Dose-Related α-Difluoromethylornithine Ototoxicity

Marilyn K. Croghan, M.D., Mikel G. Aickin, Ph.D., and Frank L. Meyskens, M.D.

We assessed the ototoxicity associated with oral α-difluoromethylornithine (DFMO) administration in 38 patients with metastatic malignant melanoma. One hundred seventy-nine sequential audiograms obtained from patients treated with DFMO alone (16 patients) or in combination with α2b-interferon (42 patients) were evaluated. DFMO doses ranged from 2 to 12 g/m²/d and were given over periods of 2 to 50 weeks. Total doses ranging from 60 g/m² to 1390 g/m² were correlated with clinical effects and pure tone audiometric changes. By regression analysis cumulative DFMO dose showed a consistent and statistically significant positive relationship to hearing loss at multiple frequencies (500, 1000, 2000, 4000, and 8000 Hz). Patients with normal (threshold < 30 dB) baseline audiograms demonstrated more hearing loss than those with abnormal (threshold ≥ 30 dB) baseline audiograms at the higher frequency levels. Of the patients with normal prestudy hearing thresholds 10% or less developed a demonstrable hearing deficit at cumulative DFMO doses below 150 g/m². Conversely, up to 75% of the patients who received more than 250 g/m² developed a clinically demonstrable hearing loss. Other factors which adversely affected hearing included age, male gender, and the concomitant use of α2b-interferon. In summary, the risk of clinically significant hearing loss in patients treated with DFMO was primarily related to dose and the presence of a pre-existing hearing deficit.

Key Words: α-difluoromethylornithine—Ototoxicity.

Polyamines are organic cations which affect the regulation of cell growth, proliferation, and differentiation (1,2). DFMO, an irreversible inhibitor of ornithine decarboxylase, blocks the first step in the polyamine biosynthetic pathway and has been shown to have both in vitro (3,4,5) and in vivo (5,6,7) activity against a variety of human malignancies. DFMO is an effective treatment for all stages of African trypanosomiasis (8,9) and has also been shown to be highly active against Pneumocystis carinii pneumonia in immunosuppressed patients who have failed to respond to or are intolerant of standard therapy (10,11). In animal models DFMO is a potent antineoplastic agent used to prevent the induction of breast (12), colon (13), and skin (14) carcinomas. Clinical trials are currently evaluating the role of DFMO as a preventive anticarcinogenic agent.

Toxicities related to DFMO, administered alone or in conjunction with interferon (IFN), have been reported from several phase I-II clinical trials (5,7,15-18). Significant and sometimes dose-limiting ototoxicity has been both subjectively and objectively described (5,16-18). However, little quantitative information has been published which correlates hearing loss with administered dose of DFMO. Similarly, no information is available regarding other factors which may have influenced the onset or degree of ototoxicity. In this study, we have defined the relationship between auditory changes and cumulative DFMO dose. Other parameters which may affect hearing (such as age, gender, baseline auditory function, and concomitant administration of IFN-α2b) have also been evaluated.
PATIENTS AND METHODS

Patients with metastatic malignant melanoma entered into clinical trials of DFMO administered alone (phase I trial) or with IFN-α2b (phase I-II trials) were considered for evaluation. A signed informed consent form approved by the University of Arizona Institutional Review board was obtained from each patient prior to study entry. Only patients who had undergone pre-study audiometric testing within two weeks of study entry and had at least one repeat audiometric examination during the course of DFMO therapy were included in the study. Multiple sequential audiograms were evaluated whenever available. Hearing acuity, by pure tone testing, was recorded at 500, 1000, 2000, 4000, and 8000 Hz. Pure tone recognition at or below 30 db was considered to be within normal auditory range. Demographic information such as patient age and gender were obtained from the study entry forms.

Patients receiving DFMO alone were begun on an oral dose of 2 g/m² every eight hours and the dose was escalated at two-week intervals to 3 g/m² and then 4 g/m² as tolerated. Audiograms were routinely obtained on initiation (prior to the first dose) and completion (on the final day) of therapy. Patients receiving DFMO concomitantly with IFN-α2b were begun on an oral dose of 1.33 g/m² or 2.0 g/m² every eight hours on days 1 through 11 of each 14 day cycle. Audiograms were routinely obtained on initiation (prior to the first dose) of treatment and every 2–4 weeks thereafter. DFMO doses were decreased in patients with grade III/IV toxicity. No patient discontinued therapy because of ototoxicity alone. Patients whose disease was responding to treatment remained on DFMO despite the documented presence of hearing loss.

Multiple linear regression was used to explain hearing loss at each of the five frequency levels. Final equations were determined by a guided backward stepwise procedure in which retained variables were selected on the basis of statistical significance, multicollinearity considerations, and stability under single-case deletion (19). Evaluation of potential outliers was carried out in all cases.

RESULTS

Patient characteristics are shown in Table 1. Overall, 179 audiograms were evaluated from 58 patients; 16 patients received DFMO alone, and 42 patients received DFMO plus IFN-α2b. Twenty-three patients (40%) had only one audiogram after the initiation of therapy. The remaining 25 patients (60%) had two to seven sequential audiograms while receiving oral DFMO. Doses ranged from 2 to 12 g/m²/day and were given over periods of 2 to 50 weeks.

The regression equations obtained at frequencies of 500, 1000, 2000, and 8000 Hz are shown in Table 2. Factors considered for entry into regression equations as explanatory variables were: cumulative DFMO dose (log scale), age, gender, concomitant use of IFN-α2b, and the presence of initial hearing loss. All two-factor interactions which included cumulative DFMO dose were considered.

Cumulative DFMO dose showed a consistent and statistically significant positive relationship to hearing loss at all five frequency levels (p = .0002–.0387). Age was consistently and positively related to hearing loss (p = .0108–.0524) except at a frequency of 2000 Hz. Figure 1 shows the decibels of hearing loss with a 95% upper confidence limit for patients receiving 150 g/m² or 250 g/m² cumulative dose of DFMO. A subtle (1–2 dB) but consistent increase in the degree of hearing loss was observed with increasing age. Patients with a normal baseline audiogram in the 4000 and 8000 Hz ranges had significantly more hearing loss than patients with abnormal baseline audiograms (p ≤ .001). An insufficient number of patients presented with initial hearing loss at 500 and 1000 Hz to evaluate the effect of this parameter at these lower frequency levels. Concomitant administration of IFN-α2b increased hearing loss at 1000 and 2000 Hz (p = .0176, .0265), but did not significantly alter loss at 500, 4000, or 8000 Hz.

Although gender alone influenced ototoxicity (males suffered more hearing loss than females), the effect was complicated by an interaction with cumulative DFMO doses at the lower three frequencies. As graphically illustrated in Fig. 1, these findings demonstrate that the relationship between hearing loss and cumulative DFMO dose differed between the two sexes. The change in hearing occurred more rapidly for males than females, particularly at cumulative doses below 400 g/m².

Patients with normal pre-study hearing thresholds were evaluated to better assess the clinical significance of observed hearing loss (Fig. 2). Once again, the positive correlation between cumulative DFMO dose and ototoxicity was noted. Ten percent or less of the patients who received cumulative doses below 150 g/m²
TABLE 2. Regression coefficients (and p-values) of variables explaining hearing loss at five frequencies

<table>
<thead>
<tr>
<th>Variable</th>
<th>500</th>
<th>1000</th>
<th>2000</th>
<th>4000</th>
<th>8000</th>
</tr>
</thead>
<tbody>
<tr>
<td>LogDose*</td>
<td>5.95</td>
<td>5.61</td>
<td>5.03</td>
<td>4.65</td>
<td>4.61</td>
</tr>
<tr>
<td></td>
<td>(.0002)</td>
<td>(.0006)</td>
<td>(.0047)</td>
<td>(.0006)</td>
<td>(.0387)</td>
</tr>
<tr>
<td>Age</td>
<td>.1533</td>
<td>.1358</td>
<td></td>
<td>.1755</td>
<td>.2111</td>
</tr>
<tr>
<td></td>
<td>(.0108)</td>
<td>(.0225)</td>
<td></td>
<td>(.0267)</td>
<td>(.0524)</td>
</tr>
<tr>
<td>AgeLogDose</td>
<td>-23.41</td>
<td>-25.72</td>
<td>-28.86</td>
<td>6.11</td>
<td>-32.12</td>
</tr>
<tr>
<td></td>
<td>(.0482)</td>
<td>(.0290)</td>
<td>(.0281)</td>
<td>(.0111)</td>
<td>(.0824)</td>
</tr>
<tr>
<td>Sex*</td>
<td>4.94</td>
<td>6.26</td>
<td>6.27</td>
<td></td>
<td>6.35</td>
</tr>
<tr>
<td></td>
<td>(.0252)</td>
<td>(.0045)</td>
<td>(.0108)</td>
<td></td>
<td>(.0658)</td>
</tr>
<tr>
<td>IFN*</td>
<td>4.26</td>
<td>5.63</td>
<td>5.52</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(.0730)</td>
<td>(.0176)</td>
<td>(.0265)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IFN*LogDose</td>
<td></td>
<td></td>
<td></td>
<td>-13.32</td>
<td>-12.06</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(.0000)</td>
<td>(.0012)</td>
</tr>
<tr>
<td>Init*</td>
<td>-33.11</td>
<td>-33.79</td>
<td>-23.10</td>
<td>-21.59</td>
<td>-18.85</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(.0000)</td>
<td>(.0012)</td>
</tr>
<tr>
<td>Res St Dev*</td>
<td>9.15</td>
<td>9.08</td>
<td>10.19</td>
<td>11.20</td>
<td>12.53</td>
</tr>
<tr>
<td>R-squared</td>
<td>.379</td>
<td>.457</td>
<td>.331</td>
<td>.228</td>
<td>.261</td>
</tr>
<tr>
<td>N^a</td>
<td>121</td>
<td>121</td>
<td>121</td>
<td>121</td>
<td>95</td>
</tr>
</tbody>
</table>

* Natural log of cumulative dose of DFMO.

* Blank spaces indicate zero regression coefficients. Variables with all zero coefficients are shown to emphasize that they were used in determining the final regression equation.

* 0 = female, 1 = male.

* 0 = no interferon, 1 = interferon.

* 0 = no initial hearing loss, 1 = initial hearing loss.

* Insufficient number of cases of hearing loss to permit estimation.

* Residual standard deviation.

* Sample sizes varied according to pattern of missing values.

developed a demonstrable hearing deficit. In contrast, hearing losses were observed in up to 75% of patients who received cumulative doses above 250 g/m² (Fig. 3). Documented hearing abnormalities occurred in the frequency range of normal voice tones (500–2000 Hz) as well as at higher frequencies (4000–8000 Hz).

DISCUSSION

In this study we have shown that DFMO ototoxicity is directly correlated with the cumulative dose received. Other factors which influenced toxicity included age,
FIG. 3. Development of hearing loss in patients with normal baseline hearing thresholds. Cumulative DFMO doses of <150 g/m², 150 <250 g/m², and 250 <500 g/m² are represented by the white, black, and striped bar graphs, respectively.

gender, concomitant use of IFN-α2b, and the presence of an initial hearing loss. Decrements in hearing were recorded at cumulative doses as low as 60 g/m². The objective presence of ototoxicity did not always result in clinically detectable hearing loss. A hearing threshold below 30 dB is considered to be within the normal range. In our experience, a hearing threshold of ≥30 dB correlated well with a subjective complaint of hearing loss. Using this criteria, significant hearing loss was detected in less than 10% of patients receiving a cumulative dose below 150 g/m². Conversely, up to 75% of the patients who received more than 250 g/m² developed a clinically demonstrable hearing loss. Hearing deficits occurred in both the lower (500–2000 Hz) and higher (4000–8000 Hz) frequency ranges. When individual patients were examined with sequential audiograms, documented hearing loss was found to stabilize or progressively worsen, with continued DFMO administration. In this study, patients with stable or progressive disease and a good performance status at the completion of DFMO administration were generally entered into other therapeutic trials, while those with a poor or rapidly declining performance status were given supportive care only. Off-treatment audiograms were therefore either not obtained or were difficult to interpret due to the confounding presence of other experimental agents. Overall, an insufficient number of audiograms was available to objectively evaluate post-treatment hearing recovery, but we (5,18) and others (16) have previously reported rapid improvement in hearing with discontinuation of DFMO.

One potential mechanism for the development of ototoxicity may be the induction of polyamine deple-

REFERENCES
