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BRIEF REPORT

Electroencephalography Might Improve Diagnosis 
of Acute Stroke and Large Vessel Occlusion
Fareshte Erani, BA; Nadezhda Zolotova, BS; Benjamin Vanderschelden, BA; Nima Khoshab , MS; Hagop Sarian, BS;  
Laila Nazarzai, BS; Jennifer Wu, MD, PhD; Bharath Chakravarthy, MD; Wirachin Hoonpongsimanont, MD;  
Wengui Yu , MD, PhD; Babak Shahbaba , PhD; Ramesh Srinivasan, PhD; Steven C. Cramer , MD

BACKGROUND AND PURPOSE: Clinical methods have incomplete diagnostic value for early diagnosis of acute stroke and large 
vessel occlusion (LVO). Electroencephalography is rapidly sensitive to brain ischemia. This study examined the diagnostic 
utility of electroencephalography for acute stroke/transient ischemic attack (TIA) and for LVO.

METHODS: Patients (n=100) with suspected acute stroke in an emergency department underwent clinical exam then 
electroencephalography using a dry-electrode system. Four models classified patients, first as acute stroke/TIA or not, then 
as acute stroke with LVO or not: (1) clinical data, (2) electroencephalography data, (3) clinical+electroencephalography data 
using logistic regression, and (4) clinical+electroencephalography data using a deep learning neural network. Each model 
used a training set of 60 randomly selected patients, then was validated in an independent cohort of 40 new patients.

RESULTS: Of 100 patients, 63 had a stroke (43 ischemic/7 hemorrhagic) or TIA (13). For classifying patients as stroke/
TIA or not, the clinical data model had area under the curve=62.3, whereas clinical+electroencephalography using deep 
learning neural network model had area under the curve=87.8. Results were comparable for classifying patients as stroke 
with LVO or not.

CONCLUSIONS: Adding electroencephalography data to clinical measures improves diagnosis of acute stroke/TIA and of acute 
stroke with LVO. Rapid acquisition of dry-lead electroencephalography is feasible in the emergency department and merits 
prehospital evaluation.

Key Words: brain ◼ deep learning ◼ early diagnosis ◼ electroencephalography ◼ transient ischemic attack

Even small improvements in time to stroke diagno-
sis and treatment can significantly improve patient 
outcomes. Improving tools for early identification of 

stroke and large vessel occlusion (LVO) in the prehospi-
tal setting is a key strategy.

Clinical assessments for prehospital diagnosis of 
stroke or LVO have good diagnostic value but have been 
criticized for having inconsistent/incomplete diagnostic 
performance or being too elaborate for some emergency 
medical service providers.1 Given these limitations, nonin-
vasive brain monitoring devices, including electroenceph-
alography, are under study to identify stroke and LVO. 

Electroencephalography immediately detects changes in 
brain function following onset of brain ischemia, before 
cell death2—an advantage for early prehospital stroke 
diagnosis–and has long-established sensitivity to early 
stroke in humans. To date, electroencephalography has 
had limited clinical application due to the technical exper-
tise and long times needed to apply gel electrodes. How-
ever, advances in electroencephalography technology, 
including rapidly applied dry-electrodes,3 suggest feasi-
bility of prehospital electroencephalography recordings.

The long-term goal is to improve prehospital stroke 
diagnosis using electroencephalography. Towards this 
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goal, we examined the utility of electroencephalography 
to diagnose (1) acute stroke/transient ischemic attack 
(TIA) and (2) acute stroke with LVO in 100 patients with 
suspected acute stroke in the emergency department. 
We hypothesized that clinical and electroencephalogra-
phy measures each perform well, and that combining the 
two increases diagnostic accuracy.

METHODS
Additional details appear in the Data Supplement. The data that 
support the findings of this study are available from the cor-
responding author upon reasonable request.

Patients
Patients with suspected/definite acute stroke were recruited 
from the emergency department of a single comprehensive 
stroke center. Ethics approval was obtained from the local 
Institutional Review Board and written informed consent was 
obtained from all enrollees or surrogates. Entry criteria targeted 
suspected acute stroke.

Electroencephalography Acquisition
The Quick-20 (Cognionics, Inc, San Diego, CA; Figure [A]) elec-
troencephalography system3 utilizes dry-electrodes (no gel/
skin preparation), enabling rapid application and data collec-
tion in an acute care setting. Each dry-electrode is supported 
by a local active amplifier plus Faraday cage, enabling high-
quality signal acquisition, despite higher electrode impedances 
encountered with dry skin contact. Three-minutes of eyes-
open, resting-state brain activity was recorded at bedside.

Electroencephalography Processing
Electroencephalography data were exported to MATLAB for 
offline analysis, including filtering and removal of noise. Each 
lead was rereferenced, creating a bipolar montage of 27 bipolar 
lead-pairs (Figure [A] and [B]). Spectral power was examined 
within each of the 27 bipolar lead-pairs, across 5 frequency 
bands: delta (1–3 Hz), theta (4–6 Hz), alpha (7–12 Hz), low 
beta (13–19 Hz), and high beta (20–30 Hz), using odd num-
bers (Fp1-T5) for ipsilesional, and even numbers (Fp2-T6) for 
contralesional, leads.

Statistical Analyses
Receiver operating characteristic curve analysis was used to 
test and validate predictive performance of clinical and elec-
troencephalography variables, with higher area under the 
curve (AUC) values indicating better prediction. All models 
used a 60–40 split; training on the same randomly selected 

60 patients and testing on an independent validation cohort 
of the same 40 new patients.

Given the high dimensionality of the electroencephalogra-
phy data, Lasso regression modeling was used to select a sub-
set of electroencephalography variables.

Four predictor models were evaluated and validated, using 
acute stroke/TIA (or not) as the dependent measure: (1) clini-
cal data only, using 4 measures that would be available to an 
Emergency Medical Technician (age, sex, time from last-known-
well to electroencephalography, and Rapid Arterial Occlusion 
Evaluation score4), using logistic regression modeling; (2) 
electroencephalography data only, using the Lasso-selected 4 
electroencephalography lead-band pairs (F8-T4 alpha, C3-F3 
low beta, Cz-C3 high beta, and C4-F4 high beta band), using 
logistic regression modeling; (3) combined clinical and electro-
encephalography data using logistic regression, using the most 
significant clinical predictor from model (1) and Rapid Arterial 
Occlusion Evaluation score, plus the 4 Lasso-selected electro-
encephalography lead-band pairs; and (4) combined clinical 
and electroencephalography data using a deep learning neural 
network model, using the same six variables as model (3).

The same 4 models were again examined, instead using 
acute stroke with LVO (or not) as the dependent measure. 
Clinical variables were as above; electroencephalography vari-
ables were the 2 identified by Lasso procedure for LVO (C3-F3 
theta band, and T3-F7 alpha band).

RESULTS
Subjects
Among 100 enrollees (Table 1), discharge diagno-
sis was acute stroke/TIA in 63 (43 ischemic stroke, 7 
intracerebral hemorrhage, and 13 TIA). Infarcts were 
deep+cortical (n=31), deep only (n=17), and posterior 
fossa (n=2). Of the 43 with ischemic stroke, 7 had an 
LVO (all M1 occlusion), and 14 received IV tPA (intra-
venous tissue-type plasminogen activator; median 8.1 
hours before electroencephalography).

Median time from last-known-well to electroenceph-
alography was 9.4 hours; from emergency department 
arrival to electroencephalography was 3.7 hours. Median 
time from start of electroencephalography preparation to 
electroencephalography recording (including preparing 
the electroencephalography system, placing electroen-
cephalography leads, making any lead adjustments, and 
starting electroencephalography) was 9 minutes, and 
with practice, as brief as 36 seconds; this time shortened 
during the study (r=−0.57, P<0.0001; Data Supplement).

Prediction of Acute Stroke/TIA or Not
1. Clinical variables only: The regression model had 

AUC=62.3 on the validation group (SE, 5). At 
specificity of 80%, sensitivity was 40%.

2. Electroencephalography variables only: The model 
had AUC=78.2 on the validation group (SE, 4). At 
a specificity of 80%, sensitivity was 65%.

Nonstandard Abbreviation and Acronyms

LVO large vessel occlusion
TIA transient ischemic attack
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Figure. Electroencephalography improves diagnosis of acute stroke/transient ischemic attack (TIA) and of acute stroke with 
large vessel occlusion (LVO).
A, The Quick-20 dry-lead Cognionics headset and the electroencephalography (EEG) montage having 17 leads and 27 bipolar lead-pairs (blue 
lines). B, EEG from a 69-y-old male 8.5 h after stroke onset with right thalamocapsular infarct and National Institutes of Health Stroke Scale=9. 
C, Receiver operating characteristic curves for each model. The model combining clinical and EEG data using deep learning showed best 
diagnostic performance for both acute stroke/TIA (left; area under the curve [AUC]=87.8) and for acute stroke with LVO (right; AUC=86.4).
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3. Combined clinical and electroencephalography using 
logistic regression: The strongest predictor from model 
(1), plus Rapid Arterial Occlusion Evaluation score, 
was advanced into a new model that also included the 
4 electroencephalography variables used in model 
(2). The model (see the Data Supplement) had AUC= 
80.3 on the validation set (SE, 6). At a specificity of 
80%, sensitivity was 70% (Table 2, Figure [C]).

4. Combined clinical and electroencephalography 
using deep learning: The 6 variables used in model 
(3) were again evaluated but using a deep learning 
neural network model, which yielded AUC=87.8 
in the validation group (SE, 5). At a specificity of 
80%, sensitivity was 80%.

All 3 models with electroencephalography were sig-
nificantly (P=0.016–0.004) better predictors than the 
clinical-only model.

Electroencephalography Prediction of Acute 
Stroke With LVO or Not
The same 4 models were evaluated but with acute 
stroke with LVO (or not) as the dependent measure. 
Findings were overall similar, with the model combining 
clinical and electroencephalography using deep learn-
ing again yielding the highest AUC (Table 2, Figure [C]; 
Data Supplement).

DISCUSSION
Earlier treatment maximizes benefits of reperfusion. Clin-
ical scales identify treatment-eligible patients but have 
incomplete diagnostic precision. Electroencephalogra-
phy, which immediately detects cerebral ischemia, could 
help but its clinical use has been limited due to lengthy 

Table 1. Subject Characteristics and Procedures Timeline

All Patients Acute Stroke and TIA Acute Stroke With LVO

Number 100 63 7

Demographics/medical history

 Age, y 64.5±15.8 64.8±16.7 68.9±12.54

 Sex 53M/47F 38M/25F 4M/3F

Race

 White 52 34 4 

 Hispanic 30 18 2 

 Asian 14 9 0 

 Black 4 2 1

Clinical Scales

 NIHSS score* 4.4±5.6 5.0±6.3 12.4±7.7

 RACE score* 1.6±2.3 1.8±2.4 5.6±3.6

Timeline relative to ED presentation and EEG acquisition

 LKW-ED arrival, h:m 3:22 [00:11–20:25] 3:50 [00:27–20:25] 3:22 [00:45–12:58]

 LKW-EEG acquisition, h:m 9:27 [00:55–22:50] 11:49 [00:55–22:42] 14:15 [3:30–19:05]

 ED admit-EEG, h:m 3:47 [00:36–19:28] 4:02 [00:45–19:21] 4:33 [1:38–18:20]

 Time from consent-start EEG recording 00:09 [00:00:36–23:00] 00:09 [00:00:36–23:00] 00:10 [00:02–00:23]

Brain injury

 Infarct volume, cc n/a 19.4±41† 100.3±69.0

 Lesion side n/a 23 L/27R† 2 L/5R

Data are mean±SD or median [range]. ED indicates emergency department; EEG, electroencephalography; F, female; LKW, last-known-well; 
LVO, large vessel occlusion; M, male; NIHSS, National Institutes of Health Stroke Scale; RACE, Rapid Arterial Occlusion Evaluation; and TIA, 
transient ischemic attack.

*NIHSS scores ranged from 0 to 27; RACE scores, from 0 to 9.
†Injury data provided for the 50 patients with stroke. Infarct volume range=0–206.7 cc.

Table 2. Comparison of the 4 Diagnostic Models

Model

Identifying Acute Stroke/TIA Identifying Acute Stroke With LVO

AUC
Sensitivity at 80% 

Specificity AUC
Sensitivity at 80% 

Specificity

Clinical 62.3 40% 80.4 65%

EEG 78.2 65% 68.9 41%

Clinical and EEG (logistic regression) 80.3 70% 77.8 57%

Clinical and EEG (deep learning) 87.8 79% 86.4 76%

AUC indicates area under the curve; EEG, electroencephalography; LVO, large vessel occlusion; and TIA, transient ischemic attack.
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times required for application of traditional gel elec-
trodes. Advances in electroencephalography technology, 
including rapidly applied dry-electrode systems,3 enable 
quick electroencephalography acquisition. The current 
study found that, in emergency department patients with 
suspected acute stroke 12 to 14 hours post-onset, elec-
troencephalography was superior to clinical measures 
for diagnosing acute stroke/TIA or LVO and that combin-
ing electroencephalography with clinical data gives best 
diagnostic precision. Prehospital studies, in patients at 
earlier stages of stroke, are warranted.

Results indicate that electroencephalography signals 
contain diagnostic information beyond what is provided by 
clinical assessments and support electroencephalography 
measurement to help diagnose acute stroke. For diagnos-
ing acute stroke/TIA, clinical+electroencephalography 
data had AUC=87.8, whereas clinical data alone had 
AUC=62.3. Clinical+electroencephalography data also 
performed best for diagnosing LVO (AUC=86.4). AUC 
>0.8 is considered excellent discrimination.5 Advances 
in electroencephalography technology are overcoming 
hurdles to its implementation. The current study used a 
small, portable, wireless, battery-powered, dry-electrode 
system that has excellent sensitivity compared to gel-
lead systems.3

The main finding is that electroencephalography 
and clinical data combined are better than either alone 
for identifying acute stroke/TIA and LVO. As a proof-
of-concept study, this is a first step towards demon-
strating the feasibility of electroencephalography in 
the prehospital setting. Future studies should examine 
the diagnostic performance of electroencephalogra-
phy when administered by EMS providers. Additionally, 
although artifact detection was performed manually in 
the current study and prohibitive of prehospital appli-
cations, electroencephalography processing, and anal-
ysis must, and can be, automated. The long-term vision 
is to obtain prehospital electroencephalography data 
that inform patient selection for reperfusion therapy, 
emulating prehospital EKG for diagnosing acute myo-
cardial infarction, where emergency medical techni-
cians rapidly apply leads and obtain a computerized 
readout, minimally affecting on-scene time.
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Supplemental Methods 

Patients: Study personnel were notified via pager about arrival of patients with suspected acute stroke. The first 75 
patients were enrolled consecutively. For the final 25 patients, enrollment focused on patients with a higher suspicion of 
stroke to ensure that at least half of enrollees had a stroke. 

Entry criteria were suspected stroke admitted to the ED of UC Irvine Medical Center, symptom onset ≤24 hours prior, 
age ≥18 years, and English- or Spanish-speaking. Exclusion criteria were presence of major neurological/psychiatric 
diagnosis, and contraindication to EEG. 

EEG was initiated in the ED except for four patients in whom consent was obtained in the ED and then EEG was 
immediately collected in the ICU due to clinical mandate. Final diagnosis was based on the judgment of the clinical stroke 
service in the discharge summary. 

Data acquisition: The current study employed a small, portable, wireless, battery powered, dry-electrode system (the 
Quick-20 EEG system) previously found to have excellent sensitivity compared to gel-lead systems and demonstrated 
utility in clinical and research studies3, 6. The Quick-20 EEG system employed in the current study was specially 
customized for use in the ER, using 17 leads of the 10-20 system, an approach selected in part because our prior EEG 
study of patients examined early (mean of 6.6 hours) after stroke onset found 20 leads had equivalent diagnostic 
sensitivity as 256 leads3, 6. Compared to the standard system, two electrodes (O1 and O2) were removed and replaced with 
foam pads to enable data collection from a supine patient. The resulting 17-channel array consisted of Fp1, Fp2, F7, F3, 
Fz, F8, F4, C3, Cz, C4, P7, P3, Pz, P8, P4, T4, and T3. The reference and ground electrodes were placed adjacent to Fp1 
and Fp2, respectively, since these forehead locations maximize the probability of good electrode contact and enable 
reliable re-montaging for analysis. 

Each patient’s head was measured to identify the site of Cz (intersection of nasion-inion line with L/R preauricular 
line), then the Quick-20 was placed with the Cz lead overlying this site. During recording, subjects were instructed to 
direct their gaze, if capable, towards the center of a fixation-cross displayed at the end of their gurney. To decrease 
artifacts in the EEG signal, patients were instructed to minimize all movements during EEG recording, as possible. ED 
physicians approved each enrollment as well as indicated the time when EEG could be acquired in order to avoid 
interruptions in acute care delivery. 

EEG data were collected at the standard rate of 500 samples/sec corresponding to an EEG bandwidth of DC-131 Hz 
and transmitted wirelessly to a computer running Cognionics Data Acquisition software. The EEG amplifier was 
configured at the standard gain of 3 for a total input range of +/- 833 mV for immunity against electrode offsets and rapid 
recovery to movement and contact-loss artifacts. The Quick-20 includes a real-time impedance check to assist with 
electrode preparation. For this study, the threshold for contact was set to ≤200 kΩ. We noted the time to initiate EEG 
recording once the decision to record EEG was made, which included headset preparation and placement, initialization 
and setting up recording software, as well as lead adjustments if necessary. EEG acquisition took a median of 13 minutes 
in total but improved with increasing familiarity and averaging less than 10 minutes for the second half of subjects, 
requiring as little as 36 seconds (Figure I). 

Of the 105 subjects enrolled, 95 of the EEG recordings obtained by a single examiner (FE). The remainder were 
obtained by undergraduate students who were on call to the ED. Limited expertise was needed to acquire EEG data: all 
individuals who recorded EEG participated in a single 2-hour training session prior to the start of the study. Additionally, 



the Cognionics data acquisition software provides an intuitive user interface, and the real-time and continuous readout of 
electrode impedance helped with subject set-up and enabled quality control. 

EEG pre-processing: EEG data were exported to MATLAB 2015a 7.8.0 (MathWorks, Inc., Natick, MA) for offline 
analysis, including filtering and removal of noise. Initial processing steps included applying a second-order 50 Hz low-
pass Butterworth filter and 0.2 Hz high-pass Butterworth filter. Continuous EEG data were then binned into 180 
sequential, non-overlapping, one-second epochs. Visual inspection was used to identify and remove channels as well as 
epochs with artifact such as noise from overt movement or speaking, and high-voltage low-frequency signals due to eye 
movement or blinking. 

During offline analysis, each of the 17 leads was re-referenced to a bipolar montage consisting of 27 bipolar lead 
pairs. Each bipolar pair was computed by subtracting the EEG signals recorded from the reference electrode adjacent to 
FP1. 

Clinical variables: Four clinical variables that have established relationships with stroke severity and are easily 
measured in the prehospital setting were retrieved from the patient’s record: age, sex, time from last known well (LKW) 
to EEG, and Rapid Arterial Occlusion Evaluation (RACE) 3, 6 score.  

RACE score was selected to be a clinical variable because, although no single prehospital LVO scale is optimal7, 
RACE performs well in identifying prehospital patients with stroke and LVO4, 8, 9 and can be retrospectively calculated 
from the NIHSS score using specific guidelines3, 6. Other patient data, including NIHSS scores in the ED, were available 
from the initial neurological consultation; for patients with intracerebral hemorrhage or TIA, a stroke neurologist (SCC) 
retrospectively estimated values from chart data3, 6.  

Infarct volume: For subjects discharged with a final diagnosis of ischemic stroke or intracerebral hemorrhage, 
images were retrieved from the electronic medical record (EMR) for analysis. Infarct volume was measured on the first 
MRI or CT scan (ordered as part of standard of care) that demonstrated the index stroke. Infarcts were outlined using 
MRIcron (http://www.mccauslandcenter.sc.edu/mricro/mricron) by hand using techniques for which reliability and 
validity have been described previously3, 6. 

EEG variables: Spectral power was examined within each of the 27 bipolar lead pairs. First, each lead pair’s time 
series was submitted to a discrete fast Fourier transform. Power for each bipolar lead pair was then calculated within a 1-
30 Hz frequency band, in 1-Hz bins, and then expressed as relative power. Power was then calculated across five 
frequency bands: delta (1-3 Hz), theta (4-6 Hz), alpha (7-12 Hz), low beta (13-19 Hz), and high beta (20-30 Hz). 
Ipsilesional leads were designated as odd numbers (Fp1-T5), while contralesional leads were designated as even numbers. 

Statistical analyses: Given the high-dimensionality of the EEG data, we used Lasso10, a penalized (regularized) 
regression model, to select a subset of EEG variables in order to develop predictive models based on joint consideration of 
all variables simultaneously, while reducing the risk of overfitting, which can be associated with models that perform well 
on one dataset but do not generalize well to new datasets. Additionally, unlike linear regression, Lasso minimizes the 
influence of outliers. The Lasso procedure requires a tuning parameter (penalty), lambda, which was chosen in a standard 
way through (five-fold) cross validation. Lasso was implemented using the glmnet package in R, then applied to all 135 
lead-band pairs (i.e., each of the 27 bipolar pair leads in each of the five frequency bands), in the same randomly selected 
60 subjects.  

Of these 135 lead-band pairs, Lasso identified four as important predictor variables for the stroke prediction model 
(F8-T4 in the alpha band, C3-F3 in the low beta band, Cz-C3 in the high beta band, and C4-F4 in the high beta band) and 
two as important predictor variables for the stroke with LVO prediction model (C3-F3 in the theta band and T3-F7 in the 
alpha band). Note that these Lasso-identified EEG variables strongly suggest that the relevant features are EEG, rather 
than artifact, in origin for two reasons. First, dry electrode systems typically are susceptible to motion, sweat, and 
electrode pop artifacts, which primarily appear in the delta band and were not identified by Lasso. Second, EEG is 



sensitive to EMG artifacts, which are high frequency, but occur primarily in the frontal and temporal locations and were 
also not identified by Lasso. 

Models for identifying acute stroke/TIA were directly compared based on their AUC values. To this end, we use 10-
fold cross-validation to estimate SE of AUC for each model, and use paired t-tests to evaluate the statistical significance 
of differences among AUC’s across different models; this was not done for LVO given the number of subjects. 

Four predictor models were evaluated, validated, and compared, looking at presence of acute stroke/TIA (or not) as 
the dependent measure: [1] clinical data only, which examined the 4 clinical predictor measures of interest (age, sex, time 
from LKW to EEG, and RACE score) using logistic regression modeling; [2] EEG data only, which examined the Lasso-
selected 4 EEG lead-band pairs (F8-T4 alpha, C3-F3 low beta, Cz-C3 high beta, and C4-F4 high beta band) using logistic 
regression modeling; [3] combined clinical and EEG data using logistic regression, which used 2 clinical variables (the 
most significant clinical predictor from model 1 plus RACE score given its key significance in the context of prehospital 
diagnosis4, 8, 9 plus the 4 Lasso-selected EEG lead-band pairs, using logistic regression modeling; and [4] combined 
clinical and EEG data using a deep learning neural network model. The deep learning neural network model used 3 
hidden layers each with 200 neurons and the ReLU (Rectified Linear Unit) activation function. We used 0.5 dropout ratio 
and L1 penalty to improve generalization. The deep learning model used the same 2 clinical variables and 4 EEG lead-
band pairs as in model [3] and was implemented using the h2o package in R. 

The same four models ([1] clinical only, [2] EEG only, [3] combined clinical and EEG using logistic regression, and 
[4] combined clinical and EEG using deep learning) were again examined, this time looking at presence of acute stroke 
with LVO (or not) as the dependent measure. The same clinical variables were included, as above, and for EEG, the two 
variables identified by the Lasso procedure (C3-F3 in the theta band and T3-F7 in the alpha band) were included. 

 

 
Supplemental Results 

Subject Characteristics: Of 105 enrollees, five were excluded because <40 epochs were free of EEG artifact, leaving 
100 patients with suspected acute stroke among whom 79±36.7 (mean±SD) of the 180 EEG epochs were retained for 
subsequent analyses. 

Of the 50 subjects with acute stroke, 47 had a radiologically confirmed ischemic infarct or hemorrhage. The 3 without 
radiologically confirmed stroke had each received IV tPA upon ED arrival, and the final discharge diagnosis from the 
acute stroke service for each was acute ischemic stroke. 

For the 37 patients who initially were suspected of acute stroke but had a discharge diagnosis other than acute 
stroke/TIA, final diagnosis was infection in 8, encephalopathy in 7, migraine in 6, somatoform disorder in 3, Bell’s palsy 
in 2, dizziness in 2, syncope in 2, general weakness in 2, drug intoxication in 1, focal seizure in 1, sickle cell crisis in 1, 
transient global amnesia in 1, and peripheral neuropathy in 1. 

 
EEG prediction of acute stroke/TIA or not 

[1] Clinical variables only: Using the four clinical variables (age, sex, time from LKW to EEG, and RACE score), 
the regression model had an AUC of 62.3 on the validation group (SE=5). At a specificity of 80%, the sensitivity was 
40%. The strongest predictor was the variable “time from LKW to EEG," with longer LKW times associated with a 
diagnosis of stroke/TIA. 

[2] EEG variables only: Of the 27 bipolar lead pairs and five frequency bands, the four lead pairs identified by the 
Lasso procedure (F8-T4 in alpha band, C3-F3 in low beta band, Cz-C3 in high beta band, and C4-F4 in high beta band) in 



the training group (n=60) were entered into a regression model to predict acute stroke/TIA. The model had an AUC of 
78.2 on the validation group (SE=4). At a specificity of 80%, the sensitivity was 65%. The strongest predictor was power 
in the high beta band in C4-F4, where lower power was associated with a diagnosis of stroke/TIA. 

[3] Combined clinical and EEG using logistic regression: The most significant variable from model [1] (LKW to 
EEG acquisition), along with RACE score, was advanced into a new model that also included the four EEG variables used 
in model [2] in order to train a new logistic regression model in the 60-subject training group. In the 40-subject validation 
group, this combined clinical and EEG model had an AUC of 80.3 on the validation set (SE=6, full model presented in 
Table I). At a specificity of 80%, the sensitivity was 70%. 

[4] Combined clinical and EEG using deep learning: The same six variables used in model [3] were again 
evaluated but using a deep learning neural network model, which yielded an AUC of 87.8 in the validation group (SE=5). 
At a specificity of 80%, the sensitivity was 80%. 

The three models with EEG had higher prediction value compared to the model with clinical variables only (model [2] 
vs. model [1], p=.005; model [3] vs. model [1], p=.016; model [4] vs. model [1], p=.004). Differences between the models 
that included EEG were not significant. 

 
EEG prediction of acute stroke with LVO or not 

The same four models were evaluated but with acute stroke with LVO (or not) as the dependent measure. Findings 
were overall similar, with the model combining clinical and EEG using deep learning again yielding the highest AUC. 

[1] Clinical variables only: Using the same four clinical variables as in the model [1] used to predict acute 
stroke/TIA or not, the regression model showed an AUC of 80.4 on the validation group. At a specificity of 80%, the 
sensitivity was 65%. The strongest predictor was “RACE score”, with higher score associated with a diagnosis of LVO. 

[2] EEG variables only: Of the 27 bipolar lead pairs and five frequency bands, the two lead pairs identified by the 
Lasso procedure (C3-F3 in theta band and T3-F7 in the alpha band) in the training group (n=60) were entered into a 
regression model to predict LVO. The model had an AUC of 68.9 on the validation group. At a specificity of 80%, the 
sensitivity was 41%. The strongest predictor was power in the alpha band in T3-F7, where lower power was associated 
with a diagnosis of LVO. 

[3] Combined clinical and EEG using logistic regression: The most significant variable from the above clinical 
model (RACE score), along with time from LKW to EEG, was advanced into a new model that also included the two 
EEG variables used in the above model [2] in order to train a new logistic regression model in the 60-subject training 
group. In the 40-subject validation group, this combined clinical and EEG model had an AUC of 77.8 on the validation set 
(full model presented in Table I). At a specificity of 80%, the sensitivity was 57%. 

[4] Combined clinical and EEG using deep learning: The same four variables used in the above model [3] were 
again evaluated but using a deep learning neural network model, which yielded an AUC of 86.4 on the validation set. At a 
specificity of 80%, the sensitivity was 76%. 

 

 

 

 

 



Table I. Combined Clinical and EEG Logistic Regression Models 

 

 Estimate Std. Error z value Pr(>|z|) 

Predict Stroke/TIA     

Intercept 1.10 0.92 1.19 0.23 

RACE score 0.068 0.12 0.56 0.58 

Time from LKW to EEG 0.07 0.04 1.71 0.087 

Alpha power F8-T4 -12.47 8.78 -1.42 0.16 

Low beta power C3-F3 28.71 10.54 2.72 0.006 

High beta power Cz-C3 -21.48 9.41 -2.28 0.02 

High beta power C4-F4 -11.70 3.76 -3.11 0.0019 

     

Predict Acute Stroke with LVO     

Intercept -3.99 2.36 -1.69 .0905 

RACE score 0.46 0.16 2.90 0.0037 

Time from LKW to EEG 0.046 0.077 0.59 .55 

Theta power C3-F3 7.36 9.70 0.76 0.45 

Alpha power T3-F7 -19.1 21.6 -0.88 0.38 

 

Table I presents the results of model [3] for prediction of Stroke/TIA and for prediction of Acute Stroke with LVO 

 

 

 



 

Figure I: The time to initiate EEG acquisition (prepare the EEG system, place EEG leads, make any lead 
adjustments, and start EEG recording) decreased during the study (r=-0.57, p<0.0001). 
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