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Abstract 

This paper analyzes the performance of an ATM switching node considering cell 
arrival correlation. An ATM switching node is modeled as a discrete-time finite-buffer 
queue. Cell arrivals are assumed to follow a semi-Markovian process, where the number 
of cell arrivals in a slot depends on the states of the underlying ( M-state) Markov chain 
in the current and previous slots. This paper presents analy£es for various characteristics 
of the cell loss, as well as the distribution function of the cell output process from an 
ATM switching node. Obtained results include the cell loss probability, the consecutive 
loss probability, the distribution of loss period lengths, the joint distribution of successive 
cell interdeparture times, and the distributions of busy and idle periods. Through the 
numerical results, it is shown that both the correlation and the variation of cell arrivals 
significantly affect the cell loss and the output process characteristics. 
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1 Introduction 

ATM (Asynchronous Transfer Mode) is considered to be the most promising transfer technol
ogy for implementing B-ISDN (1), (5). In ATM, information flow is organized into fixed-size 
cells which are transmitted through slotted channels. Cell switching in ATM is performed in 
hardware switching fabrics to match the speed of the channel. 

ATM networks are expected to support diverse applications such as voice, video and data 
transfer. It is known that many of the traffic sources in ATM (such as a video source) exhibit 
a fair amount of correlation [15]. Correlations in cell arrivals are caused by, for instance, 
segmentation of large data frames or video signals into (small size) cells. It has been shown 
that neglecting correlations in cell arrivals may result in dramatic underestimation of various 
performance measures such as the loss probability and the transmission delay [9]. Thus, it is 
important to obtain performance considering the correlations in the ATM traffic. 

This paper analyzes the performance of an ATM switching node considering the correlation 
in cell arrivals. In this paper, since ATM is a slot-based transfer technique and its cell size is 
constant, an ATM switching node is modeled as a discrete-time finite-buffer queueing system 
with a deterministic service time distribution. Cell arrivals to an ATM switching node are 
modeled as semi-Markovian correlated arrivals. Namely, the number of cell arrivals in a slot 
depends on the state of the underlying ( M-state) Markov chain in the current slot and in the 
pervious slot. This model for the cell arrivals is fairly general and well describes the correlations 
found in many ATM traffic sources (such as video sources). Various characteristics of the cell 
loss at an ATM switching node are obtained, and the distribution function for the cell output 
process is derived. 

Many researchers have studied discrete-time queueing systems with correlated arrivals (e.g., 
[7), [10), [13), [17), (22)). Most of the past work, however, assumes infinite buffers and focuses 
mainly on queue length and waiting time distributions, not on cell loss characteristics. Our 
paper investigates the cell loss of a finite buffer queueing system with correlated arrivals. There 
exist some papers which investigate cell loss, but most of them assume independent cell arrivals 
(e.g., [3], (6), [21]). Our paper investigates the cell loss assuming correlated arrivals. Important 
features of ATM are taken into consideration in our model. 

The output process in a continuous-time finite-buffer queue with correlated arrivals is stud
ied in [20), where the moment generating function for the sum of m successive interdeparture 
times is derived. In our paper, we analyze the discrete-time model, and our analytical results 
include the joint distribution function of m successive interdeparture times; The output pro
cess in a discrete-time queue is studied in [19) and [23), assuming infinite buffer. This paper 
analyzes the output process in a discrete-time queue, assuming finite buffer. 

The remainder of this paper is organized as follows. · In section 2, the queueing model is 
described. In section 3, we analyze the queueing model and present an efficient numerical 
method to calculate the stationary distribution of the number of cells in the system. Section 
4 presents analysis for cell loss, and expressions are derived for various ·cell loss statistics 
such as the distribution of loss period lengths and the consecutive loss probability. Section 5 
presents the output process analysis and derives expressions for various statistics of the output 
process, including the joint distribution of successive interdeparture times. In section 6, we 
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show numerical results. Finally, concluding remarks are given in section 7. 

2 Queueing Model 

In this paper, an ATM switching node is modeled as a finite-buffer discrete-time single-server 
queueing system with correlated arrivals. Time is slotted, and the slot length is equal to a 
unit time. Cells arrive in batch, and a batch of cells potentially arrives immediately before a 
slot boundary. An arrival of a batch in the nth slot occurs immediately before the end of the 
nth slot. (See Fig.1.) 

Cell arrivals are governed by an underlying M-state Markov chain. This Markov chain 
changes its state immediately after a slot boundary, and the transition matrix for this Markov 
chain is denoted by P ={Pi;} (i,j = 1, ... ,M). Without loss of generality, Pis assumed to 
be irreducible and positive recurrent. Let Pn denote the state of the underlying Markov chain 
in the nth slot. Let 1r = ( 11"1 , .•. , 11"M) denote the stationary state vector of this Markov chain, 
where 11"i = lirnn-oo Pr{Pn = i}. Note that 1r satisfies 1r = 1rP and 1re = 1, where e is an 
M x 1 vector with all the components equal to one. 

Let An denote the number of arriving cells in the nth slot (or the arrival batch size). We 
assume that An+l depends on both Pn and Pn+l (states of the underlying Markov chain in the 
nth and (n + l)st slots). We denote by ai;(k) the probability of having k cell arrivals in the 
current slot given that the underlying Markov chain was in state i in the previous slot and is 
in ·state j in the current slot: 

ai;(k) = Pr{An+l = k I Pn = i, Pn+l = j}, i,j = 1, ... ,M. (1) 

Note that we assume ai;(k) is time homogeneous and is independent of n. 
Our queueing system has finite buffer which accommodates at most N cells including the 

one in service. Thus, when m (m ~ N - k + 1) cells arrive to find k cells (including the one in 
service) in the system, only N - k cells are accommodated in the system, and the remaining 
m - N + k cells are discarded. 

The service time of a cell is assumed to be constant and is equal to the unit time. The 
service of a cell (if there is at least one cell in the system) starts at the beginning of a slot 
and ends at the end of the slot (i.e., on slot boundaries). Cells depart from the system at slot 
boundaries. (See Fig.1.) 

In the remainder of this section, we introduce some notations on the arrival process. These 
notations are used in the analysis in the following sections. Let Ai;( k) denote the probability 
for the following event: k cells arrive in the ( n + 1 )st slot, and the underlying Markov chain 
is in state j in the (n + l)th slot, given that the Markov chain was in state i in the nth slot. 
Namely, 

i,j = 1, ... ,.\1. (2) 

Let Ai denote the mean number of cells arriving in a slot given that the underlying Markov 
chain is in state i in the previous slot. That is, 

M oo M oo 
Ai= LL kAi;(k) =LL kaii(k)Pij, i = 1, ... ,M. (3) 

i=l k=l i=l k=l 
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By noting that the service time for a cell is equal to a unit time, traffic intensity p is given by 

M 

p = 2: 7r;.-\; x 1. (4) 
i=l 

3 Distribution of the number of cells in the system 

Let Xn denote the number of cells in the system immediately after the end of the nth slot 
(i.e., immediately after the beginning of then+ 1st slot). (See Fig.1.) Note that Xn includes 
cells arrived and accommodated into the system in the nth slot but excludes the cell receiving 
service in the nth slot (and therefore left the system at the end of the nth slot). The stochastic 
behavior of the number of cells in the system is completely described by the bivariate Markov 
chain {Xn, Pn} (n = 0, 1, ... ). The transition probability for this bivariate Markov chain is 
given by 

Pr{Xn+l = /, Pn+l = j I Xn = k, Pn = i} 
A;j ( /) if k = 0 and I :5 N - 1, 
I::=N A;j(m) if k = 0 and I= N, 

= A;1(1- k + 1) if k > 0 and k - 1 :5 I :5 N - 2, (5) 
I:::=N-k A;j(m) if k > 0 and I= N - 1, 
0 otherwise. 

The above transition probability is obtained by noting that the number of cells in the system 
immediately after the (n + l)st slot, Xn+I• is given by the sum of the number of cells in the 
system immediately after the nth slot, Xn, and the number of cells arrived and accommodated 
in the system in the (n + l)st slot, minus one if there is a cell being served in the (n + l)st 
slot. 

Let Ak and Bk denote an M x M matrix with its (i,j)th element given by A;j(k) and 
I::=k A;j(m), respectively, where k = 0, 1, .... Note that, by definition, Bo = P, where P 
denotes the transition probability matrix of the underlying Markov chain (refer to section 2 
for the definition of P). Using Ak, Bk and eq.(5), the transition probability matrix T for the 
bivariate Markov chain { Xn, Pn} becomes 

T= 

Ao Ai A2 
Ao A1 A2 
0 Ao A1 
0 0 Ao 

0 0 0 
0 0 0 

AN-2 
AN-2 
AN-3 
AN-4 

Ao 
0 

AN-l 
BN-l 
BN-2 
BN-3 

BN 
0 
0 
0 

0 
0 

(6) 

Let z = ( z 0 , z 1 , •.. , z N) denote the stationary probability vector of the bivariate Markov 
chain {Xn, Pn}, where z; is a 1 x M vector whose jth element x;,; is given by 

X; 3· = lim Pr{Xn = i, Pn = j}. 
' n__..oo 

(7) 

3 



Note that XiJ is the stationary joint probability that there a.re i cells in the system and the 
underlying Markov chain is in state j. Thus, z satisfies z = zT, or equivalently, 

k+t 

Zk = zoAk + E z;Ak+1-i, 
i=l 

N 

ZN-1 - zoAN-1 + E z;BN-i, 
i=l 

with the normalizing equation 

0 :5 k :5 N - 2, (8) 

(9) 

(10) 

(11) 

In the remainder of this section, we consider a numerical method to obtain the stationary 
probabilities Zk (k = 0, ... , N). Upon determining Zk, the stationary queue length distribution 
can be derived from eq.(7). Note that the stochastic matrix given in eq.(6) takes a form of a 
block Hessenberg matrix. A numerical algorithm to calculate the stationary probability vector 
for this matrix has been studied in [11] and [12]. In the following, we modify the method 
presented in [12] and provide a recursive formula for computing Zk. 

From eq.(8) fork= 0, we have zo = z 1R 1 where 

(12) 

From eq.(8) for k = 1 and zo = z1Ri, we have Zt = z2R2, where 

(13) 

In a similar manner, we obtain Zk = Zk+tRk+t (0 :5 k :5 N - 2), where Rk (3 :5 k :5 N - 1) 
is given by 

(14) 

Applying Zk = Zk+tRk+1 (0 :5 k :5 N - 2) recursively, we have 

k = O, ... ,N-2. (15) 

It then follows from eqs.(9) and (15) that 

N-2 

ZN-1 = ZN-1RN-1 ... RiAN-1 + E (;cN-1RN-l ... Rk+1BN-k) + ZN-1B1 + ZNP. (16) 
k=l 

Further, using eqs.(10) and (15), the last term of the right hand side of eq.(16), ZNP, becomes 
ZNP = ZN-iRN-t ... R 1BNP. Substituting this into eq.(16), we obtain 

(17) 
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where 
N-2 

R* = B1 + RN-1 ... Rl(AN-1 +BNP)+ L RN-1 ... R1c+iBN-lc· (18) 
lc=l 

Note here that the M x M matrix R* is stochastic. Tha.t is, R* is a non-negative matrix 
whose row sums are a.II equal to one [12]. Therefore, eq.( 17) ha.s a. unique solution up to a. 
multiplicative constant, a.nd this constant is determined by eq.(11). 

At this point, we ca.n ca.lcula.te the joint stationary vector z = ( z 0 , ... , ZN) in the following 
manner: 

1. Solve z}.r_1 = z}.r_1R* (with a. normalizing equation z}.r_1e = 1) with respect to a. l x M 
vector z}.r_1 . 

2. Compute 1 x M vectors zk from zk = zk+tR1c+1 (k = N - 2, N - 3, ... , 1, 0). 

3. Compute 1 x M vector z}.r from z}.r = z~B N. 

4. Compute the normalizing constant C from C = I:f=o zke. 

5. Compute the stationary joint vector z1c from z1c = zk/C (k = 0, 1, ... , N). 

Note that the stationary vector 1T' for the state of the underlying Markov cha.in is given by 
I:f=o z1c. In the analyses presented in the following sections, we a.ssume that the system is in 

. equilibrium. In other words, we a.ssume that the bivariate Markov chain {Xn, Pn} ha.s reached 
its steady sta.te distribution z = (zo,z1, ... ,zN)· 

4 Loss Probability and Related Performance Measures 

4.1 Cell loss probability 

We define the cell loss probability P1ou a.s the fraction of the number of lost cells to the number 
of arriving cells. To obtain P10 .. , we first consider the conditional cell loss probability P10u(i), 
the cell loss probability for a. slot given that the underlying Markov chain wa.s in state i in 
the previous slot. If we let Ln denote the number of lost cells in the nth slot, then, P1ou(i) is 
defined a.s Pi0 .. (i) = ~ ~" 1 ~":' • P1ou(i) is obtained in the following manner. 

n+l n-• 

Assume that Xn = k (k = 0, 1, ... , N) given that Pn = i in steady state. (In other words, 
a.ssume that there are k cells in the system immediately after the end of the nth slot given that 
the underlying Markov chain wa.s in state i in the nth slot.) This occurs with the probability 
x1c,Jrri (see eq.(7)). Further, assume that m (m ~ N - k + 1) cells arrive to the system in the 
(n + l)st slot. This occurs with the probability I:j;,1 Ai(m). Then, m - N + h cells among m 
arriving cells are lost. Therefore, P1083 ( i) becomes: 

P10 .. (i) = [t ~'.i f: (m - N + k) I: Ai3(m)] />..i 
/c:.:0 ' m=N-/c+l ;=1 

= 1 - [£:. x1c,i {N - k - Elc(N - k - m) I: Ai3(m)}] /(7riAi), (19) 
k=O m=O ;=1 
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where -\, is the mean number of cells arriving in a slot given that the underlying Markov chain 
was in state i in the previous slot. 

From P1o •• (i), we obtain the cell loss probability P1o,, = ;[~:+~ . Note that E [An+I] (the 
mean number of cell arrivals per slot) is equal top (see eq.(4)) and that E [Ln+d is given by 

M M 
E[Ln+1] = LE[Ln+1 I Pn = i]Pr{Pn = i} = L1riAiP/ou(i). (20) 

~1 ~1 

Thus, the loss probability P1o,, is given by 

M tr·A·P1 (i) [ N N-1 N-2 l 
~ ' ' p0

" = p - E(N - k)z1ce + E zoA1ce + E (N - 1 - k)z1ce / p 

p- (1 - zoe) 
p 

(21) 

Eq.(21) can be intuitively explained as follows. From eq.(7), we have z 0 e = E~1 x0,1 

= Pr{Xn = O}. Zoe thus represents the probability that the system is empty. Then, the 
utilization factor p' of the server is given by 

p' = 1- zoe. (22) 

p' can also be interpreted as the mean number of accommodated cells (the mean number of 
. arriving cells minus the mean number of lost cells) per slot, and p represents the mean number 
of cell arrivals in a slot (see eq.(4)). p - p' then represents the mean number of lost cells per 
slot. Therefore, the loss probability P1ou is given by (p - p')/ p. 

4.2 Consecutive loss probability 

Next we consider the consecutive loss probability, i.e., the conditional probability that the cell 
loss occurs in a slot given that the cell loss occurred in the previous slot. Let Jn denote the 
indicator function of the cell loss in the nth slot. Namely, Jn = /{L,.~t}, where Ln denotes the 
number of lost cells in the nth slot, and Ix. represents the indicator function of the event X· 
Jn = 1, if the cell loss occurs in the nth slot, and Jn = 0, otherwise. 

We will observe the system immediately after the end of the nth slot and consider a 
trivariate Markov cha.in {Xn,Pn,Jn}· (See Fig.1.) Assume that cell loss occurred in the nth 
slot. There are two possible cases: (1) a case where the system was empty at the beginning 
of the nth slot, and (2) a case where the system was not empty, and thus, there was a cell 
being served at the beginning of the nth slot. In both cases, cell arrivals at the end of the nth 
slot brought more cells than the system could accommodate, and thus, the system became full 
(i.e., there were N cells in the system) immediately after the arrivals. In the first case, no cell 
was served and departed at the end of the nth slot, and thus, there are still N cells in the 
system at the observation point (i.e., Xn = N). In the second case, since the cell receiving 
service at the beginning of the nth slot left the system at the end of the nth slot, the number 
of cells remaining in the system at the observation point becomes N -1 (i.e., Xn = N -1). As 
explained above, the number of cells in the system at the observation point (given. that cell loss 
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occurred in the nth slot) is either Nor N - 1. For the other cases, namely, for 0 $ k $ N - 2, 
we ha.ve 

Pr{Xn = k, P11 = j, J11 = 1} = 0, 1 $ j $ M. (23) 

In order to reduce the computational complexity in obtaining the distribution of the triva.ri
ate Markov cha.in {Xn, Pn, Jn}, we introduce the random variable Xn defined as 

Let (v0 , ... ,VN,'UN-i,UN) denote the stationary vector for the Markov chain {X11 ,P11 }, 

where Vi and Ui are 1 x M vectors whose jth elements Vi,i and Ui,i are the stationary joint 
probabilities of {Xn = i,Pn = j} for 0 $ i $ N and {Xn = i + 2,Pn = j} for N -1 $ i $ N, 
respectively. That is, 

Vi,j - Pr{Xn = i, Pn = j}, 0 $ i $ N, 1 $ j $ M, (26) 

Ui,j - Pr{Xn = i + 2, Pn = j}, N -1 $ i $ N, 1 $ j $ M. (27) 

Note that {Xn = i, Pn = j} (which is equivalent to {Xn = i, Pn = j, Jn = O}) is an event 
where there are i cells in the system, the underlying Markov cha.in is in state j, and cell loss 
did not occur. {Xn = i + 2,Pn = j} (which is equivalent to {Xn = i,P11 = j,Jn = 1}) is an 
event where there are i cells in the system, the underlying Markov chain is in state j, and cell 
loss has occurred. The stationary probabilities Vi,J and Ui,i satisfy the following equation. 

Note that 
1 

Pr{Xn = i,Pn = j} = L Pr{X11 = i,Pn = j, Jn= k}. 
k=O 
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It then follows from eqs.(23), (26) and {29) that 

0 $ i $ N- 2. 

Further, we have from eqs.(28) and {29) 

VN-1 = zoAN-1 + L:~1 ZiAN-i, 

UN-1 = L:~1 ZiBN+l-i = ZN-1 - VN-1, 

VN = zoAN, 

UN= zoBN+l = ZN - VN. 

{30) 

(31) 

(32) 

The above eqs.(30), {31) and (32) represent the stationary probabilities of the trivariate Markov 
chain {Xn, Pn, Jn} in terms of the Zn, where Zn (n = 0, 1, ... ) have been already obtained in 
section 3. From these stationary probabilities, we obtain the consecutive loss probability C1aaa 

in the following manner. 
The consecutive loss probability C10 ,. is defined as 

C1oaa = Pr{Jn+l = 1 I Jn= 1}. {33) 

By definition, we have 

N N 
E E Pr{Xn+l = j, Jn+l = 1 I Xn = i, Jn= 1} Pr{Xn = i, Jn= 1} 

C i=N-lj=N-1 
/o,. = N (34) 

E Pr{Xn = i,Jn = 1} 
i=N-1 

It then follows from eqs.(25) and (34) that 

(35) 

4.3 Distribution of loss periods 

Next we consider the distribution of loss period lengths. A loss period is defined as a time 
interval (measured in slots) during which cell loss occurs in every slot. Note that the event 
{ Jn-l = 0, Jn = 1} indicates a loss period starts at the nth slot and that the event { Jm-1 = 
1, Jm = O} indicates a loss period ends at the (m - l)st slot. 

Let q = Pr{ Jn-l = 0, Jn = 1} denote the stationary probability that a loss period starts. 
The probability q is obtained in the following manner: 

N 

q = E Pr{ Jn= 1 I Xn-1 = i, J,.._1 = O} Pr{Xn-1 = i, J,.._1 = O} 
i=O 
N 

- E viBN+l-i +UN= uN-1(1 - B2)e + uN(I - B1)e 
i=l 

(36) 

The second equality follows from the transition probability given in eq.(25), the third equality 
follows from eqs.(31) and (32), and the last equality follows from eq.(35). The result of eq.(36) 
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(q = (1 - C1ou)(uN-1 + uN)e) is intuitively explained as follows. The term (uN-l + uN)e 
gives the probability that cell loss occurs in an arbitrary slot. (1 - C10,,.) is the probability 
that there is no cell loss in an arbitrary slot given that the cell loss occurred in the previous 
slot. (1 - C1aaa)( UN-1 +UN )e, therefore, gives the joint probability that the cell loss occurred 
in the previous slot and there is no cell loss in the current slot, namely the probability that a 
loss period ends. Since the loss period that starts must eventually end, the probability q that a 
loss period starts is equal to the probability that a loss period ends ((l-C10 ,,.)(uN-l +uN)e). 

Note that the probability q is also represented as 

1 
(37) 

q = E[Y] + E[Z]' 

where E[Y] and E[Z] denote the mean length of a loss period and a non-loss period, respec
tively. From eqs.(36) and (37), we have 

E[Y] + E[Z] = 1 . (38) 
UN-1(1 - B2)e + uN(l - B 1)e 

Now we consider the state of the trivariate Markov chain {Xn, Pn, Jn} in the slot that 
initiates a loss period. Let CTi,j be the stationary joint probability that there are i cells in the 
system and the underlying Markov chain is in state j in the first slot of a loss period. Namely, 

CTi,j = Pr{Xn = i, Pn = j I Jn-1 = 0, Jn= 1}. (39) 

Note that { Jn-l = 0, Jn = 1} ensures that a loss period starts in the nth slot. By definition, 
we have 

N M 

CTi,j - LL [Pr{Xn = i,Pn = j I Xn-1 = i',Pn-1 = j',Jn-1=O,Jn=1} 
i'=Oj'=l 

· Pr{Xn-1 = i', Pn-1 = j', Jn-1 = 0, Jn= 1}] X p {J _1 O J _ } . (40) 
r n-1 - ' n - 1 

By noting that Pr{Jn-l = 0, Jn = 1} = q, and from the transition probability matrix in 
eq.(25) and its stationary vector (30)-(32), we obtain 

N 

ITN-1 - L ViBN+i-if q = (uN-1(1 - B2) - uNB1)/q, 
i=l 

(41) 

(42) 

Now we know (tTN-i, tTN), the probability distribution of the system state in the first slot 
of a loss period. From this distribution, we derive the distribution of loss period lengths. Let 
Y be a random variable representing the length of a loss period (measured in slots). In the 
following, without loss of generality, we assume that the loss period starts in the 1st slot (i.e., 
slot 1) and that the system state in the 1st slot follows the distribution (D'N-li ITN)· From 
these assumptions and by noting that with probability one, the loss period length becomes 
equal to or longer than one given that the loss period starts, we have 

Pr{Y ~ l,X1 = i,P1 =j I Jo= O,J1=1} 

- Pr{X1=i,P1=ilJo=O,J1=l}=CTi,;, i=N-1,N,j=l, ... ,M. (43) 
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In obtaining the above equation, we used the following facts. If the system was empty at 
the beginning of the 1st slot which initiated a loss period, the number of cells in the system 
immediately after the end of the 1st slot is N (i.e., X1 = N); on the other hand, if the system 
was not empty at the beginning of the 1st slot, X1 is N -1, since the cell receiving service at the 
beginning of the 1st slot departs from the system at the end of the slot. (Refer to the discussion 
used to obtain eq.(23) in section 4.2.) Thus, Pr{Y 2:: 1, X1 = i, P1 = j I J0 = 0, J 1 = 1} = 0 
for 0 $ i $ N - 2. 

For the probability that a loss period lasts longer than one slot, we have 

N M 
Pr{Y 2:: 2,P2 = j I Jo= O,J1=1} = L L Pr{Y 2:: 2,P2 = j I X1 = k,P1 = m} 

lr:=N-1 m=l 

· Pr{X1 = k, Pi = m I Jo= 0, Ji = 1} 
N M oo 

= L L UJr:,m L Am,j( /). (44) 
k=N-1 m=l l=N+l-lr: 

Note that in each slot in a loss period (except for the first slot), there is a cell departure. Thus, 
the number of cells in the system in the nth slot during a loss period is N -1 (i.e., Xn = N -1) 
for all n (n 2:: 2). Thus, for n 2:: 2, 

Pr{ Y 2:: n + 1, Xn+1 = N - 1, Pn+l = j I Jo = 0, Ji = 1} 

- Pr{Y 2:: n + 1, Pn+l = j I Jo= 0, J1 = 1} 
M 

- L Pr{Y 2::: n + 1,Pn+l = j I Y 2:: n,Pn = m,Jo = O,J1=1} 
m=l 

· Pr{Y 2::: n, Pn = m I Jo= 0, Jl = l}. ( 45) 

Let Yn denote a 1 x M vector whose jth element Yn,j is Pr{Y 2::: n, Pn = j}, the joint 
probability that the length of a loss period is equal to or longer than n and the state of the 
underlying Markov chain in the nth slot is j. From eqs.(43), (44) and (45), we have 

Y1 = <TN-1 +CTN, ih = <TN-1B2 + Cl'NBi, 

Yn = Yn-1B2 = (uN-1B2 + <TNB1)(B2)n-2, N 2::: 3. 

From eqs.( 46) and ( 4 7), the distribution of loss period lengths is given by 

M M 
Pr{Y = n} = L Pr{Y ~ n, Pn = j} - L Pr{Y 2::: n + 1, Pn+l = j} 

i=l j=l 

- fine - Yn+l e 

{ <TN-1(1 - B2)e + t:TNAoe, 
- (<TN-1B2 + uNB1)(I - B2)(B2r-2e, 

n = 1, 
n ~ 2. 

(46) 

( 47) 

(48) 

Eq.(48) shows that the distribution of loss period lengths has the tail in the geometric form of 

B2. 
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From eq.( 48), the mean loss period length is given as 

00 

E[Y] = L n Pr{Y = n} = 1 + <TNB1e + (<TN-1 + <TNBi)B2[I - B2t1e 
n=l 

(49) 

or equivalently, 

(50) 

Note that Eq.(50) has the same form as that derived for the case of Poisson arrivals (2]. The 
mean length of a non-loss period E[Z] is derived from eqs.(38) and ( 49). 

5 Output Process and Related Performance Measures 

In this section, we consider the output process of cells from the system. We obtain the distri
bution for the time intervals between two successive cell departures (cell interdeparture times). 
We also obtain the distribution of m successive interdeparture times. The cell departures from 
the system form a series of on and off periods where a cell departs on every slot during an 
on (or busy) period and no cell departs during an off (or idle) period. We also obtain the 
distributions of busy and idle periods. 

5.1 . Interdeparture time distribution 

Let d1c denote a 1 x M vector whose jth element d1c,j is the stationary joint probability that 
there are k cells in the system and the state of the underlying Markov chain is j immediately 
after the departure of a cell. That is, 

d1c,j = Pr{Xn = k, Pn = j I Xn-1 2::: l}. (51) 

Note that { X n-l ;::=: 1} ensures that there is at least one cell that departs from the system at 
the end of the nth slot. We now rewrite eq.(51) as 

d1c,j = Pr{Xn-1 2::: l,Xn = k, Pn = j} = 2:~1 Pr{Xn-1 = i,Xn = k, Pn = j}. (52) 
Pr{Xn-1 ;:::: l} 1 - Pr{Xn-1 = O} 

Then, we have 

0 :5 k :5 N - 2, (53) 

(54) 

We now consider the distribution of cell interdeparture times. Without loss of generality, 
we assume that a cell departure occurs at the end of the 0th slot and that the number of cells 
in the system and the state of the underlying Markov chain immediately after the departure 
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follow the joint distribution d1c. Let Vi denote the length of the time interval between the 
first departure ( a.t the end of the 0th slot) and the departure following this first departure. 
Let Bi1>(n) denote a. 1 x M vector whose jth element Bi~}(n) represents the joint probability 
that the interdeparture time Vi is of length n, the number of cells left behind by the second 
departure is k, a.nd the state of the underlying Markov chain is j immediately after the second 
departure. That is 

Bi~](n) = Pr{Vi = n, Xn = k, Pn = j}. (55) 

Note that the upper subscript (1) indicates that it is for a single interdeparture time (as 
opposed to a series of m successive interdeparture times, in which case the upper subscript is 
( m) as seen in the next subsection). 

We first consider the probability vector Bi1>(1). Suppose X 0 = i. If i 2:: 1 (if there is at 
least one cell in the system immediately after the end of the 0th slot), the interdeparture time 
becomes 1, and X 1 (the number of cells in the system immediately after the 1st slot) is given 
as the sum of i -1 cells (i.e., cells left by the departure at the end of the 1st slot) and the cells 
arriving in the 1st slot and accommodated into the system. Thus, we have 

k+l 
Bi1>(1) = L diAk+1-i (0 :5 k :5 N - 1) and 

N-1 

8~~1(1) = L diBN-i· (56) 
i=l i=l 

Next we consider Bi1>(n) (n 2:: 2). Only when the first departure (i.e., the departure at 
the end of the 0th slot) leaves no cell behind, the interdeparture time becomes longer than 
one. In this case, if the first arrival occurs in the ( n - 1 )st slot since the first departure, the 
interdeparture time becomes n. Thus, we have, for n 2:: 2, 

Bi1>(n) 
k+l 

- doA~-2 L AiAk+l-i, 0 :5 k :5 N -2, (57) 
i=l 

9(l) (n) N-1 - (N-1 ) doA~-2 ~ A;BN-i +BNP . (58) 

Let 8(1)( n) denote the probability that the interdeparture time Vi is of length n. From 
eqs.(56)-(58) (by summing over all the possible cases of Xn and Pn), we obtain the distribution 
of interdeparture times (8(1>(n)) as follows: 

N-1 

9(1>(1) - L Bi1>(1)e = 1 - doe, (59) 
k=O 
N-1 

9(1>(n) = L Bi1l(n)e = do(I - Ao)A~-2 e, n 2:: 2. (60) 
k=O 

From the above equations, we observe that the interdeparture time distribution ha"l a geometric 
decay of A~. 

Let E)( 1)(z) denote the PGF of the interdeparture time distribution. We have from eqs.(59) 

and (60) 
00 

9(1)(z) = L 9(1>(n)zn = z { 1 - d0 e + zdo(I - Ao)(I - zAot1e}. (61) 
n=l 
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Let y(m) denote the mth factorial moment of the interdeparture time distribution, that is, 

y(m) = E[V(V - l)(V - 2) ... (V - m + 1)). (62) 

Taking the first derivative of E)(l)(z), we obtain the mean interdeparture time V(1) as 

y(l) = 1 + do(I - Ao)-1e = 1/ p'. (63) 

Here, p' is given in eq.(22). Eq.(63) is intuitively clear since exactly one cell is served in an 
interdeparture time, and thus the utilization factor p' becomes 1/V(1). Further, taking the 
mth derivative of e(l)(z), we obtain the mth factorial moment for the interdeparture time 
distribution as 

y(m) = m!zo(I - Ao)-1 {(I - Ao)-1 Ao} m-'.2 e, 
1 - zoe 

5.2 Joint distribution of successive interdeparture times 

m 2:: 2. (64) 

Next we consider the joint distribution of m successive interdeparture times. Note that succes
sive interdeparture times are not independent. As in section 5.1, we assume that a cell departs 
from the system at the end of the 0th slot. Suppose that the number of cells in the system and 
the state of the underlying Markov chain immediately after this first departure follow the joint 
distribution d1c. Let Vm denote the mth interdeparture time (i.e., the time interval between 
the mth departure and the (m + l)st departure). 

Let 8l2)(ni, n2 ) denote a 1 x M vector whose jth element Ol~](ni, n2 ) is the joint probability 
for the two successive interdeparture times, the number of cells in the system and the state of 
the underlying Markov chain at the end of the second interdeparture time. That is, 

(65) 

Following the same discussion used to derive eqs.(56)-(58), we have the following set of the 
equations, for n 1 2:: 1, 

lc+l 

- L 8~ 1 l(n1)A1c+1-i, 0 :5 k :5 N - 2, (66) 
i=l 

N-1 

8~~ 1 (ni, 1) - L opl(ni)BN-i, (67) 
i=l 

and, for n1 2:: 1 and n2 2:: 2, 

k+l 

oi2)(n1, n2) - 8~1 >(n1)A~-- 2 L AiA1c+1-i, 0 :5 k :5 N - 2, (68) 
i=l 

(69) 
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The above results easily extends to a general case of m successive interdeparture times. Let 
Bim>(nii ... , nm) denote a 1 x M vector whose jth element ot;>(n1, ... , nm) is the following 
joint probability: 

(70) 

where n* = E~1 ni denotes the total length of them successive interdepa.rture times. Using 
the same argument to obtain eqs.(66)-(69), we have for any m ~ 2, 

k+l 
- L 8~m-l)(n1, ... , nm_i)Ak+1-i, 

i=l 
0 ~ k ~ N-2, (71) 

and for nm ~ 2, 

N-1 

- L 8~m-l)(nl! ... ,nm_i)BN-i, 
i=l 

k+l 

- 8~m-l)(n1, ... , nm_i)A~m-2 L AiAk+t-i1 
i=l 

(72) 

0 ~ k ~ N - 2, (73) 

8}7~1 (nli ... , nm) - 8~m)-l(nl! ... , nm_i)A~m-2 ('t1 AiBN-i +BNP). (74) 
i=l 

Note that in obtaining Ot'.j>(nii ... ,nm), we assume that the number of cells in the system and 
the state of the underlying Markov chain immediately after the end of the mth interdepa.rture 
time a.re k and j, respectively. Thus, summing eqs.(71) and (72) (or eqs.(73) and (74)) over 
all the possible values of k and j, we have the following for the (}(m)(ni, ... ,nm) (the joint 
distribution of m successive interdepa.rture times): 

N-1 

9(m){ni, ... , nm)= 2: Bim)(n1, ... , nm)e. 
k=O 

5.3 Distributions of the idle periods and the busy periods 

(75) 

We first consider the distribution of idle period lengths. Note that a cell departs in every 
slot during a busy period and that no cell departs during an idle period. Thus, when an 
interdepa.rture time (say, Vi) becomes longer than one, it indicates that a busy period has 
ended, and that an idle period has started. If Vi is equal ton+ 1 (n ~ 1), the system is empty 
for the first n slots (during which there are no cell departures), and there is an arrival of at 
lea.st one cell just before the end of the nth slot, creating a departure at the end of the (n+ l)st 
slot. In this case, the idle period becomes of length n. From this, we obtain the distribution 
of the length Q of an idle period as follows: 

d0(1 - A0)A~-1 e 
Pr{Q = n} = Pr{Vi = n + 1 I Vi ~ 2} = doe , n ~ 1. (76) 

From the above equation, the mean idle period is given as 

E[QJ = zoe 
zo(I - Ao)e 

(77) 
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Next we consider the distribution of busy period lengths. We first obtain the mean busy 
period E[S] a.s follows. Recall tha.t the server is idle with probability z 0e. Since the probability 
of the server being idle is equal to the fraction of the time that the buffer is empty, we have 

z 0e = E[Q]/(E[Q] + E[S]). It then follows that 

E[S] = 1 - zoe 
zo(I - Ao)e 

(78) 

We now proceed with the derivation of the distribution of busy period lengths. As we will 
see, the distribution of busy periods is closely related to the joint probability O(m)(l, 1, ... , 1) 
that m successive interdeparture times are all equal to 1. Recall that, in the analysis of the 
interdeparture time in section 5.2, we first selected an arbitrary departing cell, and then derived 
the joint distribution of m successive interdeparture times. Thus, the probability om(l, ... 1) is 
the probability of a cell departing in m successive slots following the departure of an arbitrarily 
chosen cell, not necessarily the departure of a cell initiating a busy period. In other words, 
om(l, ... 1) is the probability that the residual life of a busy period measured from the departure 
of an arbitrary cell is not less than m. Let S denote the residual busy period. From the above 
discussion, we have 

Pr{S 2: O} = 1, 
A (m) 

Pr{S2:m}=8 (1, ... ,1), 

From eq.(79), we have 

Pr{S = O} - 1 - o(l)(l), 

Pr{S = m} - a<m>(1, ... '1) - o<m+i)(l, ... ,_1), 

m2: 1. 

m 2: 1. 

(79) 

(80) 

(81) 

On the other hand, the distributions of busy periods and residual busy periods are related by 

([4]) 
Pr{S = m} = Pr{S 2: m + 1}/ E[S]. {82) 

Thus, we have 

Pr{S = m} = Pr{S 2: m}-Pr{S 2: m -1} = E[S](Pr{S = m-1}-Pr{S = m}). (83) 

Therefore, the distribution of busy periods is found to be 

Pr{S = 1} - E[S]{l - 20<1)(1) + B(2)(1, 1)}, 

Pr{S = m} - E[S]{o<m-1)(1, ... , 1) - 20<ml(1, ... , 1) + a<m+1l(1, ... , 1)}, 

5.4 Joint distributior, of idle and busy periods 

(84) 

m 2: 2. (85) 

Next we consider the joint distribution of idle and busy periods. Without loss of generality, we 
assume that an idle period starts in the 1st slot. Let Q denote the length of this idle period, 
and let S denote the length of the busy period following this idle period. We obtain the joint 

probability Pr{ Q = n, S = m} in the following. 
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Note that the event {Vi 2: 2} indicates that an idle period starts, and that the event 
{Vi = n + 1} indicates { Q = n, S 2: 1}, as we saw in the above subsection. Therefore, we 
have, for n 2: 1, 

Pr{Q = n,S 2: 1} = Pr{Vi = n + 1 I Vi 2: 2} = Pr{Vi 2: n + 1, Vi 2: 2}/ Pr{Vi 2: 2} 

= E[S]O(ll(n + 1). (86) 

In the above equation we used Pr{Vi 2: 2} = E[SJ-1 , which is derived from eqs.(53), (59) and 
(78). 

Note that the event {Vi = n + 1, V2 = 1} is equivalent to the event { Q = n, S 2: 2}. In 
general, the event {Vi = n + 1, V2 = 1, ... , Vm = 1} is equivalent to the event { Q = n, S 2: m} 
(m 2: 2). Thus, we have 

Pr{Q = n, S 2: m} = Pr{Vi = n + 1, V2 = 1, ... , Vm = 1 I Vi 2: 2} 

= E[S]o<ml(n + 1, 1, ... , 1), m 2: 2. (87) 

From eqs.(86) and (87), we obtain the joint distribution of a pair of idle and busy periods 
as follows: 

Pr{Q=n,S=l} = E[S]{0< 1l(n+l)-0<2l(n+l,l)}, n2:1, (88) 

Pr{Q = n, S = m} - E[S]{o<ml(n + 1, 1, ... , 1) - o<m+1l(n + 1, 1, ... , 1)}, 

n 2: 1, m 2: 2. (89) 

Note that the above argument extends easily to deriving the joint distribution of an arbitrarily 
long sequence of successive idle and busy periods. 

6 Numerical Results 

In this section, we investigate various cell loss statistics and characteristics of the output process 
through numerical examples. Throughout this section, we assume that the cell arrival process 
is modulated by a two-state Markov chain with states 1 and 2, where the state transition 
probabilities Pii are given by P11 = P22 = a and P12 = P21 = 1 - a (0 :$ a < 1). The 
conditional probabilities a 1,J( k) and a2,j ( k) (j = 1, 2) for the sizes of the cell arrival batches 
are given by 

a2,j(k) = e-(l-c)p{(l - c)p}"'/k!. (90) 

In other words, if the Ma:kov chain was in state 1 (state 2) in the previous slot, the number 
of cells arriving in the current slot is Poisson distributed with the mean (1 + c)p ((1 - c)p). 
Note that p denotes the overall traffic intensity, and c (0 :$ c :$ 1) is a parameter. 

Through numerical examples, we investigate tl:ie impact of the variation and the correlation 
in cell arrivals. For our cell arrival model, the squared coefficient of variation C~ of the number 
of cells arriving in a slot is given as 

(91) 
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' . 

For a fixed value of p, the squared coefficient of variation ci increases as the parameter c does. 
The correlation coefficient Cc(n) of the number of arrivals at lag n for our cell arrival process 
becomes 

~p n ~p 
Cc(n) = 1 :z x (Pu+ P2l - 1) = 1 :z x (2a - 1r. 

+cp +cp 
(92) 

Note that, by keeping p and c constant (which means keeping ci constant), the correlation 
coefficient Cc( n) depends only on the term 2a - 1. Thus the term 20: - 1 is referred to as a 
correlation index in this paper. Note that by varying the correlation index from 0 to 1 (namely, 
by varying a from 0.5 to 1), we achieve varying degrees of non-negative correlations of arrivals. 

In the following figures, traffic intensity pis kept constant as 0.75. Three levels of variations 
are considered: c = 0.2 (low variation), c = 0.5 (moderate variation), and c = 0.8 (high 
variation). Further, the buffer size is assumed to be 80, unless otherwise specified. 

6.1 Cell Loss Statistics 

Figs.2 through 5 show various cell loss statistics as a function of the correlation index (2a -1 ). 
Fig.2 shows the cell loss probability P1o... It is observed that both the variation and the 
correlation significantly affect the cell loss probability. Most of the pa.st research focused on 
identifying the impact of the arrival correlations on the cell loss, and not much attention has 
been paid on the variation in the arrivals. This figure clearly shows that the variation of 
arrivals, as well as the correlation, affects the cell loss probability significantly. 

Fig.3 shows the consecutive loss probability C10 .. as a function of the correlation index. 
The consecutive loss probability curve for the low variation case is relatively flat and is not 
affected by the arrival correlation very much. However, as the arrival variation increases, the 
correlation affects the consecutive loss probability more significantly. 

Fig.4 shows the mean length of the loss periods ( E[Y]) as a function of the correlation index. 
A similar observation to that ma.de in Fig.3 holds for this figure. When the arrival variation 
is low, the correlation does not affect E[Y] much. When the variation becomes higher, the 
correlation affects E[Y] more significantly. This is intuitively clear from eq.(50), which shows 
a simple relation between the mean loss period length and the consecutive loss probability. 

Fig.5 shows the mean length of the non-loss periods (E[Z]) as a function of the correlation 
index for three different levels of the arrival variation. Contrary to the mean loss period (shown 
in Fig.4), the mean non-loss period strongly depends on the arrival correlation even when the 
arrival variation is low. From Figs.4 and 5, it is concluded that an increase in the correlation 
of arrivals creates more loss periods whose average lengths are approximately the same. 

Fig.6 shows both the cell loss probability and the consecutive loss probability a.s a function 
of the buffer size. A parameter c for the arrival variation is assumed to be 0.5 in this figure (i.e., 
the moderate variation case). We observe that the cell loss probability reduces exponentially 
a.s the buffer size increases. On the other hand, the consecutive loss probability remains almost 
invariant to the buffer size. This suggests that increasing the buffer size creates longer non-loss 
periods, but it does not significantly affect the length of the loss periods. 

17 



6.2 Output Process Characteristics 

Figs.7 through 12 show various statistics of the output process. Figs. 7 and 8 show the mean 
idle and busy period lengths for the three different levels of the arrival variation (i.e., c = 0.2, 
0.5, and 0.8). It is observed that except for the high-variation case, the mean idle and busy 
period lengths are not very sensitive to the correlation of arrivals. When the arrival variation 
is high, both the mean idle and busy period lengths become longer as the arrival correlation 
increases. 

Fig.9 shows the coefficient of variation of the cell interdeparture times as a function of the 
correlation index (2a - 1) for different values of c. A similar observation to that made in 
Figs. 7 and 8 holds for this figure. When the variation of arrivals is low ( c = 0.2), the arrival 
correlation does not significantly affect the variation of the interdeparture time. On the other 
hand, when the variation is high, the correlation of arrivals has a significant influence on the 
variation of the interdeparture times. 

Fig.10 shows the correlation coefficient of two successive cell interdeparture times for dif
ferent levels of the arrival variation. Contrary to the coefficient of variation (in Fig.9), the 
correlation of the cell interdeparture times is insensitive to both the correlation and the varia
tion of arrivals. Further, it is observed that the interdeparture time correlation becomes weaker 
as the arrival variation increases, although not significantly. Note that similar observations 
were also made for a continuous-time queue [20). 

Fig.11 shows the coefficient of variation of the idle period lengths. We observe that the 
idle period variation is not significantly affected by either _the correlation or the variation of 
arrivals. 

Finally, Fig.12 shows the coefficient of variation of the busy period lengths. We observe 
that the variation in the busy period lengths increases as the correlation of arrivals increases. 

From Figs. 7 through 12, it is observed that the correlation of arrivals does not significantly 
affect the characteristics of the output process when the variation of arrivals is low. The 
correlation of arrivals becomes important, however, when the variation of arrivals is moderate 
or high. We thus conclude that both the variation and the correlation of arrivals play key roles 
in determining the characteristics of the output processes. 

7 Concluding Remarks 

This paper considered the discrete-time finite-buffer queue with correlated arrivals. We ana
lytically obtained various cell loss statistics and output process statistics, and showed through 
numerical examples how these statistics are affected by the variation and correlation in the 
arrival process. 

Our analysis presented in this paper applies, not only to a discrete-time queueing system, 
but also to a synchronous service queueing systems with continuous-time arrivals [8]. In such a 
queueing system, arrivals occur at any point in time, and service starts only at a slot boundary. 
We can apply the analysis in this paper to such a system by obtaining the number of arrivals 
in a unit time. For example, if cells arrive according to an M-state (continuous time) MA1PP 
with an infinitesimal generator R for the underlying Markov process and a diagonal matrix A 
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for a.rrival densities [18], the probability generating function for the number of cells arriving in 
a unit time (namely, A;j(z) = L:~o A;i(k)zk) is given by 

A;i(z) = [exp(R - A+ zA)];j· (93) 

Once A;i ( z) is obtained, the transition submatrices Ak are completely determined. The same 
discussion can be applied to more general (correlated) arrival processes such as the batch MAP 
[14]. The rest of the analysis presented in this paper, then, holds for the synchronous service 
queueing system with continuous-time arrivals. 

Obtaining the waiting time distribution, although not presented in this paper, is somewhat 
straightforward. If we assume the FCFS service discipline, it is shown that the following 
relation holds between the waiting time distribution and the queue length distribution (see 
lemma 3.1 of [16]): 

Pr{W = k} = ~k+1e/p1 , k = 0, ... , N -1. (94) 

Thus, using the results in section 3, we obtain the waiting time distribution. 
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