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Primary School Education May Be
Sufficient to Moderate a
Memory-Hippocampal Relationship
Elisa de Paula França Resende1,2, Howard J. Rosen2, Kevin Chiang2,
Adam M. Staffaroni2, Isabel Allen2, Lea T. Grinberg2, Karoline Carvalho Carmona1,
Henrique Cerqueira Guimarães1, Viviane Amaral Carvalho1, Maira Tonidandel Barbosa1,
Leonardo Cruz de Souza1 and Paulo Caramelli1*

1 Grupo de Pesquisa em Neurologia Cognitiva e do Comportamento, Departamento de Clínica Médica, Faculdade
de Medicina da Universidade Federal de Minas Gerais, Belo Horizonte, Brazil, 2 Memory and Aging Center, Department
of Neurology, University of California, San Francisco, San Francisco, CA, United States

According to the cognitive reserve theory, intellectual stimuli acquired during life can
prevent against developing cognitive impairment. The underlying cognitive reserve
mechanisms were underexplored in low-educated individuals. Because episodic
memory impairment due to hippocampal dysfunction is a key feature of Alzheimer’s
dementia (AD), we sought to look at a possible cognitive reserve mechanism by
determining whether few years of education moderated the relationship between the
hippocampal volumes and the episodic-memory scores. The sample was composed
by 183 older adults, 40.1% male, with the median age of 78[76,82] years and the
median years of education of 4[2,10] who had undergone an episodic-memory test
and a 3-Tesla MRI scan to access the hippocampal volumes. Overall, 112 were
cognitively healthy, 26 had cognitive impairment-no dementia (CIND) and 45 had
dementia. We used multiple linear regression to assess whether the interaction between
years of education and each hippocampal volume significantly predicted the episodic-
memory scores’ variance, controlling for cognitive diagnosis and nuisance variables. The
interaction term with the left hippocampus (ß = 0.2, p = 0.043, CI = 1.0, 1.4), but not
with the right (ß = 0.1, p = 0.218, CI = 0.9, 1.2) significantly predicted the variation on
memory scores. The mechanism by which the left hippocampus seems to play a more
important role on memory processing in more educated individuals needs to be further
investigated and might be associated with a better use of mnemonic strategies or higher
hippocampal connectivity. Because the sample’s median years of education was four,
which corresponds to primary school, we may infer that this level might be sufficient to
contribute for building cognitive reserve.

Keywords: education, cognitive reserve, aging, episodic memory, hippocampus, neuroimaging

INTRODUCTION

Preventive interventions are becoming relevant as useful strategies to contain the rising dementia
rates, given the constant failures of disease-modifying trials targeting Alzheimer’s dementia (AD).
Preventive interventions should target specific mechanisms and prioritize modifying known risk
factors like low education, that accounts for 19% of the AD’s crude population attributable risk
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(Norton et al., 2014). To develop strategies that will harness
education as a preventative tool, we need to better understand
the protective mechanisms of education. Cognitive reserve, a
framework created to study those mechanisms (Stern, 2016), has
the educational attainment as one of its main components. Some
proposed underlying mechanisms are the development of better
cognitive abilities (Nitrini et al., 2005; Opdebeeck et al., 2016;
Stern, 2016) and a lesser cognitive impairment than expected
due to cerebrovascular lesions (Farfel et al., 2013; Vaque-Alcazar
et al., 2016), hippocampal atrophy (Murray et al., 2011) and
amyloid pathology (Roe et al., 2008; Wirth et al., 2014) by more
educated individuals. Other mechanisms are related to building
brain reserve, supported by studies showing that the higher
the education the larger the brain volumes, more connectivity
between brain regions, the lower rate of hippocampal atrophy
(Arenaza-Urquijo et al., 2013; Persson et al., 2016) and the more
efficient the brain activation during memory tests (Springer et al.,
2005; Bartrés-Faz et al., 2009).

However, most studies investigating the mechanisms of
education as a cognitive reserve component have been conducted
in high-income countries. Nevertheless, more than 60% of people
with dementia live in low -and middle-income countries where
22–88% of the older adults are illiterate (UNESCO, 2016).
Therefore, unveiling mechanisms of cognitive reserve in low-
educated individuals can inform about the contribution of even
few years for building reserve.

Considering that the hippocampi are key structures for
episodic memory processing (Tulving, 2002; Sarazin et al.,
2010) and that hippocampal dysfunction is a hallmark of AD
(Dubois et al., 2010), we sought to look whether the years
of formal education would moderate the relationship between
hippocampal volumes and episodic-memory performance in a
sample of older adults with a wide range of educational levels,
from illiterate to college. We hypothesized that an increase in the
number of years of education would lead to a stronger association
between the hippocampal volumes and the episodic memory
scores, suggesting a potential mechanism of cognitive reserve in
the context of low educational attainment.

MATERIALS AND METHODS

Participants
The participants (n = 183) came from two studies conducted
in the Southeast region of Brazil, one from a tertiary memory
clinic (n = 47) and other from the community (n = 136) (see
Supplementary Data for details about the community-dwelling
participants). There was not a minimum of years of education to
be included in the study.

All participants were examined by a team of experienced
board-certified neurologists, geriatricians, and one psychiatrist
and they were divided into three cognitive groups: cognitively-
healthy, cognitive impairment-no dementia (CIND) and
dementia. The cognitively-healthy participants were functionally
independent and scored within expected by age and education
in the Brief Cognitive Battery (BCB) (Nitrini et al., 2004). The
participants in the dementia group were functionally dependent

and met the DSM-5 diagnostic criteria for dementia or major
neurocognitive disorder (APA, 2013). The participants in the
CIND group were functionally independent and performed
lower than expected in the BCB test, therefore they all had
objective cognitive impairment, most of them in the memory
domain. Functional independence was defined as a score less
than five in the Functional Activities Questionnaire (Pfeffer et al.,
1982).

The Ethics Committee of the Federal University of Minas
Gerais approved both studies and all participants, or their legally
authorized representatives provided written informed consent,
according to the principles of the Helsinki declaration.

Cognitive Evaluation
All participants underwent the Mini-Mental State Examination
(MMSE) (Folstein et al., 1975; Brucki et al., 2003) and the BCB.
The BCB is a visual-verbal episodic memory test that does not
suffer the influence of the educational level (Nitrini et al., 2004).
We used the free delayed-recall scores as surrogates of episodic
memory because of their ability to discriminate patients with
AD from CIND and cognitively-healthy (Nitrini et al., 2004;
Yassuda et al., 2017). Details about the BCB test are found in
Supplementary Data.

Neuroimaging
All participants’ scans were acquired in the same 3-Tesla Philips
scanner. The 3D-T1 images were acquired in a sagittal plane
(acquisition parameters in Supplementary Data) and were
preprocessed in SPM-12, segmented into gray, white matter
and cerebrospinal fluid, warped in the study-created template
and normalized to the Montreal Neurologic Institute space.
Bilateral brain regions important for memory processing and
often affected by Alzheimer’s disease (Karow et al., 2010) namely
the hippocampi, the inferior parietal and supramarginal gyri,
the posterior cingulate, the precuneus, the middle temporal,
the inferior temporal, the entorhinal, the parahippocampal, the
fusiform, and the middle frontal cortical regions were extracted
automatically using the Neuromorphometric atlas (Desikan et al.,
2006).

White-matter lesions volumes were automatically segmented
and quantified using the Lesion Segmentation Tool version
1.2.2 in SPM8 (Schmidt et al., 2012; Birdsill et al., 2014) based
on the fluid-attenuated inversion recovery images (acquisition
parameters in Supplementary Data).

Statistical Analyses
Between-cognitive groups differences in demographics and
clinical characteristics, that had non-normal distribution per
Shapiro-Wilk, were compared using Kruskal-Wallis. Differences
in the proportions of males were calculated with Chi-square.
Differences in the hippocampal volumes adjusted for total
intracranial volume (TIV), that had normal distribution per
Shapiro-Wilk, were calculated using one-way ANOVA.

The associations between hippocampal volumes and episodic
memory were calculated using univariate linear regression
considering the episodic-memory scores as the outcome and each
hippocampal volume (right and left) adjusting for TIV as separate
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predictors. Multiple linear regression models were adjusted for
age, years of education, gender, the cognitive diagnosis, the
MMSE, the BCB’s learning phase scores, the sum of the other
brain regions extracted through the Neuromorphometric Atlas
and the volume of white matter lesions.

The moderator effect of years of education was tested
by adding the interaction term (years of education × each
hippocampal volume) as separate predictors in the multiple linear
regression models.

The level of significance was considered as p < 0.05 in two-
tailed tests. The analyses were conducted in the software Rstudio,
Version 1.1.414–©2009–2018.

RESULTS

Of the 183 participants, 40.1% (n = 75) were male, the
median age was 78[76, 82] years old and the median years of
education was 4[2, 10]. The years of education ranged from 0
to 20 years. Overall, 112 were cognitively healthy, 26 had CIND
and 45 had dementia. The hippocampal volumes followed a
continuum across the three cognitive groups: larger hippocampi
in cognitively-healthy participants (Left hippocampus =
1.5 ± 0.1 cm3, Right hippocampus = 1.6 ± 0.1 cm3) followed
by participants with CIND (Left hippocampus = 1.4 ± 0.1 cm3,
Right hippocampus = 1.5 ± 0.1 cm3) followed by
participants with dementia, who had the smaller hippocampi
(Left hippocampus = 1.3 ± 0.1 cm3, Right
hippocampus = 1.4 ± 0.1 cm3; Table 1).

There was a positive and significant association between each
hippocampal volume and the episodic-memory scores. The left
hippocampus predicted 27.3% of the scores’ variance (ß = 5.5,
p < 0.001, CI = 61.6, 893.1) and the right hippocampus predicted
18.5% (ß = 4.1, p < 0.001, CI = 17.3, 239.0; Supplementary
Table 1). In the adjusted models, in which 72.9% of the episodic-
memory scores’ variance was explained by the model that
included the left hippocampus and 72.5% were explained by the
model that included the right hippocampus, the hippocampal
volumes alone were no longer significant predictors (ß = 1.0,

p = 0.111, CI = 0.8, 9.6 for the left and ß = −0.1, p = 0.827, CI = 0.3,
2.7 for the right; Supplementary Table 2).

In the models that included the interaction terms, the
term that included the left hippocampus was a significant
predictor of the episodic-memory scores’ variation (ß = 0.2,
p = 0.043, CI = 1.0, 1.4), but the term that included the right
hippocampus was not significant (ß = 0.1, p = 0.218, CI = 0.9, 1.2;
Supplementary Table 3). To better visualize the moderator effect,
we plotted in a graph (Figure 1) the hippocampal volumes in
the X-axis and the episodic-memory scores in the Y-axis, adding
one line that fitted the association between these two variables
in participants who had less than four years of education and
other line that fitted the association amongst participants who
had 4 years or more. The fitted lines were calculated using the
Spearman correlation test.

DISCUSSION

In a sample of older adults with a median of 4 years of
formal education, which is the equivalent of primary school,
we found that the longer the participants stayed in school, the
stronger the association between the left hippocampal volume
and the episodic-memory scores suggesting a potential cognitive
reserve mechanism in this context. Because of this positive
association, we speculate that the mechanism underlying reserve,
in this case, is related to brain plasticity, denoting an increase
in hippocampal involvement in memory processing in more
educated individuals. Intellectual stimuli acquired in school
might have allowed synapses and connections to develop, leading
to higher hippocampal efficiency. This theory is supported by
the fact that more educated individuals make better use of
mnemonic strategies (Saczynski et al., 2007), which are thought
to rely upon hippocampal functioning (Maguire et al., 2003) and
to underlie more efficient memory processing (Bottiroli et al.,
2008). Although these are tempting explanations, they carry a
cause-effect association that our cross-sectional study was not
designed to answer. A bidirectional relationship, as proposed in a
previous study (Wenger and Lövdén, 2016), can also be driving

TABLE 1 | Demographics, clinical characteristics and hippocampal volumes by cognitive diagnosis.

Total n = 183 Cognitively healthy (n = 112) CIND (n = 26) Dementia (n = 45) p-value

Sex male (%) 43 (38.4) 10 (38.5) 22 (48.9) 0.463

Age (years)‡§ 78.0 [76.0, 81.2] 80.0 [78.2, 83.7] 77.0 [72.0, 82.0] 0.004

Education (years) †‡§ 4.0 [3.0, 8.2] 2.0 [0.0, 4.0] 8.0 [3.0, 14.0] <0.001

MMSE†‡ 26.5 [24.0, 28.0] 21.0 [17.0, 24.5] 24.0 [20.0, 26.0] <0.001

BCB learning†‡§ 23.0 [20.0, 25.0] 17.5 [15.0, 21.5] 17.0 [15.0, 20.0] <0.001

BCB delayed recall†‡§ 8.0 [7.0, 9.0] 6.0 [5.0, 7.0] 4.0 [3.0, 5.0] <0.001

Right hippocampus†‡ 1.6 (0.1) 1.5 (0.2) 1.4 (0.2) <0.001

Left hippocampus†‡ 1.5 (0.1) 1.4 (0.2) 1.3 (0.1) <0.001

Volume of white matter lesions 5029.9 [1297.1, 11885.8] 6165.3 [2447.7, 20117.6] 1671.8 [277.9, 5489.1] <0.001

Age, education, the Mini-Mental State Examination (MMSE), the Brief Cognitive Battery (BCB) learning, delayed recall scores and the volume of white matter lesions are
depicted in median [Interquartile intervals] and the between-group differences were calculated using Kruskal-Wallis. The left and right hippocampal volumes are depicted
in mean (standard deviation) and the between-group differences were calculated using one-way ANOVA. The hippocampi volumes are corrected for the total intracranial
volume and are shown in cm3. CIND, Cognitive impairment-no dementia. †Cognitively healthy compared with CIND, ‡Cognitively healthy compared with Dementia, §

CIND compared with dementia.
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FIGURE 1 | Visualization of the interaction between years of education and hippocampal volumes explaining the variation on episodic memory scores. The whole
sample was split into those with less than four (red line) and those with four or more (green line) years of education to better visualize the moderator effect of
education on the memory-hippocampal relationship. The fitted lines were calculated using the Spearman correlation test. In the multiple regression models controlling
for age, years of education, gender, the cognitive diagnosis, the Mini-Mental State examination, the learning phase of the memory test, the sum of other brain
regions important for memory processing and the volume of white matter lesions, the interaction term was significant for the left, but not for the right hippocampus.

our finding: In one direction, hippocampal efficiency predicts
learning ability and lead to further achievement in intellectual life
and in the other, cognitive stimulation result in a more efficient
hippocampal functioning.

In our study, we found the moderator effect of education on
the memory-hippocampal relationship to be significant only on
the left side. One possible explanation is that the intellectual
stimuli acquired in school is strongly related to writing and
reading, cognitive abilities that are more left lateralized (Dehaene
et al., 2010; Dehaene et al., 2015). Even mental arithmetic,
an activity that is extensively trained in school and classically
related to the right hippocampus (Supekar et al., 2013), has
also been associated with increased connectivity in the left
hippocampus (Klein et al., 2018). Therefore, it seems that the
left hippocampus might be more stimulated in school-related
activities. However, this conclusion will be possible to draw
only in a study in which the school-related activities are better
controlled and homogenous. For instance, training in a foreign
language, that supposedly would be associated with left brain
changes, has been associated with an increase in the right
hippocampal volume in one study (Bellander et al., 2016) and an
increase in both hippocampi in another (Martensson et al., 2012),
reflecting the complexity of lateralization in learning language
abilities.

Our finding can also be interpreted as counterintuitive because
if an individual relies more on the hippocampus to process
memory, once it is affected by a neurodegenerative disease,
there is not much left as a reserve. In fact, contrary to our
findings, a previous study showed that the higher the baseline
intelligence measured at 20 years-old, the weaker the association

between hippocampal volumes and episodic-memory scores in
older adults (Vuoksimaa et al., 2013) suggesting that individuals
with more cognitive reserve depend less on the hippocampus,
which can be an advantage considering that this region is
amongst the first to be affected by AD. However, while in our
study low education was considered as less than 4 years, the
above-mentioned study considered low education as less than
12 years. We propose that different mechanisms might explain
the relationship between hippocampal volume and memory
processing at different levels of education. At very low levels
(e.g., less than 4 years), the hippocampal involvement in memory
is independent of formal education and may be more related
to inherited abilities (Van Petten, 2004). At intermediate levels,
(e.g., 4–8 years), education and other cognitive stimuli can play
a significant role in strengthening the hippocampus-memory
relationship, which is supported by studies associating cognitive
training with increasing in hippocampal volume (Draganski et al.,
2006; Taubert et al., 2012). After high-school, there may be less
of a relationship between additional improvement in memory
abilities and hippocampal efficiency. At this point, either other
brain regions may become more important in better memory
processing (Wenger and Lövdén, 2016) or there may be a
threshold of knowledge (e.g., mnemonic strategies) that improves
hippocampal efficiency and little is added to the relationship
with further education, so significant improvement cannot be
observed. Indeed, a previous study showed that the relationship
between cognitive performance and brain structure was more
influenced by education in the less educated group (mean 7
years of education) than in the more educated (mean 13 years)
(Mungas et al., 2009). Because of limitations in our sample size,
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we could not test this proposition that we hope to test it in future
research.

Including participants with dementia and a high burden
of white-matter lesions could have resulted in greater noise,
reducing our ability to investigate the hippocampus-memory
relationship, and may be considered a limitation of our
study. However, we controlled for the cognitive diagnosis
and the volume of white matter lesions in the regression
model; therefore, our findings can be considered independent
from these effects. Another limitation of our study is that
we did not account for other possible cognitive reserve
contributors such as occupational attainment and intellectual
engagement in leisure activities. However, because our final
models explained more than 70% of the variation on the
episodic-memory scores, adding those other cognitive reserve
components would be unlikely to significantly change our results.
Unfortunately, an important limitation of our study was that
we did not have information about the Intelligence Quotient
(IQ) and the socioeconomic status of all the participants.
People with lower educational levels probably had lower IQ
and came from a lower socioeconomic background which is
associated with worse nutrition and lack of access to adequate
health care, which can also influence brain health. Indeed,
it is difficult to disentangle the role of each component
of cognitive reserve on shaping the relationship between a
brain structure and a brain function. Although each aspect
might play an independent and additive role, we believe
that years of education is a reasonable proxy that reflect
the overall consequences of a brain that was not adequately
stimulated during childhood. Finally, another limitation of
our study is that we did not perform a deep evaluation
of the executive functioning of all our participants. It is
known that executive functioning plays an important role
on episodic memory processing through connections between
the hippocampus and prefrontal regions (Buckner, 2004;
Metzler-Baddeley et al., 2011). Therefore, in our study, we
cannot disentangle the executive functioning component of the
relationship between hippocampal size and episodic memory
performance.

Our findings shed light on a potential cognitive reserve
mechanism in the context of low education. Considering that
the hippocampi are thought to preserve their plasticity even
at later ages (Walhovd et al., 2016), developing preventive
strategies focused on improving the educational level by few
years may prevent the episodic memory impairment caused
by AD in some cases, which is particularly important for
underserved populations who have a low educational attainment
and are facing increasing rates of dementia (Ferri and Jacob,
2017).
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