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Rethinking non-inferiority: a practical
trial design for optimising treatment
duration

Matteo Quartagno1,2 , A Sarah Walker1, James R Carpenter1,2,
Patrick PJ Phillips1 and Mahesh KB Parmar1

Abstract
Background: Trials to identify the minimal effective treatment duration are needed in different therapeutic areas,
including bacterial infections, tuberculosis and hepatitis C. However, standard non-inferiority designs have several limita-
tions, including arbitrariness of non-inferiority margins, choice of research arms and very large sample sizes.
Methods: We recast the problem of finding an appropriate non-inferior treatment duration in terms of modelling the
entire duration–response curve within a pre-specified range. We propose a multi-arm randomised trial design, allocating
patients to different treatment durations. We use fractional polynomials and spline-based methods to flexibly model the
duration–response curve. We call this a ‘Durations design’. We compare different methods in terms of a scaled version
of the area between true and estimated prediction curves. We evaluate sensitivity to key design parameters, including
sample size, number and position of arms.
Results: A total sample size of ~ 500 patients divided into a moderate number of equidistant arms (5–7) is sufficient to
estimate the duration–response curve within a 5% error margin in 95% of the simulations. Fractional polynomials pro-
vide similar or better results than spline-based methods in most scenarios.
Conclusion: Our proposed practical randomised trial ‘Durations design’ shows promising performance in the estima-
tion of the duration–response curve; subject to a pending careful investigation of its inferential properties, it provides a
potential alternative to standard non-inferiority designs, avoiding many of their limitations, and yet being fairly robust to
different possible duration–response curves. The trial outcome is the whole duration–response curve, which may be
used by clinicians and policymakers to make informed decisions, facilitating a move away from a forced binary hypothesis
testing paradigm.
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Introduction

While much early-phase drug development focusses on
identifying the most appropriate dose, for many condi-
tions, less emphasis is placed on identifying the most
appropriate treatment duration. Consequently, dura-
tion is often based as much on precedent as evidence. A
motivating example is bacterial infections, where
concerns about under-treatment and low costs have his-
torically led to long antibiotic courses. However, wide-
spread antibiotic overuse over the past decades, for
example, for non-bacterial infections or for longer than
necessary to cure an infection, is now considered the
main driver for increasing antimicrobial resistance.1,2

How to design trials to optimise treatment duration
(which will often take the form of finding the shortest
effective treatment duration) is, however, unclear.

The most widely used design is a non-inferiority
trial;3,4 two key design choices are the new duration of
therapy and the non-inferiority margin, that is, the
maximum difference in efficacy of the new versus stan-
dard treatment duration that investigators will tolerate.
If the whole confidence interval (CI) for the difference
in treatment efficacy lies below this margin, non-
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inferiority of the shorter duration is demonstrated.
However, non-inferiority trials have been often criti-
cised;5 key limitations are as follows:

� The non-inferiority margin is somewhat arbitrary,
typically being a multiple of 5% on the absolute
difference scale. European Medicines Agency gui-
dance6 recommends that the non-inferiority margin
for antibiotic trials should be decided so that equiv-
alent efficacy versus placebo can be excluded, for
example, if cure rates are 80% with control and
20% without antibiotics, then the non-inferiority
margin should ensure that the intervention has
� 20% cure rate. This is rarely helpful, given low
cure rates for serious infections without antibiotics
and high cure rates with antibiotics (also see Food
and Drug Administration guidance7). Furthermore,
at the design stage, there is often relatively little a
priori information on the expected control event
rate8 and variation even between 80% and 90%
can substantially impact the sample size required to
demonstrate non-inferiority on an absolute scale.

� Whether the CI should be 95% (two-sided alpha =
0.05, one-sided alpha = 0.025) or 90% (two-sided
alpha = 0.10, one-sided alpha = 0.05) is still
debated.

� Consequently, sample sizes for non-inferiority trials
with reasonably small margins (5%) are usually
very large, and they are often unsuccessful.9

� The shorter durations to be tested have to be chosen
in advance; again, limited prior knowledge makes
this choice difficult. A bad choice inevitably leads
to failure of the trial or an unnecessarily long dura-
tion being adopted in clinical practice. Comparing
multiple durations increases the chance of selecting
sensible durations to test but requires even bigger
sample sizes with the traditional design.

� There is no consensus for best analysis methods for
non-inferiority trials; both intention-to-treat and
per-protocol approach can lead to unreliable results.
International recommendations differ;5 at best, lead-
ing to challenges in interpretation and, at worst, to
manipulation towards the most favourable results.

An alternative approach to non-inferiority trials is
therefore attractive but relatively little work has been
done in this area. A recent proposal is the Desirability
of Outcome Ranking/Response Adjusted for Duration
of Antibiotic Risk (DOOR/RADAR) trial design.10

RADAR first categorises patients using a composite
clinical outcome (based on benefits and harms) and
then successively ranks them with respect to a DOOR,
assigning higher ranks to patients with better compo-
site outcomes and shorter antibiotic durations. Finally,
the probability that a randomly selected patient will
have a better DOOR if assigned to the new treatment
duration is calculated. The main criticisms of DOOR/

RADAR are that combining clinical outcome and
treatment duration into a single composite may hide
important differences in the clinical outcome alone and
intrinsically assumes (rather than estimates) that
shorter durations are beneficial, and hence, the clinical
interpretation of the treatment effect on the composite
endpoint is far from clear. Phillips et al.11 showed that
two non-inferiority trials where shorter durations had
been unequivocally demonstrated not to be non-inferior
would have instead demonstrated non-inferiority using
DOOR/RADAR.

To identify appropriate treatment durations, another
possible approach is to model the duration–response
curve, borrowing information from other durations
when calculating treatment effect at a particular dura-
tion. This was first proposed, in a limited way, by
Horsburgh et al.12 where, on the log-odds scale, the
effect of duration on response rate was assumed to be
linear (logistic regression model).

However, in general, and certainly for antibiotic
treatment duration, this strong assumption is unlikely
to hold. Therefore, here, we instead propose using flex-
ible regression modelling strategies to model the
duration–response curve, to provide robustness under
general forms of the true duration–response curve.

Proposals

Suppose a treatment T has currently recommended
duration Dmax and there is a minimum duration Dmin,
we are willing to compare with Dmax, possibly because
an even shorter duration is thought unlikely to be suffi-
ciently effective. Our goal is to model the duration–
response curve for response Y between Dmin and Dmax.
In the equations below, Y can be either a continuous
outcome or a linear predictor of a binary outcome
(representing cure). In simulations, we will assume
Dmin = 10 and Dmax= 20.

The most appropriate design depends on the true
shape of the duration–response curve; we therefore
have to ensure robustness against a series of different
scenarios. For example, allocating patients to only two
arms, at Dmax and Dmin would be a very good design if
the duration–response curve was linear, but a terrible
design for quadratic duration–response relationships.

Therefore, instead of focusing on a single duration–
response curve, we simulated data from a set of plausi-
ble duration–response curves and then evaluated sev-
eral study designs across these scenarios. In particular,
we explored the effect of changing: (1) total sample size
N, (2) number and (3) position of duration arms and (4)
the type of flexible regression model used.

However, to select the most accurate procedure for
estimating the duration–response curve, we need to
choose a measure of discrepancy between the true and
estimated curves.
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Lack of accuracy is often evaluated through either
the integral error or the expected error. For a fixed
set of chosen durations D=(D1, . . . ,Dn)= (Dmin,
. . . ,Dmax), the expected error is defined as follows

EE=
1

n

Xn

i= 1

D(f (Di), f̂ (Di)) ð1Þ

where D represents a sensible measure of distance, for
example, squared difference or absolute difference,
f (Di) represents the true response (typically probability
of cure) corresponding to treatment duration Di and
f̂ (Di) represents the corresponding estimate from the
fitted model. However, this sum is over the durations
defining the support, for example, only over the speci-
fied durations, while we would like to evaluate the fit of
the model across the whole duration range ½Dmin,Dmax�.
Therefore, we instead used a type of integral error, that
is, a measure of accuracy defined through an integral,
instead of a sum, to characterise model accuracy over
the entire domain of interest D= ½Dmin,Dmax�

IE=

ðDmax

Dmin

D(f (D), f̂ (D))dD ð2Þ

We chose the absolute difference as measure of dis-
tance D, as it has the most straightforward interpreta-
tion, namely, the area between the true and estimated
duration–response curve. Henceforth, we refer to this
measure as the Area Between Curves. However, this
has as units probability-days which is challenging to
interpret. Therefore, we divided it by (Dmax � Dmin) to
produce a measure on the probability scale, the scaled
Area Between Curves. For a particular fitted curve, this
can be interpreted as the average absolute error in the
estimation of probability of cure, with respect to a uni-
form distribution for duration on (Dmin,Dmax). In some
areas of the curve, the model may fit better, and in some
others, it may fit worse; however, this measure provides
an average across the whole duration range. We then
additionally considered the maximum absolute error in
(Dmin,Dmax) and the coverage level, defined as the pro-
portion of the true curve included within the point-wise
95% confidence region around the estimated curve.

All these measures can only be calculated when the
true underlying curve is known. They are therefore only
useful for simulations to evaluate the behaviour of our
proposed method.

To model the duration–response curve as flexibly as pos-
sible, we compared four different regression strategies:

1. Fractional polynomials (FP)13,14 of the form

Y =b1Dp1 + � � � +bM DpM ð3Þ

with powers p1, . . . , pM taken from a special set
S = f�2, � 1, � 0:5, 0, 0:5, 1, 2, 3g. Usually M\3

is sufficient for a good fit; here, we fix M = 2, pro-
ducing 36 possible combinations.

2. Linear splines, with the simplest form, under a sin-
gle knot K

Y =b0 +b1D+b2(D� K)+ ð4Þ

where (D� K)+ = 0 if D\K. We investigated lin-
ear splines with different numbers of knots; we
present results with three or five knots. Knots are
equidistant, within the duration range considered,
for example, for three knots, positioned at
K= f12:5, 15, 17:5g.

3. Linear spline with non-equidistant knots: this con-
centrates knots for the linear splines in the first half
of the duration range, where the duration–response
relationship is most likely to be non-linear. We use
three knots that we arbitrarily chose to position at
K= f11, 13, 15g.

4. Multivariate adaptive regression splines,15,16 which
builds models of the form

Y =
Xk

i= 1

biBi(D) ð5Þ

where each Bi(D) can be (1) a constant, (2) a hinge
function, that is, max (0,D� K) or max (0,K � D) or
(3) a product of two hinge functions. A forward selec-
tion step, building on a greedy algorithm, is followed
by a backward elimination step, to avoid over-fitting.
Candidate knots K are all durations observed in the
sample, that is, all selected duration arms.

We did not consider restricted cubic splines17

because preliminary work showed similar results to
piece-wise linear splines; therefore, we focussed on lin-
ear splines for simplicity. Other non-linear regression
methods include logistic or Gompertz growth models;
however, these lose flexibility.

Other key design parameters are as follows: How
many different duration arms should we allocate
patients to? How should we space arms across our
duration range? How many patients should we enrol?
We addressed these questions in an extensive simula-
tion study.

Results

The eight different scenarios considered represented a
wide range of possible duration–response relationships,
from linear to quadratic, sigmoid curves and piecewise
functions (Table 1). We simulated binary responses,
representing cure of infection, from a binomial
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Table 1. Simulation scenarios: eight different data-generating mechanisms were investigated.

Type Equation Characteristics Plot

1. Logistic growth curve Psuccess = 0:05+ 0:9
1+ exp (�2D+ 25) Increases and

asymptotes early

2. Gompertz curve A
Psuccess = 0:9 exp

(� exp (� 0:5(D� 11)))
Small curvature

3. Gompertz curve B
Psuccess = 0:9 exp

(� exp (� (D� 11)))
Larger curvature,
asymptotes more clearly

4. Gompertz curve C
Psuccess = 0:9 exp

(� 2 exp (� (D� 9)))
Asymptotes extremely early

5. Linear
duration–response
curve on log-odds scale

logit(Psuccess)= 0:847

+ 0:210(D� 10)
Situation where simple logistic
regression is appropriate

6. Quadratic
duration–response
curve, curvature . 0

Psuccess = 0:7+ 0:0015

(D� 10)2
First derivative increasing

7. Quadratic
duration–response
curve, curvature \ 0

Psuccess = 0:7� 0:0015

(D� 10)2 + 0:03(D� 10)
First derivative decreasing

8. Piece-wise linear
duration–response
curve

Psuccess =(0:5+ 0:15(D� 10))

1(D\12)+ (0:8

+ 0:05(D� 12))1(D\15)

+ (0:94+ 0:01(D� 15))1(D.15)

Different from linear spline logistic
regression, here it is linear in
the success rate, not
in the log-odds

In plots, x-axis is treatment duration, and y-axis is probability of cure.
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distribution with duration-specific event rates, with
1000 simulated trials for each combination of design
parameters.

Base-case design

We first fixed a sample size of 504 individuals rando-
mised between seven equidistant duration arms

D= f10, 11:6, 13:3, 15, 16:6, 18:3, 20g

We kept durations unrounded, simulating a situation
where an antibiotic is administered three times a day,
and therefore 11.6 means three times daily for 11 days
and then twice on the last day. Simulated data were
analysed with a FP logistic regression model, that is, on
the log-odds scale.

In all eight scenarios, the worst fit still led to a scaled
Area Between Curves below 5.3% in 95% of simula-
tions (Table 2); that is, in each scenario, 95% of the
simulated trials led to an estimated duration–response
curve whose error in the estimation of the probability
of cure was under 5.3%.

Scenarios 1, 2 and 3 had the poorest performance.
Figure 1 shows the fitted prediction curves for a ran-
dom sample of 100 simulations (red) against the true
data-generating curve (black). In Scenario 1, FP had
difficulty in capturing satisfactorily the substantial
change in curvature around days 12 and 14, tending to
underestimate curvature at these time points.

Best performances were obtained with Scenario 5,
where the true duration–response curve is linear on the
log-odds scale, which is exactly an FP model, with a sin-
gle parameter for the term with power p= 1. Similar
results were obtained for Scenario 7.

The maximum scaled Area Between Curves was
smaller than 10% in all scenarios, meaning that even
the simulation leading to the worst fitted prediction
curve led to a total bias under 10% in all scenarios.

The median of the maximum absolute error was
5.5% across all simulations, and \7% except for
Scenario 1, meaning that, irrespective of the real data-
generating mechanism, in half of the simulations even
the single design point corresponding to the worse fit
had an absolute error below 5.5%. When considering
the 95th percentile of the same measure, this was just
below 13% overall. Figure 5 (online supplementary
material) shows that durations corresponding to the
worst absolute error tended to be in the first part of the
curves, where treatment was less effective.

Mean coverage was 95% only for Scenario 5, where
the analysis model was correctly specified; however,
most scenarios had coverage greater than 80% and
Figure 6 (online supplementary material) shows that
even the 100 simulations leading to the worst coverages
approximated the true duration–response curve quite
well for a wide variety of scenarios, similar to the ran-
domly selected predictions in Figure 1.

Next, we investigated the sensitivity of these results
to the choice of design parameters and analysis
methods.

Different flexible regression strategies

We re-analysed the same simulated data in Table 2
using either FP, linear spline with 3 or 5 equidistant
knots, linear spline with knots concentrated in the first
half of the curve and multivariate adaptive regression
splines. Only Scenario 5 is the true model for both data
generation and analysis.

Table 2. Scaled Area Between Curves (sABC), maxd AE(d) and coverage (%) across the eight different scenarios in the base-case
design (1000 simulations of 504 patients randomised across seven arms, using FP).

sABC maxd AE(d) Coverage (%)

Min 5th percentile Med. 95th percentile Max Med. 95th percentile Mean

Scenario 1 0.019 0.022 0.032 0.051 0.077 0.105 0.164 61.0
Scenario 2 0.005 0.006 0.024 0.053 0.082 0.047 0.128 83.4
Scenario 3 0.003 0.007 0.022 0.048 0.079 0.055 0.123 86.8
Scenario 4 0.007 0.010 0.022 0.039 0.050 0.066 0.105 79.6
Scenario 5 0.000* 0.003* 0.015* 0.030* 0.061* 0.030* 0.078* 94.7*
Scenario 6 0.011 0.012 0.022 0.044 0.066 0.051 0.100 89.5
Scenario 7 0.002 0.004 0.015 0.031 0.056 0.033 0.082 92.9
Scenario 8 0.009 0.010 0.025 0.041 0.061 0.070 0.138 72.7
Overall 0.000 0.006 0.022 0.046 0.082 0.055 0.129 82.6

Column for the 95th percentile of scaled Area Between Curves is in bold, to show how scaled Area Between Curves is smaller, or close to, 5% in all

scenarios and overall across all 8000 simulations. Asterisks next to Scenario 5 results indicate that this is the only scenario where the data-

generating mechanism is actually a particular case of fractional polynomial on the log-odds scale and therefore performs optimally. sABC is the scaled

Area Between Curves as defined in the proposals section, while maxd AE(d) indicates the maximum absolute error for a single duration

d 2 (Dmin,Dmax) and coverage (%) is defined as the percentage of the true underlying curve included within the point-wise 95% confidence region

around the estimated curve.
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For all methods, scaled areas for the fitted predic-
tion curves were fairly similar (Figure 2(a) and (b)).
The only method with slightly inferior performance
was five-knot linear spline. FP had the smallest mean-
scaled Area Between Curves across the eight scenarios,
but marginally higher variability between different sce-
narios. FP were best in terms of smallest maximum
absolute error, while splines better behaved in terms of
coverage (Figure 7, online supplementary material).

Finally, FP had an advantage in terms of monoto-
nicity, as shown in Figure 3, comparing prediction
curves for the simulated data set with the worst fit

(largest scaled Area Between Curves), across the eight
scenarios, with FP (red) or three-knot linear spline
(blue). Spline-based methods led to undulating func-
tions, particularly in Scenarios 4, 5, 6 and 8, while FP
prediction curves were smoother and, at least approx-
imately, monotonously increasing, the only exception
being the worst fit from Scenario 6. Spline-based
methods led to even worse prediction curves in other
scenarios, particularly with smaller sample sizes (e.g.
250 patients) and with poor knot positioning relative
to arms, for example, two adjacent knots with no arm
in between.

Figure 1. Prediction curves (red) of a random selection of 100 simulations against the true data-generating curve (black) for all the
eight scenarios under the base-case configuration. The base-case scenario assumes a sample size of 504 patients, randomised to
seven equidistant arms, and fits a fractional polynomial model to estimate the duration–response curve.
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Total sample size

One motivation for this study was large sample sizes
often required for non-inferiority trials. We therefore
investigated the sensitivity of simulation results to total
sample sizes varying across N =(252, 301, 350,
406, 455, 504, 602, 756, 1001) (each divisible by seven
arms).

As expected, increasing total sample size reduced the
scaled Area Between Curves (second row of Figure 2).
With N � 350, in more than half the scenarios,
the 95th percentile for scaled Area Between Curves was
under 5%, and in all scenarios for N � 750. Therefore,
above this threshold, whatever the true data-generating
curve, in at least 95% of simulated trials, we estimated
a duration–response curve whose error was lower
than 5%.

Figure 2 and Table 2 suggest that our base-case sce-
nario sample size of 504 might be a reasonable com-
promise, guaranteeing good estimation of the
duration–response curve without requiring too many
patients.

Number of duration arms

Figure 4(a) and (b) compares results from allocating the
same number of patients (;504) to 3, 5, 9 or 20 arms,
rather than the base case of 7 arms.

The three-arm design was clearly inferior and gener-
ally led to worse scaled Area Between Curves. All other
designs had similar performance, and particularly dis-
tributions from 7, 9 and 20 arms appeared virtually
identical, suggesting that, compared to a base-case of 7

Figure 2. Comparison of results of trial simulations from the eight scenarios varying either (1) the flexible regression method used
(LS3, LS5, LSNE, MARS, FP), with total sample size of 504 patients (panels (a) and (b)), or (2) the total sample size between 250 and
1000 patients, using FP (panels (c) and (d)). Patients are divided into seven equidistant duration arms. The red horizontal line
indicates 5% scaled Area Between Curves (sABC). In the left panels, we show the box plots of the whole simulation results, while in
the right panels we compare 95th percentiles from the eight scenarios. LS3-5: Linear Spline with 3–5 knots; LSNE: linear spline with
non-equidistant knots; MARS: multivariable adaptive regression splines; FP: fractional polynomials. (a) Comparison of flexible
regression methods: 8000 simulations. (b) Comparison of flexible regression methods: 95th percentiles. (c) Sensitivity to sample size:
8000 simulations. (d) Sensitivity to sample size: 95th percentiles.
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duration arms, there is little gain from adding addi-
tional arms while keeping sample size fixed.

Position of arms

Finally, we investigated the sensitivity of results to the
position, rather than the number, of duration arms, by
comparing the following:

� The standard seven equidistant arms design;
� A ‘not-equidistant’ arms design, with five arms con-

densed in the first part of the curve, that is,
A= f10, 11, 13, 15, 20g.

As for the linear spline regression model, the motiva-
tion for this choice is that the early part of the curve is
where the linearity assumption is least likely to hold.

With FP, results were similar with both designs
(Figure 4(c) and (d)). This is mainly because the eight

scenarios have at most modest departure from linearity
in the second half of the curve.

The three-knot spline regression performed particu-
larly poorly with the ‘not-equidistant’ design, highlight-
ing the issue of knot choice with spline-based methods.
If knots are chosen inappropriately, for example, two
adjacent knots with no arms in between, as here, then
results may be highly variable. While obvious in this
case, similar issues with inappropriate knot positioning
might be less trivial to identify in other situations. In
contrast, FP regression is standardised and does not
require users to make additional choices.

Extensions

Having demonstrated promising performance of our
proposed method, several issues remain. The first is
accounting for uncertainty. Point-wise confidence

Figure 3. Prediction curves leading to the largest scaled Area Between Curves for each of the eight scenarios with the base-case
design, analysing data either with three-knot linear spline (blue) or fractional polynomials (red).
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bands around the estimated curve can be calculated
from the FP regression and were used here to estimate
coverage levels. These intervals were generally quite
narrow, the mean width around the estimated cure rate
ranging between 7% and 10% in the base-case scenar-
ios. However, these do not account for model selection
uncertainty.18 Broadly, since we use the same set of
data that we want to analyse to select the final model
of interest, the usual standard error estimates from the
model tend to be too small. Therefore, a measure of
precision of our estimated duration–response curve
would require methods, such as bootstrap model aver-
aging.19–21

The second issue is how the estimated duration–
response curve might be used. Possible approaches that
decision makers could take given the estimated curve
include the following:

1. Estimating the minimum duration that achieves a
certain fixed acceptable cure rate (e.g. .80%) ana-
logous to a cost-effectiveness acceptability curve,22

together with a CI. We then would be 95% confi-
dent that the upper bound would give us a cure rate
greater or equal to 80%.

2. Alternatively, if we did not know the true control
success rate, estimating the duration leading to a

Figure 4. Comparison of results of trial simulations from the eight scenarios either varying the number of equidistant arms (panels
(a) and (b)) between 3 and 20, using fractional polynomials (FP), or using different designs, equidistant (ED) or not equidistant
(NED), comparing four different regression methods (panels (c) and (d)). The total sample size is always 504 patients. The red
horizontal line indicates 5% scaled Area Between Curves. In the left panels, we show the box plots of the whole simulation results,
while in the right panels, we compare 95th percentiles from the eight scenarios. In panel (d), there is only one point for NED-LS3,
since only in one scenario the 95th percentile for scaled Area Between Curves was smaller than 0.25. LS3: linear spline with three
knots; LSNE: linear spline with non-equidistant knots; MARS: multivariable adaptive regression splines; FP: fractional polynomials. (a)
Sensitivity to number of arms: 8000 simulations. (b) Sensitivity to number of arms: 95th percentile. (c) Sensitivity to placement of
arms: 8000 simulations. (d) Sensitivity to placement of arms: 95th percentile.
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certain acceptable loss in efficiency compared to
the maximum duration tested, for example, 10%.

3. The information gathered from the estimated curve
could also be combined with other information
about toxicity or cost in a decision analytic frame-
work. This could be particularly appealing in the
example of hepatitis C, where cost is quantifiable,
but would be more complex in the antibiotic exam-
ple, where resistance is more complex.

Discussion

We have proposed a new design for randomised trials
to find effective shorter durations of treatment, for
example, antibiotics, broadening a previous sugges-
tion.12 The underpinning concept is, instead of directly
comparing a limited and arbitrarily chosen number of
particular durations, to model the whole duration–
response curve across a pre-specified range of dura-
tions, in order to maximise the information gained
about the effect of shorter or longer regimens. The
resulting estimate of the dose–response curve could
then be used in a variety of clinically meaningful ways.

Because of lack of information on the true shape of
this duration–response curve, we used flexible model-
ling strategies, to protect against parametric model mis-
specification. We compared four different strategies,
three based on splines and one on FP, concluding that,
although spline-based methods can potentially better
estimate locally the duration associated with a particu-
lar cure rate, FP are better at providing a reasonable
curve describing the evolution of the cure rate over
treatment duration. Binder et al.23 conducted a vast
simulation study comparing FP and spline-based meth-
ods, broadly concluding that with large data sets, the
two methods lead to similar results, while in medium-
sized data sets FP outperform spline-based methods on
several criteria. They also noted that a major advantage
of FP is the simplicity of implementation in standard
software packages, compared to the absence of recom-
mendations regarding appropriate spline-based meth-
ods, matching our conclusions.

While we could have used FP with more than two
polynomials, we focussed on two to reduce the number
of parameters, having only a small number of duration
arms in our setting. Similarly, we focussed on the stan-
dard set of possible powers, but higher powers could be
considered, if thought likely to improve fit. FP and mul-
tivariate adaptive regression splines’ implementation in
standard software packages does not allow restriction
to monotonously increasing functions; since it is reason-
able to assume monotonicity of the duration–response
curve, this could be explored in future.

Regarding design parameters, a modest number of
equidistant arms, for example, 7, appeared sufficient to
give robust results, that is, the resulting prediction curve

from the fit of the model was reasonably close to the
true underlying duration–response curve and can there-
fore provide sufficient information for clinicians about
the effect of duration on treatment response. The ‘not-
equidistant’ design provided similar results with only
five arms (but the same number of patients); however,
such a design might be less robust to other shapes of
the duration–response curve, for example, if the curve
was far from linear even in the second part of the dura-
tion range investigated.

When multi-arm multi-stage designs were first
mooted, multiple arms were often raised as a theoreti-
cal barrier to recruitment, but subsequent practice has
demonstrated that, if anything, these trials are more
acceptable to patients, since they ably demonstrate
equipoise between a substantial number of treatment
options.24

One legitimate criticism of non-inferiority trials is
the arbitrary nature of the non-inferiority margin; in
our framework, since Dmax represents the currently rec-
ommended treatment duration, the only arbitrary
choice is that of the minimum duration to be consid-
ered, Dmin. This choice certainly has a much smaller
impact on the trial results than the choice of a non-
inferiority margin, but nevertheless it is still extremely
important to choose this carefully. Since we lack any
information about the true shape of the duration–
response curve below the currently recommended dura-
tion, Dmax, a multi-stage adaptive design could be used
to change the position of Dmin if results after a first
stage clearly showed this to be too long (i.e. the short-
est duration still leading to high efficacy) or too short
(i.e. duration extremely ineffective, which might be con-
sidered unethical to keep randomising patients to).

Here, we have considered models where the only
covariate was treatment duration; however, it would be
interesting to investigate the effect of incorporating
additional covariate data, such as age and sex. This
could be done as a main effect, for example, to adjust
the minimum duration needed to achieve a threshold
cure rate according to other characteristics affecting
cure; alternatively, this could be done as an interaction,
providing a different duration–response curve for speci-
fied subgroups, for example, males versus females.
Either would allow stratified or personalised medicine,
allowing clinicians to prescribe different durations
according to key patient characteristics.

The underpinning motivation for this article was a
phase IV trial design to identify minimal effective anti-
biotic treatment duration, and the design could be
applied to other similar situations. However, an evalua-
tion of the inferential properties of the methodology is
key before recommending it in these late-phase settings;
in particular, preservation of type I error rate is funda-
mental, as these are treatments that are known to be
effective, and recommending an insufficiently long
duration could potentially have serious public health
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consequences. Once this is done, examples of applica-
tions may include phase III trials in tuberculosis, where
shorter treatment durations could improve adherence
compared to standard-of-care control duration, or
phase IV trials in hepatitis C where current treatment
regimens achieve cure in .95% of patients but are
extremely costly. Similar approaches could be applied
to dose-intensity of chemotherapy regimens.

The problem addressed here has similarities with
that of finding the optimal treatment dose in early-
phase clinical trials. There is a vast literature on meth-
ods for modelling dose–response relationship to find
optimal treatment doses.25,26 However, there are
important differences making it difficult to use those
methods in our situation. The sample sizes required are
much smaller in dose–response studies because the
guiding principle is to start with a low dose and to
increase it, avoiding exposing too many patients to
excessive, and thus unsafe, doses. This is usually done
before the drug has actually been tested in phase II–III
trials. The power of these methods to identify the cor-
rect minimum effective dose is therefore often quite
low.27 With larger sample sizes, methods like the
Continual Reassessment Method become infeasible,
most of all in the example of tuberculosis where treat-
ment may last several months. Furthermore, in early-
stage trials, the focus is often on pharmacokinetics, and
the specific forms of the dose–response curves used
usually derive from the underlying pharmacokinetic
models for drug absorption into the bloodstream.

In conclusion, our proposed new paradigm for clinical
trials to optimise treatment duration has the potential to
revolutionise the design of trials where reducing treat-
ment duration is our goal, for example in the fight against
antimicrobial resistance. Our approach moves away from
multiple inefficient trials of arbitrary antibiotic durations
that may all be suboptimal. We have shown how certain
design parameters may affect the fit of a flexible regres-
sion strategy to model the duration–response curve.
Randomising approximately 500 patients between a mod-
erate number of equidistant arms (5–7) is sufficient under
a range of different possible scenarios to give a good fit
and describe the duration–response curve well. Further
work on how to use this estimated curve to draw infer-
ence, controlling power and type I error rate, will follow.
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