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Abstract

Microbial Population Dynamics in Spatial Structure

by

Yuya Karita

Doctor of Philosophy in Biophysics

University of California, Berkeley

Associate Professor Oskar Hallatschek, Chair

Microbes proliferate and migrate to take over territories. The dynamics of population growth can
be classified by the rate of proliferation and migration. When proliferation is predominant, the
population density tends to saturate, and cells form expanding clusters. On the other hand, when
migration is more active than the timescale of proliferation, the populations get almost well-mixed
like a liquid culture in a shaken test tube. Both extreme cases have been extensively studied in
previous research. However, the intermediate regime, where proliferation and migration consort
with each other, has not been understood well. With this thesis, I attempt to provide an overar-
ching insight into the interplay of proliferation and migration using microfluidic experiments and
computer simulations.

In Chapter 2, we show that the balance of proliferation and diffusion results in the sharp transition
between two density states, gaseous and jammed states, using a newly-developed microfluidic
device named microfluidic panflute. The density dependence of the diffusivity is shown to be
fundamental to producing bifurcating behaviors with hysteresis. We further discuss the ecological
impact of the density transition on invasion resistance.

Chapter 3 characterizes the clone size distribution of jammed populations by fluctuation tests and
lineage tracing with microfluidics. We show the characteristic power-law decay of the site fre-
quency spectrum. We further discussed applying our results to cancer research: the site frequency
spectrum can be reconstructed by sampling tumors spatially.

In chapters 4 and 5, characteristic behaviors of jammed and gaseous populations are discussed.
Chapter 4 shows the impact of the shape of physical boundaries on the population dynamics in a
jammed state. In chapter 5, gaseous populations in various types of flow are investigated.

This thesis contributes to the understanding of microbial population dynamics in spatial structure.
Also, experimental techniques developed in this thesis, especially microfluidic systems, have the
potential to be a platform for microbial experiments to investigate the ecological and evolutionary
dynamics under spatial constraints.
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List of Figures

1.1 Illustrations of population dynamics with proliferation and diffusion. (a) At the onset
of proliferation (right before the division t = t0−δ t, and right after the division t = t0+
δ t), two cells (parent: blue and child: yellow) occupy the same spatial position. They
are apart from each other at a later time point by diffusive movements (t = t1). The
dotted lines show the trajectories of the diffusion. (b) Population dynamics depend on
the balance of proliferation and diffusion. When the proliferation is frequent (growth
rate r is high), and the diffusion is suppressed (diffusivity D is low), the population
gets localized and condensed (left). On the other hand, the population is sparse and
well-mixed when r is low and D is high (right). . . . . . . . . . . . . . . . . . . . . . 2

2.1 Microfluidic experiments reveal lengthscale-dependent colonization patterns. (a) A
scheme of our Microfluidic Panflute incubation device: Rectangular cavities of sys-
tematically varied depths (n = 1,2, . . . ,35) are connected to a common supply channel
through which media and bacteria flow. (b) The steady state after five days of incuba-
tion of a fly gut bacterium (A. indonesiensis). Depending on their length, cavities could
not be invaded (1), hosted a gaseous population (2-6) or a phase-separated population
with a jammed and gaseous state (7-8). (c) Confocal images of a partially jammed
and gaseous population. The zoomed-in images are magnifications of the zoomed-out
snapshots. (d) Steady-state cell density profiles obtained from time lapse movies. The
shaded regions show the standard error of the mean. The profiles of gaseous phases
(orange) collapsed to our linearized establishment model (black) upon rescaling both
axes (inset). (e) A kymograph of the jamming front movement. . . . . . . . . . . . . 11
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2.2 Theory: Collective motion can stabilize a growing population and drive phase sepa-
ration. (a) Simulations show that the collective diffusivity of an idealized model of
proliferating hard spheres in suspension is non-monotonic as a function of the packing
fraction Φ = cπσ3/6 with σ the diameter of the particle. The negative gradients at
high densities can drive a discontinuous transition towards jamming. (b) The packing
fraction profile (right) was computed from the density-dependent diffusivity in (a) (see
SI Sec. A.5). The maximum packing fraction (left) shows a fold bifurcation as a func-
tion of L/Lest, resulting in a sudden transition to a (partially) jammed state. (c) Mini-
mal simulations of proliferating soft disks and example tagged particle trajectories for
gaseous L < Ljam (top) vs. jammed states L > Ljam (bottom) pores. (d) Self-diffusion,
Ds, in the gaseous state is larger by orders of magnitude than in the jammed state,
suggesting a mechanism for an invasion barrier. . . . . . . . . . . . . . . . . . . . . . 13

2.3 Bistability near the tipping point. (a) Phase diagram: The maximal packing fraction
at steady state, Φmax, as predicted from the density-dependent diffusivity in Fig. 2.2a.
When the control parameter L/Lest is gradually increased, the state of the system sud-
denly jumps from a gaseous (I) to a partially jammed state (II, arrow pointing up). If
one decreases the control parameter again, the system jumps back to a gaseous state
(arrow pointing down), but at a different value of the control parameter, implying a
hysteresis and a region of bistability. (b) Experiments to test bistability: A flow de-
crease triggered in the depicted chamber the transition from gaseous (I) to jammed
(II), via an effective increase of the habitat size L. The orange curve depicts the den-
sity increase over time. After saturation, we increased the flow again but the chamber
remained in the jammed state (III) at high density (green curve). The y-axis of the plot
was normalized by Φrcp ∼ 0.64, random close packing of monodisperse spheres (see
Fig. S7). The scale bar indicates 50 µm. . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Crowding-induced colonization resistance. (a) After the chambers were pre-colonized
by the wild type strain (dark), we introduced a fluorescently labeled “invader” strain
(yellow). To make invasions more likely, we also increased the fitness of the invader
by the simultaneous injection of an antibiotic (tetracycline) to which the invader was
made resistant against. (b) A steady state of sensitive populations before the invaders
were inoculated. The unfilled triangle shows the transition point between jammed and
gaseous phases in the experiment. The transition was manually defined based on the
bright-field darkness of the populations. (c) 120 hours after tetracycline was added to
the culture medium. Drug-sensitive populations (dark) that remained jammed were not
invaded. The unfilled and filled triangle show the transition points between jammed
and gaseous phases at t = 0 h and t = 120 h respectively. The injection of the growth
inhibitor (tetracycline) shifted the transition point. . . . . . . . . . . . . . . . . . . . . 17

2.5 Colonization patterns in randomized panflutes. The effect of anterior populations in
the same row was tested by randomizing the order of chambers. The transition to a
phase-separated state was observed independent of the order of the chambers. White
arrows show the onset of jamming. The scale bar indicates 100 µm. . . . . . . . . . . . 37
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2.6 Measuring self-diffusivity and collective diffusivity. (a) Self-diffusivity was measured
by tracking single cells in gaseous phases (inset: a snapshot of single-cell tracks). The
self-diffusivity was calculated as 376± 6 µm2/h from the mean square displacements
in the horizontal direction. The error was estimated from fitting. (b) Diffusivity in
jammed phases was estimated by manually tracking lineages (inset: a snapshot of a
lineage). The diffusivity was calculated as 0.62± 0.02 µm2/h from the mean square
displacements in the horizontal direction. (c) Collective diffusivity was calculated
from steady-state density profiles (see Method) of gaseous phases in 4 chambers with
various depths (the colors show different chambers in the same panflute). The mea-
sured collective diffusivity showed a trend of unimodality. The black cross shows the
self diffusivity measured in (a). The errors were estimated from the smoothing param-
eters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.7 Three colonization phases are observed in different bacterial species. Pictures were
taken after 5-6 days of incubation in microfluidic devices. Despite biofilm formation
(b) and nutrient depletion (c), we observed qualitatively similar colonization patterns.
Scale bars indicate 50 µm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.8 Growth rate measurements with a plate reader and particle image velocimetry (PIV).
(a) The growth rate of Acetobacter indonesiensis was measured with a plate reader.
The maximum growth rate at 30 °C was estimated as 0.325±0.003 h−1 from the initial
growth of 4 independent populations. (b) The growth rate of tetracycline-sensitive
(blue) and resistant (orange) cells was measured with various drug concentrations and
normalized by the the growth rate of drug-resistant cells in the absence of the drug. The
minimum inhibitory concentration was estimated about 17 µg/mL by extrapolating the
plot. The averaged growth rate for each condition was calculated from 4 replicas. (c)
A schematic of PIV analysis. Arrows show the local velocity of the positions. The
length of arrows is proportional to the local velocity. (d) The local velocities of cells at
high temperature (red, 30 °C) and low temperature (blue, 22 °C) were linear functions
of the position from the bottom of a microfluidic chamber. The solid lines were the
local velocities averaged over 3 hours, and the shaded regions show the standard error
of mean. The growth rate of cells was derived from the slope of the linear function as
0.332 ± 0.007 and 0.280 ± 0.001 h−1 at high and low temperature respectively. . . . . 40

2.9 Density profiles of gaseous phases can be scaled to approximately collapse onto a
master curve. (a) The steady-state density profiles in a Microfluidic Panflute device.
The plot is taken from Fig. 1d. The density profiles in the gaseous state can be well
approximated by the function cmax cos(πx/2Lc), which can be seen in the rescaled
plot showing c/cmax vs. x/Lc (inset). (b) Plotting Lc vs. cmax yielded a near linear
relationship in the gaseous state. Extrapolating the linear fitting of the lowest three
points to vanishing density yielded an estimate of the establishment length Lest ≈ 53±7
µm. The error was estimated from fitting. By comparison, our linear stability analysis
predicted Lest ≈ 53±1 µm (see main text). . . . . . . . . . . . . . . . . . . . . . . . 41
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2.10 The establishment length Lest shifts upon a temperature change. We performed two
temperature shift experiments, where we inoculate a panflute at one temperature and,
after sufficient relaxation, shift to another temperature, after which we let the system
relax again. (Relaxation often took more than 5 hrs.) (a) 30 °C to 26 °C. Right: The
density profiles changed within the different crypts changed substantially the temper-
ature change. Densities are consistently higher at 30 °C (orange) than at 26 °C (blue).
The profiles were measured at steady states with fluorescent microscopy. The insets
of the plots show PIV measurements whose slopes indicated the growth rates (see
Fig. 2.8c and d). The growth rate decreased to 87.2± 0.8 %. The shift of Lest was
analyzed by determined by extrapolating the relation between cavity length and max-
imal population density at the floor of the crypts to vanishing cell density, similarly
to Fig. 2.9. We found that the establishment length L est increased by 112± 11 %.
This change was consistent with our theory Lest ∝ 1/

√
r (1/

√
0.87 ∼ 1.07). (b) The

establishment length shifted upon the temperature change (from 30 °C to 22 °C). The
steady-state density profiles at 30 °C (orange) and 22 °C (blue) were fitted by a cosine
function (black solid and dashed lines, respectively) and normalized. The establish-
ment length was defined by the x-intercept. The relative change of this critical length
(6.6 %) was consistent with our theory predicting it to be given by the square root of
the relative growth rate change (8.6 %, Fig. 2.8d). Note that, while these temperature
shift experiments are consistent with a pure growth rate change, they come with the
caveat that, besides growth rate, additional cell traits might be affected that influence
the phase behavior, for instance, the shape of the cells or their intercellular mechanical
interactions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
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2.11 Phase shift and bistability upon flow rate change. This figure documents how colo-
nization patterns in the Microfluidic Panflute changed as we changed flow rates from
“High” (purple, 0.8 µL/h) to “Low” (blue, 0.3 µL/h) and back to “High” (red), while
allowing the populations to reach steady state after each flow rate change. Note that a
flow rate increase (decrease) corresponds to a decrease (increase) in the effective cham-
ber depths (see Fig. 2.12). (a) The fraction of occupied chambers (left) and the fraction
of jammed chambers (right) are shown as a function of chamber size (incremented by
10 µm). The lines are colored according to the state diagram (left). n = 3-6 for each
chamber length. Note that, while the critical length for establishment (left) shifted re-
versibly as the flow rates was changed, we found hysteresis in the jamming transition
(right). (b) The average transitional lengths extracted from (a) are displayed. The error
bars show the standard error of the mean. The point without the error bar means that all
samples had their establishment transition at the same (discrete) chamber length. (c,d)
Time tracking of populations growing in the same Microfluidic Panflute. (c) Steady
state snapshots of chambers that are near the jamming transition. Note that, while the
occupancy pattern of chambers 1 and 3 changed reversibly, chamber 2 showed hys-
teric behavior, indicating bistability. (d) Dynamics of the maximal cell density at the
floor of the chambers as the flow rate was cycled. Colored lines show the temporal
dynamics of the maximum relative cell density in each chamber. The density profiles
in the chambers were calculated by averaging the fluorescence across the horizontal
direction at each time point. The shaded region shows the standard error of the mean.
Two representative snapshots for two stable states of chamber 2 are shown in the in-
sets. The black line shows an exponential fit to the population decay. The decay time
was 5.9±0.4 hour (the error was estimated from fitting). . . . . . . . . . . . . . . . . 43

2.12 Simulations of the hydrodynamic flow fields in the Microfluidic Panflutes. (a) Stream-
lines of the flow were visualized by overlaying 90 frames taken every 2 seconds. The
trajectory of cells showed that the typical scale of the flow invasion length was about
60 µm. The scale bar shows 50 µm. (b) The hydrodynamics in our microfluidic devices
were simulated using COMSOL. Red lines show streamlines. (c) The horizontal flow
velocity along the blue dotted line in (b) is shown as function of vertical position y.
Note that the flow rapidly decays from the opening (y = 0) towards the floor of the
cavity. The inset shows the flow profiles in a semi-log scale. We define an arbitrary
threshold flow velocity (0.3 µm/s, the black line in the inset) to define the flow inva-
sion length and the effective chamber length, shown as the purple arrow and the orange
(100-µm chamber) and red (150-µm chamber) arrows, respectively. The flow invasion
length is constant for chamber sizes beyond 100 µm. (d) The effective chamber size
gets shorter by 10 µm when the flow rate changes from low (blue, 100 µm/s average
flow rate) to high (orange, 250 µm/s average flow rate), shown as the black arrow in
the inset. Note that the shift of the effective chamber size is not sensitive to the choice
of the threshold flow velocity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
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2.13 Neutral dynamics of mixed cultures reveal suppressed lineage diffusion in jammed
population. (a) A schematic of neutral competition experiments. A 50:50 mixture of
wild-type and labeled invader strains was inoculated into unoccupied chambers with-
out antibiotics. (b) Labeled cells were sparsely distributed in a gaseous phase. (c)
Steric interactions and proliferation produced band-like patterns in a jammed phase.
The population dynamics were dominated by a small number of cells at the bottom of
a cavity. (d) Diversity was rapidly lost in a jammed phase. A cluster of GFP-tagged
cells was pushed out of the chamber by the population growth in a few generations. . . 45

2.14 Replicas of invasion experiments with 10 µg/mL tetracycline. Replicas from other
rows on the same microfluidic chip. Orange frames show the same positions. Colo-
nization resistance of the jammed phases was consistently observed, while the rate of
invasion varied across replicas (less successful in the replica 1, and more successful in
the replica 2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.15 Collective mobility with complete many-body hydrodynamic interactions (blue cir-
cles) and a fit to the Richardson-Zaki scaling form (red line). . . . . . . . . . . . . . . 46

2.16 Illustration of the growth and division. (top) Illustration of the mechanical model of
division of a mother (red) daughter (blue) particle pair, where the characteristic size of
the mother is σi and its displacement from a daughter is ri j (bottom) Illustration of the
subsequent exponential proliferation of particles in time over 10 division times. The
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2.18 Phase diagram for the proliferating soft disks determined by the maximum coarse-
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3.1 Fluctuation test in bacterial colonies reveals a distinct clone size distribution at low
frequencies. (a) Fluctuation test on 234 E. coli colonies that were grown for two days,
completely harvested and then plated on nalidixic acid. The size of clones correspond-
ing to resistant mutations was determined by counting the number of CFUs on selec-
tive plates. (b) Fraction of the sampled colonies carrying at least n resistant mutants
(red solid line) in comparison with the well-mixed control (blue solid lines). The blue
dashed line corresponds to the classic Luria-Delbrück distribution for well-mixed pop-
ulations (n−1) [163], while the red dashed line corresponds to large clones found in
colonies (n−2/5 and n−4 regimes, corresponding to so-called "bubble" and "sector"
patterns that were previously characterized [123].) . . . . . . . . . . . . . . . . . . . 52



x

3.2 (a-d) Our microfluidic incubator enables the tracking of front dynamics over sev-
eral generations. (a,b) Schematic and snapshot of microfluidic experiments. Cellular
growth within the chamber models the co-moving frame of the growth layer in an ex-
panding colony. Nutrients are supplied from both the top and bottom of the chamber
by diffusion so that all cells grow at the uniform rate (Fig. 3.8). Cells out of the growth
layer are flushed away by continuous media flow. (c) Proportion of color-switched
cells whose final clone size is greater than n, where area is used as a proxy for clone
size. The different lines indicate experimental replicas with respectively 45 (blue), 64
(green), 150 (red), 245 (cyan) mutant clones. (d) Relationship between final clone size
and distance from the front at which such clone arose. Colors are as in panel (c). The
black line corresponds to λ/∆, where λ is the size of the chamber and ∆ is the distance
from the front. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.3 Cell-based simulations show different behaviors between surfing and non-surfing clones.
(a) Illustration of the mechanical simulations. Cells lying in the growth layer, defined
as the region within a distance ∆ < λ from the front (dark purple region with dashed
line showing back of growth layer), replicate exponentially. In this image, λ = 14
cell widths (about 50 µm). As growth proceeds, the front moves at a constant speed
and cells behind the front are continuously pushed out of the growth layer by repli-
cating cells in front due to excluded-volume interactions. Mutations can either oc-
cur at the very front (red cells) generating a surfing clone, or behind the front (blue
cells) generating non-surfing clones that are quickly washed out of the growth layer.
Clonal dynamics are shown for the first 20 generations of cellular growth. (b) The full
clone distribution (solid black line) can be subdivided in the size distribution of surf-
ing clones (red dotted line), which dominate the high-frequency tail of the distribution,
and non-surfing clones (blue dotted line), that dominates the low-frequency behavior.
The dashed black line shows the n−1 prediction. (c) Scatter-plot identifying for each
clone (blue dot) the distance from the front at which the mutation first arose and the
final clone size upon exiting the growth layer. Surfing clones are by definition clones
that arose within 1 cell distance from the front. Non-surfing clones are found to satisfy
the relationship n = λ/∆, rationalized in Eq. 3.1 (dashed black line). The inset shows
the dynamics of the blue clone a short time (< 1 generation) after birth in the reference
frame of the front. This clone is born at distance ∆ = 7 cells from the front and grows
to a size of n = 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
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3.4 Results from multiple sampling strategies can be combined to infer mutation rate and
growth dynamic of the population. (a) Different sampling methods generate distinct
clone frequency distributions that highlight distinct properties of the growth dynamics.
This in stark contrast with well-mixed populations where the sampling scheme merely
affects how well the clone frequency distribution can be resolved. The solid black line
shows the clone frequency distribution (clone size divided by population size) of the
whole simulated colony (growth layer λ/σ = 14 cells) grown up to 106 cells. We
identify three frequency f ranges in the site frequency spectrum: (i) for f < (λ/σ)/N,
the distribution is dominated by non-surfing clones; (ii) for (λ/σ)/N < f < 0.003, al-
lele surfing dominates generating bubbles and sectors as previously described; (iii) for
f > 0.003, we see a third behavior, generated by mutations that arise in the first few
generations, when the whole microcolony is growing exponentially (N < π(λσ)2).
The grayscale regions correspond to non-surfing bubbles (light gray), surfing bubbles
(intermediate gray), and sectors (darkest gray). Sampling 0.1 % of the population
(equivalent to a 1000X coverage in sequencing) can target non-surfing small clones
and generate their corresponding distribution (middle, magenta), or high-frequency
surfing clones (random, red). Sampling an outer segment generates a shifted distri-
bution where distinct trends can be observed. (b) These sampling techniques can be
combined to reproduce the entire clone size distribution. The rescaling used here re-
quires only knowledge of the total number of cells in the colony and the size/shape of
the sampled region, as are described in SI section 3.7. . . . . . . . . . . . . . . . . . . 67

3.5 (a) Clone size distribution for a range of growth layers depths: λ = 4, λ = 9, λ = 14,
and λ = 20 (units of cell widths). The dashed line shows the n−1 prediction. (b)
Clone size distribution rescaled by λ shows that the n−1 regime extends over the range
n = 1 to n = λ . For n > λ , the clone size distribution is dominated by surfing bubbles
(Fig. 3.3a). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.6 (a) Clone size distribution (black) for colony with λ = 14 cells and radius R= 602 cells
(total number of cells in colony = 106). Colored lines show distributions obtained
via sub-sampling using side technique with widths 11 cells (green), 36 cells (blue),
112 cells (cyan) and depths of 11 cells (solid line), 36 cells (dashed line), 120 cells
(dotted line). Shaded regions correspond to non-surfing bubbles, surfing bubbles, and
established sectors. The grayscale regions correspond to non-surfing bubbles (light
gray), surfing bubbles (intermediate gray), and sectors (darkest gray). (b) Rescaled
distributions, xc and Nc are described in Section 3.7. . . . . . . . . . . . . . . . . . . . 68

3.7 A schematic of the engineered S. cerevisiae strain yJK10 that stochastically switches
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Chapter 1

Introduction

Proliferation is a central function of living matters at various scales. At the species level, life needs
to produce offspring to inherit the genetic elements to future generations [1]. Also, increasing
a population size to form a community is often beneficial to cope with external stresses such as
harsh environments or competition against other species [2–4]. At the individual level, prolifer-
ation is key to development [5]: life emerges through a series of mitosis from a fertilized egg,
which consists of a few cells, to a largely multi-cellular body, which consists of about 30 trillion
cells in the case of a human [6]. Moreover, somatic replication is indispensable for turnovers and
homeostasis [7].

Importantly, proliferation is never perfect: a random error can occur during the process, and it
induces an inheritable change on a newly produced cell, referred to as a mutation. A mutation can
change the function of a newborn and may cause defects. However, it also can drive evolution by
neutral drifts or the emergence of a rare beneficial mutation [8, 9].

Once spatial dimensions are taken into account, dispersal and migration become a core factor
in population dynamics because of the spatial proximity of two cells, a parent and a child, right
after a proliferation event [10]. The two cells initially share the same spatial position as they
are a single cell before the proliferation. Migration, which re-configures the spatial positions of
cells, alters local interactions and thus impacts the community function and population dynamics
(fig. 1.1) [11–13].

Migration can be driven by various mechanisms. In the case of embryonic development, col-
lective movements, such as gastrulation [14], are well-programmed by a genetic blueprint. In the
case of marine plankton, migration is largely driven by ocean currents [15, 16]. While dynamics
are externally defined in these instances, migration also can be autonomous or self-driven. Crowds
of animals often seek a better environment such as rich foods or a warm climate. This is also the
case for microbial populations. Microbes can migrate to a better environment by sensing local
chemical gradients, known as chemotaxis [17, 18]. In an extreme case, migration may be totally
stochastic or random. In this case, the time development of cell density can be well-described by
Brownian diffusion [19].

The concert of proliferation and migration is fundamental, especially when the time scale of
proliferation is shorter than or comparable with that of migration. When proliferation is frequent,
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Figure 1.1: Illustrations of population dynamics with proliferation and diffusion. (a) At the onset
of proliferation (right before the division t = t0 − δ t, and right after the division t = t0 + δ t), two
cells (parent: blue and child: yellow) occupy the same spatial position. They are apart from each
other at a later time point by diffusive movements (t = t1). The dotted lines show the trajectories of
the diffusion. (b) Population dynamics depend on the balance of proliferation and diffusion. When
the proliferation is frequent (growth rate r is high), and the diffusion is suppressed (diffusivity D
is low), the population gets localized and condensed (left). On the other hand, the population is
sparse and well-mixed when r is low and D is high (right).

the cell density increases locally and saturates at its maximum density, called the carrying capac-
ity [20]. Once the cell density locally saturates, it spatially expands to surrounding virgin spaces.
This type of dynamics is called range expansion and relevant to the growth of solid tumors and
bacterial biofilms [21, 22]. When proliferation is as frequent as migration, the interplay of two
processes results in complex spatio-temporal patterns such as patch formation of marine plank-
ton [23–25]. The dynamics depend on the details of a system and are involved even in a simple
setup.

To investigate population dynamics in space, microbes have been useful experimental model
systems. Because there is no stable artificial replicator, microbes are one of the simplest and most
controllable systems available to study population dynamics. Importantly, their short doubling
time (order of 1 hour) allows researchers to conduct experiments in a reasonable time scale. The
migration of microbes can be driven by Brownian motions, swimming, and hydrodynamic flow.
The impact of chemotaxis and interactions between species can also be investigated. In light of
applications, some species are directly relevant to pathogens, and revealing their spatial dynamics
can provide insights into therapeutic strategies [26].

In this thesis, the interplay of proliferation and spatial structure is the major overarching theme.
Especially, I focus on yeast and bacterial populations as model systems and investigate collective
dynamics in confinement by computational and experimental approaches. As an introduction,
natural examples of microbial populations in a spatial structure are overviewed first, and the theo-
retical background of reaction-diffusion models and computer simulations are discussed. Typical
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experimental methods are also introduced. In the end, the organization of this thesis is described.

1.1 Microbial populations in spatially structured habitats
Microbes are ubiquitously found in nature. Notably, most of their populations are spatially struc-
tured by the habitats. For example, microbial distributions in the human body are highly localized
and specific to body parts. C. acnes colonizes skin follicles [27, 28], and Lactobacilli dominates
the vaginal microbiome [29]. One of the main habitats for microbes is digestive tracts, such as the
gut microbiome [30–32] and the oral microbiome [33]. Importantly, their populations are highly
spatially structured. For instance, bacteria aggregate and form layers of biofilms on the tongue [34,
35]. They can also invade small spatial niches, such as folding structures or crypts in a gut [30–32].
Outside of the animal body, typical microbial habitats are soil and water. The soil microbiome is
sensitive to the size of pores in soil [36, 37]. Also, the soil microbiome around plant roots, called
rhizosphere, is highly specific to the type and spatial configuration of plants [38]. Microbes in bod-
ies of water, such as lakes, rivers, and the ocean, are usually less spatially-structured: they typically
float along with water currents. Still, some microbes can attach to and reside on the surfaces [39].

Spatial structure can highly impact ecological and evolutionary dynamics. In expanding popu-
lations, it has been experimentally revealed that spatial constraints weaken selective pressures [40,
41] and mutual interactions [42]. In confined populations, microfluidic experiments have shown
that dense-packing induces drug resistance in Pseudomonas aeruginosa populations [43]. In nat-
ural cases, strong priority effects, such as colonization resistance, have been reported in the gut
microbiome of mice [44, 45]and flies [46]. Also, significant clonality has been revealed in bacte-
rial populations in human skin follicles [28]. Thus, investigating the impact of spatial structure is
fundamental to ecology and evolution.

1.2 Spatial growth model
To model microbial population dynamics in space, a straightforward approach is to explicitly sim-
ulate the movement and the growth of every single cell. This “agent-based model” has been ef-
fective in studying the dynamics of relatively small populations; however, it is computationally
expensive and not very useful for studying large populations. To capture macroscopic dynamics, it
is tempting to coarse-grain populations with continuous models.

A reaction-diffusion model is a widely used mathematical model in population dynamics [47].
A general form which includes diffusion and growth is

∂

∂ t
c(x, t) = ∇ · (D(c)∇c(x, t))+ r(c)c(x, t), (1.1)

where x and t are space and time, and c, D, and r mean the cell density, diffusion coefficient, and
growth rate, respectively.

As for the diffusion coefficient, its density dependence is often ignored:

∇ · (D(c)∇c(x, t)) = D0∇
2c,
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where D0 is constant. However, the density dependence is a natural consequence of excluded
volume effects and should be taken into account when c is close to the maximum packing density.
Actually, chapter 2 shows that the density dependence can result in phase separation of two density
phases, gaseous and jammed phases.

Various forms of the growth term have been extensively studied. When the growth is logistic,

∂

∂ t
c(x, t) = D0∇

2c+ r0

(
1− c

K

)
c (1.2)

is called the Fisher-Kolmogorov-Petrovsky-Piskunov equation (FKPP equation), and its traveling
wave solutions have been widely investigated in the context of range expansion [48–50]. Once the
density reaches the maximum value (carrying capacity) K, the growth term vanishes. Also, the
growth term can include the Allee effect, which represents cooperative effects and the minimum
critical population size for a population to survive [51]:

r(c) = r0

(
1− c

K

)( c
A
−1

)
,

where A is the critical population size. One can consider additional variables such as a spatially-
varying nutrient concentration S(x, t). With S, the growth term can represent the effect of nutrient
depletion. One typical model is Monod growth [52]:

r(c) = r0
S

Sh +S
,

where Sh is a constant value with which S = Sh gives r0/2 growth rate. Typically, the spatial
distribution of the nutrient can also be described by a reaction-diffusion equation:

∂

∂ t
S(x, t) = DS∇

2S− kr(c)c, (1.3)

where DS is the diffusivity of nutrient molecules, and k is a constant coefficient.
Importantly, to analyze the equations, boundary conditions largely impact the solutions. As a

simple example, steady-state solutions of a simple 1D reaction-diffusion model

∂

∂ t
c(x, t) = D0

∂ 2

∂x2 c+ r0c (1.4)

can be expressed by combinations of wave functions. Reflecting boundary conditions or absorbing
boundary conditions

dcs(x)
dx

∣∣∣∣
x=x1

= 0, cs(x2) = 0 (1.5)

constrain the possible solutions significantly, where cs is the steady-state cell density. The lowest-
order wave solution defines the typical length scale of the population

Lc = a
√

D0

r0
,

where a is a constant whose order is 1. This length scale has been used to infer the typical patch
size of marine plankton [24]. A similar argument appears in chapter 2 to characterize the critical
chamber size for phase transition.
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1.3 Dynamics in jammed states
Once cellular populations get jammed, a reaction-diffusion model is no longer valid because mi-
gration becomes non-diffusive. Cells physically contact each other, and diffusion is strongly sup-
pressed by jamming. The proliferation of cells results in mechanical forces pushing neighbors
due to excluded volume effects. These local pushing dynamics require other models. One typical
model for crowded populations is a contact process or voter model [53]. This is a spatially-discrete
model which stochastically replaces the cell type at a certain position with a neighbor cell type.
The replacement can either push all the other cells representing the propagation of pushing forces,
or just locally change the cell type representing the death or turnover of the previous cell type at the
position. These models have been used in microbial growth, colon cancer, and stem cell renewal
of mouse spermatogenesis or intestinal crypts [54–57].

If a population is expanding, Eden model is another major model [58]. In the model, there is
no replacement of existing cells, but they proliferate to invade surrounding virgin spaces. Also, the
Domany-Kinzel model is a model for range expansion, which is usually defined on triangular or
hexagonal lattices [59, 60]. The front dynamics of the Domany-Kinzel model can be regarded as a
contact process.

Continuous models are also useful in some situations. The velocity of cells can be expressed
by the integration of growth rate over space:

ẋ =
∫ x

x0

r(x)dx,

where x0 is the position where cells always do not move, such as the wall or the center of an
expanding colony. This mass conservation relation can be re-written in a differential form:

∇ · ẋ = r(x).

Here, one can introduce “internal pressure” p(x) to express

ẋ =−µ∇p

with a motility coefficient µ . This equation is called Darcy’s law, which was first introduced to
express hydrodynamics in porous materials in the 1850s [61]. This equation also has been used to
model the dynamics of tumor growth [62, 63]. With this equation, now we get

∇
2 p =− 1

µ
r.

This is similar to the equations of electrostatics:

E =−∇φ

∇ ·E =−∇
2
φ =

ρ

ε

In chapter 3 and 4, the application of continuous models is discussed.
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1.4 Well-mixed states
In well-mixed situations such as a liquid culture in a shaken flask or a dilute population of swim-
ming bacteria, the reaction-diffusion model is also not useful because the cellular movements are
much faster than the time scale of proliferation. As the time scale of growth and migration is
separated, spatial configurations do not matter to the population growth. And thus, one can safely
ignore the spatial variables.

Well-mixed dynamics have been widely studied in classic population genetics for a long time [8]
and have provided a useful null model to infer the impact of spatial dimensions. Deviations from
a null model may imply that the spatial structure is not negligible. However, importantly, some
observables, such as a site frequency spectrum, can be similar between well-mixed and spatially-
structured populations by chance, even though the underlying mechanisms are different. One
example of the coincidences is the main topic of chapter 3.

1.5 Experimental approaches
To study microbial population dynamics, various experimental systems have been proposed and
developed. The most common system is a liquid culture. One can culture cells in a liquid medium
in a test tube or flask with appropriate incubation and shaking. A well-shaken culture is supposed
to be well-mixed, and the spatial dimension becomes less relevant as long as there is no aggrega-
tion or sedimentation. Recent studies have successfully increased the throughput of liquid-culture
experiments using 96-well plates with automated liquid handling or microfluidic or millifluidic
droplets with programmed droplet manipulation [64–66].

To investigate spatially-structured populations, agar plates or agar pads have been major plat-
forms, but other model systems, such as bacterial mats or biofilm on beads, also have been use-
ful [67, 68]. Recently, a new effective method, microfluidics, has quickly developed and become
an indispensable tool.

With microfluidics, one can design an arbitrary geometry and regulate a medium environment
precisely and rapidly. Also, microfluidics enables imaging in real time at a single-cell resolution.
A remarkable application of the method is the so-called mother machine, where a bacterial lineage
is trapped in a thin channel [69]. The experimental designs in chapters 2 and 3 are inspired by this
prior work. Other various types of microfluidics are introduced in chapter 5.

1.6 Overview of this thesis
In chapter 2, we find a characteristic transition of density phases using microfluidics. The bacterial
populations in microfluidic cavities exhibit two density phases, gaseous and jammed phases. The
phase separation is driven by the balance of the population growth and diffusive outflow, and it is
sensitively dependent on the length scale of the system. We show that the observed density phases
can be understood by a reaction-diffusion model with a density-dependent diffusivity. We further
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discuss the ecological impact of the phase transition using invasion experiments with an antibiotic
attack.

We focus on the dynamics of a jammed phase in chapter 3. Using a switcher budding yeast
strain, the clone size of lineages is measured in a jammed population in a microfluidic chamber.
The clone size distribution follows a power-law decay, which can be reproduced by a 1D continuum
model and agent-based simulations. The connection to the site frequency spectrum in expanding
populations in nature, such as bacterial biofilms and tumors, is also discussed.

Chapters 4 and 5 investigate characteristic behaviors of jammed and gaseous populations. In
chapter 4, the impact of physical boundary conditions in a jammed phase is discussed. The shape of
walls defines the spatial advantage to persist in a confined population. The dynamics are modeled
by a hydrodynamic approximation and simulated by agent-based simulations. In chapter 5, the
influence of medium flow on a dilute population is studied. Hydrodynamic flow can mix cells, but
also trap cells in a certain condition. Various types of flow are produced with microfluidic devices,
and the impact on microbial population dynamics is experimentally tested.
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Chapter 2

Scale-dependent tipping points of bacterial
colonization resistance

Proliferation of cells increases the density of a population, while diffusive movements of cells
decrease the local density. The balance of the two factors is critical, especially in a confined habitat,
a space surrounded by walls with an outlet. In this chapter, we discuss the phase transition of cell
densities by tuning the rate of proliferation and the length scale of habitats. We develop a novel
microfluidic device named microfluidic panflute, where the chamber size is systematically varied.
The ecological significance of the density phase transition is highlighted in invasion dynamics. We
show that a jam-packed population is resistant to the invasion by a fitter strain, while a gaseous
population is not.

The rest of this chapter was published as

Yuya Karita, David T. Limmer, Oskar Hallatschek, Scale-dependent tipping points of
bacterial colonization resistance. Proceedings of the National Academy of Sciences,
115, e2115496119 (2022). https://doi.org/10.1073/pnas.2115496119

The supplementary movies mentioned in the main text are available from the journal website.

2.1 Abstract
Bacteria are efficient colonizers of a wide range of secluded micro-habitats, such as soil pores,
skin follicles, or intestinal crypts. How the structural diversity of these habitats modulates micro-
bial self-organization remains poorly understood, in part because of the challenge to specifically
manipulate the physical structure of microbial environments. Using a microfluidic device to grow
bacteria in crypt-like incubation chambers of systematically varied lengths, we show that small
variations in the physical structure of the micro-habitat can drastically alter bacterial coloniza-
tion success and resistance against invaders. Small crypts are un-colonizable, intermediately sized
crypts can stably support dilute populations, while beyond a second critical lengthscale, popu-
lations phase-separate into a dilute and a jammed region. The jammed state is characterized by



CHAPTER 2. SCALE-DEPENDENT TIPPING POINTS OF BACTERIAL COLONIZATION
RESISTANCE 9

extreme colonization resistance, even if the resident strain is suppressed by an antibiotic. Com-
bined with a flexible biophysical model, we demonstrate that colonization resistance and associ-
ated priority effects can be explained by a crowding-induced phase transition, which results from
a competition between proliferation and density-dependent cell leakage. The emerging sensitivity
to scale underscores the need to control for scale in microbial ecology experiments. System-
atic flow-adjustable lengthscale variations may serve as a promising strategy to elucidate further
scale-sensitive tipping points and to rationally modulate the stability and resilience of microbial
colonizers.

2.2 Introduction
Natural microbial communities are often found to be remarkably stable, capable of either quickly
recovering from disturbances or remaining essentially unaffected by them [70–73]. Stability is
particularly puzzling in small populations, which are prone to number fluctuations and lack the
size and extent to buffer against local environmental changes. Nevertheless, small but stable pop-
ulations have been found in association with spatially defined micro-habitats [32, 44, 45, 73–76].

Strains that colonize cavities are sometimes found to be so stable that they hold their ground
against even much fitter invaders [77]. For example, Bacteroides fragilis is a particularly resilient
colonizer of crypts in mouse guts [44]. Conspecifics are unable to invade, unless the resident strain
is strongly suppressed by an antibiotic. A similar colonization resistance has been demonstrated
for groups of ceca microbiota in mice guts [45] and for Lactobacillus plantarum in fly guts [46,
76].

The ubiquity of micro-habitat associated stability and colonization resistance raises the ques-
tion of whether these features generically emerge in confined spaces, for example soil pores [36,
37, 78], skin follicles [28, 73], or crypts and folds in gut-like environments [30, 32, 79]. Previous
studies have identified biological features, such as suppressed biofilm growth or the expression of
specific adhesion molecules, that promote stability in specific systems [44, 70, 80–82]. However,
we currently lack systematic scale-dependent measurements to identify a generic mechanism of
stability and resilience in micro-habitats, as well as a theory that could predict colonization success
and tipping points. To fill this gap, we developed an approach to measure the scale-dependence of
microbial colonization patterns combined with a predictive theory of how microbes invade, occupy
and protect confined micro-habitats.

2.3 Experimental Setup
Our experiments employ a microfluidic incubation device that allows to continuously monitor
bacterial population dynamics in crypt-shaped chambers across many lengthscales (Fig. 2.1a). A
supply channel is used to continuously perfuse the device with media enabling the experiments to
run under constant conditions for several days. As bacteria are inoculated and pass through the
supply channel, they get exposed to rectangular cavities of systematically varied depths (10-350
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µm). Even though the fluid inside these cavities is largely stagnant, it is nutrient rich and hence
supports growth, due to the rapid diffusion of small nutrient molecules from the supply channel [69,
83].

In this device, lengthscale-dependent ecological processes can be identified by comparing the
colonization dynamics across the sequence of chambers. To capture the differential population
dynamics in single microscopy frames, we ordered the cavities according to size (see Fig. S1
for a randomized control). The device thus resembles a panflute in appearance, so we refer to
our device as a “Microfluidic Panflute”. We employed it to explore the colonization dynamics of
several bacterial genera, focusing mainly on Acetobacter, which is prevalent in the fly gut [76, 84]
and grows aerobically.

2.4 Results
We found that the emerging population dynamics sensitively depend on the length of the incubation
chamber (Fig. 2.1b and Supplementary Movie 1). The scale sensitivity is particularly strong near
two recognizable phase transitions:

Establishment Transition
While all cavities are sporadically visited by cells, colonization attempts remain unsuccessful in
small chambers. In chambers exceeding a certain threshold length (170 µm in Fig. 2.1b), cell
densities stabilize after 2-3 days of incubation and are maintained for at least five days. Cell
densities, as measured from the time-averaged signal intensity, increase with chamber length, are
highest at the floor of the cavities and gradually decay towards a line of zero density (Fig. 2.1d).
We call this regime “gaseous” because the cell packing fraction is small and cells diffuse almost
freely (SI Fig. S2).

Jamming transition
When the chamber length exceeds a second threshold (220 µm in Fig. 2.1b), a densely populated
region appears at the bottom of the cavities that is sharply separated from a gaseous region towards
the opening of the cavities (see chambers 6 and 7 in Fig. 2.1b). Confocal imaging shows that
neighboring cells are in direct contact in the dense phase, which is why we call the condensed
phase “jammed” (Fig. 2.1c). Dynamically, the jammed phase grows like a wave from the floor
towards the open boundary of a chamber, as can be seen in the kymograph Fig. 2.1e. The growth
of this wave slows down near the jamming transition (Supplementary Movie S1). Interestingly, the
transition from gaseous to jammed is abrupt in the size of the chambers. Between two neighboring
cavities, differing by just 5% in length, the colonization state transitions from gaseous to nearly
75% jammed (quantified in Fig. 2.1d).
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Figure 2.1: Microfluidic experiments reveal lengthscale-dependent colonization patterns. (a) A
scheme of our Microfluidic Panflute incubation device: Rectangular cavities of systematically var-
ied depths (n = 1,2, . . . ,35) are connected to a common supply channel through which media and
bacteria flow. (b) The steady state after five days of incubation of a fly gut bacterium (A. indone-
siensis). Depending on their length, cavities could not be invaded (1), hosted a gaseous population
(2-6) or a phase-separated population with a jammed and gaseous state (7-8). (c) Confocal im-
ages of a partially jammed and gaseous population. The zoomed-in images are magnifications of
the zoomed-out snapshots. (d) Steady-state cell density profiles obtained from time lapse movies.
The shaded regions show the standard error of the mean. The profiles of gaseous phases (orange)
collapsed to our linearized establishment model (black) upon rescaling both axes (inset). (e) A
kymograph of the jamming front movement.
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We observed qualitatively similar colonization patterns for species of other genera, including
V. cholerae and L. lactis (Fig. S3). We therefore sought to explain the pronounced lengthscale-
sensitivity by a general species-independent mechanism.

Linear Establishment Model
The colonization of a cavity can be viewed as a tug of war between cell proliferation and cell
removal by outflow or death1. This competition can be considered in the absence of regulation or
specific cell-cell interactions, in order to discern whether the rich scale-dependent phase behavior
seen in our experiments is a consequence of general biophysical processes. To describe how the
cell density c(y, t) at a vertical position y and time t changes over time, we use the linear reaction-
diffusion equation ∂tc(y, t) = D0∂ 2

y c(y, t)+ r c(y, t) where the first term represents cell diffusion
with diffusivity D0 and the second term represents cell proliferation with growth rate r. Since
cells cannot penetrate the floor of the chamber, we use a reflecting boundary condition at y = 0,
∂yc(0, t) = 0. We also introduce an absorbing boundary at y = L where the cells are swept away
by the media flow, c(L, t) = 0.

Our mathematical analysis (SI Sec. A.3) shows that the dynamics of the density profile can
be decomposed into a sum of independently evolving normal modes. The empty state is stable if
the amplitude of all normal modes shrink, which requires that the scale L of the population does
not exceed the critical scale Lest = π

√
D0/r/2. In turn, this implies that bacteria can establish

in a chamber only if L > Lest. Thus, establishment is promoted by increasing the growth rate or
decreasing the diffusivity, which drives the cell leakage. Using the measured growth rate, r ≈
0.33± 0.01 h−1 (Fig. S4a and d), and diffusivity, D0 ≈ (0.37± 0.01)× 103 µm2/h (Fig. S2), we
estimate establishment in our experiments to occur at the scale Lest ≈ 53±1 µm. This is consistent
with the empirical value 53± 7 µm that we extrapolate from our measurements (Fig. S5b). We
also confirmed that the establishment length changes predictably with variations in growth rate
(Fig. S6). More importantly, the measured density profiles agree well with the cosine shape of
the first normal mode, as observed in Fig. 2.1d, which is expected to dominate close to the onset
of colonization (SI Sec. A.4). Our analysis is best suited to describe the bulk of the population
where cell motion is dominated by diffusion. Deviations are expected, and indeed visible around
the opening of cavities (near vanishing cell density) where the flow of the media is not negligible.

Nonlinear Population Control
Our linear model can tell us whether bacteria grow in empty chambers but it remains blind to how
a population of successful colonizers reaches a steady state with a finite population size and how
stable this state is. To predict the long-term dynamics, we needed to include a (non-linear) pop-
ulation control term that modulates the competition between cell proliferation and removal. For
example, bacterial batch cultures are often limited by nutrient deprivation or waste product accu-
mulation, implying that the growth rate is not constant but decays with density (logistic population

1In our experiments, removal is dominated by outflow. Cell death can also be included through an effective growth
rate, representing the difference between growth and death rate
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ration. (a) Simulations show that the collective diffusivity of an idealized model of proliferating
hard spheres in suspension is non-monotonic as a function of the packing fraction Φ = cπσ3/6
with σ the diameter of the particle. The negative gradients at high densities can drive a discontin-
uous transition towards jamming. (b) The packing fraction profile (right) was computed from the
density-dependent diffusivity in (a) (see SI Sec. A.5). The maximum packing fraction (left) shows
a fold bifurcation as a function of L/Lest, resulting in a sudden transition to a (partially) jammed
state. (c) Minimal simulations of proliferating soft disks and example tagged particle trajectories
for gaseous L < Ljam (top) vs. jammed states L > Ljam (bottom) pores. (d) Self-diffusion, Ds, in the
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CHAPTER 2. SCALE-DEPENDENT TIPPING POINTS OF BACTERIAL COLONIZATION
RESISTANCE 14

0.2

0.4

0.6

0.00.0 0 20 40 60 80 100

(I) (II) (III)

a) b)

t (h)

Φ
m

ax

0.4

0.6

0.3

0.5

0.2

1.07 1.08 1.09 1.10 1.11
L / Lest

Φ
m

ax

(I)

(II)(III)

Figure 2.3: Bistability near the tipping point. (a) Phase diagram: The maximal packing fraction
at steady state, Φmax, as predicted from the density-dependent diffusivity in Fig. 2.2a. When
the control parameter L/Lest is gradually increased, the state of the system suddenly jumps from
a gaseous (I) to a partially jammed state (II, arrow pointing up). If one decreases the control
parameter again, the system jumps back to a gaseous state (arrow pointing down), but at a different
value of the control parameter, implying a hysteresis and a region of bistability. (b) Experiments
to test bistability: A flow decrease triggered in the depicted chamber the transition from gaseous
(I) to jammed (II), via an effective increase of the habitat size L. The orange curve depicts the
density increase over time. After saturation, we increased the flow again but the chamber remained
in the jammed state (III) at high density (green curve). The y-axis of the plot was normalized by
Φrcp ∼ 0.64, random close packing of monodisperse spheres (see Fig. S7). The scale bar indicates
50 µm.

control). However, growth rates in the jammed and dilute phase were statistically indistinguish-
able (Fig. S4), suggesting that nutrient deprivation did not limit population growth. Therefore,
we hypothesized that, while the growth rate remains approximately constant, the population out-
flow adjusts itself via a density-dependent diffusivity D(c). Steady state is reached when the cell
leakage matches the influx of newborn cells in the bulk of the chamber.

Crowding-induced Phase Transition
Our mathematical analysis shows that a monotonically increasing D(c) (more cells → more out-
flow) is capable of stabilizing a gaseous state inside the chambers (SI Sec. A.4). However, to
reproduce a sudden jamming transition, D(c) has to have a region of negative slope at high den-
sities (more cells → less outflow). Intuitively, this generates a positive feedback cycle. As the
density fluctuates up, diffusion-induced outflow goes down, which leads to even higher cell densi-
ties, suppressing outflow even more and so on. The cycle only breaks when the bacteria jam and
come into contact, upon which the bulk modulus and, hence, D(c) shoot up by several orders of
magnitude [85].
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The required negative slope of D(c) could be induced at high density by constitutive or crowding-
induced stickiness between cells, or active motility, which has been shown to drive phase-separation [86].
Our simulations (Fig. 2.2) and analytical arguments (SI Sec. A.7) show that even purely repulsive
non-motile spheres exhibit a qualitatively similar phase behavior as seen in our experiments. Thus,
a transition between gaseous and partially jammed states emerges without any special biotic factors
other than proliferation.

In the SI, we show that, by exploiting a mathematical analogy to a solvable Newtonian prob-
lem, the phase diagram and the density profiles (c.f. Fig. 2.2b for hard spheres) can be obtained
exactly by numerical integration (via SI Eqs. 34 and 35) from the underlying growth and disper-
sal parameters. This analysis shows that the position of the tipping points depends on the entire
functions D(c) and r(c) up until the tipping point and, thus, can be modulated by any means that
change these functions, such as attractive interactions or quorum sensing.

Our theory also predicts that the jamming transition arises through a fold bifurcation and, there-
fore, should have the characteristics of a tipping point [87–89]. In particular, once a chamber
becomes jammed it is not easily unjammed and requires a substantial perturbation of the control
parameters (growth rate or diffusivity). This also implies that there must be a region of bistabil-
ity, where in the same chamber two states are stable - one gaseous and one phase-separated state
(Fig. 2.3a). We confirmed that, in our experiments, chambers near the jamming transition indeed
show bistability (Fig. 2.3b and S7) by flipping from one state to another using flow modulation
(Fig. S8).

Tipping points also reveal themselves dynamically, through a dramatic slowing down near
the transition point – a phenomenon called critical slowing down [87]. Indeed, our time lapse
Supplementary Movie S1 shows that the relaxation dynamics near the transition point becomes
very slow. The smallest jammed chamber takes about 30 hours or 14 doubling times to reach
steady state, compared to 6 hours or less in the largest chambers.

Crowding-induced Drop in Diffusion
Simulations of a proliferating soft sphere model (see SI for details) further show that the cellular
self-diffusion is dramatically reduced upon jamming, consistent with an onset of rigidity, except
for movement of order one cell diameter per doubling induced by the division process (Fig. 2.2c).
While in our experiments we could not track single cells in the jammed phase, we could track
lineages using fluorescent tracers (Fig. S9), which also suggests self-diffusion to drop by two
orders of magnitude from the gaseous to the jammed state.

A drop in self-diffusion has important consequences for species invasions. It lowers the chance
for outside cells to diffusively penetrate the jammed fraction against the proliferation current com-
ing from the floor of the chamber. Accounting for this crowding-induced diffusion barrier in a
theory of strain invasion (SI Sec. C.1), we predict that the rate at which an external strain invades
a jammed resident population is exponentially small in the ratio of the thickness of the jammed
phase and the cell diameter. Thus, invasion of jammed populations should be an extremely rare
event.
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Colonization Resistance
To test this prediction, we performed specific invasion experiments. We inoculated our device
with the wild type strain of A. indonesiensis and waited until a steady state was reached. We then
flowed in a sister strain of the same species, which was fluorescently labeled green and resistant to
the drug tetracycline. Titration of tetracycline then allowed us to tune the growth rate advantage of
the invading strain.

In the absence of antibiotics, we did not observe any successful invasion over the experimental
time scale of five days. When we added 10 µg/mL of the antibiotic (60% of MIC), scale-dependent
invasion dynamics ensued: In the initial 24 hours, the drug-sensitive populations decreased the
population density (Supplementary Movie S3), thus shifting the phase boundary between gaseous
and jammed to larger cavities. Over the next 48 hours, drug resistant cells entered and seized
a substantial number of the gaseous chambers (Fig. 2.4c and Supplementary Movie 4). Upon
successful invasion, the population density generally increased again. Importantly, while most
of the gaseous chambers were ultimately invaded, none of the jammed chambers did (out of 7
colonized panflutes monitored over 2-5 days in 3 independent experiments). The primary effect of
the antibiotic is to push the state of some of the chambers from jammed to gaseous, upon which
invasion becomes possible (Fig. 2.4a). Thus, while crowding strongly protects jammed populations
from invasion, residents can be dislodged nevertheless if they are driven past a tipping point into a
more fragile (gaseous) ecological state.

2.5 Discussion
We have shown that microbial colonization patterns can vary dramatically with the physical struc-
ture of their micro-environment. In particular, a crowded state with pronounced colonization re-
sistance can arise spontaneously when the incubation scale exceeds a certain tipping point. Once
pushed beyond the tipping point, it requires a substantial perturbation to break the ensuing col-
onization resistance, for instance by using antibiotics to trigger the reverse transition towards a
gaseous phase with increased mixing (Fig. 2.4a).

The physical structure of the micro-environment, thus, acts as an ecological filter, permit-
ting stable and resilient colonization by species with matching traits. By modulating the physical
characteristics of this filter, hosts can actively or passively shape the pool of potential bacterial
residents. Modulating endogenous micro-structures or introducing rationally-designed structures
may also be considered as a strategy for precision-microbiome therapies to modulate microbial
diversity.

The structure-induced stability supports the view that community assembly from potential col-
onizers are shaped by priority effects: whoever invades first enjoys colonization resistance against
late invaders. The randomness induced by the order of strain arrival might contribute to the sub-
stantial host-to-host variability seen in some host-associated microbial communities [28, 45].

Colonization patterns, tipping points and colonization resistance could be captured by a min-
imal model that accounts for growth, diffusion and leakage. This model revealed a generic fold-
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Figure 2.4: Crowding-induced colonization resistance. (a) After the chambers were pre-colonized
by the wild type strain (dark), we introduced a fluorescently labeled “invader” strain (yellow).
To make invasions more likely, we also increased the fitness of the invader by the simultaneous
injection of an antibiotic (tetracycline) to which the invader was made resistant against. (b) A
steady state of sensitive populations before the invaders were inoculated. The unfilled triangle
shows the transition point between jammed and gaseous phases in the experiment. The transition
was manually defined based on the bright-field darkness of the populations. (c) 120 hours after
tetracycline was added to the culture medium. Drug-sensitive populations (dark) that remained
jammed were not invaded. The unfilled and filled triangle show the transition points between
jammed and gaseous phases at t = 0 h and t = 120 h respectively. The injection of the growth
inhibitor (tetracycline) shifted the transition point.

bifurcation generating a discontinous transition between a gaseous phase, in which cells diffuse
freely, and a glassy, jammed phase. This transition differs from what is known as Motility-Induced-
Phase Separation (MIPS) [86] in the field of Active Matter [90, 91]. MIPS is associated with
a spinodal instability that arises when an effective diffusivity becomes negative – an unintuitive
consequence of the non-equilibrium nature of active motility [92]. In our case, the transition is
triggered by the weaker condition of a (sufficiently) negative density-dependent diffusivity, which
generically arises even for passively diffusing particles [93], for example hard spheres. It would be
interesting to extend our model of proliferating active matter by active motility to see how bacteria
that grow and swim self-organize in confined spaces.

While the tipping points in our experiments could be explained by our minimal model, we
expect that, in general, additional biotic and abiotic factors influence colonization patterns quanti-
tatively. For example, crowding will be promoted if cells stick to one another directly or indirectly
through biofilm formation, or if nutrients are supplied from the floor of the chamber. On the other
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hand, both establishment and jamming tend to be hindered by strong nutrient limitations or bacte-
rial motility. While further research is needed to explore the relative importance of these factors,
their impact may be anticipated theoretically using a reaction-diffusion model, which entails a
flexible approach to analyze steady states (SI Sec. A.5).

More broadly, our results underscore that the lengthscale of experimentation can have a strong
influence on micro-ecological processes, which could confound experiments that do not control
for scale variation [94] – a well appreciated problem in the macro-ecological context [95–97].
Flow-tunable scale variations as implemented in our Microfluidic Panflute offer a systematic ex-
perimental approach to detect or exclude scale sensitivity in culturable microbial communities.
Since the time scales of microbial evolution and ecology are inter-twined, we expect such scale
sensitive experiments an exciting avenue for future eco-evolutionary research [98].
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2.7 Methods

Bacterial strains and culture condition
The Acetobacter indonesiensis strains were derived from SB003 (kindly gifted by William Luding-
ton, Carnegie Institution for Science), which was originally isolated from lab flies (D. melanogaster)
[76, 84]. SB003 was transformed with mGFP5 via the backbone plasmid pCM62 [99] by Benjamin
Obadia [46]. For culturing, all strains were grown in MRS medium (BD) at 30 °C. Strains are se-
lected with 15 µg/mL tetracycline (Corning Cellgro) if needed.

Microfluidics fabrication
The microfluidic devices were fabricated by soft lithography [100, 101]. In order to make a master
mold, a 20µm-thick layer of negative photoresist (SU8-2010, MicroChem) was spin-coated on
a silicon wafer (WaferNet) and patterned by photolithography with a mask aligner (Hybralign
200, OAI) through a photomask (CAD/Art Services). On the master mold, Polydimethylsiloxane
(PDMS, Sylgard 184, Dow Corning) was poured with crosslinker at 10:1 ratio and cured at 60 °C
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in an oven overnight. The patterned PDMS was punched to make holes for inlets and outlets. The
PDMS was bonded to a glass coverslip with O2 plasma treatment by a reactive ion etcher (Plasma
Equipment Technical Services).

Microfluidic cell culture
Prior to microfluidic culture, cells were streaked on a plate from frozen stock and grown in a
test tube with 3 mL MRS for 1-2 days. The suspension of cells was injected into a microlfuidic
device and cultured for 3-5 days with a continuous supply of the fresh medium until the system
reached a steady state. The temperature was regulated at 30 °C by a microscope incubator (H201-T
and UNO, Okolab), and the flow rate of the culture medium was controlled at 0.3 µL/h by syringe
pumps (neMESYS, CETONI). Images were taken by inverted microscopes (IX81, Olympus. Also,
Eclipse Ti, Nikon, was occasionally used for Figs. S6b and S7b.) and a confocal microscope (LSM
700, ZEISS).

Density profile measurement
To quantitatively measure the density profile of cellular populations in microfluidic crypts, GFP-
tagged cells were cultured in a Microfluidic Panflute for about three days. After the system reached
a steady state, fluorescent intensities were measured every 20 minutes for 14-48 hours. The inten-
sities were first averaged over the horizontal direction, and then averaged over the time points at
each y-position. They were scaled by the intensity of jammed populations to get relative cell den-
sities. A standard error of the mean was calculated by dividing the standard deviation across time
points by the square root of the approxomate number of uncorrelated time points. The latter was
estimated by dividing the total duration of the time lapse movie by the typical relaxation time (6
hours) of the density profile measured in the gaseous phase (see Fig. S7d).

Neutral competition and invasion with fitness effect
To observe competitions of two strains with and without fitness effects, wild-type and GFP-tagged
strains were co-cultured. As the GFP-tagged strain was resistant to tetracycline, with 10 µg/mL
of tetracycline, the GFP-tagged cells grew normally while the wild-type strain grew slowly. We
confirmed that there was no significant growth rate difference between the strains in the absence
of antibiotics (Fig. S4b).

For neutral competition experiments, a 50:50 mixture of dark and GFP-tagged cells were in-
oculated into a Microfluidic Panflute device and cultured for two days. As each type of cells
colonized chambers stochastically, we parallelized six rows of the panflutes and selected chambers
with a desired initial population ratio. The population dynamics were observed with a fluorescent
microscope every 20 minutes for a day.

To test the colonization resistance of jammed populations, we first cultured wild-type cells in
a microfluidic device. After the populations reach a steady state, the culture medium was changed
from MRS to MRS + 10 µg/mL tetracycline, and GFP-tagged cells were continuously flowed



CHAPTER 2. SCALE-DEPENDENT TIPPING POINTS OF BACTERIAL COLONIZATION
RESISTANCE 20

into the device. The resulting population decay and invasion dynamics were observed with a
microscope every 20 minutes for two days. In addition, the snapshots of the populations were
taken every day for five days.

Flow and temperature change experiments
To investigate the effect of the system’s parameters on the population density in microfluidic crypts,
we dynamically changed the flow rate to tune the effective chamber depth. We initially cultured
cells at 0.8 µL/h flow rate for three days until the system reached a steady state, and changed
the flow rate to 0.3 µL/h. The decrease of the flow rate affected how deep the streamlines invaded
chambers and changed the effective chamber depth by 5-10 µm (Fig. S8). After the system reached
a second steady state, we recovered the flow rate to 0.8 µL/h to investigate hysteresis.

We also dynamically changed the temperature of the incubation chamber for controlling the
growth rate of cells. We first cultured cells at 22 °C, where the growth rate is 0.28 h−1, until a
steady state, and ramped up the temperature to 30 °C, where the growth rate is 0.33 h−1 (for the
growth rate measurement, see Fig. S4d). The transition dynamics were recorded every 20 minutes
with a microscope.

Colonization experiments with other species
Colonization dynamics in a Microfluidic Panflute were tested with various microbial species (Es-
cherichia coil, Bacillus subtilis, Vibrio cholerae, Acetobacter pasteurianus, Acetobacter tropicalis,
and Lactococcus lactis. See Table S1 for the strain details and culture media.). Cells were streaked
on a plate from frozen stock, and a small number of cells from a single colony were grown in a test
tube with 3 mL of a culture medium for 1-2 days at 37 °C for Escherichia coil and 30 °C for the
other species. The cell suspension was injected into a Microlfuidic Panflute and cultured for 5-6
days with a continuous supply of fresh media until the system reached a steady state. During the
microfluidic culture, the temperature was regulated at 30 °C for all species.

Growth rate measurement
The growth rate of cells was measured in two ways: growth assay with a plate reader and particle
image velocimetry (PIV) of a jammed population on microfluidics. Prior to the measurements,
cells were cultured in test tubes from single colonies for 1-2 days in MRS at 30 °C up to satura-
tion. For the plate reader experiments, cell suspensions were diluted to 0.02 OD, and 200 µL of the
suspensions were transferred to transparent flat-bottom 96-well plates (Thermo Fisher Scientific).
The plates were incubated in a plate reader (Spectramax) at 30 °C, and the optical density (OD)
was measured at 600 nm wavelength every 5 minutes with 30-second mixing before each mea-
surement. The maximum growth rate was calculated by fitting an exponential curve to the initial
2-hour growth. The growth rate of Acetobacter indonesiensis was measured as 0.325± .003 h−1

(Fig. S4a).
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For the PIV measurement on microfluidics, cells were injected into a microfluidic device and
incubated in a table-top incubator until cells colonized chambers and formed stable populations.
Bright-field images were taken every 3 minutes for 3 hours and analyzed with PIVlab in Matlab
[102]. PIV calculated the displacements of cells per timeframe. The displacement of a cell at
position y = y0 was caused by the growth of cells at y ∈ [0,y0], and therefore, the displacement at
position y = y0 could be formulated as d(y0) = y0(er∆t −1). Since our timeframe (∆t = 3 minutes)
was much smaller than the doubling time of the cell (2.1 hours), it held d(y0)/∆t ≈ ry0. Thus, the
slope of the velocity field in the y-direction gave the growth rate. The growth rate of Acetobacter
indonesiensis was measured as 0.332± .007 h−1 (Fig. S4d).

Diffusivity measurements
Self-diffusivity

To estimate the self-diffusivity of cells in gaseous and jammed phases, the displacement of cells
was tracked over time, and the mean square displacements were calculated. A 50:50 mixture of
dark and GFP-tagged cells was injected in a Microfluidic Panflute and cultured until the system
reached a steady state. The motions of GFP-tagged cells were recorded with a fluorescent mi-
croscope every 30 seconds for 10 minutes for gaseous phases and every 20 minutes for 20 hours
for jammed phases. The displacement of cells in gaseous phases was automatically tracked with
TrackMate in Fiji [103], and that in jammed phases was manually tracked with the Manual Track-
ing plugin of ImageJ.

Collective diffusivity

To determine the collective diffusivity, we adapted the Boltzmann-Matano analysis [104] to the
present case of a reaction-diffusion system. Under the assumption that our general reaction-
diffusion model, ∂tc(y, t) = ∂y[D(c(y, t))∂yc(y, t)] + rc(y, t), is valid, we can express the density-
dependent diffusivity D(c) in terms of the steady state density profile as follows:

D(c(y)) =
r
∫ y

0 c(y′)dy′

−∂yc(y)
(2.1)

This equation allows us to estimate D(c) from the exponential growth rate and the steady state
density profiles. The steady-state density profiles were determined from the temporal average of
the fluorescent intensity of time lapse movies. For the data in Fig. S2c, we averaged the density
profile over 20 frames (7 hours) and locally approximated it with a quadratic function by the
Savitzky–Golay method [105] to extract ∂yc(y). We excluded the y-region 20% from the opening
where the flow impacted the tail of the density profile, and excluded the y-region 20% from the
bottom where (∂yc(y))−1 was diverging.
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Fluid dynamics simulations
The fluid dynamics of the culture medium flow through the cavity structures of our microfluidic
devices were simulated using COMSOL. As a simple geometry, we defined a 500 µm × 50 µm ×
20 µm supply channel with a 50 µm × 150 µm × 20 µm cavity in the middle. The fluid dynamics
was modeled as incompressible Stokes flow subject to no-slip boundary conditions at the walls and
a constant flow rate. To see how the flow field depends on external control parameters, we varied
the depth of the cavity (30-150 µm) and the flow rate (100 µm/s and 250 µm/s mean flow rate).

2.8 Supplementary Information

Descriptions of Supplementary movies.
• S1: Jamming dynamics and gaseous phases. The movie shows the lengthscale-dependent

colonization in a Microfluidic Panflute over 35 hours. While cell populations get jammed
in long chambers, they remain gaseous in short chambers. The approach to the steady state
takes markedly longer in chambers close to the transition, which is characteristic of critical
slowing down near tipping points.

• S2: Formation of a jammed shockwave. The movie shows the movement of the jamming
front over 20 hours. The culture medium flow came from the top to the bottom.

• S3: Population decay upon drug injection. The movie shows the decay of a drug-sensitive
population over 14 hours upon injection of 10 µg/mL tetracycline. The sharp decrease of the
growth rate of cells results in the phase transition from initially jammed to gaseous.

• S4: Invasion of an advantageous strain. The movie shows how a drug-sensitive resident
population (dark) is invaded by drug-resistant cells (yellow). The fitness of the established
drug-sensitive bacteria are suppressed by the addition of 10 µg/mL tetracycline. Successful
invasions are observed 21 hours after the injection of the drug and the advantageous strain.

Theory of colonization
Here, we describe our modeling approach that helps us to interpret and predict the relaxation
and steady-state properties of the bacterial populations in our variable length cavities. We begin
by describing a general mathematical framework applicable to a wide range of situations. We
then restrict the model to our specific experimental setup, which allows us to make a number of
simplifying assumptions.

General reaction-diffusion model

In order to describe the combination of growth and cell movement, we employ a reaction-diffusion
model for the packing fraction Φ(r, t) at position r and time t, which is the concentration multiplied
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by the cell volume. In general, the rate of change of the packing fraction is given by

∂tΦ(r, t) =−∇ · j(r, t)+b[Φ(r, t)]

in terms of the divergence ∇ · j of a flux j, a three dimensional vector, and the cell production
rate b[Φ], which depends on the packing fraction itself, for exampled b[Φ] = rφ in the case of
exponential growth with rate r.

The flux j describes the magnitude and direction of the flow of cells and can be expressed as

j =−D[Φ(r, t)]∇Φ+VΦ

in terms of the cell diffusivity D, the gradient ∇Φ of the packing fraction and an advection velocity
V, a three dimensional vector.

Context-specific simplifications

A number of simplifications can be made due to the specific setup of our experiments. Here, we
describe these simplifications, and note under which conditions they might break.

• Diffusion is purely passive. The bacteria in our experiments have no motility mechanism
and, therefore, diffuse just like passive particles under the influence of thermal collisions
with the solvent particles. However, many bacteria have flagella allowing them to swim and
perform chemotaxis to chase the source of certain chemical cues. Although the behavior of
swimming bacteria can be quite complex, they are often well described by an advection term
to describe chemotaxis and an effective diffusivity, which has a non-trivial motility-induced
density-dependence [86].

• Advection is absent. In other systems, advection may have to be incorporated to describe
chemotaxis (pervious point) or the influence of gravity or fluid flow. Fluid flow is a partic-
ularly important aspect in the lumen of the gut [106] but also can also arise in microscopic
pores, for instance, in skin pores when sebum is exuded [28].

• The setup is effectively one-dimensional. The concentration profile in the narrow crypts of
our panflute device is approximately uniform along the directions perpendicular to the sym-
metry axis of the crypts. This allows us to restrict our discussion to the dynamics along
the symmetry axis – the y–direction. For wide or high crypts, a three-dimensional descrip-
tion is necessary, especially when hydrodynamic instabilities drive motion in the direction
perpendicular to y. We expect such higher-dimensional dynamics to be a fruitful topic for
future work, in particular because it cannot be mapped to an effective Newtonian dynamics
(described below).

Under these simplifying assumptions, which match our experimental conditions, we obtain an
effectively one-dimensional reaction-diffusion model that reads

∂tΦ(y, t) = ∂y [D(Φ) ∂yΦ(y, t)]+b(Φ). (2.2)

The boundary conditions are fixed by demanding that cells shall not exit through the floor of the
chamber, ∂yΦ = 0, and that the density vanishes at position L, Φ(L, t) = 0.
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Linear Stability Analysis

In order to determine the onset of population growth in our microfluidic crypts, we have to deter-
mine the conditions for which an empty crypt is stable against an inoculation with cells. To this
end, we perform a linear stability analysis of our model in the low density limit.

The linearized reaction-diffusion equation Eq. 2.2 reads

∂tΦ(y, t) = D0∂
2
y Φ(y, t)+ rΦ. (2.3)

in terms of the low-density diffusivity D0 and the constant growth rate r.
We first expand the cell density as

Φ(y, t) =
∞

∑
n=0

an(t)ϕn(y) (2.4)

in terms of cosine modes

ϕn(y) = cos(kny) kn =

(
n+

1
2

)
π

L
(2.5)

which are orthonormal
⟨ϕn|ϕm⟩= δnm (2.6)

with respect to the scalar product

⟨ f |g⟩ ≡ 2
L

∫ L

0
dy f (y)g(y) . (2.7)

Inserting the expansion Eq. 2.4 into the linearized reaction-diffusion equation Eq. 2.3 and then
projecting onto the normal modes yields simple amplitude equations,

∂tan = ωnan , (2.8)

where the frequency ωn of the nth mode is given by

ωn =−D0k2
n + r . (2.9)

The mode amplitudes an therefore obey an = an(0)exp(ωnt) with the prefactors fixed by the initial
conditions.

For the empty state to be linearly stable, we require all ωn to be negative, meaning that all
mode amplitudes exponentially decay to zero. As the slowest growing mode is n = 0, this implies
D0k2

0 > r, or

L < Lest =
π

2

√
D0

r
, (2.10)

revealing the establishment transition discussed in the main text.
Note that the density decay of non-growing particles (r = 0), which merely diffuse out of the

chamber, is on long times controlled by the slowest decaying mode, Φ ∝ exp(−D0k2
0t). Since, at

the establishment transition, we have D0k2
0 = r, we see that the diffusive “half-life” of the bacteria

just equals their doubling time. This confirms the intuition that the establishment transition occurs
when the diffusive outflow is balanced by growth.
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Steady state at low packing fraction

To explore the nature of the gaseous phase, it is useful to study the limit of low packing fractions,
where the diffusivity takes the form [93]

D(Φ) = D0(1+αΦ)+O(Φ2) . (2.11)

The numerical coefficient α measures the leading order change in diffusivity with increasing pack-
ing fraction and depends on the shape of the particles as well as their interactions. For repulsive
particles, such as our main model system Acetobacter indonesiensis, α is positive. Detailed ana-
lytical results are available for hard spheres, yielding α = 1.45 [107]. Strong attraction can lead to
negative α [93].

When we include the non-linear packing fraction dependence to leading order, we obtain the
following equation of motion

∂tΦ(y, t) = D0∂
2
y

(
Φ+

α

2
Φ

2
)
+ rΦ . (2.12)

If we expand Φ(y, t) in terms of the normal modes as in Eq. 2.5, we find

∂tan(t) = ωnan −
α

2
D0k2

n⟨ϕn|Φ2⟩ , (2.13)

where ⟨ϕn|Φ2⟩ is the projection of Φ2(y, t) on to the nth mode.
We expect the small density approximation, Eq. 2.13, to be appropriate when L just slightly

exceeds Lest. Thus, we can introduce the small parameter

ε ≡ L
Lest

−1 ≪ 1 . (2.14)

Our discussion of the establishment transition has shown that the frequency of the lowest mode
vanishes right at the transition, ω0 = 0, and that the frequencies of all other modes is finite, i.e.
ωn = O(1).

For ε small but finite, we still have that the higher modes have linear relaxation frequencies of
order one, ωn = O(1) for n > 1, but the frequency of the lowest mode now assumes small positive
frequency of order ε ,

ω0

r
= −

D0k2
0

r
+1 =−

(
Lest

L

)2

+1 (2.15)

= − 1
1+2ε + ε2 +1 ≈ 2ε ≪ 1 (2.16)

Combining ω0 =O(ε), ωn>1 =O(1) with Eq. 2.13 shows that, at steady state, an>1 with n > 1 is of
higher order in ε than a0. Thus, to leading order in ε , we have Φ(y, t) = a0ϕ0(y, t)+O(ε2), which
simplifies the amplitude equation Eq. 2.13 to

∂tan(t) = ωnan −
α

2
D0k2

na2
0⟨ϕn|ϕ2

0 ⟩ . (2.17)
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The scalar product on the right hand side evaluates in general to

⟨ϕn|ϕ2
0 ⟩=

2
L

∫ L

0
dycos

[(
n+

1
2

)
πy

]
cos2

(
πy
2

)
(2.18)

=
8(−1)n

π (3+2n−12n2 −8n3)
. (2.19)

As before, we confine our attention to the slowest growing mode, n = 0, for which ⟨ϕ0|ϕ2
0 ⟩= 8/3π

leading to the closed amplitude equation,

∂ta0 = ω0a0 −
4α

3π
D0k2

0a2
0 . (2.20)

the steady state density will be small allowing us to expand

ω0

r
≈ 2ε ≪ 1 (2.21)

in terms of
ε ≡ L

Lest
−1 . (2.22)

Rescaling time τ = rt and using the leading order approximations D0k2
0 ≈ r+O(ε) and ω/r ≈

2ε (Eq. 2.16), we obtain

∂τa0 = 2εa0 −
4α

3π
a2

0 . (2.23)

For the inoculation of an initially empty chamber, this logistic differential equation yields the
simple prediction

a0(τ) =
6πε

4α

1
1+ exp(−2ετ)

(2.24)

up to a shift in time.
To illustrate these results, we consider the example of hard spheres for which α = 1.45 is

known exactly (from Eq. (6.12) in Ref. [107]). Our lowest order expansion Eq. 2.24 then predicts
a packing fraction at the floor of the chamber of c(y = 0) = a0 cos(0) = a0 = ε6π/(4α) ≈ 3.25ε

at steady state (t → ∞). Extrapolating from this lowest order expansion, we may estimate that a
chamber length of no more than ε j = 24% above the establishment length is needed for jamming
to occur, because then the maximal density at the floor, 3.25ε j = 0.64, approaches random close
packing (Φrcp ≈ 64% for monodisperse spheres). This simple estimate of course ignores non-linear
feedbacks, which typically leads to an earlier onset of jamming, as seen in Figs. 2b and 3a.

Of particular significance is also the predicted relaxation time to the steady state, the inverse
of which is often taken as a measure for the resilience of an ecological system [108]. From the
exponent in Eq. 2.24, we see that this relaxation time is given by 1/(2εr), which is independent
of α and, notably, diverges near the establishment transition. Thus, relaxation can take long —
much longer than the diffusive exploration of the chamber, which takes about one cell doubling
near the establishment transition (the diffusive half-life of particles in a crypt at establishment
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length just equals the doubling time, see Sec. 2.8). Therefore, we generically expect a time scale
separation between relaxation of the density profile towards the cosine shape (fast) and relaxation
of the amplitude of the cosine (slow).

Although the cells in our experiments are neither spherical nor monodisperse, we expect the
above results to apply up to pre-factors. For example, since ε remains small up to the jamming
transition also in our experiments, one would expect long relaxation times throughout the gaseous
phase. Indeed, relaxation in our flow shift experiments took up to 10 h or five doublings (see green
curve in Fig. 2.11).

Mechanical analogy predicts steady-state colonization patterns

Let us consider the one-dimensional reaction-diffusion equation for the cell packing fraction Φ(y, t)
at position y and time t

∂tΦ(y, t) =−∂yJ+b(Φ) (2.25)
J(y, t)≡−D(Φ)∂yΦ (2.26)

where we allow for an arbitrary density-dependence in both the collective diffusivity D(Φ) as well
as the growth rate b(Φ). As pointed out in the main text, the linear growth rate in our experimental
system is to a good approximation constant, which corresponds to b(Φ) = rΦ. The mathematical
treatment in this section is independent from this simplifying condition.

We define the quantity

Π(Φ)≡
∫

Φ

0
dΦ

′D(Φ′) (2.27)

such that the diffusive current is given by

J =−∂ΦΠ(Φ)∂yΦ =−∂yΠ(y) (2.28)

where we identified Π(y) ≡ Π[Φ(y)] to simplify the notation. Eq. 2.28 formally implies that a
gradient of Π(y) drives a current just like a conventional pressure gradient would. We therefore
call Π effective pressure. Since for passive diffusion2, we must have ∂ΦΠ(Φ) = D(Φ)> 0, we can
invert the equation of state to obtain a the packing fraction Φ(Π) as function of effective pressure
Π.

Next, combining Eqs. 2.25, 2.27 and 2.28 yields at steady state

∂
2
y Π =−b(Φ) =−∂ΠU(Π) (2.29)

where we defined an effective potential

U(Π)≡
∫

Π

0
dΠ

′ b[Φ(Π′)] (2.30)

U [Φ(Π)] =
∫

Φ(Π)

0
dΦ

′D(Φ′)b
(
Φ

′) . (2.31)

2The mechanism of Motility-Induced Phase Separation is based on an active movement (motility), which can
generate a negative effective diffusivity [86].
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The boundary conditions imply Π(L) = 0, manifestly ensured through Eq. 2.27, and ∂yΠ(y = 0) =
0, which we will account for below.

Notice that Eq. 2.29 is formally identical to Newton’s equation for a particle at position Π(y)
at time y freely falling in a potential U(Π). Hence, we can use the principle of mechanical energy
conservation to immediately predict the velocity ∂yΠ of the moving particle in our mechanical
analogy, which in our reaction-diffusion problem corresponds to the negative particle current

J(y) =−∂yΠ =
√

2(U0 −U(Π)) , (2.32)

manifestly satisfying the no-flux boundary condition ∂yΠ(y= 0) = 0. Note that we use the notation
U0 ≡U(Π0) and Π0 ≡ Π(y = 0).

Integrating Eq. 2.32 over the y yields∫
Π0

Π

dΠ′√
2(U0 −U(Π′))

=
∫ y(Π)

0
dy = y(Π) (2.33)

or

y(Φ) =
∫

Φ0

Φ

dΦ′∂ΦΠ√
2(U0 −U(Φ′))

(2.34)

=
∫

Φ0

Φ

dΦ′D(Φ′)√
2(U0 −U(Φ′))

(2.35)

where U(Φ) =U [Φ(Π)], as defined in Eq. 2.31. Calculating y(0) = L gives us the effective cham-
ber length given a maximal packing fraction Φ0 at the floor (y = 0) of the chamber, which is how
we determined Figs. 2b and 3a. Since the function y(Φ) is monotonous, it can also be inverted to
determine the position-dependent packing fraction Φ(y), shown in Fig. 2b for hard sphere,again
given the maximal packing fraction Φ0 at the floor of the chamber.

The integrals in Eqs. 2.35 and 2.31 can be solved numerically without problems for any D(Φ)>
0 and b(Φ), provided U(Φ)<U0 along the trajectory.

General approach to compute the phase diagram

Generically, the shape of the potential U(Φ) will start at U(Φ = 0) = 0 and increase monotonically
because U ′ = −D(Φ)b(Φ) ≤ 0, unless we allow for a region of negative net growth b < 0. The
behavior near Φ = 0 is quadratic since U ′(Φ = 0) = 0 from the no-flux boundary condition and we
assume analyticity of D and b. For small Φ, we expect D′ > 0 suggesting that the potential at first
rises faster than a parabola. At larger Φ we expect, instead, a negative slope of D(Φ) resulting in a
flattening of the potential until jamming leads to rapid rise of the potential.

To determine the density at the floor of the chamber, we have to solve the following problem:
Let a point mass move down this energy landscape from Φ = Φ0 back down to Φ = 0. The time
it takes the moving mass to reach Φ = 0 has to equal the length L of the chamber. If the sojourn
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time is too small (large) we have to increase (decrease) Φ0. Mathematically, we can formulate this
condition using Eq. 2.35,

L = F(Φ0)≡
∫

Φ0

0

dΦ̃D(Φ̃)√
2
(
U(Φ0)−U(Φ̃)

) . (2.36)

We have thus obtained an equation that can be used to determine a phase diagram as in Fig. 3a
from any D(Φ) and b(Φ). Multiple steady states exist if there are multiple Φ0 values with identical
sojourn times. The trivial case for which this happens is a simple parabola, which corresponds to
the case without density-dependence, D = const. and b(Φ) = rΦ. Then, we have a critical length
where any density Φ0 will lead to a marginally stable steady state.

More realistically, multiple steady states occur if the potential fluctuates around a parabola.
The density interval supporting multiple steady states is bounded by Φ0-values for which

∂Φ0F(Φ0) = 0. (2.37)

This condition can be computed explicitly as follows,

0 = ∂Φ0F(Φ0) = ∂Φ0

∫
Φ0

0

dξ D(Φ0 −ξ )√
2(U(Φ0)−U(Φ0 −ξ ))

(2.38)

=
D0

2U(Φ0)
+

∫
Φ0

0

dξ D′(Φ0 −ξ )√
2(U(Φ0)−U(Φ0 −ξ ))

+(D(Φ0)b(Φ0)−D(Φ0)b(Φ0))
∫

Φ0

0

dξ D(Φ0 −ξ )

[2(U(Φ0)−U(Φ0 −ξ ))]3/2 , (2.39)

where we substituted ξ ≡ Φ0 − Φ̃ in the first line and using Eq. 2.31 to express the derivative of U
in the last line. If Eq. 2.39 has any solution there must exist multiple steady states.

Collective diffusion for hard spheres

In general, D(Φ) is a collective diffusion coefficient as opposed to a tracer diffusivity or self-
diffusion coefficient. With purely passive diffusion, D(Φ) can be decomposed into the product
D(Φ) = µ(Φ)kBT ∂ΦP(Φ) of two terms with an intuitive interpretation:

• µ(Φ) is the collective mobility, a transport coefficient that describes the sedimentation ve-
locity and is typically a decreasing function of packing fraction Φ. As a transport coefficient
it depends on the equations of motion, and the treatment of hydrodynamics.

• P(Φ) is the osmotic pressure of the cell suspension, and its derivative is proportional to
the (osmotic) bulk modulus, which has to be positive. Because P(Φ) is a pure equilibrium
quantity, it can be readily obtained from Monte Carlo simulations without modeling the
surrounding fluid at all.
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For a system of hard spheres, a multipole expansion of the effective hydrodynamic interac-
tion [109] can be used to extract the collective mobility for particles immersed in an incom-
pressible fluid. With collective mobility computed using this method, we confirmed the empirical
Richardson-Zaki scaling form [110], µ(Φ) = µ0(1−Φ)η where µ0 is the particle mobility in the
dilute limit. We extracted η = 5.8 from a linear regression of µ(Φ). The fit and accompanying
data are shown in Fig. 2.15, which over the range of packing fractions considered are in good
agreement. Similarly, the equation of state of hard spheres is known to be well described by a
Carnahan-Starling equation [111]. In terms of the packing fraction, the pressure P(Φ) is given
by, P(Φ)/kBT = (6Φ/π)(1+Φ+Φ2 −Φ3)/(1−Φ)3. Taken together, we obtain the collective
diffusion coefficient via D(Φ) = kBT µ(Φ)∂ΦP(Φ), which was used together with b(Φ) = rΦ to
determine the hard sphere phase diagram Fig. 3a in the main text using Eq. 2.36.

It is worth noting that that the resulting collective diffusion coefficient for hard spheres is
merely an approximation designed to capture the non-linear behavior for modest to high packing
fractions. Exact results are often available for the linear expansion coefficient α of the diffusivity
D/D0 ≈ 1+αΦ+h.o.t. (see e.g. Ref. [93]), valid at low density, which can be useful for estimating
the behavior of the gaseous phase at low densities. For instance, in Sec. 2.8, we used the exact result
α = 1.45 [107] for hard spheres to estimate the steady state density, rather than αapprox = 8−η

from the above approximation Richardson-Zaki/ Carnahan-Starling approximation.

Proliferating soft disk simulations
To see which phase transitions emerge in a minimal model that only includes proliferation, cell
diffusion and cell repulsion, we explicitly simulate a mechanical system of soft disks that undergo
Brownian motion and that divide with a constant rate.

Model details

Each particle, i, obeys a stochastic equation of motion for its position in two dimensions, ri =
{xi,yi},

dri

dt
=−µ0∇iU

(
rN)+η i

where µ0 is the time single particle mobility resulting from the surrounding fluid, η i is a Gaussian
random variable with mean ⟨η i⟩ = 0 and variance ⟨η i(t)⊗η j(t

′)⟩ = 2kBT µ01δi jδ (t − t ′) where
kBT is Boltzmann’s constant times the temperature of the fluid and is diagonal for each particle
and cartesian component. We solve this equation using a standard first order Euler discretization.
In addition to Brownian motion, the particles move in response to a potential U(rN) that depends
on the full configuration of the system, denoted rN . At any time, there are N total particles, with
Nm maturated mother particles and Nd growing daughter particles. The interaction potential is
decomposable into U

(
rN) = Ub

(
rN)+Ur

(
rN)+Uw

(
rN) where Ub is the bonding potential be-

tween mother and daughter particles, Ur is a purely repulsive interparticle interaction and Uw is a
confining potential.
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The bonding potential is taken to taken to be a simple Hookian spring,

Ub
(
rN)= N

∑
i∈Nm
j∈Nd

κ

2
(
ri j −bi j

)2
χi j

with stiffness κ , rest length bi j, and χi j = 1 if particles i and j are a mother daughter pair and
χi j = 0 otherwise. The specific form of the repulsive interparticle potential is taken to be pairwise
decomposable

Ur
(
rN)= 1

2

N

∑
i̸= j=1

u2(ri j)(1−χi j)

where the pair potential u2(ri j), is a WCA potential [112]

u2(ri j) =

4ε

[(
σi j
ri j

)12
−
(

σi j
ri j

)6
]
+ ε if r < 21/6σi j

0 else

where ε is a characteristic energy scale and

σi j =
1
2
(
σi +σ j

)
where σi is the characteristic size of particle i. All pairs of particles, excluding bonded mother
and daughter pairs, interact with these are excluded volume interactions. Finally, the confining
potential restricts the the particles motion to approximately an area A = LxLy by imposing a steep
potential at x = 0, x = Lx, and y = 0. Specifically, the external wall potential has the form,

Uw
(
rN)= N

∑
i=1

a
[
e−yi/ξ + e−xi/ξ + e−(Lx−xi)/ξ

]
with a the amplitude of the confining potential and ξ its characteristic length scale.

The mechanical system outlined above is conservative and describes the motion of a collection
of overdamped particles with a simplified, local description of hydrodynamics [113]. At long
times, absent added external forces, its evolution would be consistent with thermal distribution
and would conserve particle number. In order to model the growth of the bacterial population
and division of an individual mother daughter pair, we endow the daughter particles with a time
dependent effective size through the deterministic equation of motion

dσi(t)
dt

=

{
k for t < 1/k
0 else

with boundary condition σi(0) = 0 and growth rate k. Similarly, to model the budding of the
daughter from the mother, the rest distance bi j changes in time with the deterministic equation of
motion

dbi j(t)
dt

=

{
k for ri j < σi

0 else
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with boundary condition bi j(0) = 0 and the same growth rate k. When then impose that when the
distance between the mother-daughter pair ri j(t) has grown past the effective size of the mother
particle, σi, we sever the bond potential by χi j → 0 between mother-daughter pair i j, provided
t > 1/k. An illustration of this criteria is shown in Fig. 2.16. This growth rule results in an
increasing excluded area of the mother-daughter pair that grows approximately linearly in time.
All of the results in the main text and below employ this rule with a fixed k. Growth rules that
affect in an exponential increase in the excluded area with time yield qualitatively similar results.
Further the results presented are for a fixed growth rate k, but generalizations for populations
evolving with a distribution of growth rates are also qualitatively similar, provided the distribution
is narrow. Synchronized with the bond breaking event, we add new daughter sites to each of the
newly divided particles and reinitialize the size and rest length to 0 for each of them. This last
step breaks particle number conservation. An illustration of the subsequent increase in Nm is also
shown in Fig. 2.16, which absent mitigating factors will grow exponentially in time.

Finally, consistent with the experiments, we apply an absorbing boundary condition at y = Ly.
The absorbing boundary condition and particle number growth balance at steady-state, resulting
in a mean particle number that depends on the geometry and model parameters. We adopt a unit
system where µ = ε = kBT = 1, and mature particles sizes σ = 1. This implies that lengths are
defined in multiples of the mature particles size, x → x/σ and times in units of the diffusion time
for an isolated particle to move its diameter, with D0 = kBT µ0 and accompanying units of time,
t → t/(D0σ2). The stiffness κ in principle allows for mechanocoupling between the division and
local packing environment, with deterministic division occurring when κ is much larger then the
local stress on the mother-daughter pair. In this work, we consider this limit and take κ = 100. The
confining potential parameters are taken as a = 10 and ξ = 1.

Nonequilibrium phase diagram

We have studied the particle based model described above and have found qualitative agreement
with both the experimental results and simplified theory presented in the main text. Specifically,
we have studied a system with confinement defined by fixed spatial scale Lx = 15 and Ly = 40,
seeded with an Nm = 10 initial mother particles. We have found that 10 division cycles is sufficient
to relax to a steady state density in the chamber, and evaluated expectation values by averaging
over a minimum of 30 additional division cycles. Further, 3-5 independent simulations are used
for each expectation value reported. Studies of the effective reaction diffusion model suggests
that the function dependence of the system on the length of the chamber enters relative to the
establishment length Lest = π

√
D0/4k, so rather then studying different Ly’s, we fixed Ly = L and

study the dependence on the division rate k, and thus Lest.
First, we studied the stead-state density distribution in the chamber. For L/Lest < 1, as expected

the density in the chamber is 0 at steady-state on average. For L/Lest > 1, the particles are able
to colonize the chamber, and evolve a stationary density distribution. The distribution can be
characterized analogously through local packing fraction Φ(y) = ρ(y)π/4 where ρ̂(y) = ⟨δ (y−
yi)⟩. Generally, the discrete size of the particles relative to a flat wall will result in an oscillatory
density profile when the overall density is larger, ρ > 0.1, which is a result of density correlations



CHAPTER 2. SCALE-DEPENDENT TIPPING POINTS OF BACTERIAL COLONIZATION
RESISTANCE 33

induced by their excluded area. Such an oscillatory density profile is not predicted by the simple
reaction diffusion model employed in the main text. In order to make contact with that perspective,
we report in Fig. 2.17 density profiles coarse-grained over a the length-scale of the particle[114].
We achieve this using by convoluting the number density with a Gaussian,

ρ(y) =
∫

dy′ρ̂(y′)
e−(y−y′)2/2σ2

√
2πσ2

which smooths the profile out. Further, we consider the contribution of the density only from the
mother particles, and evaluate expectation values for times that are integer multiples of 1/k.

Fig. 2.17 specifically reports conditions for L/Lest = {1.2,2,4}. We also compare those calcu-
lations to the predictions of the reaction diffusion model. For Ly/Lest = 1.2, the density is small
enough that we find good agreement with the predicted cosine profile, Φ(y) = Φ(0)cos(πy/2Ly).
At elevated L/Lest, deviations of the cosine profile are found and specifically at Ly/Lest = 4, the
distribution is flat in the interior of the chamber with an exponential boundary layer that brings
the packing fraction to 0 at y = L. Using a parameterization of the collective diffusion constant
D(Φ), evaluated by computing the packing fraction dependent mobility µ(φ) that is well described
by µ(φ) ≈ µ0 exp(−1.70Φ− 0.18Φ/(1− 1.33Φ)), and the equation of state well described by
P(Φ)/kBT ≈ 1.27Φ+ 2.55Φ2 − 9.35Φ3 + 42.72Φ4 of the WCA disks, consistent with previous
estimations,[115, 116] we can numerically solve the reaction diffusion equation and determine
the packing fraction profile for L/Lest = 4. This predicted profile is in good agreement with the
coarse-grained profile from the simulations.

To estimate the boundaries between the extinct, established, and jammed phases, we have
computed the coarse-grained value of the packing fraction at the wall as a function of L/Lest. This
is shown in Fig. 2.18. As anticipated by the reaction diffusion analysis, the establishment transition
occurs for L/Lest ≈ 1, which is consistent with our findings that L < Lest the chamber is empty at
steady-state. For L > Lest the maximum packing fraction gradually increases until L = Ljam ≈ 3.3
where for this two-dimensional system we find an abrupt change in the maximum packing fraction.
The amplitude of this change is small, reflecting the small change in the density upon freezing of
the WCA disks, which is around 2% [117]. Indeed, the pressure measured at the wall at y = 0,
computed from the average force per unit length of wall, pw =−∑

N
i ⟨dUw/dyi⟩/Lx, surpasses the

coexistence pressure for the freezing of WCA spheres at this value of L. As illustrated in Fig. 2 in
the main text, for L > Ljam the system exhibits noticeable crystallinity.

Self diffusion calculations

In order to estimate the self-diffusion coefficient in the chamber as a function of L/Lest, we consider
only the diffusivity in the x direction, the direction orthogonal to the open end. This is because
there exists a net mass current in the y direction, so motion is convective in that direction rather
than diffusive. For diffusion in the x, we use the standard definition

Ds(Φ) = lim
t→∞

1
2t
⟨[xi(t)− xi(0)]2⟩
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as the long time limit of the mean squared displacement. However two difficulties arise in applying
this relation to extract the self diffusion. First, particles leave the chamber at a finite rate, due to
the absorbing boundary condition at y = L. This requires that we average particles’ displacements
only up to their lifetime in the chamber. In order to gather sufficient statistics and increase the
lifetime of individual particles, we use a larger chamber Ly = L = 80. Second, the finite size of the
chamber in the x direction, Lx means that particles will only exhibit diffusive dynamics for mean
squared displacements

√
⟨[xi(t)− xi(0)]2⟩ < Lx/2, and thus the long time limit strictly goes to 0.

We find using Lx = 30 to be large enough that there exists a sufficient separation of timescales
between the onset of diffusive motion and its reduction due to confinement that we easily extract a
pseudo-time independent self-diffusion constant. This data is reported in Fig. 2.

Theory of Invasion
For a foreign strain to invade a pre-occupied chamber, an invader has to overcome two hurdles: #1)
Infiltration: the invader diffuses from the outside against the gradient to reach a favorable position
near the floor of the chamber. #2) Take over: the invader’s descendants displace the resident
population through a combination of chance (genetic drift) and competitive advantage.

Our experimental observations in combination with our simulations indicate that the main rea-
son for the colonization resistance is the difficulty for outside cells to diffusively penetrate cham-
bers that are already filled. Infiltration is rare even in gaseous chambers, but nearly impossible
in jammed populations where a narrow strip of founder cells at the floor of the chamber is insu-
lated from the outside by diffusion barrier of descendant cells. Accordingly, the biggest impact
of the antibiotic occurs in cavities that, due to the growth rate detriment of the resident, become
unjammed and hence invadable (Fig. 4). The larger the growth rate detriment, the larger the range
of chamber length that are driven across the tipping point.

In the limit of weak selection, and large chamber population size, infiltration happens on a
much faster time scale than take over. This allows to analyze the dynamics in two separate steps.
The second, takeover, step is familiar from well-mixed populations. The rate of successful take
over depends on the competition between selective advantage of the faster growing invader and ge-
netic drift. The first challenge, however, uniquely depends on the spatial structure of the colonized
cavities, which is why we mainly focus on the infiltration step.

The infiltration step is best analyzed backward in time. As we follow the lineage of a ran-
domly chosen cell backward in time, it is advected towards the floor of the chamber, reflecting
the intuitive location advantage discussed above. A balance between self-diffusion and advection
leads to a steady state lineage distribution, whose extent scales as the ratio of self-diffusivity and
advection velocity. While the advection velocity is very similar between gaseous and jammed pop-
ulations, self-diffusion differs dramatically, by four orders of magnitude, compressing the ancestor
distribution in the jammed population to just few cell layers at floor of the chamber.

Our mathematical analysis in the next section shows that the neutral invasion success of an
injected invader is proportional to 1/N times the ratio of the invader density in the supply channel
and the mean density of the population. This shows that gaseous population do enjoy some col-
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onization resistance, compared to well-mixed populations for which the neutral invasion success
would just be 1/N.

Yet, the colonization resistance of gaseous populations still is weak compared to partially-
jammed populations. Their infiltration is nearly impossible, as it is exponential in the ratio of the
thickness of the jammed fraction and the thickness of the founder population, which is at most
several cell diameter. The founder population at the floor of the chamber is essentially isolated
from the supply channel, through the constant shedding of jammed cells acting as diffusion barrier
for any invader. Invasion can only be achieved if this diffusion barrier is broken down, say by an
antibiotic treatment or chamber deformation or increase in chamber flow.

Finally, we discuss the case where the growth rate of the resident is reduced by the action of
an antibiotic, as done in our experiments. Invadable, gaseous, populations become invaded at rate
that is increased by factor of Nes, where s ≪ 1 is the growth rate defect and Ne ≫ 1 is the effective
population size of the chamber. The situation is similar to well-mixed populations. The only
difference is that, due to the spatial structure of the population, Ne/N < 1 is mildly and strongly
reduced in the gaseous and jammed states, respectively.

Tracking lineages backward in time

To model infiltration and neutral take over, we generalize an analysis of “gene surfing” [118] to
include a distinction between collective diffusion and self-diffusion. Suppose we sample a cell
at position ξ at present time τ and seek to determine the probability density G(y, t|ξ ,τ) that the
ancestor of the cell was at position y at earlier time t. G then describes backward in time the
position of the cell’s lineage, which is subject to self-diffusion and advection (no proliferation). G
therefore satisfies a generalized diffusion or Fokker-Planck equation, which takes the form

∂tG(y, t|ξ ,τ) =−∂y jl(y, t) (2.40)
jl(y, t) =−Ds∂yG− (vg + vs)G (2.41)

vg ≡ jp/c (2.42)
vs ≡−Ds∂y ln(c) , (2.43)

where Ds is the self-diffusivity and the particle current jp is given by

jp =−Dg∂yc+ vpc , (2.44)

where vp(y, t) is the particle velocity at (y, t) due to any external force.
The key part here is the contribution of the lineage current due to self-diffusion. The mathe-

matical form vs =−Ds∂y ln(c) is fixed by the requirement that, for vg = 0, G ∝ c must be a steady
sate solution with vanishing current.

Suppose, the chamber population has reached a steady state and is large enough so that we can
ignore density fluctuations. Assuming there is no external force, vp = 0, the steady state of the
ancestor distribution is then given by

G(y) = c(y)1+Dg
Ds /N , (2.45)
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where N is a normalizing factor,

N =
∫ L

y=0
dyc(y)1+Dg

Ds (2.46)

From this, we can conclude that one particle injected at y, will after relaxation in the cavity take up
a fraction

u(y) = c(y)
Dg
Ds /N . (2.47)

This expression is particularly useful for the gaseous phase where gradient- and self-diffusivity are
nearly identical. In this case, we have an approximately cosine density profile and, with Dg = Ds,
we obtain

u(y)≈ 8
π2

c(y)
c

1
N

, (2.48)

where c = N/L is the mean population density in the chamber. This expression shows that the
neutral invasion success is much less than the well-mixed expectation 1/N because the invading
cell has to enter from the supply where the cell density is very low.

In the case of a jammed population, the above expressions are not so useful because they require
us to know the minute spatial density variations in the jammed phase. Instead, we can exploit the
fact that the density hardly varies apart from a boundary layer near the exit of the chamber. A
vanishing particle current at steady state requires

−Dg∂yc(y, t) = r
∫ y

0
dy′c(y′, t)≈ rc0y , (2.49)

where we used c(y, t)≈ c0 in the last step. Hence, the steady state ancestor distribution is a decay-
ing Gaussian,

G(y) = exp
[
− r

2Ds

(
1+

Ds

Dg

)
y2
]
/N . (2.50)

Since Ds/Dg ≪ 1 in the jammed phase, we conclude that fixation becomes small very rapidly when
y > λs ≡

√
2Ds/r .

In our experimental system, we found that λs is about one cell diameter and the thickness of
the jammed fraction was about 50 cell diameters, even just after the tipping point. It is, therefore,
appropriate to think of the jammed populations as diffusively isolated from the outside environ-
ment.

Supplementary Table

Supplementary Figures
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Species Strain Note Medium
Scale-dependent

colonization Reference
E. coil MG1655 LB + 0.2% BSA Not observed
E. coil UG2441 Less adhesive LB + 0.2% BSA Not observed [119]

Non-motile
B. subtilis HV1235 Matrix mutant LB Not observed [120]

Non-motile
V. cholerae JY287 Matrix mutant LB + 0.2% BSA Observed [121]

Non-motile
A. pasteurianus LFM13 Fly-gut derived MRS Observed [76]

Non-motile
A. tropicalis LFM14 Fly-gut derived MRS Observed [76]

Non-motile
L. lactis NZ9000 Non-motile GM17 Observed [122]

Table 2.1: Strains cultured in panflute devices. Scale-depedent colonization was observed across
multiple species (see Fig. 2.7), but was not observed for strains which were highly adhesive to
walls or had a strong capability of bioflim formation or filamentation.

Flow

Figure 2.5: Colonization patterns in randomized panflutes. The effect of anterior populations in the
same row was tested by randomizing the order of chambers. The transition to a phase-separated
state was observed independent of the order of the chambers. White arrows show the onset of
jamming. The scale bar indicates 100 µm.
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Figure 2.6: Measuring self-diffusivity and collective diffusivity. (a) Self-diffusivity was mea-
sured by tracking single cells in gaseous phases (inset: a snapshot of single-cell tracks). The self-
diffusivity was calculated as 376±6 µm2/h from the mean square displacements in the horizontal
direction. The error was estimated from fitting. (b) Diffusivity in jammed phases was estimated
by manually tracking lineages (inset: a snapshot of a lineage). The diffusivity was calculated as
0.62±0.02 µm2/h from the mean square displacements in the horizontal direction. (c) Collective
diffusivity was calculated from steady-state density profiles (see Method) of gaseous phases in
4 chambers with various depths (the colors show different chambers in the same panflute). The
measured collective diffusivity showed a trend of unimodality. The black cross shows the self dif-
fusivity measured in (a). The errors were estimated from the smoothing parameters.
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Vibrio choleraeAcetobacter tropicalis

Lactococcus lactisAcetobacter pasteurianusa)

b)

c)

d)

50 μm

Day 6 Day 5

Day 6 Day 6

Jammed Gaseous Empty

Figure 2.7: Three colonization phases are observed in different bacterial species. Pictures were
taken after 5-6 days of incubation in microfluidic devices. Despite biofilm formation (b) and
nutrient depletion (c), we observed qualitatively similar colonization patterns. Scale bars indicate
50 µm.
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Figure 2.8: Growth rate measurements with a plate reader and particle image velocimetry (PIV).
(a) The growth rate of Acetobacter indonesiensis was measured with a plate reader. The maximum
growth rate at 30 °C was estimated as 0.325±0.003 h−1 from the initial growth of 4 independent
populations. (b) The growth rate of tetracycline-sensitive (blue) and resistant (orange) cells was
measured with various drug concentrations and normalized by the the growth rate of drug-resistant
cells in the absence of the drug. The minimum inhibitory concentration was estimated about 17
µg/mL by extrapolating the plot. The averaged growth rate for each condition was calculated from
4 replicas. (c) A schematic of PIV analysis. Arrows show the local velocity of the positions.
The length of arrows is proportional to the local velocity. (d) The local velocities of cells at high
temperature (red, 30 °C) and low temperature (blue, 22 °C) were linear functions of the position
from the bottom of a microfluidic chamber. The solid lines were the local velocities averaged over
3 hours, and the shaded regions show the standard error of mean. The growth rate of cells was
derived from the slope of the linear function as 0.332 ± 0.007 and 0.280 ± 0.001 h−1 at high and
low temperature respectively.
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Figure 2.9: Density profiles of gaseous phases can be scaled to approximately collapse onto a
master curve. (a) The steady-state density profiles in a Microfluidic Panflute device. The plot is
taken from Fig. 1d. The density profiles in the gaseous state can be well approximated by the
function cmax cos(πx/2Lc), which can be seen in the rescaled plot showing c/cmax vs. x/Lc (inset).
(b) Plotting Lc vs. cmax yielded a near linear relationship in the gaseous state. Extrapolating the
linear fitting of the lowest three points to vanishing density yielded an estimate of the establishment
length Lest ≈ 53±7 µm. The error was estimated from fitting. By comparison, our linear stability
analysis predicted Lest ≈ 53±1 µm (see main text).
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Figure 2.10: The establishment length Lest shifts upon a temperature change. We performed two
temperature shift experiments, where we inoculate a panflute at one temperature and, after suffi-
cient relaxation, shift to another temperature, after which we let the system relax again. (Relaxation
often took more than 5 hrs.) (a) 30 °C to 26 °C. Right: The density profiles changed within the
different crypts changed substantially the temperature change. Densities are consistently higher at
30 °C (orange) than at 26 °C (blue). The profiles were measured at steady states with fluorescent
microscopy. The insets of the plots show PIV measurements whose slopes indicated the growth
rates (see Fig. 2.8c and d). The growth rate decreased to 87.2±0.8 %. The shift of Lest was ana-
lyzed by determined by extrapolating the relation between cavity length and maximal population
density at the floor of the crypts to vanishing cell density, similarly to Fig. 2.9. We found that the
establishment length L est increased by 112± 11 %. This change was consistent with our theory
Lest ∝ 1/

√
r (1/

√
0.87 ∼ 1.07). (b) The establishment length shifted upon the temperature change

(from 30 °C to 22 °C). The steady-state density profiles at 30 °C (orange) and 22 °C (blue) were
fitted by a cosine function (black solid and dashed lines, respectively) and normalized. The estab-
lishment length was defined by the x-intercept. The relative change of this critical length (6.6 %)
was consistent with our theory predicting it to be given by the square root of the relative growth
rate change (8.6 %, Fig. 2.8d). Note that, while these temperature shift experiments are consistent
with a pure growth rate change, they come with the caveat that, besides growth rate, additional cell
traits might be affected that influence the phase behavior, for instance, the shape of the cells or
their intercellular mechanical interactions.
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Figure 2.11: Phase shift and bistability upon flow rate change. This figure documents how colo-
nization patterns in the Microfluidic Panflute changed as we changed flow rates from “High” (pur-
ple, 0.8 µL/h) to “Low” (blue, 0.3 µL/h) and back to “High” (red), while allowing the populations
to reach steady state after each flow rate change. Note that a flow rate increase (decrease) corre-
sponds to a decrease (increase) in the effective chamber depths (see Fig. 2.12). (a) The fraction of
occupied chambers (left) and the fraction of jammed chambers (right) are shown as a function of
chamber size (incremented by 10 µm). The lines are colored according to the state diagram (left).
n = 3-6 for each chamber length. Note that, while the critical length for establishment (left) shifted
reversibly as the flow rates was changed, we found hysteresis in the jamming transition (right). (b)
The average transitional lengths extracted from (a) are displayed. The error bars show the standard
error of the mean. The point without the error bar means that all samples had their establishment
transition at the same (discrete) chamber length. (c,d) Time tracking of populations growing in the
same Microfluidic Panflute. (c) Steady state snapshots of chambers that are near the jamming tran-
sition. Note that, while the occupancy pattern of chambers 1 and 3 changed reversibly, chamber 2
showed hysteric behavior, indicating bistability. (d) Dynamics of the maximal cell density at the
floor of the chambers as the flow rate was cycled. Colored lines show the temporal dynamics of the
maximum relative cell density in each chamber. The density profiles in the chambers were calcu-
lated by averaging the fluorescence across the horizontal direction at each time point. The shaded
region shows the standard error of the mean. Two representative snapshots for two stable states of
chamber 2 are shown in the insets. The black line shows an exponential fit to the population decay.
The decay time was 5.9±0.4 hour (the error was estimated from fitting).
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Figure 2.12: Simulations of the hydrodynamic flow fields in the Microfluidic Panflutes. (a) Stream-
lines of the flow were visualized by overlaying 90 frames taken every 2 seconds. The trajectory
of cells showed that the typical scale of the flow invasion length was about 60 µm. The scale bar
shows 50 µm. (b) The hydrodynamics in our microfluidic devices were simulated using COMSOL.
Red lines show streamlines. (c) The horizontal flow velocity along the blue dotted line in (b) is
shown as function of vertical position y. Note that the flow rapidly decays from the opening (y = 0)
towards the floor of the cavity. The inset shows the flow profiles in a semi-log scale. We define
an arbitrary threshold flow velocity (0.3 µm/s, the black line in the inset) to define the flow inva-
sion length and the effective chamber length, shown as the purple arrow and the orange (100-µm
chamber) and red (150-µm chamber) arrows, respectively. The flow invasion length is constant for
chamber sizes beyond 100 µm. (d) The effective chamber size gets shorter by 10 µm when the flow
rate changes from low (blue, 100 µm/s average flow rate) to high (orange, 250 µm/s average flow
rate), shown as the black arrow in the inset. Note that the shift of the effective chamber size is not
sensitive to the choice of the threshold flow velocity.
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Figure 2.13: Neutral dynamics of mixed cultures reveal suppressed lineage diffusion in jammed
population. (a) A schematic of neutral competition experiments. A 50:50 mixture of wild-type
and labeled invader strains was inoculated into unoccupied chambers without antibiotics. (b) La-
beled cells were sparsely distributed in a gaseous phase. (c) Steric interactions and proliferation
produced band-like patterns in a jammed phase. The population dynamics were dominated by a
small number of cells at the bottom of a cavity. (d) Diversity was rapidly lost in a jammed phase.
A cluster of GFP-tagged cells was pushed out of the chamber by the population growth in a few
generations.
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Figure 2.14: Replicas of invasion experiments with 10 µg/mL tetracycline. Replicas from other
rows on the same microfluidic chip. Orange frames show the same positions. Colonization re-
sistance of the jammed phases was consistently observed, while the rate of invasion varied across
replicas (less successful in the replica 1, and more successful in the replica 2).

Figure 2.15: Collective mobility with complete many-body hydrodynamic interactions (blue cir-
cles) and a fit to the Richardson-Zaki scaling form (red line).
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Figure 2.16: Illustration of the growth and division. (top) Illustration of the mechanical model of
division of a mother (red) daughter (blue) particle pair, where the characteristic size of the mother
is σi and its displacement from a daughter is ri j (bottom) Illustration of the subsequent exponential
proliferation of particles in time over 10 division times. The red line is a guide to the eye.
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Φ
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)

Figure 2.17: Coarse-grained packing fraction profiles computed from simulations at L/Lest =
{1.2,2,4} (blue, orange and green) compared to the analytical predictions of the reaction diffu-
sion model (solid lines).
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Figure 2.18: Phase diagram for the proliferating soft disks determined by the maximum coarse-
grained packing fraction in the chamber.



49

Chapter 3

Impact of crowding on the diversity of
expanding populations

A jammed cellular population exhibits characteristic pushing dynamics upon the population growth.
The spatially-structured growth makes the ecological and evolutionary dynamics distinct from a
well-mixed population. For example, the excess of mutational jackpots has been reported in range
expansion of microbial colonies [123]. However, we find that the low end of the site frequency
spectrum follows the same power-law decay in a well-mixed case, even though the underlying
mechanism is totally different. Combining analytical models, agent-based simulations, and plate
and microfluidic experiments, we characterize the clone size distribution in a jammed population.
We also discuss a practical sampling strategy to capture the whole range of the site frequency
spectrum.

The remainder of this chapter was submitted to the bioRxiv preprint server as

Carl F. Schreck∗, Diana Fusco∗, Yuya Karita∗, Stephen Martis, Jona Kayser, Marie-
Cécilia Duvernoy, Oskar Hallatschek, Impact of crowding on the diversity of expand-
ing populations. BioRxiv, 743534 (2019). https://doi.org/10.1101/743534
(∗ These authors equally contributed to the work)

3.1 Abstract
Crowding effects are key to the self-organization of densely packed cellular assemblies, such as
biofilms, solid tumors, and developing tissues. When cells grow and divide they push each other
apart, remodeling the structure and extent of the population’s range. It has recently been shown
that crowding has a strong impact on the strength of natural selection. However, the impact of
crowding on neutral processes remains unclear, which controls the fate of new variants as long as
they are rare. Here, we quantify the genetic diversity of expanding microbial colonies and uncover
signatures of crowding in the site frequency spectrum. By combining Luria-Delbrück fluctua-
tion tests, lineage tracing in a novel microfluidic incubator, cell-based simulations, and theoretical
modeling, we find that the majority of mutations arise behind the expanding frontier, giving rise to
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clones that are mechanically “pushed out” of the growing region by the proliferating cells in front.
These excluded-volume interactions result in a clone size distribution that solely depends on where
the mutation first arose relative to the front and is characterized by a simple power-law for low-
frequency clones. Our model predicts that the distribution only depends on a single parameter, the
characteristic growth layer thickness, and hence allows estimation of the mutation rate in a variety
of crowded cellular populations. Combined with previous studies on high-frequency mutations,
our finding provides a unified picture of the genetic diversity in expanding populations over the
whole frequency range and suggests a practical method to assess growth dynamics by sequencing
populations across spatial scales.

Significance Statement
Growing cell populations become densely packed as cells proliferate and fill space. Crowding
prevents spatial mixing of individuals, significantly altering the evolutionary outcome from estab-
lished results for well-mixed populations. Despite the fundamental differences between spatial and
well-mixed populations, little is known about the impact of crowding on genetic diversity. Looking
at microbial colonies growing on plates, we show that the allele frequency spectrum is character-
ized by a simple power law for low frequencies. Using cell-based simulations and microfluidic
experiments, we identify the origin of this distribution in the volume-exclusion interactions within
the crowded cellular environment, enabling us to extend this findings to a broad range of densely
packed populations. This study highlights the importance of cellular crowding for the emergence
of rare genetic variants.

3.2 Introduction
Environmental factors often structure the spatial organization of growing cellular populations, such
as microbial biofilms [124], developing embryos and differentiating tissues [125], as well as solid
tumors [126–129]. Advances in lineage tracing techniques are progressively revealing that in many
of these cases growth is non-uniform across the population, as it strongly depends on the mechan-
ical and biochemical cues experienced by each cell [127, 128, 130–137]. Non-uniform growth can
favor individuals based on their spatial locations rather than their fitness [55, 129, 138–140] and as
such can dramatically impact the evolutionary fate of the population.

The interplay between evolution and growth has been extensively investigated in the context of
range expansions, in which populations grow by invading surrounding virgin territory [141–147].
In cellular range expansions, growth is often limited to a thin layer of cells at the expanding front
of the population (the growth layer) due to processes like nutrient depletion, waste accumulation,
mechanical pressure, or quorum sensing in the bulk [40, 41, 148–152]. Recent studies have re-
vealed that this growth constraint generates an excess of high-frequency mutations in microbial
colonies [123] and colorectal cancer xenografts [129]. Remarkably, the size distribution of these
large clones is exclusively determined by the surface growth properties of the population through
a phenomenon called allele surfing [141, 153].
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The distribution of low-frequency mutations, however, remains an open question. Assuming
a mutation rate of 10−3 mutation/genome/generation (typical of microbes) and a population size
of 108-109 cells, a total of 105-106 mutations are generated during population growth. Yet, ex-
perimentally only approximately 0.001 % of these mutations have been captured by population
sequencing in the case of bacterial colonies and tumors [123, 154–156]. This suggests that low-
frequency mutations constitute the majority of genetic diversity in the population, but since their
frequency is often below the detection limit of population sequencing, they go unaccounted for. As
a single mutant can be sufficient to drive drug resistance [138], its quantification is imperative to
better understand the emergence of resistant cells after drug treatment. While several groups have
recently revealed the dynamics of small clones by multicolor lineage tracing in solid tumors [128,
129, 135], a quantitative understanding of the dynamics of low-frequency mutations is still lacking.
Here, we address this gap by investigating the dynamics of low-frequency mutations utilizing an
expanding microbial colony as a model system.

To probe the low-frequency end of the mutational spectrum, we adapt the classic Luria-Delbrück
fluctuation test, normally used to infer mutation rates in well-mixed populations [157], to micro-
bial colonies. We find that the vast majority of mutations occurring during growth are present
at very low frequencies and characterized by a clone size distribution that decays faster than that
observed at high frequency [123]. To investigate the origin and statistics of low frequency clones
at single-cell resolution in a well-controlled environment, we designed a microfluidic chemostat
(the “population machine”) that mimics the growth at the expanding front of a colony. In combina-
tion with a newly engineered color-switching S. cerevisiae strain, we track clonal lineages for ten
generations. Visualization of the clones shows that small clones stem from mutations that occur
behind the population’s front. The mutant cells are then pushed towards the bulk of the population
by the proliferating cells in front and eventually fall out of the growth layer and stop dividing,
limiting the maximum size a clone can reach.

Cell-based simulations show that mechanical cell-cell forces are sufficient to explain the ob-
served low frequency spectrum, and that the spectrum’s behavior is robust to cell-level details such
as cell shape and mode of division.

We further develop a theoretical model that captures the essential population genetic process
that shapes the low frequency spectrum, extends our results to a broad range of cellular popula-
tions,and provides predictions beyond evolutionary neutral populations.

Finally, we discuss a useful sampling strategy to sequence spatially structured populations
such as tumors. We show that the spatial position where one takes samples defines which regime
of the site frequency spectrum one can capture. Our results suggest that the whole site frequency
spectrum can be reconstructed by combining various sampling methods and rescaling.
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3.3 Results

Fluctuation test in bacterial colonies
To assess the clone size distribution of small clones (< 104 cells) in E. coli colonies grown from
single cells to ≈ 109 cells, we adapted the Luria-Delbrück fluctuation test [157], routinely used
to determine spontaneous rates of resistant mutations in well-mixed populations [158–162], to
structured populations like colonies (Fig. 3.1). Colonies were grown on rich non-selective media,
scooped up completely after two days of growth, resuspended, and then plated on selective plates
containing nalidixic acid (see Methods). After overnight growth, the selective plates were imaged
and the number of resistant colony forming units (CFUs) were counted (Methods).
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Figure 3.1: Fluctuation test in bacterial colonies reveals a distinct clone size distribution at low
frequencies. (a) Fluctuation test on 234 E. coli colonies that were grown for two days, completely
harvested and then plated on nalidixic acid. The size of clones corresponding to resistant mutations
was determined by counting the number of CFUs on selective plates. (b) Fraction of the sampled
colonies carrying at least n resistant mutants (red solid line) in comparison with the well-mixed
control (blue solid lines). The blue dashed line corresponds to the classic Luria-Delbrück distribu-
tion for well-mixed populations (n−1) [163], while the red dashed line corresponds to large clones
found in colonies (n−2/5 and n−4 regimes, corresponding to so-called "bubble" and "sector" pat-
terns that were previously characterized [123].)

The resulting distribution exhibits a decay that resembles the classic Luria-Delbrück distribu-
tion typical of well-mixed populations (dashed blue line in Fig. 3.1), in contrast to the distribution
of large mutant clones (> 105 cells) previously observed in similar colonies of the same strain via
population sequencing (dashed red line) [123]. Indeed, comparison of the clone size distribution
pre-factors between colonies and well-mixed populations from sequencing data had previously
hinted to the necessary presence of a different distribution regime at very low frequencies [123].
In the following, we investigate the physical origin of these low-frequency clones and characterize
their statistics.
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Clone tracking experiments on microfluidics

a) b)

c) d)

Figure 3.2: (a-d) Our microfluidic incubator enables the tracking of front dynamics over several
generations. (a,b) Schematic and snapshot of microfluidic experiments. Cellular growth within the
chamber models the co-moving frame of the growth layer in an expanding colony. Nutrients are
supplied from both the top and bottom of the chamber by diffusion so that all cells grow at the
uniform rate (Fig. 3.8). Cells out of the growth layer are flushed away by continuous media flow.
(c) Proportion of color-switched cells whose final clone size is greater than n, where area is used
as a proxy for clone size. The different lines indicate experimental replicas with respectively 45
(blue), 64 (green), 150 (red), 245 (cyan) mutant clones. (d) Relationship between final clone size
and distance from the front at which such clone arose. Colors are as in panel (c). The black line
corresponds to λ/∆, where λ is the size of the chamber and ∆ is the distance from the front.

Because in colonies cell replication is primarily limited to the region near the expanding front,
called the “growth layer” [141, 164], most genetic mutations likely occur in this region. In order
to visualize the emergence and dynamics of clones over several generations in a well-controlled
environment, we designed an in vitro growth layer using a microfluidic chamber inoculated with a
newly engineered color-switching budding yeast strain (Fig. 3.2a, b and Methods). In the chamber,
whose design is inspired by previous studies [69, 83, 165–167], all cells grow at the same rate
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(Fig. 3.8) and are continuously pushed out as the cells in front proliferate, mimicking the mechan-
ical interactions between cells at the growing edge of a colony in its co-moving frame. By pinning
the position of the population front, the device enables tracking the growth layer at single-cell
resolution for up to 4 days (Fig. 3.2a, b and Methods).

To quantify the dynamics of clones stemming from a single mutational event, we conducted
lineage tracking experiments (Methods and Fig. 3.7). Since the switch can occur only at cell
division, is inheritable and does not measurably change the growth rate (Fig. 3.9), it effectively
behaves like a neutral mutation, whose position and growth can be visually tracked with fluorescent
microscopy.

During the course of the experiment, we observed both surfing clones, which are born at the
very front, as well as non-surfing clones, which are born behind the front (Fig. 3.2b). Surfing
events, which have been previously investigated [123], occur rarely and generate very large clones
(102-103 cells each) by letting clones stay at the front for some time. By contrast, non-surfing
clones cannot reach sizes larger than 100 cells and exhibit completely distinct dynamics. Using
clone area as a proxy for size, we obtained the clone size distribution by tracking non-surfing clones
for 19-50 hours. The resulting distribution (Fig. 3.2d) exhibits a power-law decay in agreement
with the fluctuation test experiments (Fig. 3.1b).

The time resolution of this experiment enables us to go beyond the clones’ ensemble behavior,
and to track the dynamics the individual clones. Remarkably, we find that clone size is anti-
proportional to the birth position of the first mutant (Fig. 3.2c). This straightforward relationship,
despite the complexities of real cellular populations such as cell death, aging of mothers, and
feedback of mechanical pressures on growth rate, suggests that a simple physical process may
underlie low-frequency clones.

Mechanical simulations
To gain an intuition into whether the physical growth process alone is sufficient to generate the
clone size behavior observed in Fig. 3.2, we employed 2D mechanical simulations where individually-
modeled cells proliferate and repel each other upon contact (see Methods)[41, 168]. We introduced
an explicit growth layer of finite depth λ within which cells of width σ grow exponentially at a
uniform rate (Fig. 3.3a). Beyond the growth layer, cells are considered to be in the bulk and stop
growing. We represented proliferation via budding to mimic our microfluidic budding yeast exper-
iments (Fig. 3.2).

The clone size distribution obtained from simulations exhibits two regimes (Fig. 3.3b): very
small clones (n ≲ λ/σ , Fig. 3.5) follow n−1 while larger clones follow a shallower power-law
in quantitative agreement with the allele surfing prediction [123]. Small clones correspond to
mutations originating behind the front whereas large clones correspond to mutations originating
at the front. When looking at clones arising behind the front, we find that clone size decreases
monotonically with the birth position of the first mutant (Fig. 3.3c).

These results (Fig. 3.2b,c) agree quantitatively with microfluidic experiments (Fig. 3.2c,d),
showing that the physical process of population expansion is indeed sufficient to generate the n−1

low-frequency clone distribution. To further investigate whether clone sizes are dependant on
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cell-level details, we altered the rules of bud site selection in budding cells and also performed
simulations of elongated cells (Fig. 3.11). In both cases, low frequency clones decay as n−1,
suggesting that this underlying phenomena may be described by a simple continuum mathematical
model.

Crowding model of non-surfing clones
o uncover the physical mechanisms underlying non-surfing clones, we developed a mathematical
model that describes what we observe in the microfluidic experiments and simulations. As in the
simulations, we assumed that the growth rate is uniform within a distance λ of the expanding front
and zero otherwise. We describe clones in a reference frame that is co-moving with the expanding
front, so that rather than accumulating at the edge of the colony, cells are washed out towards the
colony bulk (Fig. 3.3c inset). A mutant of infinitesimal size δn0 born at a distance ∆ from the
front will grow until it is pushed out of the growth layer by excluded volume effects from the cells
proliferating in front. This happens when the cells in front of the clone have grown to size λ to fill
the growth layer. Because growth is constant within the growth layer, the mutant will grow by the
same relative amount as the layers of cells in front, reaching a final size δn = λ

∆
δn0. By extending

this infinitesimal relation to mutant clones with n0 = 1 cell at the onset of mutation, we have the
prediction (see SI section 3.7 for finite-size analysis)

n ≈ λ

∆
, (3.1)

in agreement with cell-based mechanical simulations (Fig. 3.3b).
Equation 3.1 translates into a prediction for the clone size distribution when combined with

the probability of observing a mutation at distance ∆. If we assume that the mutation rate is
proportional to the growth rate, the probability that a mutation will occur at ∆ < λ is P(∆) = λ−1.
Then, the probability of observing a clone of size n is

P(n) = P(∆)×|d∆/dn|= λ
−1 ×λ/n2 = n−2, (3.2)

corresponding to a cumulative clone size distribution of P(Clone size> n) = 1/n.
This prediction rests on the assumptions that clone size (n) is infinitesimal compared to the

growth layer depth (λ/σ ) and that cellular growth rate is uniform within the growth layer. We
show in SI section 3.7 that Eq. 1 is robust for finite clones up to n= λ/σ , corresponding to mutants
born one cell behind the front, which is verified by both microfluidic experiments (Fig. 3.10) and
cell-based simulations (Fig. 3.5). Additionally, in SI section 3.7 we show that our prediction also
holds in the case of non-uniform growth inside the growth layer, which we verify via simulations
in Fig. 3.13.

Reconstruction of clone size distribution from subsamples
By characterizing the behavior of low-frequency mutations, a complete picture of the clone size
distribution in crowded expanding populations can now be assessed over the entire frequency
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range. The full distribution (black line in Fig. 3.4) exhibits three distinct regimes (grey shades in
Fig. 3.4): two regimes for surfing clones that were previously characterized [123] and one regime
for non-surfing clones at low frequencies characterized in this paper. Using random population
sequencing, one can capture the complete distribution only by sequencing unrealistically deeply
(over 105X coverage). With a typical coverage (10-100X), population sequencing is likely able
to assess only the high frequency regimes [123] (red line in Fig. 3.4a), and miss the non-surfing
bubble behavior that accounts for most of the genetic diversity. However, other sampling strategies
can be chosen to take advantage of the spatial proximity of cells that are closely related, a practice
that is becoming increasingly frequent in cancer research [155, 156, 169–173]. We find that sam-
pling all cells in a small contiguous region of the colony is capable of detecting non-surfing clones
(magenta line in Fig. 3.4a) or the transition between non-surfing and surfing clones (cyan line in
Fig. 3.4a). The data from these contiguous regions can be appropriately rescaled (Fig. 3.4b, see
Methods for rescaling details) in order to recover the complete behavior of the clone size distribu-
tion. The local spatial distribution of mutations can therefore be used to identify non-homogeneous
growth in the population by sequencing well-chosen sub-samples.

3.4 Discussion
A single resistant cell can seed an entirely new resistant population following an antimicrobial
attack. To predict the chances of success of a drug therapy, it is therefore crucial to assess not just
the high frequency mutations, but also the rare ones present in small clones after the incubation
period. In well-mixed populations, the probability that a mutation carried by at least a frequency
n is 1/n across the entire frequency range. Allele surfing, a hallmark of spatial growth, has been
shown to give rise to a different probability distribution characterized by an excess of mutational
jackpot events [123]. Here, we have shown that, while allele surfing can explain the behavior of
large clones, it fails to describe the majority of mutations which reach much lower frequencies.

Crowded growth in dense populations leads to clones whose final size is determined not by
when, but where a mutation first arose relative to the expanding front. Large surfing clones, which
are well described by the surface growth properties of the population, arise at the very front of
the expanding edge [164]. However, most mutations occur behind the front, are pushed into the
population bulk by proliferating cells near the front, and reach only small final clone sizes. This
process leads to a reproducible relationship between final clone size and initial position of the first
mutant cell, generating a clone size distribution different from that of surfing clones.

Because clone size is only determined by the relative position to the front, our argument to de-
rive the full distribution is not limited to two-dimensional colonies expanding at the outer edge, but
can be applied to a wider class of populations. Theoretical analysis predicts that these results hold
in any system where (i) growth rate varies only along the direction of expansion, (ii) a reference
frame exists where the growth profile is constant over time, and (iii) the mutation rate per genera-
tion is proportional to the growth rate (see SI). Under these conditions, the clone size distribution
describing small clones decays like n−1 up to a critical size that depends only on the growth layer
depth but is independent of the number of dimensions (circular colonies vs. solid tumors, see SI),
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origin of growth (outer vs. inner growth, see SI) or mode of proliferation (budding vs. symmetric
division, see SI), demonstrating the robustness of the distribution.

Our model allows to extend the theoretical predictions to more complex evolutionary scenarios.
For instance, we predict deviations from the n−1 power law in the cases where mutations confer
selective effects (see SI section 4, simulation confirmation in Fig. 3.12) and where mutation rate
and net growth rate are not proportional as may be the case during necrosis (see SI section 4).

As the population expands, the majority of mutations are left behind in the bulk, forming a
reservoir of genetic diversity in the population. In a typical microbial colony with a growth layer
of approximately 100 cells, these mutations would account for more than 99% of the genetic
diversity. Analogously, in a solid tumor, they would be responsible for the vast majority of the
intra-tumor heterogeneity, while being largely undetectable by population sequencing. As this
class of mutations is the most abundant, it is likely to harbor those rare mutations that can confer
resistance. Upon environmental changes that kill the surrounding wild-type, these mutants can be
spatially released and thus rescue the population from extinction [123, 174]. It is therefore crucial
to develop methodologies that enable their detection.

In well-mixed populations, the detection power is limited by the sequencing coverage one can
afford. Still, because the clone size distribution is characterized by a single process across the full
range of frequencies, it is possible to estimate mutation rates and selection effects using a reason-
able depth of sequencing. Here we have shown that this procedure cannot be applied to crowded
populations growing in space, since the shape of the clone size distribution is controlled by very
different processes at low and high frequencies. A way around this problem consists in exploit-
ing the spatial arrangement of the population. Neighboring cells are likely to be more closely
related than cells farther apart, therefore concentrating sampling power to one or few locations in
the population would allow to reach deeper into the low-frequency regime and measure important
population genetic parameters like the mutation rate.

In the context of cancer, where there are active debates on how to distinguish selection from
neutral evolution [175, 176], our findings highlight the additional challenge of distinguishing se-
lection effects from non-uniform growth that is exclusively driven by spatial constraints. Recent
work has recognized similar effects in experiments and simulations, proposing phenomenological
models of the tumorogenic evolutionary process [128, 135, 156, 177]. Here we offer a microscopic,
physical model of evolutionary dynamics that is consistent with the patterns of genetic diversity
in solid tumors (n−1 distribution in [128, 156]) and which is flexible enough to provide insight
into the effects that different evolutionary and demographic processes have on the statistics of rare
mutants. By taking advantage of the spatial proximity of closely-related cells, this model offers
rational sampling strategies for probing clone size distributions that can be useful for characteriz-
ing intra-tumor heterogeneity in cancer research [169–173]. These results can better characterize
the growth dynamics of the tumor, which can be used to more precisely identify signatures of
selection.
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3.5 Methods

Fluctuation test in E. coli
The mutator strain mutT of the bacterium E. coli was used for the fluctuation test experiment on
nalidixic acid. The spontaneous mutation rate in this strain was estimated to be approximately
2 ·10−7 per generation from the fluctuation test in the well-mixed control, which is consistent with
previously reported values [178]. Colonies starting from single cells were grown on plates with
LB and 2 % agar at 37 ◦C for 30 hours up to a population size between 108 and 5 ·108 cells. Each
of the 234 colonies was completely scooped from the plate with a pipette tip and resuspended
in PBS. A 100X dilution of the resuspension was stored in the fridge for further analysis, while
the rest was plated on selective plates containing LB, 2 % agar and 30 µg/mL of nalidixic acid
for CFU count. The selective plates were incubated overnight at 37 ◦C and imaged the following
day. CFU count was determined semi-manually with a built-in ImageJ function (see below). If
selective plates exhibited more than 400 CFUs, the set-aside 100X dilution was itself plated on
nalidixic acid, incubated overnight, and imaged the following day to better estimate the size of
large mutations. In the control experiment under well-mixed condition, populations were started
from about 50 cells in 200 µL of LB and incubated on a table-top shaker overnight up to saturation.
The final population size was estimated to be between 108 and 109. Each of the 178 well-mixed
populations was treated similarly as described above.

Colony counting on plates
Images of colonies on plates were thresholded and binarized using ImageJ. Thresholding was done
manually for each image to minimize the effect of noise, such as dust particles, smudges, or glares.
Colonies near the rim of the plates were excluded to avoid an edge effect. Colony counting was
done automatically with the Analyze particles function of ImageJ. The final clone size of the well-
mixed populations control was rescaled by 10 to take into account the different final population
size and to better visualize the comparison with the data from colonies.

Mechanical simulations
Cells are modeled as 2D rigidly-attached disks of width σ that proliferate via budding. Upon di-
vision, cells divide in polarly, with newly-formed buds retaining the orientation of their mothers.
Cells interact with each other upon contact via purely repulsive elastic forces and move via over-
damped Stokesian dynamics [41]. To mimic diffusion of nutrients into the population from the
exterior, we allow only cells within a distance λ from the front to actively grow while the rest
of the population remains in stationary phase. In order to simulate a flat geometry, we impose
periodic boundary conditions in the horizontal direction so that the populations expands outward
only in the vertical direction. To calculate the frequency of neutral mutations, we periodically label
40,000 newly-born cells and track their descendants.
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Fabrication of microfluidics
The microfluidics was fabricated by soft lithography [100, 101]. The master mold was made by
spin-coating (CEE 100 spin coater, Brewer Science) a 10 µm - thick layer of negative photore-
sist (SU8-2010, MicroChem) on a silicon wafer (WaferNet). The photoresist was patterned by
photolithography on a mask aligner (Hybralign 200, OAI) through a chrome photomask (Com-
pugraphics). The thickness of the pattern was measured by a stylus meter (Dektak3030, Bruker).
Polydimethylsiloxane (PDMS, Sylgard 184, Dow Corning) was mixed with the crosslinker in 10-
to-1 ratio and poured on the mold. After being cured at 60 ◦C overnight, the PDMS was peeled off
from the mold and punched holes in for inlets and outlets. The chip was bonded to a glass coverslip
after O2 plasma treatment by a reactive ion etcher (Plasma Equipment Technical Services). Prior
to cell culture, 0.1 % bovine serum albumin (Sigma-Aldrich) was loaded into the device to reduce
the interaction between cells and the substrate.

Yeast Strain
The microfluidics experiments were conducted with the S. cerevisiae strain yJK10, derived from
strain yDM117 (courtesy of Jasper Rine, University of California, Berkeley). yJK10 employs a
Cre-loxP recombination system to switch stochastically from a red (yEmRFP) to a green (yEGFP)
fluorescent state, as previously published [123, 179]. Using an estradiol-inducible Cre construct
allowed us to optimize the average switching rate for our experiments[180]. For all experiments,
we used a concentration of 1.6 nM β -estradiol corresponding to a switching rate of 7.1±4.8×10−4

per cell per generation (estimated from the number of observed switching during the microfluidics
experiments). In principle, the relative fitness between switched and unswitched cells can be set
via the differing cycloheximide susceptibility of both states. However, while we did not perform
any variation of relative fitness in this study, we chose to use yJK10 to maximize comparability
of our results to ongoing and future investigations involving this strain. Under our experimental
condition, the relative fitness between the two states (s = 0.022±0.040) is sufficiently small to be
neglected (Fig. 3.9). See the SI section 4 for the effect of non-zero s on the power-law exponent of
the distribution of clone size.

Clone tracking in microfluidics
The microfluidic growth chamber was designed as a population version of the mother machine
[69]. A suspension of yJK10 cells in an exponential phase was injected into the device with YPD
culture medium. After overnight culture, cells grew and filled up the growth chamber. At this point,
1.6 nM β -estradiol was added to the culture medium to induce color switching (the switching rate
was about 10−3 per cell division). Subsequent growth was imaged using time-lapse microscopy on
an inverted microscope (IX81, Olympus) with a 10X objective every 10 minutes for 2-4 days. The
taken GFP images (color of switched cells) were binarized by Otsu’s method [181], and the dynam-
ics of the clones were manually tracked on Matlab (Mathworks) and ImageJ (NIH). Throughout
the experiment, the temperature was controlled at 30 ◦C by a microscope incubator (H201-T, Oko-
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lab), and the flow rate of the medium was regulated by syringe pumps (neMESYS, CETONI) at 15
µL/h. The growth rate of cells was uniform across the chamber under our experimental condition
(Fig. 3.8) [182].
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3.7 Supplementary information

Finite size effects in minimal model of clone size distribution
Here, using a 1D mathematical model of growth layer expansion, we derive a relationship be-
tween birth position (∆) and clone size (n) without relying on an assumption that clone sizes are
infinitesimal.

We first consider an infinitesimally small mutant of width dσ0 born at a distance ∆ from the
front. This mutant will grow until it is pushed out of the growth layer by the cells proliferating
in front of it, which occurs when the thickness ∆ of cells in front has reached width λ filling
the growth layer. Because growth is constant within the growth layer, the infinitesimal mutant
will grow by the same relative amount as the thickness of cells in front, reaching a final width
dσ f =

λ

∆
dσ0.

Next, we consider a mutant with an initial finite width σ0 centered at a distance ∆ from the front
by subdividing it into many infinitesimal mutant segments over the range [∆−σ0/2,∆+σ0/2].
Since each infinitesimal segment d∆′ satisfies the relationship above, the final size of the mutant
clone will be

σ f =
∫

∆+σ0/2

∆−σ0/2

λ

∆′d∆
′ = λ log

(
∆+σ0/2
∆−σ0/2

)
. (3.3)

Assuming that the initial width σ0 corresponds to one cell width, we refer to n = σ f /σ0 as the
final clonal size and express λ

n = λ log
(

∆+σ0/2
∆−σ0/2

)
. (3.4)

In the limit where ∆ ≫ 1/2 (or equivalently n ≪ λ )

n ≈ λ

∆/σ0
, (3.5)

This relationship between position at birth and final clone size is consistent with what we pre-
dict in the main text for infinitesimal clones (Eq. 3.1) and find in cell-based simulations (Fig. 3.3b).
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This approximation underestimates the final clone size, with the largest errors corresponding
to mutations that occur closest to the front (∆ ≪ λ ). However, the approximation works very
well even for the largest possibly non-surfing clones that originate at ∆ = σ0, corresponding to a
relative error of |(nexact−napprox)/nexact|= 0.1. Clones born closer to the front (∆<σ0) tend to surf
(Fig. 3.3c), leading to a qualitative change in the clone size distribution that is highly dependent on
the granular nature of the cell colony.

The relationship between position at birth and final clone size, which holds for each clone indi-
vidually, translates into a prediction for the global clone size distribution when combined with the
probability of observing a mutation at distance ∆. We assume that the mutation rate is proportional
to the growth rate (no death), meaning that mutations occur with a certain probability only when a
new cell is born. Since growth is constant within the growth layer, the probability that a mutation
will occur at ∆ (for 0 < ∆ < λ ) is P(∆) = λ−1. By inverting Eq. 3.4 in order to calculate d∆/dn

∆ =
1
2

en/λ +1
en/λ −1

, (3.6)

we can obtain the probability of observing a clone of size n

P(n) = P(∆)
∣∣∣∣d∆

dn

∣∣∣∣= en/λ

λ 2(en/λ −1)2
, (3.7)

If n ≪ λ/σ0, we find the approximate relation we had before P(n) ≈ n−2 (and cumulative distri-
bution P(n > Clone size)≈ n−1).

Extension to non-uniform growth layer
We built an ODE model able to explain the form of the clone size distribution we observe for an
arbitrary one-dimensional growth profile k(z). At time t = 0, a mutant cell is born a distance ∆

behind the front. We assume that the growth rate k(z) depends only on the z position of the cell
measured as distance from the front in units of cell widths and that k(z) is constant over the length
of one cell. The clone size n will evolve in a position

ṅ =
∫ z(t)+n

z(t)
k(z′)dz′ ≈ k(z(t))n

where z(t) is mutant clone’s position at time t. We have taken the limit that the characteristic clone
size is smaller than the lengthscale on which k decays. Formally, the final size of the clone will be:

n∞ = n0 exp
[∫

∞

0
k(z(t))dt

]
where n0 is the initial size of the clone (in most cases 1) The element’s position, z, will move away
from the front with velocity:

ż =
∫ z

0
k(z′)dz′
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if we choose a frame of reference in which the front is ‘pinned’ at z = 0 while the bubble is pushed
back along the nutrient profile. A key assumption here is that the growth profile is stable in relation
to the front. Now, we can write the asymptotic clone size as:

n∞ = n0 exp
[∫

∞

∆

k(z)
ż

dz
]
= n0 exp

[∫
∞

∆

k(z)∫ z
0 k(z′)dz′

dz
]

Note that in order for the asymptotic area to be well-defined, the integral over z must be finite. We
make the change of variables:

κz ≡
∫ z

0
k(z′)dz′

dκz = k(z)dz

Therefore:
n = n0

κ∞

κ∆

where we have dropped the subscript on n. We see that κ∞ must be a finite constant to have a finite
asymptotic area, so this further constrains our choice of k(z).

The clone size distribution P(n) can be written as

P(n) =
∣∣∣∣ da
d∆

∣∣∣∣−1

P(∆),

and from the relationship above we have that∣∣∣∣ dn
d∆

∣∣∣∣= n0
κ∞

κ2
∆

k(∆)

If we assume that the probability of mutating is proportional to the growth rate, then P(∆)∼ k(∆).
It thus follows that

P(n)∼
κ2

∆

n0κ∞

∼ 1
n2 .

The result holds for exponential growth profiles, power law profile with small and large z cutoffs,
and Monod type profiles of the form e−z

1+e−z . We explicitly test this prediction for mechanical cell-
based simulations with exponential profiles in Fig. 3.13.

Another interesting aspect of this analysis is that the final bubble area depends on its position
at birth through the term κ∆. We see that κ∆ is a measure of the total amount of available biomass
between the bubble’s birth position and the front. In other words, the bubble size is dictated by
global properties of the nutrient profile.
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Selection: single effect size
If the mutations are not neutral, the mutant population will grow at a different rate compared to
the WT. We assume that this difference is given by a multiplicative constant, so that if the WT
grows according to k(z), the mutant grows according to (1+ s)k(z) where s > −1 is the “fitness
difference” between the two strains.

Using the same analytical derivation as in the previous section, we find that

n = n0

(
κ∞

κ∆

)1+s

.

Note that for neutral mutations (s = 0) we recover the old result. We now get for the probability
distribution (conditioned on s):

P(n|s)∼ n−
2+s
1+s

corresponding to cumulative distribution P(Clone size> n)∼ n−1/(1+s). See Fig. 3.12 for verifica-
tion of this prediction in mechanical cell-based simulations.

This prediction follows our intuition: if s < 0 (deleterious mutations) the bubble distribution
falls off more steeply, whereas it becomes more broad as we get to larger positive fitness effects.

Selection: distribution of fitness effects
A distribution of fitness effects will also create noticeable distortions in the clone size distribution.
For small s, we have:

P(a|s)∼ n−2+s

For a distribution of fitness effects P(s), we have the clone size distribution:

P(n) =
∫

P(n|s)P(s)ds ∼ n−2⟨ns⟩s

where ⟨ns⟩s is related to the generating function of the distribution of fitness effects, ⟨ezs⟩s, evalu-
ated at z = logn.

Let’s assume s ∼ N (0,σ), so we have:

P(n)∼ n−2
∫

nses2/σ2
ds

where we have dropped any constant factors. We can complete the square and perform the integral
to get:

P(n)∼ n−2 exp
(
−σ2 log2 n

4

)
≈ n−2

(
1− σ2 log2 n

4

)
since σ is assumed to be small.



CHAPTER 3. IMPACT OF CROWDING ON THE DIVERSITY OF EXPANDING
POPULATIONS 64

Clone size in microfluidic lineage tracking
In microfluidic experiments, we measure the size of clones within a culture chamber at each time
point and use the maximum value as a proxy of final clone size. We show here that this approxi-
mation does not affect the predicted power-law of the site frequency spectrum.

If a cell is born at distance ∆ from the front with initial length σ0, then the initial position of
the leading edge of the clone is z = ∆+σ0/2. When the leading edge makes contact with the back
of the growth layer (z = λ ), the entire clone is stretched to size σ f = σ0λ/(∆+σ0/2). Inverting
this relationship gives ∆ = λ/n−1/2, where the length scale is rescaled by σ0. The result slightly
deviates from Eq. 3.1, but P(n) ∝ d∆/dn ∝ n−2 holds in this case as well.

Clone size distribution with non-homogeneous death rate
The clone size distribution for non-surfing clones behaves like n−2 when assuming that the prob-
ability P(∆) for a mutation to appear at position ∆ is proportional to the net growth rate k(∆) in
such position. However, this assumption might break under certain conditions, for instance if a
non-homogeneous death rate is present. In the general case, it still holds that the probability of
observing a mutant of size n is

P(n) = P(∆)
∣∣∣∣ dn
d∆

∣∣∣∣−1

and the relationship between final size n and position at birth ∆ remains

n ∝

[∫
∆

0
k(z)dz

]−1

where k(z) is the net growth rate at position z. However, further simplifications cannot be made,
leading to the general expression

P(n) ∝
P[∆(n)]

n2k[∆(n)]
,

where the notation ∆(n) highlights that ∆ is a function of n. The functional form of the clone size
distribution P(n) will then in general depend on the specific form of P(∆) and k(∆).

For illustration, we report here an example in which we define the net growth rate k(z) =
exp(−z/λ ) = α(z)−β (z), where α(z) represents the birth rate and is proportional to the mutation
rate P(z), while β (z) is the death rate. In this case, n = [1− e−∆/λ ]−1 and

P(n) ∝
α(∆)

n2(1−1/n)
=

α(∆)

n(n−1)
.

If α(z) is uniform along z and β (z) = 1− e−z/λ , then the clone size distribution P(n) ∝
1

n(n−1) ,

which tends to n−2 for large n, but deviates from it at small n. This would correspond to the case
in which replication rate is not affected by position, but death rate increases as we move deeper
inside the colony, for instance because of the accumulation of toxic waste.
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Inferring mutation rate from non-surfing clones distribution and localized
deep sequencing
We have shown that for non-surfing clones, the probability that a mutation is larger than size n
is P(Clone size > n) = 1/n. Indeed, by definition, a mutation has to be carried by at least n = 1
cells and P(Clone size > 1) = 1 as intuition suggests. A related quantity to P(Clone size > n)
that can be observed experimentally is the number of mutations M(Clone size > x) that are carried
by at least a frequency x of the population (Fig. 4). Because the total number of mutations in a
population of final size N is approximately µN, where µ is the mutation rate per replication, it
follows that M(Clone size > x) = µNP(Clone size > n) = µN/n = µ/x. It is therefore possible to
estimate the mutation rate µ from the prefactor of the non-surfing clone regime of M(Clone size
> x) (low-frequency range of the black line in Fig. 4).

If the population is too large or sequencing coverage is too low to observe the non-surfing
clone regime, we find that localized bulk deep sequencing can be used (cyan line in fig. 4). In
this case, the observed frequency x̂ of a mutation represents the frequency in the sequenced sub-
population N̂ < N. However, also the total number of mutations in the sub-population scales like
µN̂. As a result, the observed number of mutations above an observed frequency, M̂(Clone size
> x̂) = µN̂

x̂N̂
= µ/x̂. Therefore, the prefactor of the power-law can again be used to estimate the

mutation rate of the population, even if only part of the population is sequenced.

Rescaling of entire colony frequency spectra
In order to rescale the clone frequency distributions from sub-sampled regions, we calculate a char-
acteristic frequency fc and corresponding value of the cumulative distribution Nc. The frequency
fc can be thought of as the frequency that a mutation carried by a single cell in the sub-sample
would have in the entire colony.

For the side sampling technique, fc is determined the the solid angle θ =(sampled width)/(colony
radius) that is inscribed by the sampled region: fc = θ . For the middle sampled regions, nc further
takes into account the ratio r =(number of cells in fictitious inner colony with radius equal to outer
extent of sampled region)/(number of cells in entire colony): nc = rθ .

Nc is then determined by aligning the smallest of value of N is the subsampled region with with
predicted trend N/Nc = nc/ f .

Supplementary Figures
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Figure 3.3: Cell-based simulations show different behaviors between surfing and non-surfing
clones. (a) Illustration of the mechanical simulations. Cells lying in the growth layer, defined
as the region within a distance ∆ < λ from the front (dark purple region with dashed line showing
back of growth layer), replicate exponentially. In this image, λ = 14 cell widths (about 50 µm). As
growth proceeds, the front moves at a constant speed and cells behind the front are continuously
pushed out of the growth layer by replicating cells in front due to excluded-volume interactions.
Mutations can either occur at the very front (red cells) generating a surfing clone, or behind the
front (blue cells) generating non-surfing clones that are quickly washed out of the growth layer.
Clonal dynamics are shown for the first 20 generations of cellular growth. (b) The full clone
distribution (solid black line) can be subdivided in the size distribution of surfing clones (red dot-
ted line), which dominate the high-frequency tail of the distribution, and non-surfing clones (blue
dotted line), that dominates the low-frequency behavior. The dashed black line shows the n−1 pre-
diction. (c) Scatter-plot identifying for each clone (blue dot) the distance from the front at which
the mutation first arose and the final clone size upon exiting the growth layer. Surfing clones are
by definition clones that arose within 1 cell distance from the front. Non-surfing clones are found
to satisfy the relationship n = λ/∆, rationalized in Eq. 3.1 (dashed black line). The inset shows the
dynamics of the blue clone a short time (< 1 generation) after birth in the reference frame of the
front. This clone is born at distance ∆ = 7 cells from the front and grows to a size of n = 2.
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Figure 3.4: Results from multiple sampling strategies can be combined to infer mutation rate
and growth dynamic of the population. (a) Different sampling methods generate distinct clone
frequency distributions that highlight distinct properties of the growth dynamics. This in stark
contrast with well-mixed populations where the sampling scheme merely affects how well the
clone frequency distribution can be resolved. The solid black line shows the clone frequency
distribution (clone size divided by population size) of the whole simulated colony (growth layer
λ/σ = 14 cells) grown up to 106 cells. We identify three frequency f ranges in the site fre-
quency spectrum: (i) for f < (λ/σ)/N, the distribution is dominated by non-surfing clones; (ii)
for (λ/σ)/N < f < 0.003, allele surfing dominates generating bubbles and sectors as previously
described; (iii) for f > 0.003, we see a third behavior, generated by mutations that arise in the
first few generations, when the whole microcolony is growing exponentially (N < π(λσ)2). The
grayscale regions correspond to non-surfing bubbles (light gray), surfing bubbles (intermediate
gray), and sectors (darkest gray). Sampling 0.1 % of the population (equivalent to a 1000X cov-
erage in sequencing) can target non-surfing small clones and generate their corresponding dis-
tribution (middle, magenta), or high-frequency surfing clones (random, red). Sampling an outer
segment generates a shifted distribution where distinct trends can be observed. (b) These sampling
techniques can be combined to reproduce the entire clone size distribution. The rescaling used
here requires only knowledge of the total number of cells in the colony and the size/shape of the
sampled region, as are described in SI section 3.7.
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a) b)

Figure 3.5: (a) Clone size distribution for a range of growth layers depths: λ = 4, λ = 9, λ = 14,
and λ = 20 (units of cell widths). The dashed line shows the n−1 prediction. (b) Clone size
distribution rescaled by λ shows that the n−1 regime extends over the range n = 1 to n = λ . For
n > λ , the clone size distribution is dominated by surfing bubbles (Fig. 3.3a).

Figure 3.6: (a) Clone size distribution (black) for colony with λ = 14 cells and radius R= 602 cells
(total number of cells in colony = 106). Colored lines show distributions obtained via sub-sampling
using side technique with widths 11 cells (green), 36 cells (blue), 112 cells (cyan) and depths of
11 cells (solid line), 36 cells (dashed line), 120 cells (dotted line). Shaded regions correspond to
non-surfing bubbles, surfing bubbles, and established sectors. The grayscale regions correspond to
non-surfing bubbles (light gray), surfing bubbles (intermediate gray), and sectors (darkest gray).
(b) Rescaled distributions, xc and Nc are described in Section 3.7.
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Figure 3.7: A schematic of the engineered S. cerevisiae strain yJK10 that stochastically switches
the color from RFP (yEmRFP) to GFP (yEGFP). The switching rate is tunable with β -estradiol,
and the fitness advantage/disadvantage of switched cells can be tuned with drugs, hygromycin B
and cycloheximide due to an additional cycloheximide resistance allele cyh2∆::cyh2r [183]. The
genotype of the strain is as follows:
W303 MATa cyh2∆::cyh2-Q37E-cs hmlα2∆::R ho∆::prSCW11-cre-EBD78-natMX
ura3∆::prGPD-loxP-yEmRFP-tCYC1-CYH2-hygMX-loxP-yEGFP-tADH3.
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Figure 3.8: (a) A snapshot from the particle image velocimetry analysis [102, 182]. Each arrow
shows the parallel component of the displacement of a 20x20 µm2 region (32x32-pixel) during
one time frame (10 minutes). For the sake of visibility, the length of arrows is rescaled by factor
of 2, and the number of arrows is reduced from 37x37 to 13x13. (b) Under our usual experi-
mental conditions (nutrient-rich condition, 2%-glucose YPD media), the velocity field is linear
along the growth direction, showing that all cells grow at the same rate. To make sure this method
would capture a drop in growth rate, we replicated this experiment under nutrient-poor condition
(0.01%-glucose YPD media). As expected, the overall velocity is reduced (slower growth rate) and
heterogeneous along the growth direction (see inset), showing a slow down in the middle of the
chamber due to nutrient depletion. The error shows the standard deviation of the statistics across
horizontal positions and over 100 (nutrient-rich) and 140 (nutrient-poor) time points.
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Figure 3.9: Estimation of the relative fitness between the original yJK10 strain and the color-
switched yJK10 strain. (a) Colony collision experiments to estimate the fitness effect of color
switching. Collisions of 12 pairs of the original yJK10 colony and the color-switched yJK10
colony were observed on YPD plates. The relative fitness between two strains was estimated at
s = 0.022± 0.040 by the formula s = L/R from the equal time argument [184]. The lines on
the figure are illustrations of the concept and not the actual fittings. (b) Population expansion
experiments in microfluidics. 1-3 cells were initially trapped in the microfluidic chamber, and the
growth of the population was observed for the original yJK10 strain (with YPD) and the color-
switched yJK10 strain (with YPD and YPD + β -estradiol). (c) The exponential fitting of the
growth curves gives us the estimation of the relative fitness of the color-switched strain to the
original strain: s = 0.019 (YPD) and s =−0.020 (YPD + β -estradiol).
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Figure 3.10: Proportion of color-switched cells whose final clone size is greater than n, where area
is used as a proxy for clone size. The different lines indicate experimental replicas with respectively
45 (blue), 64 (green), 150 (red), 245 (cyan) mutant clones. The solid lines correspond to the
chamber depth of λ = 500 µm as used in Fig. 2c and the dashed lines correspond to clones imaged
at a distance λ = 300 µm, mimicking the clones we would expect to see in a shorter chamber. (d)
Relationship between final clone size and distance from the front at which such clone arose. Purple
point correspond to λ = 500 µm and cyan points correspond to λ = 300 µm. The different point
types indicate experimental replicas with respectively 45 (diamonds), 64 (upside down triangles),
150 (circles), 245 (rightside up triangles) mutant clones. The black line corresponds to λ/∆, where
λ is the size of the chamber and ∆ is the distance from the front.
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Figure 3.11: Clone size distributions for neutral mutations in mechanical simulations of ellipse-
shaped and budding cells with different division rules (growth layer depth λ = 14 cell widths). The
ellipse-shaped cells in these simulations have aspect ratio = 1 at birth and grow to aspect ratio = 2.
These simulations use conjugate gradient energy minimization (see [185]) rather than overdamped
molecular dynamics as used in the main text (Fig. 3.3). Ellipse data is shown in cyan, budding
data is shown in red, and budding data from the main text (Fig. 3.3b) is shown in solid black
for reference. The dashed black line shows the 1/n prediction. We compare four different rules
for assigning the orientations after division, including the case where cells retain the orientation
of their mothers (solid black/cyan/red lines), are assigned random orientations (dashed red/cyan
lines), exhibit polar budding with new buds facing outward (dotted red line), and exhibit axial
budding with new buds facing inward (dot-dashed red line).
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Figure 3.12: Clone size distributions for advantageous mutations in mechanical simulations with
a uniform growth layer depth of λ = 14 cell widths. (a) Distributions for selective advantages
(s= kmut/kWT−1) of s= 0 (solid black), s= 0.01 (dashed red), s= 0.05 (dotted green), and s= 0.2
(dash-dotted blue). The dashed black line show the 1/n prediction. (b) The small-n power-law
exponent (cyan points), found in the range n < 10, compared to the predicted value P(Clone size>
n) ∝ n−1/(1+s) (dashed black line). For these simulations, we used ellipse-shaped cell simulations
where cells have aspect ratio = 1 at birth and grow to aspect ratio = 2. These simulations use
conjugate gradient energy minimization for population dynamics.
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Figure 3.13: Clone size distributions for neutral mutations in mechanical simulations with a uni-
form growth layer (solid black line) and a growth layer profile where cellular growth rate decreases
exponentially with distance to front (dashed red line). The dashed black line show the a/n pre-
diction. Both simulations have a characteristic growth layer depth of λ = 14 cell widths. For the
uniform growth layer, the growth rate k = k0 for ∆ < λ and k = 0 for ∆ > λ , where ∆ is the distance
to the colony front. For the uniform growth layer, the growth rate k = k0 exp−∆/λ for ∆ < λcut
and k = 0 for ∆ > λcut, where we used a cut-off distance of λcut = 40 cell widths. For these simu-
lations, we used ellipse-shaped cell simulations where cells have aspect ratio = 1 at birth and grow
to aspect ratio = 2. These simulations use conjugate gradient energy minimization for population
dynamics.
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Chapter 4

Physical structures of confinement harbor
diversity

In chapter 3, we reveal the clone size distribution of jam-packed populations with a 1D continuum
model. The model can be widely applied to 2D and 3D systems as long as the geometry is sym-
metrical, such as the situation in radial expansion. However, the model is no longer valid once the
geometry gets asymmetrical or anisotropic. Especially, when the shape of the periphery is highly
structured, the analysis requires special treatment. In the context of range expansion, the problem
is known as the “wedge problem”, where the fluctuation of domain boundaries is suppressed when
the periphery has an acute concave shape [186, 187].

In this chapter, the impact of the shape of physical boundaries in a confined habitat is discussed.
A hydrodynamic approximation of a cellular population, agent-based simulations, and microfluidic
experiments are presented.

I thank Carl Schreck, who is the developer of agent-based simulations, for sharing the codes and
giving me useful advice to edit and modify them. I also thank Jonas Denk for helpful discussions
about Comsol simulations. The Comsol simulations are conducted using the Molecular Graphics
and Computation Facility in University of California, Berkeley, and the facility is supported by
NIH S10OD023532.

4.1 Introduction
Lineage dynamics in spatially structured populations are impacted by the shape of the periphery
of the populations. In the case of range expansion, previous studies have shown that the front
roughness is critical to the fluctuation of lineage boundaries and the site frequency spectrum [123,
141]. This is due to the mismatch between the direction of local expansion and macroscopic
expansion. The local expansion is typically normal to the front shape and not always parallel to the
radial direction. Consequently, a zigzag front exhibits characteristic domain fluctuations distinct
from a flat front [188].

A similar analogy can be applied to confined populations. Here, the front of the range expan-



CHAPTER 4. PHYSICAL STRUCTURES OF CONFINEMENT HARBOR DIVERSITY 77

sion corresponds to the walls of the confinement. In natural confined habitats, the wall is not often
flat, but has some micro-scale structures. For example, Lactobacillus and Acetobacter colonize
a cardia of a fly gut, and the wall of the region has a micro-scale roughness, which may impact
the population dynamics [46]. Note that, as a remarkable difference from the front shape in range
expansion, the wall shape is always fixed and does not change.

In an extreme scenario, a deep concave structure at a wall can be regarded as a natural mother
machine [69], where a cell can be trapped at the structure and hardly invaded by other cells. Thus,
the trapped cell can stay in the population for a long time. They enjoy the spatial advantage
regardless of the growth rate advantage. This suppresses natural selection and maintains genetic
diversity in the cavity.

As discussed in chapter 2, microbial populations in confinement are ubiquitously found, and
revealing the feature of the population dynamics is fundamental. Micro-scale structures of physical
boundaries can impact the rate of evolution and turnover in confined populations. It is meaningful
to investigate the effect of wall structures on population dynamics.

4.2 Continuum model simulations
To systematically study the impact of wall structure, we focus on simple pore geometries with a
zigzag wall at the bottom of a pore (fig. 4.1a). We assume dense-packed populations confined
in the pore, and aim to characterize the collective movement. One of the simplest models is a
continuum model based on Darcy’s law (see chapter 1), where r is the growth rate, µ is motility
coefficient, and p is internal pressure [61–63].

∇ · ẋ = r(x), (4.1)

ẋ =−µ∇p, (4.2)

∇
2 p =− 1

µ
r. (4.3)

Simulations of the model show the macroscopic behavior of the dense population given the physi-
cal boundary conditions (fig 4.1). In the model, the growth rate of cells is assumed to be uniform
across the space. At the periphery, we assume a no-penetration boundary condition and slip bound-
ary condition, meaning cells do not feel friction at the wall. At the opening, the internal pressure
is assumed to be zero.

Importantly, there is a collective cellular flow at the bottom where micro-scale structures exist.
The flow is directed from the convex tips to the concave tips, meaning cells at the convex tips pro-
duce offspring and push neighbors to the concave tips. These collective dynamics give a significant
spatial advantage to cells at the convex tips. Cells at the convex tips are supposed to stay in the
population for a long time. Also, it can be expected that the domain boundaries between lineages
are fixed near the concave tips. This expectation is tested by agent-based simulations in the next
section.
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Figure 4.1: Comsol simulations of a continuum cellular growth model. (a) A schematic illustration
of microbial colonization in a pore with micro-scale structures at the bottom. (b) Cellular move-
ments in a continuum model simulated with Comsol. The arrows show the direction of movement,
and the colors show the magnitude of the velocity (blue: slow and red: fast). (c) Plots of internal
pressure p in different bottom geometries simulated with Comsol. The colors show the magnitude
of pressure (blue: low and red: high).

Friction at the wall
Slip boundary conditions are fundamental to the collective movements near the wall; however,
the condition is unusual in the context of hydrodynamics, where no-slip boundary conditions are
commonly used. In the case of cellular populations, no-slip boundary conditions are not realistic
because of the finite size effect of cells. On the other hand, no friction is also not very realistic, even
though it is a good first-step assumption to simplify the situation. To test the degree of frictions
near the wall experimentally, we do a microfluidic culture of bacteria, Acetobacter indonesiensis,
in a straight rectangular chamber, and conduct PIV (particle image velocimetry) to measure the
local velocities (fig 4.3) [182]. The cellular velocities are reduced near the wall, and the reduction
is stronger when the velocity is small: it is a ∼ 50% reduction around the deep part of the chamber.

4.3 Agent-based simulations
The above continuum model simulations predict the stabilization of domain boundaries between
lineages. To test the prediction, we conduct agent-based simulations (fig 4.4). The simulations are
originally presented in [168], and modified for this project to simulate various wall shapes. The
model simulates the growth of budding cells under over-damped conditions in a 2D space. The
cellular growth mechanically pushes neighbors and produces collective movements by excluding
volume effects. All the cells are labeled once the population gets dense-packed, and the lineage
dynamics are tracked.

The stability of domain boundaries can be captured by simulations of 2-strain dynamics (fig. 4.5).
In the simulations, the chamber has four dimples, and the population dynamics show “quantized”
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Figure 4.2: Cellular velocity along with the wall of a pore. Comsol simulations show the velocity
near the wall for a zigzag geometry (a) and round geometry (b). The red line shows the region
plotted in the right panel.

stable frequencies corresponding to the occupation of the dimples. Lineages are trapped within the
micro-scale structures of the habitat, and they are resistant to invasion from neighboring lineages
(fig. 4.5b). The results imply that spatial structures in a habitat can enhance the genetic diversity
of the population.

Next, to investigate the impact of the size of the micro-scale structures, the dimple depth is
systematically varied. In the simulations, all the cells in a habitat are individually labeled at a
time point, and the decay of the number of existing lineages is tracked over time (fig. 4.6). As
expected, the maximum number of lineages in the habitat is equal to the number of dimples when
the dimples are deep. As the dimple size decreases, the number of lineages rapidly converges to 1,
which is a natural consequence of genetic drift. The changes are continuous, and the decay speed
monotonically correlates to the dimple size.

4.4 Microfluidic experiments
To experimentally test the theoretical predictions, microfluidic pores with micro-scale structures
are fabricated, and bacteria are cultured in the chambers. The basic experimental protocol follows
the method in chapter 2. Two differently-colored neutral Acetobacter indonesiensis strains are co-
cultured in microfluidic chambers. The chamber depth is 300 µm, which is deep enough for cells
to form jam-packed populations, but still sufficiently small to supply nutrients to the bottom by
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Figure 4.3: PIV analysis to show the velocity reduction near the side walls. (a) A snapshot of a
microfluidic culture of bacteria. The white arrows are schematic representations of cellular flows.
The white scale bar shows 50 µm. (b) PIV analysis shows the reduction of velocity near the walls
due to frictions. The PIV results are averaged over time points, and the errors are shown as shaded
regions. Different colors show different positions in the chamber (yellow: near the opening, and
dark blue: near the bottom).

Figure 4.4: Snapshots of agent-based simulations. All the cells in a dense-packed population are
labeled (a), and the lineage dynamics are tracked (b and c). Cells around the convex tips enjoy the
spatial advantage and dominate the lineage dynamics in the chamber.

diffusion. The chamber has 4 dimples, whose size is about 5 µm, at the bottom wall. As control
experiments, chambers with a flat-bottom wall are also tested.

Remarkably, population dynamics in chambers with micro-scale structures exhibit pinning of
domain boundaries (fig. 4.7), as expected by theory. The distribution of the number of domain
boundaries is measured at t = 90 hours after the populations get dense-packed. The flat-bottom
populations exhibit the monotonically decaying distribution, consistent with the diversity loss due
to genetic drift. On the other hand, the dimpled-bottom populations have the second peak in the
middle, showing the tendency of pinning (note that zero domain boundary means that one strain
takes over the population).
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Figure 4.5: Frequency dynamics of 2-strain simulations. (a) Frequency dynamics in a chamber
with a flat bottom. Population dynamics exhibit random genetic drift. (b) Frequency dynamics in
a chamber with zigzag dimples. The bottom wall has four dimples, whose depth is 1 cell length.
Stable frequencies are quantized to 5 states, corresponding to the dimple occupations (0 - 4 dimples
are occupied).

4.5 Conclusion
In this chapter, the role of the wall shape on the dynamics of a dense-packed microbial population
is investigated by a continuum model, agent-based simulations, and microfluidic experiments. The
wall shape impacts the macroscopic flow of biomass by constraining the direction of cellular dis-
placements. This results in the emergence of "spatial hot spots" where cells are spatially fixed and
persist in the population.

In light of evolutionary dynamics, it is noteworthy that growth rate advantages may be less
relevant when the spatial advantages due to wall shapes exist. Our results imply that structured
physical boundaries weaken selective pressure and promote genetic drift. In an extreme case,
spatial structures may prefer novel traits of cells such as an ability to invade a dense-packed space
and attach to a "spatially-advantageous" position.

In fact, agent-based simulations reveal that even small structures, which are smaller than a
single-cell size, can promote the persistence of existing lineages. Thus, micro-scale structures or
the roughness of the walls can impact the genetic diversity in a confined population. Our results
provide a novel insight into the importance of small physical structures in population dynamics
under confinement.
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Figure 4.6: Frequency dynamics of multi-strain simulations. (a) The geometry of the chamber.
All the geometrical parameters other than the dimple depth are fixed, and only the dimple depth is
systematically varied from 0 (flat bottom) to 1.5 cell depth. (b) Decay of the number of lineages
in the pore. 10 independent simulations are averaged for each dimple size. For the flat-bottom
chamber, the number of lineages decreases to 1 due to genetic drift. On the other hand, the number
of lineages stays around 8, which is the number of dimples, for the chambers with deep dimples.
As the chamber depth changes, the stability of the genetic diversity is gradually decreasing. The
inset shows the magnified view of the early time points of the simulations.

Figure 4.7: Microfluidic experiments reveal the pinning of domain boundaries at micro-scale struc-
tures. (a) A snapshot of microfluidic experiments. Differently-colored two neutral strains (green
and dark) of Acetobacter indonesiensis are co-cultured in microfluidic chambers with 4 dimples,
whose depth is about ∼5 µm. The snapshot is 90 hours after the populations get dense-packed.
Domain boundaries are pinned at the micro structures, and the lineage diversity is maintained.
The white scale bar is 50 µm. (b) The number of domain boundaries around the bottom wall is
measured in 49 and 38 populations for flat-bottom chambers and dimpled-bottom chambers, re-
spectively. The bar graph shows the distribution of the number of domain boundaries at t = 90
hours after the populations get dense-packed. The vertical lines show the average number of do-
main boundaries for each case.
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Chapter 5

Population dynamics in hydrodynamic flow

Microbial populations exhibit various density phases, as shown in chapter 2. In the previous chap-
ters 3 and 4, characteristic dynamics of jam-packed populations are discussed. In this chapter,
dilute populations in various types of flow are investigated. Especially, microfluidic methodology
to design in-vitro experiments is the main topic.

This chapter consists of three parts. First, the mixing of populations by peristaltic deformation
of chamber walls is discussed. Peristaltic mixing is achieved by microfluidics and, its application to
small-scale continuous culture is proposed. Second, bacterial aggregation in vortex flow is studied.
We show that vortex flow can be easily produced in simple geometry. Microfluidic experiments
reveal that a vortex can work as a habitat for microbes. Third, bacterial growth in slow directional
flow is investigated. We propose a microfluidic design to systematically control the flow rate in
culture chambers of various sizes.

I thank Andre Lai and Aaron Streets for helping me with designing and fabricating double-
layer microfluidics. Jonathan White and Aaron Streets kindly let me use their KATARA system
for controlling peristaltic mixing. I am also grateful to Siddhansh Agarwal for the helpful discus-
sion about the hydrodynamics of lid-driven cavity flow. The Comsol simulations in this chapter
are conducted in the Molecular Graphics and Computation Facility in University of California,
Berkeley, and the facility is supported by NIH S10OD023532.

5.1 Mixing by external peristaltic forces
Mixing is critical for spatially-structured populations to diminish spatial heterogeneity. It makes
nutrient availability or death rate uniform across populations and promotes the evolution of the
populations. Mixing can be passively done by diffusion or motility of microbes. In addition, it is
also possible to actively mix populations by external forces, such as shaking or peristaltic pushing.

Peristaltic motions are fundamental in the gut microbiome [106, 189]. They are useful to
mix low Reynold number liquid, such as a viscous suspension or a small-volume culture, where
shaking does not work well. Experimentally, peristaltic mixing has been applied to microfluidic
experiments [190, 191], on behalf of a “shaken test tube”. The mechanics are proposed by Quake
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group using double-layer microfluidics [192, 193]. The device consists of a bottom thin “culture
layer” and a top “control layer.” By applying pressure to the control layer, the top layer pushes
down the bottom one, and the deformation can completely close the bottom channel, known as
Quake valve [192]. By actuating three valves in a certain order, directional flow can be produced,
and it can be used for mixing.

We design a microfluidic device, whose design is inspired by the prior work [191]. Microbes
can be cultured in a ring-shaped chamber, and peristaltic motions enable the mixing of the popu-
lation. Importantly, the device allows us to continuously culture the population by serial dilution
(fig. 5.1). The actuation of the valves is regulated by a KATARA system (Kit for Arduino-based
Transistor Array Actuation) [194].

Figure 5.1: Microfluidics for mixing and continuously culturing microbial populations. (a) A
schematic diagram of valve actuation for each step. Closed valves are shown in orange color.
Black arrows show the movement of flow. In the “nutrient supply” step, a fresh culture medium
is continuously flowed in the channel, and nutrients are supplied to the culture chamber by diffu-
sion. (b) Experimental snapshots of mixing and dilution. Saccharomyces cerevisiae is cultured in
the device. (c) Demonstration of mixing. Differently colored Saccharomyces cerevisiae strains,
yJHK111 and yJHK112 [184], are cultured overnight without mixing (top) and mixed after the
overnight culture (bottom). Scale bars show 300 µm.

Our system is not only useful for investigating the impact of spatial structures by tuning the
degree of mixing, but also promising to continuously culture a small population, whose size is
∼ 104 cells. Historically, liquid microbial cultures have been conducted with flasks, test tubes, or
96-well plates, whose volume is lower-bound by ∼ 100 µL. This corresponds to ∼ 108 population
size, resulting in a characteristic evolutionary dynamics called clonal interference [195, 196]. De-
creasing the population size is fundamental to studying the periodic selection regime instead of the
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clonal interference regime (fig. 5.2) [197]. Our system provides a useful avenue to investigate the
evolutionary dynamics of a small population 1 .

Figure 5.2: Illustrations of periodic selection and clonal interference. (a) With a small population
size (N) and low mutation rate (µ), no beneficial mutation arises before one beneficial mutation
is fixed. (b) With a large population size and high mutation rate, multiple beneficial mutations
compete with each other.

5.2 Microbial aggregation in vortex flow
The migration of microbes is facilitated by fluid flow. Advective flow transports cells and produces
characteristic spatial patterns. The impact of complex flow fields on population dynamics has not
been well-studied, but recently its significance in the context of evolution has been highlighted
by microbial experiments [198]. To study the impact of advective flow patterns, it is critical to
experimentally produce flow fields in a controllable and reproducible manner. The study by Atis
et al. [198] uses convective flow in a viscous liquid, but also, recent studies have shown that vortex
patterns are easily produced and regulated with microfluidics [199–201].

There are mainly two different ways to produce vortex flow. One method uses high-speed flow
so that a microfluidic system reaches the turbulent flow regime (high Reynolds number regime).
High-speed vortices work as a “centrifuge” and selectively trap cells based on their size [200,
201]. On the other hand, the other way using the so-called lid-driven cavity flow works in the
laminar flow regime (low Reynolds number regime) and does not require high-speed flow. Lid-
driven cavity flow is originally found in 2D Stokes flow [202] but is also confirmed in 3D cases
when the thickness of the cavity is large enough compared with the width [203, 204]. Experi-
mentally, the swimming dynamics of marine microbes in a vortex have been studied using the
second method [199], but the impact of a vortex on long-term dynamics, such as ecological and
evolutionary dynamics, is still an open question.

In this section, we propose an experimental platform to trap and culture bacteria in vortices of
various sizes. First, we simulate Stokes hydrodynamics in various geometries in Comsol (fig. 5.3).
The simulations capture the sensitivity of the vortex formation to the ratio between the thickness

1Droplet microfluidics can also achieve a continuous culture of a small population. But it has an upper bound
of the population size around ∼ 103 cells. To accelerate evolution, 104 − 105 is an ideal population size given the
mutation rate of E. coli as a typical parameter.
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Figure 5.3: Streamlines in 3D Comsol simulations of lid-driven cavity flow. The thickness of the
device is fixed as 80 µm. (a) The formation of vortices is sensitive to the size of a cavity. Vortices
are formed in an 80 µm × 80 µm chamber (left) but not in a 120 µm × 120 µm chamber (right).
(b) With an aperture, vortices are stably formed in an 80 µm × 80 µm chamber (left) and 200 µm
× 200 µm chamber (right). The size of the aperture is fixed: the width is 50 µm, and the length is
30 µm.

and the width of the cavity (fig. 5.3a), as documented in the previous study [204]. This is problem-
atic with the scalability of vortices: to increase the vortex size, the thickness of the device should
also increase, which is experimentally challenging for microfluidics. To solve the issue, an aper-
ture at the opening of a cavity [199] contributes to forming a “nuclear” of vortices and stabilizes
large vortices (fig. 5.3b). Importantly, these cavities with a narrow opening can robustly form vor-
tices independent of the flow rate. Our result suggests that vortex flow may be more ubiquitously
observed in nature than previously expected.

Figure 5.4: Microfluidic experiments show the aggregation of bacteria in vortices. (a) An overlay
of trajectories of colloidal particles over 450 frames (15 minutes). (b) Acetobacter indonesiensis
aggregates in vortices. (c) Movements of cells in vortices are analyzed by PIV and shown as white
lines. The scale bars show 50 µm.
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Next, we experimentally fabricate vortex-producing microfluidics and culture Acetobacter in-
donesiensis in vortices. Notably, cells aggregate around vortices and form populations (fig. 5.4).
The populations are stable for at least two days, meaning that the trap is sufficiently stable for cells
to proliferate. The experiments show that a trap by vortex flow can work as a habitat for microbes.

5.3 Population dynamics in slow directional flow
1D directional flow is a simple but important flow field that is biologically relevant, for example,
to a human gut [189]. Population dynamics of microbes in the flow are largely affected by the flow
rate. The most intriguing parameter regime is where the flow rate is low enough so that cells can
have enough time to proliferate before they are washed out from the population. In an animal gut,
the effective escape time of cells is extended by active diffusion, such as peristaltic mixing [106,
189]. However, it is also useful to highlight the pure impact of the slow flow rate.

Here, we propose a ladder-shaped microfluidic device with which a very slow flow rate is
achieved in the spokes by subtle fluctuations of flow resistance. The device is an extension of our
microfluidic panflute presented in chapter 2. The impact of 1D flow can be tested in pipe-like
chambers (the “spokes” of the ladder) of various sizes (fig. 5.5).

Figure 5.5: A microfluidic ladder device captures the growth of cells in slow flow. (a) The design
of the ladder device. The incoming flow equally splits into both sides. There should be no flow
in the spokes of the ladder in principle, but small fluctuations of the flow resistance can produce
slow flow in the spokes by chance. (b) Colonization of Acetobacter indonesiensis in the spokes of
a ladder device. The right panel shows the relative velocity across positions. In the jammed spoke,
there is no significant flow because the jammed cells increase the flow resistance. On the other
hand, the gaseous population directionally moves to the bottom. The scale bar shows 50 µm.

Ladder-shaped microfluidics has been used for tracking cell lineages with continuous nutrient
supplies in previous studies [205, 206]. In these cases, The microbial populations in the “spokes”
are dense-packed, and so there is no significant directional flow across the spokes because of
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the high flow resistance due to dense-packing. In our device, we mainly focus on dilute gaseous
populations in the spokes. The sensitivity of the flow direction in the spokes to flow resistance fluc-
tuation has been previously reported and applied to microfluidic logic circuits with bubbles [207].
Using this feature, we successfully achieve slow directional flow in the spokes. We observe higher
cellular density in the spokes than in the side channels, suggesting the proliferation of cells in the
spokes. We also capture the length scale dependency of the population density, which is consistent
with the result in chapter 2 (fig. 5.5).

The directional flow presented in fig. 5.5 is not very reproducible because it is a consequence
of random fluctuations of flow resistance, such as fabrication errors or the presence of debris. To
more systematically investigate the impact of directional flow, we propose another design of a
ladder-shaped device inspired by a previous study [208]. The device aims to vary the length scale
of spokes under the same flow rate (fig. 5.6a). The length of spokes can be calculated by the
equations of flow pressure.

Ptot = [R1 + r+2r+ · · ·+(n−1)r]I,

Ptot = [(n−1)+R2 +2r+3r+ · · ·+(n−1)r]I,

Ptot = [(n−1)r+(n−2)r+R3 +3r+ · · ·+(n−1)r]I,
...

Ptot = [(n−1)r+(n−2)r+ · · ·+2r+ r+Rn]I,

where Ri and r are the hydrodynamic resistance, Ptot is the total pressure drop, and I is the flow
current. In general,

Ptot =

[
Rk + r

k−1

∑
i=1

(n− i)+ r
n−1

∑
i=k

i

]
. (5.1)

It can be calculated as

Ptot =

[
Rk + r

(
n(k−1)− (k−1)k

2
+

(n+ k−1)(n− k)
2

)]
I (5.2)

=

[
Rk + r

(
−k2 +(n+1)k+

n(n−3)
2

)]
I. (5.3)

Therefore,

Rk =
Ptot

I
+ r

(
k2 − (n+1)k− n(n−3)

2

)
. (5.4)

Note that the result is symmetrical: R j = Rn− j+1. As the flow resistance is proportional to the
length of the channel given the same cross-sectional area, the length of the spokes can be calcu-
lated. The spokes of the new ladder device should vary quadratically (fig. 5.6b). This device helps
the investigation of the impact of directional flow on population dynamics, and how it is affected
by spatial scale, as discussed in chapter 2.



CHAPTER 5. POPULATION DYNAMICS IN HYDRODYNAMIC FLOW 89

Figure 5.6: Designing a ladder device for investigating the impact of directional flow in pipes of
various sizes. (a) The diagram of the flow pressure circuit. (b) The plot shows the length of the
spokes of the ladder Li. We assume N = 10, Ptot/I = 100, r = 1, and Li ∼ Ri. The inset shows a
schematic illustration of a new ladder device.

5.4 Conclusion
In this chapter, microbial population dynamics in various types of hydrodynamic flow are studied,
and the experimental technique to produce the flow fields is discussed. In nature, microbial popu-
lations are subject to various types of flow. Reproducing these environments in a controlled setup
is critical to understand microbial ecology and evolution.

We successfully developed microfluidic experimental systems to study microbial population
dynamics under (i) peristaltic mixing, (ii) vortex flow, and (iii) slow directional flow. The experi-
ments in this chapter highlight the characteristic consequence of each flow pattern. (i) Peristaltic
mixing breaks the spatial clusters of cells belonging to the same lineage. Disassembling clusters
is expected to promote inter-species interactions. (ii) Microbes in vortex flow show aggregation.
Given that lid-driven vortices can be easily and stably produced under certain geometries, the re-
sult suggests a possibility that hydrodynamic vortices work as microbial habitats. (iii) Bacterial
populations in a slow directional flow exhibit two density phases, jammed and gaseous phases, de-
pending on the length of pipes. The result is consistent with the finding in chapter 2. Importantly,
jammed populations increase the flow resistance of the pipe and change the flow property. This
experiment provides insight into the interplay between the environment and population density.
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