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ABSTRACT OF THE DISSERTATION

A Wearable Platform for Decoding

Single-Neuron and Local Field Potential Activity

in Freely-Moving Humans

by

Uros Topalovic

Doctor of Philosophy in Electrical and Computer Engineering

University of California, Los Angeles, 2022

Professor Dejan Markovic, Chair

Advances in technologies that can record and stimulate deep-brain activity in humans have

led to impactful discoveries within the field of neuroscience and contributed to the develop-

ment of novel closed-loop stimulation therapies for neurological and psychiatric disorders.

Human neuroscience research based on intracranial electroencephalography (iEEG) is con-

ducted on voluntary basis during various stages of participant’s disease treatment using both

external (in-clinic) and implantable systems. In clinical practice, external systems serve as

monitoring and testing ground for biomarker extraction and closed-loop neuromodulation,

which are, once approved, translated into a compact and low compute resource implantable

version for disorder treatment.

External systems allow recordings with fine spatiotemporal resolution at the expense of

participant’s mobility due to their large size, while implantable devices have reduced record-

ing capabilities and they are not restricted to clinical environment. Due to high transmission

and processing latencies across multiple devices, external systems have limited support for
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testing computationally expensive online biomarker detection and machine-learning based

closed-loop electrical stimulation paradigms including online stimulation programmability.

The motivation for this work comes from the need to extend capabilities of externalized

systems, allowing more naturalistic (freely-moving) human neuroscience experiments with

fine spatiotemporal resolution. Additionally, externalized systems should provide flexible

and local hardware resources that can support real-time and moderately complex embedded

neural decoders (biomarker extraction), which in turn could be used to trigger adaptive

closed-loop stimulation with low latency. In order to demonstrate initial proof-of-concept

technology, this work incorporates: 1. A small versatile neuromodulation platform that can

be wearable and lightweight, supporting up to 16 depth electrode arrays; 2. A high-rate

(∼4 MB/s on all channels) interfacing of the analog sensing and stimulation front-ends with

wearable hardware suitable for embedded machine learning algorithms including artificial

neural networks (usually >100M multi-accumulate operations or MACs); 3. A state of the

art, performance-driven, neural decoder, small enough to run on an embedded hardware

and large enough to generalize across participants; 4. Real-time training and inference with

millisecond latency; 5. Closing the loop from the decoder output to the stimulation engines.

Therefore, we developed a wearable, miniaturized, embedded, and external neuromodula-

tion platform built from previously reported integrated circuits for sensing and stimulation,

and interfaced with Edge Tensor Processing Unit (TPU) for real-time neural analysis. The

Neuro-stack can record and decode single-neuron (32 channels), local field potential (LFP;

256 channels) activity, and deliver highly programmable current-controlled stimulation (256

channels) during stationary and ambulatory behaviors in humans. The TPU Dev Board was

chosen because of the ability to perform 2 trillion MACs per second (64 × 64 MAC matrix

at 480 MHz) using 2 W of power, with data bandwidth of 40 MB/s. Additionally, the

system contains a field-programmable gate array (FPGA) for data pre-processing (filtering,

down-sampling) and ARM-based microprocessor (TPU Dev Board) for data management,

device control, and secure wireless access point. The Neuro-stack interfaces with the brain
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through commonly used macro- and micro-electrodes. The Neuro-stack validation includes

in-vitro testing of recorded signal quality and measurement of system induced delays (e.g.,

closed-loop delay from sensing to stimulation site - 1.57 ± 0.19 ms). We provide in-vivo

single-unit, LFP, iEEG, and stimulation delivery recorded (2 – 40 channels) from twelve hu-

man participants who had depth electrodes implanted for epilepsy evaluation. Among this

data are also the first recordings of single-neuron activity during human walking.

To utilize hardware capabilities of the Neuro-stack, we developed a software decoder

based on prerecorded human LFP data, which uses TensorFlow artificial neural network

(sequential convolutional 1D and recurrent layers) to predict the outcome of a memory task

from raw data with higher performance (F1-score 88.6 ± 5.5%) than current state of the art

that use shallow machine learning methods (∼70%) under a latency constraint. To shorten

the signal processing latency of our decoder, while keeping the accuracy high, the trained

and tested model was then ported (coefficient quantization from 16-bit floating-point to

8-bit fixed-point) to the TPU co-processor to make the prediction in real-time on the Neuro-

stack. Additionally, we utilized transfer learning approach to update the TPU model with

coefficients that were fine-tuned to each participant in real-time. The Neuro-stack decoder

was in-vitro validated as part of the time adaptive closed-loop stimulation delivery with

pre-configured stimulation current parameters based on the LFP decoder outputs that were

predictive of unsuccessful memory encoding. We also used the Neuro-stack to perform human

in-vivo real-time binary prediction (69% F1-score) of memory task performance from medial

temporal lobe (MTL) regions. Each inference step was executing 193M MACs in 2.8 ms on

average, for total round-trip delay of 4.4 ms.

The Neuro-stack is a wearable and versatile neuromodulation platform, able to record

and stimulate large number of iEEG and single-unit channels, and process the raw data using

artificial neural networks in real-time. These functionalities were not available so far on a

single low-latency device. Thus, the Neuro-stack can improve existing or allow completely

new research studies. By using the Neuro-stack, researchers could, for example, determine
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the neural mechanisms underlying human freely-moving behaviors (e.g., spatial navigation)

to identify spatially selective neurons and their modulation by cognition that have been

previously discovered only in animals. Also, the Neuro-stack decoder could be used to

identify more complex multimodal biomarkers as well as to record and characterize their

exact changes under stimulation with known or previously not possible parameters. This

could lead to developing novel neuromodulation therapies for patients with brain disorders,

while they participate in hospital trials resembling real world environments.
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1 Introduction

Recent advancements in neurotechnology have allowed not only improved diagnosis and

monitoring of the brain disorders, but also their successful treatment. Emergence of im-

plantable systems that can record and stimulate cortical or deep brain regions has proven to

be effective in treating and evaluating abnormal brain activity in patients with neurologic

or psychiatric disorders (e.g., epilepsy, Parkinson’s disease, obsessive-compulsive disorder,

tremor, etc.; Figure 1.1).

Understanding brain function and its relation to cognition and behavior (Figure 1.1)

requires the integration of multiple levels of inquiry, ranging from the examination of single

cells all the way up to the probing of human experience under naturalistic conditions. One

major barrier that separates these approaches is the inability to record from single neurons

during naturalistic behaviors in humans, which frequently involve full-body locomotion as

well as twitches, gestures, and actions of the face and hands. This is problematic because

behaviors that are studied in animal neurobiology are done almost exclusively in freely-

moving animals (e.g., rodents) [2], [3]. Thus, major gaps remain between understanding

findings from neuroscience studies in animals to those in humans.

In parallel with progress in neuroscience, the medical field has seen a significant increase

in the use and development of therapies delivered through implanted neural devices to treat

and evaluate abnormal brain activity in patients with neurologic and psychiatric disorders

[4]–[7]. However, current implantable devices do not allow for the recording of single-neuron

activity, nor do they allow for extensive customization of stimulation parameters (e.g., pulse
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Figure 1.1: Intracranial electrophysiology drives both neuroscience

and clinical research/treatments for brain disorders

shape, precise timing with respect to ongoing neural activity), capabilities which would sig-

nificantly expand the types of research questions that can be investigated. Furthermore,

there is a critical need for robust data analytic capabilities on these devices (e.g., using

deep learning and artificial intelligence) to deal with the large and complex neural data in

real-time. Finally, an additional impediment in developing new responsive neurostimulation

treatments is the lack of a customizable bi-directional interface that can record simultane-

ously with stimulation (full-duplex) and thus “talk” with the brain at the speed of behavior

and cognition.

Since neural mechanisms underlying specific behaviors or brain disorders can span across

a large population of cells, often from widespread brain regions [8], [9], there is a need for

neural devices to record from an increased number of channels across the brain. Further,

there is a need for a sufficient temporal scale (< 1 ms) to capture both single-neuron and

local field potential (LFP) activity. Importantly, such technology should have a minimal im-

pact on a person’s ability to move freely. Current neuroimaging techniques used in humans
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(e.g., functional magnetic resonance imaging [fMRI], scalp electroencephalography [EEG],

magnetoencephalography [MEG]) have insufficient combined spatial and temporal resolution

to record single-neuron activity. Intracranial electrophysiological studies, using micro-wire

electrodes in epilepsy patients, can record LFPs and single-unit activity, however research

participants must be tethered to large equipment and remain immobile. The high spa-

tiotemporal resolution of LFPs (1 – 10 mm, ≥ 1 ms) and single-unit (10 – 50 µm, < 1 ms)

recordings comes at the cost of brain coverage, which is mitigated, whenever possible, with a

larger number of recording channels through clinically-guided implantation of 10 – 15 depth

electrodes (i.e., in stereo-EEG [SEEG]).

In this realm, there are two possibilities for neuroscience studies to leverage clinical

opportunities where individuals have electrodes implanted in their brains. The first is to

use in-clinic research equipment or external systems (Figure 1.2) with immobile partici-

pants undergoing clinically indicated SEEG who participate in voluntary research studies

while hospitalized. Stimulation research studies are similarly done bedside, primarily using

open-loop stimulation [10], [11], although recent studies have begun to explore the use of

closed-loop stimulation [12], [13]. Critically, the equipment used in these research studies

is expensive (up to $200K), bulky, and does not allow for extensive on-device customiza-

tion of stimulation or complex real-time analyses for closed-loop stimulation. Using external

resources for online processing, however, can increase systems latency to several hundred

milliseconds. The second option is to use FDA-approved commercially available neural de-

vices already implanted (Figure 1.2) in several thousand individuals to treat epilepsy and

movement disorders. These chronically implanted devices offer research participants mobil-

ity at the expense of using large macro-recording electrodes that cannot record single-unit

activity, fewer channels (usually 4 bipolar), and lower sampling rates (250 Hz). Implanted

systems are primarily developed as medical devices and thus do not offer full control over

recordings, stimulation, and real-time processing of the data.

Here, we present a miniaturized bi-directional neuromodulation external device (Neuro-
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Figure 1.2: External and implantable systems for intracranial

recording and stimulation.

stack) that can record up to 256-channel (128 monopolar/bipolar macro-recordings) iEEG

and 32-channel single-unit/LFP activity from micro-wires during ambulatory behaviors in

humans who have macro- and micro-wire depth electrodes implanted for clinical reasons. It

offers a full wireless access and resources for embedded online processing with millisecond

latency. Additionally, it can record and stimulate concurrently with highly programmable

stimulation current parameters. These capabilities can be useful for future studies investi-

gating the neural mechanisms underlying naturalistic behaviors in humans and developing

novel neuromodulation therapies for patients with brain disorders that will be effective in

real-world settings.

1.1 Dissertation Outline

• Chapter 1: Introduction. Describes the motivation behind neuromodulation sys-

tems and its impact on neuroscience and clinical care of patients with brain disorders.

.

• Chapter 2: Background provides information about the human intracranial ele-

crophysiology, existing recording and stimulation systems, and methods for biomarker

extraction. The focus is on technologies with the ability to record human single-neuron
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and local field potential (LFP) activity. Then, we emphasize the importance of real-

time processing and decoding of the neural activity in closed-loop systems that use

deep brain stimulation. Finally, through prior work review, we identified the inability

of the current devices to record wide-band neural activity during human freely-moving

behaviors or to use computationally expensive neural processing algorithms in time-

sensitive closed-loop experiments. Key challenges and requirements for an end-to-end

solution that addresses the problem are presented.

• Chapter 3: Proposed Sensing and Stimulation Device chapter describes minia-

turized wearable platform for intracranial sensing and stimulation complemented with

wireless Wi-Fi capabilities and the TPU accelerator for online decoding of the neural

activity. We describe the device and an embedded implementation of the real-time

pipeline. This chapter outlines software and hardware design choices driven from the

need for a practical device that could be used in clinical setting with human partic-

ipants. Security of the wireless communication and interfaces to all commonly used

electrodes are covered in this chapter. We also discuss use cases of the proposed sys-

tem in an in-vivo experimental environment. Finally, we compare the Neuro-stack to

other existing devices and discuss the choice of the TPU compared to other processing

units with emphasis on performance and latency. In-vitro results are presented in this

chapter.

• Chapter 4: Proposed Neural Activity Decoder chapter provides a software im-

plementation of the artificial neural network model used to predict human memory

performance from medial temporal lobe channels, including details about the exper-

iment, neural dataset, training, and testing. This chapter further describes decoder

translation into an online embedded version, which could run on the hardware de-

scribed in Chapter 3. We describe a real-time transfer learning operation, which was

used to fine-tune the model for each individual from which data were recorded. Finally,

we compare this implementation to existing solutions. In-vitro results are presented
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in this chapter, which also include closed-loop testing based on the prerecorded LFP

data and decoder outputs.

• Chapter 5: Human In-Vivo Validation chapter presents a human in-vivo abil-

ity of the complete system to record wide-band (single-unit and LFP) neural signals

and to extract relevant correlations between the data and behavior using the decoder

from Chapter 4. This chapter includes data acquired from twelve human participants

implanted with depth electrodes for clinical epilepsy monitoring during resting state,

stationary, and ambulatory behavioral tasks, which further validated proposed system

in an actual clinical environment.

• Chapter 6: Discussion chapter covers several open topics not described in devel-

opment and testing sections. Topics include further justification for the Neuro-stack

development in the context of current research protocols and available systems. It

also briefly describes the process and challenges of developing a complex hardware and

software system in an academic environment, and its reproducibility.

• Chapter 7: Conclusion summarizes key results and contributions of the dissertation.

Here, we discuss how proposed device and algorithm can help advance neuroscience

research as well as to how it can be used for testing novel therapies for brain disorders.

Finally, future work is discussed.
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2 Background

2.1 Electrophysiology

Researchers and clinicians have been using various neuroimaging techniques in humans such

as functional magnetic resonance imaging (fMRI), scalp electroencephalography (EEG),

magnetoencephalography (MEG) (Figure 2.1). Each technique provides different variable for

observation. The focus of this work is intracranial electroencephalography (iEEG), which

allows higher spatiotemporal resolution and thus deeper regions of the brain may be ex-

amined. Although iEEG allows for recording activity within specific deep brain structures,

previously listed techniques remain prominent methods to probe the human brain for both

research and clinical care, as they are more readily available due to their non-invasive nature.

The type of the electrophysiological signal acquired depends on the design of the elec-

trode and characteristics of the recording system. Electrophysiological signals represent

measurements of extracellular field potential at sub-millisecond temporal resolution, but

with varying spatial scales. For example, scalp EEG contact usually records superposition

of the field across 1 – 10 cm, iEEG across 1 mm – 1 cm, and Single-unit recordings capture

one to several neurons at the scale of 10 µm – 100 µm (Figure 2.1).

There are numerous different electrodes available (e.g., subdural strip, grid, depth elec-

trodes) that are designed for a particular type of signals or the brain regions of interest. For

example, strip electrodes that can record cortical regions are quite different in both geometry

and electrical properties from the depth ones (Figure 2.2). All of these electrodes, however,
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Figure 2.1: Spatiotemporal resolution of neural signals. Spatiotem-

poral comparison of different electrophysiological measurements and

fMRI (Adapted from [14]).

contain macro-contacts with size on the order of millimeter with different spacing (∼mm

– ∼cm). Here and for the rest of the text, we are only interested in depth electrodes, or

more specifically Behnke-Fried macro-micro electrodes [15], [16] (Figure 2.2-bottom). This

is because we were focused on cognitive functions within MTL regions, that could only be

reached by macro- and macro-micro depth electrodes.

Micro-contacts of the Behnke-Fried electrode are located at the tips of isolated platinum-

iridium micro-wires, which are coming out from the tip of the macro-electrode. Isolation

is removed from each micro-wire tip, leaving contact area of 40 µm diameter. Such small

contact area allows recording at submillimeter scale from very small neuronal population,

from which single-units or action potentials from a single neuron can be isolated. Micro-wire

bundle contains 8 wires for neural recordings and the 9th wire for reference use. The 9th
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wire is completely uninsulated. Macro portion of the Behnke-Fried depth electrode contains

4 – 12 contacts (usually 8).

Macro-contacts

Micro-contacts

iEEG
1 Hz - 200 Hz

0.1 - 1 mV

20 ms

2 sSingle-unit
200 Hz - 5 kHz

~ 100 μV

Strip Macro

Depth Macro

Depth Macro-Micro (Behnke-Fried)

~ mm
~1 mm

~ 1 mm – 1 cm

4 mm

Micro-wires

Figure 2.2: Depth electrodes needed to reach MTL. Illustration of

subdural strip electrode (top), depth macro-electrode (middle), and

Benhke-Fried electrode that includes macro- and micro-contacts (bot-

tom). iEEG activity is obtained through macro-contacts (frequency

range: 1 Hz – 200 Hz; voltage range: 0.1 mV – 1 mV). Single-unit

activity is obtained through micro-contacts (frequency range: 200 Hz

– 5 kHz; voltage range: ∼ 100 µV).

iEEG signals are acquired from macro-contacts, usually at sampling frequency of 1 kHz –

2 kHz, and are then downsampled to the band of interest, 1 Hz – 200 Hz (Figure 2.2). Single-

unit signals are acquired from micro-contacts, usually at sampling frequency of 30 kHz, and

are then downsampled to the band of interest, 200 Hz – 5 kHz (Figure 2.2). Recordings can be
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monopolar between selected micro/macro-contact and the reference or bipolar between any

two micro/micro-contacts. Due to electrode and contact geometry, which affect electrode-

tissue resistance and capacitance [17], macro-contacts cannot capture single-unit recordings

even if sampled at 30 kHz, but are intended for iEEG recordings of large population of

neurons. Neural signals obtained from micro-contacts at less than 200 Hz are often called

local field potentials (LFP).

In literature, signal acquisition from depth electrodes is also called stereo electroen-

cephalography (SEEG), which combines macro iEEG and micro single-unit/LFP recordings.

To avoid confusion, strip or grid electrodes record electrocorticography (ECoG), which is

cortical equivalent to depth iEEG [18].

2.2 Intracranial Sensing and Stimulation of Human Behavior

Once depth electrodes are implanted (Figure 2.3-left), neuroscientist have the option to

record iEEG data with clinical equipment, already present in the hospital (e.g., Nihon Ko-

hden; Figure 2.3-middle) for disease monitoring. Single-neuron research requires different

devices able to record at high sampling rates from a high number of channels (e.g., Blackrock

Microsystems or Neuralynx; Figure 2.3-right). These research-only devices are not part of

the clinical treatment protocol and have to be acquired at the expense of researcher. In the

rest of the text we will call these devices external systems.

Another option that is becoming more and more popular is the use of medical implantable

systems for research purposes. These devices are designed for clinical treatment via closed-

loop stimulation of patients during their regular day to day lives out of the hospital. Implants,

however, can only offer iEEG or ECoG, but not single-unit nor LFP activity. In the rest of

the text we will call these devices implantable systems.
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Figure 2.3: Examples of clinical and research external systems.

2.2.1 External Systems

External systems or in-clinic research equipment (e.g., Blackrock Microsystems [19], Neural-

ynx [20], Nihon Kohden [21], Ripple Neuro [22]) is used with immobile participants undergo-

ing clinically indicated SEEG who participate in voluntary research studies while hospitalized

(Figure 2.3). Example of an external system setup connected to depth electrodes is presented

in Figure 2.4. Macro-electrodes must be connected to the clinical monitoring system (e.g.,

Nihon Kohden) at all times during patient’s stay for clinical reasons. The splitter boxes are

then used to record simultaneously with the research external systems. Micro-electrodes are

used for research purposes only and each manufacturer provide a headstage to which other

end of the electrode is being connected.

Blackrock and Neuralynx systems are widely used by research groups. For example,

Blackrock NeuroPort recording system can record from up to 256 channels using a variety

of electrodes at up to 30 kHz sampling rate. Multiple devices can be connected to achieve

higher channel count. Numerous high impact results have been published using either of the
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Figure 2.4: External system connected to the implanted electrodes

in the hospital.

two systems (e.g., [23], [24]). Majority of the experiments are still designed in an open-loop

fashion, meaning that there is no feedback informing the stimulus presentation nor the direct

electrical stimulation based on ongoing neural activity. Stimulation research studies are

similarly done bedside, primarily using open-loop stimulation [10], [11], [25]–[29], although

recent studies have begun to explore the use of closed-loop stimulation [12], [13], [30], [31].

Both Blackrock NeuroPort and Neuralynx Cheetah systems have support for over the

network Application Programming Interfaces (API) access from Windows machines, called

CBMex and NetCom, respectively. CBMex is MATLAB based, while NetCom is .NET

based. These allow automatized control of the open-loop and closed-loop experiments. We

will revisit these functionallities in later sections.

2.2.2 Implantable Systems

The second option is to use FDA-approved commercially available neural devices already

implanted in several thousand individuals to treat epilepsy and movement disorders (e.g.,

NeuroPace RNS® System [32] and Medtronic Percept™ [33]; Figure 2.5). The RNS System,

for example, detects abnormal electrical activity in the brain and responds by delivering
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imperceptible levels of electrical stimulation to normalize brain activity before an individual

experiences seizures. Since most of individuals implanted with RNS System suffer from

pharmacoresistant epilepsy, the leads are usually placed within MTL regions (Figure 2.5-

right).

NeuroPace
RNS® System

Medtronic
Percept™ PC

DARPA
Subnets

Patient

Figure 2.5: Implantable neuromodulation systems. From left to right: NeuroPace RNS®

System; Medtronic Percept™; DARPA SUBNETS investigational implant; a brain scan of a

implanted person.

These chronically implanted devices offer research participants mobility at the expense of

using large macro-recording electrodes that cannot record single-unit activity, fewer channels

(usually 4 bipolar), and lower sampling rates (250 Hz).

Other investigational devices such as the Medtronic Summit RC+S [34]–[36], allow for

recording 16-channel iEEG activity at up to 1 kHz sampling rates (no single-units). However,

they are not FDA-approved for clinical treatment and thus exist in only a handful of patients

with an FDA investigational device exemption (IDE) approval, limiting their widespread use

by the scientific community. There are also multiple other promising devices being developed,

such as those coming from DARPA funded SUBNETS program (Figure 2.5) [37]. Research

studies are increasingly adapting these clinical devices for research use [38] and have given

rise to several impactful neuroscientific discoveries [39].

Some of the FDA-approved devices also offer custom closed-loop funcionalities such as

delivery of electrical stimulation based on power or phase of the ongoing iEEG signals. These
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features have been exploited by researchers as part of the clinical trials aiming to find suitable

treatments, similar to RNS System’s epilepsy protocol, for disorders such as PTDS, binge

eating, etc.

2.3 Extracting Neural Signatures of Human Behavior

Finding biomarker or neural signatures that are correlated with or are causally predictive of

certain human disorder or behavior is one of the crucial steps in every neural pipeline. By now

it should be evident that a neuroscientific investigation of a particular human behavior and

the brain regions driving it, is restricted and dependent on individuals with a brain disorder

that happens to be in the same area of the brain. On top of that, research is voluntary,

and excluding implanted participants, it is carried out on a very restrictive timetable in

a very research unfriendly and noisy environment, which the hospital room is. Having all

this in mind, gathering human data is a challenging task, especially compared to animal

studies, which are far ahead in behavioral findings. Because of that, researchers usually aim

to acquire the iEEG data from a handful of participants and slightly more from single-unit

participants due to lower yield.

Clever behavioral task design, appropriate target group of participants, and correct hy-

pothesis are the desired outcome of every experiment. This means that first order analysis

will likely be sufficient for extraction of neural signatures with significant correlation to

behavior. However, sometimes the analysis requires more advanced techniques to uncover

relationship between behavior and the data. Given the challenges of acquiring new data,

similar approach can also be taken to redo the old data analysis and find novel insights using

new tools and methods.
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2.3.1 Conventional Methods

Conventional methods rely on transformation of the raw data into well-established measures

that have proven to be most often correlated with behavior. For example, iEEG often

exhibits power or phase changes in certain frequency sub-bands, while for single-unit data

that measure is often spiking rate. So, the analysis almost always involves Fourier, Hilbert, or

Wavelet Transformation depending on researchers’ preference. Desired variables, time-locked

with behavior, are extracted in time, frequency, or time-frequency domain and compared with

baseline data. If there is no clear effect in one of the variables, then combination of multiple

variables are checked against the behavior using some of the linear multivariate regression

models. This concludes the conventional approach to analyzing the neural data.

2.3.2 Machine Learning Methods

Most of the experiments are designed to test one, very specific, kind of behavior against the

baseline or opposite behavior. That means that neural analysis can often be rephrased into

a binary classification problem that tries to separate neural data in two classes, behavior

and non-behavior.

For example, in a verbal memory task, words are presented to the participants, sequen-

tially one by one, and the question is which words will be remembered during recall after

some time and how does that reflect in the neural data. Logistic Regression classifier proved

to be the method that could easily extract the signatures of the behavior by trying to separate

the data into remembered and forgotten classes [10]. Another group used similar approach,

but with artificial neural network, to perform multiclass classification in order to decipher

what participants wanted to say just by analyzing the data from the brain motor areas [40].
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2.3.3 Real-Time Methods

Usual approach in real-time neural analysis, which is needed for closed-loop paradigms, is

to first perform open-loop behavioral experiments, and then to extract signatures of the

behavior using some of the described methods. Once a strong neural signature is known,

implementation of the online search for it is straightforward. However, this approach does

not always work as there are discrepancies in neural responses in each individual participant,

which often require adjusting the parameters (e.g. thresholds) at the very least. Ideal

scenario would be a closed-loop that can continuously respond to neural short- and long-term

changes. However, online algorithms are in general more challenging to implement because

they require causality, which can introduce frequency dependent distortions (e.g., nonlinear

phase lag) into the data, while trying to replicate their non-causal offline counterparts.

External systems offer application programming interface (API) over the network that

can be used in experimental paradigm to dynamically update presentation stimulus or elec-

trical stimulation parameters. For example, Blackrock users can use third-party CBMex

package to design experiments and closed-loop protocols within MATLAB on a Windows

machine. Similarly, Neuralynx offers, as part of its software package Neuralynx Cheetah,

NetCom library that can be in the background of every .NET application containing ex-

perimental protocols. The APIs offer full control over recording and stimulation functions.

The experimental computers executing the tasks can connect to external devices over their

wireless access point (Figure 2.6). Using API functions on the experimental computer can

result in many milliseconds of delay depending on the processing method and the type of

connection as part of an external loop. Manufacturers of external systems also provide in-

tergrated hardware resources for digital signal processing (Auxiliary Hardware, Figure 2.6),

which translets to millisecond delays as the neural samples do not leave the recording systems

for custom processing.

Implantable system by default utilized closed-loop stimulation to treat brain disorders.

16



»ms

msInternal

External

»ms

Participant
External

C
om

puter
A

cquisition
C

om
puter

A
uxiliary

H
ardw

are

Figure 2.6: Examples of clinical monitoring and research recording

and stimulation systems connected to the implanted electrodes in the

hospital.

For example, RNS System detects bandpower increases over predefined thresholds to trigger

stimulation in order to reduce epileptic seizures. Frequency bands, thresholds, and stimu-

lation parameters are set beforehand, during neurologic assessment. With built-in causal

analog filtering and online power spectrum calculations, the RNS System can be used to test

custom closed-loop paradigms relying on power thresholding. Custom in this case means

choosing custom frequency band, threshold, and stimulation current parameters such as am-

plitude, phase width, burst frequency, duration, etc. The device also offers phase-locked

stimulation at specified frequency. Available implantable devices do not offer real-time ac-

cess to neural samples and thus cannot be used for custom closed-loop paradigms other than

built-in power thresholding.
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2.4 Human Learning, Memory, and Navigation

Formation of human cognitive functions, such as learning, memory, and spatial navigation

have been associated with medial temporal lobe regions, more specifically hippocampus and

entorhinal cortex. Neural processing techniques for the MTL data does not differ from those

used on the neural data from any other brain region. The difference is that MTL regions

are located deep within the brain and requires depth electrodes to be reached (Figure 2.1C-

bottom). Thus, cognitive functions are one of the least explored due to limited number of

depth electrodes that can be implanted. There are few institutions in the world with the

expertise to perform such implantation with decent yield. Discovery of units governing nav-

igation through physical space (Figure 2.7), such as grid and place cells in animals have won

the only Nobel prize for the field of neuroscience and has since caused increasing popularity

of human spatial navigation research in order to bridge the gap between human and animal

findings [41]. This is the reason behind the need for and importance of the technology that

allows freely-moving human experiments.

Some researchers have utilized implants to show hexdirectional modulation of the iEEG

bandpower across the space ([42]), and increased iEEG bandpower close to the space bound-

ary ([39]). Others have recorded single-unit activity using external systems from neurosurgi-

cal participants navigating through virtual reality (VR) space to show evidence of grid cells

in humans ([43]). Recordings of single-units and thus evidence of place and grid cells during

real human navigation has not been possible so far.

Stationary experiments probing various forms of memory and learning formation are just

as important as ambulating ones. Described systems and synchronization between measure-

ments and behavior are all essential in experimental design for both types of experiments.
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Figure 2.7: Neurons representing animal spatial navigation. Left: A physical space and

navigation trace of an animal. Middle: Animal entorhinal grid cells. Right: Animal hip-

pocampal place cells. Adapted from [41].

2.5 Review of Prior Work

The aim of previous sections was to introduce various engineering and neuroscience terms

and concepts leading into discussion of the current progress of interdisciplinary efforts to

explore functions of the human brain.

Within defined neuroscientific framework, we will discuss present state of the art in four

key areas: 1. Recording and stimulation capabilities; 2. Participant’s mobility; 3. Resources

for custom closed-loop algorithms targeting memory enhancement; 4. Online algorithms for

extracting signatures of memory formation.

External systems, Blackrock and Neuralynx, can support a large number (≤ 256) of both

iEEG and single-unit/LFP electrodes at high sampling frequencies and high input dynamic

ranges (Table 2.1). As discussed previously, implantable systems usually offer 4 bipolar

recordings of iEEG at 250 Hz. While they offer completely mobile experiments they lack
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Table 2.1: Comparison of external and implantable systems available for human use

Blackrock®
NeuroPort

Neuralynx
Digital Lynx SX

NeuroPace
RNS® System

Medtronic
Percept™ PC

Channels

Samp. Freq.

Input AC Range

API

CL Resources

CL Latency

256 256 4 6

250 Hz250 Hz40 kHz30 kHz

CBMex Win NetCom Win — —

Zync 7000 STFT STFT—

Internal: 1 ms
External: » ms

Internal: 4 ms
External: » ms

Unknown Unknown

up to ±1.9 mV X (~1 mV)±132 mV±8.192 mV

Externalized Implantable

number of channels and capability of capturing single-units. We also list ava

Here we also discuss available resources that researchers have used to develop closed-loop

experiments based on both iEEG and single-unit data. Already described external system

setup is the same, regardless on the target signal: iEEG, LFP, or single-unit data. As

mentioned, implantable systems with on-chip resources for online filtering and power/phase

extraction have extremely low latency, but have limited online processing and stimulation

programmability. Implantable closed-loop trials are however very valuable for disorder treat-

ments and are either already approved for medical use ([32], [44]), or are currently being ex-

plored as part of clinical trials (https://www.clinicaltrials.gov; NCT0401149 [2019],

NCT03582891 [2018], NCT04152993 [2019], NCT05120625 [2021], NCT04558164 [2020],

NCT04874220 [2021]). All other, external systems, require data transmission and closing

the loop outside of the acquisition device.
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Figure 2.8: Simplified block diagram of external system’s components, indicating internal

and external closed-loop pathways.

Recently, external systems started offering local hardware resources for real-time analysis

and closing the loop ’closer’ to the analog front-ends. For example, Neuralynx Digital Lynx

SX system now comes equipped with Hardware Processing Platform (HPP) for real-time,

data processing and closed-loop neuromodulation. The HPP is a board from Xilinx family

Zync®-7000 SoC, which combines dual-core 1 GHz ARM Cortex-A9 with an FPGA. Addi-

tionally, it contains 1 GB of DDR3 RAM and 16 MB of flash memory. When combined with

NetCom API, it provides powerful framework for closed-loop paradigms (2.8). With these

improvements, Neuralynx has the option of sub-millisecond internal closed-loop with digital

signal processing algorithms (e.g., online filtering, power/phase spectrum, etc.) programmed

in C/C++ or Verilog/VHDL and executed on the HPP. Processing algorithms that cannot

be ported to the Zync-7000 board, have to be executed on an External Computer that uses

API to communicate with the external system and close the loop (2.8). This can translate

to larger latencies (∼100 ms) depending on the algorithm and the type of the connection

between devices.

There are two general directions of modeling representations generated withing the brain

about the external world. First are encoding models, which try to predict brain’s represen-

tation based on the stimulus presented, and the second are decoding models, which try to
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STIMULUS RESPONSE

encode

decode decode

Figure 2.9: Encoding process attempts to predict brain response

from the stimulus. Decoding process tries to predict participant’s

response based on the neural activity. Adapted from [45].

predict participant’s response based on the measured, sub-sampled representation from the

brain that is neural activity in this case (Figure 2.9).

Encoders effectively model the brain function and are much more challenging to build

due to our sub-sampled way of collecting the brain data. Rather, it is often easier to model

the outcome based on available data or to decode. To build true closed-loop connection with

the brain both steps are necessary, but here we will focus on the state of the art decoding

models.

2.6 This Work

The goal of this work is to develop a versatile, external, wearable neural interface that can be

used in clinical and neuroscience research by allowing easy prototyping and testing of various

paradigms in different setups that may require synchrony with other devices under research

protocol. Because of this we will focus this work on improving capabilities of the research-

oriented external systems. We will still make informational comparisons with implantable

systems, but they are not the focus area of this work.
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To address described problems with currently available external systems, this work uti-

lized advanced, implantable neuromodulation platform, developed under DARPA SUBNETS

program (Figure 2.10-left). This implantable system contains miniaturized and low-power

ICs for sensing and stimulation, which we externalized and assembled small, wearable, and

low-latency device, called Neuro-stack (Figure 2.10-right).

4.5 mm

22
.5

 m
m

SUBNETS R&D Neuromodulation Platform Neuro-stack

Figure 2.10: Leveraging the advanced implantable technology to build externalized, small

neuromodulation device.

To briefly summarize key sensing and stimulation characteristics of a wearable device,

such as the Neuro-stack, we compare it with existing systems (Figure 2.11). In the remaining

text, we will detail how we achieved these numbers in the context of low-latency and wearable

research experiments. External systems, Blackrock and Neuralynx, can support a large

number (≤ 256) of both iEEG and single-unit/LFP electrodes at low input-referred noise

levels (≥ 1 µVrms; Figure 2.11). Their stimulation engines can also support large number of

channels (≤ 96) at sufficiently high maximum current (≤ 10 mA; Figure 2.11). Furthermore,

levels of miniaturization of these devices (∼ 10−3 channels
cm3 ; Figure 2.11) render them unusable

in freely-moving experiments.

Ripple Nano2 has somewhat improved miniaturization (∼ 10−1 channels
cm3 at the expense of
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number of supported channels (Figure 2.11). Ripple systems with its smaller size, compared

to other external systems, is the only potential candidate for freely-moving experiments, but

have not been used in these studies so far.
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Figure 2.11: Comparison of current bedside intracranial recording and stimulation systems

used in humans. Characteristics shown include the device sampling rate, noise of the input

sensing front-end (Noise VLFP
in ), number of recording channels, linear input dynamic range

(VAC
in ), maximum stimulation current (Imax

stim), number of stimulation channels (Stim channels),

and maximum stimulation channels that could be used simultaneously (Max stim modules).

BR – Blackrock; NL – Neuralynx.

2.7 Requirements

As previous review, key requirements for this work are centered around following: 1. Record-

ing and stimulation capabilities; 2. Wearability; 3. Built-in computational hardware resoure-

ces; 4. Online neuroscience application.
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First requirement is to build an external system that can record large number of SEEG

channels (100 or more), which means ability to acquire iEEG, LFP, and single-units. On

the electronics level this translates to a requirement to record a signal that ranges from

10 µV to 1 mV at ≥30 kHz in a very noisy clinical environment. Further, the system needs

programmable electrical stimulation with option to adjust current amplitude, frequency,

pulse shape, duration, and all other timings including burst and multiburst protocols. Due to

large stimulation artifacts that follow delivery, recording front-end needs high input dynamic

range that exceeds neural signal levels (several tens of millivolts).

Second requirement is small dimensions and weight of the external device so that it

could be comfortably carried on-body by the participants during walking and other physical

movements, which are unavoidable part of naturalistic studies.

Third requirement is on-board resources for online neural processing, including artificial

neural networks, and their training and inference.

Forth requirement is an in-vivo human application that utilizes developed hardware with

state of the art neuroscientific results in the field of learning, memory, and spatial navigation

that validate the necessity for such external systems.

25



3 Proposed Sensing and Stimulation Device

Here, we present the Neuro-stack (Figure 3.1), a bi-directional neuromodulation platform

for wide-band sensing and stimulation of deep-brain areas for basic and clinical neuroscience

studies.

Figure 3.1: Base Neuro-stack platform, including a hand-held device

and a GUI-based tablet for control, device configuration and data

monitoring.
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Compared to much larger existing devices (Figures 2.3 and 2.11) that are used bedside and

carried on a cart, the Neuro-stack’s small hand-held size enables concurrent stimulation and

recording of real-time electrophysiology (single-unit and LFP activity) during freely-moving

behavior by connecting to commonly used implanted macro- and micro-electrodes. Apart

from its small form-factor and unique on-body wearability, the Neuro-stack can support:

1. Recording of up to 256 channels for a total of 128 monopolar or bipolar recordings with

a sampling rate of up to 6,250 Hz. Further, wide-band sensing from up to 32 monopolar

or bipolar recordings at up to 38.6 kHz allows for the recording of single-unit and LFP

activity simultaneously.

2. Flexible and programmable stimulation allowing for delivery of bipolar/monopolar

stimulation to any 32 out of 256 contacts simultaneously. Stimulation engines are

current-controlled and allow the user to program current amplitude, frequency, timing,

pulse shape, and other parameters.

3. Closed-loop neuromodulation. The Neuro-stack has built-in (hardware) oscillation

power detection and thus the ability to trigger stimulation at a predefined phase of an

oscillation (phase-locked stimulation [PLS] delivered at a particular phase of ongoing

theta activity). Further, sensing of neural activity is concurrent with stimulation for

true (full-duplex) closed-loop capabilities. Resources for designing custom closed-loop

algorithms are available at both the embedded hardware and external software levels.

4. Software support that comes in two formats. First, a turnkey graphical user interface

(GUI) running on a Windows-based tablet or laptop is available for research purposes

(Figure 3.1). Second, a full-access application programming interface (API) library

written in C++ allows the user to build custom research open- and closed-loop stim-

ulation capabilities for research studies.

5. Tensor multiplication accelerator (Edge TPU) that is integrated with the Neuro-stack
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device, enabling an extended range of applications such as real-time inference for neural

decoding or closed-loop stimulation.

6. Wired or wireless mode. The Neuro-stack platform can be externally controlled and

powered via a USB cable or remotely controlled through a secure local network using

a battery-powered configuration. This flexibility allows researchers to perform wide-

band recording and stimulation during either stationary or ambulatory (freely-moving)

behavioral tasks.

3.1 Neuro-stack Hardware

3.1.1 Sensing and Stimulation

The central hardware component of the Neuro-stack platform (Figure 3.2) consists of three

printed circuit board (PCB) layers: 1) analog, 2) digital, and 3) communication. Each

layer is embedded with one or several dedicated integrated circuit (IC) chips. The analog

layer (Figure 3.2-bottom) contains mixed-signal sensing IC (Sense IC and Spike IC) and

stimulation IC (Stim IC) chips, which were previously developed as part of the DARPA

SUBNETS program [37], [46]–[48]. The whole device is assembled by physically stacking

the described layers (Figure 3.2). Furthermore, one Neuro-stack device supports up to four

analog layers at the same time, for up to 256 micro-wire (LFP) electrode contacts (64 per

layer) and up to 32 micro-wire (single-unit) electrode contacts (8 per layer). All analog and

digital custom integrated circuits used in the Neuro-stack were fabricated using low-voltage

40 nm technology.

A single Sense IC (one per analog layer) accepts neural activity from up to 64 elec-

trode contacts fed into voltage-controlled oscillators (VCO), which serve as analog-digital

converters (ADC). Each VCO ADC supports 6,250/N Hz sampling frequencies, where N =

1,2,4,8, . . . , 128 and a 100 mVpp linear input dynamic range with 12/21 (macro/micro)
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Figure 3.2: The Neuro-stack consists of three stacked layers: communication, digital, ana

analog layer. Each layer carries dedicated ICs for sensing, open/closed-loop stimulation,

and USB external communication. The Neuro-stack connects to commonly used neural

electrodes.

bits of resolution, ensuring that the underlying neural signal is captured in the presence of

large artifacts (e.g., from stimulation). The Sense IC contains digital nonlinearity correction

to account for nonlinear amplification across the input range. Moreover, it also contains a

digital logic for adaptive stimulation artifact rejection that subtracts a template stimulation

artifact extracted from adjacent channels [48]. The total power consumption per channel

is 8.2 µW. A single Spike IC (one per analog layer) accepts neural activity from up to 8

micro-wire contacts and supports sampling rates of up to 38.6 kHz [49] (Table 3.1).

A single Stim IC contains eight engines that can, with the appropriate configuration,
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Table 3.1: Neuro-stack sensing capabilities.

Sense IC (iEEG) Spike IC (Single-units)

Channels
Sample Rate
Input Range
Noise
Sample Res.

128
6.25 kHz
± 50 mV
5.2 µVrms 
16/21 bits

Channels
Sample Rate
Input Range
Noise
Sample Res.

32
38.6 kHz
± 20 mV
2 (7) µVrms

16 bits  

drive current through any individual or combination of the connected 64 electrode contacts.

Stimulation output current is highly configurable (Figure 3.3), including selection of ampli-

tude, frequency, and multiple or custom waveform shapes. This flexible programmability

allows for stimulation using previously used burst protocols as well as exploration of novel

stimulation patterns for investigative research and therapy development. These capabili-

ties also enable increased degrees of freedom (timing, amplitude parameters; Figure 3.3)

compared to currently available intracranial neurostimulation systems.

10-1,280 0-15020-320 10-1,280 10-9,750

12 16

20 - 5,080
(20) μA 10 μs - 408.3 ms 

Interpulse/
Interburst

μs

Channels
Control
Amplitude
Frequency
Polarity

32 out of 256
Current
20 - 5,080 µA
2.37 Hz - 16.67 kHz 
Anodic/Cathodic

Stim IC (Bipolar-Macro)

Figure 3.3: Neuro-stack stimulation capabilities.

The Neuro-stack’s digital layer (Figure 3.2-middle) routes signals between the analog and

communication layers and contains a custom IC chip (PLS IC) for closed-loop stimulation

based on the detected oscillatory (e.g., theta) phase in the recorded neural signal coming

from the analog layer to enable PLS [50], [51]. A field-programmable gate array (FPGA,
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Xilinx Spartan 6 board) serves as a communication layer (Figure 3.1-top) between an external

devices and custom ICs (Figure 3.1-right).
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Figure 3.4: Neuro-stack high-level block diagram shows interfaces

between assembled chips. Sense and Stim IC are part of one 3-wire

SPI interface, while SPIKE and PLS IC use Shift Register transfer

via data and valid lines.

The Neuro-stack uses the serial peripheral interface (SPI) at 12 MHz (Sense IC and Stim

IC) and serial shift register (PLS IC and Spike IC) for internal communication between layers

and IC chips and a USB interface for external communication and power supply (Figure 3.4).

SPI interface between FPGA and Sense/Stim IC is specifically designed for lower area of the
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implantable solution as three input/output wires occupy less space. The chip select control

is pushed through to the Sense IC, and can be accessed through packet communication

protocol. Spike IC consists of two separate chips, amplifier (SPK IC) and analog to digital

converter (ADC IC).
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SPI/Shift Register

Transmit
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Board ID
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USB
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M
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Figure 3.5: FPGA finite state machine and communication protocol

to and from the Neuro-stack. USB packet structure (right) is used to

address and control all Neuro-stack ICs.

The communication layer (FPGA) runs Mealy finite state machine (FSM) that is respon-

sible for unpacking and rerouting USB packets to each IC addressed in the message, and

vice versa (Figure 3.5). In the process, this also converts USB interface to SPI or to Shift
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Register interfaces. This FSM is bi-directional and thus also processes SPI packets received

from the Neuro-stack and converts them into USB packets, which are then transmitted to

the external device. The FSM always begins with a Reset state after a reboot, and then

enters an Idle state in which it waits for incoming packets. Once a packet is available, the

FSM receives it byte by byte (Receive Byte) until the complete message is transferred (Re-

ceive Packet). The received packet is then being processed (Process Packet), converted into

the appropriate interface (e.g., USB to SPI), and transmitted to the Neuro-stack ICs (via

SPI or Shift Register). Similarly, after the processing is done, the response packet from the

ICs enters a state during which it can transmit the packet (Transmit Packet) byte by byte

(Transmit Byte) externally. Once the transmission is done, the FSM goes back to the Idle

state and waits for new packets unless the streaming of the neural data is taking place, in

which case the FSM enters Process Packet state indefinitely until the recording is stopped.

The structure of the USB packets sent from external devices to the Neuro-stack Commu-

nication Layer, which contains up to 524 bytes that describe the type of Command, Board

ID to address specific analog layer, Spike byte, phase-locked stimulation (PLS) byte, and

Payload for additional information where its length (Payload Length) depends on the type

of command. The packet also contains bytes for error codes (Error) and a cyclic redundancy

check (CRC) to detect accidental changes in the raw packets.

This FSM can be controlled directly from a ready-to-use GUI, which allows real-time

multi-channel monitoring and control of sensing and stimulation. The GUI application maps

actions directly into the USB packet. However, in order to build versatile system for research

applications, there was a need for an intermediate layer that can provide API functions as

foundation on top of which user space can be built.

3.1.2 Wireless API and Online Inference Acceleration

So far, we have explained assembled Neuro-stack and its fundamental capabilities for sens-

ing iEEG, LFP, and single-units, as well as to stimulate from large number of electrodes.
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However, the focus of this work is real application in neuroscience research and before that

could be possible a few other features needed to be developed.

Experimental
Computer

Neuro-stack

VR/AR

Biometrics

Eye-tracking

...

Record   (Sampl Rate, Channels, ...)
Stimulate  (Amplitude,  Channels, ...)
...

Figure 3.6: Human neuroscience research often involves many other devices for controlling

the experiment, data collection synchronized and managed by a central experimental com-

puter.

Human neuroscience research is often carried out from a single experimental computer,

running a script that stimulates precisely defined behavior and synchronizes it with human

brain signals. In order to establish greater control of the experiment as well as to collect

additional data non-neural data that may be correlated with neural data and behavior,

researchers are using increasing number of devices and wearable technology. For example,

virtual/augmented reality (VR/AR) goggles give great control of what participants can see

and thus, great control of the experiment that can be automated. On the other hand,

eye-tracking and various biometrics data give further insight into participant’s behavior

especially one that involves cognitive and emotional functions. These different devices need

to run in synchrony and be easily accessed and controlled from the experimental computer.
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By allowing wireless API functions over local network, Neurostack could widen possible

research setups used for testing human neuroscience hypotheses (Figure 3.6, [38]).

To enable wireless API and online processing, we needed to integrate additional hardware

with Neuro-stack. The primary options for wireless communication suitable for research

applications are Bluetooth or Wi-Fi peripherals. Implementation of both options is relatively

straightforward by rerouting FPGA packets towards a dedicated chip or a wireless peripheral.

We opted to go with Wi-Fi option due to its faster transmission, easier to implement security

protocols, and because it is much easier to synchronize multi-device setups running on a same

local network (Figure 3.6).

Table 3.2: FPGA boards used in Neurostack and Neuralynx recording system.

Xilinx Spartan 6 x150 

Slices
Logic Cells
DSP Slices
DRAM
BRAM

Xilinx Zynq-7035

--
275 K
900
--

17.6 Mb

Neuro-stack Neuralynx

23,038
147,443

180
1,355 Kb
4,824 b

Neuro-stack’s FPGA board, Xilinx Spartan 6 x150, is an outdated board with only one

role, a communication hub. The resources available on it were not sufficient for online neural

data analysis other than applying basic spectral digital signal processing. Furthermore, it

does not possess Wi-Fi peripheral. Newer FPGA boards, such as Xilinx Zynq-7000 series,

which are used as part of Neuralynx online processing hardware, possess higher number of

DSP slices and memory (Table 3.2). However, in order to perform ∼100M MAC operations

per inference in a machine learning algorithm the numbers need to be higher to keep the

inference latency low.

Instead, we opted for Edge Tensor Processing Unit (TPU), mounted on top of TPU Dev

Board. It is an ARM-based single-board computer, running a Mendel Linux distribution.
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The board has sufficient amount of on-chip and peripheral memory, an ARM Quad Cortex-

A53 processor, Edge TPU co-processor, and a peripheral for Wi-Fi. The Edge TPU, designed

by Google, can process 2TMAC/s at 2 W of power using a 64 × 64 MAC matrix specifically

designed for machine learning matrix multiplication (Figure 3.7). The TPU Dev Board uses

PCIe2 interface to the TPU co-processor ensuring high data bandwidth.

i.MX8M SoC

Wi-Fi / BT
11 AC 2x2

PCIe2

...Interfaces

5 V
3.3/1.8 VPMIC

Edge
TPU

USB1/2

Power
Control

LPDDR4

eMMC5.0

ARM
TPU
Memory

Quad Cortex-A53
2 TMAC/s
SDRAM 1 GB  
On-chip 160 KB
Flash 8 GB

Figure 3.7: High-level block diagram of the TPU Dev Board. TPU Dev Board contains

range of peripherals suitable for custom research applications such Edge TPU, ARM proces-

sor, Wi-Fi, and sufficient amount of memory.

The TPU Dev Board also supports external USB interface making it easy to prototype

integration with Neuro-stack (Figure 3.8). External battery was used to power TPU Dev

Board, which in turn also powered Neuro-stack. Battery power also helps reduce line noise

from the system and recordings in extremely noisy environment such as hospital room. This

setup can now offer wireless connection and local online processing using machine learning

and artificial neural networks.
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USBFPGA ARM
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Experimental

Computer

Figure 3.8: Neuro-stack and TPU Dev Board interface via USB.

3.2 Neuro-stack Firmware and Software

A large portion of this work went into the development of firmware and embedded software

that can support Neuro-stack’s data bandwidth. Recording from all Sense and Spike IC

channels with all four analog layers means up to 30 MB/s of neural data. Other than keeping

up with the pace of incoming data, the software also needed to support many features of

the Neuro-stack, such as programmable open- and closed-loop stimulation, online processing

through TPU Dev Board peripherals, etc.

For this purpose, we developed a speed-optimized, real-time pipeline in form of a C

library. Through multi-threading operation, it supports all ICs with dedicated software

process as part of a software clone model (Figure 3.9). Further, this library is compatible

with all commonly used operating systems and platforms. To achieve the goal of wireless

API used for easy access in research, we used this library as part of a general application

built on top that can offer API functions externally using both wired (USB-C) and wire-

less (TCP/IP socket) connection. This library can also be used as a base for building new

custom applications on top of it. Here, we show a modified version that other than key neu-

romodulation functions also offers TPU peripheral access through the same connection. This

way researchers can easily connect to the Neuro-stack running client code within research
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Figure 3.9: Block diagram of the Neuro-stack’s wireless API server.

paradigm using any device (computers, phones, VR/AR goggles, etc.; Figure 3.9).

The Input Queue handles streams of both neural data and acknowledgment receipts

from the Communication Layer and redirects them to the appropriate block on the TPU

Dev Board responsible for each ICs (e.g., Sense, Stim, . . . Process). The Neuro-stack Con-

trol block contains all of the API functions, which are then multiplexed to additional layers

responsible for wireless (via Server Interface) or wired (via Local Interface) communication

with the experimental computer. Additionally, the Neuro-stack Control block also contained

functions for controlling the TPU, such as loading/saving the machine learning model (Ten-

sorFlow Lite Model) to/from the Memory block, redirecting the data streams directly to-

wards the TPU, and receiving the TPU’s output once it is ready (see Chapter 4.). The
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incoming neural data streams can also be stored locally in Log Memory or transferred to an

external storage on the experimental computer through the Neuro-stack Control block. Fur-

thermore, an LED light can be triggered (to turn on/off) through available general-purpose

input/output (GPIO) pins for synchronization purposes. These triggered on/off events are

internally temporally aligned with the incoming neural data in order to synchronize it with

data from eye-tracking cameras. A local network can be created either by using a separate

access point (e.g., router, hotspot, etc.), or by the TPU Dev Board, which contains a network

controller that can support access point topology and thus can create its own local network.

This wireless mode means that a server is created on the TPU Dev Board to allow for other

devices, such as the experimental computer (e.g., to view neural data in real-time) to access

the Neuro-stack API functions. Wired mode is also supported through Local Interface block

(e.g., experimental computer connected via USB-C). All devices connected to the local net-

work use Network Time Protocol (NTP; [52]) to log events with timestamps fetched from a

common server in order to synchronize them.

Neural data acquisition and especially electrical stimulation from inside the brain are

sensitive functions that require security. For that reason, we required X.509 certificate for a

device to connect to the wireless API server running on TPU Dev Board. X.509 is a digital

certificate that uses public key infrastructure. In this prototype version, we only used one

experimental computer to connect to the TPU Dev Board and thus a self-signed certificate

served the purpose.

The high-level structure of the code was shown (Figure 3.9, and now we will zoom in on

the base functionality that allowed high-speed data acquisition from many channels (Figure

3.10). Here, we are describing the translation from API calls to USB packets and vice versa,

handled by multithreading architecture (Sense, Stim, FPGA, ... Processes; Figure 3.10).

The API calls were handled by a central thread (Main Process), which accepts calls and

accordingly constructs USB packet for each command (Figure 3.5) and sends it immediatly

to USB Controller within USB Interface block, which then leaves TPU Dev Board and goes
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to Neuro-stack communication layer. Each command was intended for specific IC, which was

then extracted at the FPGA level. Likewise, for each command, dedicated IC will respond

with specific acknowledgement or in the case of recording with a neural data stream (Sense

and Spike IC). Packets received back from the communication layer were first accepted inside

Input Queue (FIFO Queue) as soon as the packet was available at the USB inputs. Reader

Process awaits an interrupt signal from the FIFO Queue, indicating the the new packets are

available, and distributes the packets based on the IC that sent it. Each dedicated IC has a

queue and a process that handles its incoming packets. All processes first extract the message

and check for its correctness (Error and CRC codes). If there was an error or mismatch

in CRC code, an interrupt is sent to the Main Process, which then halts the pipeline and

notifies the external computer. If everything is in order, Sense and Spike Processes send data

samples to a shared, mutex-protected, Data Process that is responsible for saving samples

locally and transmitting it to TPU processing or towards Neuro-stack Control block, which

then forwards the data to the experimental computer. In this prototype version, FPGA and

Stim Processes only check for the correct acknowledgement from the FPGA and Stim IC and

then go to idle mode until next packet is received. The PLS Process also receives the data

from Sense IC and then notifies the Main Process when the stimulation should be triggered

based on the theta oscillations.

The basic test software running on an experimental computer was a Python 3.6.9 script,

which connects to the network socket connection and fetches incoming data samples and

stores/plots them. Tests that required additional functions on the experimental computer

software side will be described later in the text. For the remainder of the text, we will always

consider that the base wireless API and experimental scripts are used for all in-vivo and in-

vitro experiments and we will just focus on the modified additions for specific applications,

if they were necessary.
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Figure 3.10: Simplified block diagram of the real-time pipeline that handles sending com-

mands towards Neuro-stack ICs and receiving acknowledgements and data.

3.3 In-Vitro Validation

The Neuro-stack IC chips (i.e., Stim, Sense, Spike, PLS) were validated in-vitro separately

[46]–[50] and some (Sense and Stim) as part of an implantable system [37]. Before moving to

human in-vivo studies, in-vitro validation of all chips in the Neuro-stack was also completed.

The setup for validating sensing capability included the feeding of pre-recorded analog neural

data via an National Instruments (NI) PXI System (digital to analog converter) through a

phosphate-buffered saline (PBS) solution, use of an oscilloscope to observe true signals at

front-end inputs, and a computer to control and power the Neuro-stack (Figure 3.11).
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Figure 3.11: Neuro-stack in-vitro test setup.

Testing of the Sense and Spike ICs involved feeding 100 s of pre-recorded LFP/single-

unit data through the NI-DAC. The analog signals were observed using an oscilloscope and

recorded by a single channel using the Neuro-stack. For visualizing results, a time domain

comparison was used for Sense IC and Spike IC (Figure 3.12). The Stim IC was tested as

part of closed-loop delay measurements and in previous reports [37]. Delivered stimulation

was captured by the oscilloscope and on one channel using the Neuro-stack (Figure 3.11).

The PLS IC was tested in-vitro as part of a previous study [50], [51] and using the same
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in-vitro setup (Figure 3.11). For 300 s of LFP data, the results showed 400 detections within

the theta band (3–8 Hz) and triggered stimulations with a circular variance of 0.3 [51].
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Pre-recorded

Neuro-stack

Pre-recorded

50 ms

V n
or

m

Neuro-stack

Figure 3.12: Neuro-stack in-vitro sensing validation.

Measurements of stimulation and synchronization delivery delays were also characterized

for ensuring accurate closed-loop implementation as well as alignment between behavioral

stimuli, neural data, and other devices that run in parallel.

First, the round-trip delay, important for closed-loop stimulation, was measured from

sensed input to stimulation output by feeding a pulse train (50 pulses, 20 mV amplitude, 1

s pulse width, duty cycle 50%) from the NI-DAC to one channel recorded using the Neuro-
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stack. The modified software on the TPU Dev Board continuously pooled incoming samples

and detected the increase from zero (rising edge) in these incoming values. Once detected

the rising edge triggered one-pulse of stimulation. The delay (mean ± standard deviation

[std] for 50 pulses) was measured on the oscilloscope by capturing both the recording input

and stimulation output rising edges and their time difference (Figure 3.11). The pulse rising

edge detection triggered stimulation on the TPU Dev Board software side (connected to the

Neuro-stack via USB; Figure 3.11). Input/output observations by the oscilloscope showed

a 1.57 ± 0.19 ms round-trip delay (Figure 3.13-left). This result was consistent with the

PLS-based round-trip delay of 1.7 ± 0.3 ms measured from the sensed input to stimulation

output [51].

Second, synchronization with external devices was done by timestamping neural samples

using the TPU Dev Board; accuracy depended on the system latency through hardware and

software. The Neuro-stack system and software latency from the recording input to the Sense

Process thread on the TPU Dev Board was measured using the same pulse train process but

instead of triggering stimulation, the detected rising edge triggers a 1 s pulse to the TPU

Dev Board general-purpose input/output (GPIO) pin. We used the oscilloscope to observe

the recording input and GPIO output, and measure the time difference between the rising

edges, which was equivalent to the system latency (mean ± std for 50 pulses). Measured

latency was 0.56 ± 0.07 ms (Figure 3.13).

To conclude this section, Neuro-stack can record iEEG, LFP, and single-units based on

in-vitro tests. Also, it introduces millisecond delays into recording pipelines, which is crucial

for online processing and closed-loop applications.
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Figure 3.13: Neuro-stack sensing and closed-loop delays.
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4 Proposed Neural Activity Decoder

This chapter outlines software and embedded implementation of a neural network model for

decoding memory performance based on LFP activity from MTL. Before explaining technical

implementation, we will describe a behavioral task that can trigger memory storage as well

as methods from previous reports used to decode memory performance in similar studies.

4.1 Background

4.1.1 Verbal Memory Task

Verbal memory task tests participant’s ability to successfully encode and recall words pre-

sented on a screen. The words appear serially, one after another, for 2 s with 4 s fixation

cross between two words, which helps keep participants focused. There are usually from 8 to

10 of them, depending on participant’s memory abilities. Words were drawn from clusters

of six and seven of the word norms and were all 4-8 letter nouns that were rated as highly

familiar (range 5.5-7 on a 1-7 scale), moderate to high on concreteness and imagery (range

4.5-6 on a 1-7 scale), and moderate in pleasantness (range 2.5-5.5 on a 1-7 scale) [53]. The

word presentation phase is called encoding. To trigger long-term storage of the words, par-

ticipants are then asked to perform mathematical operations and answer a question whether

a sum of two numbers is odd or even. This phase is called distraction and lasts usually for

30 s. The last phase is called retrieval, and participants have 30 s to list out loud all the

words that they remembered from encoding phase. One encoding, distraction, and retrieval
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Figure 4.1: Verbal memory task and memory performance metrics

in 10 participants.

cycle is called a trial, and during one experiment, participants often complete 5 - 10 trials

(Figure 4.1).

This behavioral task was chosen for two reasons. First, it is easy to implement and run

with participants. Second, we were in possession of a dataset from 10 participants recorded

using Blackrock/Neuralynx during described task. The recordings were micro LFPs from

hippocampal and entorhinal regions of the MTL. Doing the exact same task would give

us an opportunity to compare analysis performance across systems or reuse the knowledge

about memory encoding and recall in order to improve performance on the Neuro-stack. If

we divide the data into two classes, remembered and forgotten words, the dataset itself is a
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skewed one as participants usually recalled less then 50 % of the words (Figure 4.1). Memory

performance was calculated as the proportion of previously encoded verbalized words that

were recalled.

4.1.2 Prior Work on Memory Classification

Previous reports have analyzed data from verbal memory task. In one prominent example,

researchers have used logistic regression to perform binary classification to differentiate neural

activity in the case of remembered and forgotten words [10]. The inputs to the classifier are

sets of bandpower across different frequency bins and electrodes. Achieved average area

under curve was 0.63 (Figure 4.2).
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Figure 4.2: Verbal memory task binary classification using logistic

regression. Adapted from [10]

.

The idea here was to use our dataset and surpass the performance of this reported

classifier using artificial neural networks. Given that neural networks require a lot of data

for proper training and testing, not many reports have used them on the data from the MTL

because it is one of the hardest regions to access. Unlike MTL, neural networks have been
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successfully used for the data from cortical areas such as decoding speech from motor cortex

[54].

4.2 Memory Decoder Software Implementation

4.2.1 Base Model

In order to perform binary classification and separate remembered/forgotten classes, we

used an artificial neural network model (Figure 4.3). The model architecture included two

one-dimensional convolutional neural network layers (CNN1D), first 32 nodes and second 64

nodes, and a long-short term memory (LSTM) recurrent layer with 64 nodes. We named

each CNN1D+CNN1D+LSTM branch a channel model and used separate channel models for

each brain region (N). After that, LSTM outputs from all channel models were concatenated

and pushed through fully-connected Dense layers, and finally the classifier.

Separate channel models were implemented in anticipation of easier model explainability

later and figuring out which regions contributed the most to model decision making. All

models throughout this work were built using Keras with Tensorflow backend in Python

3.6.9.

4.2.2 Training and Testing

The model was trained offline using data from 6 MTL regions (left/right anterior hippocam-

pus, left/right posterior hippocampus, left/right entorhinal cortex) from 10 participants

(Figure 4.1).

LFP data (downsampled to 250 Hz, batch size 512) was extracted in chunks of 10 s (± 5

s) around the word onsets. Because word onsets were separated by 6 s, chucks had overlaps

of 4 s, which were stored in separate windows as training samples. Furthermore, in order

to give the model more information about the location of the word other than just time
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Figure 4.3: Neural network model includes multiple branches for

each brain region and concatenated output.

positions, the 10 s chunks were multiplied by a Gaussian window function (mean:0, std: 2.5

s, cut-off: ±5 s), depending on the region. In order to augment dataset, we considered that

all 10 s chunks coming from the same micro-wire bundle were just different samples from

one input variable. Reasoning behind this was that LFP traces from 8 micro contacts are

usually highly correlated (Figure 4.4).

To balance the dataset’s two classes (positive – remembered word; negative – forgotten

word), we shuffled the dataset and picked the randomly (uniform distribution) positive cases

so that their number match the negative ones. Note that the number of cases for negative

class was expectedly lower for all participants (Average memory performance: 35.86 ± 10.95
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Figure 4.4: Neural network model training procedure with raw LFP data and training

results.

%). The data from all participants was then divided into training (50%), validation (25%),

and test (25%) sets. Then training and validation datasets were combined, shuffled, and used

for training of the base model. Binary cross-entropy was used for the loss function, with root

mean square propagation for the optimizer (learning rate of 0.001). The L2 regularization

was used in the CNN1D and Dense layers and was proportional to the square of the weight

coefficients’ value. Moreover, to reduce overfitting further, the training dropout technique

[55] was applied after each layer with a 0.2 rate, except for the LSTM, which used a 0.1 rate

and a recurrent dropout (0.5 rate). Five-fold cross-validation (Figure 4.4 – training average

across folds, Figure 4.5 - validation average across folds) was used for validation using the

presented hyperparameters. Hyperparameter optimization was done during the validation

phase and with respect to the F-1 score (0.5 threshold).
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Figure 4.5: Neural network model validation and testing in 10 par-

ticipants.

The final trained model was then used to make predictions for each participant’s test set

(4.5-right). Average F1-score across all participants was 88.6 ± 5.5 % (mean ± std).

The above-described neural network model was chosen after an extensive trial and error

process during which multiple classification algorithms were tested on the same dataset.

Specifically, before utilizing the neural network model, the data was classified using shallow

methods such as Support Vector Machine (SVM). As part of the feature engineering process,

we supplied SVM models with raw, power, and phase data in 0-250 Hz range chunks of 7 s

(word onset at 3.5 s) or in a sequence of 1 s sliding time windows (with no overlap). Before

choosing the final decoding model, we also tested several convolutional (CNN) and recurrent

neural network (RNN) architectures. Summary of accuracies for each of these decoding

methods is presented in Table 4.1. The final base model (Figure 4.3) that we chose based on

the highest performance had inference latency of 2.8 ms, while performing ∼193 million MAC

operations. This meant that with the closed-loop round-trip delay of 1.57 ms (See chapter
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Proposed Sensing and Stimulation Device, section In-Vitro Validation), an estimated total

delay would be ∼4.4 ms for a closed-loop that would involve neural network inference.

Table 4.1: Performance and latencies across platforms and models.

Input Type
(Domain)

SVM
SVM+PCA
GoogleNet

CNN2D
LSTM

CNN1D

55 — 65
65 — 90
69 — 96
63 — 75
75 — 88
72 — 87

Classifier
Algorithm

Accuracy
Range

Power (Time-frequency)
Power/Phase (Time-frequency)
Power/Phase (Time-frequency)
Power/Phase (Time-frequency)
Raw (Time)
Raw (Time)

4.2.3 Explainability and Visualization

Other than being data hungry, one other challenge with neural networks is that they are

hard to interpret. This especially holds true when neural networks are used for drawing

neuroscience conclusions based on a trained and high-performing neural network decision

making. Potential application in clinical treatments would be even more challenging and

require full explainability of network’s input to output mapping. It should be noted that

the recurrent layers, such as LSTM layers, are far more challenging to interpret compared to

convolutional layers. This is because LSTM output of a trained layer depends on the current

state of the layer and not just the input, whereas convolutional layers input to output

mapping can easily be extracted and visualized. Although further analysis is pending, we

performed two methods to try to tackle explainability problem.

First, we tried to utilize initial decision to structure the input per brain region and we

applied ”one-hot” encoding, where we fed the test data from only one region into correspond-

ing channel model of the trained network, while keeping other inputs at zero. Example from

one participant shows that certain hippocampal regions are contributing more to the deci-

sion than entorhinal regions (Figure 4.6). Results varied across participants, but the general
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trend was that the data from posterior and middle hippocampus contained the most infor-

mation based on which the model successfully predicts the outcome of encoding phase alone

with the accuracies of up to 88 % (Figure 4.6).
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Figure 4.6: Neural network model partial explainability using ’one-

hot’ encoding input.

Second, one of the ways to check what trained convolutional part of the network does

during the inference is to visualize its filter activations by displaying patterns that filters are

meant to respond to. In order to do this, we applied gradient ascent at the input, that is to

apply gradient descent to the input chunk values so as to maximize the response of a specific

filter. The starting input chunk was 10 s with all samples being zero. Resulting chunk was

the one that chosen filter is maximally responsive to. In our specific case, we performed

this at the output of every filter in the second CNN1D layer for all channel models. The

process was to build a loss function that maximizes the output of each filter and then to

apply stochastic gradient descent, which adjusts the input chunk values so that filter output

values is maximized. The loss function was average of the output for a given filter, and the

gradient was with respect to the channel model input chunk. We also used L2 normalization
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Figure 4.7: Neural network model partial explainability using CAM

visualization presented as two CNN1D activation filters in time-

frequency domain.

during gradient descent. Once completed the resulting input chunk was transformed into

time-frequency domain using continuous wavelet transform with complex Morlet base in

order to visualize whether the CNN1D layers were looking for specific oscillatory bands

known to be signatures of verbal memory encoding. Although not all filters made sense

in the context of neuroscientific knowledge, we are presenting the most interesting filters

from the middle hippocampal branch, which maximally responded to theta bands (4 – 8 Hz)

around the word onset (Figure 4.7). Association between MTL theta activity and memory

functions is well established in literature. These results (Figure 4.7) should not be confused
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with a conclusion that neural 10 s chunk with strong theta power around the word onset is

predictive of a successful encoding. Rather, this merely pointed out that filters with time-

frequency transfer function that isolates theta bands (Figure 4.7) contributed to the model’s

final decision, ultimately made by layers that follow the second CNN1D layer, which could

have been either a remembered or forgotten word. Prior reports suggested that successful

verbal memory encoding is linked to lower theta band power ([10], [56]).

4.3 Embedded Implementation

4.3.1 Inference on the TPU

After successful offline decoding of the neural activity during verbal memory task, we wanted

to explore online options that could utilize hardware resources of the Neuro-stack. To do that

we needed first to convert trained model into the one that could be executed on the Edge

TPU using the Neuro-stack’s software infrastructure that was built for TPU Dev Board.

Software neural network model is consisted of 32-bit floating point coefficient. For it to run

on the TPU, those coefficients needed to be quantized to 8-bit fixed point and the model

converted to TensorFlow Lite, before it could be compiled and transferred to TPU’s memory.

Structure of the software responsible for the TPU inference is consisted of channel slices,

which accept incoming neural data, preprocess them and then forwards to the Edge TPU

once inference is externally triggered (Figure 4.8 – a zoomed-in portion of the Neuro-stack

Control block from figure 3.9). Each channel slice was intended for one brain region and was

used to restructure incoming data and preprocess it for the neural network. Every preprocess

step involved downsampling to 250 Hz and z-score. Signal statistics were calculated during

scanning phase (20 s) for each channel before every experiment and were kept inside channel

slice memory for online normalization. Three 10 s FIFO (5 KB for 250 Hz data) were then

continuously filled with incoming data. There were three FIFO blocks to account for three

word onsets that had overlapping neural activity. Once the inference trigger was initiated,
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Figure 4.8: Neural network TPU embedded implementation.

either locally or externally through wireless server, the contents of the three FIFO buffers

were multiplied with Gaussian window and transferred to the TPU from each of the channel

slices. Inference predictions were then stored locally and/or transferred externally (Figure
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4.8).

To test this operation, we converted software trained base model to TensorFlow Lite and

transferred it to the TPU memory. Unless otherwise stated, all tests with this embedded

neural network implementation involved emulation of the real-time data recordings by feeding

prerecorded samples from the memory to channel slice inputs in time. Because the whole

point of using the TPU was to shorten the latency in an online application, while retaining

high decoding performance, we tested models with three different number of parameters

and measured the inference latency and achieved performance accuracy (Table 4.2). The

results justified the decision to move inference to the TPU as latencies decreased at the

expense of reduced performances due to quantization compared to software implementation

running on CPUs. In the case of 1.2 million parameters, the TPU implementation partially

executed using ARM resources, which resulted in slightly higher latency, however our base

implementation had lower number of parameters and worked entirely on the TPU.

Table 4.2: Performance and latencies across platforms and models.

CPU TPU

F-1 Score / Latency ( 1 - 2 )

C
ha

nn
el

 M
od

el
Pa

ra
m

et
er

s 300 K

600 K

1,200 K

0.86 / 8.10 ms 

0.88 / 10.45 ms

0.87 / 14.18 ms

0.75 / 2.11 ms 

0.82 / 2.29 ms

0.81 / 4.89 ms

4.3.2 Transfer Learning

Since the neural network model could execute on the TPU, the next question was whether

it can operate in real-time and how can we retain the performance with new participant

and previously unseen data. There were two challenges to achieve this. First, the TPU
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co-processor can only be used for inference and not for training. This was true when this

work was under development, however at the time of this writing, partial retraining of the

models on the TPUs was enabled. Second, working with participants in the hospital under-

standably comes with significant restrictions, especially in terms of time length allocated for

experimental sessions. This meant that full training of the model on-site was not an option.

Multiple separate sessions are most often not possible.
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Figure 4.9: Partial retraining of the neural network model by locking

channel model coefficients.

For these reasons, we opted for another technique common in deep learning field, transfer

learning. The idea was to keep the trained base model mostly intact and just retrain output
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fully-connected layers with the new data. In our case that specifically meant keeping coeffi-

cients of the channel models fixed and retraining all layers coming after LSTM nodes (Figure

4.9). This way, time necessary for training phase would be significantly reduced, allowing

a real-time operation during only one session with the participant, while still adjusting the

model towards each participant’s neural activity.
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Figure 4.10: Transfer learning embedded implementation with partial external retraining

and embedded inference.

Because the model cannot be retrained on the TPU model, we used the external com-

puter to perform this phase, which was still reasonable given short time required for partial

coefficient tuning. During retraining phase neural samples were directly forwarded over the

wireless network to the experimental computer, where we ran Python and Bash scripts that

automatically perform training and conversion to the TensorFlow Lita model. The model was

then automatically transferred to the TPU’s memory, ready to be triggered during prediction

phase (Figure 4.10). Channel slices were equivalent to those described earlier (Figure 4.8),

as transfer learning operation was just adjusting the model coefficient and not the way we
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perform inference. Neural samples were then streamed through channel slices and the TPU

during inference. Samples and inference predictions were at the same time, once available,

streamed to the external computer for monitoring.

As mentioned earlier, for in-vitro tests we emulated real-time neural streaming from the

TPU Dev Board memory. The neural samples per brain regions were packaged in chunks

of 10 s. During the training phase all incoming chunks were used for training as such that

whenever we received new chunks, we shuffled them with the previous ones from the same

session and used them for retraining (Figure 4.11). All model coefficients were kept and

updated with the next iteration following the previous one. The dataset was not balanced in

this case with the intention to use all data chunks from the new participant for retraining and

testing regardless of the class. Furthermore, to reduce the burden on the TPU even further,

we used the fact that only some channels significantly contribute to the final predictions

(Figure 4.6) and ones all samples during training phase were used, we used 10% of the

same data to run ”one-hot” encoding inference on the experimental computer. Three best

performing regions were then selected and new model with only three channel branches was

retrained again on the shuffled data. Final model was then ported to the TPU.

0 s 120 s 240 s 240(k-1) s 240k s

Figure 4.11: Real-time transfer learning retrains the model with

shuffled old and new data.
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4.4 In-Vitro Validation

4.4.1 Transfer Learning Compared to Software and Embedded Base Model

To test whether transfer learning operation could help adjust model’s coefficient to the new

participant we emulated real-time operation and timely forwarded pre-recorded LFP samples

within TPU Dev Board. To make a correct inference on unseen data comparison, we also

retrained the base model as well so that it contains information about 7 participants from

our dataset and remaining 3 were used for testing on both CPU and TPU.
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Figure 4.12: Transfer learning compared to software (CPU) and embedded (TPU) inference

on unseen data.

Results clearly showed that transfer learning could quickly help readjust the model to

work better on new participants (Figure 4.12). The best results were expectedly obtained

using the software implementation, which possessed the information about the 3 participants.

Once the data from these 3 participants was excluded from the training the F1-scores dropped
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on the CPU and even more so on the TPU due to quantization. However, when we used

transfer learning retraining (Figure 4.10), F1-scores jumped by 15% on average. These results

justified the use of the TPU to shorten the latency of online processing and transfer learning

to make it perform better on previously unseen data.

4.4.2 Closed-loop Applications

Another question was whether the neural network decoders could be used in closed-loop stim-

ulation applications to, in this case, enhance memory performance. Of course, this question

can only be answered with comprehensive in-vivo closed-loop behavioral study, where we

would trigger electrical stimulation whenever decoder predicts negative outcome, that is

that the participant is likely to forget current word in this case. Even though successfulness

of this cannot be tested in-vitro, we could still test technical feasibility of such experiment.

In other words, we wanted to test how early with respect to a word onset could the classi-

fier make most probable prediction. By testing this it could also give us insight about the

round-trip delay, which would now additionally include the decoder in the loop compared to

the first closed-loop test when we only performed pulse detection (Figure 3.11).

Given that closed-loop algorithms should operate independently, the inference had to be

triggered periodically, and we needed a different way to provide task relevant information,

such as timing of word onsets, to the model. A workaround that we used was to supply LFP

data synchronized with a train of pulses (10 mV, 10 ms) via NI-DAC to sensing front-ends.

Pulses were synchronized with the data by having rising edges happen simultaneously to

the beginning of chunks (5 s before each word onset). For this experiment, we only chose

one channel from one participant shown to significantly contribute to memory predictions.

Then at a certain time t0, representing the earliest point at which the decoder could already

predict the negative outcome, we would deliver a stimulation burst with 10 pulses (Figure

4.13).

It should be noted that FIFO buffers on the TPU board were filled in serially, and when
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Figure 4.13: Neuro-stack decoder in-vitro validation setup for online

inference and closed-loop triggers.

no data was present at the beginning of the experiment, missing samples would have zero

value in the buffer (Figure 4.14). When we ran inference every 100 ms across 10 s chunk

on the data from one participant, it was shown that in 83.1% of the words, the outcome

turned out to be negative if at t0 = −100 ms (where 0 s was word onset) decoder’s output
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probability was less than 0.5. Inferences before −100 ms had success rate of < 50% and

those after increased but not significantly. This meant that the outcome of the encoding

process could be deciphered even before word was shown to the participant, which was in

line with some previous reports.
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Figure 4.14: Neuro-stack decoder decisions can provide window during which stimulation

could alter memory encoding.

In one example LFP trace, we shown the stimulation delivery by running inference at

t0 = −100 ms which resulted in negative prediction (Figure 4.14). This test also gave

us insight about round trip latency because stimulation burst appeared one cycle after t0.

Plotted LFP had 250 Hz sampling rate, which meant that round trip latency was in the

range of from 4 ms to 8 ms.

This test provided preliminary in-vitro proof that decoder can be used in a closed-loop

in terms of its ability to process the raw data online and low round-trip delay. However,

further work is required to establish meaningful hypothesis that could be tested through a

separate study. Another point worth mentioning is that average probability plots over time
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for positive and negative classes (Figure 4.14-top) were generated prior stimulation attempt

(Figure 4.14) on non-stimulated data to gather insights about how soon can the decoder

make a decision. Further analysis is necessary to check how decoder’s output change once

stimulation artifacts are present in the data.
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5 Human In-Vivo Validation

5.1 Experimental Equipment and Participants

One of the important aspects of this work was its incremental development informed at

every step by human in-vivo experiments. This is often not the case when developing neural

interface technology.

Macro
Connection

Micro
Connection

Neuro-stack

Headstage

Neuro-stack

Micro
Connections

Epilepsy Patient (Post-operative)

Figure 5.1: Epilepsy patient (post-operative) connected to Neuro-stack in the hospital

(left). Neuro-stack headstages and connections to maco- and micro-electrodes (right).
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5.1.1 Participants

Research participants (Figure 5.1, Table 5.1) were twelve patients (mean age 24.15 years, 9

females) with pharmacoresistant epilepsy who were previously implanted with acute stereo

EEG depth macro- and micro-electrodes for seizure monitoring. Participants volunteered

for the research study during their hospital stay by providing informed consent according to

a research protocol approved by the University of California, Los Angeles (UCLA) medical

institutional review board (IRB) approved protocol.

Table 5.1: Neuro-stack in-vivo validation with details about participants, brain regions,

type of recording, stimulation, and behavioral task

1
2
3
4
5
6
7
8
9
10
11
12

Macro-
Recording

Micro-
Recording

Ambulatory
Task

Stationary
Task

Macro-
Stimulation

Brain 
Region
LHipp
LHipp
LTPO
ROF

LEC; LHipp
L/RHipp
L/RHipp
L/RHipp
L/RHipp
LHipp

LHipp; Ant Cing
LHipp; REC

✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓

✓
✓
✓
✓
✓
✓
✓
✓

✓
✓

✓
✓

✓

✓
✓
✓
✓

✓
✓

✓

12 10 3 6 1Total

Each Behnke-Fried macro-micro depth electrode (Ad-Tech Medical, Racine, WI) in ev-

ery patient had 8-12 flexible polyurethane depth electrodes (1.25 mm diameter) and were

implanted solely for clinical purposes and prior to completion of the research study. Each
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depth electrode contained 7-8 macro-contacts and terminated in a set of nine (8 recording,

1 reference) insulated 40 µm platinum-iridium microwires (impedances 200-500 kΩ) inserted

through the macro-electrode’s hollow lumen.

5.1.2 Neuro-stack Setup

Neural activity was recorded from macro- and micro-wire contacts using the Neuro-stack

during wakeful rest, stationary, and ambulatory behavior from various brain regions (Table

5.1). The Neuro-stack setup was done bedside (Figure 5.1) or on-body during ambulatory

movement, where the system was connected to implanted electrodes using a custom-built

connector (i.e., touch-proof, Cabrio, and Tech-Attach connectors for commercial Behnke-

Fried macro- and micro-electrodes, respectively; Figure 5.1). The main objective of the

in-vivo validation studies was to test recording of iEEG, single-unit, and LFP activity and

macro-stimulation during rest and behavioral tasks. The PLS closed-loop functionality has

been tested in-vitro [51] with expected in-vivo validation to be a part of future behavioral

studies.

For all in-vivo validation sessions, a Neuro-stack with two analog layers was used, which

allowed for up to two micro-electrode bundles (16 channels) and eight macro-electrodes (16

bipolar channels). All micro- and macro-electrode recording sessions were sampled at 38.6

kHz and 6250 Hz, respectively. Base recordings were done without hardware decimation,

non-linear correction, and artifact rejection on the Sense IC.

Stacked layers were placed inside a plastic enclosure (Figure 5.1) and wrapped from the

inside with copper foil shielding tape to reduce the impact of the noise. Custom headstages

(Figure 5.1) were built on a protoboard by placing two 5 × 2 connectors on each, which were

internally routed to the Omnetics connector.
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5.1.3 Electrode Localization

Electrodes were localized to specific brain regions using methods that have been previ-

ously used [57]. Briefly, a high-resolution post-operative CT scan was co-registered to a

pre-operative whole brain MRI and high-resolution MRI using BrainLab stereotactic local-

ization software (www.brainlab.com and FSL FLIRT (FMRIB’s Linear Registration Tool

[58]). Medial temporal lobe (MTL) regions, including the hippocampus and entorhinal cor-

tex, were delineated using the Automatic Segmentation of Hippocampal Subfields (ASHS

[59]) software using boundaries determined from MRI visible landmarks that correlate with

underlying cellular histology. White matter and cerebral spinal fluid areas were outlined

using FSL FAST software [60]. Macro- and micro-electrode contacts were identified and

outlined on the post- operative CT. For a list of localized brain regions in all participants

see Table 5.1.

5.2 Resting-State Validation

5.2.1 iEEG Sensing

First test was to perform a concordance study, where we recorded iEEG activity from macro-

electrodes using both the Neuro-stack and commercially available electrophysiological record-

ing systems (i.e., Nihon Kohden) for comparison purposes. We performed monopolar record-

ings (scalp reference) from anterior hippocampus and y-split the connections to record with

the Neuro-stack at 6.25 kHz and with the Nihon Kohden system at 2 kHz (Figure 5.2). We

also performed bipolar recordings from the same hippocampal region as well as the Neuro-

stack recordings only without Nihon Kohden. We used audio pulses sent to both systems

from the experimental computer for synchronization purposes.

Raw recordings from both systems were filtered and downsampled to 0 Hz – 250 Hz

band, which we used for comparison in time domain (Figure 5.3-top). Then we calculated
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Figure 5.2: Concordance iEEG test with the Neuro-stack and clin-

ical Nihon Kohden monitoring system.

continuous wavelet transform (CWT) using complex Morlet with 3 cycles as base wavelet

in 77 logarithmic frequency steps (Figure 5.3-bottom/left). Finally, we calculated power

spectral density (PSD) using FFT (Fast-Fourier Transform). The FFT length chosen was

the largest power of 2, less than the length of the observed iEEG trace. The coefficients were

then normalized with the trace length. Finally, the squared absolute value of the spectral

coefficients multiplied by 2 (one-sided FFT) resulted in the PSD (Figure 5.3-bottom/right).

All frequency and time-frequency domain plots correspond the time trace from one channel

presented (Figure 5.3-top).

Obtained results showed nearly identical recordings from the two systems except for the

slightly higher noise floor of the Neuro-stack at frequencies above 100 Hz (∼ −40 dB). The y-
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Figure 5.3: Concordance iEEG results in time, frequency, and time-frequency domain.

splitter connection between the systems affected the Neuro-stack recordings to higher degree

as once we performed the Neuro-stack recordings alone the noise floor dropped by a ∼25 dB.

5.2.2 Macro-Stimulation

Stimulation was performed in three participants to test stimulation artifact propagation

across channels and assess associated statistics with varying parameters. In the first two

participants, bipolar macro-stimulation was applied to the left hippocampus (amplitude:
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0.5 mA; Pulses/burst: 11; waveform shape: rectangular; pulse width: 1ms; frequency: 100

Hz). After successful delivery was observed in surrounding channels, a series of bipolar

macro-stimulation bursts with varying parameters was delivered in a third participant. We

recorded bipolar from eight macro-electrodes, one of which was used to deliver bipolar macro-

stimulation (Figure 5.4).

+ –

+ –Chi

E1
E2

E8
. .

 .

Electrodes

Figure 5.4: Neuro-stack bipolar macro-stimulation montage for in-

vivo validation.

The parameter test space included [amplitude, frequency] combinations of [0.25, 0.50,

0.75, 1.00, 1.25] mA × [60, 80, 100, 120, 140] Hz where every combination was repeated four

times for a total of 100 macro-stimulation bursts (Figure 5.5) with the following parameters

(pulse width: 1.28 ms, interphase width: 150 s, rectangular pulse shape, interburst delay:

16.67 s). Stimulation delivery (Figure 5.5: top – entire session; middle – multi burst; bot-

tom – single burst level) was observed on 40 nearby recording channels, obtained using the

Sense IC (sampling rate: 6250 Hz). Overlayed pulses from one of the bursts with the same
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parameters (1.25 mA, 60 Hz) showed successful delivery across all channels (Figure 5.5-right

– upsampled to 25 kHz and interpolated). This test showed ability of our sensing front-ends

to capture stimulation artifacts without saturation or distortions. It also provided a large

dataset for artifact propagation analysis based on stimulation parameters.
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Figure 5.5: In-vivo macro-stimulation: 100 bursts, [60, 80, 100, 120, 140] Hz × [0.25, 0.50,

0.75, 1.00, 1.25] mA.

5.3 Ambulatory Behavioral Task

One of the most unique features of the Neuro-stack system is its ability to record mobile

single-units, while participants are freely walking and wearing the system on-body. To our

knowledge this kind of test has never been performed before.

Single-unit data was recorded in six participants during an ambulatory walking, while

they carried a backpack with the Neuro-stack, TPU Dev Board, and an external Voltaic V75
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Figure 5.6: Neuro-stack in-vivo ambulatory setup. Participants

were asked to walk repeatedly from one point of the room to another.

USB battery pack (Figure 5.6-left). Two of the participants were instructed to walk around

their hospital room freely and visit prominent ‘landmarks’ such as locations near windows,

doors, tables, etc. A separate group of four participants was instructed to walk repeatedly
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(10 times) from one position to another position in the room using a linear path (Figure

5.6-right). The ambulatory movement was tracked using an eye-tracking headset (Pupil Labs

Core device; [61]) which contained inward-facing eye cameras (sampling rate: 200 frames per

s) and an outward-facing world-view camera (sampling rate: 120 frames per s). Neuro-stack

was connected to two micro-wire electrode bundles (Behnke-Fried, Ad-Tech) to record from

18 micro-wire contacts (16 recorded single-unit activity and 2 served as reference contacts).

Recordings with respect to local references (same bundle) were recorded at a sampling rate

of 38.6 kHz.
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Figure 5.7: Motion artifacts and preservation of single-units.

The researcher used an experimental computer running an application (Python) to start/stop

recordings and view in real-time the neural data. Both the Neuro-stack and eye-tracker were

connected to the same local network from which the NTP timestamps were fetched. For a

redundant method of synchronization, a miniature LED was attached to the corner of the

world-view camera on the eye-tracking headset (Figure 5.6). The LED was programmed to

turn on for 50 ms every 20 s during the experimental walking task, which was not visible by

the participant and was also NTP-timestamped.

The first four walks were used to assess motion artifacts in recordings. Motion artifacts
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Figure 5.8: First recording of human ambulatory single-units. Raw, filtered (300 –

3000 Hz), and extracted units.

were present in the recordings, but the use of nearby electrodes (same bundle) as a reference

resulted in reduced common noise artifacts using the front-end amplifiers (Figure 5.7). Raw

(line noise removed) 12-channel neural activity recorded from one participant during walking

from X to Y is shown in Figure 5.8. Although motion artifacts were reduced, slow voltage
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transients during movement were still present (Figure 5.7). Nonetheless, single-unit spikes

were preserved and detected using a bandpass filter [300 – 3000 Hz] (Figure 5.8). After

spike sorting [62] of the data, single-unit clusters were successfully isolated (Figure 5.8). We

performed spike sorting using Wave clus 3 [62]. Preprocessing included the use of a notch-

filter to remove 60 Hz noise. Selected clusters were chosen so that more than 250 spikes were

identified and that out of these, 1% or less had inter-spike-intervals (ISI) of less than 3 ms

(Figure 5.8-bottom).

5.4 Stationary Behavioral Task

Neuro-stack’s ability to record neural data in real-time and decode behavioral performance

was tested bedside in a participant with indwelling micro-wire electrodes while they com-

pleted a verbal memory task (Figure 4.1). During the task, the participant was instructed

to learn (encoding phase) a list of ten words that were presented on an iPad screen and

then verbally recall as many words as possible after a distraction phase. Encoding, distrac-

tion, and recall blocks were repeated nine times during the experimental paradigm while

the Neuro-stack recorded LFP activity from sixteen micro-wire channels, which was used

to decode memory performance in real-time using artificial neural networks. During the

verbal memory task, we used the Neuro-stack in a wireless configuration together with both

the experimental computer and Stimulus Presentation device (iPad). Stimulus presentation

on the iPad was implemented as a game using Xcode 11.2.1 and Swift 5.0.1 programming

languages. For network communication, we used two TCP (transmission control protocol)

channels (Figure 5.9; 1. Experimental computer – TPU Dev Board, 2. Experimental com-

puter – iPad). During recall phase words were automatically converted to targets using

built-in features of Swift language for iOS applications. Targets as well as event timestamps

were transferred to the experimental computer as soon as decoded. NTP timestamping was

used to log every event on the experimental computer, iPad, and TPU Dev Board, as well
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as every neural sample, which was later used for synchronization.

This was the setup for verbal memory task and in-vivo test of the transfer learning process

described in the previous chapter. Out of nine trials, five were used for training phase and

remaining four for making predictions. During prediction phase the data chunks were fed

into the model for inference as they came without shuffling.
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Figure 5.9: Neuro-stack in-vivo setup for performing stationary ver-

bal memory task, recording, and online decoding.

After five trials of retraining on the experimental computer, achieved training F1-score

was 90.5%. Final test F1-score after four prediction trials was 69.0% (72.5% accuracy; Figure

5.10). While results were not as good as some of the in-vitro or offline ones these were still

well beyond the chance levels. Moreover, we only had opportunity to do this task in one

participant, which resulted in completed verbal memory task and neural decoding using
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fairly complex system, which was a positive result. Experiments with more participants will

really show the effectiveness of this real-time transfer learning operation as more and more

Neuro-stack specific data is being incorporated into the base model.
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Figure 5.10: Prediction phase of the verbal memory task showing

inference results synchronized with stimulus onsets.

80



6 Discussion

In this chapter, we are going to discuss open general topics, unanswered in previous sec-

tion. The goal is to provide further clarification about the need for the Neuro-stack and its

recording/stimulation advantages compared to available devices. Also, we provide a general

description of neural interface research and development process in an academic setting as

compared to industry, where all other existing neural devices are manufactured.

6.1 LFP/iEEG vs Single-unit

Both single-neuron and local fields have been used in human neuroscience research to map

behavioral functions to a neuron or a neuron population activity. On the other hand, clinical

treatments for certain disorders have mostly relied on local fields activity. In essence, the

single-unit and LFP/iEEG signals are inter-dependent as such that neural oscillations in

LFP/iEEG arise from collective synchronized activations within one population of neurons.

Reversly, generated multi-component field can also influence firing of a single-neuron together

with action potentials coming from a previous neuron on the signal pathway. It should

be noted that this is a simplified description of how neural networks actually work. The

primary goal of the Neuro-stack’s development was a standalone, external, research device

that was also envisioned as a potential pathway towards fully implantable system for single-

unit/LFP/iEEG recordings and stimulation. In order to justify the need for both types of

signals, in this section, we are discussing their difference and a need for both in the context
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of clinical applications.

A conclusion from decades of brain research has been that for any given observed be-

havioral function only a very small portion of neurons gets activated, that is, the brain

employs sparse coding. For that reason, in order to explain complex human behavior or

disorder, researchers sometimes need access to hundreds, if not thousands, of single-neurons

to accurately describe the underlying mechanisms. On the other hand, a single channel of

LFP or iEEG covers a population of tens to thousands of neurons. Even though the signal

acquired that way is a low-passed superposition of network activity, neural oscillations or

its transformations provide information about various levels of network synchronicity, which

can, if significant for observed functions, be a reliable biomarker. So even though the brain

uses action potentials for its function and communication, indirect measures such as brain

oscillations also contain useful information. From engineering standpoint, it is much easier to

record LFP/iEEG given that the analog front-ends require much lower operating frequency

and that lower number of electrodes is necessary to cover observed brain region. Thus, de-

pending on the observed function there is a tradeoff between technical feasibility and spatial

coverage that one must consider before conducting research. To this date, there is no techni-

cal solution for implantable system that can record a large number (thousands) of single-unit

channels and so there is also no approved treatment for any disorder based on action po-

tentials signals. Approved treatments for some of disorders (epilepsy, Parkinson’s disease)

are exclusively based on iEEG biomarkers recorded from implanted macro-electrodes. The

Neuro-stack cannot solve this and cannot be used for single-unit based treatments, however,

it can be used as a research testing platform to provide insights into how can more natu-

ralistic and ecologically valid single-unit research drive development of future implantable

neuromodulation systems.

Although research and clinical applications based on iEEG have been successful so far

it should be noted that the iEEG signal can carry information about multiple functions

represented in form of neural oscillations that may overlap in time and frequency domains.
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Similarly, macro-stimulation can affect more than just roughly localized centers of certain

behavioral function or disorder. Further, a time-frequency uncertainty of the oscillation

analysis, especially in real-time closed-loop applications, cannot be fully solved and will

always limit ability for instantaneous action based on iEEG signal. Motivated by successes

of single-unit motor cortex BCI interfaces, it feels natural that there will always be a need to

build a closed-loop layer that can ’talk’ the same language as the observed neural network.

For the time being, research and clinical treatments for deep brain structures are more likely

to continue its dependance on iEEG alone, but technology of the future may change that

driven by the current investigational devices such as the Neuro-stack.

6.2 Bi-directional Full-Duplex Sensing and Stimulation

Concurrent sensing and stimulation have always been one of the key challenges in implantable

neuromodulation technology development due to small margins in their input dynamic range

compared to external systems. Given the implantable design of the Neuro-stack’s ICs and

a potential pathway to a fully implantable system that can record single-units, we discuss

further in this section Neuro-stack’s full-duplex capability.

Stimulation artifacts can be several orders larger in magnitude than underlying neural ac-

tivity. This means that an artifact can overlap with the neural activity in time and frequency

domain. Even more damaging is the amplifier saturation caused by a large stimulation ar-

tifact, which means complete loss of signal. Complete artifact rejection remains unsolved

in general and is mostly handled on a case-by-case basis. Nonetheless, designers of neuro-

modulation devices have used various methods in order to allow bi-directional interface and

prevent amplifier saturation, ranging from blanking the amplifier input during stimulation

to allowing a certain montage, such as monopolar stimulation and symmetrical differential

recording around the stimulation contact that would eliminate an artifact via amplifier’s

common-mode rejection, while leaving differential neural recording intact.
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The Neuro-stack’s sensing front-end in most cases does not require mitigation in order

to record during stimulation. A large dynamic input range and digital non-linear correction

(NLC) of the amplifier allows for capturing stimulation artifacts while maintaining high

recording resolution for lower voltages, thus preserving neural activity during stimulation.

While this does not remove artifacts it allows unrestricted full-duplex interface with no

amplifier saturation nor neural signal degradation. Afterwards, artifacts may be removed

separately during postprocessing stage or in an online manner, if necessary.

The Neuro-stack hardware sensing pipeline also includes digital adaptive stimulation

artifact rejection integrated circuit (ASAR; [48]) that uses adjacent channels to adaptively

learn the shape of the artifact, which is then subtracted from neural signal. However, ASAR

was not validated as part of the Neuro-stack and is out of the scope of this work.

In conclusion, unlike existing devices, the Neuro-stack offers bi-directional full-duplex

interface with plenty of margin to capture neural activity in presence of artifact regardless

of the montage used.

6.3 Hardware and Software Development in Academy

All current devices described in introductory sections and compared with the Neuro-stack

were developed in commercial environments (e.g., NeuroPace, Medtronic, Blackrock Mi-

crosystems, etc.). without constant interaction with clinicians nor human participants. To

our knowledge, the Neuro-stack is the first neural interface completely developed, tested

and used in human participants in an academic environment. Some of the development was

even gradually informed by in-vivo human testing (e.g., wearability, stimulation protocols,

and online processing). This was made possible by close collaboration between engineering,

neuroscience, and neurosurgery departments at University of California, Los Angeles, as well

as the ability of each department to perform cutting-edge research in their respective areas.

As mentioned earlier, implantable SUBNETS system with its integrated circuits was
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a multi-institutional effort initiated, supported, and funded by DARPA. The technology

itself was developed in two fabrication cycles before meeting the set requirements through

processes of verification and in-vitro and animal in-vivo validation. Next steps for evolving

such technology are commercialization and acquiring of regulatory FDA (Food and Drug

Administration) approval for human use. Both steps require years of work. The Neuro-

stack, although consisted of the exact same integrated circuits with intention for human use,

is an external, non-commercial, and research device, intended for human validation, was not

subject to as strict oversight as implantable systems up to the stage presented in this work.

Neuro-stack commercialization or use by other institutions would require large amounts of

additional work in documentation, testing, and validation.

SUBNETS implantable Hardware and firmware were designed and tested in-vitro with

an external oversight following FDA regulatory guidelines for verification and validation.

The Neuro-stack assembly and software development were internally verified and validated

in order to meet safety requirements set by UCLA IRB. This meant that every hardware

and software functionality presented in this work was thoroughly tested and documented

before obtaining the IRB approval. This included testing of recording functionalities as such

that set parameters provide recordings from set channel, at set sampling frequency, under set

configuration of the amplifier and not others. Likewise, stimulation tests meant that software

control and trigger of the stimulation delivered current with exact preconfigured parameters

and not others. Given that stimulation requires absolute safety for the purposes of this work

a separate flag needs to be checked at firmware level to ensure that delivery can only happen

during stimulation trials and not others. This ensured a redundant check in case an altered

command is read by the firmware as a stimulation command. Further, all commands sent to

the firmware contain a 8-bit CRC code to reduce probability of incorrect command delivery.

Throughout the work only one password protected and encrypted experimental computer

containing a signed certificate was used only by the author of this work to control the Neuro-

stack, thus simplifying the necessary security infrastructure required for any commercial
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medical device.

Leakage currents of all channels were verified independently of software and hardware

designers by a clinical engineer in idle, active recording, and active stimulation mode of

operation. Further, all hardware and software documentation, including but not limited to

design history, schematics, code, in-vitro tests, were reviewed and approved by the clinical

engineer at Ronald Reagan Hospital at UCLA as part of the IRB review process.

6.4 Reproducibility

The Neuro-stack and SUBNETS implantable neuromodulation system were not a typical

engineering research project. They were completed as part of a multi-institutional effort

involving a large group of people over several years. This work presented a use of already de-

veloped custom integrated circuits to assemble a new device and the development of firmware

and software to enable practical research applications with human participants. Thus, the

reproduction of the whole system would first require replication of individual application-

specific integrated circuits (ASIC) reported in prior work ([37], [46]–[50]). Only after that

step can the full reproduction of the Neuro-stack be achieved based on this work.
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7 Conclusion

7.1 Research Contributions

We present the Neuro-stack, a novel miniaturized recording and stimulation system that can

interface with implanted electrodes in humans during stationary (bedside) or ambulatory

behaviors. The Neuro-stack can record up to 256 channels of LFP/iEEG activity and 32

channels of single-/multi-unit activity. Macro-stimulation can also be delivered through

any of the channels (up to 32 channels simultaneously) during recording, allowing for bi-

directional full-duplex capability. This is a significant advantage over existing systems in

that it allows for characterization of ongoing neural consequences of stimulation as well as

precisely timed closed-loop stimulation.

A second major advantage of the Neuro-stack over existing systems is its smaller hand-

held size that enables it to be carried on-body and be wirelessly controlled. These features

allowed us to record single-neuron waveforms (spikes) during walking, which to our knowledge

are the first recordings of their kind in humans. Future studies using the Neuro-stack could

determine the neural mechanisms underlying human freely-moving behaviors (e.g., spatial

navigation) to identify, for example, spatially selective neurons and their modulation by

cognition (e.g., hippocampal place or entorhinal grid cells [41]) that have been previously

discovered in freely-moving animals. Doing so would bridge decades of findings between

animals and humans and potentially lead the way towards scientifically informed therapies

for hippocampal-entorhinal-related dysfunctions (such as Alzheimer’s disease). While we
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did not identify any spatially selective single-units in the current study, possibly due to

the restricted spatial environment in which walking took place, further analysis from our

ambulatory task and other future studies using the Neuro-stack over longer distances (e.g.,

hallways) may be able to identify these neurons in humans.

A third advantage of the Neuro-stack is its API that allows fast and flexible prototyping

of the experiments with range of backend functions that accurately align behavioral and

neural events (i.e., spikes). We demonstrated how the Neuro-stack’s API integrated with

a TPU can, in real-time, decode verbal memory performance in a single participant with

accuracy levels that are comparable to previous reports [10]. Specifically, we used neural

network models applied to hippocampal recordings to predict whether a previously learned

item would be remembered, with offline results exceeding those previously reported [10],

when equivalent metrics (F1-scores at the optimal thresholds) are compared. Future studies

with larger sample sizes will confirm whether reported decoding accuracy can be generalized

across subjects. It should be noted that we tested the decoding algorithm in one participant

using the model pretrained with recordings from a different device with different noise levels

(Figure 5.3), hence it is reasonable to assume that performance could go up as more Neuro-

stack data are incorporated into the pretrained model. Given the increasing benefit of using

machine learning approaches [54], [63] in neuroscience studies, the Neuro-stack could be

useful for validating decoding models and testing novel closed-loop stimulation therapies

(e.g., to improve memory in patients with severe memory impairments).

7.2 Future Work

There are numerous options for future work involving Neuro-stack system both on engineer-

ing and neuroscience side.

In short-term, large datasets collected during stimulation, ambulatory, and stationary

tasks need further analysis. Stimulation data with varying output parameters could be used
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to model artifact propagation, depending on the parameters, which could be useful in a

challenging problem of stimulation artifact rejection. The data from ambulatory tasks need

further analysis to find correlates of behavior if present in the recordings as well as to further

suppress motion artifacts. Finally, in order to continue upgrading the base neural network

model, the data from a single Neuro-stack participant could provide more insights into how

necessary adjustments before another attempt is carried out.

While the Neuro-stack offers several advantages over currently available systems, there

are limitations that warrant discussion. First, this Neuro-stack prototype can only support a

maximum of 32 wide-band single-unit recording channels. While it can also simultaneously

record up to 256 LFP recording channels (using four analog layers), other existing bedside

systems can allocate more than 256 channels solely for unit recordings. The use of multiple

Neuro-stack devices, however, would address this issue and increase single-unit channel count

substantially. Second, although the Neuro-stack is small enough to be carried on-body and

thus, allow for full mobility, its connection with implanted electrodes is still wired, similar to

other bedside systems. Thus, significant movements can result in motion artifacts. However,

single-unit spike waveforms can still be detected and isolated during walking behavior as

we show using techniques such as differential recordings between nearby contacts, as well

as proper wire isolation and fixation. Lastly, the Neuro-stack currently can only be used

in research studies with patients who have externalized electrodes implanted during clinical

(e.g., epilepsy) monitoring. Since these patients need to be continuously tethered to bedside

intracranial recording systems to assess for symptomatic episodes (e.g., seizures), this limits

the amount of time a patient can be freely-moving. However, future studies can complete

ambulatory studies after clinical data has been captured as was done in the current study,

on the last day of the patient’s hospital stay prior to electrode de-plantation surgery, or

during circumstances where continuous monitoring may not be necessary (e.g., depression or

chronic pain studies [64]). Furthermore, proper precautions and safety measures should be

implemented, such as waiting to complete studies until epilepsy patients are back on anti-
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epileptic medications to minimize risks associated with seizures during ambulatory tasks.

Future studies can determine which stimulation parameters are most beneficial for restor-

ing cognitive or behavioral functions given the Neuro-stack’s highly flexible programmability

compared to existing human-approved stimulators. For example, continuous adjustments of

custom pulse shapes, timing of complex burst patterns, and/or timing of stimulation rel-

ative to ongoing neural activity events could allow for the development of more effective

stimulation therapies. Given the wireless and wearable nature of the Neuro-stack, studies

could also determine whether closed-loop stimulation protocols effectively translate to more

naturalistic behaviors during everyday experiences that occur during mobility.

Although Neuro-stack is much smaller than other external systems, an even smaller

version could be tested in future in-vivo studies since its IC chips are all implantable by

design [37], [46]–[50] and require a combined area of just 113 mm2 (4 analog layers). An

implantable version of the Neuro-stack [37] but with its added single-neuron and closed-loop

stimulation capabilities thus presents an exciting avenue towards a completely wireless in-

tracranial single-unit and LFP recording system that would not be susceptible to motion

artifacts. Very recently, there has been an emerging trend from neural interface manufactur-

ers to develop digital headstages, which are fixed right at the head and are used to digitize

signal, thus shortening the analog wire paths susceptible to noise. Given that Neuro-stack’s

ICs are currently the smallest ones, they could be perfect for similar short-term solution.

Both implantable and digital headstage type of system would present a significant advance-

ment over current FDA-approved chronic neurostimulation devices in that it would allow

for single-neuron and multi-channel (current state-of-the-art is 4 channels; Neuropace RNS)

recordings, bi-directional recording and stimulation (full-duplex) capability, and the ability

to use advanced strategies for decoding (e.g., neural network models for inference) behav-

ior or disease-related states. Altogether, these novel capabilities would provide cognitive

and clinical neuroscience studies with a promising future pathway towards determining the

deep-brain mechanisms of naturalistic behavior in humans and developing more effective
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closed-loop intracranial neuromodulation strategies for individuals with debilitating brain

disorders.
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Linear-Input-Range VCO-Based Neural-Recording Front-End With Digital Nonlinear-

ity Correction,” IEEE Journal of Solid-State Circuits, vol. 52, 2017.

[47] D. Rozgic, V. Hokhikyan, W. Jiang, et al., “A true full-duplex 32-channel 0.135cm3

neural interface,” IEEE, 2017, pp. 1–4.

[48] S. Basir-Kazeruni, S. Vlaski, H. Salami, A. H. Sayed, and D. Markovic, “A blind

Adaptive Stimulation Artifact Rejection (ASAR) engine for closed-loop implantable

neuromodulation systems,” IEEE Computer Society, 2017, pp. 186–189.

[49] H. Chandrakumar and D. Markovic, “An 80-mVpp linear-input range, 1.6-G input

impedance, low-power chopper amplifier for closed-loop neural recording that is toler-

ant to 650-mVpp common-mode interference,” IEEE Journal of Solid-State Circuits,

vol. 52, 2017.
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