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ABSTRACT OF THE DISSERTATION 

 
Metabolic and Intracellular Signaling Mechanisms  

of Hair Follicle Stem Cell Activation 

 
by  

 
Matilde Miranda 

Doctor of Philosophy in Molecular Biology 

University of California, Los Angeles, 2020 

Professor William Edward Lowry, Chair 

The hair follicle is considered a mini-organ which makes it a useful model for studying 

regenerative processes and cross-tissue interactions due to its unique populations of 

cell types and specialized pools of adult stem cells. Hair itself is a defining feature of the 

skin organ and is critical for external protection, thermoregulation, sweat and 

pheromone relays, and social interactions. In the bulge niche, hair follicle stem cells 

(HFSCs) oscillate between activation and quiescence to create the hair cycle. This 

process is cyclically and dynamically maintained throughout a coated animal's lifetime, 

requiring precise temporal and spatial control of the HFSC niche. However, a complete 

inventory of the mechanisms underlying hair follicle homeostasis remains unclear. 

Herein I will briefly explain the current dogma of signaling pathways regulating HFSCs. 

But, the novelty of my work will go on to further describe the synergistic – yet 

understudied – roles of metabolic control and canonical G-protein coupled receptors 

(GPCR) and signaling in modulating downstream genes facilitating HFSC biology. The 

data out of these projects of course will yield new avenues for the development of 
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metabolic/pharmacological compounds alike for regenerative medicine and equally 

important molecular management of adult stem cell homeostasis. 
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Chapter 1: Introduction 

 

Molecular Mechanisms Regulating Hair Follicle Stem Cell Activation  
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Skin Architecture 

 The skin is a sophisticated multilayer organ, comprised of stratified epithelium to 

provide a barrier from external damage. The skin is necessary for protection from 

external stressors, thermoregulation, mechanosensation, and important in social 

communications. In mammals, skin barrier formation occurs during embryonic 

development and is a result of a milieu of cell types interacting together to provide 

appropriate cues for the stratification and specialization[1] of skin layer types prior to 

birth. This results in the established anatomy of the skin: outer epidermis, the underlying 

dermis, and hypodermis layers. The epidermis is the outermost layer of the skin and its 

primary function is to function as a barrier from injuries/infections and to retain water. 

The epidermis is stratified, where the most basal layer contains stem cells that function 

for optimal cell turnover to maintain the skin barrier. Underneath, the dermis is primarily 

made up of fibroblasts, the cells responsible for generating various types of collagen 

and other elastic fibers for extracellular matrix function and skin elasticity. Lastly, the 

hypodermis (a.k.a subcutaneous fat later) acts as a cushion and insulation layer, 

containing fat deposits that can also be used for energy. 

 The hair follicle is an intricate structure that also helps maintain the skin barrier. 

Hair follicles are densely innervated[2], further aiding in mechanosensory function of the 

skin through piloerectile movements, especially in the context of social communication. 

Hair fibers are some of the main physiological features in people that can be fully 

manipulated without painful side effects. Thus, maintenance of the hair follicle – or lack 

thereof – extends past physiological effects, greatly impacting psychological and social 

status to underscore the need for many applications in clinical settings. 
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The Hair Cycle 

 The hair follicle has fascinated biologists for decades. At its core, it is a 

regenerating biological system[3]. The hair follicle appendage undergoes cyclical bouts 

of rest and growth across a coated organism's lifetime (Figure 1)[4-6]. Hair follicles 

contain adult stem cells that can replenish cell turnover to regulate homeostasis or 

repair upon wound healing[7]. The bulge was recognized as a "hot spot" as early as 

1876 by the researcher Unna whom theorized this area was where the hair shaft 

continued to grow; in 1903 the researcher Stöhr deemed the area the "bulge". 

 Adult stem cells located near the base of the follicle captured researchers’ 

interests because of a nucleotide analog pulse-chase experiments, where slow-cycling 

cells retained signal better, i.e. did not dilute out the nucleotide label through multiple 

mitotic cycles[8]. It is important to highlight researchers did not find these cells at the 

hair bulb, but adjacent to the arrector pili muscle in a specialized niche where these 

unique cells remained relatively undifferentiated for periods upwards of 14 months in 

murine follicles[9]. These cells also exist in a similar area in human skin[10]. 

 These unique label-retaining cells – coined hair follicle stem cells (HFSCs) – are 

multipotent epithelial stem cells that permanently reside in a region called the "bulge" 

and are responsible for producing a hair shaft de novo with every round of the hair 

cycle[8]. Even so, HFSs are more quiescent than other epidermal cells[9]; homeostasis 

in other skin tissues are maintained by resident stem cells independently of HFSC 

behaviors. However, during acute injury, HFSCs possess the remarkable ability to 

generate all skin tissue lineages for successful wound healing[7]. 
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 In the telogen (rest) phase of the hair cycle, HFSCs are dormant and no active 

hair growth is observed. Upon telogen-to-anagen transition (also known as anagen 

onset), the transit-amplifying cells of the bulge differentiate and begin to create a 

dynamic structure at the base of the hair follicle called the matrix, which will eventually 

produce a new hair shaft. In the anagen (growth) phase, bulge stem cells rapidly 

proliferate and migrate downwards to generate the outer root sheath, the adjacent inner 

root sheath, and the complete structure of the hair shaft that protrudes out to lay flat on 

the top layer of the epidermis. The catagen (regression) phase then follows with 

reduced proliferation and increased apoptosis of the base of the follicle below the bulge, 

diminishing overall hair follicle size back to that normally observed in telogen. Another 

telogen (rest) phase occurs, beginning the cycle of hair follicle stem cell quiescence and 

prospective activation once more. Although the bulge is the source of cells that 

ultimately become hair, a notable structure to highlight is the dermal papilla (DP). The 

DP is a structure mesenchymal in origin and function, where these cells help relay 

signals influencing the hair cycle to the adjacent HFSC niche[11, 12]. 

 In a normal human scalp, a great majority of follicles are in the anagen phase – 

and remain in such a state for several decades of life[13]. This significantly differs from 

the murine hair cycle, where follicles remain in anagen for approximately two weeks 

prior to catagen and telogen anew[14]. Activation of hair follicle stem cells coincides 

with other dermal events, such as subcutaneous adipose expansion, melanocyte 

proliferation, and dermal thickening[15]. There is also evidence that HFSC activation is 

heterogenous, and that hair cycling is a result of a two-step mechanism of stem cell 

activation for the hair cycle to be complete[16]. Indeed, two distinct HFSC populations 
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exist in the bulge – quiescent HFSCs and primed HFSCs; primed HFSCs are the first 

set of stem cells to activate in telogen-to-anagen transition to regeneration the lower 

half of hair follicle undergoing anagen. Quiescent HFSCs do not contribute to hair 

growth at the peak of anagen. 

 The hair follicle has long been a classic model to study crosstalk between tissue 

types, resident adult stem cell pools, and mechanisms regulating stem cell homeostasis 

– especially during regeneration (i.e. hair cycling). Delays in anagen entry are observed 

in hair loss disorders such as alopecia[17]. Many signaling pathways coalesce in the 

stem cell niche to mitigate proper hair follicle appendage form and function, and 

emerging research on hair loss disorders focus on the interplay of these cell-extrinsic 

cues. These types of questions usually rely on mouse modes for an intact HFSC niche 

platform. In addition, HFSCs can be isolated via FACS with the surface markers CD34 

and CD49f (alpha6 integrin), though additional markers can be used to further refine 

subpopulations in this pool of adult stem cells[18] to further investigate the molecular 

shifts necessary for stem cell state. Here, I report on a handful of signaling pathways 

that are implicated in maintaining proper hair cycling. 

 

Hair Loss Disorders 

 Hair loss is unfortunately a common condition that affects men and women alike. 

Hair loss is the result of an amalgam of abnormal states: hormonal imbalance, age, 

level of stress, immune condition, genetics – just to name a few. While hair loss itself is 

not physiologically painful, it can greatly affect well-being and quality of life. 
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 Telogen effluvium is a temporary phenomenon characterized by excessive 

shedding and prolonged telogen. It is usually caused by some shock to the system, 

anecdotally from extreme stress and/or trauma[19]. Androgenetic alopecia (a.k.a 

male/female pattern hair loss) is the most common type of hair loss and is caused by 

dysfunctional mesenchymal cells (specialized fibroblasts) at the base of the hair follicle, 

in the DP. Pathologically, it resembles hair follicle aging – complete with hair follicle 

miniaturization, prolonged telogen, and transdermal elimination of the entire follicular 

unit[20, 21]. The presumed mechanism of this type of hair loss due to high activity of 5α-

reductase, the enzyme responsible for converting testosterone into dihydrotestosterone 

(DHT). An accumulation of DHT acts as an allosteric inhibitor towards the androgen 

receptor, blocking any testosterone and negating HFSC activation via stunted DP 

signaling. This induces cell senescence, shrinking of the DP, prolonged telogen, 

shortening telogen, and progressive follicular atrophy to yield macroscopic hair loss[22-

24]. 

 Alopecia areata (a.k.a spot baldness)  is largely attributed to misguided 

inflammatory attacks (i.e. reactive T cell infiltration into the hair follicle) against anagen 

hair follicles, with its severity ranging from singular patches of hair loss to universal loss 

of hair across the skin (alopecia totalis). Chronic inflammation will render HFSCs 

dormant and arrested in telogen. Clinical treatments to alleviate this inhibitory 

phenotype include local/systemic steroids or immunomodulatory therapeutics to restore 

hair growth. On the other hand, resident macrophages adjacent to the hair follicle can 

provide morphogens and growth factors that stimulate cell proliferation and thus, HFSC 
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activation and anagen as a wounding response to minor skin organ trauma (hair 

plucking, scratching). 

 Anagen hair follicles are massive sources of proliferating cells, making them 

sensitive to genotoxic stressors from therapies such as chemotherapy and radiotherapy. 

Due to the nature of these treatments to target fast-growing cells (as those found in 

cancer), this same systemic treatment has many unfortunate consequences for other 

healthy populations of fast-dividing cell populations – like those found in the epidermis, 

hair follicle root, and gastrointestinal tract. Hair follicles will undergo a swift catagen 

phase to reset back to telogen. Depending on the severity of the treatment(s), the 

following anagen cycle may be able to replenish hair shafts loss in the process. 

 To date, only two FDA-approved drugs are available for treating hair loss, but 

their end results have been reported as variable and temporary. Minoxidil (brand name 

Rogaine) was the first FDA-approved medication for alleviating androgenetic alopecia. 

Developed in the 1950s, it was initially used for targeting potassium channels for the 

treatment of hypertension. In regards to hair growth, its mechanism of action is poorly 

understood – but a popular hypothesis is that the drug is able to increase blood flow that 

can go on to feed and nourish proliferating cells involved in anagen induction. There is 

also evidence that minoxidil may work by inhibiting HIF-degrading enzyme, activating 

growth factor signaling via VEGF[25]. Finasteride (brand name Propecia) and 

dutasteride appeared on the market later on, and these pharmaceuticals function to 

inhibit 5α-reductase activity and allow for reversal of DHT-affiliated balding. 
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Signaling Pathways Regulating the Hair Cycle 

 The HFSC niche is highly specialized, full of stimuli acting on the micro- or 

macro- level(s) of the environment. As such, the hair follicle is a hub of cell types that 

appropriately respond to/influence a milieu of signaling mechanisms. Appropriate 

understanding of activating or inhibitory cues is therefore key to developing and 

advancing technical and clinical methods to modulate HFSC activity and subsequent 

hair regeneration. 

 Two of the most well-known – and opposing – signaling pathways regulating 

HFSC activity are the Wnt/β-catenin/Lef1 and BMP pathways. In simple terms, activated 

Wnt signaling promotes HFSC activation while BMP promotes quiescence by 

suppressing HFSC activity. BMP signaling also works in concert with NFATc1 to 

maintain quiescence in HFSCs[26, 27]. Anagen (re)entry is achieved by antagonizing 

active BMP signaling to cease NFATc1 transcription. Interestingly, a recent report 

implicated Sirt7 can directly modulate Nfatc1 signaling in HFSCs poised for telogen-to-

anagen transition[28].  

Next, the TGF-β signaling pathway is activated early in the hair cycle[29, 30] 

which may work in concert with other activatory pathways in HFSCs to reach a 

threshold of signals necessary for reach telogen-to-anagen transition of the hair cycle. 

This signaling pathway can be broadly described as positive-feedback modulator of hair 

cycle progression towards anagen. 
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Endocrinology - Hormones and the Hair Cycle 

 Androgens very obviously regulate hair growth, most notably during puberty and 

during the onset of old age[31]. Systemic hormones are another layer of the regulatory 

networks in HFSCs. Androgens also hold the power to override many paracrine 

signaling factors that influence proper hair cycling; this is quite notable in pregnant 

mammalian females[32]. Indeed, one report has found that androgens have the power 

to inhibit Wnt signaling in HFSCs, thus promoting quiescence[33]. Many components of 

the hair follicle unit express androgen receptors (ARs), and to varying degrees of 

sensitivity across a human body. Unsurprisingly, androgen-sensitive follicles (and 

subsequently more ARs) are widely reported in beard/pubis areas as opposed to 

androgen-insensitive follicles (with less ARs) in nonbalding scalp[31]. Even localization 

of ARs in skin various with epidermal locations, perhaps influencing hair patterning that 

is closely tied to social perceptions. As previously described, androgenetic alopecia is 

characterized by hair follicle miniaturization and can be hereditary. On the other end of 

the spectrum, hyperandrogenism causes excessive male-pattern hair growth, 

regardless of sex. Of note, DP cells have androgen receptors and will be the primary 

cell type responding to such circulating extrinsic stimuli. 

 

Neurobiology: Adrenergic Signaling and the Hair Cycle 

Hair follicle innervation fluctuates with the hair cycle; the isthmus and bulge area 

of hair follicles are the most densely innervated area upon telogen-to-anagen transition 

and early anagen[2, 34, 35]. In fact, prominent expression of β2-adrenoreceptors have 

been observed adjacent to HFSCs. Furthermore, the β2-adrenoreceptor agonist 
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isoproteranol promotes hair cycle progression in mouse skin cultures. Sympathetic 

nerves allow for the mechanosensory functions of the hair follicle[36]. The influence of 

sympathetic nerve stimulation in HFSC activity is also observed at the clinical levels, 

where patients taking "beta blockers" experience temporary alopecia until cessation of 

treatment. Additionally, several cases of hypertrichosis (hair overgrowth) have been 

reported in cases of patients subjected to thoracic surgery and consequential nerve 

hyperactivity. Upon sympathetic nerve stimulation, norepinephrine is released to act on 

the HFSC niche, where it stimulates anagen progression via hedgehog signaling[37].  

In the skin, the arrector pili muscle (APM) and hair follicle form a unit. Cold 

temperature stimuli trigger contraction of the APM, physically pulling the hair follicle 

erect. Goosebumps are a direct result of such actions; APMs directly attach to and 

entangle the HFSC bulge for stimulation (Figure 3)[38]. Aside from thermoregulation, 

the reason(s) behind this phenomenon remains to be determined. Perhaps this 

sympathetic adjustment is to facilitate stem cell modulation from adrenergic inputs; APM 

synapses are indeed necessary for HFSC innervation and local norepinephrine 

delivery[37]. Furthermore, RNA-sequencing data from our collaborators at the Hsu lab 

at Harvard generously shared the information that this occurs via the adrenergic 

receptor Adrb2, highly enriched in murine HFSCs in telogen[37]. Indeed, genetic 

ablation of Adrb2 in HFSCs significantly extended telogen, implicating loss of Adrb2 with 

upregulation in quiescence mechanisms, uncovering the novelty of quiescence 

signaling pathways under neuronal control. As such, sympathetic nerves serve a dual 

mode of function in the bulge: 1) facilitate piloerecton; 2) facilitate intracellular signaling 
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cascades modulating hair growth. The idea of other signaling mechanisms acting in 

concert with this regulatory circuit remains to be seen. 

 

Metabolic Control of HFSC Function 

 One can think of cancer and stem cells as two sides of the same coin. For a 

growing number of years, the link between metabolism and cell fate has captured 

researchers’ interests for its dual ability to prospectively control stem cell behavior and 

malignant cancer transformation[39, 40]. The current thinking is that most adult tissue 

cells heavily rely on oxidative phosphorylation to meet their energetic demands, 

especially in highly proliferative cells[41]. This changes in cancer metabolism if one 

considers the “Warburg effect” where cancer relies on increased metabolism of glucose 

to lactate; a “quick and dirty” energy source. While HFSCs have been shown to be a 

cancer cell of origin for squamous cell carcinoma (SCC)[42], the bioenergetics allow for 

homeostasis and SCC transformation remain to be elucidated. In conjunction with a 

former labmate’s thesis work[43], I expanded on the basal metabolic profile of HFSCs to 

show that maintenance of a glycolytic state (Figure 2) is critical for facilitating a quick 

response to activation stimuli to generate a new hair cycle[10, 44, 45]. 

  

The G-protein-coupled Receptor Signaling Pathway 

 G-protein-coupled receptors (GPCRs) are a large diverse family of cell surface 

receptors that mediate a number of cellular actions – sometimes through second-

messenger signaling – in tissue homeostasis and cancer[46]. They are involved in a 

variety of fundamental cell processes like proliferation, migration, differentiation, and cell 
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survival (cite). Controlling GPCR signaling for homeostatic purposes or even as a 

preventative effort is an understudied avenue of anti-cancer and drug discovery work. 

Upon ligand binding, the GPCR becomes activated and undergoes a 

conformational change (heterotrimeric protein). In canonical GPCR signaling (Figure 4), 

activated Gα can then interact with the effector adenylate cyclase (AC), which results in 

effector activation and initiation of a second-messenger cascade (via cAMP). cAMP 

subsequently activates protein kinase A (PKA) which is then able to phosphorylate 

CREB, thereby facilitating its nuclear translocation and gene target expression. 

 

G-protein-Coupled Receptors and Adult Stem Cells/HFSCs 

 A subset of GPCRs, known as Leucine-rich repeating-containing G-protein-

coupled receptor (Lgr) proteins, are known to regulate stem cell identity. Lgr proteins 

were initially discovered to function extensively for embryonic development but were 

later on discovered to be prevalent in maintaining adult stem cell populations. They are 

now widely used as adult stem cells markers for various epithelial adult stem cells, such 

as ones found in intestinal crypts and hair follicle stem cells. However, since many adult 

stem cells can be the cell of origin for certain cancers, Lgr proteins can also be used to 

study aberrant signaling properties (cite). Apart from that, Lgr proteins have also been 

linked to regulating the hair cycle and HFSCs, where Lgr5 marks frequently cycling, 

long-lived HFSCs[47] and usually marks the lower portion of the bulge. A recent report 

also implicated that Spondin, the Lgr4/5/6 ligand, is also upregulated upon telogen-to-

anagen transition[48] and can be used as an exogenous factor to drive the hair 

cycle[49]. R-Spondins can also mediate Wnt signaling, but GPCR/CREB involvement in 
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this process is unknown. We would like to further study how GPCR/CREB signaling fine 

tunes the balance between self-renewal and differentiation in adult stem cells, chiefly in 

hair follicle stem cells, and if they regulate epithelial cancer development[50]. 

 Hair follicle appendages are highly proliferative tissues with the ability to 

withstand external injuries; disruption of this process – either by external injury, 

depilation, disease, medical treatments, etc. – often leads to clinical hair loss. This 

makes them an ideal model for studying extrinsic and intrinsic cues necessary for stem 

cell maintenance and overall organ homeostasis. By using the mouse follicle as a model 

system, we have been able to delve further into distinguishing the molecular networks 

fundamental for optimal homeostasis. With the eve of uncovering multiple molecular 

pathways regulating HFSC activity[51-53], there is great promise for development of 

novel therapies and improve current treatment strategies in alleviating physiological hair 

loss, and even go on to direct tissue engineering of human hair follicles. Understanding 

the precise inputs of intra- and inter-cellular signaling pathways for their adult stem cell 

populations can therefore be extended to other populations in the body. Here we 

contribute to the current dogma in the skin/hair biology field by introducing the distinct 

yet complementary roles of metabolic control and GPCR/cAMP/Creb-dependent 

signaling in HFSC activation. 
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Summary of Chapters 

 

My graduate work can be split into two main themes: studying metabolic control of 

HFSC activation and investigating the role of GPCR/cAMP/Creb signaling in HFSC 

homeostasis. Chapters 1 and 2 are publications that complement each other due to 

their central message of promoting glycolysis for HFSC activation. In Chapter 1, this is 

through making the chase that Ldh is necessary for hair cycling; deletion of this gene in 

HFSCs ablates any hair growth and the hair follicle itself persists in the telogen stage 

indefinitely. This project was underway upon my acceptance into the Lowry Lab. I 

assisted with data analysis, performed assays, and developed a method for quantifying 

macroscopic hair cycle stage; my involvement warranted authorship. Chapter 2 was my 

first independent lab project and first, first-author publication as a graduate student. 

Here, we took the idea of glycolysis and HFSC activation more downstream, looking at 

how electron transport chain (ETC) inhibition may function to ramp up glycolytic 

process, facilitating the shift to activation and hair growth. In other words, ETC inhibition 

created a backup of lactate that can be used for HFSCs for activation and subsequent 

hair cycling. Our approach here was relatively simple yet robust due to topical 

pharmacological manipulations of Complex I or Complex III. This yielded prominent hair 

growth and an accelerated hair growth in both young, telogen-stage male mice and 24-

month-old aged female mice. We believe that transient ETC inhibition is sufficient for 

HFSC activation, regardless of HFSC age. However, the effect of chronic mitochondrial 

modulation in HFSC activation is not known and warrants further study. Chapter 3 

shifted my curiosity towards a more mechanistic approach in HFSC homeostasis. There 

is extensive data on classic developmental signaling pathways in the regulation of adult 
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stem cells like HFSCs, but an absolute dearth when the idea of GPCR signaling is 

brought up in such a context. This struck us as odd since GPCRs are one of the largest 

classes of receptors in cell biology and of great interest for novel drug discovery. A few 

papers were able to set the stage that GPCR signaling may regulate adult stem cells, 

especially in the context where abrogation of GPCR signaling in epidermal stem cells 

led to basal cell carcinogenesis[50]. With this in mind, we sought to test if canonical 

GCPR/cAMP/Creb drives hair follicle cycling at various points of the signaling cascade. 

We are happy to report we may have identified upstream and downstream components 

in this circuit that award HFSC activation and have recently submitted a manuscript to 

the Journal of Investigative Biology to share our findings. 
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Figures 

 

 
Adapted from Cotsarelis, 2006 

 

Figure 1. The Hair Cycle. While the interfollicular epidermis self-renews and maintains 

the outermost epidermal layers, hair follicle stem cells (HFSCs) in a region termed the 

"bulge", drive the hair cycle. The hair follicle appendage undergoes three phases: 

growth (anagen), regression (catagen), and rest (telogen) throughout a coated animals’ 

lifetime. These cyclical bouts of destruction and regeneration require precise temporal 

and spatial control of the bulge niche. 
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Adapted from Zhu and Thompson, 2019. 
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Figure 2. Glycolysis and ETC for Metabolic Control of HFSCs. Cellular metabolism 

is the crux of all biological activities. Cellular bioenergetics in adult stem cells have not 

been studied extensively, though many rely on glycolysis as opposed to oxidative 

metabolism normally powering differentiated cells. Adult stem cells require specific 

metabolic states to maintain stemness. HFSCs heavily rely on glycolysis in for 

homeostasis; HFSC activation is dictated by glycolysis. Electron transport chain (ETC) 

inhibition is another method to promote glycolysis and HFSC activation, particularly 

through Complex I and Complex III inhibition.  
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Adapted from Shwartz et al, 2020 

 

Figure 3. Adrenergic signaling relays norepinephrine to promote HFSC activation. 

The arrector pili muscle (APM) and sympathetic nerves form a niche that directly 

influences hair follicle stem cells (HFSCs) via the adrenergic receptor Adrb2. 

Sympathetic nerves form synapses at the hair follicle bulge and signal through 

norepinephrine to modulate metabolic state of HFSCs necessary for cycling between 

activation and quiescence.  
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Figure 4. The classical GPCR/cAMP/Creb-dependent intracellular signaling 

pathway in adult stem cell modulation. G-protein-coupled-receptors (GPCRs) are the 

largest family of cell surface receptors that mediate numerous intracellular signaling 

pathways important for physiological and pathological processes. In canonical GPCR 

signaling, ligand(s) bind to the extracellular receptor, where activated intracellular 

subunit Gα can then interact with the effector adenylate cyclase (AC), resulting in 

effector activation and initiation of a second-messenger cascade (via cAMP). Increased 

intracellular levels of cAMP subsequently activate protein kinase A (PKA) which is then 

able to phosphorylate CREB, thereby facilitating its nuclear translocation and gene 

target expression.  
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Lactate Dehydrogenase Activity  

Drives Hair Follicle Stem Cell Activation 
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Chapter 3 

 

Topical Inhibition of the Electron Transport Chain  

Can Stimulate the Hair Cycle 
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Chapter 4 

 

Defining the Mechanism of  

GPCR/cAMP/Creb Signaling in HFSC Activation 
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Chapter 5: Conclusions 

 

Closing Remarks:  

Finding the Root(s) of Molecular Regulation of Hair Growth 
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Future Directions 

Skin is a deceptively simple organ. The associated hair follicle will still be a 

source of mystery for many researchers to come. Despite all the established 

mechanisms of hair follicle regulation, not one signaling pathway is revered to reign 

supreme for HFSC activation/quiescence. While hair research has certainly advanced 

with uncovering pathway after pathway, the idea of a "master regulator" of hair cycling 

remains elusive. Is there really one signal to rule them all? Might it be as simple as 

raising glycolytic capacity to nourish growing hair follicle progenitors? More work is 

certainly needed to uncover the common denominator in HFSC activation. This 

information will be useful as it may extend to other adult stem cell niches. 

The source of the stimulus that shifts HFSCs from telogen to anagen is a 

controversial topic; there is evidence that signals can originate from the DP, from the 

adjacent epidermal tissue, from supportive tissues such as adipocytes, and (as of 

recently) even through sympathetic innervations, as we propose in our work[1-13]. What 

we would like to highlight is that both adrenergic signaling and metabolism intersect for 

adult stem cell maintenance in tissues and organs. To date, we are the first to report 

GPCR signaling and metabolism in hair follicle cycling. It is conceivable that 

dysregulation of these processes occurs in skin aging and aging-associated alopecia. 

As a matter of fact, studying the molecular biology of metabolism and 

GPCR/cAMP/Creb signaling in the context of aging has always captured my interest, 

but that is work for the next eager Lowry Lab member. 

One large question that has gone unanswered is if Lgr5 in HFSCs functions 

through classical GPCR signaling. Several reports show it works in concert with Wnt 
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signaling to accelerate the hair cycle[14], so it would be worthwhile to validate any 

shared target genes upon Lef and Creb transcriptional activity. 

My mechanistic work of GPCR/cAMP/Creb signaling in HFSC homeostasis also 

can be explored in the molecular development of epidermal cancers. Many adult stem 

cells provide the service of regulating homeostasis in particular organs, being able to 

cycle between quiescence and activation with the appropriate milieu of signals. 

However, this ability can also implicate them in transformation due to their highly 

proliferative capacity and relative dormancy in comparison to other cells in a tissue. Hair 

follicle stem cells are one such example – and have indeed been shown as a cancer 

cell of origin for squamous cell carcinoma (SCC) in a murine model[15, 16]. This is also 

the case with basal cell carcinoma (BCC) development and Gα overexpression or PKA 

deletion[17]. SCC is an extremely invasive, non-melanoma skin cancer with a high risk 

of metastasis; metastatic SCC usually predicts a poor prognosis. Previous work 

performed in the Lowry lab identified murine HFSCs as a cell of origin for SCC[15], in 

addition to listing the genetic hits necessary for inducing SCC. To experimentally induce 

SCC, one can introduce oncogenic stress (via active Ras signaling and p53 ablation) 

during telogen-to-anagen transition or use a two-step chemical carcinogenesis 

technique to activate HFSCs and coax tumor development. However, quiescent HFSCs 

are unable to develop into squamous cell carcinoma even in this context. Previous work 

also performed in the Lowry lab states quiescence may in fact function as a tumor 

suppressor in the face of SCC tumorigenesis[18]. It is highly possible that controlling the 

hair cycle also controls skin cancer sensitivity in respect to SCC initiation. It would also 

be interesting to test this theory with upstream approach to test if adrenergic signaling 
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functions in carcinogenesis. In fact, I am currently performing this experiment; we are 

using Adrb1,2 null mice subjected to DMBA/TPA chemical carcinogenesis protocol. We 

are also testing if deletion of one or both alleles of Adrb2 might yield protection from 

epidermal cancer(s). Results are forthcoming. 

Creb is implicated in epidermal cancers when mutated in murine skin. If a 

dominant negative or nonfunctional Creb is present in epidermal stem cells, papilloma 

and consequent SCC development is significantly reduced in spite chemical 

carcinogenesis treatment[19]. Papillomas are benign, hyperplastic growths on the skin 

that can sometimes develop into bona fide SCC. This means that Creb may function in 

the early stages of papilloma formation/SCC, thus implicating another player in SCC 

development. Notwithstanding, our lab aims to implicate canonical GPCR/Creb 

signaling as one of (perhaps, the) master regulators of hair follicle control that also has 

connections to initiating epidermal cancers. 

Advances in SCC treatment will therefore highly benefit from elucidating the cell 

biology and molecular processes that transform homeostatic activities into malignant 

disorders. The extensive characterization of GPCR/Creb signaling in hair follicle cycling 

will ultimately yield translational impacts such as discovering novel methods to not only 

regulate the hair cycle but to also provide a mechanism by which Creb is able to 

promote or prevent epidermal tumors. 
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