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ABSTRACT OF THE DISSERTATION 

 
Defining Cellular Heterogeneity within the Normal Human Breast Epithelial System and 

BRCA1 Mutation Carriers 
 

By 
 

Quy Hoa Nguyen 
 

Doctor of Philosophy in Biomedical Sciences 
 

 University of California, Irvine, 2021 
 

Assistant Professor Kai Kessenbrock, Chair 
 
 
 

            The breast epithelial system is a complex network of various cell types that work 

together to provide milk for the offspring. This complex network requires three distinct cell 

types to maintain the structure and function of the breast.  This system is extremely dynamic 

and constantly changes in response to hormones secreted during different developmental 

stages. This constant change requires rapid growth and involution of the network and is 

where mutations and cellular dysregulation could lead to serious complications such as 

breast cancer. This dissertation focuses on creating a reference atlas of the normal breast 

epithelium and explores the pre-malignant changes that occur in human BRCA1 mutation 

carriers. This work utilizes single-cell RNAseq to profile the breast epithelium, which enable 

us to identify three main cell types, namely two distinct luminal and one basal cell type. In 

addition to the known basal and luminal populations, an additional luminal population was 

identified. This highlights the heterogeneity that exists at the cellular level in the luminal 

population that has been previously overlooked by bulk profiling approaches. Comparative 

analysis with BRCA1 mutation carrier samples reveals an expansion of a luminal progenitor 
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population. This population is over-represented by cells from BRCA1 mutation carriers and 

have higher overall scEnergy, indicating greater dysregulation. Further characterization of 

this population reveals markers relating to stem and progenitor identities, suggesting its role 

as the cancer cell of origin. To perform single-cell profiling and functional assays, we needed 

to establish a robust method for single-cell isolation and purification. Analysis of the current 

method for single-cell isolation reveals that biological changes arise and these changes have 

long-term effects on the growth potential, thereby influencing the results of functional 

assays. Overall this work takes a high-resolution approach to identify cellular heterogeneity 

in the breast epithelium and elude the changes that occur during early cancer initiation for 

BRCA1 mutation carriers. 
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CHAPTER 1: INTRODUCTION 

 

Incorporates components from published article: 

Experimental Considerations for Single-Cell RNA Sequencing Approaches 

Quy H. Nguyen, Nicholas Pervolarakis, Kevin Nee and Kai Kessenbrock. Frontier Cell and 

Dev. Biol. 2018. 
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INTRODUCTION 

 

Human breast 

The anatomical structure of the human breast has been well studied and understood 

for a long time, and it is well known that the role of the breast is to produce and secrete milk 

to nurse the offspring during pregnancy. Anatomically, the human breast  is described as a 

fatty tissue that surrounds the mammary epithelium and supports their growth and 

development throughout a person’s life (Tobon and Salazar, 1974). The mammary gland is a 

glandular tissue made up of approximately 15-20 lobes and terminates into many lobular 

structures; this is where milk is produced in response to hormones secreted during 

pregnancy (Macias and Hinck, 2012; Pandya and Moore, 2011). A ductal system connects 

these lobule units to the other lobes and nipple, channel milk to the nipple, and allows for 

the nursing of the offspring (Hassiotou and Geddes, 2013). This is a very dynamic structure, 

and many biological processes take place during these changes, and dysregulation in some 

of these processes can cause catastrophic changes in breast biology and development. A well-

known disease that arises due to dysregulation in the breast normal growth biology is breast 

cancer. The origin of many cases of breast cancer is known to be caused by abnormal growth 

in the glandular tissues that provide that function of the breast. However, the molecular 

changes that cause this dysregulation and aberrant growth are still elusive. To understand 

how genetic and environmental factors can influence these changes, we must first 

understand how normal breast develops and changes in response to hormones and other 

environmental factors.   
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Breast epithelial system 

On the cellular level, the human breast consists of both epithelial and stromal 

components. These stromal components secrete hormones and other factors that regulate 

homeostasis and promote growth and involution when appropriate. The epithelial system 

forms a ductal network composed of two layers, the inner layer made up of luminal cells and 

an outer layer made up of basal cells (Glukhova et al., 1995; Love and Barsky, 2004). This 

ductal network of epithelial cells grows into a mainly adipose-rich tissue surrounded by 

other stromal components such as; immune cells, fibroblast, extracellular matrix, and 

vascular and lymphatic vessels (Margan et al., 2016). This ductal epithelial network grows 

and terminates into lobular units, also known as terminal duct lobular units (Rønnov-Jessen 

et al., 1996), where they serve their purpose in the breast as milk-producing units (Ramsay 

et al., 2005). These terminal duct lobular units form structures like branches on a tree. They 

are surrounded by a layer of basal cells and have an inner layer of luminal cells that secret 

milk during lactation into the lumen of these terminal ducts lobular units. These terminal 

lobular units are connected to each other, and the nipple by ducts made up of the same 

epithelial bilayer, an outer basal and inner luminal cells. This ductal epithelial network 

provides the breast’s primary function, which is to produce and provide milk to offspring 

after pregnancy. A recent study has identified three major cell types within the human breast 

epithelial system: one basal subpopulation and two luminal subpopulations, luminal 1 and 

luminal 2 (Nguyen et al., 2018a). The luminal 1 subpopulation is marked by SLPI and has 

signatures similar to that of progenitor luminal cells. In contrast, the luminal 2 

subpopulations are marked by ANKRD30A and have signatures resembling mature luminal 



4 
 

cells. A more in-depth analysis on the single-cell level also reveals a distinction in the luminal 

1 population, further separating that cell type into two cell state subpopulations. 

 

Breast epithelial development 

This glandular tissue is extremely dynamic and continuously changes throughout a 

person’s life, from early development to menopause. The anatomy of the breast can 

drastically change depending on a person’s age, menstrual cycle, and pregnancy status. 

Hormones play a big role in the regulations of these changes (Ferguson et al., 1992; Schedin 

et al., 2004). Early development of the breast is critical for establishing a structure in which 

the breast can form and developed. The normal glands first establish a rudimentary 

structure and remain dormant until puberty (Sternlicht, 2006). This is when estrogen and 

other sex hormones drive significant anatomical changes and development of this 

rudimentary structure into a fully developed glandular tissue network (Joshi et al., 2010). 

At the tissue’s base are multipotent stem cells and lineage-specific progenitor cells; 

they provide the foundation for the initial development and continual morphogenesis in 

response to hormone secretion (Bach et al., 2017). Estrogen is the main driver behind the 

initial ductal elongation and branching  (Howard and Gusterson, 2000). This occurs as the 

epithelial cells rapidly expand and form into their bilayer structure. Further growth and 

expansion typically occur at the terminal duct lobular units (Hens and Wysolmerski, 2005). 

This is where the progenitor cells are believed to reside and drive the changes that occur 

during the different cycles of breast development (Van Keymeulen et al., 2011). Recent 

studies allude to the existence of a multipotent stem cell that resides in the basal layer 

(Petersen and Polyak, 2010; Zhou et al., 2019). These studies have identified a subpopulation 
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of basal cells with greater stem cell capacity (Visvader and Stingl, 2014; Yang et al., 2017). 

Basal cells alone can reconstitute the mammary system in mice after a transplant, giving rise 

to both basal and luminal cells to complete the epithelial ductal network (Eaves et al., 2006; 

Shackleton et al., 2006). These mammary stem cells are responsible for the growth and 

expansion of the epithelial network during dynamic periods and constant cell renewal 

(Fridriksdottir et al., 2005; Woodward, 2005). At the same time, there is also evidence 

supporting the idea that the epithelial network’s maintenance is maintained by lineage-

specific progenitor cells that developed earlier on during the initial development of the 

system (Casey et al., 2018; Davis et al., 2016). Their direct role during tumor progression has 

not been well characterized. Disruption of homeostasis within these two cell types can give 

rise to different subtypes of breast cancer. 

Interaction between the epithelial cells and their environment also influences their 

development (Robinson et al., 1999). Stromal cells in the breast reside near the epithelial 

network and support their growth and homeostasis. These stromal cells help promote 

adhesion and migration of epithelial cells by secretion of extracellular factors such as growth 

factors and extracellular matrix (Hu et al., 2017; Jena and Janjanam, 2018). These secreted 

factors have influenced ducts and branching morphology (Ferguson et al., 1992). Genetic 

mutations and other environmental factors could lead to the dysregulation in these 

interactions and normal cellular response to control growth.  

 

Breast cancer 

Breast cancer is one of the most prevalent forms of cancer in women worldwide, with 

an especially poor prognosis for the most aggressive basal-like subtype and late-stage cancer 
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diagnosis (Anders and Carey, 2008; Foulkes et al., 2010). Patients’ survival drops drastically 

once the disease has progressed to a later stage. Disease progression and survival are worse 

for patients with mutations or other factors that put them at higher risk of more aggressive 

breast cancer. Some of these subtypes are characterized by the fact that this cancer does not 

have a known targetable receptor. With a recent report of over 250,000 new cases in the US 

and over 40,000 deaths, breast cancer remains at the top of the list, and a complete 

understanding and cure still elude us.  The 5-year survival for women diagnosed with an 

early stage has increased in recent years and is almost 99%. This is due to advancements in 

early diagnostic and surgical procedures. Cellular and molecular understanding of cancer 

progression has also contributed to a favorable outcome for most patients who are 

diagnosed early. 

Breast cancer arises from the epithelium. Dysregulation of cellular identities and 

improper cellular signaling leads to an unchecked and rapid expansion of certain epithelial 

cells. This process is influenced by genetic and environmental factors that can disrupt 

normal homeostasis and promote abnormal growth. Several different subtypes of breast 

cancer have been characterized. Each subtype is believed to arise from a different cell type 

and has distinct behavior in their formation and progression (Børresen-Dale et al., 2003; 

Eroles et al., 2012; Pergamenschikov et al., 2002). Common to all breast cancer is that it 

arises from the breast epithelium (Dimri et al., 2005; Hinck and Näthke, 2014). Two major 

cell types that make up the breast epithelium are basal and luminal epithelial cells, and 

studies have shown that each one can give rise to a distinct breast cancer subtype.  

Recent studies indicate that luminal progenitor cells may be responsible for some 

cases of triple-negative breast cancer (TNBC) (Lim et al., 2009). Cases of the more aggressive 
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TNBC are characterized by their lack of estrogen, progesterone, and HER2 receptors 

(Bianchini et al., 2016; Hedenfalk, 2006). This renders the cancer insensitive and resistant 

to targeted hormone therapies and allows the tumor to become proliferative and highly 

aggressive (Cancer et al., 2011). A major driver for this subtype of breast cancer in women is 

a mutation in the BRCA1 gene (Stevens et al., 2013). Approximately 60% of women who 

carry this pro-tumorigenic mutation will develop breast cancer, and about 70% of those 

cases will be characterized by the more aggressive basal-like subtype (Kerr and Ashworth, 

2001; Orban and Olah, 2003). These pro-tumorigenic mutations promote destabilization of 

cellular homeostasis and cancer formation. Due to the lack of targeted therapy for TNBC, 

BRCA1 mutation carriers commonly undergo a prophylactic mastectomy to reduce their risk 

of developing breast cancer (Kaas et al., 2010). A majority of those who do develop breast 

cancer do not respond well to the available chemotherapies. Upon completion of treatment, 

they relapse with a more aggressive cancer, which results in metastasis and death (Harbeck 

et al., 2009). Fully understanding how BRCA1 mutations disrupt normal cellular homeostasis 

remains elusive mainly due to technical difficulties in separating each cell population's 

expression signatures in previous bulk expression analysis approaches. Therefore it is 

essential to understand the early stages of breast cancer initiation and progression at the 

single-cell level. This will form the basis for a systems-level understanding of tumor 

formation and the identification of the breast cancer cells of origin in BRCA1 mutation 

carriers.  

 

Approaches to studying cellular heterogeneity 
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Recent advances in single-cell profiling technology enable us to interrogate cellular 

heterogeneity at a resolution previously impossible with bulk sequencing. High throughput 

isolation of single cells enables an unbiased analysis of all cell types within the breast 

epithelium and will allow for reconstruction of the hierarchy of differentiation. It remains a 

debated question in the field whether these stem cells are bi-potent in that they can 

differentiate into both luminal or basal lineages or whether there are lineage-restricted 

unipotent stem cells within this tissue.  Our knowledge of the mammary epithelium is mainly 

based on bulk analysis approaches that average out individual cell differences and only allow 

us to generalize the same characteristics for all cells in the system. The unbiased 

identification of stem cells and other epithelial subpopulations using single-cell RNAseq will 

allow for a better understanding of how epithelial tissue develops and maintain homeostasis 

on a cellular and molecular level.  

Elucidating cellular heterogeneity represents a major scientific challenge in many 

areas of biology and biomedical research, including developmental and stem cell biology, 

immunology, neurobiology, and cancer research (Wagner et al., 2016). The recent 

convergence of next-generation sequencing and bioengineering approaches to manipulate 

individual cells has led to unbiased single-cell DNA (Navin et al., 2011), RNA (Pollen et al., 

2014; Tanay and Regev, 2017), and ATAC sequencing (Buenrostro et al., 2015). These 

technological advances redefine our understanding of how biological systems function and 

have formed the basis for large-scale, international collaborations such as the Human Cell 

Atlas project (Rozenblatt-Rosen et al., 2017a). In this spirit, a recent endeavor using 

microwell-based single-cell RNAseq created the first cell atlas to map out most mouse tissues 

(Han et al., 2018). Moreover, single-cell RNAseq has provided critical new insights into key 
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developmental processes, such as the early cardiovascular lineage segregation steps in mice 

(Lescroart et al., 2018). Our recent work utilized single-cell RNAseq to reveal the spectrum 

of cellular heterogeneity within the human breast epithelium identifying three major cell 

types, each harboring multiple distinct cell states (Nguyen et al., 2018a). Due to the high 

sensitivity of these methods, in particular single-cell RNAseq, it can be challenging to choose 

a good approach to minimize batch effects and unwanted technical variation that may 

overshadow true biological insights.  

Protocols for transcriptome analysis have advanced rapidly, resulting in several 

robust methods that range in cell and mRNA capture strategy, barcoding, throughput, and 

automation level (Fan et al., 2015; Macosko et al., 2015). The selection of the optimal 

approach depends largely on the research question. Recent high-throughput protocols for 

single-cell RNAseq have dramatically increased scalability through automation, increasing 

the number of cells that can be processed simultaneously, and decreasing reagent cost 

through reaction miniaturization. Using microwell-based (Cytoseq, Wayfergen), 

microfluidics-based (Fluidigm C1 HT), or droplet-based (inDrop, Drop-seq, and 10× 

Chromium) approaches, hundreds to thousands of cells can be captured in a single 

experiment (Heath et al., 2016; Islam et al., 2014; Klein et al., 2015; Picelli et al., 2014; Zheng 

et al., 2017). The newest of these protocols utilize beads functionalized with oligonucleotide 

primers, each containing a universal PCR priming site, a cell-specific barcode, an mRNA 

capture sequence, and Unique Molecular Identifiers. Individual cells are captured in wells or 

droplets with a single bead. Cell-specific barcodes are similar within a droplet, but a unique 

UMI sequence on the primer allows individual transcripts within a cell to be counted. This 

provides a quantitative readout of each gene’s number of transcripts detected in a cell, 
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thereby reducing the effects of amplification duplicates that occur with earlier technologies 

(Patel et al., 2014; Ramsköld et al., 2012). High-throughput 3′-end counting approaches have 

several important limitations. Since only the 3′-end of each mRNA are sequenced, differential 

splicing analyses are not feasible (Heath et al., 2016; Macosko et al., 2015). High-throughput 

approaches typically only achieve ∼10% transcriptome coverage, relative to ∼40% for full-

length sing cell RNAseq protocols that use Switching Mechanism at 5′End of RNA Template 

(SMART) chemistry (Tirosh et al., 2016; Yuan et al., 2017). This is partly due to lower mRNA 

capture efficiency but also due to lower sequencing depth. Single-cell qPCR platforms (e.g., 

Fluidigm C1 and Biomark) remain superior in detecting low-expressed genes (Lawson et al., 

2015). Protocols for processing rare cells usually involve an upstream capture step by flow 

cytometry or micromanipulation, followed by dispensing single cells into microtubes or 

microwell plates. Studies investigating rare cell populations that require selection via 

specific markers (e.g., adult tissue stem cell populations) are best performed using these 

protocols. Single-cell libraries are prepared using SMART-based chemistry, which utilizes a 

template-switching oligonucleotide (TSO) (Tirosh et al., 2016). This TSO can be used to 

prime off of the untemplated nucleotides added by the reverse transcriptase, enabling 

subsequent PCR using a single primer and capture of full-length transcripts (Tirosh et al., 

2016; Yuan et al., 2017). PCR then amplifies cDNAs, and libraries are prepared for 

sequencing using standard protocols. Although several large-scale projects utilize these 

protocols, because they are manual and utilize larger microliter reaction volumes, they limit 

the number of cells that can be processed at a reasonable cost.  

 

Sample preparation for single-cell RNAseq 
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The process of single-cell preparation is arguably the greatest source of unwanted 

technical variation and batch effects in any single-cell study (Tung et al., 2017). Different 

tissues can vary significantly in extracellular matrix (ECM) composition, cellularity, and 

stiffness, and therefore dissociation protocols must be optimized for the specific tissue type 

of interest. Conventional protocols for single-cell preparation typically involve the following 

steps: (1) tissue dissection, (2) mechanical mincing, (3) enzymatic/proteolytic ECM 

breakdown (e.g., dispase, collagenase, trypsin) often accompanied by mechanical agitation, 

and (4) optional enrichment for cell types of interest by flow cytometry, bead-based 

immune-selection, differential centrifugation, or sedimentation. Each step can affect the 

cells’ expression signatures and should be carefully optimized to introduce the least artifact. 

An optimal tissue dissociation protocol will yield as many viable cells as possible in the 

shortest possible duration without preferentially depleting or significantly altering the 

frequencies of certain cell types. Recent advances in bioengineering of innovative 

microfluidic cell dissociation devices (Qiu et al., 2014) can radically change the way tissue 

samples are dissociated into single cells while avoiding inter-assay variation due to human 

handling of the tissue. Several microfluidic devices have been optimized for streamlined 

tissue digestion, cell dissociation, filtering, and polishing. In brief, these devices were 

designed to work with tissue sequentially through progressively smaller size scales, starting 

from a tissue specimen, through cellular aggregates and clusters, and finally eluting a 

solution containing close to 100% single cells, which will be ideal for single-cell RNAseq 

applications. Also, new semi-automated commercially available systems can help streamline 

tissue dissociation (e.g., Miltenyi gentleMACS). These devices offer tissue-type specific kits 

that may allow more reproducible, time-saving, efficient tissue dissociation, and single-cell 
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preparation (Baldan et al., 2015; Meeson et al., 2013). Ultimately, determining a “best 

practices” dissociation strategy through heuristic optimization will be critical for 

downstream single-cell library quality. 

There are various methods for isolating specific cell populations or removing 

unwanted populations that should be optimized for any specific tissue type. Manual isolation 

utilizing magnetic beads or gradient purification are potential methods for removing 

unwanted cells such as dead cells. Flow cytometry is a widely used, high-throughput method 

to enrich for rare cells such as hematopoietic stem cells (Radbruch and Recktenwald, 1995; 

Will and Steidl, 2010). However, these methods are not without drawbacks since they can 

introduce artificial stress on cells and change their expression profile(Van Den Brink et al., 

2017). Methods that involve antibody binding for purification can also affect the cell 

expression profile if binding of the antibodies to cell surface molecules induce intracellular 

signaling (Christaki et al., 2011; Kornbluth and Hoover, 1989). Flow cytometry-isolated cells 

are exposed to the high pressure during sorting, and these osmotic and pressure changes 

introduced to cells during cell sorting and handling can induce change to the cell expression 

profile of multiple cell types (Van Den Brink et al., 2017; Romero-santacreu et al., 2009; Xiong 

et al., 2002). 

Due to the high cost of single-cell sequencing experiments, careful quality control 

measurements should be executed. The performance of alternative protocols can be 

assessed using several readouts. A useful first metric can be acquired using imaging of 

viability, such as using the Countess platform. Flow cytometry is particularly valuable to 

measure several critical metrics simultaneously, such as cell viability and contamination 

with doublets and small cell clusters, which can confound single-cell sequencing results. 
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Flow cytometry can also be used to evaluate whether cell populations of interest, such as 

immune cells, stromal fibroblasts, or stem cell populations, are maintained in the cell 

preparation and the appropriate frequency. Finally, an additional metric on RNA quality can 

be acquired using the RNA integrity number (RIN) method (Schroeder et al., 2006). 

 

Thesis work 

Taken all together, breast cancer is still a scientific and public health dilemma. The 

breast epithelial system is complex and dynamic; changes in cellular processes can lead to 

disruption in homeostasis and tumorigenesis. With the most new cases and high mortality 

rate for late stage, we are still a long way from fully understanding how this disease develops 

and progresses. Previous work has made great strides to elucidate how the breast develops 

on the cellular level and to characterize many breast cancer subtypes. This allows for better 

screening and treatment for some cases; it is especially beneficial to those diagnosed with 

less aggressive subtypes or those who are diagnosed early. Despite advances in screening 

and treatments for breast cancer, targeted therapies for TNBC are difficult to come by and 

develop. This is due to the lack of targetable receptors that other subtypes of breast cancer 

express. Women who have a mutation in the BRCA1 gene have a higher probability of 

developing this more aggressive subtype of breast cancer, so they typically choose to 

undergo prophylactic mastectomy. To improve screening methods and help individuals with 

the BRCA1 mutation, new biomarkers are needed to categorize patients based on their actual 

risk of developing breast cancer. While some studies focus on treating the disease after 

tumor formation, this research is innovative because it seeks to characterize the mechanism 

involved in the early disruption of cellular homeostasis before tumor formation begins. My 
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application of high throughput single-cell profiling technology will enable unbiased 

surveying of all cell types and map their roles in maintaining the normal breast epithelium. 

This will provide the basis for understanding changes in cellular homeostasis during early 

tumor development and could lead to better diagnosis and prevention therapies. Due to the 

high cases of disease reoccurrence after treatment and aggressive behavior of metastatic 

breast cancer, prevention of this disease is preferred over treatment. 
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CHAPTER 2: Profiling human breast epithelial cells using single-cell RNA sequencing 

identifies cell diversity 
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ABSTRACT 

Breast cancer arises from breast epithelial cells that acquire genetic alterations 

leading to the subsequent loss of tissue homeostasis. Several distinct epithelial 

subpopulations have been proposed, but a complete understanding of the spectrum of 

heterogeneity and differentiation hierarchy in the human breast remains elusive. Here, we 

use single-cell mRNA sequencing (scRNAseq) to profile the transcriptomes of 25,790 

primary human breast epithelial cells isolated from reduction mammoplasties of seven 

individuals. Unbiased clustering analysis reveals the existence of three distinct epithelial cell 

populations, one basal and two luminal cell types, which we identify as secretory L1- and 

hormone-responsive L2-type cells. Pseudotemporal reconstruction of differentiation 

trajectories produces one continuous lineage hierarchy that closely connects the basal 

lineage to the two differentiated luminal branches. Our comprehensive cell atlas provides 

insights into the human breast epithelium's cellular blueprint and will form the foundation 

to understand how the system goes awry during breast cancer. 

 

INTRODUCTION 

Breast cancer is a highly heterogeneous disease subtyped based on tissue 

morphology and molecular signatures (Perou et al., 2000). At least six different intrinsic 

subtypes of breast cancers have been established, namely luminal A, luminal B, HER2-

enriched, basal-like, normal breast, claudin-low (Eroles et al., 2012), and more recently, up 

to ten subtypes have been described (Ali, 2014). Each subtype is speculated to arise from a 

different cell of origin (Visvader and Stingl, 2014); however, gaps in our understanding of 

the full spectrum of cellular heterogeneity and the distinct cell types that comprise the 
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human breast epithelium hinder our ability to investigate their roles in cancer initiation and 

progression. 

Breast cancer arises from the breast epithelium, which forms a ductal network 

embedded into an adipose tissue that connects the nipple through collecting ducts to an 

intricate system of 12–20 lobes, which are the milk-producing structures during pregnancy 

and lactation. The breast epithelium is composed of two known cell types throughout the 

duct and lobular system, an inner layer of secretory luminal cells and an outer layer of 

basal/myoepithelial cells. A series of recent reports have indicated that further 

heterogeneity exists within these two cell layers in mice. Two landmark papers published in 

2006 identified a functionally distinct subpopulation of basal epithelial cells that harbors 

stem cell capacity and can reconstitute a fully developed mammary epithelial network when 

transplanted into the cleared mammary fat pads of mice (Eaves et al., 2006; Shackleton et al., 

2006). Moreover, a subpopulation of luminal progenitor cells identified by high expression 

of KIT and a subpopulation of mature luminal cells have been identified using flow cytometry 

(FACS) isolation strategies (Shehata et al., 2012; Stingl et al., 2001). Interestingly, based on 

comparative bulk expression analyses, these luminal progenitors may have an increased 

propensity to give rise to triple-negative breast cancers in patients with mutations in the 

BRCA1 gene (Lim et al., 2009). It remains to be determined if other distinct cell types exist 

within the breast epithelium and how these relate to the known subtypes of breast cancer. 

Advances in next-generation sequencing and microfluidic-based handling of cells and 

reagents now enable us to explore cellular heterogeneity on a single cell level and 

reconstruct lineage hierarchies using single-cell mRNA sequencing (scRNAseq) (Pollen et al., 

2014; Treutlein et al., 2014). This approach allows an unbiased analysis of the spectrum of 
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heterogeneity within a population of cells since it utilizes transcriptome reconstruction from 

individual cells. scRNAseq has been successfully applied to understand the complex 

subpopulations in normal tissues such as lung (Treutlein et al., 2014) or brain (Pollen et al., 

2014) as well as in various cancers including melanoma (Tirosh et al., 2016), glioblastoma 

(Patel et al., 2014), and within circulating tumor cells from patients with pancreatic cancer 

(Ting, 2014). 

The present study aims to generate a molecular census of cell types and states within 

the human breast epithelium using unbiased scRNAseq. Focusing on the breast epithelium, 

our work provides a critical first impetus toward generating large-scale single-cell atlases of 

the tissues comprising the human body as part of the international human cell atlas initiative 

(Rozenblatt-Rosen et al., 2017b). This molecular census can shed light on lineage 

relationships and differentiation trajectories in the human system and its relation to breast 

cancer. Our single-cell transcriptome analysis provides unprecedented insights into the 

spectrum of cellular heterogeneity within the human breast epithelium under normal 

homeostasis. It will serve as a valuable resource to understand how the system changes 

during early tumorigenesis and tumor progression. 

 

RESULTS 

 

scRNAseq reveals three cell types in the breast epithelium 

We collected a cohort of reduction mammoplasties from age- and ethnicity-matched, 

post-pubertal and pre-menopausal females and performed scRNAseq on purified breast 

epithelial cells, which were isolated from surrounding stromal cells using flow-cytometry 
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based on differential expression of CD49f and EpCAM (Lawson et al., 2015). Basal and 

luminal cells were separately loaded onto the Fluidigm C1 microfluidics-enabled scRNAseq 

platform (Figure 2.1a). Capture efficiency was monitored by microscopic imaging to exclude 

doublets and debris from further analysis (Figure 2.2a, b). We used 13 C1 chips in total to 

capture and sequence transcriptomes of 868 cells from three human individuals. The 

resulting single-cell cDNA libraries were sequenced in parallel at an average read depth of 

1.6 M reads per cell. After removing cells with less than 900 genes detected and additional 

quality control filtering (see Methods section), we proceeded to analyze 703 single cells at 

~4500 genes detected on average per cell, where the gene detection range was comparable 

between basal and luminal cells (Figure 2.2c). 

To identify the main cell types within the breast epithelium that are generalizable 

across individuals, we performed a combined analysis of all cells from the three individuals 

using the recently described Seurat pipeline (Macosko et al., 2015). This analysis identified 

three very distinct clusters of cells (Figure 2.1b), indicating that the breast epithelium is 

composed of three main cell types. We then explored the significantly up-regulated genes 

within each cluster (Figure 2.1c), which revealed that these main clusters correspond to one 

major basal (KRT14+; AUC = 0.83) cell type and two luminal cell types that both express the 

typical markers KRT8 and KRT18. Importantly, cells representing all three cell types were 

detected in each of the three individuals (Figure 2.2d). We found several distinct markers for 

these luminal cell types, such as SLPI (AUC = 0.89) for L1 and ANKRD30A (AUC = 0.81) for L2 

(Figure 2.2e). Comparing these signatures to previously published microarray expression 

analyses of FACS-isolated human breast epithelial cells (Lim, 2010; Lim et al., 2009), we 

found that L1 corresponds closely to the CD49f+/EpCAM+ population designated as “luminal 
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progenitors,” L2 resembles the CD49f−/EpCAM+ population called “mature luminal,” and the 

basal cluster matched with CD49fhi/EpCAM− “Basal/MaSC.” Since basal cells contain a 

subset of mammary stem cells (MaSCs) (Eaves et al., 2006; Shackleton et al., 2006; Wang, 

2015), we examined the basal cell cluster in more detail. Particularly intriguing was 

observing a subset with increased expression of mesenchymal and stem cell markers ZEB1 

(Morel, 2017) and TCF4 (Figure 2.1d). Interestingly, previous work established a direct link 

between mesenchymal gene expression signatures and MaSC capacity (Ye, 2015), suggesting 

these ZEB1/TCF4-expressing cells may represent a subset of basal cells with increased MaSC 

potential. 

 

Droplet-mediated scRNAseq reveals subpopulation diversity 

To determine whether additional cellular diversity exists, we next utilized a more 

scalable droplet-mediated scRNAseq platform (10× Genomics Chromium) (Zheng et al., 

2017). Here, we focused on reduction mammoplasty samples from nulliparous women to 

reduce variability associated with pregnancy-related changes of the breast. We isolated both 

luminal and basal cells together (EpCAM+/CD49fhi/lo) by flow cytometry and subjected 

them as one sample to droplet-based scRNAseq targeting on average 5000 cells per sample 

(Figure 2.3a). We sequenced a total of 24,646 cells from four individuals (Ind4-7) at an 

average of ~60,000 reads per cell. After quality control filtering to remove cells with low 

gene detection (<500 genes) and high mitochondrial gene coverage (>10%), detailed 

clustering analysis of the first individual (Ind4) using Seurat confirmed the existence of three 

main epithelial cell types, namely Basal (KRT14+), Luminal1 (L1; KRT18+/SLPI+) and 

Luminal2 (L2; KRT18+/ANKRD30A+) (Figure 2.3b). These analyses also revealed three 
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additional small clusters; cluster 8 was defined by stromal marker VIM (P < 9.6 × 10−25); 

cluster 9 showed specific expression of endothelial marker gene ESAM (P < 4.1 × 10−30); and 

cluster 10 included a small number of dispersed cells most likely representing outliers. We 

concluded that these clusters (8–10) were of non-epithelial and denoted them as unclassified 

(X) in further analyses. 

Interestingly, multiple subclusters emerged within each of the main epithelial cell 

types as indicated by their distinct marker gene signatures (Figure 2.3c). We hypothesized 

that the main islands of cells (Basal, L1, L2) represent distinct “cell types”, whereas 

subclusters within each island depict “cell states” that are more transient over time 

(Trapnell, 2015). Within basal cells, we detected three distinct cell states, which showed 

specific expression of inflammatory mediators (IL24; P < 1.4 × 10−180; Cluster 3), markers 

for myoepithelial cell function (ACTA2; P < 7.4 × 10−292; Cluster 4) and specific epithelial 

keratin expression (KRT17; P < 1.6 × 10−38; Cluster 5), respectively. ZEB1 and TCF4, which 

marked a subset of basal cells in our microfluidics-enabled scRNAseq analysis (Figure 2.1d), 

were lowly detected and therefore not interpretable droplet-enabled scRNAseq, which is 

likely due to lower coverage compared to the microfluidics-enabled platform (Svensson et 

al., 2017). 

Within luminal cell type L1, we observed three distinct cell states that were marked 

by genes associated with milk production (LTF; P < 8.4 × 10−270; Cluster 1), high expression 

of secretory molecules (SAA2; P < 2.2 × 10−90; Cluster 0) and distinct epithelial keratin 

expression (KRT23; P < 2.5 × 10−157; Cluster 2). The second luminal cell type L2 harbored 

two distinct cell states that were marked by expression of hormone-responsive genes (AGR2; 

P < 3.1 × 10−144; Cluster 6) and specific cell surface markers (CD74; P < 2.9 × 10−121; 
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Cluster 7). We next performed detailed individual Seurat clustering analyses for three 

additional individual datasets from nulliparous women, which confirmed many of the 

patterns described for Ind4 (Figure 2.3). Like Ind4, the other individuals possessed three 

main cell clusters corresponding to cell types Basal, L1, and L2, and eight to ten subclusters 

(Figure 2.4a–c). The number of subclusters per cell type varied across the individuals with 

Ind5 comprising five Basal, three L1 and one L2 cluster, Ind6 containing seven Basal, three 

L1 and one L2 cluster, and Ind7 comprising one Basal, three L1 and five L2 clusters (Figure 

2.4a–c), which may be due to individual-to-individual variation or anatomical location of the 

surgical specimens. 

To determine cell states that are generalizable across individuals, we developed a 

comparative approach using a cell scoring method adapted from recently published work 

(Tirosh et al., 2016). Using the marker gene signatures for each of the 11 clusters (0–10) 

detected in Ind4 (Figure 2.3b, c), we performed pairwise gene scoring analyses to find 

matches for every distinct cluster identified in Ind5–7 (Figure 2.4a–c). Comparing Ind4 to 

Ind5–7 showed that the main cell types (Basal, L1, L2) readily match up across all individuals 

(Figure 2.5a–c). In addition, it revealed that there are two distinct cell states present within 

L1 (L1.1 and L1.2) that emerge in all four individuals. The L2 population, which contained 

two clusters in Ind4, was more homogeneous, and therefore these clusters were combined 

to a single L2 population. Comparing basal subclusters between individuals suggested that 

at least two generalizable cell states within basal cells (Figure 2.5a–c). We then performed a 

separate Seurat analysis using combined basal cells from all four individuals (Figure 2.6a). 

Several clusters displayed consistently high expression of genes associated with 

myoepithelial cell function (e.g., ACTA2, TGLN, KRT14). We, therefore, generated a 
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“myoepithelial cell signature” gene list based on published work (Gudjonsson et al., 2005) to 

stratify basal cells into either a “Basal” or “Myoepithelial” grouping (Figure 2.6b, c). These 

results allowed us to include all individual-specific clusters into the final cluster 

designations, namely Basal (B), Myoepithelial (Myo), Luminal1.1 (L1.1), Luminal1.2 (L1.2), 

Luminal2 (L2), and the small Unclassified (X) as summarized in Figure 2.6c. These 

designations were used to perform a combined Seurat analysis of all 24,465 cells from four 

individuals (Figure 2.5d), which enabled us to determine the common marker genes (e.g., B: 

APOD; Myo: TAGLN; L1.1: LTF; L1.2: CLDN4; L2: AGR2) for each cell state that is 

generalizable across all four individuals (Figure 2.5e). 

To learn more about the biology underlying these cell states, we used Ingenuity 

Pathway Analysis (IPA) to identify distinct signaling pathways (Figure 2.6d) and 

interrogated for transcription factor consensus sites using the Enrichr tool (Kuleshov et al., 

2016). These analyses revealed that the Myo state might be controlled by the transcription 

factors TP63 and PPARγ. It is defined by increased integrin and paxillin signaling, indicating 

that these cells provide physical integrity within the breast epithelial architecture. The B 

state was found to be linked to transcription factors STAT3 as well as SOX2, NANOG, and 

KLF4, which are associated with stem cell capacity and cellular plasticity (Filipczyk, 2015), 

suggesting that population B may harbor MaSCs. Within the luminal compartment, L1.1 

showed distinct signatures of iNOS and IL6 signaling that may indicate a sentinel function of 

tissue harm and inflammation associated with this cell state. L1.2 displayed increased 

PI3K/AKT levels and glucocorticoid signaling, which may indicate a link to steroid hormone 

signaling for this cell population. Within the second luminal cell type L2, we found evidence 



24 
 

for elevated mTOR signaling and aldosterone signaling in epithelial cells, which suggests that 

this cell type represents a hormone-responsive cell population. 

 

Spatial integration of cell types and states 

 We next used indirect immunofluorescence analysis to validate our scRNAseq 

findings on the protein level and to spatially integrate newly discovered cell types and states 

into the anatomy of the breast. We first focused on the cell states detected within the basal 

compartment. Immunostaining for ZEB1, which we identified in a subset of basal cells in 

microfluidics-enabled scRNAseq (Figure 2.1d), showed that this protein is indeed expressed 

in a small fraction of basal epithelial cells (Figure 2.7a). High ZEB1 and medium KRT14 levels 

have been recently described in a population of protein C receptor (ProCR) expressing 

murine MaSCs with in vitro and in vivo stem cell activity (Wang, 2015). Comparison of 

published gene expression signatures of ProtCR+ MaSCs with the ZEB1+ population 

identified here showed striking similarity (Figure 2.7b), suggesting that the ZEB1+ basal cells 

may represent a population of human MaSCs. In addition, staining for TCF4 revealed a 

similar staining pattern to ZEB1 within the basal (smooth muscle actin-positive) 

compartment (Figure 2.7c). These findings show that the cell state characterized by ZEB1 

and TCF4 expression exists within the intact breast tissue's basal compartment. 

KRT14 expression is a hallmark for basal cells, and our differential gene expression 

analysis confirmed that KRT14 is predominantly expressed within basal cells. However, it 

exhibited surprising variability across all basal cell populations with particularly high 

expression in the Myo cell state (Figure 2.7d). Immunofluorescence analysis for KRT14 

confirmed this and revealed that KRT14 high cells localized to the basal cell layer within 
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ductal regions, while lobular basal cells generally displayed lower and more variable staining 

for KRT14 (Figure 2.7e). Myo cells also expressed high levels of the definitive myoepithelial 

marker ACTA2 (Figure 2.8a), as well as other genes associated with smooth muscle 

differentiation and function in other tissues such as MYLK, MYL9, and TAGLN/Transgelin 

(Robin, 2013). 

Surprisingly, basal and luminal markers were not always exclusive, and we noted a 

distinct fraction of cells that co-express luminal- (e.g., KRT8) and basal- (e.g., KRT14) specific 

genes, as shown by correlation analysis of our single-cell expression data (Figure 2.8b). To 

determine whether this population exists in the intact tissue, we performed in situ co-

localization analysis by immunofluorescence staining for KRT8 and KRT14. While most 

areas within the human breast epithelium showed the expected luminal KRT8+/KRT14− or 

basal KRT8−/KRT14+ pattern, we observed several rare loci within lobular regions of the 

tissue that indeed showed distinct KRT8+/KRT14+ patterns (Figure 2.8c). Although this cell 

state has been previously observed in mouse fetal MaSCs (Spike, 2012), our work revealed 

that this state exists in the human tissue in adult homeostasis. 

The scRNAseq analyses revealed that the luminal compartment harbors two discrete 

epithelial cell types (L1, L2). To determine if L1 and L2 correspond to a ductal and lobular 

anatomical location within the tissue, we used specific markers for L1 (SLPI) and L2 

(ANKRD30A) to identify their spatial distribution within the breast tissue using in situ 

immunofluorescence. These analyses showed that both L1 and L2 are located next to each 

other within both ducts and lobules (Figure 2.9a). We next sought to determine their 

hormone signaling status. Annotation of the single-cell datasets shows that L2 is particularly 

enriched for ESR1, PGR, and AR (Figure 2.10a), although generally, these genes were found 
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to be lowly expressed. Consistent with this observation, we also found on the protein-level 

that L2 marker ANKRD30A commonly overlaps with ER (32.4% of cells), PR (38.0%), and 

AR (46.8%), whereas SLPI-positive cells showed a markedly lower percentage of hormone 

receptor expression (Figure 2.9b–d). PGR was also expressed in a sub-fraction of basal cell 

states, although PR was not detected in basal cells on the protein level (Figure 2.9c). 

Proliferation is associated with active progenitor cell capacity within adult epithelial 

tissues (Fuchs and Nowak, 2008). Interestingly, we observed proliferative cells in all three 

epithelial cell types (Basal, L1, L2) as evident on the RNA level (Figure 2.10b) and using Ki67 

immunostaining (Figure 2.9e–f). Moreover, expression of CDKN1B (p27), which has been 

previously linked with a quiescent, hormone-responsive progenitor cell population 

(Choudhury, 2013), was found highest in L2 (Figure 2.10b), while markers for alveolar 

luminal progenitor cell function such as ELF5 (Harris, 2006) and KIT (Shehata et al., 2012; 

Stingl et al., 2001) were specifically enriched in luminal subpopulation L1.1 (Figure 2.10c). 

L2 was also characterized by higher levels of KRT8 than L1 (Figure 2.9g). To quantify 

protein expression in individual cells, we utilized a recently developed single-cell western 

blot application (ProteinSimple, Milo), which performs electrophoretic separation of the 

protein content of about 2000 cells per chip and subsequently probed with fluorescently 

labeled antibodies. Applying single-cell western blotting to luminal and basal cells isolated 

by FACS identified three cell states, namely KRT8-negative, -low, and -high (Figure 2.9h–i), 

which illustrates the usefulness of single-cell Western blotting as a quantitative validation 

tool downstream of scRNAseq analyses. 

Taken together, these analyses confirmed remarkable concordance between the 

patterns observed in scRNAseq and on the protein-level in intact tissues. Our spatial analyses 
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confirmed that the luminal compartment contains two distinct cell types (L1 and L2) 

intermingle within ducts and lobules. Both contain a subset of proliferative cells, suggesting 

that they each contain L1- and L2-committed progenitor cells to maintain these cell types. 

L1 may be committed to secretory function based on their expression signatures, while L2 

likely functions as a hormone-sensing unit of the breast epithelium. 

 

Reconstructing lineage hierarchies within the epithelium 

 To understand how these observed cell types and states are related to each other, we 

next reconstructed differentiation trajectories by pseudotemporal ordering of single cells 

using Monocle, which utilizes reverse graph embedding to generate a trajectory plot that can 

account for both branched and linear differentiation processes (Trapnell, 2014). Applying 

Monocle to our droplet-based scRNAseq dataset on a subsampled population (4000 cells; 

1000 cells per individual) from all four individuals yielded one tightly connected 

differentiation trajectory that separates into three main branches corresponding to the 

primary cell types Basal, L1, and L2 (Figure 2.11a). This suggests that the system is 

maintained through one continuous rather than several disconnected lineages. Considering 

the substantial evidence supporting the existence of MaSCs within the basal cell 

compartment (Eaves et al., 2006; Shackleton et al., 2006), we manually set the start of 

pseudotime within the basal cell type (Figure 2.11b), thus resulting in a trajectory that 

differentiates into three main branches that are each enriched for Myo, L1, and L2, 

respectively. Of note, L1.2 is markedly enriched at the branching point between L1 and L2, 

suggesting that it represents a luminal-restricted bi-potent progenitor. It also precedes L1.1 

on the L1 branch, suggesting that L1.2 is a progenitor to L1.1. Interestingly, L1.1 displayed 
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high ELF5 and KIT expression, previously reported as progenitor cell markers (Shehata et 

al., 2012; Stingl et al., 2001). Instead, our data suggest that L1.1 represents a second mature, 

differentiated luminal cell type rather than a luminal progenitor that is upstream of L2. These 

basic principles were also reflected in our pseudotemporal analysis of the microfluidics-

enabled scRNAseq dataset, which projects a bifurcation into luminal and basal lineage 

emerging from one common population of ZEB1 + progenitor cells (Figure 2.12a b). These 

results are in line with previous mammary differentiation models mediated by bi-potent 

stem/progenitor cells (Visvader and Stingl, 2014). 

 

Subpopulations correspond to breast cancer subtypes 

 To learn more about the relationship of these newly defined subpopulations to 

existing subtypes of breast cancer, we used our gene scoring approach to directly compare 

each population’s gene signatures to gene signatures associated with each cancer subtype 

from the Metabric dataset (Trapnell, 2014). This showed that both Luminal A and Luminal B 

subtypes of breast cancer are closely related to L2-type luminal cells (Figure 2.12c, top), 

which is in line with previous gene signature analyses of FACS-enriched basal, luminal 

progenitor, and mature luminal cells (Lim et al., 2009). In addition, a recent report by 

Lehman et al. used global gene expression analyses to identify molecularly distinct subtypes 

within triple-negative breast cancer (TNBC) (Lehmann, 2011). We found that Myo showed 

the highest similarity to the mesenchymal-like subtype of TNBC, while the Basal1 class of 

TNBC yielded the highest scores in the luminal L1.1 state (Figure 2.12c, bottom). Taken 

together, these analyses allow us to directly link several defined breast cancer subtypes to 
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distinct cell populations of epithelial cells suggesting that the subtypes of breast cancer may 

arise from different tumor cells-of-origin. 

 

DISCUSSION 

 The current state of knowledge in breast epithelial biology is primarily based on 

population-level analyses of separated basal and luminal cells following bulk analyses of 

these distinct epithelial cell types (Shehata et al., 2012). While several distinct 

subpopulations of murine basal and luminal cells have been reported anecdotally (Visvader 

and Stingl, 2014), comprehensive knowledge about expression signatures and cellular 

identities of these subpopulations remains sparse, particularly in the human system. Our 

scRNAseq analysis of the human breast epithelium from non-diseased, post-puberty, pre-

menopausal individuals for the first time allows for unbiased, de novo identification of 

distinct cell types and states in the adult human breast epithelium before pregnancy-induced 

changes occur. Strikingly, our approach revealed the existence of three main epithelial cell 

types (Basal, L1, and L2), in line with a recent scRNAseq analysis of the mouse mammary 

gland (Pal et al., 2017), although this work referred to these populations as “basal”, “luminal 

progenitor” and “mature luminal cells”. Our spatial analyses showed that these three cell 

types intermingle within ducts and lobules and appear to form functionally distinct lineages 

that contribute to different aspects of breast biology (summarized in Figure 2.13a).  three 

cell types contained a fraction of proliferative cells suggests that cycling, lineage-restricted 

progenitor cell subpopulations may maintain each cell type during normal homeostasis. 

Our unbiased clustering analysis and pseudotemporal reconstruction of 

differentiation trajectories strongly suggest that these cell types represent three main 
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branches of specified, differentiated cells: basal/myoepithelial, secretory L1, hormone-

responsive L2 cells (Figure 2.13b). The lineage hierarchy likely starts with basal MaSCs 

(Eaves et al., 2006; Shackleton et al., 2006) that differentiate either into specified 

myoepithelial cells or into a common luminal progenitor, which gives rise to the two distinct 

luminal cell types L1 and L2. Interestingly, the ELF5/KIT-expressing subpopulation L1.1 

represents a mature differentiated luminal cell state as it was predominantly located at the 

end of the L1 branch, suggesting that ELF5/KIT may be crucial for differentiation into the 

secretory L1 cell type rather than promoting progenitor cell function as previously described 

(Shehata et al., 2012; Stingl et al., 2001). It appears to be the L1.2 cell state within the L1 cell 

type that harbors a luminal-restricted bi-potent progenitor capacity for differentiation into 

the more specified secretory L1.1 or hormone-responsive L2 cells. 

A currently unresolved question of active debate is whether MaSCs act as bi-potent 

stem cells that give rise to both lineages of basal and luminal cells37, or whether homeostasis 

is mediated through distinct uni-potent, lineage-restricted basal and luminal stem cells (Van 

Keymeulen et al., 2011). Considering these two models, Monocle could have yielded a 

sparsely connected differentiation trajectory separating basal and luminal lineages, which 

would have supported a trajectory driven by lineage-restricted basal and luminal unipotent 

progenitor cells on both ends of the spectrum. Instead, the outcome of our Monocle analysis 

is in favor of the existence of the bi-potent stem/progenitor model as it identified one 

continuous trajectory indicative of a common source for both basal and luminal cell 

differentiation. 

Understanding the origins of breast cancer in its earliest phases has the potential to 

advance methods of cancer early detection and may ultimately form the basis to prevent 
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cancer progression before it turns into a life-threatening disease. Here, we asked whether 

the newly identified cell states correspond to specific subtypes of breast cancer and may 

represent potential cancer cells-of-origin for the specific breast cancer subtypes. The luminal 

epithelial cell type L2 showed the clearest correlation with both Luminal A and B subtypes 

from the Metabric dataset (Curtis, 2012), which is in line with previously reported 

similarities between a FACS-enriched population of mature luminal cells and the luminal-

like breast cancer subtypes (Lim et al., 2009). The fact that several L2 markers are 

independently known as breast cancer-associated antigens such as SYTL2 and ANKRD30A 

(Seil, 2007), and that it shows the highest expression of CDKN1B/p27 as a marker for 

potential breast cancer cells of origin(Choudhury, 2013) further corroborates the link 

between the hormone-responsive L2 cell type to breast cancer in general. Interestingly, the 

cell state closest related to the TNBC Basal subtype was the luminal progenitor-like 

population L1.1. The concept that a luminal cell may be the cell-of-origin for basal-type 

breast cancer is not new and has been previously proposed in the context of BRCA1-driven 

disease (Lim et al., 2009). Interestingly, those cell states containing subsets of proliferative 

cells, namely B, L1.1, and L2, are predominantly linked to breast cancer subtypes, which is in 

line with previous reports showing an association of mammary epithelial cell proliferation 

in normal tissues with increased breast cancer risk (Huh, 2016). 

In summary, our results provide crucial insights into the spectrum of cellular 

heterogeneity within the human breast epithelium in unprecedented resolution. Our 

unbiased analysis of the single-cell gene signatures from seven human individuals provides 

evidence for defined differentiation trajectories to maintain homeostasis in the adult human 

breast and distinct subpopulations of both basal and luminal lineage that may serve as cells 
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of origin for the different subtypes of breast cancer. Our single-cell atlas comprising the 

human breast epithelium will serve as a resource to map out the defined changes occurring 

during breast cancer and therefore form the basis for improved methods of cancer early 

detection and possible strategies for cancer prevention. 

 

METHODS 

 

Origin of tissue samples 

 Anonymous reduction mammoplasty samples were acquired from NCI Cooperative 

Human Tissue Network (CHTN) and from the Department of Surgery, Feinberg School of 

Medicine, Northwestern University. Other investigators may have received specimens from 

the same tissue specimens obtained through NCI CHTN. Specimens were anonymized then 

collected and distributed by CHTN, specimens are covered under collection/distribution of 

tissues under consent or waiver of consent. Samples were washed in PBS (Corning 21-031-

CV) and mechanically dissociated using a razor blade. Dissociated samples were digested 

overnight in DMEM (Corning 10-013-CV) with Collagenase Type I, 2 mg/mL (Life 

Technologies 17100-017). Viable organoids were separated using differential centrifugation 

and viably frozen in 50% FBS (Omega Scientific FB-12), 40% DMEM, and 10% DMSO (Sigma-

Aldrich D8418) by volume. 

 

Single-cell RNA sequencing 

Viable organoids were thawed and washed using DMEM, and digested with 0.05% 

trypsin (Corning 25-052-CI) containing DNase (Sigma Aldrich D4263-5VL) to generate a 
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single-cell suspension. Cells were stained for FACS using fluorescently labeled antibodies for 

CD31 (eBiosciences 48-0319-42), CD45 (eBiosciences 48-9459-42), EpCAM (eBiosciences 

50-9326-42), CD49f (eBiosciences 12-0495-82), and SytoxBlue (Life Technologies S34857). 

We only proceeded with samples showing at least 80% viability as measured using 

SytoxBlue in FACS. 

Sorted cells were washed and resuspended at a concentration of ~500 cells/µl. For 

microfluidics-enabled scRNAseq, cell suspensions were mixed with Fluidigm C1 Suspension 

Reagents (Fluidigm 100-5315) at a ratio of 8:2 before loading mix onto C1 chip (Fluidigm 

100-5760). Bright-field images of captured cells were collected using a Keyence BZ-X710 

microscope (Keyence Corporation, Itasca, Illinois, USA). Single-cell RNA isolation and 

amplification were performed using the Fluidigm C1 Single-Cell Auto Prep IFC following the 

Fluidigm Protocol: 100-7168 I1. RNA spike-in controls were omitted. cDNA library 

preparation were performed following the Fluidigm C1 Protocol: 100-7168 I1. 

For droplet-enabled scRNAseq, flow cytometry sorted cells were washed in PBS with 

0.04% BSA and resuspended at a concentration of ~1000 cells/µl. Library generation for 10× 

Genomics v1 chemistry was performed following the Chromium Single Cell 3ʹ Reagents Kits 

User Guide: CG00026 Rev B. Library generation for 10× Genomics v2 chemistry were 

performed following the Chromium Single Cell 3ʹ Reagents Kits v2 User Guide: CG00052 Rev 

B. 

Quantification of cDNA libraries was performed using Qubit dsDNA HS Assay Kit (Life 

Technologies Q32851) and high-sensitivity DNA chips (Agilent. 5067-4626). Quantification 

of library construction was performed using KAPA qPCR (Kapa Biosystems KK4824). For 

microfluidics-enabled scRNAseq libraries, we generally multiplexed 96 cells per lane on an 
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Illumina HiSeq2500 resulting in a calculated depth of ~1.6 million reads per cell (Illumina 

Rapid PE kit v2 402-4002 and Rapid SBS kit v2 FC 401-4022). For droplet-enabled scRNAseq, 

we used the Illumina HiSeq4000 platform to achieve an average of 50,000 reads per cell. 

 

Processing of scRNAseq data 

After demultiplexing sequencing libraries to individual cell FASTQ files (observed 

average read depth per cell was found to be ~1.6 Million reads), each library was aligned to 

an indexed GRCh38 RefSeq genome using RSEM version 1.2.1242, and bowtie2 version 2.2.3 

with the following options enabled: rsem-calculate- expression -p $CORES—bowtie2—

paired-end -output- genome-bam. Fragments Per Kilobase of transcript per Million mapped 

reads (FPKM) values were quantified and concatenated into a resulting gene expression 

matrix for each library, which was then loaded into R for subsequent computational analysis. 

For quality control filtering, we generally excluded libraries with less than 900 genes 

detected. In addition, genes that were not detected in at least 3 of the cells after this trimming 

were also removed from further analysis. Alignment of 3ʹ end counting libraries from 

droplet-enabled scRNAseq analyses was completed utilizing 10× Genomics Cell Ranger 1.3.1. 

Each library was aligned to an indexed GRCh38 genome using Cell Ranger Count. “Cell 

Ranger Aggr” function was used to normalize the number of confidently mapped reads per 

cell across the libraries from different individuals utilizing 10× v2 chemistry. 

 

Cluster identification using Seurat 

For cluster identification in both microfluidics- and droplet-enabled scRNAseq 

datasets, we utilized the Seurat pipeline17. The data matrices were imported into R and were 
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processed with the Seurat R package version 1.2.1, where the FPKM values were 

transformed into log-space after the aforementioned trimming steps (each gene was 

expressed in at least three cells, each cell has at least 900 genes). PCA was performed using 

highly variable genes in the trimmed dataset. Using the first two PC’s as input, we then 

performed density clustering to identify groupings in the data and t-distributed statistical 

neighbor embedding (tSNE) to visualize. Using further Seurat functionality, marker genes for 

each respective cluster were identified and used for subsequent analysis. 

  For droplet-enabled scRNAseq data, we used the Seurat R package version 

2.0.0. Data was read into R as a counts matrix and transformed into log-space. Due to the 

difference in gene detection across the two platforms, differences in chemistry for the library 

prep, as well as sequencing depth per cell, a minimum cutoff of 500 and a maximum cut-off 

of 6000 genes per cell for this dataset was used. In addition, cells with a percentage of total 

reads that aligned to the mitochondrial genome (referred to as percent mito) greater than 

10% were removed, since increased detection of mitochondrial genes can be associated with 

cells undergoing stress and cell death (Ilicic, 2016). 

To account for the possibility of individual cell complexity driving cluster separation, 

we employed Seurat’s “RegressOut” function to reduce the contribution of both the number 

of UMI’s and the percent mito. Variable genes were then determined for subsequent PCA for 

each separate individual. For tSNE projection and clustering analysis, we used the first ten 

principal components. We used the feature plot function to highlight the expression of 

known marker genes for basal (e.g., KRT5, KRT14) and luminal cells (e.g., KRT8, KRT18) to 

identify which clusters belonged to which epithelial cell type. The specific markers for each 

cluster identified by Seurat were determined using the “FindAllMarkers” function. 
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Cluster comparisons and assignment 

Cluster specific marker genes from the individual library analyses were used as input 

lists to the previously described gene scoring method (described in more detail below) to 

compare cluster signatures in a pairwise manner between individuals. To visualize pairwise 

gene scoring results, we generated heatmaps displaying averaged gene scoring results for 

each cluster. We overlaid individual-specific cluster designations onto these heatmaps to 

find which individual clusters best match to each other. Clusters were merged together in 

the case that multiple clusters scored highly. We performed a separate Seurat analysis using 

combined basal cells from all four individuals, and then matched clusters using the gene 

scoring method on a set of genes curated to represent a myoepithelial cell fate25 to score 

and classify the clusters as either Basal (B) or Myoepithelial (Myo) cell state. 

 

Gene scoring 

To compare gene signatures and pathways in epithelial subpopulations, we utilized 

individual gene scores as described previously12. Briefly, each score was generated by 

calculating total gene expression for each of the analyzed genes and separating them into 25 

bins of similar expression. For every gene in each target pathway or signature, 100 “control” 

genes were selected from its corresponding bin and added to a “control” pathway. The 

resulting “control” pathway contained an equivalent expression distribution as the target 

pathway and its average represents an equivalent sampling of 100 pathways of equal size to 

the target pathway. The expression of genes in the target pathway and the “control” 

pathways was averaged across each cell to generate a target score (STarget) and control 
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score (SCtrl). The cell’s score for the target pathway (SPath) is the difference between the 

target score and control score: SPath = STarget − SCtrl. To determine statistical significance, 

we used the unpaired Wilcox test with a 95% confidence interval. 

 

Gene set and pathway analysis 

Cells belonging to subpopulations were averaged to serve as a representation of each 

subgroup, and trimmed to their respective marker genes as determined by Seurat following 

log2 transformation. Each subpopulation sample was then uploaded to Ingenuity Pathway 

Analysis (Ingenuity Systems, www.ingenuity.com) core analysis feature and compared. A p-

value of 0.05 was used as a cut-off to determine significant enrichment of a pathway or 

annotated gene grouping present in the Ingenuity Knowledge base. In addition, 

comprehensive gene set enrichment was done using Enrichr26 based on the cell type and 

state-specific marker genes identified by Seurat. 

 

Immunofluorescence analysis 

Tissues were fixed in 4% formaldehyde for 24 h, dehydrated in solutions of increasing 

concentrations of ethanol, cleared with xylene, and embedded in paraffin. Slides of 10-μm 

sections were prepared using a Leica SM2010 R Sliding Microtome (Leica Biosystems, 

Wetzlar, Germany). Slides were heated at 65 °C for 1 h, followed by two 5-min incubations in 

Histo-Clear (National Diagnostics, Cat. No. HS-200, Atlanta, Georgia, USA) for paraffin 

removal. Tissues were rehydrated with solutions of decreasing concentrations of ethanol, 

washed in double-distilled H2O and PBS, and subjected to antigen retrieval using a 

microwave pressure cooker with 10 mM citric acid buffer (0.05% Tween 20, pH 6.0). Tissues 
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were blocked in blocking solution (0.1% Tween 20 and 10% Goat Serum in PBS) for 20 min 

at room temperature, incubated with primary antibodies prepared in blocking solution at 

4 °C overnight, washed in PBS, incubated with secondary antibodies diluted in PBS for 1 h at 

room temperature, and washed in PBS. Slides were mounted with VECTASHIELD Antifade 

Mounting Medium with DAPI (Vector Laboratories, Cat. No. H-1200, Burlingame, California, 

USA) and micrographs were taken with the BZ-X700 Keyence fluorescent microscope. For 

quantification of staining (e.g., ZEB1 and KRT14 staining), we manually counted positive 

cells as signal around nuclei (DAPI) and utilized the BZH Hybrid Cell Count software 

(Keyence) in at least three different fields of view using a 40× objective in at least two 

different samples. 

Primary Antibodies: Estrogen Receptor (ER) rat mAb diluted 1:50 (Cat. No. 916201); 

KRT14 rabbit pAb diluted 1:500 (Cat. No. PRB-155P) (Biolegend, San Diego, CA, USA); 

Androgen Receptor (AR) rabbit mAb diluted 1:400 (Cat. No. 5153); Progesterone Receptor 

(PR) rabbit mAb diluted 1:1000 (Cat. No. 8757) (Cell Signaling, Danvers, MA, USA); KRT8 

(TROMA-1) mouse mAb diluted 1:500 (DSHB, Iowa City, Iowa, USA); SLPI goat pAb diluted 

1:200 (R&D Systems, Cat No. AF1274-SP, Minneapolis, MN, USA); α-Smooth Muscle Actin 

mouse mAb diluted 1:500 (Cat. No GTX60466), Ki67 mAb diluted 1:200 (Cat. No. GTX16667); 

TP63 rabbit pAb diluted 1:500 (Cat. No. GTX102425), MUC1 rabbit pAb diluted 1:500 (Cat. 

No. GTX15481), ACTA2 mouse mAb diluted 1:500 (Cat. No. GTX60466); TCF4 rabbit pAb 

diluted 1:500 (Cat. No. GTX54531); E-cadherin (DCH1) rabbit pAb diluted 1:500 (Cat. No. 

GTX100443); KRT18 rabbit pAb diluted 1:500 (Cat. No. GTX112978) (GeneTex, Inc., Irvine, 

California, USA); ACTA2 mouse mAb diluted 1:500 (Cat. No. MA511547); NY-BR-1 mouse 

mAb diluted 1:500 (Cat. No. MS-1932-P0); KRT14 mouse mAb diluted 1:100 (Cat. No. 
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MA511599); and KRT18 mouse mAb diluted 1:100 (Cat. No. MA512104) (Thermo Fisher 

Scientific Inc., Carlsbad, California, USA). 

Secondary Antibodies: Donkey anti-mouse Cy5.5-conjugated IgG (Novus Biologicals, 

Cat. No. NBP1-73774, Littleton, CO, USA); Goat anti-rabbit IgG conjugated with Alexa Fluor 

568 and 488 (Cat. No. A21069 & A11034); Goat anti-mouse IgG conjugated with Alexa Fluor 

568 and 488 (Cat. No. A11004 & A11001); Goat anti-rat IgG conjugated with Alexa Fluor 488 

(Cat. No. A11006); Donkey anti-rabbit FITC-conjugated IgG (Cat. No. A16030); and Donkey 

anti-goat IgG conjugated to FITC and Alexa Fluor 568 (Cat. No. A16006 & A11057) (Thermo 

Fisher Scientific Inc., Carlsbad, California, USA). 

 

Single-cell western blot 

Single-cell western blots were completed using the Single-Cell Western instrument 

Milo, scWest chips, and reagents from ProteinSimple (San Jose, CA). A standard 6%T scWest 

chip was re-hydrated in 1× Suspension Buffer for 15 min at room temperature. A volume of 

1 mL of flow cytometry-sorted human mammary epithelial cells (combined basal and 

luminal) at 100,000 cells/mL were settled in medium onto the scWest chip for 15 min at 

room temperature. Un-captured cells were washed away with 1 mL of media. Captured cells 

were lysed for 10 s, then individual cell protein lysates were electrophoretically separated 

for 1 min at 240 V, and proteins were UV-captured for 4 min. After running on Milo, the 

scWest chip was washed 2 × 10 min in 1× Wash Buffer, then probed for mouse anti-

cytokeratin 8 (Abcam ab9023) at 200 µg/mL and rabbit anti-β-tubulin (Abcam ab6046) at 

100 µg/mL for 2 h at room temperature. Primary antibodies were diluted in 1 × Wash Buffer 

(final) containing 5% (w/v) BSA. After 3 × 10-min washes in 1× Wash Buffer, the scWest chip 
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was incubated with donkey anti-rabbit IgG Alexa 647 (A-31573 ThermoFisher Waltham, 

MA) and donkey anti-mouse IgG Alexa 488 (A-21202 ThermoFisher) at 100 µg/mL in 1× 

Wash Buffer containing 5% BSA for 1 h in the dark at room temperature. The chip was then 

washed 3 × 15 min in 1× Wash Buffer, dried, and imaged using a Molecular Devices Genepix 

4400A (Sunnyvale, CA) (Standard Blue Filter 500 gain, Standard Red Filter 600 gain). Images 

were saved as single-color tiffs and analyzed using Scout software (ProteinSimple). 

 

Reconstructing differentiation trajectories using Monocle 

Cell fate decisions and differentiation trajectories were reconstructed with the 

Monocle 2 package, which utilizes reverse graph embedding based on a user-defined gene 

list to generate a pseudotime plot that can account for both branched and linear 

differentiation processes. For pseudotemporal analysis of breast epithelial cells in C1 data, 

we used Monocle version 2.2.0, ordered a combined set of cells from all three individuals on 

a list of marker genes as determined by Seurat analysis using up to 20 genes per cluster with 

least 0.5 power (Supplementary Data 2). Labels of basal and luminal cells respectively were 

assigned according to the identity of the cells from the initial cell sorting and ZEB1 positive 

cells were labeled based on expression level >0. For pseudotemporal analysis of droplet-

based scRNAseq data, we first ordered the four individuals in Monocle 2.2.0 separately using 

cell type markers identified in the C1 analysis along with the top 20 marker genes for each 

subpopulation in Seurat. Next, for each of these four datasets, we identified genes 

differentially expressed between trajectory clusters (States), averaged the gene expression 

values for all cells within each State, and generated a Pearson correlation matrix for these 

average gene expression values across States. We averaged the four correlation matrices into 
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one matrix and kept only genes that had an average Pearson correlation of 0.8 with at least 

one other gene. Finally, we ordered a random subsample of 4000 cells (1000 cells from each 

individual) by the genes from our correlation analysis that overlapped with Seurat identified 

subpopulation marker genes (Supplementary Data 2). 

 

Comparison of subpopulations to breast cancer subtypes 

To learn more about the relationship of the newly defined normal breast epithelial 

subpopulations to the known breast cancer subtypes, we used the gene scoring method to 

compare each subpopulation to previously described triple-negative breast cancer subtypes. 

To this end, we utilized the genes that are specifically up-regulated in each subtype as 

previously reported (Curtis, 2012; Lehmann, 2011). To compare each subpopulation to 

METABRIC derived molecular subtype signatures, the METABRIC microarray expression 

dataset was downloaded and processed using the R Bioconductor package Limma version 

3.30.13. Samples were grouped by their annotated molecular subtype, and differentially 

expressed genes was calculated for each group. The top 20% of the upregulated genes was 

sorted by log-fold change were then used for downstream scoring. 
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Figure 2.1. Identification of three major epithelial cell types and their markers using 
scRNAseq. a Overview of scRNAseq approach using primary human breast tissue samples 
that were processed into single-cell suspension, followed by FACS isolation of basal (CD49f-
hi, EPCAM+) and luminal (CD49f+, EPCAM-hi), and scRNAseq analysis using the 
microfluidics-enabled scRNAseq. b Combined tSNE projection of cells from all three 
microfluidics-enabled scRNAseq datasets. The major basal cluster is highlighted in red; 
Luminal1 (L1) in green; Luminal2 (L2) in blue. c Heatmap displaying the scaled expression 
patterns of top marker genes within each cell type with selected marker genes highlighted; 
yellow indicating high expression of a particular gene, and purple indicating low expression. 
d Feature plots showing the scaled expression of TCF4 and ZEB1 marking a subpopulation 
of basal cells and gene plot showing co-expression of TCF4 and ZEB1 in the same cells. See 
Supplemental Figure 2.1 capture site imaging, gene detection, individual principal 
component analysis, tSNE plot colored by individual-derived cells, and feature plots of cell 
type-specific markers. (Panel b-d, generated by Kai Kessenbrock) 
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Figure 2.2. Technical information and supportive data on microfluidics-en-abled scRNAseq. 
(a-b) All 96 capture sites were imaged using the Keyence BZ-X700 microscope to confirm 
single-cell capture (a), and to exclude capture sites that contained doublets or multiplets (b). 
(c) Number of genes detected per cell were distributed in a comparable manner between 
basal (red) and luminal cells (green). (d) tSNE projection of data generated on microfluidics-
enabled scRNAseq data, with cells colored by the individual sample source. (e) Feature plots 
showing the scaled expression of ANKRD30A marking cell type L2, KRT18 marking both 
luminal cell types, SLPI marking cell type L1 with greater specificity, and KRT14 showing the 
highest expression in basal cells. (Panel a-e, generated by Kai Kessenbrock) 
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Figure 2.3. High throughput droplet-mediated scRNAseq reveals additional epithelial cell 
states. a Overview for droplet-enabled scRNAseq approach as described above; basal and 
luminal epithelial cells were sorted together and subjected to combined scRNAseq analysis 
using the droplet-based scRNAseq. b Data from individual four was analyzed using Seurat 
and the distinct clusters (0–10) are displayed in tSNE projection with selected marker gene 
for each cluster, and main epithelial cell types (Basal, L1, L2) are outlined. Feature plots of 
characteristic markers for the three main cell types are shown on the right showing 
expression levels as a gradient of purple. c Heatmap showing the top ten marker genes for 
each cluster as determined by Seurat analysis with three selected genes per cluster 
highlighted on the right. See Supplemental Figure 2.2 for individual clustering and marker 
gene analyses for Individuals 5–7. 
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Figure 2.4. Clustering analysis and marker gene determination for individuals 5-7. (a-c) The 
individual data matrices for Individual 5 (a), 6 (b), and 7 (c) were analyzed using Seurat and 
their initial cluster determinations are displayed using tSNE projection. Feature plots of 
characteristic markers of highlighting the three main cell types Basal, L1, and L2 are shown. 
Additional less frequent non-epithelial populations were detected in some individuals and 
were designated unclassified (X). Heatmaps showing the top 10 marker genes of each cluster 
are displayed highlighting selected marker genes for each cluster. 
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Figure 2.5. Combined droplet-based RNAseq data to identify generalizable cell types and 
states. a–c Heatmaps showing gene scoring results using marker genes for Ind4 clusters (0–
10; on bottom of heatmap) in all clusters from Ind5 (a), Ind6 (b), and Ind7 (c). Individual-
specific cluster IDs are shown in different colors on the right and bottom, and cell type IDs 
for Basal (b), L1, L2, X are indicated for every cluster. Data are shown as Z scores from purple 
(low) to yellow (high). Two distinct cell states L1.1 and L1.2 were found within L1 in all 
pairwise comparisons as highlighted by colored boxes on the heatmap. d Combined tSNE 
projection of all individual datasets (outlined) is shown including the cell state identity 
marked by different colors. e Heatmap showing the expression pattern of the top ten 
markers per cell state with selected markers indicated (yellow = high expression; 
purple = low expression). See Supplemental Figure 2.4 for separate basal cell Seurat analysis, 
summary of cell state designations, and Ingenuity Pathway Analysis. (Panel a-e, generated 
by Nicholas Pervolarakis) 
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Figure 2.6. Combined basal cell only analysis and ingenuity pathway analysis (IPA). (a) Basal 
cell clusters (KRT14+) from all four droplet-enabled scRNAseq datasets were combined and 
analyzed using Seurat. tSNE projections and of cells belonging to the basal cell lineage across 
all individuals in a combined analysis, colored by cluster determination and individual 
library source. (b) Violin plots showing the gene scoring results for a curated Myoepithelial 
gene signature (see Supplementary Data 2) was used to stratify regular basal cells from 
myoepithelial clusters(marked by #). (c) Summary of individual cluster matches and final 
cluster assignments as indicated in “Cell State” column. Basal cell populations were 
separately analyzed and then scored using a myoepithelial signature gene list, resulting in 
the final cell state determinations of Basal (B), Myoepithelial (Myo), Luminal1.1 (L1.1), 
Luminal1.2 (L1.2), Luminal2 (L2), and Unclassified (X). (d) Heatmap showing log-scaled p-
value of enrichment for IPA annotated pathways, processed via comparison of IPA 
expression enrichment analysis on marker genes for each cluster. (Panel a-d, generated by 
Nicholas Pervolarakis) 
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Figure 2.7. Characterization and spatial integration of basal cell states. a 
Immunofluorescence analysis of ZEB1 protein expression (red) in combination with basal 
marker KRT14 (green) and DNA stain using DAPI (blue) within tissue sections from primary 
human reduction mammoplasty samples showing ZEB1 expression in a subpopulation of 
basal (KRT14+) cells. Scale bar = 15 µm. b Heatmap showing expression of genes previously 
shown to be up- (red) or down-regulated (blue) in a population of PROCR+ mammary stem 
cells show a correlation with ZEB1+ cells in scRNAseq. c Immunofluorescence analysis of 
TCF4 protein expression (red) in combination with basal marker SMA (green) and DNA stain 
using DAPI (blue) within tissue sections from primary human reduction mammoplasty 
samples revealed that TCF4 is expressed in a subpopulation of basal (SMA+) cells. Scale 
bar = 25 µm. d Violin plot for expression of KRT14 by cell state showing highest expression 
in the myoepithelial (Myo) cells. e KRT14 and KRT8 double immunostaining revealed 
highest expression of KRT14 in ductal basal cells, while lobular basal cells show more diverse 
KRT14 positivity. Scale bar = 75 µm. See Supplemental Figure 2.4 for violin plots displaying 
selected myoepithelial gene expression and identification of KRT8/KRT14 double-positive 
cells. 
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Figure 2.8. Expanded characterization of cellular heterogeneity within the basal 
compartment. (a) Violin plots of the expression of ACTA2, MYLK, TAGLN, and MYL9 in the 
combined analyses of the droplet-enabled scRNAseq data grouped by final cluster 
determination. (b) Correlated expression analysis of luminal marker KRT8 and basal marker 
KRT14 from scRNAseq data revealed a significant number of double-positive cells. (c) 
Combined immunostaining for KRT8 and KRT14 showing rare foci of double-positive cells 
in the luminal cell layer of lobular regions. Scale bar = 50 μm.  
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Figure 2.9. Validation and spatial integration of two distinct luminal cell types. a 
Immunofluorescence analysis of NY-BR-1 protein expression (green) in combination with 
basal marker SLPI (red) and DNA stain using DAPI (blue) within tissue sections from primary 
human reduction mammoplasty samples revealed that NY-BR-1 and SLPI are markers for 
distinct luminal subpopulations. b–e Immunofluorescence analysis of NY-BR-1 and SLPI 
(red) protein expression with: hormone receptors for estrogen receptor (b), progesterone 
(c), and androgen (d) and proliferation marker Ki67 e in green. f Summary of hormone 
receptor and proliferation marker expression in L1 and L2 cells. g Violin plot showing 
expression of KRT8 in the luminal subpopulations, higher expression is seen in the luminal 
L1.1 and L1.2 subpopulation. h Sample frame for detection of KRT8 protein content from 
individual cells using single-cell Western blot following detection using microarray scanner. 
i Population summary showing cell number per fluorescence intensity confirmed bimodal 
distribution of KRT8 expression on the protein level. See Supplemental Figure 2.5 for violin 
plots displaying expression of relevant hormone receptors as well as proliferation and 
luminal progenitor markers. All scale bars = 25 µm. (Panel a-f, generated by Dennis Ma, panel 
h-I, generated by Kai Kessenbrock) 
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Figure 2.10. Expression patterns for selected genes of interest in combined analysis of 
droplet-enabled scRNAseq datasets. (a) Violin plots illustrating the expression patterns of 
hormone receptors, cell cycle genes MKI67 and CDKN1B (p27) and gene scoring for G2M 
gene signature (b), and luminal progenitor genes (c) grouped by final cluster determination. 
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Figure 2.11. Reconstruction of differentiation and relation of cell states to breast cancer 
subtypes. a Monocle-generated pseudotemporal trajectory of a subsampled population of 
cells (n = 4000) from four individuals analyzed using droplet-mediated scRNAseq is shown 
colored by cell state designation. b Pseudotime is shown colored in a gradient from dark to 
light blue and start of pseudotime is indicated. See Supplemental Figure 6 for summary list 
of discovered cell states, Monocle analysis of microfluidics-enabled scRNAseq results, and 
gene scoring for breast cancer subtypes. (Panel a-b, generated by Kerrigan Blake) 
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Figure 2.12. Reconstructing breast epithelial lineage hierarchies their relation to breast 
cancer. (a) Pseudotemporal analysis of microfluidics-enabled scRNAseq results using 
Monocle2 based on a set of 183 Seurat identified marker genes suggest a differentiation 
trajectory from ZEB1+ progenitor cells (green) bifurcating into basal (red) and luminal 
(blue) differentiated cells. (b) Selected marker genes are shown as dot plots displayed as 
expression level over pseudotime. (c) Relation of cell states identified in droplet-enabled 
scRNAseq analysis to different breast cancer subtypes is shown as violin plots displaying 
gene scoring results for a cells on gene lists derived from breast cancer subtypes, namely 
Metabric Luminal A (LumA), Metabric Luminal B (LumB), triple-negative breast cancer 
(TNBC) mesenchymal-like, and TNBC-Basal1. (Panel a-b generated by Kerrigan Blake, panel 
c, generated by Nicholas Pervolarakis) 
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Figure 2.13. Proposed cellular heterogeneity and lineage hierarchies within the human 
breast. a Schematic summary of discovered cell states within the basal and luminal 
compartment of the human breast epithelium with proposed function, key transcription 
factors (in white), selected markers (in black), and similarities to breast cancer subtypes 
indicated in boxes. b Proposed model summarizing the lineage hierarchies within the breast 
epithelium based on one continuous differentiation trajectory from basal stem cells to three 
distinct differentiated cell types with overlaid marker genes of interest shown (black on gray 
bars). (Panel a-b, generated by Kai Kessenbrock) 
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CHAPTER 3: Aberrant changes in breast epithelial homeostasis of BRCA1 mutation 
carriers revealed by single-cell RNA sequencing 
 

Incorporates components from manuscript: 
 
Aberrant changes in the breast epithelium homeostasis induced by BRCA1 mutation 
revealed by single-cell RNA sequencing 
 
Quy H. Nguyen, Yanwen Gong, Suoqin Jin, Grace Hernandez, & Kai Kessenbrock.  
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ABSTRACT 

Breast cancer is one of the most prevalent forms of cancer in women worldwide, with 

especially poor prognosis for the most aggressive basal-like subtype and late-stage cancer 

diagnosis. Pro-tumorigenic mutations promote destabilization of cellular homeostasis and 

cancer formation. For example, mutations in the BRCA1 gene drastically increase the 

probability of developing breast cancer in women, particularly the most aggressive basal-

like breast cancer. There is no targeted therapy for basal-like breast cancer and no primary 

prevention therapy for women with BRCA1 mutations.  

 

INTRODUCTION AND RESULTS 

A cohort of BRCA1+/+ reduction mammoplasties and BRCA1+/mut samples from 

age- and ethnicity-matched, post-pubertal, and pre-menopausal females were collected and 

processed to viable organoids for cryo-preservation. We performed scRNAseq on 

dissociated and purified breast epithelial cells isolated from surrounding stromal cells using 

flow cytometry-based on differential expression of CD49f and EpCAM. Isolated epithelial 

cells were subjected to scRNAseq by droplet-based sequencing methods (Figure 3.1a). All six 

individuals sequenced had similar genes and UMI detected in their data set (Figure 3.2a). We 

performed combined unbiased clustering with all individuals to identify the main cell types 

within the breast epithelium. Using known epithelial markers, we could annotate clusters 

based on their expression of KRT14, KRT18, SPLI, and ANKRD30A (Figure 3.2b-d). This 

analysis identified three major cell types and two additional cell states (Figure 3.1b), as 

previously described (Nguyen et al., 2018a). To confirm each cluster’s identities, we 

identified genes that were significantly upregulated in each cell state cluster (Figure 3.1c). 
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We find that similar gene signatures to published markers for each of the five cell states. We 

detect canonical basal and luminal markers in our clusters. The distribution of BRCA1+/+ 

and BRCA1+/mut cells were skewed for some of the clusters, namely Luminal 1.1 and 

Luminal 1.2 (Figure 3.1c, bottom). Cluster Luminal 1.2 has an expansion of BRCA1+/mut 

cells while the opposite trend is seen in cluster Luminal 1.1. Luminal 1.2 is a potential 

transitional state that basal cells transition to a more differentiated luminal cell state. 

Plotting these cells with Monocle and overlaying RNA velocity vectors highlight their 

differentiation trajectory. With Basal cells as the start of pseudotime, we get a trajectory that 

differentiates into three main cell types that include: Myo, Luminal 1, and Luminal 2 (Figure 

3.1d). Moreover, enrichment of Luminal 1.2 cells fall in the branching point before Luminal 

1.1 and Luminal 2. These transitional cells, Luminal 1.2, are enriched for BRCA1+/mut cells 

compared to BRCA1+/+ cells (Figure 3.1e). These transitional cells have an upregulation of 

genes previously indicated in progenitor cells, such as ALDH1A3 (Figure 3.1f). 

We identified additional genes with aberrant expression, specifically in the 

BRCA1+/mut cells, compared to the BRCA1+/+ cells. KRT23 expression in BRCA1+/mut cells 

was overall higher, and we detected expression in Luminal 2 cells while none were detected 

in the BRCA1+/+ cells (Figure 3.3c).  Immunofluorescence analysis of KRT23 reveals that 

BRCA1+/mut patient samples had foci of higher expression compared to surrounding tissues 

(approximately 17% of cells had higher expression), while BRCA1+/+ tissue sections had 

relative consistent expression (approximately 1% had higher expression) (Figure 3.1g, 

Figure 3.4).  

Next, we asked what other aberrant changes we see in BRCA1+/mut cells and what 

could lead to such changes. We performed single-cell energy calculation on all cells and 
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overlay their values on the tSNE plots faceted by BRCA1 status (Figure 3.3a). We see higher 

single-cell energy values for BRCA1+/mut cells; more specifically, we see an accumulation of 

high energy cells in the Luminal 1.2 cluster. Overall BRCA1+/mut cells have higher single-

cell energy as compared to BRCA1+/+ (Figure 3.3b); this is also noticeable on the individual 

bases (Figure 3.5a-b). The increase in energy between BRCA1+/+ and BRCA1+/mut is very 

noticeable within the Basal and Luminal 1.2 compartment (Figure 3.5c), possibly explaining 

the expansion of Luminal 1.2 cells in the BRCA1+/mut carriers.  

To characterize further changes induced by BRCA1 mutation, we analyzed the 

expression of KRT19. KRT19 is an exclusive marker for luminal cells, but we detect the 

expression of KRT19 in our basal and myoepithelial populations (Figure 3.3d). 

Immunofluorescence analysis of KRT19 in patient samples reveals expression in the basal 

layer (Figure 3.5e, Figure 3.6). Interestingly, this provides insight into the deregulation of 

cellular identities with a BRCA1 mutation, suggesting that BRCA1 mutation leads to 

dysregulation of cellular identities and limitation, thereby driving the Luminal 1.2 

population’s expansion. 

 

DISCUSSION 

BRCA1 mutation is known to cause triple-negative breast cancer, with little 

understanding of breast cancer’s origin. Here, our results show that BRCA1 mutation carriers 

have dysregulation in cellular identities and an increase in energy potential leading to an 

expansion and accumulation of cells in the Luminal 1.2 state. Our work reinforces the idea 

that basal cells differentiate into the other cell type lineages, including myoepithelial and the 
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two luminal types. The BRCA1 mutation decreased the cellular lineage specification and 

increases the stemness potential of these cells, thereby causing pre-neoplastic changes. 

 

METHODS 

 

Acquisition of tissue samples 

 De-identified reduction mammoplasty and mastectomy samples were acquired from 

Cooperative Human Tissue Network (CHTN). Samples were washed in PBS (Corning 21-031-

CV) and mechanically dissociated using a razor blade. Dissociated samples were digested 

overnight in DMEM (Corning 10-013-CV) with Collagenase Type I, 2 mg/mL (Life 

Technologies 17100-017). Viable organoids were separated using differential centrifugation 

at 250 rcf and viably frozen in 50% FBS (Omega Scientific FB-12), 40% DMEM, and 10% 

DMSO (Sigma-Aldrich D8418) by volume.  

 

Single-Cell RNA sequencing 

 Viable organoids were thawed and washed using DMEM with 10% FBS, and digested 

with 0.05% trypsin (Corning 25-052-CI). Single-cell suspension was treated with 10 

kunitz/uL DNase (Sigma Aldrich D4263-5VL) in PBS. Cells were stained for FACS using 

fluorescently labeled antibodies for CD31 (eBiosciences 48-0319-42), CD45 (eBiosciences 

48-9459-42), EpCAM (eBiosciences 50-9326-42), CD49f (eBiosciences 12-0495-82), 

SytoxBlue (Life Technologies S34857).  

  Sorted cells were washed and resuspended with 0.04% BSA at a concentration of 

approximately 1,000 cells/µl. Final cell suspension was counted on the Countess II 



60 
 

Automated Cell Counter (Thermo Fisher AMQAX1000). Library generation for 10x Genomics 

v2 chemistry were performed following the Chromium Single Cell 3’ Reagents Kits v2 User 

Guide: CG00052 Rev B. Loading of cells on to 10x Genomics Chromium chips were done to 

target a capture of approximately 10,000 cells per samples.  

  Quantification of cDNA libraries was performed using Qubit dsDNA HS Assay Kit (Life 

Technologies Q32851) and high-sensitivity DNA chips (Agilent. 5067-4626). Quantification 

of final cDNA libraries was performed using KAPA qPCR (Kapa Biosystems KK4824). 

Sequencing of single-cell libraries was performed on the Illumina HiSeq4000 platform to 

achieve an average of 50,000 reads per cell.  

 

Processing of scRNAseq data 

 Sequencing data was demultiplexing and converted to individual samples fastq files 

for alignment. Alignment of 10x single-cell libraries was completed utilizing 10x Genomics 

Cell Ranger 1.3.1.  Each library was aligned to the indexed human GRCh38 reference genome 

provided by 10x Genomics using Cell Ranger Count function.  Cell Ranger Aggr function was 

used to normalize the number of confidently mapped reads per cells across all the libraries 

from different individuals.  

 

Cluster identification using Seurat 

The Seurat pipeline (version 2.3.1) was used for dimensionality reduction and 

clustering of scRNAseq data. In brief, the combined count matrix data was loaded into R 

(version 3.4) scaled by a size factor of 10,000 and subsequently log transformed. Gene 
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expression cutoffs were at a minimum of 200 and a maximum of 6000 genes per cell for each 

dataset. Cells with greater than 20% mitochondrial genes were filtered. Individual epithelial 

and stromal libraries were analyzed to create cell type labels based on known marker gene 

expression. Seurat’s canonical correlation analysis (CCA), was then used to group cell types 

from disparate patients after integration of the datasets. For tSNE projection and clustering 

analysis, we used the first 15 canonical correlation components. Specific markers for each 

cell type that was annotated were determined using the “FindAllMarkers” function. For the 

epithelial subset analysis, cell states were clustered as described above and clusters were 

classified using gene scoring according to the previously described cell states(Nguyen et al., 

2018a), namely basal, myoepithelial, L1.1, L1.2, and L2.  For gene scoring analysis, we 

analyzed the gene signature transcriptional prevalence in cell types using Seurat’s 

“AddModuleScore” function. Differential gene expression analysis was performed for each of 

the cell types, comparing the transcriptome of cells from BRCA1+/+ and BRCA1+/mut cells 

using the “FindMarkers” function, using the wilcox rank sum test.  

 

Immunofluorescence analysis 

Tissues were fixed in 4% formaldehyde overnight and stored in 70% ethanol until 

processing. Tissues were dehydrated in solutions of increasing concentrations of ethanol, 

cleared with xylene, and embedded in paraffin. Slides of 5-μm sections were prepared using 

a Leica SM2010 R Sliding Microtome (Leica Biosystems, Wetzlar, Germany). Slides were 

heated at 65°C overnight, followed by two 5-min incubations in Histo-Clear (National 

Diagnostics, Cat. No. HS-200, Atlanta, Georgia, USA) for paraffin removal. Tissues were 

rehydrated with solutions of decreasing concentrations of ethanol, washed in PBS, and 
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subjected to antigen retrieval with 10 mM citric acid buffer (0.05% Tween 20, pH 6.0). 

Tissues were blocked in blocking solution (0.1 % Tween 20 and 10% Goat Serum in PBS) for 

1 hr at room temperature, incubated with primary antibodies prepared in blocking solution 

at 4°C overnight. Slides were then washed in PBS, incubated with secondary antibodies 

diluted in PBS for 1 hr at room temperature. Slides were mounted with VECTASHIELD 

Antifade Mounting Medium with DAPI (Vector Laboratories, Cat. No. H-1200, Burlingame, 

California, USA) and images were taken with the BZ-X700 Keyence fluorescent microscope. 

For quantification of staining (e.g. KRT23 staining), we manually counted highly positive 

cells, and all luminal cells, that reside in the luminal population that has a signal around 

nuclei (DAPI).   
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Figure 3.1. Identification of aberrant luminal population by scRNAseq. a. Overview of 
scRNAseq approach for collect and processing of human breast tissues into single cells for 
FACS isolation followed by scRNAseq using 10x Genomics gene expression platform. b. 
Combined tSNE plot of 6 individuals analyzed using Seurat. Major cell types and states are 
outlined. c. Heatmap showing top markers genes from each cell type shows a distinct 
expression of canonical markers for each. Pie charts show the composition of each cell type. 
d. Monocle plot colored based on cell states and overlaid with RNA velocity projections. e. 
Monocle plot colored based on BRCA1 mutation status with major cell type highlighted. f. 
Gene expression of KRT23 and ALDH1A3 plotted along pseudo time, with basal cells at the 
beginning and ending in luminal cells. g. Immunofluorescence analysis of KRT23 in 
BRCA1+/+ and BRCA1+/mut patients samples. Expression of KRT23 high cells is quantified. 
(Panel d-e, generated by Yanwen Gong and Kai Kessenbrock) 
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Figure 3.2. Cluster analysis and cell states assignment. a. QC metric violin plots for number 
of genes, numbers of UMI and percent mitochondrial genes. b. Feature plots for canonical 
markers for basal and luminal cell types. c. tSNE plot of unbiased clustering before cell states 
assignment. d. Violin plots for scored values based on each cell state compared to reference 
data.  
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Figure 3.3. Characterization of the luminal progenitor cell state. a. tSNE plots with either 
BRCA1+/+ or BRCA1+/mut cells, colored based on scEnergy calculations. b. Overall scEnergy 
values for either BRCA1+/+ and BRCA1+/mut cells. c-d. Violin plots for expression of KRT23 
and KRT19, plotted for each cell state. e. Immunofluorescence analysis of KRT19 in 
BRCA1+/+ and BRCA1+/mut patients samples. f. Proposed model summarizing the 
dysregulation in cellular identities in relation to scEnergy. (Panel a-b, generated by Suoqin 
Jin, panel f, generated by Kai Kessenbrock) 
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Figure 3.4. Expanded validation of KRT23 expression in BRCA1 individuals. 
Immunostaining for KRT23 in 4 additional samples, 2 from BRCA1+/+ and 2 from 
BRCA1+/mut. 

 



67 
 

Figure 3.5. scEnergy analysis of cell state and BRCA1 mutation status. a. Box plot showing 
scEnergy value for each individual, separated by BRCA1 mutation status. b. Box plots 
showing scEnergy values each individual across the different cell states. c. Box plot showing 
combined scEnergy value for all individuals in either BRCA1+/+ or BRCA1+/mut for each 
cell state. d. Splice ration plotted for BRCA1+/+ and BRCA1+/mut cells. e. Correlation plot 
for splice ratio between BRCA1+/+ and BRCA1+/mut cells. (Panel a-c, generated by Suoqin 
Jin, panel d-e, generated by Yanwen Gong) 
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Figure 3.6. Expanded validation of KRT19 expression in BRCA1 individuals. 
Immunostaining for KRT19 in 4 additional samples, 2 from BRCA1+/+ and 2 from 
BRCA1+/mut. 
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CHAPTER 4: Flow cytometry induced changes within mammary epithelial cells 
revealed by single-cell RNA sequencing 
 
 
Incorporates components from manuscript: 
 
FACS isolation-induced changes within mammary epithelial cells revealed by single-
cell sequencing 
 
Quy H. Nguyen, Grace Hernandez, & Kai Kessenbrock.  
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INTRODUCTION 

 Cellular heterogeneity within a population is critical for most tissues to maintain their 

identity and maintain their cellular functions (Hassiotou and Geddes, 2013; Van Keymeulen 

et al., 2011). Dysregulation in these pathways can be detrimental to the overall function or 

identity of the tissues. Understanding how an organ function on a cellular level provides 

valuable insights for research and biomedical applications. Previous attempts at cellular 

profiling of tissue systems occur on the bulk level. This work provides an overall view of the 

cellular processes that take place without the distinction of individual cellular identities. 

Recent advancement of sequencing technology has allowed for profiling at the single-cell 

level (Pollen et al., 2014). Single-cell sequencing is a highly sensitive method for profiling 

cellular heterogeneity and can be applied to most tissue systems. Most current single-cell 

sequencing technologies require that the users provide a clean single-cell suspension for 

processing(Nguyen et al., 2018b). Tissue dissociation is one of the first steps in most 

protocols for single-cell sequencing. It has been shown that certain tissue dissociation 

protocols will induce changes in gene expression and lead to a false identification of 

differentially expressed genes (Van Den Brink et al., 2017). Cell isolation typically follows the 

dissociation of the tissues. This step is critical for obtaining a clean sample that can be used 

to produce high-quality data. Previous works on the epithelial system have utilized 

enzymatic dissociation and FACS isolation strategy to generate single-cell data and isolate 

cell types of interest for functional assays (Nguyen et al., 2018a). These assays involve 

isolating cell types of interest, typically epithelial cells, for functional characterization. It is 

important to keep the molecular and cellular identities of these cells from changing to 

properly evaluate their role in biological processes. Here we show that traditional FACS 
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isolation of certain cell types will lead to gene expression and other biological changes. These 

changes affect the cells underlining abilities to proliferate and grow. 

 

RESULTS 

FACS isolation is a commonly used method for isolating single cells of interest from a 

population. This typically involves staining cells with antibodies against markers of interest 

or dyes that are fluorescence. Then cells are then processed through a FACS machine, where 

they are fed through tubing at high pressure and exposed to high shear forces and rapid 

decompression.  Towards the end, the detectors pick up which fluorescence markers the 

cells are stained with and apply a change to the cells so the deflector can sort the cells into 

the appropriate vessels. Our experiment tested two traditionally available cell cytometers 

and the MACSQuant Tyto cell sorter (Fig. 1f). We also assessed the sorting capabilities of the 

MACSQuant Tyto cell sorter. This platform performs the same underlying functions as 

traditional cell sorter, where they detect fluorescence markers on the cells to isolate the 

population of interest. There are several noticeable differences in their design. First, the 

MACSQuant Tyto utilized a sterile cartridge for cell handling. The sterile cartridge ensures a 

safe environment for operation and sample handling, with the tradeoff of only enriching for 

one population of interest at a time. This cartridge acts as the fluidics engine for the system, 

with the benefit of maintaining constant low pressure on the cells, approximately 1.5 psi 

(Figure 1f). In comparison, traditional cell sorter exerts 20-25 psi (Fig. 1f), and even higher 

when utilizing a smaller diameter nozzle.   

Epithelial heterogeneity in the breast is a field of study that still draws interest, 

especially due to the still elusive stem or progenitor cell populations in the epithelium. 
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Recently, new single-cell sequencing approaches have been applied to answer this question, 

and many functional studies have attempted to indicate whether there is a multipotent stem 

cell or their lineage-specific progenitor cells. These studies typically involve isolating specific 

epithelial cells from the tissues while excluding other stromal cells that could confound the 

results. We applied a similar approach for isolating single epithelial cells from a mouse 

mammary gland and subjected them to single-cell sequencing and functional assays (Fig. 1a). 

Mammary gland 4 were pooled from several mice and dissociated to single cells using 

enzymatic dissociation. To isolate just epithelial cells, we stain with CD49f and EpCAM. We 

then isolated both basal and luminal cells either with traditional FACS isolation or with 

MACSQuant Tyto. Both systems generated a pure population of epithelial cells marked by 

CD49f and EpCAM. A portion of cells from each sort was used to generate a 3’ gene expression 

libraries, while the rest were platted in a mammosphere formation assay (Fig. 2b). 

Unbiased clustering of cells from all six experiments identifies three major cell types 

previously reported, one basal and two luminal clusters (Fig 1b). We detected the expression 

of canonical markers corresponding to each of these cell types (Fig 1c-d).  When comparing 

each cell type from traditionally sorted cells to cells sorted on the MACSQuant Tyto, canonical 

cell type markers are similar between the two conditions. This indicates that neither system 

plays a major role in altering cellular identities in the short term. We next looked into the 

quality control metrics for these libraries. Cells isolated utilizing the gentler MACSQuant 

Tyto cell sorter have higher genes and UMI detected (Fig.1e). This indicates that higher 

pressure and rapid decompression of traditional FACS isolators could negatively affect gene 

capture and detection when applied for single-cell profiling.  
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Next, we wanted to identify any signatures that can arise from isolating cells using 

these two methods. We scored the expression of genes that are known to be involved in 

stress response pathways. While FACS isolated cells did score higher for these genes, the 

differences are relatively minor (Fig 2a). This could be because the isolated cells were 

profiled within 30 minutes of isolation. This relatively short time might not have provided 

the cells with the opportunity to affect changes in their response to stress following cell 

isolation. 

As previously described, to understand the long terms effect of cell isolation by 

cytometry, we set up a mammosphere formation assay with cells isolated from both systems. 

These cells were plated into Matrigel droplet and grown for seven days to assess their 

proliferation and growth potential (Fig. 2b). The MACSQuant Tyto sorted condition was 

denser and had more spheres; on average approximately, 1.5x more spheres (Fig. 2c-d).  

 

DISCUSSION 

 Our results show that single-cell isolation induces changes at the biological level and 

alters gene capture when applied to single-cell profiling methods. Even though the alteration 

in the stress response pathway’s expression is relatively small for epithelial cells, this effect 

could be amplified when applied to more sensitive cell types. Epithelial cells are relatively 

robust and handled extensively and still retain their identities. Such an application that could 

benefit from this gentler sorter would be nuclei isolation for profiling. It is known that 

excessive shear force could weaken and even disrupt the nuclear membrane leading to 

nuclear content loss. The high pressure and forces exerted by traditional FACS isolators 
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could severely compromise the nuclear membrane leading to lower gene capture when 

utilized with single-cell profiling methods. 

 Our finding not only shows that this stress results in lower gene capture, but it also 

induces long term biological changes that affect cell proliferation and growth. Some transient 

stress responses typically are upregulated right after induction and subside once the cells 

have time to recover and grow. Our mammosphere formation assay provides the cells with 

optimal growth conditions and time to proliferate and expand. Even then, we see differences 

in sphere formation capabilities between the two sort conditions. This could have 

implications in the various experimental setup used to identify stem and progenitor cells. 

Methods for cell isolations vary greatly from FACS purification of cells to no direct cell 

sorting. These various methods for obtaining cells for transplant assay could alter the cell 

proliferation and growth potential and skew functional results. Taken together, this work 

highlight the importance of single-cell isolation and their effect on cellular identities.  

 

METHODS 

 

Acquisition and processing of tissue samples 

10 weeks old female FVB/NJ mice are from Jackson Laboratory (Stock Number: 

001800) were utilized for these experiments. All experiments have been approved and abide 

by regulatory guidelines of the International Animal Care and Use Committee (IACUC) of the 

University of California, Irvine. 

Mammary gland 4 were isolated and pooled from these mice for downstream 

processing. Glands were minced into 1mm pieces and dissociated with 2 mg/mL collagenase 
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type IV for 1 hr at 37 C while shaking. Digested organoids were collected and further 

dissociated to single cell using 0.05% trypsin. Cells were stained for CD49f, EpCAM, CD31, 

CD45, Ter119, and SytoBlue dye.  

 

Single-Cell Isolation 

 The pool of cells was split into two, one for FACS isolation and one for MACSQuant 

Tyto sorting. FACS isolated cells were sorted using either the BD Astrios with 100 um nozzle 

or the BD Aria Fusion with 100 um nozzle. Single epithelial cells from all sorting conditions 

were isolated based on CD49f and EpCAM.  

 

Single-Cell RNA sequencing 

Sorted cells were washed in PBS with 0.04% BSA and resuspended at a concentration 

of ~1000 cells/µl. Library generation for 10× Genomics v2 chemistry was performed 

following the Chromium Single Cell 3ʹ Reagents Kits User Guide: Chromium Single Cell 3ʹ 

Reagents Kits v2 User Guide: CG00052 Rev B. 

Quantification of cDNA libraries was performed using Qubit dsDNA HS Assay Kit (Life 

Technologies Q32851) and high-sensitivity DNA chips (Agilent. 5067-4626). Quantification 

of library construction was performed using KAPA qPCR (Kapa Biosystems KK4824). For 

microfluidics-enabled scRNAseq libraries, we generally multiplexed 96 cells per lane on an 

Illumina HiSeq2500 resulting in a calculated depth of ~1.6 million reads per cell (Illumina 

Rapid PE kit v2 402-4002 and Rapid SBS kit v2 FC 401-4022). For droplet-enabled scRNAseq, 

we used the Illumina HiSeq4000 platform to achieve an average of 50,000 reads per cell. 
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Processing of scRNAseq data 

After demultiplexing sequencing libraries to individual cell FASTQ files (observed 

average read depth per cell was found to be ~1.6 Million reads), each library was aligned to 

an indexed GRCh38 RefSeq genome using RSEM version 1.2.1242, and bowtie2 version 2.2.3 

with the following options enabled: rsem-calculate- expression -p $CORES—bowtie2—

paired-end -output- genome-bam. Fragments Per Kilobase of transcript per Million mapped 

reads (FPKM) values were quantified and concatenated into a resulting gene expression 

matrix for each library, which was then loaded into R for subsequent computational analysis. 

For quality control filtering, we generally excluded libraries with less than 900 genes 

detected. In addition, genes that were not detected in at least 3 of the cells after this trimming 

were also removed from further analysis. Alignment of 3ʹ end counting libraries from 

droplet-enabled scRNAseq analyses was completed utilizing 10× Genomics Cell Ranger 1.3.1. 

Each library was aligned to an indexed GRCh38 genome using Cell Ranger Count. Cell Ranger 

Aggr function was used to normalize the number of confidently mapped reads per cells 

across the libraries from different individuals utilizing 10× v2 chemistry. 

 

Cluster identification using Seurat 

For cluster identification, we utilized the Seurat pipeline. Data was read into R as a 

counts matrix and transformed into log-space. Due to the difference in gene detection across 

the two platforms, differences in chemistry for the library prep, as well as sequencing depth 

per cell, a minimum cutoff of 200 and a maximum cut-off of 6500 genes per cell for this 

dataset was used. In addition, cells with a percentage of total reads that aligned to the 

mitochondrial genome (referred to as percent mito) greater than 60% were removed, since 
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increased detection of mitochondrial genes can be associated with cells undergoing stress 

and cell death. 

 

Mammosphere assay 

Cells acquired after sorting on both platforms were suspended in DMEM/F12 and 

mixed 1:1 with Matrigel (Corning: 354230).  Cells were plated in the center of individual 

wells on a 12-well cell culture plate. Droplets were allowed to solidify on a heat block at 37C, 

then incubated in a CO2 incubator for 10 minutes before additional growth media was added. 

Mammospheres were cultured in a humidified 37C cell culture incubator with 5% CO2 for a 

total of 7 days. Images were taken using a Keyence BZX710 microscope for analyzing sphere 

formation.  
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Figure 4.1. Single-cell analysis of isolated epithelial cells reveals protocol induced 
differences. a. Overview for single-cell dissociation from mouse mammary glands and 
isolation for scRNAseq. b. Combined tSNE plot with cell type’s outline, basal and two luminal 
cell types. c. Heatmap of top markers genes showing distinct clustering of major cell types. 
d. Feature plot of canonical basal and luminal markers. e. Violin plot for QC metrics for FACS 
and Tyto isolated cells. f. Summary table for isolation methods applied.  
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Figure 4.2. Mammosphere formation assay reveals functional differences in isolated cells. a. 
Split dot plot showing scored values for genes involved in stress response pathway. b. 
Overview of mammosphere formation assay with single cells isolated by FACS or Tyto. c. 
Representative bright-field images of Matrigel culture of isolated cells after 7 days of culture. 
d. Box plot of sphere counted from the assay. 
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CHAPTER 5: Summary and Conclusions 

 

Overview 

 This is a remarkable time in scientific discovery and advancement in biomedical 

technologies. Innovations and developments that occurred in the past several years have led 

to an exponential growth in our ability to gather new data and increase our understanding 

of the world around us. This major advancement in biological sciences is driven largely by 

the development and adoption of big data in omics, such as genomics, transcriptomic, 

proteomics, metabolomics, and so much more. Our challenge is integrating these different 

data and interpreting the results to better understand biological processes and interactions 

that govern our lives. From there, we can understand the mechanism that drives disease 

progression and advance diagnostic tools and treatment to better human lives. An ongoing 

grand effort to provide a foundation for scientific and medical advancement is the Human 

Cell Atlas. This, like the Human Genome Project, is an international collaboration that spans 

many different disciplines and involves many experts in their fields. Hopefully, this will one 

day provide the foundations for scientists and medical personnel to better understand 

disease progression and innovate better treatment.  

Breast cancer is consistently listed as the cancer with the most new cases every year. 

Advancement in early detection and medical procedures has dramatically improved 

outcomes for those diagnosed in the early stage of the disease, and identification of novel 

biomarkers and mutations that drive cancer initiation has also been implemented to 

improve patients’ outcomes. It appears that the best outcome for all potential breast cancer 

patients is early detection and prevention. Utilizing known breast cancer biomarkers, people 
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can be screened for their risk and take appropriate actions to prevent or manage this disease. 

A good example of this is the screening for mutations in the BRCA genes. Individuals who 

have a family history of breast cancer and are carriers of a mutation in their BRCA genes 

typically opt for a prophylactic mastectomy to protect them from developing breast cancer. 

This example of early detection and intervention highlights the importance of understanding 

how the disease initially forms and progress. Although we understand the role of BRCA in 

suppressing tumor formation, we do not fully understand all the implications of having a 

mutation in the BRCA genes, nor do we have an effective way of identifying and targeting just 

the cancer cell of origin. First, we must create a baseline reference for normal breast 

development to identify any changes that may arise due to genetic variation like mutations 

in the BRCA genes. 

 

Chapter 2 

In chapter 2 of this work, I explore the normal breast epithelium's cellular 

heterogeneity through the published work; profiling human breast epithelial cells using 

single-cell RNA sequencing identifies cell diversity, Nature Communication 2018. I applied 

single-cell gene expression sequencing methods to profile over 25,000 epithelial cells from 

7 individuals. This lead to the identification of three major cell types, one basal and two 

luminal populations. When projecting these major cell types on a monocle pseudotime 

trajectory, we revealed a continuous hierarchy that connects the luminal lineage to the basal 

cells implicating their origin. 

 Many previous works have described the breast at the anatomical and cellular level. 

In short, the breast is composed of an epithelial ductal network that grows into adipose rich 
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tissue. Identification of cellular heterogeneity within the breast epithelium previously relied 

on the separation of cell types based on cell surface markers and typically involves profiling 

on the bulk level. While these efforts have greatly advanced our understating of the epithelial 

system of the breast, we are still left with just an overview. High-resolution profiling is 

required to identify true heterogeneity on the single-cell level. This work provides a high 

resolution of insight and allows us to identify and profile three major cell types in the breast 

epithelium. Studying the two luminal cell types as separate population provides insight into 

their role in the breast. The luminal 1 population is the more secretory of the two, and the 

luminal 2 population has a higher level of hormone receptors, indicating that they may be 

more responsive to hormones during changes.  Reconstructing the differentiation hierarchy 

using pseudotime analysis resulted in a projection of basal cells transitioning into the 

luminal lineage. While this pseudotime projection is created from the transcriptional profile 

of representative cells taken at one point in time, it complements the notion that there may 

be stem cells that reside in the basal population. There may also be a lineage-specific 

progenitor that is responsible for the upkeep of each of the two cell types. The luminal 1 

population is believed to contain progenitor cells that help maintain the luminal lineage; this 

population falls earlier on the pseudotime projection. This concept has been eluded to by 

various work that characterizes a population referred to as the luminal progenitor cells (Lim 

et al., 2009). This work provides the foundation for further isolation and characterization of 

these major cell types. It is a resource that provides a profile of the composition of the normal 

breast epithelium during homeostasis. This resource can be used to identify changes that 

occur during cancer initiation or any abnormal changes. Although this work provides a 

profile of the normal breast epithelium, we do not know whether there are multipotent stem 
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cells responsible for maintaining the whole epithelial ductal network, or that role is filled by 

lineage-specific progenitor cells. Since breast cancer is such a prevalent disease, 

interrogating this work to identifying the potential cancer cell of origin reveals the three cell 

types correspond closely to various breast cancer subtypes. This work supports the notion 

that breast cancer arises from the breast epithelium but does not delineate the specific cell 

types responsible for specific breast cancer subtypes. 

 

Chapter 3 

Chapter 3 builds on the normal epithelial cell atlas by identifying changes that arise 

during early cancer initiation. In the context of BRCA1 mutations carrier, we identified 

dysregulation in the cellular identities in epithelial cells. This dysregulation leads to an 

expansion of the luminal progenitor population, luminal 1.2. Higher scEnergy in these cell 

states, especially in the BRCA1 mutation carrier cells, supports the notion that these cells are 

more deregulated and have a higher potential to lose their cellular control and proliferate 

uncontrollably. Staining for markers associated with stem and progenitor cells reveals an 

increased expression in this luminal progenitor population. 

 Histological and molecular profiling efforts have generated a wealth of knowledge for 

the various breast cancer subtypes. There are five main subtypes, Luminal A, Luminal B, 

Triple-Negative, HER2-positive, and Normal-like. Those studies provide valuable insight into 

the pathological characteristics of these cancer subtypes. We now understand how this 

cancer progress, and how each subtype response to cancer therapies. Although this 

knowledge is useful in the diagnosis and treatment of cancer patients, a deeper cellular 

understanding is required to improve patients' care and overall survival. 
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Previous work has made great strides in correlating mutations in the BRCA genes 

with breast cancer development. It is known that up to 70% of women who carry a mutation 

in their BRCA1 gene will develop breast cancer at some point (Kerr and Ashworth, 2001; 

Orban and Olah, 2003). This information is currently used in the health care system to help 

individuals at higher risk prevent and manage disease onset. Most individuals who are 

BRCA1 mutation carriers and develop breast cancer develops a subtype known as TNBC 

(Stevens et al., 2013). Previous work analyzing breast cancer cases has shown a high 

correlation between BRCA1 mutation and TNBC with a larger tumor burden. This work, in 

conjunction with studies into BRCA1 role in DNA damage response and tumor-suppressing 

mechanism, highlights the importance of identifying the cellular response during 

development when BRCA1 is mutated. This work identifies an expansion of the luminal 

progenitor population in individuals with a mutation in their BRCA1 gene. Our previous 

work correlates luminal cells' expression pattern to best match those of TNBC/Basal-like 

breast cancer. This work supports the notion that BRCA1 mutations disrupt cellular 

homeostasis and lead to a massive expansion of the luminal progenitor cells. If left 

unchecked, these luminal progenitor cells could ultimately lead to cancerous growth. 

Dysregulation in cellular identities is also evident in their expression of canonical basal and 

luminal markers. This idea supports the concept that with the loss of BRCA1 functions, the 

cells accrue mutations that eventually disrupt their normal homeostasis and cellular 

identities. This dysregulation eventually leads to a population that no longer responds to 

regulating cellular signals.  

This work provides a complete profile of normal breast epithelial cells and 

corresponding epithelial cells from individuals with mutations in the BRCA1 gene. It is a 
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valuable resource for identifying changes that arise before cancer progression. The role of 

BRCA1 mutations in other cell types remains unclear. BRCA1 mutation does disrupt other 

cell type homeostasis, but its role in driving cancer initiation and progression through 

cellular interaction remains elusive. The basal cells and other stromal components play an 

important role in maintaining and supporting the luminal cells during normal homeostasis 

(Dong-Le Bourhis et al., 1997; van Roozendaal et al., 1992); disruption in this communication 

and support with BRCA1 mutation could be a driving factor in BRCA1 mediated breast 

cancer. 

 

Chapter 4 

Chapter 4 highlights the importance of proper cell handing for profiling or functional 

assays. It is well known that various cell types respond to cellular stress differently. Proper 

handling and processing of samples will ensure high-quality data and reproducible results. 

We find that commonly used FACS isolation methods could alter cellular contents and have 

lasting biological changes.  

FACS isolation is a widely used method used by many for purifying cells of interest. 

This process involves labeling the cells with antibodies or dyes so the machine can identify 

the various markers by fluorescence. FACS isolation utilizes the concept of single-cell 

separation and profiling. Traditional FACS isolation systems require high pressure and rapid 

decompression to achieve high speed and high-efficiency sorting cells. We see that cells 

subjected to those conditions yielded lower gene capture when profiled by single-cell gene 

expression sequencing. In comparison, cells that are sorter with a constant lower pressure 

have higher gene recovery after. Previous work has shown that dissociation protocol used 
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to break down tissues can induce changes to the gene expression profile and upregulate the 

stress response gene (Van Den Brink et al., 2017). This step is where isolation protocols need 

to be optimized to reduce artificial changes during sample handling. This work highlights the 

importance of a proper understanding of the changes that this step can induce. It is critical 

to consider this when handling more sensitive cell types such as nuclei. The long-term 

changes are seen by the mammosphere formation assay highlight an important point about 

how FACS isolation could affect experimental results, especially those involving isolating 

stem and progenitor cells for transplant. The changes induced by FACS isolation on cell type 

beyond mouse mammary epithelial cells are still unclear. Every cell types handle and 

respond to this stress differently.  

 

Future directions and conclusions 

Although we created an atlas to investigate the heterogeneity within the normal 

breast epithelium, we still need to integrate any findings into the breast cellular 

environment as a whole. Single-cell RNA sequencing used in this work is extremely 

powerful and can tell us what populations are in the epithelium but cannot tell us their 

spatial localization. The microenvironment is essential in supporting this structure, and the 

cell to cell interactions helps maintain homeostasis. Understanding the spatial localization 

of these cells and their neighbors would provide us more insight into the role of stromal 

components and other unknown sub-states. This is especially true for spatially identifying 

the luminal progenitor cells in BRCA1+/mut samples; this would help us with additional 

insight into possible interactions with other cell types that could promote differentiation 

and growth. In a clinical context, this could generate novel histological markers that can 
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then be used to identify patients who are at high risk of cancer formation. As eluded to, the 

microenvironment of any system is critical to its upkeep. This work investigates cellular 

heterogeneity within the breast epithelium. Other stromal components such as fibroblast, 

pericyte, adipocyte, immune, and endothelial cells, interacts with the epithelial system 

daily and play a big role in everything from maintaining homeostasis to promoting normal 

growth and cancer initiation. Understanding this microenvironment signaling would 

provide a complete picture of normal breast development and cancer initiation.  

To complement our knowledge of what cells are there and their localization, we also 

need a complete understanding of their biological roles. When looking at these cell states, 

we need to go beyond just knowing that luminal cells produce milk and basal cells 

surround them. We currently lack an understanding of the role each sub-state plays in the 

system as a whole. Understanding this would provide better diagnostic tools for the 

detection of cancer and treatments. We see an expansion of the luminal progenitor 

population in the BRCA1+/mut samples, but we also need to know the origin of this cell 

state and what causes this accumulation.    

There are many ongoing efforts to delineate a complete understanding of the 

normal breast epithelium across a large cohort of individuals. This work provides that first 

step to understanding the complete spectrum of heterogeneity and provides a first attempt 

to understanding the changes that arise during early cancer progression. This process is 

critical for identifying novel biomarkers and therapeutics to improve patients' overall 

survival.
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