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Abstract

Recently, many lines of investigation in neuroscience and statistical physics have converged to raise the hypothesis that the
underlying pattern of neuronal activation which results in electroencephalography (EEG) signals is nonlinear, with self-affine
dynamics, while scalp-recorded EEG signals themselves are nonstationary. Therefore, traditional methods of EEG analysis
may miss many properties inherent in such signals. Similarly, fractal analysis of EEG signals has shown scaling behaviors that
may not be consistent with pure monofractal processes. In this study, we hypothesized that scalp-recorded human EEG
signals may be better modeled as an underlying multifractal process. We utilized the Physionet online database, a publicly
available database of human EEG signals as a standardized reference database for this study. Herein, we report the use of
multifractal detrended fluctuation analysis on human EEG signals derived from waking and different sleep stages, and show
evidence that supports the use of multifractal methods. Next, we compare multifractal detrended fluctuation analysis to a
previously published multifractal technique, wavelet transform modulus maxima, using EEG signals from waking and sleep,
and demonstrate that multifractal detrended fluctuation analysis has lower indices of variability. Finally, we report a
preliminary investigation into the use of multifractal detrended fluctuation analysis as a pattern classification technique on
human EEG signals from waking and different sleep stages, and demonstrate its potential utility for automatic classification
of different states of consciousness. Therefore, multifractal detrended fluctuation analysis may be a useful pattern
classification technique to distinguish among different states of brain function.
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Introduction

While human electroencephalography (EEG) recordings have

been utilized for clinical and research purposes since the 1920s,

still much is unknown about the underlying neuronal dynamics

responsible for scalp-recorded electric potential changes as a

function of time [1,2]. Based upon the physiological and

conductive properties of the intervening scalp and skull, EEG

electrodes are thought to record space-averaged electrical poten-

tials representing synaptic activity of 108–109 cortical neurons,

therefore with poor spatial resolution, but excellent temporal

resolution compared to other neuroimaging modalities [2,3].

Current clinical uses of EEG involve spectral analysis via Fourier

transform, which can accurately decompose underlying signal

frequencies of a stationary signal [1,4,5].

However, many lines of investigation into the neuronal

dynamics which underlie scalp-recorded EEG have opened up

the possibility that other techniques, derived from statistical

mechanics, may also be useful for the analysis of EEG signals [6–

8]. EEG signals themselves have been reported to be highly non-

stationary [9]. Direct recording of cortical neurons in animal

cortices has provided convincing evidence for the presence of

scale-free (self-affine) dynamics in the patterns of neuronal

avalanches in cortical neurons [10–13]. Indeed, neuronal

avalanches recorded in the cortex were also found to correlate

with beta/gamma band EEG recordings in rodents [14]. Evidence

of scale-free network activation has also been demonstrated

utilizing functional magnetic resonance imaging, magnetoenceph-

alography, and electrocorticography [7,8,15,16]. This experimen-

tal evidence collected on neuronal dynamics is matched by

theoretical observations demonstrating that information networks

operating at a ‘‘critical’’ state (exhibiting scale-free or self-affine

dynamics) tend to maximize information transmission [12,17].

Therefore, traditional statistical methods of EEG analysis (e.g.,

spectral analysis via Fourier transform) may lose essential

information about the neuronal dynamics underlying EEG signals,

since these techniques would miss many properties inherent in

nonstationary signals with self-affine dynamics.

Methods derived from statistical physics have been applied to

the analysis of human EEG signals with a moderate degree of
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success [3,7]. While the field is too broad to comprehensively

review for the scope of this report, we will discuss one of the most

frequently utilized methods for analyzing time series with scale-

free dynamics, the detrended fluctuation analysis (DFA) [18],

which has also been extensively utilized on human EEG signals

[16,19–23]. DFA is an efficient technique to assess monofractal

power-law scaling in the presence of nonstationary trends in the

data [24]. DFA (combined with frequency filtering) has been

shown to be useful as a tool to characterize differences in brain

states in depression [21], sleep stages [19], and in hypnosis [20].

However, the application of DFA to EEG has also been generally

limited to frequency-filtered portions of the EEG signal, due to the

presence of different scaling regimes in the unfiltered signals [8].

While many natural self-affine systems exhibit power-law

behaviors well described with a single fractal exponent, a more

complicated version of self-affine systems was first described by

Mandelbrot [25,26], where the fractal nature of the system is

better described as an interwoven series of different fractal

exponents, or a ‘‘multifractal’’ [27–29]. Several different interpre-

tations of the physical meaning of multifractal analysis have been

proposed, but we give here a description provided by Mandelbrot

and colleagues [30,31]. Briefly, the multifractal spectrum is a plot

of the fractal dimension of a set of instants (‘‘D(h)’’, with values #1)

versus the corresponding values of Hölder exponents (‘‘h’’) for

those instants [30,31]. The local Hölder exponent (which we shall

denote h(t)) measures the local regularity of a given time series

process X(t) with stationary increments [30,31]:

X t,Dtð Þ* Dtð Þh tð Þ
for all t, and as Dt?0 ð1Þ

Here X(t, Dt) = X(t+Dt)- X(t). For a true multifractal process, h

will exhibit a wide range of values, whereas for monofractal

process, h will approach a single value, such that the degree of

multifractality of a given series can be estimated via the range of

the h values (cf. [32]). The resultant multifractal spectrum, with

Hölder exponents plotted as the abscissa, and the fractal

dimensions as the ordinate, typically approximates a truncated

inverted parabola [32,33].

The most widely utilized method for analyzing multifractal time

series has perhaps been the wavelet transform modulus maxima

(WTMM) technique [34], which has been successfully applied to

many natural systems [32]. WTMM has been utilized in human

EEG to assess differences among stages of sleep [35,36], and

among different psychiatric conditions [37], therefore showing

evidence of its utility in human EEG research.

DFA has been extended to include a multifractal formalism,

called multifractal DFA (MF-DFA), which combines the ease of

computation inherent in the DFA technique with the ability to

assess for multifractality in time series [24,33]. There have been

successful applications of MF-DFA to geophysics and to the

biology of ion current fluctuations [38]. In several head-to-head

comparisons of MF-DFA with WTMM on the same datasets, both

methods have been found to be reliable, though MF-DFA has

tended to produce more consistent results [33,39].

To our knowledge, however, MF-DFA has not yet been applied

to EEG signals. The objective of this study is to investigate the use

of MF-DFA as a tool to assess multifractality in human EEG, using

sleep-stage data from a publicly available database. We report here

the use of MF-DFA on human EEG signals, and show that human

EEG is well-modeled by a multifractal process when compared

with numerical simulations of both monofractal and multifractal

processes. Next, we compare WTMM and MF-DFA on the same

EEG data, and show that MF-DFA tends to have lower variability

on several multifractal spectral indices. Finally, we perform several

tests of MF-DFA as a tool to characterize different sleep stages

among subjects, and show that even short EEG tracings of 30 s–

1 m can have robust differences in multifractal spectra. Taken

together, these data provide support for the possibility that analysis

of EEG by MF-DFA may be a valuable tool in the automatic

characterization of changes in brain and/or consciousness states.

Methods

Ethics
Approval for this study utilizing data from a publicly available,

deidentified database was provided by the local VA West Los

Angeles Institutional Review Board.

Database
Single channel EEG recordings with sleep stage annotations

were downloaded from the MIT-BIH polysomnographic database

(slpdb) from www.physionet.org (sampled at 256 Hz) [40,41]. The

list of subject numbers and data utilized is provided in Table 1.

Tracings were selected randomly based only upon relative lack of

obvious movement artifacts. Both contiguous and non-contiguous

tracings were joined together in 1 m (n = 15000) segments that

were annotated to be in the same consciousness state. Of the 16

possible subject records, only 14 had usable waking EEG tracings

of .1 m in length (Table 1).

Multifractal Time Series Analysis
Code for MF-DFA was written in the R programming language

[R Core 42] following the original description of the technique

[33]. While various ranges of q were tested, multifractal spectra

were most consistent with the range of 25#q#5 (data not shown).

Similarly, while higher-order polynomial detrending produced

equivalent results, overall the spectra were well-characterized with

a linear detrending procedure, which was thus exclusively utilized

for this study (MF-DFA1; data not shown).

Code written for WTMM was downloaded and used as

described: http://www.physionet.org/physiotools/multifractal/

[40]; the code was written to follow the original description of

the technique [34]. To complement the MF-DFA analysis (see

above), 25#q#5 was also used to generate multifractal spectra,

with intervals of 0.2 units of q, such that multifractal spectra from

both techniques were of the same length.

In the following, we use the h vs. D(h) naming convention, where

h is the Hölder exponent (abscissa) of a fractal subset and D(h)

(ordinate) is the corresponding fractal dimension, after [43], rather

than the a vs F(a) convention as in [24]. We refer to the graphs of

D(h) vs h as MF-DFA and WTMM spectra, depending upon the

method used.

For each time series, both analyses produce spectra such as

those shown in Fig. 1, each consisting of a set of 48 discrete points

(h, D(h)) with inverted parabolic shape. For each spectrum we

compute the parameters mean_h and mean_D(h), by averaging

the points. We also calculate width_h as the difference between the

maximum h and the minimum h and height_D(h) as the difference

between the maximum D(h) and minimum D(h).

Fractal Simulations
Fractional Brownian motion monofractal series were generated

with Hurst exponent (H) values of 0.2, 0.5 and 0.7 using the dvfBm

R package (120,000 data points each; version 1.0 [44]). The

binomial multifractal series was used as described [33], where a

series of N = 2nmax numbers with index k = 1,…, N, is defined by

Preliminary Study of MF-DFA on Human EEG
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xk~an k{1ð Þ 1{að Þnmax{n k{1ð Þ ð2Þ

For this series, a is a user-defined parameter which can take

values 0.5,a,1.We chose the parameter a = 0.6 such that the

resulting multifractal spectrum roughly matches that of the MF-

DFA spectra from the EEG samples. Here n(k) is the sum of digits

equal to 1 in the binary representation of the index k (120,000 data

points). As an example, choosing an index value of k = 13,

n(13) = 3, as the binary representation of the decimal number 13 is

1101. The log normal sigma 0.1 multifractal series (32,768 data

points) was downloaded from http://www.physionet.org/

physiotools/multifractal/, made from the log-normal wavelet

cascade algorithm with parameters n = ln(2)/4 and s = 0.1 as

described [34].

Statistics
All statistical tests were performed using R (v 2.13; [R Core 42])

and IBM SPSS (v.21.0, IBM, 2012). General linear modeling was

conducted using IBM SPSS, adjusting for subject-level effects. For

the results presented for the Figure 2 data, we estimated the

expected standard deviation of the sample variances for each of

the two techniques as described [45], using the formula:

Svar s2
� �

T~
N{1ð Þ2

N
m4{

N{1ð Þ N{3ð Þm2
2

N3
ð3Þ

Where N is the sample size, and m2 and m4 are the second and

fourth central moments of the distribution, respectively. We

estimate m2, the true variance of the distribution as the sample

variance, and calculate m4 as:

m4~

PN
i{1 xi{xð Þ4

N
ð4Þ

We compared the root mean square error of the combined

expected standard deviations for both MF-DFA and WTMM

techniques to the measured difference in variance to assess how

meaningful the measured differences were likely to be. As a rule of

thumb, if the measured difference in the variances was greater

than twice the pooled expected standard deviation of the

Table 1. List of subject numbers and data utilized.

Subject 8 min waking/sleep 2 data? recording site 1 min sleep stage data:

waking sleep 1 sleep 2 sleep 3 REM

S1 yes C4-A1 yes yes yes no yes

S2 yes O2-A1 yes no yes no yes

S3 yes C3-O1 yes yes yes no yes

S4 yes C3-O1 yes yes yes yes yes

S14 yes C3-O1 yes yes yes yes yes

S16 yes C3-O1 yes no yes yes yes

S32 yes C4-A1 yes yes yes yes no

S37 yes C4-A1 yes no yes no no

S41 yes C4-A1 yes yes yes yes yes

S45 no C3-O1 no no yes yes yes

S48 yes C3-O1 yes yes yes no yes

S59 yes C3-O1 yes no yes yes yes

S60 yes C3-O1 yes yes yes no yes

S61 yes C3-O1 yes yes yes yes yes

S66 yes C3-O1 yes no yes no no

doi:10.1371/journal.pone.0068360.t001

Figure 1. Comparison of MF-DFA spectrum from waking EEG to
numerical models of mono- and multifractal processes. Data
points represent individual D(h) and h values from MF-DFA from a
single time series of each type. waking: waking EEG (8 m, n = 120,000)
from a single subject; shuffled: waking EEG with values shuffled prior to
MF-DFA analysis; BMS: binomial multifractal series model with a = 0.6
(n = 120,000; Kantelhardt et al, 2002 [33]); LNS1: log normal sigma 0.1
multifractal model data (n = 32,768; Arneodo et al 1998 [50]; http://
www.physionet.org/physiotools/multifractal/); fbm2, 5, 7; fractional
Brownian motion monofractal models with Hb values of 0.2, 0.5, 0.7
as indicated (n = 120,000 each; dvfBm 1.0 R package).
doi:10.1371/journal.pone.0068360.g001

Preliminary Study of MF-DFA on Human EEG
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variances, this would imply that there was likely to be a true

difference between the measured variances for each technique.

Results

Modeling Human EEG as a Multifractal Process using MF-
DFA

In order to assess the feasibility of using MF-DFA analysis on

human EEG tracings, we performed MF-DFA on time series

derived from 8 m long EEG tracings from subjects in the MIT-

BIH slpdb database annotated for the waking state of conscious-

ness (typical example from one subject presented in Figure 1). For

each time series this analysis produced an MF-DFA spectrum of

typical inverted parabolic shape with width_h invariably $0.21

units (Figure 1; Table 2). Shuffling of the EEG time series followed

by MF-DFA abolishes the multifractality (Figure 1), resulting in a

monofractal spectrum with mean_h of 0. In order to compare

spectra derived from EEG with spectra derived from well-

understood monofractal (fractional Brownian motion (fBm)) and

multifractal series, we also performed the MF-DFA analysis on

various fractal simulations (Figure 1). In all cases, the MF-DFA of

fBm generated a narrow MF-DFA spectrum (,0.1 units),

consistent with monofractality. By contrast, MF-DFA of both the

binomial multifractal series and the log normal sigma multifractal

series generated wider spectra (larger width_h) with a larger range

of D(h) (larger height_D(h)) than the monofractal series (figure 1).

By direct comparison, MF-DFA spectra of human waking EEG

appear to have a degree of multifractality in between the two

multifractal simulations, and clearly greater than those for the

monofractal simulations (Figure 1).

In Table 2, we show the parameters derived from all 14

subjects’ MF-DFA analyses on 8 m long waking EEG tracings.

Comparison of MF-DFA to WTMM Multifractal Spectra for
EEG

To directly compare the variability of multifractal spectral

results from MF-DFA to that for WTMM, we utilized a MIT-BIH

slpdb dataset comprised of 16 segments of 30 s each (7500

datapoints) of waking EEG derived from 14 subjects, and

performed both types of multifractal analyses on each segment

(Figure 2A). For each multifractal spectrum from each segment,

we calculated mean_h, mean_D(h), width_h, and height_D(h)

(Figure 2A). WTMM and MF-DFA spectra were comparable

overall (cf. [36]; WTMM spectrum data not shown). The

variances for MF-DFA were markedly decreased compared to

those for WTMM. We calculated an estimate of the pooled

estimated standard deviation for the calculated sample variances

for each measure, and compared this to the difference in sample

variance between techniques to the pooled estimated standard

deviation as a ratio. Using a cutoff of .2 standard deviations as a

rough threshold for whether the measured difference in sample

Figure 2. Variance comparison between MF-DFA and WTMM techniques. A. For 14 subjects with 8 m of waking EEG each, divided into 30 s
segments (16 segments of n = 7500 data points each per subject), multifractal spectra were calculated (total of 224 segments). Mean Hölder exponent
value (mean_h), width of the Hölder exponents (width_h), mean fractal dimension (mean_D(h)) value, and height of the multifractal singularity
spectrum (height_D(h)) were calculated for each segment. B. The 14 subjects’ 8 m of waking EEG were analyzed whole, and multifractal specta were
calculated. Note the trend to reduced variance with increasing length of EEG tracing.
doi:10.1371/journal.pone.0068360.g002

Table 2. Individual subject data for 8 min waking EEG MF-
DFA spectra.

Subject mean_h width_h mean_D(h) height_D(h)

S1 0.099 0.28 0.884 0.273

S2 0.105 0.232 0.902 0.403

S3 0.203 0.332 0.848 0.642

S4 0.078 0.254 0.888 0.471

S14 0.147 0.278 0.891 0.272

S16 0.128 0.259 0.900 0.231

S32 0.112 0.379 0.832 0.539

S37 0.101 0.271 0.885 0.522

S41 0.093 0.245 0.890 0.418

S48 0.106 0.324 0.856 0.497

S59 0.129 0.334 0.855 0.556

S60 0.099 0.249 0.892 0.335

S61 0.14 0.211 0.904 0.735

S66 0.136 0.239 0.890 0.498

mean (s.d.) 0.12 (0.03) 0.278 (0.05) 0.880 (0.02) 0.456
(0.140)

doi:10.1371/journal.pone.0068360.t002

Preliminary Study of MF-DFA on Human EEG
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variances was likely to be meaningful, we found values of 1.3 for

mean_h, 2.9 for width_h, 7.6 for mean_D(h), and 4.2 for

height_D(h). This indicates that the variances for the latter three

measures were likely to be less for the MF-DFA technique than for

the WTMM technique with 30 s EEG segments (Figure 2A).

Next we repeated this analysis with the entire 8 m EEG from

each of 14 subjects, by comparing the variances derived from

mean_h, width_h, mean_D(h), and height_D(h) for the MF-DFA

and WTMM techniques (Figure 2B). As expected, there was a

strong trend for decreased variance overall for the longer tracings

(Figure 2B). Via the same estimation of the estimated standard

deviation of the pooled estimated variances, compared to the

measured difference in sample variances, we found values of 0.6

for mean_h, 0.4 for width_h, and 2.0 for mean_D(h), indicating

that of these three measures, only the variance in mean_D(h) was

likely to be lower for MF-DFA than for WTMM. By contrast, for

the height_D(h) measure, we found a ratio of 3.3, indicating that

for the 8 m tracing, the WTMM variance was likely to be lower

than that for MF-DFA (Figure 2B). We have plotted mean

multifractal spectra from the entire 8 m EEG from each of 14

subjects for the MF-DFA and WTMM techniques to provide for a

graphical comparison of the results given from each analysis

(Figure 3).

Linear Model Comparison of MF-DFA Spectra between
Waking and Sleep Stage 2

Given that the MIT-BIH slpdb dataset had the best represen-

tation among subjects for waking and sleep stage-2 EEG data [41],

we utilized a dataset of EEGs derived from 14 subjects comprised

of 16 segments of 30 s of EEG (7500 datapoints) per subject which

had been annotated for both waking and sleep stage-2 EEG.

Average MF-DFA spectra for all segments are plotted in Figure 4.

We also computed MF-DFA spectra for each segment, and linear

modeling was used to perform comparisons between these states of

consciousness, using data for mean_h, mean_D(h), width_h, and

height_D(h) separately (Figure 4). For mean_h, there was a large

difference between states of consciousness, with waking having

smaller mean_h values (F(1,433) = 671, p,0.001). By contrast, there

were no differences between sleep stages on width_h, mean_D(h)

and height_D(h).

Comparison of MF-DFA Spectra across All Sleep Stages
Given the sensitivity of MF-DFA to detect differences among

different states of consciousness within subjects with a larger

dataset (Figure 4), we decided to test the ability of MF-DFA

mean_h values to distinguish among states of consciousness with

only a single minute of EEG recording, across varying numbers of

subjects (as not all subjects had good quality EEG data for each

state of consciousness). We used 1 m (15000 datapoints) of

annotated EEG data from subjects with waking (n = 14), REM

(n = 12), sleep stage 1 (n = 9), sleep stage 2 (n = 15), and sleep stage

3 (n = 8). For each EEG trace, MF-DFA spectra were calculated,

and MF-DFA spectra averaged across subjects for each state of

consciousness are plotted in Figure 5. We paired t tests to assess for

differences between mean_h values for each state of consciousness

(Figure 5). There are significant differences for mean_h values

between waking and REM EEGs (t(10 = 2.8, p = 0.0018), sleep

stage 1 and sleep stage 2 EEGs (t(8) = 2.92, p = 0.019), and sleep

stages 2 and sleep stage 3 EEGs (t(7) = 4.97, p = 0.005) (Figure 5).

Conclusions

Human EEG is Well-modeled as a Multifractal Process
using MF-DFA

Given that finite-size effects result in a level of uncertainty in the

calculation of MF-DFA spectra (and indeed, all techniques to

estimate multifractality), care must be taken to ensure that MF-

DFA results are consistent with true multifractality [24,33,46].

This can be done by comparing results from multifractal analysis

with a given time series with that from simulations from mono-

Figure 3. Comparison of waking EEG between MF-DFA and
WTMM. For 14 subjects with 8 m of EEG from waking data per subject,
MF-DFA and WTMM spectra were calculated for each 8 m EEG series.
Average multifractal spectra for each technique shown here were
calculated by averaging individual spectra across subjects:
mean_h6s.d. is 0.1260.03 for MF-DFA, and 0.1760.04 for WTMM.
doi:10.1371/journal.pone.0068360.g003

Figure 4. Comparison between MF-DFA spectra of from waking
and sleep stage 2. For 14 subjects with 8 m of EEG from both waking
and sleep stage 2 per subject, EEG was divided into 16 segments of 30 s
each, and MF-DFA spectra were calculated for each segment (224
segments for each state of consciousness). Average MF-DFA spectra for
each consciousness state shown here were calculated by averaging
across individual spectrum values for each subject. **: p,0.001 for
effect of state of consciousness by general linear modeling based on
mean_h.
doi:10.1371/journal.pone.0068360.g004

Preliminary Study of MF-DFA on Human EEG
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and multifractal series (see Figure 1). MF-DFA results from human

EEG are comparable to those from known multifractal processes,

and appear to have a larger degree of multifractality than known

monofractal processes (Figure 1; also cf. [35–37]). Recent

calculations of the degree of finite-size effects to be expected in

multifractal spectrum calculations for non-multifractal processes

also support these results, in that we see a larger degree of

multifractality than expected by finite-size effects alone [46].

Taking into account the results presented here, results from

previously published data [35–37], and results from numerical

simulations [24,33,46], these data support the hypothesis that

human EEG can be successfully modeled as a multifractal process,

which may provide additional insight into changes in brain

neuronal dynamics associated with pathological states. To our

knowledge, these results are the first to formally assess the

suitability of multifractal methods to human EEG using simula-

tions of multifractal and monofractal data. Indeed, investigators

using WTMM have already shown differences in multifractal

spectra associated with psychiatric symptoms among subjects [37].

MF-DFA may be More Consistent than WTMM with
Shorter EEG Tracings

MF-DFA is an established technique for assessing multi-

fractality, which has been used successfully in several different

types of analysis, from simulations [33], to geophysics and ion

channels [38], to hydrology [47], to cardiology [43]. It has been

described as being comparable in terms of results, but needing less

computational power than WTMM [24,33]. Our results reported

here suggest that MF-DFA may be more consistent than WTMM

in terms of having a lower variance for parameters determined

from multifractal spectral data for shorter recordings (30 s, or

7500 data points at 256 Hz, Figure 2A), but being roughly

consistent with WTMM for longer (8 m) recordings (Figure 2B).

These results are supported by previous reports showing that MF-

DFA produces less overall variability than WTMM in other model

systems as well, particularly with smaller data sets [33,43,48].

Therefore, MF-DFA may be superior to WTMM in detecting

changes in neuronal dynamics underlying changes of conscious-

ness or perception via EEG in shorter recordings of ,30 s.

However, it is interesting to note that while both techniques give

similar results for a given EEG time series, they are certainly not

identical (Figure 3). While both methods aim to estimate the

multifractal spectrum, they use very different means to calculate

singularities in data, and thus assess for multifractality in time

series [32,33]; therefore it is not surprising that the results of the

two techniques may vary.

MF-DFA may have Utility in the Recognition of Changes
in States of Consciousness

Data presented here (Figures 3 and 4) support the notion that

MF-DFA analysis of even relatively short (,1 m) EEG tracings

may have sufficient sensitivity to assist in automatic recognition of

changes in the state of consciousness, including sleep stages in

polysomnography. Comparing differences in mean_h values is

likely to be the most useful technique, given that these tend to vary

more between different states of consciousness than mean_D(h)

and other values (Figures 4 and 5). In both the current study, and

in the study of WTMM analysis of sleep stage differentiation [36],

it is notable that only the mean_h values vary among sleep stages.

It is interesting to note that both mean_h and width_h values were

found to change within subjects after exposure to a painful

stimulus [37], demonstrating that different states of consciousness

may result in different effects on the multifractal spectrum.

Current clinical criteria for sleep staging do not include computer-

assisted feature detection, however the data presented here will

add to emerging evidence that automatic sleep-stage detection

could have a role to play in the future [49].

A significant limitation of this study is the limited publicly

available dataset, with more than 20 year old EEG data, and

minimal accompanying demographic information. Similarly, only

a single EEG channel was provided, which differed among

subjects. However, given the robust results we obtained in

comparing multifractal spectra for different states of consciousness,

it is clear that MF-DFA analysis of EEG tracings certainly deserves

additional study with larger and more complete clinical EEG

datasets.

Our results suggest that multifractal analysis via MF-DFA of

EEG signals recorded from humans may be used to gain an

improved understanding of the relevant underlying neuronal

dynamics, compared to traditional techniques. Given that cortical

neuronal networks exhibit nonlinear interactions characterized by

a range of fractal exponents with varying scales, the technique of

MF-DFA has the potential to be capable of describing essential

features of the underlying neuronal dynamics for EEG signals in a

way that is superior either to traditional techniques (e.g., spectral

analysis via Fourier transform), or measures derived from

monofractal analysis (e.g., monofractal box-counting methods or

standard Detrended Fluctuation Analysis (DFA)). Brain disorders

in humans are thought to reflect disorders of neuronal dynamics,

and therefore multifractal DFA spectrum analysis of human EEG

signals may prove to yield additional insights into disorders of

neuronal dynamics than other currently available methods.

Figure 5. Comparison among stages of sleep for 1 minute of
EEG data. For each stage from each subject, 1 min of EEG data was
used to calculate MF-DFA spectra. Average MF-DFA spectra for each
consciousness state shown here were calculated by averaging across
individual spectrum values for each subject. Mean h values were then
calculated for the h range, and differences between sleep stages
compared by paired t testing. *p,0.05; **p,0.01. Significant
differences were found for the waking-REM, Sleep 1-Sleep 2, and Sleep
2-Sleep 3 comparisons.
doi:10.1371/journal.pone.0068360.g005
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