Interestingly, HIF107 did not

identify a significant QTL, suggesting that GSL.Activ.I.69 is

epistatic to ESP (Table S5). This HIF analysis of a QTL shoulder

suggests there may be even further additional QTLs for

glucosinolate activation in this RIL population.

eQTLs for Glucosinolate Activation Genes
The TGG1 and TGG2 myrosinases, ESP, and ESM1 are the

primary genes with a demonstrated role in controlling glucosino-

late activation and associated structural outcomes within the

Arabidopsis rosette [22–25,27,30,31]. However, these genes and

the MBPs form gene families in Arabidopsis and some of these

uncharacterized homologs may determine the genetic variation

observed in the structural outcome of glucosinolate activation. To

identify any potential expression level polymorphisms in these four

gene families that may control the glucosinolate activation QTLs,

we identified eQTLs for the full list of potential glucosinolate

activation homologs (Table S2) [37].

We first obtained the estimated heritability for transcripts

encoding these potential glucosinolate activation genes [37]. The

average transcript heritability for the 30 measurable probe sets was

63.0%, which is significantly higher than the genome wide average

transcript heritability (t-test, P = 0.045). Further, the glucosinolate

activation genes had more eQTLs, both cis and trans than the

average Arabidopsis transcript. This excess was most dramatic

with trans-acting eQTLs, with an average of 3.1 trans-eQTLs

detected for each glucosinolate activation gene in comparison to

the average Arabidopsis transcript, with 1.5 trans-eQTLs in this

population [37]. These results agree with previous studies showing

the transcripts for glucosinolate biosynthetic genes had higher

heritability and variance than the average Arabidopsis transcript

[38,44].

The previous analysis of eQTLs within the Bay-06Sha RIL

population was conducted at 35 DPG in the same growth chamber

allowing their direct comparison [37]. The eQTLs controlling

transcript accumulation of the glucosinolate activation genes

revealed eQTL clusters collocating with ten of the eleven

structural proportion QTLs (Figure 7B). The eQTL clusters

partitioned into both cis and trans-eQTL clusters. The two cis-

eQTL clusters are associated with the genomic regions around

ESP and ESM1, which contain several ESP, ESM1, and MBP

homologues but do not overlap with known trans-eQTL hotspots

(Figure 7A and B [see the black arrows])[37]. These regions

appear to be the result of two separate whole-genome duplications

that copied an original region containing the ancestral genes for

ESP, ESM1 and the MBPs (Figure 7A). These consecutive

Table 2. HIF Analysis of Structural Outcomes.

Simple Nitrile Epithionitrile Isothiocyanate

Locus HIF ESP G G6D G G6D G G6D

GSL.Activ.I.16 071 Sha - - - - - - - - - - - -

194 Sha - - a - - P - P A p a P

ESP 241 Het a - a - A P A P A P A P

425 Het a - - - A P A P A P A P

GSL.Activ.II.13 364 Bay a p nd * * a p nd

GSL.Activ.II.42 163 Sha - - - - - - - - - - - -

ESM1 338 Sha - - nd - - nd - - nd

GSL.Activ.III.64 244 Bay a - nd * * - - nd

GSL.Activ.IV.55 077 Sha - - - - - - - - a - A -

191 Sha - - nd - - nd - - nd

GSL.Activ.V.18 213 Bay - - - p * * - - - p

157 Sha - - - - - - a P - - - p

340 Sha - - - - - - - - - - - -

GSL.Activ.V.48 350 Sha - - - - A P A P - - - -

Locus indicates the QTL region that varies in each HIF (Table S1 and S5). HIF gives the HIF number and ESP indicates the allelic status at the ESP QTL in each HIF. A
significant effect of genotype (G) and genotype6DPG (G6D) on the absolute quantity of each structure is indicated with a or A for P-values below 0.05 and 0.01
respectively, and significant effects on the proportion of each structure is indicated with p or P. Dashes indicate non-significant effects. (nd) indicates HIFs for which it
was not possible to assess G6D, as they were measured at 38 dpg only. (*) indicates no epithionitrile formation is possible in HIFs lacking functional ESP.
doi:10.1371/journal.pgen.1000234.t002
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duplications generated four genomic regions that contain

additional non-glucosinolate genes whose paralogs also have a

conserved order (Figure 7A). In these two cis-eQTL clusters, we

found six and eight cis-eQTLs for putative glucosinolate activation

genes in the ESP and ESM1 regions respectively (Figure 7). While

variation in ESP and ESM1 have been shown to control

glucosinolate activation phenotypes, these local cis-eQTL clusters

suggest that additional genes at each locus could contribute to the

effects on the structural outcome of glucosinolate activation.

In addition to cis-eQTL clusters, there were several GSL.Activ

loci that co-located with clusters of trans-eQTLs suggesting that

these may be regulatory loci with a measurable effect on gene

expression and structural outcomes. In particular, GSL.Activ.II.13

collocated with a large trans-eQTL cluster but not with the

genomic position of any of the identified glucosinolate activation

gene homologs (Figure 7B – double black arrows highlight

homologue clusters). Interestingly, this locus also collocates with

a large trans-eQTL hotspot controls ,1,200 genes suggesting that

it may contain a polymorphism in a pleiotropic developmental

regulator [37]. Genetic variation at the GSL.Activ.II.13 locus alters

the expression of all four ESM1 homologues, three of four ESP

homologues, four MBPs, and two myrosinases. A closely linked

locus, GSL.Activ.II.42, also collocates with a large trans-eQTL

cluster controlling two myrosinases, eight of twenty potentially

interacting genes and ,2,500 other genes (Figure 7B)[37]. Thus,

these two loci show that global regulatory loci can have a

measurable consequence on glucosinolate activation. Interestingly,

the GSL.Activ.I.69 locus identified in the HIF analysis is associated

with eQTLs controlling transcript accumulation for TGG2, ESP,

ESM1 and an MBP (At3g16470), suggesting that the GSL.Activ.I.69

may also be a regulatory locus. However, it does not co-locate with

a previously identified global trans-eQTL hotspot suggesting that it

may be more specific to glucosinolate activation [37].

Discussion

The structural outcome of glucosinolate activation strongly

influences plant defense, and had been thought to be predomi-

nantly controlled by genetic variation in ESP and its epistatic

modifier locus, ESM1 [22,23,28–30]. Recently this model has been

shown to be overly simplistic by the identification of interactions

between developmental, environmental and genetic factors

influencing the regulation of the structural outcomes in Arabi-

dopsis, Brassica and Nasturtium [30,32,45–48]. These analyses

suggested that the mixture of biologically active product structures

is generated by two biochemically distinct rearrangements that

divert the glucosinolate substrate away from the default isothio-

cyanate structure, each subject to complex regulatory patterns in

rosette leaves. As such, we conducted QTL mapping analysis to

simultaneously map loci controlling both simple nitrile and

epithionitrile formation using allyl glucosinolate in the Bay-

06Sha RIL population. The power afforded by this population

containing a moderate number of independent lines revealed

considerable additional complexity underlying the critical rear-

rangement step in glucosinolate activation.

Our analysis identified twelve loci and 17 epistatic interactions

controlling the mixture of activation structures produced from allyl

glucosinolate, including the previously described ESP and ESM1

QTLs (Figures 3 to 6, Table 2, Table S3 and S5). HIF analysis

confirmed seven loci as well as their proposed interaction with

plant development (Figure 5 and 6, Table 2 and S5). We also

found extensive collocation between eQTLs for the genes

potentially involved in glucosinolate activation and the structural

outcome phenotypic QTLs (Figure 7 and Table S2). These results

Figure 6. HIF Analysis Identifies an Additional Locus, GSL.Ac-
tiv.I.69. HIF149 was utilized to test a putative QTL near the ESP locus.
Glucosinolate activation was assayed using allyl glucosinolate and the
mean and standard error are shown (N = 6). Significant differences
(P,0.05) are indicated by different letters. A) Illustration of the
described shoulder in the LOD profile near the ESP locus on
chromosome I generated by CIM based QTLcartographer analysis (35
DPG is illustrated). The black bar shows the region of the shoulder that
varies in HIF149. B) Effect of HIF149 upon simple nitrile production. C)
Effect of HIF149 upon epithionitrile production.
doi:10.1371/journal.pgen.1000234.g006
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Figure 7. Genomic Duplication and eQTLs for Glucosinolate Activation Genes. Phylogenetic analysis was used to identify homologs of the
four known families of glucosinolate activation genes (Myrosinase, ESP, ESM1 and MBPs) within Arabidopsis. The genomic position of these genes and
their associated eQTLs within this population were then identified and are plotted below. A) The genomic arrangement of the glucosinolate
activation genes at the identified genomic duplication underlying the ESM1 (top) and ESP (bottom) QTLs. Genes are colored based on the
glucosinolate activation gene with which they share homology; ESP (red), ESM1 (green), and MBP (blue). Genomic relationships for eight additional
paralogous sequences are indicated by dashed lines. The AGI locus designation for the genes used as the beginning and end of each illustrated
regions are indicated, and the loci corresponding to ESP, ESM1, MBP1 and 2 are labeled, with the scale indicated. B) eQTLs for the identified
Myrosinase, ESM1, ESP, and MBP homologs are shown [37]. The five Arabidopsis chromosomes are indicated with roman numerals and represented
contiguously from left to right. The position of the identified structural outcome QTLs are indicated at the top of the heat plots. Horizontal lines
separate the four gene families with the defining member labeled. Within each family the genes are ordered by physical position from top to bottom.
eQTLs shaded blue indicate that increased transcript accumulation for that gene is associated with the Bay-0 allele, and red indicates Sha, with the
intensity of the color proportional to the magnitude of the additive effects. The double black arrows show the orientation and position of the tandem
gene clusters at the ESP and ESM1 loci. The vertical dashed lines show the likely position for the GSL.Activ.II.13 and 42 loci.
doi:10.1371/journal.pgen.1000234.g007
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support a model wherein control of structural outcomes during

glucosinolate activation results from multi-locus regulation of both

simple nitrile and epithionitrile formation and the interplay

between these competing rearrangement processes generates the

final mixture of biologically active structures.

Age Dependent Regulation of the Structural Outcome of
Glucosinolate Activation

The Bay-0 and Sha parents had previous been shown to have

different ontogenic control of glucosinolate activation [32]. Our

analysis of epithionitrile proportions revealed several differences

between 30, 35 and 42 DPG, and analysis of the full data set

identified seven significant QTL6DPG interactions (Figure 3A

and Table S3). Further, direct assessment of glucosinolate

activation at two DPG in the HIFs confirmed these QTL6DPG

interactions (Figure 5, Table 2, S3 and S5). This suggests that these

loci are responsible for the age dependent regulation of

epithionitrile production, and may act to regulate ESP expression.

Similar levels of ontogenic QTL dependency were identified for

simple nitrile production in spite of the absence of ontogenic

variation between Bay-0 and Sha for simple nitrile production

(Figures 2A/B and 3B and Table S3). Thus, transgressive

segregation can also occur for interaction terms in QTL analysis.

Epistasis and trans-eQTLs
Extensive epistatic interactions controlling glucosinolate struc-

tural outcomes were detected, many involving ESP that may

represent classical epistasis where the phenotypic effects of the

second locus on epithionitrile production are fully masked in the

absence of functional ESP (Figures 3A and 4A/C, and Table S3).

These interactions formed networks wherein all possible pair wise

interactions were detected (Figure 3A). One such epistatic network

involved the known structural genes ESP and ESM1, with

GSL.Activ.II.13 and GSL.Activ.II.42. Interestingly, GSL.Activ.II.13

and GSL.Activ.II.42 appear to be trans regulatory loci that control

the expression of ESP and ESM1, several other putative

glucosinolate activation genes and thousands of other genes

suggesting (Figure 7B)[37]. This suggests that this epistatic network

is a combination of variation in two master regulatory loci, as well

as variation in the genes that they regulate, ESP and ESM1.

Further evidence for trans regulation underlying epistasis comes

from the ESP6GSL.Activ.V.18 interaction, where GSL.Activ.V.18

collocates with an ESP trans-eQTL (Figure 4C and 7B). The

connection of regulators and their regulated genes in a

quantitative epistatic network suggests that it may be possible to

use quantitative epistasis in a manner similar to Mendelian

epistasis to begin defining molecular networks and their influence

upon the final phenotype. Further work will be required to

validate if these regulators are directly or indirectly affecting

transcript accumulation of ESP, ESM1 and the other homologs.

One complication that occurs from the observed level of

epistasis is a diminished statistical power to identify loci. As such,

the 400 lines used may underestimate the true extent of epistasis

for the structural outcome of glucosinolate activation. As a

consequence of this extensive epistasis, we hesitate to eliminate

QTLs not confirmed by HIF analysis as candidate loci. The

genetic background of each HIF consists of a random mixture of

fixed Bay-0 and Sha genotypes at all regions outside of the focal

locus, and it is therefore likely that some of the available HIFs have

unfavorable genotypes at interacting loci. Of the four QTLs with

multiple HIFs available, three were confirmed in some back-

grounds and not in others, supporting a genetic background effect

(Table 2). In particular, analysis of simple nitrile proportion

appears complicated by ESP genotype. Both HIFs with significant

effects on simple nitrile proportions lacked ESP activity, suggesting

that the ability to detect small effects on simple nitrile formation

can be negatively impacted as a consequence of reduced flux in the

presence of the competing epithionitrile rearrangement.

Structural Outcome QTLs May Result from an Ancient
Duplication and Subsequent Neo-Functionalization

Analysis of the genomic regions underlying ESP and ESM1

revealed two distinct and tightly linked clusters of structural

specifiers and myrosinase interacting proteins at each locus

(Figure 7A). These linked clusters appear to be the product of an

ancestral locus, which contained ESP, ESM1, and an MBP and

underwent a tandem duplication followed by segmental duplication

to generate the ESP and ESM1 loci, with the subsequent loss of some

paralogs. These four genomic regions contain the majority of the

ESP, ESM1 and MBP homologs but differ in their specific

composition. Further, a number of cis-eQTL were detected for

these genes, and the associated QTLs have divergent effects on the

structural outcome of glucosinolate activation [22,23]. The presence

of a large number of duplicated homologs suggests that these QTL

may be complex loci with numerous tightly linked polymorphisms

contributing to the observed phenotypic effects. Support for this

idea comes from the observation that while the ESP and ESM1

proteins were shown to explain most of the effects of their respective

QTLs, complementation of both QTLs did not completely

recapitulate the phenotypes associated with each QTL [23,42].

The association of genomic duplications with glucosinolate

activation QTLs suggests that such duplications may facilitate

quantitative genetic variation by creating duplicate genes. The

duplicate genes can then undergo genetic sub-functionalization such

that the genes have differential functions across natural genotypes

[44,49–51]. This role of genome duplications and QTL association

has been previously seen in polyploid plants but not characterized in

diploids [52,53]. This relationship between genome duplications

and QTLs requires the analysis of more traits and cloning of more

loci to establish the generality of this connection.

Simple Nitrile and Epithionitrile Rearrangements Involve
Distinct Chemistry but Overlapping Genetics

Nine of twelve QTLs affected both simple nitrile and epithioni-

trile proportions formed from allyl glucosinolate (Figure 3 and 6,

and Table S3). Additionally, four epistatic interactions were

detected in both the simple nitrile and epithionitrile structural

outcome data (Figure 3 and 4 and Table S3). While there was

considerable overlap in the QTLs for the two distinct structural

outcomes, there was not complete correspondence in the direction-

ality of their effects. The majority of the QTLs altered the

accumulation of nitrile and epithionitrile in the same direction, but

the ESP locus had opposite effects on simple nitrile and epithionitrile

proportions (Figure 3). In those cases where the same pair wise

interactions via the ESP locus affected both simple nitrile and

epithionitrile formation, they affected each proportion differently,

supporting the concept of two independent rearrangements

competing for the same substrate. This suggests that simple nitrile

and epithionitrile formation share regulatory loci, but that there are

likely separate proteins producing nitrile and epithionitrile struc-

tures from allyl glucosinolate. This is in agreement with previous

observations suggesting the presence of an unidentified simple nitrile

forming enzyme in Arabidopsis [23,25,32].

Conclusion
This study shows that there is considerable natural genetic

variation controlling the age dependent regulation of structural
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outcomes in Arabidopsis [32]. Elucidating the basis of this

regulation is necessary to obtain a better understanding of the

evolution and ecological significance of developmental trajectories

in this important plant defense system. Further, we describe

epistatic networks that appear to link regulatory loci with the genes

that they regulate. Future analyses will be required to test if

quantitative epistasis can be used to generate networks in a fashion

similar to Mendelian epistasis but this has potential applications in

most species. Finally, the potential for whole genome duplications

to be associated with multiple QTLs for the same trait may help to

enhance the rate at which additional QTL can be cloned. Once

one QTL is cloned for a given trait, it may immediately suggest

candidate genes for QTL in genomic regions that share an

ancestry through whole genome duplications. The glucosinolate

system is a useful model system for quantitative genetics to begin

addressing these fundamental issues in quantitative genetics,

ecology and evolution.

Materials and Methods

Mapping Population
The population of 411 Bay-06Sha RILs [33] were chosen for

QTL mapping analysis of the structural outcome of glucosinolate

activation. The parents of this population differ in their

glucosinolate profile and content, as well as in the structures

formed upon glucosinolate activation and the developmental

regulation of the structural outcome following glucosinolate

activation [32,38]. A subset of 212 lines from this population

have also been analyzed for variation in gene expression [37],

enabling comparison of gene expression to phenotypic variation.

Finally, there are available HIFs, pairs of near isogenic lines fixed

for alternate alleles at a single locus in an otherwise identical

recombinant inbred background, which offer the opportunity to

validate some of the QTLs detected in this study [54].

RIL Growth Conditions and Experimental Design
Seeds were imbibed and cold stratified at 4 degrees for three days

to break dormancy. All seeds were sown directly onto Premier

ProMix B potting soil (Premier Brands, Inc., Red Hill, Pennsylva-

nia) in 36-cell (approximately 125 cm3 soil per cell) flats, and grown

in controlled environment chambers at 20uC with 8 h light at 100–

120 mEi. Each flat contained one Bay-0 and Sha parents. All plants

were free of insect pests by visual inspection. The population was

grown three independent times to independently phenotype the

structural outcome of glucosinolate activation at 30, 35, and 42 days

DPG. These DPG were chosen because day 30 represents the

attainment of Stage 1.10 or 10 mature leaves per plant for both the

parents and all RILs. Further, day 42 is one week away from the

earliest RIL flowering (Stage 5.10) in our environmental conditions

[32,34,35]. Thus, this range of DPG allows us to focus on

developmental changes in what is typically considered a static

rosette rather than query larger ontogenic shifts such as leaving

logarithmic growth or the flowering transition. Within a two hour

time frame centering on dawn, the rosette leaves from each and

every RIL at each DPG were harvested and phenotyped for the

structural outcome of glucosinolate activation. Previous work had

shown that glucosinolate activation is regulated by rosette age and

not the age of individual leaves within a rosette [32] .

Analysis of Glucosinolate Activation Product Structures
The structural outcome of glucosinolate activation was assayed

using a modified version of the previously published protocol

[22,23]. Briefly, the three fully expanded rosette leaves from a

single plant were harvested and crushed in an 8 mL reaction vial

containing 1 mL of 100 mM MES buffer at pH 6.0 and 0.4 mmol

of allyl glucosinolate. The three leaves were consistently the first,

fourth and seventh fully expanded leaf to provide a sampling of

different ages. Previous work had shown that these three leaf ages

had similar glucosinolate activation that was determined by the

rosette age and not the leaf age [32]. This allows us to focus on

rosette age rather than leaf age although the two may be intricately

linked in some fashion. Exogenous allyl glucosinolate was added to

enable comparisons of structural outcomes using a common

substrate for all RILs despite the segregating biosynthetic variation

[38]. Further, the allyl glucosinolate allows us to measure all three

potential glucosinolate activation endpoints, isothiocyanate,

epithionitrile or simple nitrile, whereas half the RILs do not have

this capacity due to the lack of alkenyl glucosinolates [32,38].

Upon complete tissue homogenization the reaction vial was

capped and incubated for five minutes. The reaction was stopped

and glucosinolate activation products extracted with 4 mL of

dichloromethane. The organic phase was removed, dried and

concentrated to 200 mL for gas chromatography (GC) analysis

using an Agilent HP 5890 with a flame ionization detector [22].

Peak identities were confirmed using a GC-mass spectral detector

(Agilent HP 6890 with an Agilent 5973N MSD), by comparison

with published mass spectra [55]. Quantification was conducted

using published response factors that were corrected using propyl

isothiocyanate standards as previously described [22]. Structural

outcomes are reported as the percent of simple nitrile, epithionitrile,

or isothiocyanate products for a particular glucosinolate. For

instance, the percent simple nitrile for allyl glucosinolate is defined

as [allyl simple nitrile] / [allyl simple nitrile+allyl epithionitrile+allyl

isothiocyanate]. Proper chemical names for this equation are allyl

simple nitrile is 3-butenyl nitrile and allyl epithionitrile is 2,4-

epithiobutyl nitrile. Each structural outcome for each glucosinolate

was measured using a similar equation. By dividing the absolute

amount of a particular structure by the sum of all possible products,

the effects of myrosinase activity and differences in biosynthesis and

accumulation of the endogenous substrates are cancelled, since they

affect both the numerator and denominator equally. This assay is

not a quantitative measure of total myrosinase activity because it

reaches saturation for some samples.

QTL Analysis
We obtained genotypes and genetic map information for the

Bay-06Sha RIL population from the Arabidopsis Biological

Resource Center (ABRC; www.arabidopsis.org) [33]. To maxi-

mize our ability to detect QTLs, we utilized the data from each

DPG experiment separately and as a combined data set. For each

RIL, the proportion of each activation structure for each

glucosinolate were independently used for QTL mapping within

Windows QTL Cartographer v2.5 [56–58]. Although the

proportions of glucosinolate activation structures obtained from

a given substrate are not mathematically independent of one

another, the simple nitrile and epithionitrile rearrangements can

be separately measured for allyl glucosinolate, allowing simulta-

neous assessment of these partially independent processes [32].

Composite interval mapping (CIM) was implemented using Zmap

(Model 6) with a 10 cM window and an interval mapping

increment of 2 cM. The declaration of statistically significant QTL

is based on permutation derived empirical thresholds using 1,000

permutations for each trait mapped [59,60]. The Eqtl module of

QTL Cartographer was used to automatically identify the location

of each significant QTL for each trait [58].

To further test each QTL identified and query for potential

epistasis, we conducted an ANOVA for the proportion of each

glucosinolate activation structure. The markers most closely linked

Genetic Networks For Glucosinolate Activation

PLoS Genetics | www.plosgenetics.org 12 October 2008 | Volume 4 | Issue 10 | e1000234



to each significant main-effect QTL were used as main effect

cofactors. An automated SAS script then tested all main effects

and all possible pair wise interactions between main-effect loci.

Significance values were corrected for multiple testing within a

model using false discovery rate adjustment within the automated

script. The script returned all significance values as well as QTL

main-effect estimates in terms of allelic substitution values (Table

S3). In addition, the combined data were used to estimate the

heritability of the different structural outcomes of glucosinolate

activation. This was conducted using the general linear model

procedure within SAS where broad sense heritability was defined

as sg/sp (Table 1), where sg is the estimated genetic variance for

the structural proportion phenotypes among different genotypes in

these RILs, and sp is the estimated phenotypic variance [3].

Analysis of HIFs for QTL Validation
To confirm the identified QTLs in this study we obtained

sixteen HIFs, corresponding to nine of the loci detected in this

experiment, from INRA (http://dbsgap.versailles.inra.fr/portail)

(Table S1). There were no HIFs available to test GSL.Activ.IV.16

and GSL.Activ.II.61. Within each HIF, only the genotypes in the

region of one QTL differ while the rest of the genome is a random

homozygous mixture of Bay-0 and Sha genotypes. HIFs with the

functional Sha allele at ESP can be used to test QTLs controlling

both epithionitrile proportion and simple nitrile proportion. For

most QTLs there was a HIF available with functional ESP, except

for GSL.Activ.II.13 and GSL.Activ.III.64. To test simple nitrile

proportion QTLs for dependence on ESP genotype, separate HIFs

with the functional Sha and non-functional Bay-0 alleles of ESP

were chosen when possible.

Each HIF was planted with twelve independent biological

replicates per allele per HIF. These were planted and grown under

identical conditions as described above for the RIL population.

For each HIF, six replicates of each genotype were assayed for

structural outcomes at 24 DPG and six were assayed at 38 DPG to

validate each QTL and survey for age dependence. These time

points were chosen such that there was a sufficient developmental

time difference to detect genotype6DPG effects but before

epithionitrile formation reached saturation at the later time points.

Due to poor germination, HIF191, 244, 338, and 364 were only

assayed at 38 DPG.

The data for each class of glucosinolate activation product were

analyzed for the effects of genotype, DPG, and DPG6genotype

within each HIF using the general linear model procedure in SAS.

Given that each HIF is a separate and independent test, we did not

correct for multiple testing within these models. We also directly

compared HIF241 to HIF425, two independent HIFs differing at

the ESP QTL, to assess background dependent effects upon ESP.

Analysis of Gene Expression QTLs
We used previously published sequence data to identify the

known myrosinases and structural specifier genes [22–24,61]. We

utilized protein sequence data to identify Arabidopsis homologs of

each major glucosinolate activation gene, myrosinase, ESP, ESM1,

and Myrosinase Binding Protein 1 (MBP1) and MBP2. For all four

gene families we had two criteria to define a gene as potentially

associated with glucosinolate activation. First, each included gene

had to be similar to known genes based on a BLASTP score of at

least e245. Secondly, we further restricted this list to genes that

were phylogenetically limited to Arabidopsis when protein

sequences from the poplar, grape and rice plant genomes were

included [62,63]. This assumes that genes with more similar, non-

cruciferous homologues are unlikely to be involved in glucosinolate

activation as this system is not present in poplar, grape or rice

(Table S2). Heritability, eQTL position, eQTL effect and

transcript accumulation values were obtained from a previously

published analysis of the Bay-06Sha population [37]. Because

these global transcription studies were conducted in the same

mapping population grown under the same conditions and in the

same growth chambers, it was possible to directly compare the

gene expression and structural outcome data.

Accession Numbers
There are no new accession numbers associated with this dataset.

The microarray data set used in this study has been deposited at EBI

ArrayExpress (http://www.ebi.ac.uk/arrayexpress/) under numbers

E-TABM-126 and E-TABM-224.

Supporting Information

Figure S1 QTLs Controlling the Isothiocyanate Outcome of

Glucosinolate Activation. The five Arabidopsis chromosomes are

depicted as lines in a pentagonal layout with roman numerals

placed at the 0 cM position for each chromosome. Arrows to the

outside of each chromosome show the position of the identified

QTLs affecting isothiocyanate production. Inside each arrow, a

number 1 indicates that the QTL was detected at 30 DPG, 2 for

35 DPG, and 3 for 42 DPG. Arrows for loci with positive allele

substitution values for Bay-0 point away from the chromosomes

while arrows for QTL with negative allele substitution values point

inward. The QTLs are named according to the nomenclature

used in the text. Significant epistatic interactions are illustrated

with arrows inside the pentagon connecting the interacting loci

and numbered to indicate the DPG at which the interaction was

detected.

Found at: doi:10.1371/journal.pgen.1000234.s001 (2.90 MB TIF)

Table S1 HIF Genotypes. The genotype for each HIF line at the

listed markers is provided. Heterozygous scores are in bold.

Found at: doi:10.1371/journal.pgen.1000234.s002 (0.03 MB

XLS)

Table S2 Known and Putative Glucosinolate Activation Genes.

Shown are the identified candidate genes for the different

glucosinolate activation classes that contain a probeset on the

Affymetrix ATH1 microarray.

Found at: doi:10.1371/journal.pgen.1000234.s003 (0.03 MB

XLS)

Table S3 QTL for Glucosinolate Activation Traits. Main effect

and DPG interaction provide the P value for the given QTL in

relation to the listed trait. For the Epistasis analysis, 1 = a

significant epistatic interaction at DPG30, 2 is for significance at

DPG35, 3 is for significance at DPG42 and F is significant epistasis

across all times. Allele substitution provides the estimated main

effect of each QTL on the phenotype.

Found at: doi:10.1371/journal.pgen.1000234.s004 (0.04 MB

XLS)

Table S4 Glucosinolate Activation with Allyl and Butenyl

glucosinolates in the RILs. Phenotypic values for glucosinolate

activation in the given RIL at the given day-post-germination

(DPG).

Found at: doi:10.1371/journal.pgen.1000234.s005 (0.75 MB

XLS)

Table S5 Summary of HIF Results. Shown are all statistical

analyses on the HIFs with grey horizontal bars separating the

different QTLs. P values for each term in the model as well as

mean glucosinolate activation values and standard deviation are

provided for each HIF.
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Found at: doi:10.1371/journal.pgen.1000234.s006 (0.05 MB

XLS)
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