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Abstract— Wind power production is variable, but also has di-
urnal and seasonal patterns. These patterns differ between sites, 
potentially making electric power from some wind sites more 
valuable for meeting customer loads or selling in wholesale power 
markets. This paper investigates whether the timing of wind sig-
nificantly affects the value of electricity from sites in California 
and the Northwestern United States. We use both measured and 
modeled wind data and estimate the time-varying value of wind 
power with both financial and load-based metrics. We find that 
the potential difference in wholesale market value between better-
correlated and poorly correlated wind sites is modest, on the or-
der of 5–10 percent. A load-based metric, power production dur-
ing the top 10 percent of peak load hours, varies more strongly 
between sites, suggesting that the capacity value of different wind 
projects could vary by as much as 50 percent based on the timing 
of wind alone. 
 

Index Terms—energy resources, power generation economics, 
renewable energy sources, wind power generation  

 

I. INTRODUCTION 
Wind power production varies on a diurnal and seasonal ba-

sis. In this paper, we use wind data from three different 
sources to assess the effects of wind timing on the value of 
electric power from potential wind farm locations in California 
and the Northwestern United States. By “value,” we refer to 
either the contribution of wind power to meeting the electric 
system’s peak loads, or the financial value of wind power in 
wholesale electricity markets. 

Sites for wind power projects are often screened or com-
pared based on the annual average power production that 
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would be expected from wind turbines at each site [1-6]. How-
ever, at many locations, variations in wind speeds during the 
day and year are correlated with variations in the electric 
power system’s load and wholesale market prices [7-11]; this 
correlation may raise or lower the value of wind power gener-
ated at each location. A number of reports address this issue 
somewhat indirectly by studying the contribution of individual 
wind power sites to the reliability or economic operation of the 
electric grid, using hourly wind speed data [12-16]. However, 
we have not identified any study that examines the effect of 
variations in wind timing across a broad geographical area on 
the wholesale market value or capacity contribution of differ-
ent wind power sites. We have done so, to determine whether 
it is important to consider wind timing when planning wind 
power development, and to try to identify locations where tim-
ing would have a more positive or negative effect. 

In our research, we seek to answer three specific questions: 
1) How large of an effect can the temporal variation of 

wind power have on the value of electric power from 
different wind resource areas?  

2) Which locations are affected most positively or nega-
tively by the seasonal and diurnal timing of wind 
speeds? 

3) How compatible are wind resources in California and 
the Northwest (Washington, Oregon, Idaho, Montana 
and Wyoming) with wholesale power prices and loads in 
either region?  

The latter question is motivated by the fact that wind power 
projects in the Northwest could sell their output into California 
(and vice versa), and that California has an aggressive renew-
able energy policy that may ultimately yield such imports.  

We perform this assessment using three data sources:  a nu-
merical wind model, anemometer measurements, and historical 
power production at existing wind farms. Each of these is an 
imperfect estimator of turbine-height wind conditions – nu-
merical models have limited resolution and mathematical de-
tail, while anemometer and production data are available for 
limited time periods and only for heights lower than modern 
turbines. By comparing results from all three, we seek to draw 
firmer conclusions than we could from any one individually. 

This paper summarizes results that are presented in more 
detail in a recent report from Lawrence Berkeley National 
Laboratory [17]. 
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II. METHODS 

A. Wind Data 
We use three wind datasets to estimate the time-varying 

wind power available from California and Northwestern wind 
sites: 

1) Modeled: AWS Truewind provided modeled wind 
speeds for every cell on a 200-meter grid in California 
and a 400-meter grid in the Northwest [18, 19]. This 
dataset was created by modeling weather conditions for 
366 historical days, chosen at random from a 15-year pe-
riod. AWS TrueWind provided average wind speeds for 
every month-hour combination in California (e.g., 4-5 
pm in July) and every season-hour in the Northwest 
(e.g., 8-9 pm “winter”: December, January and Febru-
ary).  

2) Anemometers: We used hourly anemometer data from 
Kenetech, Inc. (167 sites, various periods in 1991-94) 
[20], the Bonneville Power Administration (6 sites, 
~1985-2003) [21] and the DOE Candidate Site program 
(7 sites, 1977-82) [20]. 

3) Actual Wind Farm Production: We used hourly power 
production data from the Altamont, Tehachapi and San 
Gorgonio wind resource areas in 2002 [22]. 

AWS TrueWind provided diurnal profiles of wind speeds 
that were averaged over months or seasons, because they be-
lieved that their modeled wind data were insufficient to report 
at a finer temporal resolution. Similar concerns arise in at-
tempting to characterize electricity loads, market prices, and 
anemometer-based wind speeds from the few years of hourly 
measurements that are available. We consequently performed 
all of our analysis using wind speeds and electricity data that 
were averaged for each combination of month and hour (e.g., 
6–7 p.m. in June)1, which we believe provides the most robust 
estimate possible of the “typical” seasonal and diurnal varia-
tion of wind speeds and electricity demand. This approach 
implicitly neglects any hour-to-hour correlation between wind 
speeds and electricity demand and prices, beyond the correla-
tion captured by their month-hour or season-hour averages.  

B. Wind Resource Areas 
For some of the analysis that follows, we group the ane-

mometers in our dataset into separate “wind resource areas,” 
about 40 km across, in order to estimate the local effects of 
wind timing in the areas that are most likely to receive wind 
power development. These areas are shown in Fig. 1.  

C. Electric Power Production from Wond 
We perform several steps to estimate average wind power 

production for each month-hour combination from the mod-
eled and anemometer datasets.  

 
1 As noted above, the modeled hourly data for the Northwest were only 

available on a seasonal basis. When using this dataset, we assumed that 
speeds were the same for all three months in each season. 

All the measurements of wind speeds in our anemometer 
dataset were taken at levels below the hub height of modern 
wind turbines. The modeled data for the Northwest were also 
calculated at a relatively low height. We estimate wind speeds 
at a turbine hub height of 70 meters above ground level by 
applying a power law adjustment to the lower-level wind 
speed: 

( )α00
hhvv hh = , (1) 

where h is the turbine height (70 meters), h0 is the height for 
which the wind speed is known, vh and vh0

are the wind speeds 
at these heights, and α is a “wind shear exponent.” After a re-
view of time-varying wind speeds at different heights in our 
anemometer dataset and in other reports, we adopted wind 
shear exponents of α=0.09 during the day and α=0.20 at night 
[17]. 

The typical air density for each month-hour combination at 
each location is calculated from the elevation above sea level 
and the average temperature for that month and hour. We cal-
culate air density (ρ) using the equation 
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where ρ0 is the density of air at standard temperature and pres-
sure (1.225 kg/m3), Rd is the gas constant for dry air, T is the 
local temperature (°K), β is the temperature lapse rate for the 
standard atmosphere (6.5°C/km), z is the elevation of the tur-
bine above sea level, and g is the force of gravity. 

Next, we use the manufacturer’s power curve for a GE En-
ergy 1.5 MW wind turbine to calculate the potential power 
production at each location during each time period. We chose 
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Fig. 1. Locations of anemometers and wind resource areas. Parentheses in-
dicate the number of anemometer towers in each area. 
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this turbine because it made up the majority of new U.S. wind 
capacity in 2005-06 [23]. For consistency, we assume a 70.5 
meter rotor (model 1.5s) is used at all locations. This turbine 
converts about 40 percent of the kinetic energy of wind into 
electric power at wind speeds between 4 m/s and 13 m/s, and 
tops out at 1.5 MW for speeds from 13 m/s to 25 m/s.  

Finally, we assume that a total of 12 percent of the power 
that could potentially be produced by each turbine is lost, due 
to electrical and control system losses, blade contamination, 
weather (icing, lightning, etc.), wake effects, turbulence, and 
turbine outages [24].  

For each anemometer location, the average power produc-
tion (Pm,h) for the combination of month m and hour h is calcu-
lated as 

∑
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where Tm,h is the set of all measurement hours that correspond 
to month m and hour h, vt is the height-adjusted wind speed 
during hour t, ρm,h is the typical air density at that location dur-
ing this month and hour, and P(v, ρ) is the power curve for the 
GE 1.5s turbine. 

For the modeled data, the power production at each grid cell 
during each month-hour is calculated as 

∫−=
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where fm,h(v) is a probability density function for the wind 
speed at that location and time (a Weibull function derived 
from the modeled data) and P(v, ρ) is the turbine power curve. 
The integral averages across all the operable speeds of the GE 
1.5s turbine [17]. 

 

D. Value of Wind Power 
We compare the wind data to electricity loads and whole-

sale electricity prices for California and the Northwest to esti-
mate the effects of wind timing on the value of wind-generated 
electricity. The effects of timing were measured by two ap-
proaches.  

 
1) Capacity Value 

Electric generators, such as wind turbines, can contribute 
both energy and capacity to the electric power system. The 
energy contribution is simply the total amount of usable en-
ergy supplied by the generator per year, regardless of the time 
when it is produced. The capacity contribution is most often 
defined as the number of watts by which the system’s year-
round loads can be increased after a generator is added to the 
system, without increasing the chance of a shortfall in electric 
supply over the course of the year [12-14]. This “effective 
load-carrying capacity” (ELCC) depends on the reliability and 
timing of both the new generator and the other generators al-
ready in the system, as well as the timing of the electric load.  
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summer afternoons, and loads in the Northwest have peaked 
predominantly on winter mornings and evenings. 

In this paper, we summarize the effect of wind timing on the 
peak-hours capacity factor at each site, using a variable fc. For 
each site, fc shows the fractional difference between the peak-
hours capacity factor (cpeak) and the annual average capacity 
factor (cyear):  

fc =
c peak − cyear

cyear

=
cpeak

cyear

−1, (5) 

That is, fc shows the fraction by which the peak-hours capacity 
factor is increased or decreased by wind timing. A wind site 
with a positive value of fc would have higher average power 
production during peak load hours than during the year as a 
whole, suggesting that its capacity contribution would be lar-
ger than that of a flat block of power with the same annual 
energy value. A negative value of fc indicates the reverse. 

 
2) Wholesale Market Value 

Many studies have investigated the cost of using conven-
tional generators to compensate for the intermittency of wind 
power over short time periods – maintaining grid stability over 
periods of seconds, minutes or hours [33-36]. Generally, it is 
found that these variations can be managed at a cost of about 
10 percent of the value of the wind power [33]. 

For our study, we neglect these short-term variations, and 
take a longer-term approach, investigating the effect of persis-
tent patterns of wind timing on the financial value of wind 
power. For example, if a wind project typically delivers more 
power when wholesale electric prices are high, it could be 
more valuable than one which usually delivers power when 
those prices are low. 

To investigate this, we compare the wholesale market value 
of wind under two scenarios: one in which wind production 
does not vary with time, and another in which it does. In both 
cases, wind plants are assumed to be “price takers” in time-
varying wholesale markets. In reality, wind farm developers 
typically arrange long-term power sales agreements rather than 
selling power in the wholesale market; however, this technique 
gives a simple estimate of the value of power from each loca-
tion, relative to a flat block of power. To the extent that long-
term and short-term markets tend to balance, these estimates 
may also give some information about the real revenues avail-
able to wind farm developers at each location. 

Wholesale prices rise and fall in response to scarcity of ei-
ther generating capacity or energy, so, unlike the peak-hours 
capacity factor discussed earlier, the wholesale market value 
reflects, to some degree at least, the combined contribution of 
both capacity and energy from a wind project. 

For each wind site, we first estimate the annual market value 
that would be expected based on time-varying wind speeds and 
wholesale power prices: 

vvar = dmPm,h pm,hh=1

24∑m=1

12∑ . (6) 

Here Pm,h is the power production expected at the location 
during each month m and hour h, pm,h is the average wholesale 

market price of power in the region during the same time pe-
riod, and dm is the number of days in the month. For sites in 
California, we use historical wholesale prices (pm,h) that are the 
average of the CalPX prices for the NP15 and SP15 hubs for 
each month-hour combination during July 1998 – June 1999. 
We chose this time period because it provides a full year of 
market data before the power crisis of 2000–01 and the subse-
quent restriction of wholesale markets. For Northwestern sites, 
month-hour average prices are based on the Dow Jones hourly 
prices for the Mid-C hub for May 2002 – April 2005 [37]. We 
have also performed this analysis using forecast prices for both 
regions [17]; results were similar to those found using histori-
cal prices, and are omitted from this paper for brevity. 

We next estimate the annual market value for wind power 
from each location if production were invariant with time:  

vinv = dmPpm,hh=1

24∑m=1

12∑ , (7) 

where  

P = 1
8760 dmPm,hh=1

24∑m=1

12∑ (8) 

is the annual average power production at that location and 
other terms are the same as in (6). This is the market value that 
would be achieved by a turbine with unvarying year-round 
power output, or power output that varies independently of 
market prices. 

Finally, for each site we compute fv, the fractional difference 
between the market value of power with time-varying winds, 
and the value that would be expected if winds were invariant. 

fv =
vvar − vinv

vinv

=
vvar

vinv

−1, (9) 

This measure indicates the degree to which temporal wind 
patterns would be expected to increase or decrease the whole-
sale market value of wind power from each site. 

 

E. Limitations of this Analysis 
This study is designed to assess the value of small incre-

mental additions of wind power to the electric grid. This as-
sumption simplifies our analysis, but introduces limitations 
which could be relaxed in future work. 

First, we assume that new wind power does not shift the tim-
ing of wholesale power prices or peak residual loads. In real-
ity, if large amounts of wind power are added to the system, 
they may cause the value of power to fall at the times when the 
most wind power is available, so that the timing of wind has a 
more negative effect than shown here. 

Second, in order to use a common standard to compare the 
value of power from different wind sites, we assume that suffi-
cient transmission capacity is available to deliver power from 
each wind site to other locations throughout the region. We 
then aggregate electric loads across all utility service areas to 
determine a single set of peak load hours for each region. 
Similarly, we use the market prices of electricity at one major 
load center in California and one in the Northwest. These gen-
eralizations allow for direct comparison of wind power from 



TPWRS-00754-2006 
 

5

all local sites, based on their value to the region as a whole; 
however, the value of power could be somewhat different if it 
were calculated using more localized loads or market prices. 

We also note that the results of this study are not guaranteed 
to be applicable over the long term, because they are based on 
wind, load and market price data which are only available for a 
limited number of years. In particular, anemometer and pro-
duction data are not available for a long historical period, nor 
for years which match recent load and price data. 

 

III. RESULTS 
In this section, we first discuss the temporal pattern of winds 

in the study regions and differences in these patterns as re-
ported by our three datasets. We then discuss the effect of 
wind timing on the value of wind power, drawing particular 
attention to findings that are consistent among all three data-
sets. 

A. Seasonal and Diurnal Timing of Winds 
In coastal passes in both California and the Northwest, all 

three of our datasets show peak winds during the summer, 
driven by a complex interaction of the sea breeze circulation, 
high pressure over the North Pacific, and a coastal subsidence 
inversion [38, 39]. Further inland, winds are more storm-
driven, and wind speeds generally peak in the winter, accord-
ing to all three datasets.  

Winds throughout both regions have relatively little diurnal 
variation at any time of year, with the exception of summer 
winds in coastal passes. There, all three datasets show strongly 
night-peaking winds and daytime lulls (Fig. 2a,b).  

There is some disagreement among the datasets about sum-
mer afternoon wind speeds, particularly in coastal passes. The 
modeled data show lower wind speeds than the anemometers 
on summer days in most coastal locations (Fig. 2a,b) and a few 
inland locations (Fig. 2c). The historical production data from 
operating wind projects are more similar to the anemometer 
data in some cases (Fig. 2a) and the modeled data in others 
(Fig. 2b).  

California’s electricity loads peak on summer afternoons, so 
accurate estimates of summer daytime wind speeds or power 
production at turbine hub heights are needed in order to cor-

rectly estimate the value of power delivered to this state. Un-
fortunately, a number of factors could reduce the accuracy of 
estimates of these data in each of our datasets. Numerical 
weather models use limited resolution and mathematical com-
plexity, which introduces some uncertainty into their wind 
speed estimates. On the other hand, our anemometer and his-
torical production data come from relatively short towers dur-
ing arbitrary time periods, so they may not reflect conditions at 
70 meter elevation or over a long historical period as well as a 
numerical weather model. More discussion of these concerns 
can be found in [17]. 

Because none of our datasets can be identified as the most 
accurate estimate of prevailing wind conditions, in the sections 
that follow we emphasize findings that are common to all three 
datasets. 

 

B. Effects of Wind Timing in Each Resource Area 
We first assess the effects of wind timing in individual re-

source areas where anemometers were placed, as shown in 
Fig. 1. These may be the regions most likely to receive future 
wind power development. We show the effects of wind timing 
in each resource area using market data from both California 
and the Northwest, rather than assuming that all wind power is 
used in the same region where it is produced.  

We calculated the effects of wind timing using historical 
electricity loads and historical wholesale market prices [17]. 
Variations in peak-hours capacity factor (fc) between sites are 
about seven times greater than the variations in wholesale 
market value (fv) shown here. Despite this difference in magni-
tude, the two measures generally identify the same sites as 
having well-timed or poorly-timed winds.  

Fig. 3 shows the effect of wind timing on the value of wind 
power from each of the resource areas, when considering his-
torical Northwestern wholesale power prices. The circles indi-
cate the median effect among all anemometer sites in each 
resource area. The squares indicate the median effect found 
using modeled data for the same sites. For the Altamont, Te-
hachapi and San Gorgonio resource areas, we also show the 
effects calculated using the total output from all wind farms in 
each resource area. There is good agreement between the ane-
mometer and modeled datasets when assessing the value of 
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Fig. 2. Summer diurnal power production for three resource areas, from anemometers and modeled data at the same grid cell, and production turbines in the 
same region. 
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power using the Northwest’s wholesale prices (which peak in 
the winter). Seven or eight out of eleven Northwestern re-
source areas appear to be at least somewhat positively matched 
to the Northwest’s wholesale prices, while only 1–3 of the 
eight California resource areas show a positive match, which is 
weak at best. 

Fig. 4 shows the effect of wind timing when using Califor-
nia’s historical wholesale prices, which peak strongly on sum-
mer afternoons. As was discussed in section III.A, anemome-
ters in coastal passes and some inland sites show higher winds 
at these times than the modeled data. Consequently, the ane-
mometer data give more positive estimates of the effect of 
wind timing in these locations.  

According to the anemometer data shown in Fig. 4, about a 
third of the Northwestern resource areas and half of the Cali-
fornia resource areas are positively matched to California’s 
summer-afternoon-peaking historical prices. However, mod-
eled data at the same locations suggest that only a quarter of 
the Northwestern resource areas and no California areas are 
positively matched to California’s historical prices. Where 
available, the actual historical power production data yield 
results that are intermediate between those found using the 
other two datasets. 

One might expect many of the California resource areas to 
be positively matched to the state’s power markets, based on 
the fact that winds at these sites peak in the summer. However, 
both the modeled and anemometer data suggest that daytime 
lulls reverse this positive match, so that the value of power at 
these sites is roughly equal to or less than that of a flat block of 

power. 

C. Range of Results Among All Anemometer Sites 
We next consider the range of the effect of wind timing 

among all anemometer sites in all resource areas. In this sec-
tion, we assume that California wind power is used in Califor-
nia, and Northwestern wind power is used in the Northwest.  

Fig. 5 shows the range we found for fc and fv when using the 
available anemometer measurements in each region, and when 
using modeled data for the grid cells at the same locations as 
the anemometers. Central bars show the median value of fc or 
fv among all anemometer sites in each region, boxes show the 
interquartile range, and whiskers show the range between the 
10th and 90th percentiles. These locations do not cover all 
possible wind sites in the state (see next section). However, 
anemometers in our dataset are generally concentrated in the 
most promising areas for wind development, so the results 
found at these locations may be representative of the effects of 
wind timing among all the areas where wind farms are likely to 
be built.  

In the Northwest, using either the anemometer or modeled 
data, wind resources at the anemometer sites appear to be 
about neutrally matched to historically winter-peaking electri-
cal loads and wholesale market prices.  

In California, the anemometer data suggest that wind timing 
has a neutral effect or slightly raises the value of power, while 
the modeled data suggest that wind timing generally reduces 
the value of power at the same locations.  

Despite this disagreement, the two datasets generally agree 
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Fig. 3.  Median effect of wind timing on wholesale market value at ane-
mometer sites in each resource area, based on historical Northwestern prices.
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. 

 of Results Among All Modeled Grid Cells 
consider the effect of wind timing at all modeled 

grid cells in California and the Northwest with annual average 
winds equivalent to a Class 4 or better wind site (average wind 
speed >7.3 m/s). These locations have wind speeds that are 
usually considered economically viable for wind power devel-
opment, so this allows us to assess the effect of wind timing 
among all possible wind sites, rather than just the ones where 
anemometers have been placed in the past. However, it should 
be noted that these results include many locations that are in-
accessible or otherwise unsuitable for wind farm development 
(e.g., steep mountain ridges or national parks). 

Fig. 6 shows the results of this analysis, with wind power 
used locally or exported to the neighboring region. According 
to the modeled data, temporal wind patterns could have a large 
effect on the average power output during hours of peak elec-
tricity demand, and a smaller but not insignificant effect on the 
annual wholesale market value of wind power. 

The modeled data indicate that the best- and worst-timed of 
the windy Northwestern grid cells have capacity-factors dur-
ing the Northwest’s peak load hours that range from 6 to 34 
percent above their annual average capacity factors (at the 
10th and 90th percentiles), with a median of 20 percent above. 
Windy locations in California have capacity factors during 
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ct of wind timing on peak-hours capacity factor and annual market value at all Class 4+ grid cells, based on modeled data (10th, 25th, 50th, 
percentiles). Arrows indicate the region where wind power is generated and where it is used. 
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California’s peak load hours that range from 7 percent above 
to 30 percent below their annual average capacity factors, with 
a median of 15 percent below. According to the modeled data, 
loads in each region are best served by local wind power, 
rather than imports from the neighboring region. This differs 
from the anemometer results shown in Fig. 4, which indicate 
that Northwestern and California winds are about equally 
matched to California markets. 

According to the modeled data, the worst-timed Northwest-
ern sites have a wholesale market value approximately equal 
to what would be obtained if their power output was com-
pletely uncorrelated with electricity demand, while the best-
timed sites have a market value about 3 percent more than this, 
based on the Northwest’s historical prices. Windy California 
sites match historical California prices about 0–6 percent 
worse than a flat block of power. Again, the modeled data in-
dicate that each region is better served by local rather than 
imported wind power. 

Fig. 7 shows the geographic distribution of the effect of 
wind timing at all Class 4+ grid cells, according to the mod-
eled dataset, when using Northwestern wind power with the 
Northwest’s historical prices or California wind power with 
California’s historical prices. Wind timing appears to have a 
neutral or positive effect at most Northwestern high-wind loca-
tions. In California, wind timing appears to improve the value 
of power from the northernmost coast, but reduces the value of 
power from high-wind locations elsewhere in the state.  

It is tempting to conclude from this map that California 
wind sites have inherently poor wind timing, while Northwest-
ern sites have good timing. However, Fig. 6 indicates that 
winds throughout both regions are generally poorly matched to 
California loads and markets, and neutrally or positively 
matched to Northwestern loads and markets. This suggests that 
much of the difference between the two regions may be due to 
the timing of electricity loads and markets, rather than the tim-
ing of winds. 

Compared to the modeled data in Figs. 3–5, Figs. 6–7 show 
a more neutral match between California winds and either 
California or Northwestern electricity demand. This may be 
because Figs. 6–7 include all possible Class 4+ sites, providing 
more diversity in wind timing than the anemometer sites 
shown in Figs. 3–5. Figs. 6–7 also show Northwestern wind 
sites as better matched to Northwestern loads and markets than 
Figs. 3–5 suggest. This may be because Figs. 6–7 include win-
ter-peaking mountain sites, where anemometers have not been 
placed and wind resource development is unlikely. 

 

IV. CONCLUSION 
Although the wind datasets used for this analysis have some 

inconsistencies, there are also areas of agreement, from which 
we are able to reach several important conclusions about the 
effect of wind timing on the value of wind power. 

Temporal patterns have a moderate impact on the whole-
sale market value of wind power. According to both the ane-

mometer and modeled datasets, the best-timed wind power 
sites have a wholesale market value that is up to 4 percent 
higher than the average market price, while the worst-timed 
sites have a market value that is up to 11 percent below the 
average market price. This is a relatively narrow range, and 
suggests that the timing of wind is not likely to severely de-
grade the market value of wind power. 

Temporal patterns have a substantial impact on the capac-
ity factor during peak hours. The best-timed wind sites could 
produce as much as 30–40 percent more power during the top 
10 percent of peak load hours than they do on average during 
the year, while the worst timed sites may produce 30–60 per-
cent less power during these hours. It would be valuable to 
develop better estimates of the effective load-carrying capacity 
(ELCC) at different wind sites, in order to better assess the 
effect of wind timing on the capacity credit for wind farms. 

Northwestern markets appear to be well served by North-
western wind and poorly served by California wind; results 
are less clear for California markets. Both the modeled data 
and the anemometer data indicate that many Northwestern 
wind sites are reasonably well-matched to the Northwest’s 
historically winter-peaking wholesale electricity prices and 
loads, while most California sites are poorly matched to these 
prices and loads. However, the modeled data indicate that 

Market value of wind power, relative to a flat block of power (fv)
< -2.5%
-2.5% to -0%

+0% to +2.5%
> +2.5%

0 2km0 200km

Fig. 7.  Percentage change in market value of power due to the timing of 
wind at Class 4+ grid cells, based on modeled data. Wind in most California 
high-wind locations is poorly matched to California power markets, but 
Northwestern wind is better matched to Northwestern markets. (Inset shows 
the resolution of the underlying modeled data.) 
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most California and Northwestern wind sites are poorly 
matched to California’s summer-afternoon-peaking prices and 
loads, while the anemometer data suggest that many of these 
same sites are more neutrally matched to California’s whole-
sale prices and loads. 

Modeled and anemometer data agree about wind speeds in 
most times and places, but disagree about California’s sum-
mer afternoon wind speeds: The modeled data indicate that 
wind speeds at sites in California’s coastal mountains and 
some Northwestern locations dip deeply during summer days 
and stay low through much of the afternoon. In contrast, the 
anemometer data indicate that winds at these sites begin to rise 
during the afternoon and are relatively strong when power is 
needed most. At other times and locations, the two datasets 
show good agreement. This disagreement may be due in part 
to time-varying wind shear between the anemometer heights 
(20–25m) and the model reference height (50m or 70m), but 
may also be due to modeling errors or data collection inconsis-
tencies. These findings suggest that it is reasonable to use 
TrueWind’s modeled data to assess the effect of temporal pat-
terns in wind speeds, especially when the value of electricity 
does not peak sharply in the summer. However, more data 
from tall anemometer towers or operational wind farms are 
needed to resolve differences between the datasets for summer 
afternoons. 
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