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SEMICLASSICAL THEORY OF DIFFRACTION IN ELASTIC SCATTERING

. George E. Zahr and William H. Miller+_-

Department of Chemistry, and Inorganic Materials Research Division
Lawrence Berkeley Laboratory; University of California:
Berkeley, California 94720

ABSTRACT

It is sﬁown that.diffraction.from a purelf.tepulsive
potential eeﬁibe‘described by e simple extension df the"
Ford and Wheeler eemiclassicai analysis._'fhe difftaction
arises ftoﬁ interference between a "claseically»eliowed"_
and a classically forbidden" contribution to the scattering
amplitude. A numerical example is presented to show that

the semiclassical descrlption is quite quantitative.



" is one of the outstanding triumphs of molecular_collision'theéry.

I. INTRODUCTION

The semiclassical theory of elastic scattering--the scattering

of two atoms, for example, at least one of which is in a S state—-

‘Quantum effects, such as rainbow structure in the differential

‘cross section and glory oscillations in the energy dependence -

of the total cross section, can be‘un&erstood simply as interference
between differént classicai—like_contr%butidné to the scattering
amplitude. The description of these Qu;ﬁfum effects affofdéd:by
semiclassical theory is, in addition, quanfitafiVely acéurate and

thus a useful aid in analyzing experimental results.

One quantum phenomenon for which the usual semiclassical

e 1,2 (oo e . ST, .
treatment ’" fails is diffraction from a monotonically repulsive

potential. If the potential V(r) is monotonically repulsive,é

then the classical deflection function O(L) is also monotbnic‘

"and fhefe-will>thus be only one value of orbital angulér‘moméntum

L which satisfies the classical condition
o) = 8 . | o (1.1)

Figure 1 shows such a monotonic deflection function and indicates

the graphical solution of Eq. (1.1). In this situation the -usual

. s 4. ' ., 1,2 - : ST - : .
semiclassical analysis™’  gives only one contribution to the semi- -

classical amplitude7and there is thus no interference'Structure;

i.e., for this monotonic case the usual analysis gives

oSC(Q) - 01, (8) s : ) S ‘(1.2).



(sc =vsemiclassical, CL = classical). It is’kndwn; héwever,.that”
an inferference structure can exist in these cases--it is seen
experimentally5 andvappearé in a fully quantum mechanic31 calcu1a—'
tion6—fand the usual conclusion is that éuch aiffraétion effects
simpiy'lie outside the realm of semiclassicai theory. |
The purpose of thié paper is tb:show that'é‘sﬁraighpéforward
‘extension of the‘usual semiclassical treatment¥’  ac¢ounts for
these diffraction effects in a compleﬁely'natural‘Way; it is seen
.that eﬁéhffor the purely reﬁulsive case they ;riSe'from inferference

_ of different classical-like contributions to the'ééattering'amplitude.

A similar'analysis has been carried oyt by Knoll and'Schaéffer,_

. | / .
with particular application to the case of a complex optical

péténtiai,. The main difference.betweenifhe present work and that
of ref. 7 is that here tﬁere is no éxplicit apbearance of complex—
valued classical trajectories (although such are‘implicit), and
the emphasis is on the ordinary case of a real potential fuﬁction}
The théoretical deVelopﬁent is_carfied out in SeétionVII,:aﬁdfa
numeriCal éxample is presented in Sectioﬁ III to éhowvthat the

description which results is also quite quantitétive.
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II. SEMICLASSICAL ANALYSIS

The differential cross section for elastic scattering is given

by

o@ = le@|*

(2.1)

_ and the standard quantum mechanical ekpreSsion for the scattering

amplitudé_is

. -lv 00 zln
£(8) = (2ik) :E:(22+1) (e
2=0

With the usual semiclassical approximations:

j_"l §;+ dg
o '_ ‘.._ l
=0 2
Lo sin[T + (2+byo]
P (cosB) - 4
g heose) T 1, . .1/2
5 (¢ 2)51n6]
., . WKB
UQ nl ’

Il

it is easy to show that Eq. (2.2)vbecome§

T
£(8) = k L onsing) 1/2 4

where

2—1) Pg(cosﬁj

[e 1,(8) —‘e,vr

2.2)

' (2.3a)

" (2.3b)

(2.3c)

(2.4)



1,(0) =de LY2 explilon) ¥ 101}, s
O. - . . .

and whefe L =2+ %~and n(L) is now the WKB phase shift. .(The
approximation in Eq. (2.3b) is valid only.for Lo > 1; a semi-—

classical approximation valid for all 6, 0 < 8 §-g , ‘is

: 9 - 1/2 B ' ST
- Pz(coge) »> ( : ) JO(LG)Y. . :}‘J‘ .A  (?;6) E

sinf

but this more accurate approximation is not needed for our.
" present purposes.)

The next step in the normal deveiopment.is to evaluate
tbé integrals I+(6) and I_(G) of Eq. (2.5) via the stationary
- phase approkimation.8 For I+(6) the stationary phase condition
is

oW = 6. , : L@
where O(L)i the classical defleCtionvfunction,lis_rélétéd>to'thei

WKB phaée-shift in the usual way:
e@ = ') . . (2.8
',For the'éasevof a mqnotonically-repulsivé defleétiqn function, as’
shown in-Figure 1, it isyclear that Eq. (2.7) has'dﬁerand'dnly one -
~root; let Ll(6) denote this root} The stationafyvphase épproximation

then gives‘I+(6) as




1/2

2n1Ll

T+(6)_ = 6TYEIT eXP{iIZH(Ll) - Llel} . - (?-9)

Thé stationary phase condition for the integral I_(8) is

o) = -8, _ . B (2.10)

for which ﬁhere are clearly no roots in the case-of a purely
repulsive potential; within the stationary phase appfoximatibn

ohe'thus has
1. =0 o, . S (2.11)

~and. the net amplitude of Eq. (2.4) is simply

CEO) = £ @ o o 2a12)
where
f'(e) = k;l ———~3f3;-~—' v {if2 kL.) i, L.8 - 51}.(2.13)
1 sinf €' (L)) expiiisntil, 1 Gl

This is'the usual result for the case of a monotonic deflection.
. o4 ' _ , L o
function,- and the cross section which results is the purely
classical expression,
L

N 1. ’ o A .
o(0) = o, (8) = — , o (2.14)
oL k% sind |@'(L1)|, ‘ : -

and thus shows no interference structure.



The necessary extension of this standardAanalysis is to note
that éltﬁough Eq. (2.10), the stationarybphﬁse condition for I_(G),
has norgggl’roots, there will in general be Cdmglex values of L
which satisfy Eq. (2.10), the mathematical meaning of which is the
following.' Finding no reél points of stationary.phase for the
. ihtégral I_(O), one analytically cbntinues the integrand and 1oo£s
for coﬁplex points of stationary phasé, i.e., COmpieﬁ.roots to
Eq. (2.10);:findiﬁg such a root, call ‘it Lz, thé integral over.L
is defdrmed into a contour integral in the comélex'L-plaqerhich
- passes through L2 (Which is also called a "saddlé point"); Thg
saddle'point method, or method of deepést descent9 is thén appiied.
to this contour integral, all»of which gives ;he fbilpWihg asymptotic
ébproXimﬁtion fo I_(G)f |

1/2°
2miL

I_(0) ':__ oL, ' exp{i[gn(Lé) + L,0]} EEL : ‘2.15)

L2 = LZ(G) being thg (complex)'roo£ beq, (2.10), .One hotes that:
the fesﬁlt for the asymptotic approximation to I_(@);_Ed;:(ZQIS),’
has ex;ctly the same form_gs that forvI+(6); Eq.-(2.9); with L1 and
L2 being the roots of Eq.'(2.7) and (2.10), resbectively.

. In tﬁe language of Miller's “classical S—métrix” theory10 of
moléculér»éollisions one says that I (0) has a "¢1assipa11y_allowed"
contribqtione#i.e.; there is,a real-valued claSsicalvtfaiecpory for
whiqhvphevfinal scattering angle is +6——and'that»1_(6) has oﬁly a '

‘"classically_forbidden" contribution--i.e., no real-valued classical

trajectory has a scattering angle -6, but there are COmplex—valded
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ones which do so. If there is more than one complex root to Eq.
(2.10), then one chooses the one for which the imaginary part
of the phaéel(the classical action) in Eq. (2.15) is the smallest.

(The imaginary part of the phase must always be positive; if L2 is

a root of Eq. (2.10), then it is clear that L2 , 1ts complex

conjugate, is also a root. If the classical-action for the root

. . ) * 7 B
L2 has a negative imaginary part, then that for L2 will clearly .

be positive and thus the desired choice of the two roots Lz'and

*

L2 )

With the asymptotic approximation to I_(6) in Eq. (2.15), the
scattering'amplitude is now given by

]
4

EO® = 5O+ O, | - © o (2.16)

»with'fi(ﬁ) given by Eq. (2.13), and with
R -1 iL2. 1/2 v R

- - . ] - ——— e * + L — . ..

f2(6) k sing O'(Lz) exp{1[2n(L2) L26 + 4]} (2.17)
F(Note again that the classically allowed term, fi(e), and classically
forbidden térm, fz(e), haye'essentially the same structure in
terms dfvtheif_respective stationary phase points L1 and L2.)
It is ﬁow,clear that interference effects can appear in the

cross section,

o‘;(ﬁ)

- 2
sC Jflfe) +£,(0)]

2 2 . ST
.|f1(6)| + {fz(g)l. + zlge[fl(e) £,00)] , (2.18)



and this is the origin of the diffraction effects discussed

above. For highly classical-like systems one will have

Tm [2n(L,) + 1,81 >0 : S (2.19) -

and the,élassically forbidden contribution will be negligible
and diffraction thus absent. For light atoms and suffiéiently
low‘engfgy, however, it will survive.

.Iﬁ co@éluding'the Secfion it is interesting to show
qualitatively #hat Eq. (2‘10) wili indeed havevcomplex roéts
- for typical'atom—atom potential functions. The élaQSical
defléctibn_function O(L) has essentially the saﬁe’algebraic
'-behavior.as the'poténtial function V(r). If, fdr‘example,
the potential is exponentially repulsivé, then one will,”
apﬁrokimatély have

S _L/Ld ' S -
(L) = Ae . ' B O (2.20)

The roots of Eq. (2.10) in this case are given by

- L, 2n(-6/4)

e
i

Lo a(a/0) + frl, (a+ 1), - (2.21)

n=20,*%1, £2, %3, ...; the one for which the‘imaginafy'part’ g

of the action is positive and smallest corresponds to choosing

Another repulsive potential function commonly used is an




inverse power potential,
V(r) ~ 1/rS ; - - (2.22)
the deflection function in this case will behéyé approximately

as

o) v ML/, - | L (2.23)

for L not too small. The roots to Eq. (2.10)'ih this case are
given by
it (20 + 1)

o -1/s s e L . L
L, = L, 8 S , o (2.24).

n=20, £1, £ 2, ..., the .dominant contribution again corresponding

to the choice ,n = 0; thus

Re L Lo e;l/s cos(ﬂ/s) . : o | (2;25a)

ImL, = L, o7 sin(isy . L (2.25b)
It is intefesting to observe that for theﬁCoulomb case, § = lf

Eq. (2.25) shows thaﬁ L, is real and negative,_i.é., there are no.

2

compléx rdots to ﬁq. (2.10). This is as it should be, of course,
“'for it is ﬁell—known that the classicgl cross sectibn héppens'fo
.agfeé exaétly with tﬂe quantum result for a'Couiomb poteﬁtial; and
there ié thus no?difffaction in this_caée;.fdrtuna;éiy, this extended
semiélassical theory predicts none. Onlj for s >. 2 'does Eq. k2.25)>

.give a complex value of L2 with Re L2v> 0.  This simply says that



-10-

diffraction occurs only if the repulsive wall of.the potential

is sufficiently "hard".
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II1. NUMERICAL EXAMPLE

To give a numerical illustration of»the theory'developed
in the preceeding Sectioh_we have chosen a monotonic, classical:

deflection function which shows prominent diffraction:

oy = nite 2 __ R & 3 )

where L, is a constant. The particular repulsive potential

. . . ' ' . 11
function to which this corresponds can be determined but
it is irrelevant, for our preseht purposes. _The‘one'parameter.

in the mddel,'Lo, is a measure of how quantum-like the system

‘is, small (large) L, corresponding to a quantum (classical)-like

systém; foughly s'peaking,,LO is thé number of partial waves
Which.contribute significantly to the -partial wéve sum in Eq.
(2.2). |

With the deflection function of Eq.r(3;l) one cén compare
;he classical cross section (which is also fhe,usual semiclassical
result‘for ﬁhis monotonic situation), our semiclassicél Cross
Séction,vapq a completely quan£um cross Section; The phase
shift is determined from the deflection function by integrating

Eq. (2.8), i.e.,

an@) = - fdL' e’ o o (3.2)

and for'the-deflection function in'Eq. (3.1) this giveé



-12-

(L, - L)

(o}

(L) = -m (L+e ©) fn[l+e 1. (3.3)

The quantum cross section can then be computed from the
i'partial wave expression, Eq. (2.2).

The two points of stationary phase Ll and L2, the roots

"of Eq. (2.7) and (2.10), are easily found to be.

Ll(e) Ly + Qn'[g-(l.f etoy-1] ., - ..>(3.4a)

il

sze)f Lo + grl[g (1 + e 0)41] + imoy o (3.4b)

the classical and semiclassical cross seépions can then‘be'

-computed f;om Eq;\(2.14).and Eqé. (2.13){ K2.17)f(2.18),‘

respectively; _ | |

| Figure 2 shows the classical, semiclassiéal, ;nd ﬁuantum

‘ mechanical cross sections for fhis model broblem-for.Lo = 20.

The diffraction effects are prominent forlthis‘case buf.§he_

semiclaséical theory describes them qpite well.' Thé'classical

result, of course, shows no inferference struétﬁre.' One can

cpnclude; tﬁerefore, thaﬁ-thegphySiéél origin éf diffracti&n o _' : -
is the interference between the  two élaséicalflike'éontributions' '

to the scattering amplitude'discussed in Section . . e
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IV. CONCLUDING REMARKS

One fhus sees that diffraction is also accutately described
by semiciassical theory provided one includes théxcléssicaily
forbidden contribution to the scatteriﬂg amplit;de in addifion
to the usual classically allowed term. The analysis presented

. )
in SectioanI is a simple example of the more general classical
S-matrix'theory10 in which one includes complex and real-valued
classical'irajectories which 6bey the appropriaté’boundary
‘cdnditionsf
One.usually assumes that classically'fbrﬁiddeﬁ contributions

“are negligible in comparison to cléssically allowéd bnes; even |
though the élassically allowed Qontribution is indeed larger for
the example treated in Section III, the classically forbidden |
qontribﬁtioﬁ is not entirely négligiblé. One may very Well expect 
this also to be the case in applications of classical S-matrix

theory to more complicated collision processes.
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FIGURE CAPTIONS

A typical classical deflection function for a purely

repulsive potential; the solution of;thé equation

O(L):=-8 is indicated.

The classical (dotted line), semiclassical (dashed
line), and quantum mechanical (full 1line) cross
sections corresponding to the classical deflection

function in Eq. (3.1) with L, = 20. L
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