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ABSTRACT OF THE DISSERTATION

Scalable Algorithms for Genetic Association Studies,
Genotype Imputation, and Ancestry Inference

by
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Doctor of Philosophy in Biomathematics
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Professor Kenneth Lange, Co-Chair

Professor Janet S. Sinsheimer, Co-Chair

This dissertation develops statistical and computational methods for human genetics. We consider

problems in genome-wide association studies, imputation, phasing, and ancestry inference. The

methods we develop are statistically robust, grounded in biological reality, and run extremely fast.

Furthermore, we test these methods on the largest data available to us, such as the UK Biobank

and Haplotype Reference Consortium. We implement our methods in individual, open-sourced Julia

packages. They are freely available to the scientific community through the OpenMendel platform.
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CHAPTER 1

Introduction

In this chapter, we will remind readers of three concepts in statistical genetics, which materials from

subsequent chapters are based upon. We will especially try to develop a mental model for how

different genetics data are represented. Based on this understanding, we hope those who do not fully

grasp all the biological or mathematical intricacies can appreciate what we are trying to do. We

conclude with a section on high performance computing, a crucial theme penetrating every chapter

of this dissertation.

1.1 Genome Wide Association Studies (GWAS)

GWAS is the most important concept in this dissertation, and possibly in all of human genetics as

of 2021. It examines the relationship between genetic markers and a given phenotype. In a typical

GWAS, a number of samples are randomly recruited, and their genetic information is collected via

dense single nucleotide polymorphism (SNP) microarrays that survey a person’s genome at partic-

ular locations. The resulting data can be assembled into a matrix Xn×p where n is the number of

samples and p is the number of SNPs. Each entry xi j of X is the count of minor alleles for sample i

at SNP j. Thus, xi j ∈ {0,1,2} since each person inherits two copies of each chromosome. In 2021,

the number of SNPs p is usually on the order of 106, and n is between 104 to 106. Thus GWAS is

fundamentally a very high dimensional problem.

Elucidating which SNP influences* the observed phenotypic values is the central problem GWASes

*Here we ignore the fact that statistically significant SNP markers are typically only in linkage disequilibrium with
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Purpose High coverage sequencing Imputation
Estimate allele frequencies (MAF > 2e-4) YES YES
Estimate genotypes (MAF > 5%) YES YES
Estimate genotypes (MAF < 5%) YES NO
Detecting de novo mutations YES NO

Table 1.1: Pros and Cons of Sequencing vs imputation, adapted from [19]. Essentially, imputation
is a good substitute for sequencing if a scientific study does not rely on detecting very rare variants.

attempt to answer. Besides the high diemensionality, we often need to make certain distributional

assumptions on the phenotypes y ∈ Rn (e.g. the number of seeds a plant produces must be a non-

negative integer). This complexity, combined with the massive size of modern SNP data sets, limits

statistical analysis and interpretation. Thus, how to analyze GWAS data remains a hot research area

in genetics. In this dissertation, sections 2 and 4 are devoted to developing novel methods to analyze

GWAS data.

1.2 Phasing and genotype imputation

Genotype imputation and phasing have become standard procedures in human genetics. Michigan’s

imputation server [31] alone imputes over 10 million genomes annually, which is a quarter of Cali-

fornia’s total population. What is genotype imputation, and why is it so popular?

As discussed earlier, GWASes survey ∼ 106 SNPs from the human genome, which is roughly

0.1% of the 3 billion DNA basepairs in humans. Sequencing will recover 100% of the DNA in-

formation but presently it is ∼ 20 times† more expensive than genotyping by a GWAS chip. A

cost-effective alternative to sequencing is to genotype via a GWAS chip, and impute the remaining

99.9% using computational methods. The pros and cons of sequencing vs genotype via a GWAS

chip and then using imputation are summarized in Table 1.1.

the true causal SNP

†As of 2021, sequencing a person costs around 1000 USD, while a GWAS chip is about 50 USD.
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1.2.1 What is Genotype imputation?

Input/output. There are two inputs to genotype imputation. The first is a dense SNP data set X,

which has been introduced already. The second is a haplotype reference matrix H, which usually

contains 10–100 times more genotypes than X. Given these two inputs, we will impute all SNPs that

are in H to those in X, and also determine the phase of every sample in X. These interacting pieces

are described below.

Phased vs unphased data. We previously mentioned that an entry of a GWAS data set satisfies

xi j ∈ {0,1,2}. This kind of data is unphased because if xi j = 1, we cannot determine whether the

minor allele (or alternate allele) resides on the paternal or maternal chromosome. In contrast, phased

genotypes are such that we can distinguish the parental origin of heterozygous genotypes, that is,

there is a difference between 0|1 and 1|0. Put another way, a sample’s overall genotype x is phased

when we can decompose it into the sum of two haplotypes x = h+ h′, where xi ∈ {0,1,2} and

h j,h′j ∈ {0,1}. The latter interpretation is used heavily in section 3. For genotype imputation, the

target GWAS data set X is usually unphased, but the reference haplotype panel is phased. The output

Ximputed has the same number of SNPs as H and each sample is phased.

Reference haplotype panel. The second input to genotype imputation is a haplotype reference

panel. This is a data set assembled by large consortia, and individual investigators will usually

not analyze this panel. Rather, these panels provide 104 to 106 samples’ phased genotypes (for

which subjects are often selected from diverse ethnic backgrounds) and include 107 to 108 genomic

markers that will be used as an input to imputation. As noted above, a phased genotype can be

decomposed into two haplotypes. Thus, the haplotype panel can be essentially thought of as a huge

matrix containing individual genotypes, where each genotype is stored in the form of h1 +h2 and

the entries of h1,h2 are in {0,1}.

Since the haplotype reference panel is the only source for the missing genotype information,

the quality of the panel exclusively determines imputation and phasing accuracy. As such, the sizes

of these reference panels have been increasing by roughly 10 times every year since 2012 (see
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introduction of Section 3 for specific references). The sizes of these reference panels in addition to

the ever increasing size of GWAS data sets make genotype imputation an extremely computationally

intensive task.

Why insist on outputting phased genotypes? Most genotype imputation algorithms output

phased genotypes by default. For standard association testing, only the count of minor alleles (the

so-called “dosage”) is needed. Although haplotype blocks can be used as covariates for rare vari-

ant testing [111], that application is used less frequently compared to imputation. So why insist on

outputting phased genotypes? One explanation is that most genotype imputation methods rely on

hidden Markov models (HMM). HMMs require pre-phasing the genotypes prior to imputation, oth-

erwise the algorithm scales as O(n2) instead of O(n) [30]. HMMs also output phased genotypes as

part of the Markov process. Thus, one recovers phased genotypes as a consequence of using HMM.

As discussed in Section 3, alternatives to HMMs for imputation are possible. Phasing is also crucial

for some types of genetic analysis, for example when imprinting is suspected.

1.3 Ancestry estimation

In GWAS, one of the most important confounders to control for is population structure. Estimation

of population structure is, thus, a central problem in statistical genetics.

At the highest level, there is a distinction between local and global ancestry estimation. Local

ancestry estimation divides an individual’s genome into small segments and assigns a certain an-

cestral origin (e.g., an ethnic, country, or region label) to each of the segments. The goal is to find

appropriate chromosomal segment boundaries and correctly infer each segment’s origin. In global

ancestry estimation, we estimate for each individual an overall fraction representing each ancestral

population (e.g., individual I is x% European, y% Asian, etc).
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1.3.1 Unsupervised approach for ancestry estimation

There are generally two unsupervised approaches‡ to estimate population structure (i.e., global an-

cestry proportions), via principal component analysis (PCA) [91] and via model-based estimation

of ancestry [6, 92]. PCA results are generally less interpretable because PCA is essentially a low-

dimensional projection of the original genotype data. Model-based estimation of ancestry constructs

a probabilistic model for gamete differentiation and estimates ancestry proportions as parameters

of the model. Common model-based approaches include Bayesian MCMC [92] and maximum

likelihood (which is the method used in the software package ADMIXTURE) [6]. Both regimes are

unsupervised in the sense that ancestry information is inferred from genetic data X alone, without

any ancestral labeling.

1.3.2 Supervised approach for ancestry estimation

There is considerably less literature on supervised approaches for ancestry estimation. By super-

vised we mean either certain alleles exhibit known different frequencies in different populations,

or that some samples are labeled with their known ancestral origins. (Although it generally uses

unsupervised approaches, a method which can exploit the latter type of information is also imple-

mented in ADMIXTURE [4].) The lack of supervised approaches for ancestry determination is partly

because unsupervised approaches are more flexible (since no labeling is required) and partly due to

the scarcity of genome annotations.

Although less popular, supervised approaches may perform better in certain scenarios than unsu-

pervised approaches. For instance, model-based methods such as ADMIXTURE perform poorly when

a distinct sub-population has a small number of individuals (e.g., < 10 samples). A supervised

approach would, in principal, not be affected by the sample size of distinct sub-populations.

‡Actually there is a 3rd way: by adding the genetic relationship matrix to a linear mixed model (LMM). This
approach has been shown to adjust for small-scale family relatedness in a GWAS which PCAs cannot adjust for [117],
but this is different than PCA and ADMIXTURE in the sense that we are not estimating ancestry to be included in the
GWAS model as covariates. Hence, the discuss on LMM is omitted.
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Haplotype reference panels can be exploited for supervised ancestry determination. These panels

have grown exponentially in size over the past decade due to advances in genotype imputation. In

section 3, we present a new approach for supervised (local and global) ancestry estimation that ex-

ploits haplotype reference panels. In particular, we show that a supervised approach delivers similar,

and sometimes superior, results compared to the best unsupervised approaches such as ADMIXTURE.

1.4 Parallel and High Performance Computing (HPC)

Clock-speeds for computer CPUs hit their physical limit more than a decade ago [58]. Current high

performance computing has thus focused on utilizing multiple cores simultaneously. For the largest

problems, multiple machines each equipped with multi-core CPUs are often needed. Due to the

sheer quantity of genetics data, mastery of various parallel computing regimes are necessary to use

modern laptops, clusters, and cloud computing services to their full potential.

Here we review the basics of single-machine-multiple-core and multi-machine-multi-core paral-

lel computing models, paying particular attention to their advantages and pitfalls. A few examples

in the Julia language [12] are provided.

1.4.1 Shared memory (single-machine) parallelism

Shared-memory parallelism (also called multi-threading) assumes that all data for computation are

accessible on a single computer. Thus, every CPU core can "see" the same data and any data mod-

ifications will be visible to every process. This type of parallel computing model is very useful for

some problems encountered in genetics in which we need to repeatedly apply some routine f to a

set of independent variables x1, ...,xn loaded in memory. For example, in section 3, we impute small

genotype blocks in parallel (treating each block as independent) and phase individuals in parallel

(treating each sample as independent). Here the function f is imputation (or phasing), and each core

applies f to genotype block (or sample) xi independent of others.
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The simplest way to incorporate shared memory parallelism is to exploit established libraries

such as BLAS [13] and LAPACK [7]. The linear algebra routines in these libraries have been fine-

tuned for performance over decades by experts and should be used whenever possible. Many Julia

routines automatically call the appropriate BLAS or LAPACK functions under the hood. In other

cases, one needs to define parallel routines on a case-by-case basis. In general, when writing multi-

threaded code, one should beware of (1) race conditions, (2) false sharing, (3) over-subscriptions,

(4) any non-uniform task used with a static scheduler, and (5) memory allocation (because garbage

collection in Julia is single-threaded). A detailed discussion of these topics derails from the main

theme of this dissertation, but mastery of all of these concepts are necessary to write performant

multi-threaded code.

1.4.2 Distributed-memory (multi-machine) parallelism

Distributed memory parallelism can utilize the computing power of multiple machines simultane-

ously, such as multiple compute nodes on a HPC cluster. In contrast to the shared-memory model,

in the distributed model a variable x that is visible to computer a may not be visible to computer

b, unless contents of x are explicitly transferred from a to b. This highlights one of the major con-

straints of writing distributed parallel code: latency of data transfer. Since message passing among

compute nodes is an expensive operation, sending a scalar, vector, or matrix makes a huge differ-

ence on the overall compute time. Algorithm design is therefore crucial. However, once data are

sent, each compute node can fully utilize the multi-core CPU that it has. This can relieve part of the

over-subscription (e.g., every node can run multi-threaded BLAS) and memory allocation burdens

(e.g., every node can separately run garbage collection) often seen in the shared-memory model, as

mentioned in the previous section.

The simplest way to access distributed computing in Julia is via the Distributed.jl package§,

§It is also possible to use the more standard Message Passing Interface (MPI) [47] routines wrapped in the package
MPI.jl, but one needs to be explicit about sending and receiving data, in contrast to using Distributed.jl where
users only explicitly manages one side of the two-sided operation
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which provides useful functions such as @everywhere, pmap, and @distributed for. In sections

2 and 4, we tried to incorporate distributed computing in q-fold cross-validation. In that case we

needed to run penalized regression on the genotype matrix X with different sparsity parameters

k ∈ {1, ...,n}. We usually needed to test many different values of k, so ideally we would have liked to

utilize multiple computers for this routine. Thus, we settled on a design where X is memory-mapped,

so only certain meta-information and allele summary statistics (e.g., mean and variance) need to be

sent to distributed processes, while only a scalar representing the mean-squared error has to be sent

back to the master process. Unfortunately, it is very difficult to request multiple compute nodes

simultaneously within UCLA’s computing cluster Hoffman2. Thus, while it is possible to distribute

cross-validation folds to multiple computers in principal, we have never been able to exhaustively

test and benchmark our implementation. Fortunately, as seen in section 4, we can still run the UK

Biobank with ∼ 200,000 samples and ∼ 500,000 predictors on a single machine within 20 hours.

8



CHAPTER 2

Iterative hard thresholding in genome-wide association studies:

Generalized linear models, prior weights, and double sparsity

2.1 Introduction

In genome-wide association studies (GWAS), modern genotyping technology coupled with imputa-

tion algorithms can produce an n× p genotype matrix X with n≈ 106 subjects and p≈ 107 genetic

predictors [23, 108]. Data sets of this size require hundreds of gigabytes of disk space to store

in compressed form. Decompressing data to floating point numbers for statistical analyses leads

to matrices too large to fit into standard computer memory. The computational burden of dealing

with massive GWAS datasets limits statistical analysis and interpretation. This paper discusses and

extends a class of algorithms capable of meeting the challenge of multiple regression models with

modern GWAS data scales.

Traditionally, GWAS analysis has focused on SNP-by-SNP (single nucleotide polymorphism)

association testing [23, 22], with a p-value computed for each SNP via linear regression. This ap-

proach enjoys the advantages of simplicity, interpretability, and a low computational complexity of

O(np). Furthermore, marginal linear regressions make efficient use of computer memory, since

computations are carried out on genotype vectors one at a time, as opposed to running on the full

genotype matrix in multiple regression. Some authors further increase association power by refram-

ing GWAS as a linear mixed model problem and proceeding with variance component selection

[49, 72]. These advances remain within the scope of marginal analysis.

Despite their numerous successes [108], marginal regression is less than ideal for GWAS. It
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implicitly assumes that all SNPs have independent effects. In contrast, multiple regression can in

principle model the effect of all SNPs simultaneously. This approach captures the biology behind

GWAS more realistically because traits are usually determined by multiple SNPs acting in unison.

Marginal regression selects associated SNPs one by one based on a pre-set threshold. Given the

stringency of the p-value threshold, marginal regression can miss many causal SNPs with low effect

sizes. As a result, heritability is underestimated. When p� n, one usually assumes that the number

of variants k associated with a complex trait is much less than n. If this is true, we can expect

multiple regression models to perform better because it a) offers better outlier detection [95] and

better prediction, b) accounts for the correlations among SNPs, and c) allows investigators to model

interactions. Of course, these advantages are predicated on finding the truly associated SNPs.

Adding penalties to the loss function is one way of achieving parsimony in multiple regression.

The lasso [105, 107] is the most popular model selection device in current use. The lasso model

selects non-zero parameters by minimizing the criterion

f (β) = `(β)+λ‖β‖1,

where `(β) is a convex loss, λ is a sparsity tuning constant, and ‖β‖1 = ∑ j |β j| is the `1 norm

of the parameters. The lasso has the virtues of preserving convexity and driving most parameter

estimates to 0. Minimization can be conducted efficiently via cyclic coordinate descent [40, 113].

The magnitude of the nonzero tuning constant λ determines the number of predictors selected.

Despite its widespread use, the lasso penalty has some drawbacks. First, the `1 penalty tends

to shrink parameters toward 0, sometimes severely so. Second, λ must be tuned to achieve a given

model size. Third, λ is chosen by cross-validation, a costly procedure. Fourth and most impor-

tantly, the shrinkage caused by the penalty leaves a lot of unexplained trait variance, which tends to

encourage too many false positives to enter the model ultimately identified by cross-validation.

Inflated false positive rates can be mitigated by substituting nonconvex penalties for the `1
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penalty. For example, the minimax concave penalty (MCP) [123]

λ p(β j) = λ

∫ |β j|

0

(
1− s

λγ

)
+

ds

starts out at β j = 0 with slope λ and gradually transitions to a slope of 0 at β j = λγ . With minor

adjustments, the coordinate descent algorithm for the lasso carries over to MCP penalized regression

[16, 80]. Model selection is achieved without severe shrinkage, and inference in GWAS improves

[50]. However, in our experience its false negative rate is considerably higher than IHT’s rate [56].

A second remedy for the lasso, stability selection, weeds out false positives by looking for consistent

predictor selection across random halves of the data [84]. However, it is known to be under-powered

for GWAS compared to standard univariate selection [5].

In contrast, iterative hard thresholding (IHT) minimizes a loss `(β) subject to the nonconvex

sparsity constraint ‖β‖0 ≤ k, where ‖β‖0 counts the number of non-zero components of β [9, 10,

15]. Figure 2.1 explains graphically how the `0 penalty reduces the bias of the selected parameters.

In the figure λ , γ , and k are chosen so that the same range of β values are sent to zero. To its

detriment, the lasso penalty shrinks all β ’s, no matter how large their absolute values. The nonconvex

MCP penalty avoids shrinkage for large β ’s but exerts shrinkage for intermediate β ’s. IHT, which

is both nonconvex and discontinuous, avoids shrinkage altogether. For GWAS, the sparsity model-

size constant k also has a simpler and more intuitive interpretation than the lasso tuning constant

λ . Finally, both false positive and false negative rates are well controlled. Balanced against these

advantages is the loss of convexity in optimization and concomitant loss of computational efficiency.

In practice, the computational barriers are surmountable and are compensated by the excellent results

delivered by IHT in high-dimensional regression problems such as multiple GWAS regression.

This article has four interrelated goals. First, we extend IHT to generalized linear models. These

models encompass most of applied statistics. Previous IHT algorithms focused on normal or logis-

tic sparse regression scenarios. Our software can also perform sparse regression under Poisson and

negative binomial response distributions and can be easily extended to other GLM distributions as
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Figure 2.1: The `0 quasinorm of IHT enforces sparsity without shrinkage. The estimated effect size
(dashed line) is plotted against its true value (diagonal line) for `1, MPC, and `0 penalties.

needed. The key to our extension is the derivation of a nearly optimal step size s for improving

the loglikelihood at each iteration. Second, we introduce doubly-sparse regression to IHT. Previous

authors have considered group sparsity [115]. The latter tactic limits the number of groups selected.

It is also useful to limit the number of predictors selected per group. Double sparsity strikes a com-

promise that encourages selection of correlated causative variants in linkage disequilibrium (LD).

Notably, this technique generalizes group-IHT. Third, we demonstrate how to incorporate predeter-

mined SNP weights in IHT. Our simple and interpretable weighting option allows users to introduce

prior knowledge into sparse projection. Thus, one can favor predictors whose association to the

response is supported by external evidence. Fourth, we present MendelIHT.jl: a scalable, open

source, and user friendly software for IHT in the high performance programming language Julia

[12].

2.2 Model Development

This section sketches our extensions of iterative hard thresholding (IHT).
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2.2.1 IHT Background

IHT was originally formulated for sparse signal reconstruction, which is framed as sparse linear

least squares regression. In classical linear regression, we are given an n× p design matrix X and a

corresponding n-component response vector y. We then postulate that y has mean E(y) = Xβ and

that the residual vector y−Xβ has independent Gaussian components with a common variance. The

parameter (regression coefficient) vector β is estimated by minimizing the sum of squares f (β) =
1
2‖y−Xβ‖2

2. The solution to this problem is known as the ordinary least squares estimator and can

be written explicitly as β̂ = (XtX)−1Xty, provided the problem is overdetermined (n > p). This

paradigm breaks down in the high-dimensional regime n� p, where the parameter vector β is

underdetermined. In the spirit of parsimony, IHT seeks a sparse version of β that gives a good fit

to the data. This is accomplished by minimizing f (β) subject to ‖β‖0 ≤ k for a small value of k,

where ‖ ·‖0 counts the number of nonzero entries of a vector. The optimization problem is formally:

min
1
2
||y−Xβ||22 subject to ||β||0 ≤ k. (2.1)

IHT abandons the explicit formula for β̂ because it fails to respect sparsity and involves the numer-

ically intractable matrix inverse (XtX)−1.

IHT combines three core ideas. The first is steepest descent. Elementary calculus tells us that the

negative gradient −∇ f (x) is the direction of steepest descent of f (β) at x. First-order optimization

methods like IHT define the next iterate in minimization by the formula βn+1 = βn + snvn, where

vn = −∇ f (βn) and sn > 0 is some optimally chosen step size. In the case of linear regression

−∇ f (β) = Xt(y−Xβ). To reduce the error at each iteration, the optimal step size sn can be selected
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by minimizing the second-order Taylor expansion

f (βn + snvn)

= f (βn)+ sn∇ f (βn)
tvn +

s2
n
2

vt
nd2 f (βn)vn

= f (βn)− sn‖∇ f (βn)‖2
2 +

s2
n
2

∇ f (βn)
td2 f (βn)∇ f (βn)

with respect to sn. Here d2 f (β) = XtX is the Hessian matrix of second partial derivatives. Because

f (β) is quadratic, the expansion is exact. Its minimum occurs at the step size

sn =
‖∇ f (βn)‖2

2
∇ f (βn)td2 f (βn)∇ f (βn)

. (2.2)

This formula summarizes the second core idea.

The third component of IHT involves projecting the steepest descent update βn + snvn onto the

sparsity set Sk = {β : ‖β‖0 ≤ k}. The relevant projection operator PSk(β) sets all but the k largest

entries of β in magnitude to 0. In summary, IHT solves problem (2.1) by updating the parameter

vector β according to the recipe:

βn+1 = PSk (βn− sn∇ f (βn))

with the step size given by formula (2.2).

An optional debiasing step can be added to improve parameter estimates. This involves replacing

βn+1 by the exact minimum point of f (β) in the subspace defined by the support { j : βn+1, j 6= 0} of

βn+1. Debiasing is efficient because it solves a low-dimensional problem. Several versions of hard-

thresholding algorithms have been proposed in the signal processing literature. The first of these,

NIHT [15], omits debaising. The rest, HTP[38], GraHTP [119], and CoSaMp [86] offer debiasing.
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Family Mean Domain Var(y) g(s)
Normal R φ 2 1
Poisson [0,∞) µ es

Bernoulli [0,1] µ(1−µ) es

1+es

Gamma [0,∞) µ2φ s−1

Inverse Gaussian [0,∞) µ3φ s−1/2

Negative Binomial [0,∞) µ(µφ +1) es

Table 2.1: Summary of mean domains and variances for common exponential distributions. In GLM,
µ= g(xtβ) denotes the mean, s = xtβ the linear responses, g is the inverse link function, and φ the
dispersion. Except for the negative binomial, all inverse links are canonical.

2.2.2 IHT for Generalized Linear Models

A generalized linear model (GLM) involves responses y following a natural exponential distribution

with density in the canonical form

f (y | θ ,φ) = exp
[

yθ −b(θ)
a(φ)

+ c(y,φ)
]
,

where y is the data, θ is the natural parameter, φ > 0 is the scale (dispersion), and a(φ), b(θ), and

c(y,φ) are known functions which vary depending on the distribution [35, 82]. Simple calculations

show that y has mean µ = b′(θ) and variance σ2 = b′′(θ)a(φ); accordingly, σ2 is a function of

µ . Table 2.1 summarizes the mean domains and variances of a few common exponential families.

Covariates enter GLM modeling through an inverse link representation µ = g(xtβ), where x is a

vector of covariates (predictors) and β is vector of regression coefficients (parameters). In statistical

practice, data arrive as a sample of independent responses y1, . . . ,ym with different covariate vectors

x1, . . . ,xm. To put each predictor on an equal footing, each should be standardized to have mean 0

and variance 1. Including an additional intercept term is standard practice.

If we assemble a design matrix X by stacking the row vectors xt
i, then we can calculate the
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loglikelihood, score, and expected information [35, 60, 82, 114]

L(β) =
n

∑
i=1

[
yiθi−bi(θi)

ai(φi)
+ c(yi,φi)

]
∇L(β) =

n

∑
i=1

(yi−µi)
g′(xt

iβ)

σ2
i

xi = XtW1(y−µ) (2.3)

J(β) =
n

∑
i=1

1
σ2

i
g′(xt

iβ)
2xixt

i = XtW2X,

where W1 and W2 are two diagonal matrices. The second has positive diagonal entries; they coincide

under the identity inverse link g(s) = s.

In the generalized linear model version of IHT, we maximize L(β ) (equivalent to minimizing

f (β) = −L(β)) and substitute the expected information J(βn) = E[−d2L(βn)] for d2 f (βn) in for-

mula (2.2). This translates into the following step size in GLM estimation:

sn =
‖∇L(βn)‖2

2
∇L(βn)tJ(βn)∇L(βn)

. (2.4)

This substitution is a key ingredient of our extended IHT. It simplifies computations and guarantees

that the step size is nonnegative.

2.2.3 Doubly Sparse Projections

The effectiveness of group sparsity in penalized regression has been demonstrated in general [83, 39]

and for GWAS [127] in particular. Group IHT [115] enforces group sparsity but does not enforce

within-group sparsity. In GWAS, model selection is desired within groups as well to pinpoint causal

SNPs. Furthermore, one concern in GWAS is that two causative SNPs can be highly correlated with

each other due to linkage disequilibrium (LD). When sensible group information is available, doubly

sparse IHT encourages the detection of causative yet correlated SNPs while enforcing sparsity within

groups. Here we discuss how to carry out a doubly-sparse projection that enforces both within- and

between-group sparsity.
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Suppose we divide the SNPs of a study into a collection G of nonoverlapping groups. Given a

parameter vector β and a group g∈G, let βg denote the components of β corresponding to the SNPs

in g. Now suppose we want to select at most j groups and at most λg ∈Z+ SNPs for each group g. In

projecting β, the component βi is untouched for a selected SNP i. For an unselected SNP, βi is reset

to 0. By analogy with our earlier discussion, we can define a sparsity projection operator Pg(βg)

for each group g; Pg(βg) selects the λg most prominent SNPs in group g. The potential reduction

in the squared distance offered by group g is rg = ‖βg‖2
2−‖Pg(βg)‖2

2. The j selected groups are

determined by selecting the j largest values of rg. If desired, we can set the sparsity level λg for each

group high enough so that all SNPs in group g come into play. Thus, doubly-sparse IHT generalizes

group-IHT. In Algorithm 1, we write P(β) for the overall projection with the component projections

Pg(βg) on the j selected groups and projection to zero on the remaining groups.

2.2.4 Prior weights in IHT

Zhou et al. [127] treat prior weights in penalized GWAS. Before calculating the lasso penalty, they

multiply each component of the parameter vector β by a positive weight wi. We can do the same

in IHT before projection. Thus, instead of projecting the steepest descent step β = βn + snvn, we

project the Hadamard (pointwise) product w◦β of β with a weight vector w. This produces a vector

with a sensible support S. The next iterate βn+1 is defined to have support S and to be equal to

βn + snvn on S.

In GWAS, weights can and should be informed by prior biological knowledge. A simple scheme

for choosing nonconstant weights relies on minor allele frequencies. For instance, Zhou et al. [124]

assign SNP i with minor allele frequency pi the weight wi = 1/
√

2pi(1− pi). Giving rare SNPs

greater weight in this fashion is most appropriate for traits under strong negative selection [121, 98].

Alternatively, our software permits users to assign weights geared to specific pathway and gene

information.

de Lamare et al. [33] incorporate prior weights into IHT by adding an element-wise logarithm
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of a weight vector q before projection. The weight vector q is updated iteratively and requires two

additional tuning constants that in practice are only obtained through cross validation. Our weighting

scheme is simpler, more computationally efficient, and more interpretable.

2.2.5 Algorithm Summary

The final algorithm combining doubly sparse projections, prior weight scaling, and debiasing is

summarized in Algorithm 1.

Algorithm 1: Iterative hard-thresholding

Input : Design matrix X, response vector y, membership vector g, weight vector w, max
number of groups j, and overall sparsity projection P(β).

1 Initialize: β ≡ 0.
2 while not converged do
3 Calculate: score = v, Fisher information matrix = J, and step size = s = vtv

vtJv
4 Ascent direction with scaling: β̃ = w◦ (βn + sv)
5 Project to sparsity: β̃ = P

(
β̃
)
./w (where ./ is elementwise division)

6 while L(β̃)≤ L(βn), backtrack ≤ 5 do
7 s = s/2
8 Redo lines 4 to 5
9 end

10 (Optional) Debias: Let F = supp(β̃), compute β̂ = argmax{β:β restricted to F}L(β)
11 Accept proposal: βn+1 = β̂

12 end
Output: β with j active groups and λg active predictors for group g

2.3 Results

Readers can reproduce our results by accessing the software, documentation, and Jupyter notebooks

at:

https://github.com/OpenMendel/MendelIHT.jl
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2.3.1 Scalability of IHT

To test the scalability of our implementation, we ran IHT on p = 106 SNPs for sample sizes n =

10,000,20,000, ...,120,000 with five independent replicates per n. All simulations rely on a true

sparsity level of k = 10. Based on an Intel-E5-2670 machine with 63GB of RAM and a single

3.3GHz processor, Figure 2.2 plots the IHT median CPU time per iteration, median iterations to

convergence, and median memory usage under Gaussian, logistic, Poisson, and negative binomial

models. The largest matrix simulated here is 30GB in size and can still fit into our personal com-

puter’s memory. Of course, it is possible to test even larger sample sizes using cloud or cluster

resources, which are often needed in practice.

The formation of the vector µ of predicted values requires only a limited number of nonzero re-

gression coefficients. Consequently, the computational complexity of this phase of IHT is relatively

light. In contrast, calculation of the Fisher score (gradient) and information (expected negative Hes-

sian) depend on the entire genotype matrix X. Fortunately, each of the np entries of X can be

compressed to 2 bits. Figure 2.2b and d show that IHT memory demands beyond storing X never

exceeded a few gigabytes. Figure 2.2a and c show that IHT run time per iteration increases lin-

early in problem size n. Similarly, we expect increasing p will increase run time linearly, since the

bottleneck of IHT is the matrix-vector multiplication step in computing the gradient, which scales

as O(np). Debiasing increases run time per iteration only slightly. Except for negative binomial

responses, debiasing is effective in reducing the number of iterations required for convergence and

hence overall run time.

2.3.2 Cross Validation in Model Selection

In actual studies, the true number of genetic predictors ktrue is unknown. This section investigates

how q-fold cross-validation can determine the best model size on simulated data. Under normal,

logistic, Poisson, and negative binomial models, we considered 50 different combinations of X, y,

and βtrue with ktrue = 10, n = 5000 samples, and p = 50,000 SNPs fixed in all replicates. Here, ktrue

19



(a) Speed per iteration without debiasing (b) Memory usage without debiasing (c) Median iterations until convergence.

Without debiasing With Debiasing

Normal 4.0 (1.0) 2.0 (0.0)
Logistic 10.0 (5.5) 2.5 (2.25)
Poisson 47.5 (9.75) 33.0 (5.75)
Neg Bin 9.0 (0.25) 15.0 (1.5)

( ) = interquartile range

(d) Speed per iteration with debiasing (e) Memory usage with debiasing

Figure 2.2: (a, d) Time per iteration scales linearly with data size. Speed is measured for compressed
genotype files. On uncompressed data, all responses are roughly 10 times faster. (b, e) Memory
usage scales as ∼ 2np bits. Note memory for each response are usages in addition to loading the
genotype matrix. Uncompressed data requires 32 times more memory. (c) Debiasing reduces median
iterations until convergence for all but negative binomial regression. Benchmarks were carried out
on 106 SNPs and sample sizes ranging from 10,000 to 120,000. Hence, the largest matrix here
requires 30GB and can still fit into personal computer memories.

is chosen so that it is closer to our NFBC and UK Biobank results. On these data sets we conducted

5-fold cross validation across 20 model sizes k ranging from 1 to 20. Figure 2.3 plots deviance

residuals on the holdout dataset for each of the four GLM responses (mean squared error in the case

of normal responses) and the best estimate k̂ of ktrue.

Figure 2.3 shows that ktrue can be effectively recovered by cross validation. In general, prediction

error starts off high where the proposed sparsity level k severely underestimates ktrue and plateaus

when ktrue is reached (Figure 2.3a-d). Furthermore, the estimated sparsity k̂ for each run is narrowly

centered around ktrue = 10 (Figure 2.3e-f). In fact, |k̂− ktrue| ≤ 4 always holds. When k̂ exceeds
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(a) Normal (b) Logistic (c) Poisson (d) Negative Binomial

(e) Normal (f) Logistic (g) Poisson (h) Negative Binomial

Figure 2.3: Five-fold cross validation results is capable of identifying the true model size ktrue. (a-d)
Deviance residuals of the testing set are minimized when the estimated model size k̂ ≈ ktrue. Each
line represents 1 simulation. (e-h) k̂ is narrowly spread around ktrue = 10.

ktrue, the estimated regression coefficients for the false predictors tend to be very small. In other

words, IHT is robust to overfitting, in contrast to lasso penalized regression. We see qualitatively

similar results when ktrue is large. This proved to be the case in our previous paper [56] for Gaussian

models with ktrue ∈ {100,200,300}.

2.3.3 Comparing IHT to Lasso and Marginal Tests in Model Selection

Comparison of the true positive and false positive rates of IHT and its main competitors is revealing.

For lasso regression we use the glmnet implementation of cyclic coordinate descent [40, 112, 113]

(v2.0-16 implemented in R 3.5.2); for marginal testing we use the beta version of MendelGWAS

[128]. As explained later, Poisson regression is supplemented by zero-inflated Poisson regression

implemented under the pscl [120] (v1.5.2) package of R. Unfortunately, glmnet does not accom-

modate negative binomial regression. Because both glmnet and pscl operate on floating point

numbers, we limit our comparisons to small problems with 1000 subjects, 10,000 SNPs, 50 repli-

cates, and k = 10 causal SNPs. IHT performs model selection by 3-fold cross validation across

model sizes ranging from 1 to 50. This range is generous enough to cover the models selected by
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Normal Logistic Poisson Neg Bin
IHT TP 8.84 6.28 7.2 9.0
IHT FP 0.02 0.1 1.28 0.98

Lasso TP 9.52 8.16 9.28 NA
Lasso FP 31.26 45.76 102.24 NA

Marginal TP 7.18 5.76 9.04 (5.94) 5.98
Marginal FP 0.06 0.02 1527.9 (0.0) 0.0

Table 2.2: IHT achieves the best balance of false positives and true positives compared to lasso and
marginal (single-snp) regression. TP = true positives, FP = false positives. There are k = 10 causal
SNPs. Best model size for IHT and lasso were chosen by cross validation. () = zero-inflated Poisson
regression.

lasso regression. We adjust for multiple testing in the marginal case test by applying a p-value cutoff

of 5×10−6.

Table 2.2 demonstrates that IHT achieves the best balance between maximizing true positives

and minimizing false positives. IHT finds more true positives than marginal testing and almost as

many as lasso regression. IHT also finds far fewer false positives than lasso regression. Poisson

regression is exceptional in yielding an excessive number of false positives in marginal testing. A

similar but less extreme trend is observed for lasso regression. The marginal false positive rate

is reduced by switching to zero-inflated Poisson regression. This alternative model is capable of

handling overdispersion due an excess of 0 values. Interestingly, IHT rescues the Poisson model by

accurately capturing the simultaneous impact of multiple predictors.

2.3.4 Reconstruction Quality for GWAS Data

Table 2.3 demonstrates that IHT estimates show little bias compared to estimates from lasso and

marginal regressions. These trends hold with or without debiasing as described earlier. The propor-

tion of variance explained is approximately the same in both scenarios. The displayed values are

the averaged estimated β ’s, computed among the SNPs actually found. As expected, lasso estimates

show severe shrinkage compared to IHT. Estimates from marginal tests are severely overestimated,

since each SNP are asked to explain more trait variance than it could. As the magnitude of βtrue
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falls, IHT estimates show an upward absolute bias, consistent with the winner’s curse phenomenon.

When sample sizes are small, small effect sizes make most predictors imperceptible amid the ran-

dom noise. The winner’s curse operates in this regime and cannot be eliminated by IHT. Lasso’s

strong shrinkage overwhelms the bias of the winner’s curse and yields estimates smaller than true

values.

The results displayed in Table 2.3 reflect n = 5,000 subjects, p = 10,000 SNPs, 100 replicates,

and a sparsity level k fixed at its true value ktrue = 10. The λ value for lasso is chosen by cross

validation. To avoid data sets with monomorphic SNPs, the minimum minor allele frequency (maf)

is set at 0.05. For linear, logistic and Poisson regressions in marginal tests, we first screen for poten-

tial SNPs via a score test. Only top SNPs are used in the more rigorous and more computationally

intensive likelihood ratio tests, which gives the beta estimates. This procedure is described in [128].

We ran likelihood ratio tests for all SNPs in the negative binomial model because the screening pro-

cedure is not yet implemented. However, the inflation in parameter estiamtes are present throughout

all marginal tests.

2.3.5 Correlated Covariates and Doubly Sparse Projections

Next we study how well IHT works on correlated data and whether doubly-sparse projection can

enhance model selection. Table 2.4 shows that, in the presence of extensive LD, IHT performs

reasonably well even without grouping information. When grouping information is available, group

IHT enhances model selection. The results displayed in Table 2.4 reflect n = 1,000 samples, p =

10,000 SNPs, and 100 replicates. Each SNP belongs to 1 of 500 disjoint groups containing 20

SNPs each; j = 5 distinct groups are each assigned 1,2, ...,5 causal SNPs with effect sizes randomly

chosen from {−0.2,0.2}. In all there 15 causal SNPs. For grouped-IHT, we assume perfect group

information. That is, groups containing 1 ∼ 5 causative SNPs are assigned λg ∈ {1,2, ...,5}. The

remaining groups are assigned λg = 1. As described in the Methods Section, the simulated data show

LD within each group, with the degree of LD between two SNPs decreasing as their separation

increases. Although the conditions of this simulation are somewhat idealized, they mimic what
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βtrue β Normal
IHT β

Logistic
IHT β Poisson

IHT β
NegBin
IHT

.5 .501± .015 .508± .039 .492± .039 .567± .670
.25 .249± .013 .256± .038 .247± .012 .249± .012
.10 .097± .014 .125± .016 .100± .014 .010± .012
.05 .063± .007 .108± .006 .057± .008 .060± .008

βtrue β Normal
lasso β

Logistic
lasso β Poisson

lasso β
NegBin
lasso

.5 .451± .015 .366± .058 .458± .037 NA
.25 .199± .013 .137± .032 .208± .015 NA
.10 .046± .014 .022± .016 .058± .016 NA
.05 .012± .008 .008± .003 .012± .009 NA

βtrue β Normal
marginal β

Logistic
marginal β Poisson

marginal β
NegBin
marginal

.5 .990± .500 .983± .475 .942± .331 .930± .315
.25 .493± .189 .480± .216 .452± .184 .486± .178
.10 .203± .078 * .198± .097 .190± .090
.05 * * .165± .049 .097± .060

Table 2.3: Comparison of coefficient estimates among IHT, lasso, and marginal regression methods.
Displayed coefficients are average fitted valued ± one standard error for the discovered predictors.
* = zero true positives observed on average. NA = glmnet does not support negative binomial lasso
regression. There are k = 10 true SNPs.

Ungrouped-IHT Grouped-IHT
TP FP TP FP

Normal 11.1±1.9 3.9±1.9 12.2±2.0 2.8±2.0
Logistic 3.8±1.6 11.2±1.6 7.7±2.2 7.3±2.2
Poisson 11.5±2.2 3.5±2.2 12.4±1.7 2.6±1.7
Neg Bin 11.0±2.1 4.0±2.1 12.4±1.6 2.6±1.6

Table 2.4: Doubly-sparse IHT enhances model selection on simulated data. TP = true positives,
FP = false positives, ± 1 standard error. There are 15 causal SNPs in 5 groups, each containing
k ∈= {1,2, ...5} SNPs.

might be observed if small genetic regions of whole exome data were used with IHT.

We repeated this examination of doubly sparse projection for the first 30,000 SNPs of the

NFBC1966 [97] data for all samples passing the quality control measures outlined in our Meth-

ods Section. We arbitrarily assembled 2 large groups with 2000 SNPs, 5 medium groups with 500

SNPs, and 10 small groups with 100 SNPs, representing genes of different length. The remaining

SNPs are lumped into a final group representing non-coding regions. In all there are 18 groups.
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Ungrouped-IHT Grouped-IHT
TP FP TP FP

Normal 17.0±1.2 2.0±1.2 17.0±1.4 2.1±1.4
Logistic 15.7±1.5 3.3±1.5 15.8±1.6 3.2±1.6
Poisson 17.1±1.3 1.9±1.3 17.0±1.4 2.0±1.4
Neg Bin 17.2±1.5 1.8±1.5 17.0±1.5 2.1±1.5

Table 2.5: Doubly sparse IHT is comparable to regular IHT on NFBC dataset using arbitrary groups.
TP = true positives, FP = false positives, ± 1 standard error. There are 19 causal SNPs in 18 groups
of various size. Simulation was carried out on the first 30,000 SNPs of the NFBC1966 [97] dataset.

Since group assignments are essentially random beyond choosing neighboring SNPs, this exam-

ple represents the worse case scenario of a relatively sparse marker map with undifferentiated SNP

groups. We randomly selected 1 large group, 2 medium groups, and 3 small groups to contain 5,

3, and 2 causal SNPs, respectively. The non-coding region harbors 2 causal SNPs. In all there are

19 causal SNPs. Effect sizes were randomly chosen to be −0.2 or 0.2. We ran 100 independent

simulation studies under this setup, where the large, medium, small, and non-coding groups are each

allowed 5, 3, 2, and 2 active SNPs. The results are displayed in Table 2.5. We find that even in this

worse case scenario where group information is completely lacking that grouped IHT does no worse

than ungrouped IHT.

2.3.6 Introduction of Prior Weights

This section considers how scaling by prior weights helps in model selection. Table 2.6 compares

weighted IHT reconstructions with unweighted reconstructions where all weights wi = 1. The

weighted version of IHT consistently finds approximately 10% more true predictors than the un-

weighted version. Here we simulated 50 replicates involving 1000 subjects, 10,000 uncorrelated

variants, and k = 10 true predictors for each GLM. For the sake of simplicity, we defined a prior

weight wi = 2 for about one-tenth of all variants, including the 10 true predictors. For the remaining

SNPs the prior weight is wi = 1. These choices reflect a scenario where one tenth of all genotyped

variants fall in a protein coding region, including the 10 true predictors, and where such variants are

twice as likely to influence a trait as those falling in non-coding regions.
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Unweighted-IHT Weighted-IHT
TP FP TP FP

Normal 9.2±0.4 0.8±0.4 9.4±0.5 0.6±0.5
Logistic 7.3±0.6 2.7±0.6 8.0±0.6 2.0±0.6
Poisson 8.0±0.6 2.0±0.6 8.3±0.6 1.7±0.6
Neg Bin 9.2±0.5 0.8±0.5 9.4±0.5 0.6±0.5

Table 2.6: Weighted IHT enhances model selection. TP = true positives, FP = false positives, ± 1
standard error. The true number of SNPs is k = 10.

2.3.7 Hypertension GWAS in the UK Biobank

Now we test IHT on the second release of UK Biobank [102] data. This dataset contains ∼ 500,000

samples and ∼ 800,000 SNPs without imputation. Phenotypes are systolic blood pressure (SBP)

and diastolic blood pressure (DBP), averaged over 4 or fewer readings. To adjust for ancestry and

relatedness, we included the following nongenetic covariates: sex, hospital center, age, age2, BMI,

and the top 10 principal components computed with FlashPCA2 [3]. After various quality control

procedures as outlined in the Methods section, the final dataset used in our analysis contains 185,565

samples and 470,228 SNPs. For UK biobank analysis, we omitted debiasing, prior weighting, and

doubly sparse projections.

2.3.7.1 Stage 2 Hypertension under a Logistic Model

Consistent with the clinical definition for stage 2 hypertension (S2 Hyp) [110], we designated pa-

tients as hypertensive if their SBP≥ 140mmHG or DBP≥ 90 mmHG. We ran 5-fold cross validated

logistic model across model sizes k = {1,2, ...,50}. The work load was distributed to 50 computers,

each with 5 CPU cores. Each computer was assigned one model size, and all completed its task

within 24 hours. The model size that minimizes the deviance residuals is k̂ = 39. The selected

predictors include the 33 SNPs listed in Table 2.7 and 6 non-genetic covariates: intercept, sex, age,

age2, BMI, and the fifth principal component.

Figure 2.4, generated by MendelPlots.jl [45], compares univariate logistic GWAS with lo-

gistic IHT. SNPs recovered by IHT are circled in black. Our Github page records the full list of
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Figure 2.4: Manhattan plot comparing a logistic (univariate) GWAS vs logistic IHT on UK Biobank
data. Colored dots are log10 p-values from a logistic GWAS, and the circled dots are SNPs recovered
by IHT.

significant SNPs detected by univariate GWAS. There are 10 SNPs selected by IHT that have a p-

value less than 5×10−8; 83 SNPs pass the threshold in the univariate analysis but remain unselected

by IHT. IHT tends to pick the most significant SNP among a group of SNPs in LD. Table 2.7 shows

25 SNPs selected by IHT that were previously reported to be associated with elevated SBP/DBP [73]

or that exhibit genome-wide significance when the same data are analyzed as an ordinal trait [44].

Ordinal univariate GWAS treats the different stages of hypertension as ordered categories. Ordinal

GWAS has higher power than logistic or multinomial GWAS [44]. The known SNPs displayed in

Table 2.7 tend to have larger absolute effect sizes (avg 0.033) than the unknown SNPs (avg = 0.027).

Finally, IHT is able to recover two pairs of highly correlated SNPs: (rs1374264,rs1898841) and

(rs7497304,rs2677738) with pairwise correlations of r1,2 = 0.59 and r3,4 = 0.49.
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SNP Chrom Position β̂ Known?
rs17367504 1 11862778 0.046 [73, 44]
rs757110 2 17418477 -0.025
rs1898841 2 165070207 0.022 [44]
rs1374264 2 164999883 0.020 [44]
rs16998073 4 81184341 -0.048 [73, 44]
rs1173771 4 32815028 0.046 [73, 44]
rs13107325 4 103188709 0.030 [73, 44]
rs72742749 5 32834974 0.029
rs11241955 5 127626884 0.028
rs2072495 5 158296996 -0.027
rs805293 6 31688518 -0.029 [44]
rs2392929 7 106414069 -0.039 [73, 44]
rs73203495 8 11580334 -0.031
rs12258967 10 18727959 0.039 [73, 44]
rs11191580 10 104906211 0.039 [73, 44]
rs2274224 10 96039597 0.036 [44]
rs1530440 10 63524591 0.028 [73, 44]
rs10895001 11 100533021 0.043 [44]
rs2293579 11 47440758 -0.035 [44]
rs2923089 11 10357572 -0.029 [44]
rs762551 11 75041917 -0.027 [44]
rs4548577 11 46998512 0.026
rs2681492 12 90013089 0.030 [73, 44]
rs10849937 12 111792427 0.030 [44]
rs35085068 14 23409909 -0.027 [44]
rs12901664 15 98338524 -0.027
rs7497304 15 91429176 -0.021 [73, 44]
rs2677738 15 91441673 0.021 [44]
rs3744760 17 43195981 -0.043 [44]
rs292445 18 55897720 -0.026
rs167479 19 11526765 0.036 [73, 44]
rs34328549 19 7253184 0.035 [44]
rs16982520 20 57758720 -0.030 [73, 44]

Table 2.7: UK Biobank GWAS results generated by running IHT on Stage 2 Hypertension (S2 Hyp)
under a logistic model. The SNP ID, chromosome number, position (in basepair), and estimated
effect sizes are listed.
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SNP Chrom Position β̂ Known?
rs6917603 6 30125050 0.17 [56, 73]
rs9261256 6 30129920 -0.07 [56]
rs9261224 6 30121866 -0.03
rs7120118 11 47242866 -0.03 [56, 97, 73]
rs1532085 15 56470658 -0.04 [56, 97, 73]
rs3764261 16 55550825 -0.05 [56, 97, 73]
rs3852700 16 65829359 -0.03
rs1800961 20 42475778 0.03 [73]

Table 2.8: NFBC GWAS results generated by running IHT on high density lipoprotein (HDL) pheno-
type as a normal response. The SNP ID, chromosome number, position (in basepair), and estimated
effect sizes are listed.

2.3.8 Cardiovascular GWAS in NFBC1966

We also tested IHT on data from the 1966 Northern Finland Birth Cohort (NFBC1966) [97]. Al-

though this dataset is relatively modest with 5402 participants and 364,590 SNPs, it has two virtues.

First, it has been analyzed multiple times [56, 97, 42], so comparison with earlier analysis is easy.

Second, due to a population bottleneck [79], the participants’ chromosomes exhibit more extensive

linkage disequilibrium than is typically found in less isolated populations. Multiple regression meth-

ods, including the lasso, have been criticized for their inability to deal with the dependence among

predictors induced by LD. Therefore this dataset provides an interesting test case.

2.3.8.1 High Density Lipoprotein (HDL) Phenotype as a Normal model

Using IHT we find previously associated SNPs as well as a few new potential associations. We

model the HDL phenotype as normally-distributed and find a best model size k̂ = 9 based on 5-fold

cross validation across model sizes k = {1,2, ...,20}. Without debiasing, the analysis was com-

pleted in 2 hours and 4 minutes with 30 CPU cores on a single machine. Table 2.8 displays the

recovered predictors. SNP rs1800961 was replaced by rs7499892 with similar effect size if we add

the debiasing step in obtaining the final model.

Importantly, IHT is able to simultaneously recover effects for SNPs (1) rs9261224, (2) rs6917603,
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and (3) rs6917603 with pairwise correlations of r1,2 = 0.618, r1,3 = 0.984, and r2,3 = 0.62. This re-

sult is achieved without grouping of SNPs, which can further increase association power. Compared

with earlier analyses of these data, we find 3 SNPs that were not listed in our previous IHT paper

[56], presumably due to slight algorithmic modifications. The authors of NFBC [97] found 5 SNPs

associated with HDL under SNP-by-SNP testing. We did not find SNPs rs2167079 and rs255049.

To date, rs255049 was replicated [42]. SNP rs2167079 has been reported to be associated with

an unrelated phenotype [85]. If we repeat the analysis with HDL dichotomized into low and high

HDL using a cutpoint of 60ml/DL, then we identify the 5 SNPs rs9261224, rs6917603, rs9261256,

rs3764261, and rs9898058; all but one of these, SNP rs9898058, is also found under the continuous

model. This SNP is not replicated in previous studies. As in the continuous model, rs6917603 has

the largest effect of all the selected SNPs. Readers interested in the full result can visit our Github

site.

2.3.8.2 Low Density Lipoprotein (LDL) as a Binary Response

Unfortunately we did not have access to any qualitative phenotypes for this cohort, so for purposes

of illustration, we fit a logistic regression model to a derived dichotomous phenotype, high versus

low levels of Low Density Lipoprotein (LDL). The original data are continuous, so we choose 145

mg/dL, the midpoint [110] between the borderline-high and high LDL cholesterol categories, to sep-

arate the two categories. This dichotomization resulted in 932 cases (high LDL) and 3961 controls

(low LDL). Under 5-fold cross validation without debiasing across model sizes k = {1,2, ...,20}, we

find k̂ = 3. Using 30 CPU cores, our algorithm finishes in 1 hours and 7 minutes.

Despite the loss of information inherent in dichotomization, our results are comparable to the

prior results under a normal model for the original quantitative LDL phenotype. Our final model

still recovers two SNP predictors with and without debiasing (Table 2.8). We miss all but one of

the SNPs that the NFBC analysis found to be associated with LDL treated as a quantitative trait.

Notably we again find an association with SNP rs6917603 that they did not report.
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2.4 Discussion

Multiple regression methods like iterative hard thresholding provide a principled way of model fit-

ting and variable selection. With increasing computing power and better software, multiple regres-

sion methods are likely to prevail over univariate methods. This paper introduces a scalable imple-

mentation of iterative hard thresholding for generalized linear models. Because lasso regression can

handle group and prior weights, we have also extended IHT to incorporate such prior knowledge.

When it is available, enhanced IHT outperforms standard IHT. Given its sharper parameter estimates

and more robust model selection, IHT is clearly superior to lasso selection or marginal association

testing in GWAS.

Our real data analyses and simulation studies suggest that IHT can (a) recover highly corre-

lated SNPs, (b) avoid over-fitting, (c) deliver better true positive and false positive rates than either

marginal testing or lasso regression, (d) recover unbiased regression coefficients, and (e) exploit prior

information and group-sparsity. Our Julia implementation of IHT can also exploit parallel comput-

ing strategies that scale to biobank-level data. In our opinion, the time is ripe for the genomics

community to embrace multiple regression models as a supplement to and possibly a replacement of

marginal analysis.

Although we focused our attention on GWAS, the potential applications of iterative hard thresh-

olding reach far beyond gene mapping. Our IHT implementation accepts arbitrary numeric data and

is suitable for a variety of applied statistics problems. Genetics and the broader field of bioinformat-

ics are blessed with rich, ultra-high dimensional data. IHT is designed to solve such problems. By

extending IHT to the realm of generalized linear models, it becomes possible to fit regression models

with more exotic distributions than the Gaussian distributions implicit in ordinary linear regression.

In our view IHT will eventually join and probably supplant lasso regression as the method of choice

in GWAS and other high-dimensional regression settings.
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2.5 Supplementary materials

2.5.1 Data Simulation

Our simulations mimic scenarios for a range of rare and common SNPs with or without LD. Unless

otherwise stated, we designate 10 SNPs to be causal with effect sizes of 0.1,0.2, ...,1.0.

To generate independent SNP genotypes, we first sample a minor allele frequency ρ j∼Uni f orm(0,0.5)

for each SNP j. To construct the genotype of person i at SNP j, we then sample from a binomial dis-

tribution with success probability ρ j and two trials. The vector of genotypes (minor allele counts) for

person i form row xt
i of the design matrix X. To generate SNP genotypes with linkage disequilibrium,

we divide all SNPs into blocks of length 20. Within each block, we first sample x1 ∼ Bernoulli(0.5).

Then we form a single haplotype block of length 20 by the following Markov chain procedure:

xi+1 =

xi with probability p

1− xi with probability 1− p

with default p= 0.75. For each block we form a pool of 20 haplotypes using this procedure, ensuring

every one of the 40 alleles (2 at each SNP) are represented at least once. For each person, the

genotype vector in a block is formed by sampling 2 haplotypes with replacement from the pool and

summing the number of minor alleles at each SNP.

Depending on the simulation, the number of subjects range from 1,000 to 120,000, and the num-

ber of independent SNPs range from 10,000 to 1,000,000. We simulate data under four GLM dis-

tributions: normal (Gaussian), Bernoulli, Poisson, and negative binomial. We generate component

yi of the response vector y by sampling from the corresponding distribution with mean µi = g(xt
iβ),

where g is the inverse link function. For normal models we assume unit variance, and for negative

binomial models we assume 10 required failures. To avoid overflows, we clamp the mean g(xt
iβ) to

stay within [−20,20]. (See Ad Hoc Tactics for a detailed explanation). We apply the canonical link

for each distribution, except for the negative binomial, where we apply the log link.
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2.5.2 Real Data’s Quality Control Procedures

UK Biobank. Following the UK biobank’s own quality control procedures, we first filtered all sam-

ples for sex discordance and high heterozygosity/missingness. Second, we included only people of

European ancestry and excluded first and second-degree relatives based on empiric kinship coeffi-

cients. Third, we also excluded people who had taken hypertension related medications at baseline.

Finally, we only included people with ≥ 98% genotyping success rate over all chromosomes and

SNPs with ≥ 99% genotyping success rate. Calculation of kinship coefficients and filtering were

carried out via the OpenMendel modules SnpArrays [126]. Remaining missing genotypes were im-

puted using modal genotypes at each SNP. After these quality control procedures, our UK biobank

data is the same data that was used in [44].

Northern Finland Birth Cohort. We imputed missing genotypes with Mendel [62]. Following

[56], we excluded subjects with missing phenotypes, fasting subjects, and subjects on diabetes med-

ication. We conducted quality control measures using the OpenMendel module SnpArrays [126].

Based on these measures, we excluded SNPs with minor allele frequency ≤ 0.01 and Hardy Wein-

berg equilibrium p-values ≤ 10−5. As for non-genetic predictors, we included sex (the sexOCPG

factor defined in [97]) as well as the first 2 principal components of the genotype matrix computed

via PLINK 2.0 alpha [24]. To put predictors, genetic and non-genetic, on an equal footing, we

standardized all predictors to have mean zero and unit variance.

2.5.3 Linear Algebra with Compressed Genotype Files

The genotype count matrix stores minor allele counts. The PLINK genotype compression protocol

[24] compactly stores the corresponding 0’s, 1’s, and 2’s in 2 bits per SNP, achieving a compression

ratio of 32:1 compared to storage as floating point numbers. For a sparsity level k model, we use

OpenBLAS (a highly optimized linear algebra library) to compute predicted values. This requires

transforming the k pertinent columns of X into a floating point matrix Xk and multiplying it times

the corresponding entries βk of β. The inverse link is then applied to Xkβk to give the mean vector
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µ= g(Xkβk). In computing the GLM gradient (equation 2.3), formation of the vector W1(y−µ) in-

volves no matrix multiplications. Computation of the gradient XtW1(y−µ) is more complicated be-

cause the full matrix X can no longer be avoided. Fortunately, the OpenMendel module SnpArrays

[126] can be invoked to perform compressed matrix times vector multiplication. Calculation of the

steplength of IHT requires computation of the quadratic form ∇L(βn)
tXtW2X∇L(βn). Given the

gradient, this computation requires a single compressed matrix times vector multiplication. Finally,

good statistical practice calls for standardizing covariates. To standardize the genotype counts for

SNP j, we estimate its minor allele frequency p j and then substitute the ratio xi j−2p j√
2p j(1−p j)

for the

genotype count xi j for person i at SNP j. This procedure is predicated on a binomial distribution

for the count xi j. Our previous paper [56] shows how to accommodate standardization in the matrix

operations of IHT without actually forming or storing the standardized matrix.

Although multiplication via the OpenMendel module SnpArrays [126] is slower than Open-

BLAS multiplication on small data sets, it can be as much as 10 times faster on large data sets.

OpenBLAS has advantages in parallelization, but it requires floating point arrays. Once the geno-

type matrix X exceeds the memory available in RAM, expensive data swapping between RAM and

hard disk memory sets in. This dramatically slows matrix multiplication. SnpArrays is less vulner-

able to this hazard owing to compression. Once compressed data exceeds RAM, SnpArrays also

succumbs to the swapping problem. Current laptop and desktop computers seldom have more than

32 GB of RAM, so we must resort to cluster or cloud computing when input files exceed 32 GB.

2.5.4 Computations Involving Non-genetic Covariates

Non-genetic covariates are stored as double or single precision floating point entries in an n× r

design matrix Z. To accommodate an intercept, the first column should be a vector of 1’s. Let γ

denote the r vector of regression coefficients corresponding to Z. The full design matrix is the block
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matrix (XZ). Matrix multiplications involving (XZ) should be carried out via

(XZ)

β

γ

 = Xβ+Zγ and (XZ)t v =

Xtv

Ztv

 .

Adherence to these rules ensures a low memory footprint. Multiplication involving X can be con-

ducted as previously explained. Multiplication involving Z can revert to BLAS.

2.5.5 Parallel Computation

The OpenBLAS library accessed by Julia is inherently parallel. Beyond that we incorporate parallel

processing in cross validation. Recall that in q-fold cross validation we separate subjects into q

disjoint subsets. We then fit a training model using q− 1 of those subsets on all desired sparsity

levels and record the mean-squared prediction error on the omitted subset. Each of the q subsets

serve as the testing set exactly once. Testing error is averaged across the different folds for each

sparsity levels k. The lowest average testing error determines the recommended sparsity.

MendelIHT.jl offers 2 parallelism strategies in cross validation. Either the q training sets are

each loaded to q different CPUs where each compute and test differ sparsity levels sequentially, or

each of the q training sets are cycled through sequentially and each sparsity parameter is fitted and

tested in parallel. The former tactic requires enough disk space and RAM to store q different training

data (where each typically require (q−1)/q GB of the full data), but offers immense parallel power

because one can assign different computers to handle different sparsity levels. This tactic allows

one to fit biobank scale data in less than a day assuming enough storage space and computers are

available. The latter tactic requires cycling through the training sets sequentially. Since intermediate

data can be deleted, the tactic only requires enough disk space and RAM to store 1 copy of the

training set. MendelIHT.jl uses one of Julia’s [12] standard library Distributed.jl to achieve

the aforementioned parallel strategies.
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2.5.6 Ad Hoc Tactics to Prevent Overflows

In Poisson and negative binomial regressions, the inverse link argument exp(xt
iβ) experiences nu-

merical overflows when the inner product xt
iβ is too large. In general, we avoid running Poisson

regression when response means are large. In this regime a normal approximation is preferred. As

a safety feature, MendelIHT.jl clamps values of xt
iβ to the interval [−20,20]. Note that penalized

regression suffers from the same overflow catastrophes.

2.5.7 Convergence and Backtracking

For each proposed IHT step we check whether the objective L(β) increases. When it does not, we

step-halve at most 5 times to restore the ascent property. Convergence is declared when

||βn+1−βn||∞
||βn||∞ +1

< Tolerance,

with the default tolerance being 0.0001. The addition of 1 in the denominator of the convergence

criterion guards against division by 0.

2.6 Availability of source code

Project name: MendelIHT

Project home page:

https://github.com/OpenMendel/MendelIHT.jl

Operating systems: Mac OS, Linux, Windows

Programming language: Julia 1.0, 1.2

License: MIT

The code to generate simulated data, as well as their subsequent analysis, are available in our github

repository under figures folder. Project.toml and Manifest.toml files can be used together to in-
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stantiate the same computing environment in our paper. Notably, MendelIHT.jl interfaces with

the OpenMendel [128] package SnpArrays.jl [126] and JuliaStats’s packages Distribution.jl

[11] and GLM.jl [67].
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CHAPTER 3

A Fast Data-Driven Method for Genotype Imputation, Phasing,

and Local Ancestry Inference: MendelImpute.jl

3.1 Introduction

Haplotyping (phasing) is the process of inferring unobserved haplotypes from observed genotypes.

It is possible to deduce phase from the observed genotypes of surrounding pedigree members [100],

but pedigree data are no longer considered competitive with linkage disequilibrium data. Current

methods for phasing and genotype imputation exploit public reference panels such as those curated

by the Haplotype Reference Consortium (HRC) [81] and the NHLBI TOPMed Program [103]. The

sizes of these reference panels keep expanding: from 1000 samples in 2012 [2], to about 30,000 in

2016 [81], and to over 90,000 in 2019 [103]. Genome-wide association studies (GWAS), the primary

consumers of imputation, exhibit similar trends in increasing sample sizes and denser SNP typing

[102]. Despite these technological improvements, phasing and imputation methods are still largely

based on hidden Markov models (HMM). Through decades of successive improvements, HMM

software is now more than 10,000 times faster than the original software [30], but the core HMM

principles remain relatively unchanged. This paper explores an attractive data-driven alternative for

imputation and phasing that is faster and simpler than HMM methods.

Hidden Markov models (HMMs) capture the linkage disequilibrium in haplotype reference pan-

els based on the probabilistic model of Li and Stephens [66]. The latest HMM software programs

include Minimac 4 [31], Beagle 5 [20], and Impute 5 [96]. These HMMs programs all have es-

sentially the same imputation accuracy [20], are computationally intensive, and generally require
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pre-phased genotypes. The biggest computational bottleneck facing these programs is the size of the

HMM state space. An initial pre-phasing (imputation) step fills in missing phases and genotypes at

the typed markers in a study. The easier second step constructs haplotypes on the entire set of SNPs

in the reference panel from the pre-phased data [51]. This separation of tasks forces users to chain

together different computer programs, reduces imputation accuracy [30], and tends to inflate overall

run-times even when the individual components are well optimized.

Purely data-driven techniques are potential competitors to HMMs in genotype imputation and

haplotyping. Big data techniques substitute massive amounts of training data for detailed models

in prediction. This substitution can reduce computation times and, if the data are incompatible

with the assumptions underlying the HMM, improve accuracy. Haplotyping HMMs, despite their

appeal and empirically satisfying error rates, make simplifying assumptions about recombination

hot spots and linkage patterns. We have previously demonstrated the virtues of big data methods in

genotype imputation with haplotyping [25] and without haplotyping [26]. SparRec [53] refines the

later method by adding additional information on matrix co-clustering. These two matrix completion

methods efficiently impute missing entries via low-rank approximations. Unfortunately, they also

rely on computationally intensive cross validation to find the optimal rank of the approximating

matrices. On the upside, matrix completion circumvents pre-phasing, exploits reference panels, and

readily imputes dosage data, where genotype entries span the entire interval [0,2].

Despite these advantages, data-driven methods have not been widely accepted as alternatives

to HMM methods. Although it is possible in principle, our previous program [26] did not build a

pipeline to handle large reference panels. Here we propose a novel data-driven method to fill this gap.

Our software MendelImpute (a) avoids the pre-phasing step, (b) exploits known haplotype reference

panels, (c) supports dosage data, (d) runs extremely fast, (e) makes a relatively small demand on

memory, and (f) naturally extends to local and global ancestry inference. Its imputation error rate

is slightly higher than the best HMM software but still within a desirable range. MendelImpute

is open source and forms a part of the OpenMendel platform [128], which is in the modern Julia

programming language [12]. We demonstrate that MendelImpute is capable of dealing with HRC
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data even on a standard laptop. In coordination with our packages VCFTools.jl for VCF files,

SnpArrays.jl for PLINK files, and BGEN.jl for BGEN files, OpenMendel powers a streamlined

pipeline for end-to-end data analysis.

For each chromosome of a study subject, MendelImpute reconstructs two extended haplotypes

E1 and E2 that cover the entire chromosome. Both E1 and E2 are mosaics of reference haplotypes

with a few break points where a switch occurs from one reference haplotype to another. The break

points presumably represent contemporary or ancient recombination events. MendelImpute finds

these reference segments and their break points. From E1 and E2 it is trivial to impute missing geno-

types, both typed and untyped. The extended haplotypes can be painted with colors indicating the

region on the globe from which each reference segment was drawn. The number of SNPs assigned

to each color immediately determine ethnic proportions and plays into admixture mapping. The ex-

tended segments also serve as a convenient device for data compression. One simply stores the break

points and the index of the reference haplotype assigned to each segment. Finally, E1 and E2 can be

nominated as maternal or paternal whenever either parent of a sample subject is also genotyped.

3.2 Materials and Methods

Our overall imputation strategy operates on an input matrix X whose columns are sample genotypes

at the typed markers. The entries of X represent alternative allele counts xi j ∈ [0,2]∪{missing}.

The reference haplotypes are stored in a matrix H whose columns are haplotype vectors with entries

hi j ∈ {0,1}, representing reference and alternative alleles, respectively. Given these data, the idea is

to partition each sample’s genotype vector into small adjacent genomic windows. In each window,

many reference haplotypes collapse to the same unique haplotype at the typed SNPs. We find the two

unique haplotypes whose vector sum best matches the sample genotype vector. Then we expand the

unique haplotypes into two sets of matching full haplotypes and intersect these sets across adjacent

windows. Linkage disequilibrium favors long stretches of single reference haplotypes punctuated by

break points. Our strategy is summarized in Figure 3.1. A detailed commentary on the interacting
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tactics appears in subsequent sections.

3.2.1 Missing Data in Typed and Untyped SNPs

There are two kinds of missing data requiring imputation. A GWAS data set may sample on the

order of 106 SNPs across the genome. We call SNPs that are sampled at this stage typed SNPs. Raw

data from a GWAS study may contain entries missing at random due to experimental errors, but the

missing rate is usually low, at most a few percent, and existing programs [70] usually impute these

in the pre-phasing step. When modern geneticists speak of imputation, they refer to imputing phased

genotypes at the unsampled SNPs present in the reference panel. We call the unsampled markers

untyped SNPs. The latest reference panels contain from 107 to 108 SNPs, so an imputation problem

can have more than 90% missing data. We assume that the typed SNPs sufficiently cover the entire

genome. From the mosaic of typed and untyped SNPs, one can exploit local linkage disequilibrium

to infer for each person his/her phased genotypes at all SNPs, typed and untyped. As a first step one

must situate the typed SNPs among the ordered SNPs in the reference panel (Figure 3.1A). The Julia

command indexin() quickly finds the proper alignment.

3.2.2 Finding Optimal Haplotype Pairs via Least Squares

Suppose there are d unique haplotypes h1, ...,hd (entries 0 or 1) in a genomic window (Figure 3.1B),

where the supplement discusses how to efficiently compute them. Consider a genotype vector x

with entries xi ∈ [0,2]∪{missing}. The goal is to find the two unique haplotypes hi and h j such that

x≈ hi +h j. The best haplotype pair is selected by minimizing the least squares criterion

||x−hi−h j||22 = ||x||22 + ||hi||22 + ||h j||22 +2hT
i h j−2xT hi−2xT h j (3.1)

over all
(d

2

)
+ d haplotype combinations. To fill in a missing value xi, we naively initialize it with

the mean at each typed SNP. This action may lead to imputation errors when the typed SNPs exhibit

a large proportion of missing values. We discuss a strategy to remedy this bias in the supplement.
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(a)  Examine window of typed SNPs 
Reference haplotypes 

aligned with genotypes at the 
typed SNPs (untyped SNPs 

not needed) 

One sample’s unphased 
genotypes. One marker is 
missing due to genotyping 
error 

1 1 0 0 1 0

1 1 0 0 1 0

1 1 0 0 1 0

1 0 1 0 0 1

1 0 1 0 0 1

1 0 1 0 0 1

0 0 1 0 1 0

0 0 1 0 1 0

h1

h2

h3

h4

h5

h6

h7

h8
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<latexit sha1_base64="GJSoqXv/Wey6KQbUqOPy6tcu4v0=">AAAB/nicbVBNSwMxEM3Wr1q/VsWTl2ARBKFspKDHohePFWwttMuSTbPd0OwmJFlpWQr+FS8eFPHq7/DmvzFt96CtDwYe780wMy+UnGnjed9OaWV1bX2jvFnZ2t7Z3XP3D9paZIrQFhFcqE6INeUspS3DDKcdqShOQk4fwuHN1H94pEozkd6bsaR+ggcpixjBxkqBexQHCJ7DOKjDHpZSiREcBShwq17NmwEuE1SQKijQDNyvXl+QLKGpIRxr3UWeNH6OlWGE00mll2kqMRniAe1amuKEaj+fnT+Bp1bpw0goW6mBM/X3RI4TrcdJaDsTbGK96E3F/7xuZqIrP2epzAxNyXxRlHFoBJxmAftMUWL42BJMFLO3QhJjhYmxiVVsCGjx5WXSvqghr4bu6tXGdRFHGRyDE3AGELgEDXALmqAFCMjBM3gFb86T8+K8Ox/z1pJTzByCP3A+fwDO4JQZ</latexit><latexit sha1_base64="GJSoqXv/Wey6KQbUqOPy6tcu4v0=">AAAB/nicbVBNSwMxEM3Wr1q/VsWTl2ARBKFspKDHohePFWwttMuSTbPd0OwmJFlpWQr+FS8eFPHq7/DmvzFt96CtDwYe780wMy+UnGnjed9OaWV1bX2jvFnZ2t7Z3XP3D9paZIrQFhFcqE6INeUspS3DDKcdqShOQk4fwuHN1H94pEozkd6bsaR+ggcpixjBxkqBexQHCJ7DOKjDHpZSiREcBShwq17NmwEuE1SQKijQDNyvXl+QLKGpIRxr3UWeNH6OlWGE00mll2kqMRniAe1amuKEaj+fnT+Bp1bpw0goW6mBM/X3RI4TrcdJaDsTbGK96E3F/7xuZqIrP2epzAxNyXxRlHFoBJxmAftMUWL42BJMFLO3QhJjhYmxiVVsCGjx5WXSvqghr4bu6tXGdRFHGRyDE3AGELgEDXALmqAFCMjBM3gFb86T8+K8Ox/z1pJTzByCP3A+fwDO4JQZ</latexit><latexit sha1_base64="GJSoqXv/Wey6KQbUqOPy6tcu4v0=">AAAB/nicbVBNSwMxEM3Wr1q/VsWTl2ARBKFspKDHohePFWwttMuSTbPd0OwmJFlpWQr+FS8eFPHq7/DmvzFt96CtDwYe780wMy+UnGnjed9OaWV1bX2jvFnZ2t7Z3XP3D9paZIrQFhFcqE6INeUspS3DDKcdqShOQk4fwuHN1H94pEozkd6bsaR+ggcpixjBxkqBexQHCJ7DOKjDHpZSiREcBShwq17NmwEuE1SQKijQDNyvXl+QLKGpIRxr3UWeNH6OlWGE00mll2kqMRniAe1amuKEaj+fnT+Bp1bpw0goW6mBM/X3RI4TrcdJaDsTbGK96E3F/7xuZqIrP2epzAxNyXxRlHFoBJxmAftMUWL42BJMFLO3QhJjhYmxiVVsCGjx5WXSvqghr4bu6tXGdRFHGRyDE3AGELgEDXALmqAFCMjBM3gFb86T8+K8Ox/z1pJTzByCP3A+fwDO4JQZ</latexit><latexit sha1_base64="GJSoqXv/Wey6KQbUqOPy6tcu4v0=">AAAB/nicbVBNSwMxEM3Wr1q/VsWTl2ARBKFspKDHohePFWwttMuSTbPd0OwmJFlpWQr+FS8eFPHq7/DmvzFt96CtDwYe780wMy+UnGnjed9OaWV1bX2jvFnZ2t7Z3XP3D9paZIrQFhFcqE6INeUspS3DDKcdqShOQk4fwuHN1H94pEozkd6bsaR+ggcpixjBxkqBexQHCJ7DOKjDHpZSiREcBShwq17NmwEuE1SQKijQDNyvXl+QLKGpIRxr3UWeNH6OlWGE00mll2kqMRniAe1amuKEaj+fnT+Bp1bpw0goW6mBM/X3RI4TrcdJaDsTbGK96E3F/7xuZqIrP2epzAxNyXxRlHFoBJxmAftMUWL42BJMFLO3QhJjhYmxiVVsCGjx5WXSvqghr4bu6tXGdRFHGRyDE3AGELgEDXALmqAFCMjBM3gFb86T8+K8Ox/z1pJTzByCP3A+fwDO4JQZ</latexit>

Find           using 
least squares 

h1, h4
<latexit sha1_base64="/cTL4h/eiCZxN+Ng8FPWiaxpLCc=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBg5RECnosevFYwX5AG8Jmu2mW7m7i7kYooX/CiwdFvPp3vPlv3LY5aOuDgcd7M8zMC1POtHHdb6e0tr6xuVXeruzs7u0fVA+POjrJFKFtkvBE9UKsKWeStg0znPZSRbEIOe2G49uZ332iSrNEPphJSn2BR5JFjGBjpV4ceBcoDhpBtebW3TnQKvEKUoMCraD6NRgmJBNUGsKx1n3PTY2fY2UY4XRaGWSappiM8Yj2LZVYUO3n83un6MwqQxQlypY0aK7+nsix0HoiQtspsIn1sjcT//P6mYmu/ZzJNDNUksWiKOPIJGj2PBoyRYnhE0swUczeikiMFSbGRlSxIXjLL6+SzmXdc+vefaPWvCniKMMJnMI5eHAFTbiDFrSBAIdneIU359F5cd6dj0VrySlmjuEPnM8for2PCQ==</latexit><latexit sha1_base64="/cTL4h/eiCZxN+Ng8FPWiaxpLCc=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBg5RECnosevFYwX5AG8Jmu2mW7m7i7kYooX/CiwdFvPp3vPlv3LY5aOuDgcd7M8zMC1POtHHdb6e0tr6xuVXeruzs7u0fVA+POjrJFKFtkvBE9UKsKWeStg0znPZSRbEIOe2G49uZ332iSrNEPphJSn2BR5JFjGBjpV4ceBcoDhpBtebW3TnQKvEKUoMCraD6NRgmJBNUGsKx1n3PTY2fY2UY4XRaGWSappiM8Yj2LZVYUO3n83un6MwqQxQlypY0aK7+nsix0HoiQtspsIn1sjcT//P6mYmu/ZzJNDNUksWiKOPIJGj2PBoyRYnhE0swUczeikiMFSbGRlSxIXjLL6+SzmXdc+vefaPWvCniKMMJnMI5eHAFTbiDFrSBAIdneIU359F5cd6dj0VrySlmjuEPnM8for2PCQ==</latexit><latexit sha1_base64="/cTL4h/eiCZxN+Ng8FPWiaxpLCc=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBg5RECnosevFYwX5AG8Jmu2mW7m7i7kYooX/CiwdFvPp3vPlv3LY5aOuDgcd7M8zMC1POtHHdb6e0tr6xuVXeruzs7u0fVA+POjrJFKFtkvBE9UKsKWeStg0znPZSRbEIOe2G49uZ332iSrNEPphJSn2BR5JFjGBjpV4ceBcoDhpBtebW3TnQKvEKUoMCraD6NRgmJBNUGsKx1n3PTY2fY2UY4XRaGWSappiM8Yj2LZVYUO3n83un6MwqQxQlypY0aK7+nsix0HoiQtspsIn1sjcT//P6mYmu/ZzJNDNUksWiKOPIJGj2PBoyRYnhE0swUczeikiMFSbGRlSxIXjLL6+SzmXdc+vefaPWvCniKMMJnMI5eHAFTbiDFrSBAIdneIU359F5cd6dj0VrySlmjuEPnM8for2PCQ==</latexit><latexit sha1_base64="hP+6LrUf2d3tZaldqaQQvEKMXyw=">AAAB2XicbZDNSgMxFIXv1L86Vq1rN8EiuCozbnQpuHFZwbZCO5RM5k4bmskMyR2hDH0BF25EfC93vo3pz0JbDwQ+zknIvSculLQUBN9ebWd3b/+gfugfNfzjk9Nmo2fz0gjsilzl5jnmFpXU2CVJCp8LgzyLFfbj6f0i77+gsTLXTzQrMMr4WMtUCk7O6oyaraAdLMW2IVxDC9YaNb+GSS7KDDUJxa0dhEFBUcUNSaFw7g9LiwUXUz7GgUPNM7RRtRxzzi6dk7A0N+5oYkv394uKZ9bOstjdzDhN7Ga2MP/LBiWlt1EldVESarH6KC0Vo5wtdmaJNChIzRxwYaSblYkJN1yQa8Z3HYSbG29D77odBu3wMYA6nMMFXEEIN3AHD9CBLghI4BXevYn35n2suqp569LO4I+8zx84xIo4</latexit><latexit sha1_base64="V5GsOErvnGp0TOmMP7WyEK5Z4uI=">AAAB5HicbZDNSgMxFIXv1L9aq1a3boJFcCFlRgRdCm5cVnDaQjsMmfROJzSTGZOMUIa+hBsXivhM7nwb05+Fth4IfJyTkHtPlAuujet+O5WNza3tnepuba++f3DYOKp3dFYohj7LRKZ6EdUouETfcCOwlyukaSSwG43vZnn3GZXmmXw0kxyDlI4kjzmjxlq9JPQuSBJehY2m23LnIuvgLaEJS7XDxtdgmLEiRWmYoFr3PTc3QUmV4UzgtDYoNOaUjekI+xYlTVEH5XzeKTmzzpDEmbJHGjJ3f78oaar1JI3szZSaRK9mM/O/rF+Y+CYoucwLg5ItPooLQUxGZsuTIVfIjJhYoExxOythCVWUGVtRzZbgra68Dp3Llue2vAcXqnACp3AOHlzDLdxDG3xgIOAF3uDdeXJenY9FXRVn2dsx/JHz+QN4yo2v</latexit><latexit sha1_base64="V5GsOErvnGp0TOmMP7WyEK5Z4uI=">AAAB5HicbZDNSgMxFIXv1L9aq1a3boJFcCFlRgRdCm5cVnDaQjsMmfROJzSTGZOMUIa+hBsXivhM7nwb05+Fth4IfJyTkHtPlAuujet+O5WNza3tnepuba++f3DYOKp3dFYohj7LRKZ6EdUouETfcCOwlyukaSSwG43vZnn3GZXmmXw0kxyDlI4kjzmjxlq9JPQuSBJehY2m23LnIuvgLaEJS7XDxtdgmLEiRWmYoFr3PTc3QUmV4UzgtDYoNOaUjekI+xYlTVEH5XzeKTmzzpDEmbJHGjJ3f78oaar1JI3szZSaRK9mM/O/rF+Y+CYoucwLg5ItPooLQUxGZsuTIVfIjJhYoExxOythCVWUGVtRzZbgra68Dp3Llue2vAcXqnACp3AOHlzDLdxDG3xgIOAF3uDdeXJenY9FXRVn2dsx/JHz+QN4yo2v</latexit><latexit sha1_base64="r8zf7M7cz+CA36CStDtKjO1TXps=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBg5REBD0WvXisYGuhDWGznbRLN5u4uxFK6J/w4kERr/4db/4bt20O2vpg4PHeDDPzwlRwbVz32ymtrK6tb5Q3K1vbO7t71f2Dtk4yxbDFEpGoTkg1Ci6xZbgR2EkV0jgU+BCObqb+wxMqzRN5b8Yp+jEdSB5xRo2VOsPAOyPD4CKo1ty6OwNZJl5BalCgGVS/ev2EZTFKwwTVuuu5qfFzqgxnAieVXqYxpWxEB9i1VNIYtZ/P7p2QE6v0SZQoW9KQmfp7Iqex1uM4tJ0xNUO96E3F/7xuZqIrP+cyzQxKNl8UZYKYhEyfJ32ukBkxtoQyxe2thA2poszYiCo2BG/x5WXSPq97bt27c2uN6yKOMhzBMZyCB5fQgFtoQgsYCHiGV3hzHp0X5935mLeWnGLmEP7A+fwBoX2PBQ==</latexit><latexit sha1_base64="/cTL4h/eiCZxN+Ng8FPWiaxpLCc=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBg5RECnosevFYwX5AG8Jmu2mW7m7i7kYooX/CiwdFvPp3vPlv3LY5aOuDgcd7M8zMC1POtHHdb6e0tr6xuVXeruzs7u0fVA+POjrJFKFtkvBE9UKsKWeStg0znPZSRbEIOe2G49uZ332iSrNEPphJSn2BR5JFjGBjpV4ceBcoDhpBtebW3TnQKvEKUoMCraD6NRgmJBNUGsKx1n3PTY2fY2UY4XRaGWSappiM8Yj2LZVYUO3n83un6MwqQxQlypY0aK7+nsix0HoiQtspsIn1sjcT//P6mYmu/ZzJNDNUksWiKOPIJGj2PBoyRYnhE0swUczeikiMFSbGRlSxIXjLL6+SzmXdc+vefaPWvCniKMMJnMI5eHAFTbiDFrSBAIdneIU359F5cd6dj0VrySlmjuEPnM8for2PCQ==</latexit><latexit sha1_base64="/cTL4h/eiCZxN+Ng8FPWiaxpLCc=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBg5RECnosevFYwX5AG8Jmu2mW7m7i7kYooX/CiwdFvPp3vPlv3LY5aOuDgcd7M8zMC1POtHHdb6e0tr6xuVXeruzs7u0fVA+POjrJFKFtkvBE9UKsKWeStg0znPZSRbEIOe2G49uZ332iSrNEPphJSn2BR5JFjGBjpV4ceBcoDhpBtebW3TnQKvEKUoMCraD6NRgmJBNUGsKx1n3PTY2fY2UY4XRaGWSappiM8Yj2LZVYUO3n83un6MwqQxQlypY0aK7+nsix0HoiQtspsIn1sjcT//P6mYmu/ZzJNDNUksWiKOPIJGj2PBoyRYnhE0swUczeikiMFSbGRlSxIXjLL6+SzmXdc+vefaPWvCniKMMJnMI5eHAFTbiDFrSBAIdneIU359F5cd6dj0VrySlmjuEPnM8for2PCQ==</latexit><latexit sha1_base64="/cTL4h/eiCZxN+Ng8FPWiaxpLCc=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBg5RECnosevFYwX5AG8Jmu2mW7m7i7kYooX/CiwdFvPp3vPlv3LY5aOuDgcd7M8zMC1POtHHdb6e0tr6xuVXeruzs7u0fVA+POjrJFKFtkvBE9UKsKWeStg0znPZSRbEIOe2G49uZ332iSrNEPphJSn2BR5JFjGBjpV4ceBcoDhpBtebW3TnQKvEKUoMCraD6NRgmJBNUGsKx1n3PTY2fY2UY4XRaGWSappiM8Yj2LZVYUO3n83un6MwqQxQlypY0aK7+nsix0HoiQtspsIn1sjcT//P6mYmu/ZzJNDNUksWiKOPIJGj2PBoyRYnhE0swUczeikiMFSbGRlSxIXjLL6+SzmXdc+vefaPWvCniKMMJnMI5eHAFTbiDFrSBAIdneIU359F5cd6dj0VrySlmjuEPnM8for2PCQ==</latexit><latexit sha1_base64="/cTL4h/eiCZxN+Ng8FPWiaxpLCc=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBg5RECnosevFYwX5AG8Jmu2mW7m7i7kYooX/CiwdFvPp3vPlv3LY5aOuDgcd7M8zMC1POtHHdb6e0tr6xuVXeruzs7u0fVA+POjrJFKFtkvBE9UKsKWeStg0znPZSRbEIOe2G49uZ332iSrNEPphJSn2BR5JFjGBjpV4ceBcoDhpBtebW3TnQKvEKUoMCraD6NRgmJBNUGsKx1n3PTY2fY2UY4XRaGWSappiM8Yj2LZVYUO3n83un6MwqQxQlypY0aK7+nsix0HoiQtspsIn1sjcT//P6mYmu/ZzJNDNUksWiKOPIJGj2PBoyRYnhE0swUczeikiMFSbGRlSxIXjLL6+SzmXdc+vefaPWvCniKMMJnMI5eHAFTbiDFrSBAIdneIU359F5cd6dj0VrySlmjuEPnM8for2PCQ==</latexit><latexit sha1_base64="/cTL4h/eiCZxN+Ng8FPWiaxpLCc=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBg5RECnosevFYwX5AG8Jmu2mW7m7i7kYooX/CiwdFvPp3vPlv3LY5aOuDgcd7M8zMC1POtHHdb6e0tr6xuVXeruzs7u0fVA+POjrJFKFtkvBE9UKsKWeStg0znPZSRbEIOe2G49uZ332iSrNEPphJSn2BR5JFjGBjpV4ceBcoDhpBtebW3TnQKvEKUoMCraD6NRgmJBNUGsKx1n3PTY2fY2UY4XRaGWSappiM8Yj2LZVYUO3n83un6MwqQxQlypY0aK7+nsix0HoiQtspsIn1sjcT//P6mYmu/ZzJNDNUksWiKOPIJGj2PBoyRYnhE0swUczeikiMFSbGRlSxIXjLL6+SzmXdc+vefaPWvCniKMMJnMI5eHAFTbiDFrSBAIdneIU359F5cd6dj0VrySlmjuEPnM8for2PCQ==</latexit><latexit sha1_base64="/cTL4h/eiCZxN+Ng8FPWiaxpLCc=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBg5RECnosevFYwX5AG8Jmu2mW7m7i7kYooX/CiwdFvPp3vPlv3LY5aOuDgcd7M8zMC1POtHHdb6e0tr6xuVXeruzs7u0fVA+POjrJFKFtkvBE9UKsKWeStg0znPZSRbEIOe2G49uZ332iSrNEPphJSn2BR5JFjGBjpV4ceBcoDhpBtebW3TnQKvEKUoMCraD6NRgmJBNUGsKx1n3PTY2fY2UY4XRaGWSappiM8Yj2LZVYUO3n83un6MwqQxQlypY0aK7+nsix0HoiQtspsIn1sjcT//P6mYmu/ZzJNDNUksWiKOPIJGj2PBoyRYnhE0swUczeikiMFSbGRlSxIXjLL6+SzmXdc+vefaPWvCniKMMJnMI5eHAFTbiDFrSBAIdneIU359F5cd6dj0VrySlmjuEPnM8for2PCQ==</latexit>

Extract matching 
haplotypes 

x0
1

<latexit sha1_base64="4qj6ScukeJbCrP+yOIQgEqaiLUk=">AAAB63icbVBNSwMxEJ3Ur1q/qh69BIvoqeyKoMeiF48VbC20S8mm2TY0yS5JVixL/4IXD4p49Q9589+YbfegrQ8GHu/NMDMvTAQ31vO+UWlldW19o7xZ2dre2d2r7h+0TZxqylo0FrHuhMQwwRVrWW4F6ySaERkK9hCOb3L/4ZFpw2N1bycJCyQZKh5xSmwuPfX903615tW9GfAy8QtSgwLNfvWrN4hpKpmyVBBjur6X2CAj2nIq2LTSSw1LCB2TIes6qohkJshmt07xiVMGOIq1K2XxTP09kRFpzESGrlMSOzKLXi7+53VTG10FGVdJapmi80VRKrCNcf44HnDNqBUTRwjV3N2K6YhoQq2Lp+JC8BdfXibt87rv1f27i1rjuoijDEdwDGfgwyU04Baa0AIKI3iGV3hDEr2gd/Qxby2hYuYQ/gB9/gBsvI3R</latexit><latexit sha1_base64="4qj6ScukeJbCrP+yOIQgEqaiLUk=">AAAB63icbVBNSwMxEJ3Ur1q/qh69BIvoqeyKoMeiF48VbC20S8mm2TY0yS5JVixL/4IXD4p49Q9589+YbfegrQ8GHu/NMDMvTAQ31vO+UWlldW19o7xZ2dre2d2r7h+0TZxqylo0FrHuhMQwwRVrWW4F6ySaERkK9hCOb3L/4ZFpw2N1bycJCyQZKh5xSmwuPfX903615tW9GfAy8QtSgwLNfvWrN4hpKpmyVBBjur6X2CAj2nIq2LTSSw1LCB2TIes6qohkJshmt07xiVMGOIq1K2XxTP09kRFpzESGrlMSOzKLXi7+53VTG10FGVdJapmi80VRKrCNcf44HnDNqBUTRwjV3N2K6YhoQq2Lp+JC8BdfXibt87rv1f27i1rjuoijDEdwDGfgwyU04Baa0AIKI3iGV3hDEr2gd/Qxby2hYuYQ/gB9/gBsvI3R</latexit><latexit sha1_base64="4qj6ScukeJbCrP+yOIQgEqaiLUk=">AAAB63icbVBNSwMxEJ3Ur1q/qh69BIvoqeyKoMeiF48VbC20S8mm2TY0yS5JVixL/4IXD4p49Q9589+YbfegrQ8GHu/NMDMvTAQ31vO+UWlldW19o7xZ2dre2d2r7h+0TZxqylo0FrHuhMQwwRVrWW4F6ySaERkK9hCOb3L/4ZFpw2N1bycJCyQZKh5xSmwuPfX903615tW9GfAy8QtSgwLNfvWrN4hpKpmyVBBjur6X2CAj2nIq2LTSSw1LCB2TIes6qohkJshmt07xiVMGOIq1K2XxTP09kRFpzESGrlMSOzKLXi7+53VTG10FGVdJapmi80VRKrCNcf44HnDNqBUTRwjV3N2K6YhoQq2Lp+JC8BdfXibt87rv1f27i1rjuoijDEdwDGfgwyU04Baa0AIKI3iGV3hDEr2gd/Qxby2hYuYQ/gB9/gBsvI3R</latexit><latexit sha1_base64="4qj6ScukeJbCrP+yOIQgEqaiLUk=">AAAB63icbVBNSwMxEJ3Ur1q/qh69BIvoqeyKoMeiF48VbC20S8mm2TY0yS5JVixL/4IXD4p49Q9589+YbfegrQ8GHu/NMDMvTAQ31vO+UWlldW19o7xZ2dre2d2r7h+0TZxqylo0FrHuhMQwwRVrWW4F6ySaERkK9hCOb3L/4ZFpw2N1bycJCyQZKh5xSmwuPfX903615tW9GfAy8QtSgwLNfvWrN4hpKpmyVBBjur6X2CAj2nIq2LTSSw1LCB2TIes6qohkJshmt07xiVMGOIq1K2XxTP09kRFpzESGrlMSOzKLXi7+53VTG10FGVdJapmi80VRKrCNcf44HnDNqBUTRwjV3N2K6YhoQq2Lp+JC8BdfXibt87rv1f27i1rjuoijDEdwDGfgwyU04Baa0AIKI3iGV3hDEr2gd/Qxby2hYuYQ/gB9/gBsvI3R</latexit>

||x0
1 � h1 � h4||2 = 2

||x0
1 � h1 � h7||2 = 2

||x0
1 � h4 � h7||2 = 3

<latexit sha1_base64="j/OsAPkGALM3TqsV6kwtAHCEbos=">AAACPXicbZA7T8MwFIUdnqW8AowsFhWChSoplcqCVMHCWKS+pCZEjuu0Vp2HbAdRNf1jLPwHNjYWBhBiZcVNM9DHlWwdne9e2fe4EaNCGsabtrK6tr6xmdvKb+/s7u3rB4dNEcYckwYOWcjbLhKE0YA0JJWMtCNOkO8y0nIHtxPeeiRc0DCoy2FEbB/1AupRjKSyHL2eJE+OeQYvYN8x07ucJA8leA1LlpVfgJXlsDwDLx29YBSNtOCiMDNRAFnVHP3V6oY49kkgMUNCdEwjkvYIcUkxI+O8FQsSITxAPdJRMkA+EfYo3X4MT5XThV7I1QkkTN3/EyPkCzH0XdXpI9kX82xiLmOdWHpX9ogGUSxJgKcPeTGDMoSTKGGXcoIlGyqBMKfqrxD3EUdYqsDzKgRzfuVF0SwVTaNo3pcL1Zssjhw4BifgHJigAqrgDtRAA2DwDN7BJ/jSXrQP7Vv7mbauaNnMEZgp7fcPhwmnAg==</latexit><latexit sha1_base64="j/OsAPkGALM3TqsV6kwtAHCEbos=">AAACPXicbZA7T8MwFIUdnqW8AowsFhWChSoplcqCVMHCWKS+pCZEjuu0Vp2HbAdRNf1jLPwHNjYWBhBiZcVNM9DHlWwdne9e2fe4EaNCGsabtrK6tr6xmdvKb+/s7u3rB4dNEcYckwYOWcjbLhKE0YA0JJWMtCNOkO8y0nIHtxPeeiRc0DCoy2FEbB/1AupRjKSyHL2eJE+OeQYvYN8x07ucJA8leA1LlpVfgJXlsDwDLx29YBSNtOCiMDNRAFnVHP3V6oY49kkgMUNCdEwjkvYIcUkxI+O8FQsSITxAPdJRMkA+EfYo3X4MT5XThV7I1QkkTN3/EyPkCzH0XdXpI9kX82xiLmOdWHpX9ogGUSxJgKcPeTGDMoSTKGGXcoIlGyqBMKfqrxD3EUdYqsDzKgRzfuVF0SwVTaNo3pcL1Zssjhw4BifgHJigAqrgDtRAA2DwDN7BJ/jSXrQP7Vv7mbauaNnMEZgp7fcPhwmnAg==</latexit><latexit sha1_base64="j/OsAPkGALM3TqsV6kwtAHCEbos=">AAACPXicbZA7T8MwFIUdnqW8AowsFhWChSoplcqCVMHCWKS+pCZEjuu0Vp2HbAdRNf1jLPwHNjYWBhBiZcVNM9DHlWwdne9e2fe4EaNCGsabtrK6tr6xmdvKb+/s7u3rB4dNEcYckwYOWcjbLhKE0YA0JJWMtCNOkO8y0nIHtxPeeiRc0DCoy2FEbB/1AupRjKSyHL2eJE+OeQYvYN8x07ucJA8leA1LlpVfgJXlsDwDLx29YBSNtOCiMDNRAFnVHP3V6oY49kkgMUNCdEwjkvYIcUkxI+O8FQsSITxAPdJRMkA+EfYo3X4MT5XThV7I1QkkTN3/EyPkCzH0XdXpI9kX82xiLmOdWHpX9ogGUSxJgKcPeTGDMoSTKGGXcoIlGyqBMKfqrxD3EUdYqsDzKgRzfuVF0SwVTaNo3pcL1Zssjhw4BifgHJigAqrgDtRAA2DwDN7BJ/jSXrQP7Vv7mbauaNnMEZgp7fcPhwmnAg==</latexit><latexit sha1_base64="j/OsAPkGALM3TqsV6kwtAHCEbos=">AAACPXicbZA7T8MwFIUdnqW8AowsFhWChSoplcqCVMHCWKS+pCZEjuu0Vp2HbAdRNf1jLPwHNjYWBhBiZcVNM9DHlWwdne9e2fe4EaNCGsabtrK6tr6xmdvKb+/s7u3rB4dNEcYckwYOWcjbLhKE0YA0JJWMtCNOkO8y0nIHtxPeeiRc0DCoy2FEbB/1AupRjKSyHL2eJE+OeQYvYN8x07ucJA8leA1LlpVfgJXlsDwDLx29YBSNtOCiMDNRAFnVHP3V6oY49kkgMUNCdEwjkvYIcUkxI+O8FQsSITxAPdJRMkA+EfYo3X4MT5XThV7I1QkkTN3/EyPkCzH0XdXpI9kX82xiLmOdWHpX9ogGUSxJgKcPeTGDMoSTKGGXcoIlGyqBMKfqrxD3EUdYqsDzKgRzfuVF0SwVTaNo3pcL1Zssjhw4BifgHJigAqrgDtRAA2DwDN7BJ/jSXrQP7Vv7mbauaNnMEZgp7fcPhwmnAg==</latexit>

(b)  Find optimal haplotype pairs in each window 

hhh555, h7, h8
<latexit sha1_base64="g0XZyKlJEKB/hGl0Ms1jvaXOQaI=">AAACAnicbVDLSgMxFM3UV62vUVfiJlgEF1JmRGmXRTcuK9gHtMOQSTNtaJIZkoxQhuLGX3HjQhG3foU7/8bMdBbaeiC5h3PuJbkniBlV2nG+rdLK6tr6RnmzsrW9s7tn7x90VJRITNo4YpHsBUgRRgVpa6oZ6cWSIB4w0g0mN5nffSBS0Ujc62lMPI5GgoYUI20k3z4axDyAYz/N69Xs3PB6djV8u+rUnBxwmbgFqYICLd/+GgwjnHAiNGZIqb7rxNpLkdQUMzKrDBJFYoQnaET6hgrEifLSfIUZPDXKEIaRNEdomKu/J1LElZrywHRypMdq0cvE/7x+osOGl1IRJ5oIPH8oTBjUEczygEMqCdZsagjCkpq/QjxGEmFtUquYENzFlZdJ56LmOjX37rLavC7iKINjcALOgAvqoAluQQu0AQaP4Bm8gjfryXqx3q2PeWvJKmYOwR9Ynz+oOpWk</latexit><latexit sha1_base64="g0XZyKlJEKB/hGl0Ms1jvaXOQaI=">AAACAnicbVDLSgMxFM3UV62vUVfiJlgEF1JmRGmXRTcuK9gHtMOQSTNtaJIZkoxQhuLGX3HjQhG3foU7/8bMdBbaeiC5h3PuJbkniBlV2nG+rdLK6tr6RnmzsrW9s7tn7x90VJRITNo4YpHsBUgRRgVpa6oZ6cWSIB4w0g0mN5nffSBS0Ujc62lMPI5GgoYUI20k3z4axDyAYz/N69Xs3PB6djV8u+rUnBxwmbgFqYICLd/+GgwjnHAiNGZIqb7rxNpLkdQUMzKrDBJFYoQnaET6hgrEifLSfIUZPDXKEIaRNEdomKu/J1LElZrywHRypMdq0cvE/7x+osOGl1IRJ5oIPH8oTBjUEczygEMqCdZsagjCkpq/QjxGEmFtUquYENzFlZdJ56LmOjX37rLavC7iKINjcALOgAvqoAluQQu0AQaP4Bm8gjfryXqx3q2PeWvJKmYOwR9Ynz+oOpWk</latexit><latexit sha1_base64="g0XZyKlJEKB/hGl0Ms1jvaXOQaI=">AAACAnicbVDLSgMxFM3UV62vUVfiJlgEF1JmRGmXRTcuK9gHtMOQSTNtaJIZkoxQhuLGX3HjQhG3foU7/8bMdBbaeiC5h3PuJbkniBlV2nG+rdLK6tr6RnmzsrW9s7tn7x90VJRITNo4YpHsBUgRRgVpa6oZ6cWSIB4w0g0mN5nffSBS0Ujc62lMPI5GgoYUI20k3z4axDyAYz/N69Xs3PB6djV8u+rUnBxwmbgFqYICLd/+GgwjnHAiNGZIqb7rxNpLkdQUMzKrDBJFYoQnaET6hgrEifLSfIUZPDXKEIaRNEdomKu/J1LElZrywHRypMdq0cvE/7x+osOGl1IRJ5oIPH8oTBjUEczygEMqCdZsagjCkpq/QjxGEmFtUquYENzFlZdJ56LmOjX37rLavC7iKINjcALOgAvqoAluQQu0AQaP4Bm8gjfryXqx3q2PeWvJKmYOwR9Ynz+oOpWk</latexit><latexit sha1_base64="g0XZyKlJEKB/hGl0Ms1jvaXOQaI=">AAACAnicbVDLSgMxFM3UV62vUVfiJlgEF1JmRGmXRTcuK9gHtMOQSTNtaJIZkoxQhuLGX3HjQhG3foU7/8bMdBbaeiC5h3PuJbkniBlV2nG+rdLK6tr6RnmzsrW9s7tn7x90VJRITNo4YpHsBUgRRgVpa6oZ6cWSIB4w0g0mN5nffSBS0Ujc62lMPI5GgoYUI20k3z4axDyAYz/N69Xs3PB6djV8u+rUnBxwmbgFqYICLd/+GgwjnHAiNGZIqb7rxNpLkdQUMzKrDBJFYoQnaET6hgrEifLSfIUZPDXKEIaRNEdomKu/J1LElZrywHRypMdq0cvE/7x+osOGl1IRJ5oIPH8oTBjUEczygEMqCdZsagjCkpq/QjxGEmFtUquYENzFlZdJ56LmOjX37rLavC7iKINjcALOgAvqoAluQQu0AQaP4Bm8gjfryXqx3q2PeWvJKmYOwR9Ynz+oOpWk</latexit>

h4,hhh555, h6
<latexit sha1_base64="k4ikmGz3DQgBGuITgUft0y0qwLI=">AAACAnicbZBNS8MwGMfT+TbnW9WTeAkOwcMYrcyX49CLxwluE7ZS0ixdw5K0JKkwyvDiV/HiQRGvfgpvfhuzrgfdfCDkx///PCTPP0gYVdpxvq3S0vLK6lp5vbKxubW9Y+/udVScSkzaOGaxvA+QIowK0tZUM3KfSIJ4wEg3GF1P/e4DkYrG4k6PE+JxNBQ0pBhpI/n2QeQ3arCf8ABGfpbfZ5Oa4XPfrjp1Jy+4CG4BVVBUy7e/+oMYp5wIjRlSquc6ifYyJDXFjEwq/VSRBOERGpKeQYE4UV6WrzCBx0YZwDCW5ggNc/X3RIa4UmMemE6OdKTmvan4n9dLdXjpZVQkqSYCzx4KUwZ1DKd5wAGVBGs2NoCwpOavEEdIIqxNahUTgju/8iJ0TuuuU3dvG9XmVRFHGRyCI3ACXHABmuAGtEAbYPAInsEreLOerBfr3fqYtZasYmYf/Cnr8weZwJWf</latexit><latexit sha1_base64="k4ikmGz3DQgBGuITgUft0y0qwLI=">AAACAnicbZBNS8MwGMfT+TbnW9WTeAkOwcMYrcyX49CLxwluE7ZS0ixdw5K0JKkwyvDiV/HiQRGvfgpvfhuzrgfdfCDkx///PCTPP0gYVdpxvq3S0vLK6lp5vbKxubW9Y+/udVScSkzaOGaxvA+QIowK0tZUM3KfSIJ4wEg3GF1P/e4DkYrG4k6PE+JxNBQ0pBhpI/n2QeQ3arCf8ABGfpbfZ5Oa4XPfrjp1Jy+4CG4BVVBUy7e/+oMYp5wIjRlSquc6ifYyJDXFjEwq/VSRBOERGpKeQYE4UV6WrzCBx0YZwDCW5ggNc/X3RIa4UmMemE6OdKTmvan4n9dLdXjpZVQkqSYCzx4KUwZ1DKd5wAGVBGs2NoCwpOavEEdIIqxNahUTgju/8iJ0TuuuU3dvG9XmVRFHGRyCI3ACXHABmuAGtEAbYPAInsEreLOerBfr3fqYtZasYmYf/Cnr8weZwJWf</latexit><latexit sha1_base64="k4ikmGz3DQgBGuITgUft0y0qwLI=">AAACAnicbZBNS8MwGMfT+TbnW9WTeAkOwcMYrcyX49CLxwluE7ZS0ixdw5K0JKkwyvDiV/HiQRGvfgpvfhuzrgfdfCDkx///PCTPP0gYVdpxvq3S0vLK6lp5vbKxubW9Y+/udVScSkzaOGaxvA+QIowK0tZUM3KfSIJ4wEg3GF1P/e4DkYrG4k6PE+JxNBQ0pBhpI/n2QeQ3arCf8ABGfpbfZ5Oa4XPfrjp1Jy+4CG4BVVBUy7e/+oMYp5wIjRlSquc6ifYyJDXFjEwq/VSRBOERGpKeQYE4UV6WrzCBx0YZwDCW5ggNc/X3RIa4UmMemE6OdKTmvan4n9dLdXjpZVQkqSYCzx4KUwZ1DKd5wAGVBGs2NoCwpOavEEdIIqxNahUTgju/8iJ0TuuuU3dvG9XmVRFHGRyCI3ACXHABmuAGtEAbYPAInsEreLOerBfr3fqYtZasYmYf/Cnr8weZwJWf</latexit><latexit sha1_base64="k4ikmGz3DQgBGuITgUft0y0qwLI=">AAACAnicbZBNS8MwGMfT+TbnW9WTeAkOwcMYrcyX49CLxwluE7ZS0ixdw5K0JKkwyvDiV/HiQRGvfgpvfhuzrgfdfCDkx///PCTPP0gYVdpxvq3S0vLK6lp5vbKxubW9Y+/udVScSkzaOGaxvA+QIowK0tZUM3KfSIJ4wEg3GF1P/e4DkYrG4k6PE+JxNBQ0pBhpI/n2QeQ3arCf8ABGfpbfZ5Oa4XPfrjp1Jy+4CG4BVVBUy7e/+oMYp5wIjRlSquc6ifYyJDXFjEwq/VSRBOERGpKeQYE4UV6WrzCBx0YZwDCW5ggNc/X3RIa4UmMemE6OdKTmvan4n9dLdXjpZVQkqSYCzx4KUwZ1DKd5wAGVBGs2NoCwpOavEEdIIqxNahUTgju/8iJ0TuuuU3dvG9XmVRFHGRyCI3ACXHABmuAGtEAbYPAInsEreLOerBfr3fqYtZasYmYf/Cnr8weZwJWf</latexit>

A	switch	at	window	2	generates	1	surviving	haplotype:	

{}
<latexit sha1_base64="fC11B/Xsx0/cYTRCwRvVA2mM6bo=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cKthaaUDbbTbt0P8LuRiihf8GLB0W8+oe8+W/ctDlo64OBx3szzMyLU86M9f1vr7K2vrG5Vd2u7ezu7R/UD4+6RmWa0A5RXOlejA3lTNKOZZbTXqopFjGnj/HktvAfn6g2TMkHO01pJPBIsoQRbAspzMPZoN7wm/4caJUEJWlAifag/hUOFckElZZwbEw/8FMb5VhbRjid1cLM0BSTCR7RvqMSC2qifH7rDJ05ZYgSpV1Ji+bq74kcC2OmInadAtuxWfYK8T+vn9nkOsqZTDNLJVksSjKOrELF42jINCWWTx3BRDN3KyJjrDGxLp6aCyFYfnmVdC+agd8M7i8brZsyjiqcwCmcQwBX0II7aEMHCIzhGV7hzRPei/fufSxaK145cwx/4H3+ADBejlI=</latexit><latexit sha1_base64="fC11B/Xsx0/cYTRCwRvVA2mM6bo=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cKthaaUDbbTbt0P8LuRiihf8GLB0W8+oe8+W/ctDlo64OBx3szzMyLU86M9f1vr7K2vrG5Vd2u7ezu7R/UD4+6RmWa0A5RXOlejA3lTNKOZZbTXqopFjGnj/HktvAfn6g2TMkHO01pJPBIsoQRbAspzMPZoN7wm/4caJUEJWlAifag/hUOFckElZZwbEw/8FMb5VhbRjid1cLM0BSTCR7RvqMSC2qifH7rDJ05ZYgSpV1Ji+bq74kcC2OmInadAtuxWfYK8T+vn9nkOsqZTDNLJVksSjKOrELF42jINCWWTx3BRDN3KyJjrDGxLp6aCyFYfnmVdC+agd8M7i8brZsyjiqcwCmcQwBX0II7aEMHCIzhGV7hzRPei/fufSxaK145cwx/4H3+ADBejlI=</latexit><latexit sha1_base64="fC11B/Xsx0/cYTRCwRvVA2mM6bo=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cKthaaUDbbTbt0P8LuRiihf8GLB0W8+oe8+W/ctDlo64OBx3szzMyLU86M9f1vr7K2vrG5Vd2u7ezu7R/UD4+6RmWa0A5RXOlejA3lTNKOZZbTXqopFjGnj/HktvAfn6g2TMkHO01pJPBIsoQRbAspzMPZoN7wm/4caJUEJWlAifag/hUOFckElZZwbEw/8FMb5VhbRjid1cLM0BSTCR7RvqMSC2qifH7rDJ05ZYgSpV1Ji+bq74kcC2OmInadAtuxWfYK8T+vn9nkOsqZTDNLJVksSjKOrELF42jINCWWTx3BRDN3KyJjrDGxLp6aCyFYfnmVdC+agd8M7i8brZsyjiqcwCmcQwBX0II7aEMHCIzhGV7hzRPei/fufSxaK145cwx/4H3+ADBejlI=</latexit><latexit sha1_base64="fC11B/Xsx0/cYTRCwRvVA2mM6bo=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cKthaaUDbbTbt0P8LuRiihf8GLB0W8+oe8+W/ctDlo64OBx3szzMyLU86M9f1vr7K2vrG5Vd2u7ezu7R/UD4+6RmWa0A5RXOlejA3lTNKOZZbTXqopFjGnj/HktvAfn6g2TMkHO01pJPBIsoQRbAspzMPZoN7wm/4caJUEJWlAifag/hUOFckElZZwbEw/8FMb5VhbRjid1cLM0BSTCR7RvqMSC2qifH7rDJ05ZYgSpV1Ji+bq74kcC2OmInadAtuxWfYK8T+vn9nkOsqZTDNLJVksSjKOrELF42jINCWWTx3BRDN3KyJjrDGxLp6aCyFYfnmVdC+agd8M7i8brZsyjiqcwCmcQwBX0II7aEMHCIzhGV7hzRPei/fufSxaK145cwx/4H3+ADBejlI=</latexit>

{h5}
<latexit sha1_base64="Xk+uWzsYPjQdK/tKuJZac7dIPXc=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0WPRi8cK9gOaUDbbTbt0swm7E6GE/ggvHhTx6u/x5r9x2+agrQ8GHu/NMDMvTKUw6LrfTmltfWNzq7xd2dnd2z+oHh61TZJpxlsskYnuhtRwKRRvoUDJu6nmNA4l74Tju5nfeeLaiEQ94iTlQUyHSkSCUbRSx89H/St/2q/W3Lo7B1klXkFqUKDZr375g4RlMVfIJDWm57kpBjnVKJjk04qfGZ5SNqZD3rNU0ZibIJ+fOyVnVhmQKNG2FJK5+nsip7Exkzi0nTHFkVn2ZuJ/Xi/D6CbIhUoz5IotFkWZJJiQ2e9kIDRnKCeWUKaFvZWwEdWUoU2oYkPwll9eJe2LuufWvYfLWuO2iKMMJ3AK5+DBNTTgHprQAgZjeIZXeHNS58V5dz4WrSWnmDmGP3A+fwAi3I9s</latexit><latexit sha1_base64="Xk+uWzsYPjQdK/tKuJZac7dIPXc=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0WPRi8cK9gOaUDbbTbt0swm7E6GE/ggvHhTx6u/x5r9x2+agrQ8GHu/NMDMvTKUw6LrfTmltfWNzq7xd2dnd2z+oHh61TZJpxlsskYnuhtRwKRRvoUDJu6nmNA4l74Tju5nfeeLaiEQ94iTlQUyHSkSCUbRSx89H/St/2q/W3Lo7B1klXkFqUKDZr375g4RlMVfIJDWm57kpBjnVKJjk04qfGZ5SNqZD3rNU0ZibIJ+fOyVnVhmQKNG2FJK5+nsip7Exkzi0nTHFkVn2ZuJ/Xi/D6CbIhUoz5IotFkWZJJiQ2e9kIDRnKCeWUKaFvZWwEdWUoU2oYkPwll9eJe2LuufWvYfLWuO2iKMMJ3AK5+DBNTTgHprQAgZjeIZXeHNS58V5dz4WrSWnmDmGP3A+fwAi3I9s</latexit><latexit sha1_base64="Xk+uWzsYPjQdK/tKuJZac7dIPXc=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0WPRi8cK9gOaUDbbTbt0swm7E6GE/ggvHhTx6u/x5r9x2+agrQ8GHu/NMDMvTKUw6LrfTmltfWNzq7xd2dnd2z+oHh61TZJpxlsskYnuhtRwKRRvoUDJu6nmNA4l74Tju5nfeeLaiEQ94iTlQUyHSkSCUbRSx89H/St/2q/W3Lo7B1klXkFqUKDZr375g4RlMVfIJDWm57kpBjnVKJjk04qfGZ5SNqZD3rNU0ZibIJ+fOyVnVhmQKNG2FJK5+nsip7Exkzi0nTHFkVn2ZuJ/Xi/D6CbIhUoz5IotFkWZJJiQ2e9kIDRnKCeWUKaFvZWwEdWUoU2oYkPwll9eJe2LuufWvYfLWuO2iKMMJ3AK5+DBNTTgHprQAgZjeIZXeHNS58V5dz4WrSWnmDmGP3A+fwAi3I9s</latexit><latexit sha1_base64="Xk+uWzsYPjQdK/tKuJZac7dIPXc=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0WPRi8cK9gOaUDbbTbt0swm7E6GE/ggvHhTx6u/x5r9x2+agrQ8GHu/NMDMvTKUw6LrfTmltfWNzq7xd2dnd2z+oHh61TZJpxlsskYnuhtRwKRRvoUDJu6nmNA4l74Tju5nfeeLaiEQ94iTlQUyHSkSCUbRSx89H/St/2q/W3Lo7B1klXkFqUKDZr375g4RlMVfIJDWm57kpBjnVKJjk04qfGZ5SNqZD3rNU0ZibIJ+fOyVnVhmQKNG2FJK5+nsip7Exkzi0nTHFkVn2ZuJ/Xi/D6CbIhUoz5IotFkWZJJiQ2e9kIDRnKCeWUKaFvZWwEdWUoU2oYkPwll9eJe2LuufWvYfLWuO2iKMMJ3AK5+DBNTTgHprQAgZjeIZXeHNS58V5dz4WrSWnmDmGP3A+fwAi3I9s</latexit>

{h6}
<latexit sha1_base64="mU5XF4lcv9DvzR4pXNq+hsIEFEk=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cK9gOaUDbbTbt0swm7E6GE/ggvHhTx6u/x5r9x2+agrQ8GHu/NMDMvTKUw6LrfTmltfWNzq7xd2dnd2z+oHh61TZJpxlsskYnuhtRwKRRvoUDJu6nmNA4l74Tju5nfeeLaiEQ94iTlQUyHSkSCUbRSx89H/St/2q/W3Lo7B1klXkFqUKDZr375g4RlMVfIJDWm57kpBjnVKJjk04qfGZ5SNqZD3rNU0ZibIJ+fOyVnVhmQKNG2FJK5+nsip7Exkzi0nTHFkVn2ZuJ/Xi/D6CbIhUoz5IotFkWZJJiQ2e9kIDRnKCeWUKaFvZWwEdWUoU2oYkPwll9eJe2LuufWvYfLWuO2iKMMJ3AK5+DBNTTgHprQAgZjeIZXeHNS58V5dz4WrSWnmDmGP3A+fwAkYo9t</latexit><latexit sha1_base64="mU5XF4lcv9DvzR4pXNq+hsIEFEk=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cK9gOaUDbbTbt0swm7E6GE/ggvHhTx6u/x5r9x2+agrQ8GHu/NMDMvTKUw6LrfTmltfWNzq7xd2dnd2z+oHh61TZJpxlsskYnuhtRwKRRvoUDJu6nmNA4l74Tju5nfeeLaiEQ94iTlQUyHSkSCUbRSx89H/St/2q/W3Lo7B1klXkFqUKDZr375g4RlMVfIJDWm57kpBjnVKJjk04qfGZ5SNqZD3rNU0ZibIJ+fOyVnVhmQKNG2FJK5+nsip7Exkzi0nTHFkVn2ZuJ/Xi/D6CbIhUoz5IotFkWZJJiQ2e9kIDRnKCeWUKaFvZWwEdWUoU2oYkPwll9eJe2LuufWvYfLWuO2iKMMJ3AK5+DBNTTgHprQAgZjeIZXeHNS58V5dz4WrSWnmDmGP3A+fwAkYo9t</latexit><latexit sha1_base64="mU5XF4lcv9DvzR4pXNq+hsIEFEk=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cK9gOaUDbbTbt0swm7E6GE/ggvHhTx6u/x5r9x2+agrQ8GHu/NMDMvTKUw6LrfTmltfWNzq7xd2dnd2z+oHh61TZJpxlsskYnuhtRwKRRvoUDJu6nmNA4l74Tju5nfeeLaiEQ94iTlQUyHSkSCUbRSx89H/St/2q/W3Lo7B1klXkFqUKDZr375g4RlMVfIJDWm57kpBjnVKJjk04qfGZ5SNqZD3rNU0ZibIJ+fOyVnVhmQKNG2FJK5+nsip7Exkzi0nTHFkVn2ZuJ/Xi/D6CbIhUoz5IotFkWZJJiQ2e9kIDRnKCeWUKaFvZWwEdWUoU2oYkPwll9eJe2LuufWvYfLWuO2iKMMJ3AK5+DBNTTgHprQAgZjeIZXeHNS58V5dz4WrSWnmDmGP3A+fwAkYo9t</latexit><latexit sha1_base64="mU5XF4lcv9DvzR4pXNq+hsIEFEk=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cK9gOaUDbbTbt0swm7E6GE/ggvHhTx6u/x5r9x2+agrQ8GHu/NMDMvTKUw6LrfTmltfWNzq7xd2dnd2z+oHh61TZJpxlsskYnuhtRwKRRvoUDJu6nmNA4l74Tju5nfeeLaiEQ94iTlQUyHSkSCUbRSx89H/St/2q/W3Lo7B1klXkFqUKDZr375g4RlMVfIJDWm57kpBjnVKJjk04qfGZ5SNqZD3rNU0ZibIJ+fOyVnVhmQKNG2FJK5+nsip7Exkzi0nTHFkVn2ZuJ/Xi/D6CbIhUoz5IotFkWZJJiQ2e9kIDRnKCeWUKaFvZWwEdWUoU2oYkPwll9eJe2LuufWvYfLWuO2iKMMJ3AK5+DBNTTgHprQAgZjeIZXeHNS58V5dz4WrSWnmDmGP3A+fwAkYo9t</latexit>

h1, h2, h3
<latexit sha1_base64="eNX1oXKpQ9Ka1C7KwqUb88dWFD0=">AAAB9HicbVDLSsNAFL2pr1pfVZduBovgQkpSBV0W3bisYB/QhjCZTpqhk0mcmRRK6He4caGIWz/GnX/jpM1CWw/cy+Gce5k7x084U9q2v63S2vrG5lZ5u7Kzu7d/UD086qg4lYS2Scxj2fOxopwJ2tZMc9pLJMWRz2nXH9/lfndCpWKxeNTThLoRHgkWMIK1kdzQcy5Q6DXydulVa3bdngOtEqcgNSjQ8qpfg2FM0ogKTThWqu/YiXYzLDUjnM4qg1TRBJMxHtG+oQJHVLnZ/OgZOjPKEAWxNCU0mqu/NzIcKTWNfDMZYR2qZS8X//P6qQ5u3IyJJNVUkMVDQcqRjlGeABoySYnmU0MwkczcikiIJSba5FQxITjLX14lnUbdsevOw1WteVvEUYYTOIVzcOAamnAPLWgDgSd4hld4sybWi/VufSxGS1axcwx/YH3+AFQ4kH8=</latexit><latexit sha1_base64="eNX1oXKpQ9Ka1C7KwqUb88dWFD0=">AAAB9HicbVDLSsNAFL2pr1pfVZduBovgQkpSBV0W3bisYB/QhjCZTpqhk0mcmRRK6He4caGIWz/GnX/jpM1CWw/cy+Gce5k7x084U9q2v63S2vrG5lZ5u7Kzu7d/UD086qg4lYS2Scxj2fOxopwJ2tZMc9pLJMWRz2nXH9/lfndCpWKxeNTThLoRHgkWMIK1kdzQcy5Q6DXydulVa3bdngOtEqcgNSjQ8qpfg2FM0ogKTThWqu/YiXYzLDUjnM4qg1TRBJMxHtG+oQJHVLnZ/OgZOjPKEAWxNCU0mqu/NzIcKTWNfDMZYR2qZS8X//P6qQ5u3IyJJNVUkMVDQcqRjlGeABoySYnmU0MwkczcikiIJSba5FQxITjLX14lnUbdsevOw1WteVvEUYYTOIVzcOAamnAPLWgDgSd4hld4sybWi/VufSxGS1axcwx/YH3+AFQ4kH8=</latexit><latexit sha1_base64="eNX1oXKpQ9Ka1C7KwqUb88dWFD0=">AAAB9HicbVDLSsNAFL2pr1pfVZduBovgQkpSBV0W3bisYB/QhjCZTpqhk0mcmRRK6He4caGIWz/GnX/jpM1CWw/cy+Gce5k7x084U9q2v63S2vrG5lZ5u7Kzu7d/UD086qg4lYS2Scxj2fOxopwJ2tZMc9pLJMWRz2nXH9/lfndCpWKxeNTThLoRHgkWMIK1kdzQcy5Q6DXydulVa3bdngOtEqcgNSjQ8qpfg2FM0ogKTThWqu/YiXYzLDUjnM4qg1TRBJMxHtG+oQJHVLnZ/OgZOjPKEAWxNCU0mqu/NzIcKTWNfDMZYR2qZS8X//P6qQ5u3IyJJNVUkMVDQcqRjlGeABoySYnmU0MwkczcikiIJSba5FQxITjLX14lnUbdsevOw1WteVvEUYYTOIVzcOAamnAPLWgDgSd4hld4sybWi/VufSxGS1axcwx/YH3+AFQ4kH8=</latexit><latexit sha1_base64="eNX1oXKpQ9Ka1C7KwqUb88dWFD0=">AAAB9HicbVDLSsNAFL2pr1pfVZduBovgQkpSBV0W3bisYB/QhjCZTpqhk0mcmRRK6He4caGIWz/GnX/jpM1CWw/cy+Gce5k7x084U9q2v63S2vrG5lZ5u7Kzu7d/UD086qg4lYS2Scxj2fOxopwJ2tZMc9pLJMWRz2nXH9/lfndCpWKxeNTThLoRHgkWMIK1kdzQcy5Q6DXydulVa3bdngOtEqcgNSjQ8qpfg2FM0ogKTThWqu/YiXYzLDUjnM4qg1TRBJMxHtG+oQJHVLnZ/OgZOjPKEAWxNCU0mqu/NzIcKTWNfDMZYR2qZS8X//P6qQ5u3IyJJNVUkMVDQcqRjlGeABoySYnmU0MwkczcikiIJSba5FQxITjLX14lnUbdsevOw1WteVvEUYYTOIVzcOAamnAPLWgDgSd4hld4sybWi/VufSxGS1axcwx/YH3+AFQ4kH8=</latexit>

h5, h7, h8
<latexit sha1_base64="rdOomWrsBcpAjACy6cPT/LBhp7o=">AAAB9HicbVDLSsNAFL3xWeur6tLNYBFcSElEaZdFNy4r2Ae0IUymk2boZBJnJoUS+h1uXCji1o9x5984abPQ1gP3cjjnXubO8RPOlLbtb2ttfWNza7u0U97d2z84rBwdd1ScSkLbJOax7PlYUc4EbWumOe0lkuLI57Trj+9yvzuhUrFYPOppQt0IjwQLGMHaSG7o3Vyi0KvnreFVqnbNngOtEqcgVSjQ8ipfg2FM0ogKTThWqu/YiXYzLDUjnM7Kg1TRBJMxHtG+oQJHVLnZ/OgZOjfKEAWxNCU0mqu/NzIcKTWNfDMZYR2qZS8X//P6qQ4absZEkmoqyOKhIOVIxyhPAA2ZpETzqSGYSGZuRSTEEhNtciqbEJzlL6+SzlXNsWvOw3W1eVvEUYJTOIMLcKAOTbiHFrSBwBM8wyu8WRPrxXq3Phaja1axcwJ/YH3+AGmxkI0=</latexit><latexit sha1_base64="rdOomWrsBcpAjACy6cPT/LBhp7o=">AAAB9HicbVDLSsNAFL3xWeur6tLNYBFcSElEaZdFNy4r2Ae0IUymk2boZBJnJoUS+h1uXCji1o9x5984abPQ1gP3cjjnXubO8RPOlLbtb2ttfWNza7u0U97d2z84rBwdd1ScSkLbJOax7PlYUc4EbWumOe0lkuLI57Trj+9yvzuhUrFYPOppQt0IjwQLGMHaSG7o3Vyi0KvnreFVqnbNngOtEqcgVSjQ8ipfg2FM0ogKTThWqu/YiXYzLDUjnM7Kg1TRBJMxHtG+oQJHVLnZ/OgZOjfKEAWxNCU0mqu/NzIcKTWNfDMZYR2qZS8X//P6qQ4absZEkmoqyOKhIOVIxyhPAA2ZpETzqSGYSGZuRSTEEhNtciqbEJzlL6+SzlXNsWvOw3W1eVvEUYJTOIMLcKAOTbiHFrSBwBM8wyu8WRPrxXq3Phaja1axcwJ/YH3+AGmxkI0=</latexit><latexit sha1_base64="rdOomWrsBcpAjACy6cPT/LBhp7o=">AAAB9HicbVDLSsNAFL3xWeur6tLNYBFcSElEaZdFNy4r2Ae0IUymk2boZBJnJoUS+h1uXCji1o9x5984abPQ1gP3cjjnXubO8RPOlLbtb2ttfWNza7u0U97d2z84rBwdd1ScSkLbJOax7PlYUc4EbWumOe0lkuLI57Trj+9yvzuhUrFYPOppQt0IjwQLGMHaSG7o3Vyi0KvnreFVqnbNngOtEqcgVSjQ8ipfg2FM0ogKTThWqu/YiXYzLDUjnM7Kg1TRBJMxHtG+oQJHVLnZ/OgZOjfKEAWxNCU0mqu/NzIcKTWNfDMZYR2qZS8X//P6qQ4absZEkmoqyOKhIOVIxyhPAA2ZpETzqSGYSGZuRSTEEhNtciqbEJzlL6+SzlXNsWvOw3W1eVvEUYJTOIMLcKAOTbiHFrSBwBM8wyu8WRPrxXq3Phaja1axcwJ/YH3+AGmxkI0=</latexit><latexit sha1_base64="rdOomWrsBcpAjACy6cPT/LBhp7o=">AAAB9HicbVDLSsNAFL3xWeur6tLNYBFcSElEaZdFNy4r2Ae0IUymk2boZBJnJoUS+h1uXCji1o9x5984abPQ1gP3cjjnXubO8RPOlLbtb2ttfWNza7u0U97d2z84rBwdd1ScSkLbJOax7PlYUc4EbWumOe0lkuLI57Trj+9yvzuhUrFYPOppQt0IjwQLGMHaSG7o3Vyi0KvnreFVqnbNngOtEqcgVSjQ8ipfg2FM0ogKTThWqu/YiXYzLDUjnM7Kg1TRBJMxHtG+oQJHVLnZ/OgZOjfKEAWxNCU0mqu/NzIcKTWNfDMZYR2qZS8X//P6qQ4absZEkmoqyOKhIOVIxyhPAA2ZpETzqSGYSGZuRSTEEhNtciqbEJzlL6+SzlXNsWvOw3W1eVvEUYJTOIMLcKAOTbiHFrSBwBM8wyu8WRPrxXq3Phaja1axcwJ/YH3+AGmxkI0=</latexit>

(c) Connect neighbors in 1 of 2 ways 

Parallel	connection	generates	3	surviving	haplotypes:	 Unphased haplotypes 

hhh555, h7, h8
<latexit sha1_base64="g0XZyKlJEKB/hGl0Ms1jvaXOQaI=">AAACAnicbVDLSgMxFM3UV62vUVfiJlgEF1JmRGmXRTcuK9gHtMOQSTNtaJIZkoxQhuLGX3HjQhG3foU7/8bMdBbaeiC5h3PuJbkniBlV2nG+rdLK6tr6RnmzsrW9s7tn7x90VJRITNo4YpHsBUgRRgVpa6oZ6cWSIB4w0g0mN5nffSBS0Ujc62lMPI5GgoYUI20k3z4axDyAYz/N69Xs3PB6djV8u+rUnBxwmbgFqYICLd/+GgwjnHAiNGZIqb7rxNpLkdQUMzKrDBJFYoQnaET6hgrEifLSfIUZPDXKEIaRNEdomKu/J1LElZrywHRypMdq0cvE/7x+osOGl1IRJ5oIPH8oTBjUEczygEMqCdZsagjCkpq/QjxGEmFtUquYENzFlZdJ56LmOjX37rLavC7iKINjcALOgAvqoAluQQu0AQaP4Bm8gjfryXqx3q2PeWvJKmYOwR9Ynz+oOpWk</latexit><latexit sha1_base64="g0XZyKlJEKB/hGl0Ms1jvaXOQaI=">AAACAnicbVDLSgMxFM3UV62vUVfiJlgEF1JmRGmXRTcuK9gHtMOQSTNtaJIZkoxQhuLGX3HjQhG3foU7/8bMdBbaeiC5h3PuJbkniBlV2nG+rdLK6tr6RnmzsrW9s7tn7x90VJRITNo4YpHsBUgRRgVpa6oZ6cWSIB4w0g0mN5nffSBS0Ujc62lMPI5GgoYUI20k3z4axDyAYz/N69Xs3PB6djV8u+rUnBxwmbgFqYICLd/+GgwjnHAiNGZIqb7rxNpLkdQUMzKrDBJFYoQnaET6hgrEifLSfIUZPDXKEIaRNEdomKu/J1LElZrywHRypMdq0cvE/7x+osOGl1IRJ5oIPH8oTBjUEczygEMqCdZsagjCkpq/QjxGEmFtUquYENzFlZdJ56LmOjX37rLavC7iKINjcALOgAvqoAluQQu0AQaP4Bm8gjfryXqx3q2PeWvJKmYOwR9Ynz+oOpWk</latexit><latexit sha1_base64="g0XZyKlJEKB/hGl0Ms1jvaXOQaI=">AAACAnicbVDLSgMxFM3UV62vUVfiJlgEF1JmRGmXRTcuK9gHtMOQSTNtaJIZkoxQhuLGX3HjQhG3foU7/8bMdBbaeiC5h3PuJbkniBlV2nG+rdLK6tr6RnmzsrW9s7tn7x90VJRITNo4YpHsBUgRRgVpa6oZ6cWSIB4w0g0mN5nffSBS0Ujc62lMPI5GgoYUI20k3z4axDyAYz/N69Xs3PB6djV8u+rUnBxwmbgFqYICLd/+GgwjnHAiNGZIqb7rxNpLkdQUMzKrDBJFYoQnaET6hgrEifLSfIUZPDXKEIaRNEdomKu/J1LElZrywHRypMdq0cvE/7x+osOGl1IRJ5oIPH8oTBjUEczygEMqCdZsagjCkpq/QjxGEmFtUquYENzFlZdJ56LmOjX37rLavC7iKINjcALOgAvqoAluQQu0AQaP4Bm8gjfryXqx3q2PeWvJKmYOwR9Ynz+oOpWk</latexit><latexit sha1_base64="g0XZyKlJEKB/hGl0Ms1jvaXOQaI=">AAACAnicbVDLSgMxFM3UV62vUVfiJlgEF1JmRGmXRTcuK9gHtMOQSTNtaJIZkoxQhuLGX3HjQhG3foU7/8bMdBbaeiC5h3PuJbkniBlV2nG+rdLK6tr6RnmzsrW9s7tn7x90VJRITNo4YpHsBUgRRgVpa6oZ6cWSIB4w0g0mN5nffSBS0Ujc62lMPI5GgoYUI20k3z4axDyAYz/N69Xs3PB6djV8u+rUnBxwmbgFqYICLd/+GgwjnHAiNGZIqb7rxNpLkdQUMzKrDBJFYoQnaET6hgrEifLSfIUZPDXKEIaRNEdomKu/J1LElZrywHRypMdq0cvE/7x+osOGl1IRJ5oIPH8oTBjUEczygEMqCdZsagjCkpq/QjxGEmFtUquYENzFlZdJ56LmOjX37rLavC7iKINjcALOgAvqoAluQQu0AQaP4Bm8gjfryXqx3q2PeWvJKmYOwR9Ynz+oOpWk</latexit>

hhh111, h2, h3
<latexit sha1_base64="PK0JVwdK+9Yiat7BXoo/aM82UX8=">AAACAnicbVDLSgMxFL3js9bXqCtxEyyCCykzVdBl0Y3LCvYB7TBk0kwbmswMSUYoQ3Hjr7hxoYhbv8Kdf2OmnYW2Hkju4Zx7Se4JEs6Udpxva2l5ZXVtvbRR3tza3tm19/ZbKk4loU0S81h2AqwoZxFtaqY57SSSYhFw2g5GN7nffqBSsTi61+OEegIPIhYygrWRfPuwl4gADf1sWt3JmeG1/Dr37YpTdaZAi8QtSAUKNHz7q9ePSSpopAnHSnVdJ9FehqVmhNNJuZcqmmAywgPaNTTCgiovm64wQSdG6aMwluZEGk3V3xMZFkqNRWA6BdZDNe/l4n9eN9XhlZexKEk1jcjsoTDlSMcozwP1maRE87EhmEhm/orIEEtMtEmtbEJw51deJK1a1XWq7t1FpX5dxFGCIziGU3DhEupwCw1oAoFHeIZXeLOerBfr3fqYtS5ZxcwB/IH1+QOSvZWW</latexit><latexit sha1_base64="PK0JVwdK+9Yiat7BXoo/aM82UX8=">AAACAnicbVDLSgMxFL3js9bXqCtxEyyCCykzVdBl0Y3LCvYB7TBk0kwbmswMSUYoQ3Hjr7hxoYhbv8Kdf2OmnYW2Hkju4Zx7Se4JEs6Udpxva2l5ZXVtvbRR3tza3tm19/ZbKk4loU0S81h2AqwoZxFtaqY57SSSYhFw2g5GN7nffqBSsTi61+OEegIPIhYygrWRfPuwl4gADf1sWt3JmeG1/Dr37YpTdaZAi8QtSAUKNHz7q9ePSSpopAnHSnVdJ9FehqVmhNNJuZcqmmAywgPaNTTCgiovm64wQSdG6aMwluZEGk3V3xMZFkqNRWA6BdZDNe/l4n9eN9XhlZexKEk1jcjsoTDlSMcozwP1maRE87EhmEhm/orIEEtMtEmtbEJw51deJK1a1XWq7t1FpX5dxFGCIziGU3DhEupwCw1oAoFHeIZXeLOerBfr3fqYtS5ZxcwB/IH1+QOSvZWW</latexit><latexit sha1_base64="PK0JVwdK+9Yiat7BXoo/aM82UX8=">AAACAnicbVDLSgMxFL3js9bXqCtxEyyCCykzVdBl0Y3LCvYB7TBk0kwbmswMSUYoQ3Hjr7hxoYhbv8Kdf2OmnYW2Hkju4Zx7Se4JEs6Udpxva2l5ZXVtvbRR3tza3tm19/ZbKk4loU0S81h2AqwoZxFtaqY57SSSYhFw2g5GN7nffqBSsTi61+OEegIPIhYygrWRfPuwl4gADf1sWt3JmeG1/Dr37YpTdaZAi8QtSAUKNHz7q9ePSSpopAnHSnVdJ9FehqVmhNNJuZcqmmAywgPaNTTCgiovm64wQSdG6aMwluZEGk3V3xMZFkqNRWA6BdZDNe/l4n9eN9XhlZexKEk1jcjsoTDlSMcozwP1maRE87EhmEhm/orIEEtMtEmtbEJw51deJK1a1XWq7t1FpX5dxFGCIziGU3DhEupwCw1oAoFHeIZXeLOerBfr3fqYtS5ZxcwB/IH1+QOSvZWW</latexit><latexit sha1_base64="PK0JVwdK+9Yiat7BXoo/aM82UX8=">AAACAnicbVDLSgMxFL3js9bXqCtxEyyCCykzVdBl0Y3LCvYB7TBk0kwbmswMSUYoQ3Hjr7hxoYhbv8Kdf2OmnYW2Hkju4Zx7Se4JEs6Udpxva2l5ZXVtvbRR3tza3tm19/ZbKk4loU0S81h2AqwoZxFtaqY57SSSYhFw2g5GN7nffqBSsTi61+OEegIPIhYygrWRfPuwl4gADf1sWt3JmeG1/Dr37YpTdaZAi8QtSAUKNHz7q9ePSSpopAnHSnVdJ9FehqVmhNNJuZcqmmAywgPaNTTCgiovm64wQSdG6aMwluZEGk3V3xMZFkqNRWA6BdZDNe/l4n9eN9XhlZexKEk1jcjsoTDlSMcozwP1maRE87EhmEhm/orIEEtMtEmtbEJw51deJK1a1XWq7t1FpX5dxFGCIziGU3DhEupwCw1oAoFHeIZXeLOerBfr3fqYtS5ZxcwB/IH1+QOSvZWW</latexit>

hhh111, h2, h6
<latexit sha1_base64="T9ePaDvvtQo3hBMYW2fmuV5JyfA=">AAACAnicbVDLSgMxFL3js9bXqCtxEyyCCykzRdRl0Y3LCvYB7TBk0kwbmswMSUYoQ3Hjr7hxoYhbv8Kdf2OmnYW2Hkju4Zx7Se4JEs6Udpxva2l5ZXVtvbRR3tza3tm19/ZbKk4loU0S81h2AqwoZxFtaqY57SSSYhFw2g5GN7nffqBSsTi61+OEegIPIhYygrWRfPuwl4gADf1sWt3JmeG1/Lrw7YpTdaZAi8QtSAUKNHz7q9ePSSpopAnHSnVdJ9FehqVmhNNJuZcqmmAywgPaNTTCgiovm64wQSdG6aMwluZEGk3V3xMZFkqNRWA6BdZDNe/l4n9eN9XhlZexKEk1jcjsoTDlSMcozwP1maRE87EhmEhm/orIEEtMtEmtbEJw51deJK1a1XWq7t15pX5dxFGCIziGU3DhEupwCw1oAoFHeIZXeLOerBfr3fqYtS5ZxcwB/IH1+QOXSZWZ</latexit><latexit sha1_base64="T9ePaDvvtQo3hBMYW2fmuV5JyfA=">AAACAnicbVDLSgMxFL3js9bXqCtxEyyCCykzRdRl0Y3LCvYB7TBk0kwbmswMSUYoQ3Hjr7hxoYhbv8Kdf2OmnYW2Hkju4Zx7Se4JEs6Udpxva2l5ZXVtvbRR3tza3tm19/ZbKk4loU0S81h2AqwoZxFtaqY57SSSYhFw2g5GN7nffqBSsTi61+OEegIPIhYygrWRfPuwl4gADf1sWt3JmeG1/Lrw7YpTdaZAi8QtSAUKNHz7q9ePSSpopAnHSnVdJ9FehqVmhNNJuZcqmmAywgPaNTTCgiovm64wQSdG6aMwluZEGk3V3xMZFkqNRWA6BdZDNe/l4n9eN9XhlZexKEk1jcjsoTDlSMcozwP1maRE87EhmEhm/orIEEtMtEmtbEJw51deJK1a1XWq7t15pX5dxFGCIziGU3DhEupwCw1oAoFHeIZXeLOerBfr3fqYtS5ZxcwB/IH1+QOXSZWZ</latexit><latexit sha1_base64="T9ePaDvvtQo3hBMYW2fmuV5JyfA=">AAACAnicbVDLSgMxFL3js9bXqCtxEyyCCykzRdRl0Y3LCvYB7TBk0kwbmswMSUYoQ3Hjr7hxoYhbv8Kdf2OmnYW2Hkju4Zx7Se4JEs6Udpxva2l5ZXVtvbRR3tza3tm19/ZbKk4loU0S81h2AqwoZxFtaqY57SSSYhFw2g5GN7nffqBSsTi61+OEegIPIhYygrWRfPuwl4gADf1sWt3JmeG1/Lrw7YpTdaZAi8QtSAUKNHz7q9ePSSpopAnHSnVdJ9FehqVmhNNJuZcqmmAywgPaNTTCgiovm64wQSdG6aMwluZEGk3V3xMZFkqNRWA6BdZDNe/l4n9eN9XhlZexKEk1jcjsoTDlSMcozwP1maRE87EhmEhm/orIEEtMtEmtbEJw51deJK1a1XWq7t15pX5dxFGCIziGU3DhEupwCw1oAoFHeIZXeLOerBfr3fqYtS5ZxcwB/IH1+QOXSZWZ</latexit><latexit sha1_base64="hP+6LrUf2d3tZaldqaQQvEKMXyw=">AAAB2XicbZDNSgMxFIXv1L86Vq1rN8EiuCozbnQpuHFZwbZCO5RM5k4bmskMyR2hDH0BF25EfC93vo3pz0JbDwQ+zknIvSculLQUBN9ebWd3b/+gfugfNfzjk9Nmo2fz0gjsilzl5jnmFpXU2CVJCp8LgzyLFfbj6f0i77+gsTLXTzQrMMr4WMtUCk7O6oyaraAdLMW2IVxDC9YaNb+GSS7KDDUJxa0dhEFBUcUNSaFw7g9LiwUXUz7GgUPNM7RRtRxzzi6dk7A0N+5oYkv394uKZ9bOstjdzDhN7Ga2MP/LBiWlt1EldVESarH6KC0Vo5wtdmaJNChIzRxwYaSblYkJN1yQa8Z3HYSbG29D77odBu3wMYA6nMMFXEEIN3AHD9CBLghI4BXevYn35n2suqp569LO4I+8zx84xIo4</latexit><latexit sha1_base64="4gHXnM8ubqgK1sIruSNaAVzgEWE=">AAAB93icbZBPS8MwGMbfzn9zTq3exEtwCB5ktDuoR8GLxwluE7ZS0izdwpK0JKkwyvDiV/HiQRG/iTe/jWm3g24+kOTH874heZ8o5Uwbz/t2KmvrG5tb1e3aTn13b989qHd1kilCOyThiXqIsKacSdoxzHD6kCqKRcRpL5rcFPXeI1WaJfLeTFMaCDySLGYEG2uF7tEgFREah3l5+rNzy61iuwjdhtf0SqFV8BfQgIXaofs1GCYkE1QawrHWfd9LTZBjZRjhdFYbZJqmmEzwiPYtSiyoDvJyhBk6tc4QxYmySxpUur9v5FhoPRWR7RTYjPVyrTD/q/UzE18FOZNpZqgk84fijCOToCIPNGSKEsOnFjBRzP4VkTFWmBibWs2G4C+PvArdVtP3mv6dB1U4hhM4Ax8u4RpuoQ0dIPAEL/AG786z8+p8zOOqOIvcDuGPnM8fKJCULA==</latexit><latexit sha1_base64="4gHXnM8ubqgK1sIruSNaAVzgEWE=">AAAB93icbZBPS8MwGMbfzn9zTq3exEtwCB5ktDuoR8GLxwluE7ZS0izdwpK0JKkwyvDiV/HiQRG/iTe/jWm3g24+kOTH874heZ8o5Uwbz/t2KmvrG5tb1e3aTn13b989qHd1kilCOyThiXqIsKacSdoxzHD6kCqKRcRpL5rcFPXeI1WaJfLeTFMaCDySLGYEG2uF7tEgFREah3l5+rNzy61iuwjdhtf0SqFV8BfQgIXaofs1GCYkE1QawrHWfd9LTZBjZRjhdFYbZJqmmEzwiPYtSiyoDvJyhBk6tc4QxYmySxpUur9v5FhoPRWR7RTYjPVyrTD/q/UzE18FOZNpZqgk84fijCOToCIPNGSKEsOnFjBRzP4VkTFWmBibWs2G4C+PvArdVtP3mv6dB1U4hhM4Ax8u4RpuoQ0dIPAEL/AG786z8+p8zOOqOIvcDuGPnM8fKJCULA==</latexit><latexit sha1_base64="bhwldL2SQ1y8zxg+/geNecYPE8k=">AAACAnicbVC7TsMwFL0pr1JeASbEYlEhMaAq6QCMFSyMRaIPqY0ix3Vbq44T2Q5SFVUs/AoLAwix8hVs/A1OmgFajmTfo3PulX1PEHOmtON8W6WV1bX1jfJmZWt7Z3fP3j9oqyiRhLZIxCPZDbCinAna0kxz2o0lxWHAaSeY3GR+54FKxSJxr6cx9UI8EmzICNZG8u2jfhwGaOyneXVn54bXs+vCt6tOzcmBlolbkCoUaPr2V38QkSSkQhOOleq5Tqy9FEvNCKezSj9RNMZkgke0Z6jAIVVemq8wQ6dGGaBhJM0RGuXq74kUh0pNw8B0hliP1aKXif95vUQPr7yUiTjRVJD5Q8OEIx2hLA80YJISzaeGYCKZ+SsiYywx0Sa1ignBXVx5mbTrNdepuXdOtXFdxFGGYziBM3DhEhpwC01oAYFHeIZXeLOerBfr3fqYt5asYuYQ/sD6/AGWCZWV</latexit><latexit sha1_base64="T9ePaDvvtQo3hBMYW2fmuV5JyfA=">AAACAnicbVDLSgMxFL3js9bXqCtxEyyCCykzRdRl0Y3LCvYB7TBk0kwbmswMSUYoQ3Hjr7hxoYhbv8Kdf2OmnYW2Hkju4Zx7Se4JEs6Udpxva2l5ZXVtvbRR3tza3tm19/ZbKk4loU0S81h2AqwoZxFtaqY57SSSYhFw2g5GN7nffqBSsTi61+OEegIPIhYygrWRfPuwl4gADf1sWt3JmeG1/Lrw7YpTdaZAi8QtSAUKNHz7q9ePSSpopAnHSnVdJ9FehqVmhNNJuZcqmmAywgPaNTTCgiovm64wQSdG6aMwluZEGk3V3xMZFkqNRWA6BdZDNe/l4n9eN9XhlZexKEk1jcjsoTDlSMcozwP1maRE87EhmEhm/orIEEtMtEmtbEJw51deJK1a1XWq7t15pX5dxFGCIziGU3DhEupwCw1oAoFHeIZXeLOerBfr3fqYtS5ZxcwB/IH1+QOXSZWZ</latexit><latexit sha1_base64="T9ePaDvvtQo3hBMYW2fmuV5JyfA=">AAACAnicbVDLSgMxFL3js9bXqCtxEyyCCykzRdRl0Y3LCvYB7TBk0kwbmswMSUYoQ3Hjr7hxoYhbv8Kdf2OmnYW2Hkju4Zx7Se4JEs6Udpxva2l5ZXVtvbRR3tza3tm19/ZbKk4loU0S81h2AqwoZxFtaqY57SSSYhFw2g5GN7nffqBSsTi61+OEegIPIhYygrWRfPuwl4gADf1sWt3JmeG1/Lrw7YpTdaZAi8QtSAUKNHz7q9ePSSpopAnHSnVdJ9FehqVmhNNJuZcqmmAywgPaNTTCgiovm64wQSdG6aMwluZEGk3V3xMZFkqNRWA6BdZDNe/l4n9eN9XhlZexKEk1jcjsoTDlSMcozwP1maRE87EhmEhm/orIEEtMtEmtbEJw51deJK1a1XWq7t15pX5dxFGCIziGU3DhEupwCw1oAoFHeIZXeLOerBfr3fqYtS5ZxcwB/IH1+QOXSZWZ</latexit><latexit sha1_base64="T9ePaDvvtQo3hBMYW2fmuV5JyfA=">AAACAnicbVDLSgMxFL3js9bXqCtxEyyCCykzRdRl0Y3LCvYB7TBk0kwbmswMSUYoQ3Hjr7hxoYhbv8Kdf2OmnYW2Hkju4Zx7Se4JEs6Udpxva2l5ZXVtvbRR3tza3tm19/ZbKk4loU0S81h2AqwoZxFtaqY57SSSYhFw2g5GN7nffqBSsTi61+OEegIPIhYygrWRfPuwl4gADf1sWt3JmeG1/Lrw7YpTdaZAi8QtSAUKNHz7q9ePSSpopAnHSnVdJ9FehqVmhNNJuZcqmmAywgPaNTTCgiovm64wQSdG6aMwluZEGk3V3xMZFkqNRWA6BdZDNe/l4n9eN9XhlZexKEk1jcjsoTDlSMcozwP1maRE87EhmEhm/orIEEtMtEmtbEJw51deJK1a1XWq7t15pX5dxFGCIziGU3DhEupwCw1oAoFHeIZXeLOerBfr3fqYtS5ZxcwB/IH1+QOXSZWZ</latexit><latexit sha1_base64="T9ePaDvvtQo3hBMYW2fmuV5JyfA=">AAACAnicbVDLSgMxFL3js9bXqCtxEyyCCykzRdRl0Y3LCvYB7TBk0kwbmswMSUYoQ3Hjr7hxoYhbv8Kdf2OmnYW2Hkju4Zx7Se4JEs6Udpxva2l5ZXVtvbRR3tza3tm19/ZbKk4loU0S81h2AqwoZxFtaqY57SSSYhFw2g5GN7nffqBSsTi61+OEegIPIhYygrWRfPuwl4gADf1sWt3JmeG1/Lrw7YpTdaZAi8QtSAUKNHz7q9ePSSpopAnHSnVdJ9FehqVmhNNJuZcqmmAywgPaNTTCgiovm64wQSdG6aMwluZEGk3V3xMZFkqNRWA6BdZDNe/l4n9eN9XhlZexKEk1jcjsoTDlSMcozwP1maRE87EhmEhm/orIEEtMtEmtbEJw51deJK1a1XWq7t15pX5dxFGCIziGU3DhEupwCw1oAoFHeIZXeLOerBfr3fqYtS5ZxcwB/IH1+QOXSZWZ</latexit><latexit sha1_base64="T9ePaDvvtQo3hBMYW2fmuV5JyfA=">AAACAnicbVDLSgMxFL3js9bXqCtxEyyCCykzRdRl0Y3LCvYB7TBk0kwbmswMSUYoQ3Hjr7hxoYhbv8Kdf2OmnYW2Hkju4Zx7Se4JEs6Udpxva2l5ZXVtvbRR3tza3tm19/ZbKk4loU0S81h2AqwoZxFtaqY57SSSYhFw2g5GN7nffqBSsTi61+OEegIPIhYygrWRfPuwl4gADf1sWt3JmeG1/Lrw7YpTdaZAi8QtSAUKNHz7q9ePSSpopAnHSnVdJ9FehqVmhNNJuZcqmmAywgPaNTTCgiovm64wQSdG6aMwluZEGk3V3xMZFkqNRWA6BdZDNe/l4n9eN9XhlZexKEk1jcjsoTDlSMcozwP1maRE87EhmEhm/orIEEtMtEmtbEJw51deJK1a1XWq7t15pX5dxFGCIziGU3DhEupwCw1oAoFHeIZXeLOerBfr3fqYtS5ZxcwB/IH1+QOXSZWZ</latexit><latexit sha1_base64="T9ePaDvvtQo3hBMYW2fmuV5JyfA=">AAACAnicbVDLSgMxFL3js9bXqCtxEyyCCykzRdRl0Y3LCvYB7TBk0kwbmswMSUYoQ3Hjr7hxoYhbv8Kdf2OmnYW2Hkju4Zx7Se4JEs6Udpxva2l5ZXVtvbRR3tza3tm19/ZbKk4loU0S81h2AqwoZxFtaqY57SSSYhFw2g5GN7nffqBSsTi61+OEegIPIhYygrWRfPuwl4gADf1sWt3JmeG1/Lrw7YpTdaZAi8QtSAUKNHz7q9ePSSpopAnHSnVdJ9FehqVmhNNJuZcqmmAywgPaNTTCgiovm64wQSdG6aMwluZEGk3V3xMZFkqNRWA6BdZDNe/l4n9eN9XhlZexKEk1jcjsoTDlSMcozwP1maRE87EhmEhm/orIEEtMtEmtbEJw51deJK1a1XWq7t15pX5dxFGCIziGU3DhEupwCw1oAoFHeIZXeLOerBfr3fqYtS5ZxcwB/IH1+QOXSZWZ</latexit>

hhh111, h3
<latexit sha1_base64="bGtmseHGeVJr2bq047vHvGLqTPY=">AAAB/XicbZDLSsNAFIZP6q3WW7zs3AwWwYWURAVdFt24rGAv0IYwmU7aoTNJmJkINRRfxY0LRdz6Hu58G6dpFtp6YJiP/z+HOfMHCWdKO863VVpaXlldK69XNja3tnfs3b2WilNJaJPEPJadACvKWUSbmmlOO4mkWASctoPRzdRvP1CpWBzd63FCPYEHEQsZwdpIvn3QS0SAhn6W3+7k1PC5b1edmpMXWgS3gCoU1fDtr14/JqmgkSYcK9V1nUR7GZaaEU4nlV6qaILJCA9o12CEBVVelm8/QcdG6aMwluZEGuXq74kMC6XGIjCdAuuhmvem4n9eN9XhlZexKEk1jcjsoTDlSMdoGgXqM0mJ5mMDmEhmdkVkiCUm2gRWMSG4819ehNZZzXVq7t1FtX5dxFGGQziCE3DhEupwCw1oAoFHeIZXeLOerBfr3fqYtZasYmYf/pT1+QPIhZQf</latexit><latexit sha1_base64="bGtmseHGeVJr2bq047vHvGLqTPY=">AAAB/XicbZDLSsNAFIZP6q3WW7zs3AwWwYWURAVdFt24rGAv0IYwmU7aoTNJmJkINRRfxY0LRdz6Hu58G6dpFtp6YJiP/z+HOfMHCWdKO863VVpaXlldK69XNja3tnfs3b2WilNJaJPEPJadACvKWUSbmmlOO4mkWASctoPRzdRvP1CpWBzd63FCPYEHEQsZwdpIvn3QS0SAhn6W3+7k1PC5b1edmpMXWgS3gCoU1fDtr14/JqmgkSYcK9V1nUR7GZaaEU4nlV6qaILJCA9o12CEBVVelm8/QcdG6aMwluZEGuXq74kMC6XGIjCdAuuhmvem4n9eN9XhlZexKEk1jcjsoTDlSMdoGgXqM0mJ5mMDmEhmdkVkiCUm2gRWMSG4819ehNZZzXVq7t1FtX5dxFGGQziCE3DhEupwCw1oAoFHeIZXeLOerBfr3fqYtZasYmYf/pT1+QPIhZQf</latexit><latexit sha1_base64="bGtmseHGeVJr2bq047vHvGLqTPY=">AAAB/XicbZDLSsNAFIZP6q3WW7zs3AwWwYWURAVdFt24rGAv0IYwmU7aoTNJmJkINRRfxY0LRdz6Hu58G6dpFtp6YJiP/z+HOfMHCWdKO863VVpaXlldK69XNja3tnfs3b2WilNJaJPEPJadACvKWUSbmmlOO4mkWASctoPRzdRvP1CpWBzd63FCPYEHEQsZwdpIvn3QS0SAhn6W3+7k1PC5b1edmpMXWgS3gCoU1fDtr14/JqmgkSYcK9V1nUR7GZaaEU4nlV6qaILJCA9o12CEBVVelm8/QcdG6aMwluZEGuXq74kMC6XGIjCdAuuhmvem4n9eN9XhlZexKEk1jcjsoTDlSMdoGgXqM0mJ5mMDmEhmdkVkiCUm2gRWMSG4819ehNZZzXVq7t1FtX5dxFGGQziCE3DhEupwCw1oAoFHeIZXeLOerBfr3fqYtZasYmYf/pT1+QPIhZQf</latexit><latexit sha1_base64="bGtmseHGeVJr2bq047vHvGLqTPY=">AAAB/XicbZDLSsNAFIZP6q3WW7zs3AwWwYWURAVdFt24rGAv0IYwmU7aoTNJmJkINRRfxY0LRdz6Hu58G6dpFtp6YJiP/z+HOfMHCWdKO863VVpaXlldK69XNja3tnfs3b2WilNJaJPEPJadACvKWUSbmmlOO4mkWASctoPRzdRvP1CpWBzd63FCPYEHEQsZwdpIvn3QS0SAhn6W3+7k1PC5b1edmpMXWgS3gCoU1fDtr14/JqmgkSYcK9V1nUR7GZaaEU4nlV6qaILJCA9o12CEBVVelm8/QcdG6aMwluZEGuXq74kMC6XGIjCdAuuhmvem4n9eN9XhlZexKEk1jcjsoTDlSMdoGgXqM0mJ5mMDmEhmdkVkiCUm2gRWMSG4819ehNZZzXVq7t1FtX5dxFGGQziCE3DhEupwCw1oAoFHeIZXeLOerBfr3fqYtZasYmYf/pT1+QPIhZQf</latexit>

h4,hhh555, h8
<latexit sha1_base64="ynnw/Hu1pWE91/UpA5G7FaO/QnY=">AAACAnicbZBNS8MwGMdTX+d8q3oSL8EheBijlYk7Dr14nOBeYCslzdI1LElLkgqjDC9+FS8eFPHqp/DmtzHretDNB0J+/P/PQ/L8g4RRpR3n21pZXVvf2Cxtlbd3dvf27YPDjopTiUkbxyyWvQApwqggbU01I71EEsQDRrrB+Gbmdx+IVDQW93qSEI+jkaAhxUgbybePI79ehYOEBzDys/y+nFYNN3y74tScvOAyuAVUQFEt3/4aDGOcciI0Zkipvusk2suQ1BQzMi0PUkUShMdoRPoGBeJEeVm+whSeGWUIw1iaIzTM1d8TGeJKTXhgOjnSkVr0ZuJ/Xj/VYcPLqEhSTQSePxSmDOoYzvKAQyoJ1mxiAGFJzV8hjpBEWJvUyiYEd3HlZehc1Fyn5t7VK83rIo4SOAGn4By44Ao0wS1ogTbA4BE8g1fwZj1ZL9a79TFvXbGKmSPwp6zPH5zIlaE=</latexit><latexit sha1_base64="ynnw/Hu1pWE91/UpA5G7FaO/QnY=">AAACAnicbZBNS8MwGMdTX+d8q3oSL8EheBijlYk7Dr14nOBeYCslzdI1LElLkgqjDC9+FS8eFPHqp/DmtzHretDNB0J+/P/PQ/L8g4RRpR3n21pZXVvf2Cxtlbd3dvf27YPDjopTiUkbxyyWvQApwqggbU01I71EEsQDRrrB+Gbmdx+IVDQW93qSEI+jkaAhxUgbybePI79ehYOEBzDys/y+nFYNN3y74tScvOAyuAVUQFEt3/4aDGOcciI0Zkipvusk2suQ1BQzMi0PUkUShMdoRPoGBeJEeVm+whSeGWUIw1iaIzTM1d8TGeJKTXhgOjnSkVr0ZuJ/Xj/VYcPLqEhSTQSePxSmDOoYzvKAQyoJ1mxiAGFJzV8hjpBEWJvUyiYEd3HlZehc1Fyn5t7VK83rIo4SOAGn4By44Ao0wS1ogTbA4BE8g1fwZj1ZL9a79TFvXbGKmSPwp6zPH5zIlaE=</latexit><latexit sha1_base64="ynnw/Hu1pWE91/UpA5G7FaO/QnY=">AAACAnicbZBNS8MwGMdTX+d8q3oSL8EheBijlYk7Dr14nOBeYCslzdI1LElLkgqjDC9+FS8eFPHqp/DmtzHretDNB0J+/P/PQ/L8g4RRpR3n21pZXVvf2Cxtlbd3dvf27YPDjopTiUkbxyyWvQApwqggbU01I71EEsQDRrrB+Gbmdx+IVDQW93qSEI+jkaAhxUgbybePI79ehYOEBzDys/y+nFYNN3y74tScvOAyuAVUQFEt3/4aDGOcciI0Zkipvusk2suQ1BQzMi0PUkUShMdoRPoGBeJEeVm+whSeGWUIw1iaIzTM1d8TGeJKTXhgOjnSkVr0ZuJ/Xj/VYcPLqEhSTQSePxSmDOoYzvKAQyoJ1mxiAGFJzV8hjpBEWJvUyiYEd3HlZehc1Fyn5t7VK83rIo4SOAGn4By44Ao0wS1ogTbA4BE8g1fwZj1ZL9a79TFvXbGKmSPwp6zPH5zIlaE=</latexit><latexit sha1_base64="ynnw/Hu1pWE91/UpA5G7FaO/QnY=">AAACAnicbZBNS8MwGMdTX+d8q3oSL8EheBijlYk7Dr14nOBeYCslzdI1LElLkgqjDC9+FS8eFPHqp/DmtzHretDNB0J+/P/PQ/L8g4RRpR3n21pZXVvf2Cxtlbd3dvf27YPDjopTiUkbxyyWvQApwqggbU01I71EEsQDRrrB+Gbmdx+IVDQW93qSEI+jkaAhxUgbybePI79ehYOEBzDys/y+nFYNN3y74tScvOAyuAVUQFEt3/4aDGOcciI0Zkipvusk2suQ1BQzMi0PUkUShMdoRPoGBeJEeVm+whSeGWUIw1iaIzTM1d8TGeJKTXhgOjnSkVr0ZuJ/Xj/VYcPLqEhSTQSePxSmDOoYzvKAQyoJ1mxiAGFJzV8hjpBEWJvUyiYEd3HlZehc1Fyn5t7VK83rIo4SOAGn4By44Ao0wS1ogTbA4BE8g1fwZj1ZL9a79TFvXbGKmSPwp6zPH5zIlaE=</latexit>

Phased haplotypes 

hhh111
<latexit sha1_base64="q1ccALE35xHFXpLwMC5PJYob/vo=">AAAB+HicbVDLSgMxFL3js9ZHR126CRbBVZkRQZdFNy4r2Ae0w5BJM21okhmSjFCHfokbF4q49VPc+Tem01lo64HLPZxzL7k5UcqZNp737aytb2xubVd2qrt7+wc19/Coo5NMEdomCU9UL8KaciZp2zDDaS9VFIuI0240uZ373UeqNEvkg5mmNBB4JFnMCDZWCt3aIBURGod50f1Z6Na9hlcArRK/JHUo0Qrdr8EwIZmg0hCOte77XmqCHCvDCKez6iDTNMVkgke0b6nEguogLw6foTOrDFGcKFvSoEL9vZFjofVURHZSYDPWy95c/M/rZya+DnIm08xQSRYPxRlHJkHzFNCQKUoMn1qCiWL2VkTGWGFibFZVG4K//OVV0rlo+F7Dv7+sN2/KOCpwAqdwDj5cQRPuoAVtIJDBM7zCm/PkvDjvzsdidM0pd47hD5zPHwNjkqc=</latexit><latexit sha1_base64="q1ccALE35xHFXpLwMC5PJYob/vo=">AAAB+HicbVDLSgMxFL3js9ZHR126CRbBVZkRQZdFNy4r2Ae0w5BJM21okhmSjFCHfokbF4q49VPc+Tem01lo64HLPZxzL7k5UcqZNp737aytb2xubVd2qrt7+wc19/Coo5NMEdomCU9UL8KaciZp2zDDaS9VFIuI0240uZ373UeqNEvkg5mmNBB4JFnMCDZWCt3aIBURGod50f1Z6Na9hlcArRK/JHUo0Qrdr8EwIZmg0hCOte77XmqCHCvDCKez6iDTNMVkgke0b6nEguogLw6foTOrDFGcKFvSoEL9vZFjofVURHZSYDPWy95c/M/rZya+DnIm08xQSRYPxRlHJkHzFNCQKUoMn1qCiWL2VkTGWGFibFZVG4K//OVV0rlo+F7Dv7+sN2/KOCpwAqdwDj5cQRPuoAVtIJDBM7zCm/PkvDjvzsdidM0pd47hD5zPHwNjkqc=</latexit><latexit sha1_base64="q1ccALE35xHFXpLwMC5PJYob/vo=">AAAB+HicbVDLSgMxFL3js9ZHR126CRbBVZkRQZdFNy4r2Ae0w5BJM21okhmSjFCHfokbF4q49VPc+Tem01lo64HLPZxzL7k5UcqZNp737aytb2xubVd2qrt7+wc19/Coo5NMEdomCU9UL8KaciZp2zDDaS9VFIuI0240uZ373UeqNEvkg5mmNBB4JFnMCDZWCt3aIBURGod50f1Z6Na9hlcArRK/JHUo0Qrdr8EwIZmg0hCOte77XmqCHCvDCKez6iDTNMVkgke0b6nEguogLw6foTOrDFGcKFvSoEL9vZFjofVURHZSYDPWy95c/M/rZya+DnIm08xQSRYPxRlHJkHzFNCQKUoMn1qCiWL2VkTGWGFibFZVG4K//OVV0rlo+F7Dv7+sN2/KOCpwAqdwDj5cQRPuoAVtIJDBM7zCm/PkvDjvzsdidM0pd47hD5zPHwNjkqc=</latexit><latexit sha1_base64="q1ccALE35xHFXpLwMC5PJYob/vo=">AAAB+HicbVDLSgMxFL3js9ZHR126CRbBVZkRQZdFNy4r2Ae0w5BJM21okhmSjFCHfokbF4q49VPc+Tem01lo64HLPZxzL7k5UcqZNp737aytb2xubVd2qrt7+wc19/Coo5NMEdomCU9UL8KaciZp2zDDaS9VFIuI0240uZ373UeqNEvkg5mmNBB4JFnMCDZWCt3aIBURGod50f1Z6Na9hlcArRK/JHUo0Qrdr8EwIZmg0hCOte77XmqCHCvDCKez6iDTNMVkgke0b6nEguogLw6foTOrDFGcKFvSoEL9vZFjofVURHZSYDPWy95c/M/rZya+DnIm08xQSRYPxRlHJkHzFNCQKUoMn1qCiWL2VkTGWGFibFZVG4K//OVV0rlo+F7Dv7+sN2/KOCpwAqdwDj5cQRPuoAVtIJDBM7zCm/PkvDjvzsdidM0pd47hD5zPHwNjkqc=</latexit>

hhh111
<latexit sha1_base64="q1ccALE35xHFXpLwMC5PJYob/vo=">AAAB+HicbVDLSgMxFL3js9ZHR126CRbBVZkRQZdFNy4r2Ae0w5BJM21okhmSjFCHfokbF4q49VPc+Tem01lo64HLPZxzL7k5UcqZNp737aytb2xubVd2qrt7+wc19/Coo5NMEdomCU9UL8KaciZp2zDDaS9VFIuI0240uZ373UeqNEvkg5mmNBB4JFnMCDZWCt3aIBURGod50f1Z6Na9hlcArRK/JHUo0Qrdr8EwIZmg0hCOte77XmqCHCvDCKez6iDTNMVkgke0b6nEguogLw6foTOrDFGcKFvSoEL9vZFjofVURHZSYDPWy95c/M/rZya+DnIm08xQSRYPxRlHJkHzFNCQKUoMn1qCiWL2VkTGWGFibFZVG4K//OVV0rlo+F7Dv7+sN2/KOCpwAqdwDj5cQRPuoAVtIJDBM7zCm/PkvDjvzsdidM0pd47hD5zPHwNjkqc=</latexit><latexit sha1_base64="q1ccALE35xHFXpLwMC5PJYob/vo=">AAAB+HicbVDLSgMxFL3js9ZHR126CRbBVZkRQZdFNy4r2Ae0w5BJM21okhmSjFCHfokbF4q49VPc+Tem01lo64HLPZxzL7k5UcqZNp737aytb2xubVd2qrt7+wc19/Coo5NMEdomCU9UL8KaciZp2zDDaS9VFIuI0240uZ373UeqNEvkg5mmNBB4JFnMCDZWCt3aIBURGod50f1Z6Na9hlcArRK/JHUo0Qrdr8EwIZmg0hCOte77XmqCHCvDCKez6iDTNMVkgke0b6nEguogLw6foTOrDFGcKFvSoEL9vZFjofVURHZSYDPWy95c/M/rZya+DnIm08xQSRYPxRlHJkHzFNCQKUoMn1qCiWL2VkTGWGFibFZVG4K//OVV0rlo+F7Dv7+sN2/KOCpwAqdwDj5cQRPuoAVtIJDBM7zCm/PkvDjvzsdidM0pd47hD5zPHwNjkqc=</latexit><latexit sha1_base64="q1ccALE35xHFXpLwMC5PJYob/vo=">AAAB+HicbVDLSgMxFL3js9ZHR126CRbBVZkRQZdFNy4r2Ae0w5BJM21okhmSjFCHfokbF4q49VPc+Tem01lo64HLPZxzL7k5UcqZNp737aytb2xubVd2qrt7+wc19/Coo5NMEdomCU9UL8KaciZp2zDDaS9VFIuI0240uZ373UeqNEvkg5mmNBB4JFnMCDZWCt3aIBURGod50f1Z6Na9hlcArRK/JHUo0Qrdr8EwIZmg0hCOte77XmqCHCvDCKez6iDTNMVkgke0b6nEguogLw6foTOrDFGcKFvSoEL9vZFjofVURHZSYDPWy95c/M/rZya+DnIm08xQSRYPxRlHJkHzFNCQKUoMn1qCiWL2VkTGWGFibFZVG4K//OVV0rlo+F7Dv7+sN2/KOCpwAqdwDj5cQRPuoAVtIJDBM7zCm/PkvDjvzsdidM0pd47hD5zPHwNjkqc=</latexit><latexit sha1_base64="q1ccALE35xHFXpLwMC5PJYob/vo=">AAAB+HicbVDLSgMxFL3js9ZHR126CRbBVZkRQZdFNy4r2Ae0w5BJM21okhmSjFCHfokbF4q49VPc+Tem01lo64HLPZxzL7k5UcqZNp737aytb2xubVd2qrt7+wc19/Coo5NMEdomCU9UL8KaciZp2zDDaS9VFIuI0240uZ373UeqNEvkg5mmNBB4JFnMCDZWCt3aIBURGod50f1Z6Na9hlcArRK/JHUo0Qrdr8EwIZmg0hCOte77XmqCHCvDCKez6iDTNMVkgke0b6nEguogLw6foTOrDFGcKFvSoEL9vZFjofVURHZSYDPWy95c/M/rZya+DnIm08xQSRYPxRlHJkHzFNCQKUoMn1qCiWL2VkTGWGFibFZVG4K//OVV0rlo+F7Dv7+sN2/KOCpwAqdwDj5cQRPuoAVtIJDBM7zCm/PkvDjvzsdidM0pd47hD5zPHwNjkqc=</latexit>

hhh111
<latexit sha1_base64="q1ccALE35xHFXpLwMC5PJYob/vo=">AAAB+HicbVDLSgMxFL3js9ZHR126CRbBVZkRQZdFNy4r2Ae0w5BJM21okhmSjFCHfokbF4q49VPc+Tem01lo64HLPZxzL7k5UcqZNp737aytb2xubVd2qrt7+wc19/Coo5NMEdomCU9UL8KaciZp2zDDaS9VFIuI0240uZ373UeqNEvkg5mmNBB4JFnMCDZWCt3aIBURGod50f1Z6Na9hlcArRK/JHUo0Qrdr8EwIZmg0hCOte77XmqCHCvDCKez6iDTNMVkgke0b6nEguogLw6foTOrDFGcKFvSoEL9vZFjofVURHZSYDPWy95c/M/rZya+DnIm08xQSRYPxRlHJkHzFNCQKUoMn1qCiWL2VkTGWGFibFZVG4K//OVV0rlo+F7Dv7+sN2/KOCpwAqdwDj5cQRPuoAVtIJDBM7zCm/PkvDjvzsdidM0pd47hD5zPHwNjkqc=</latexit><latexit sha1_base64="q1ccALE35xHFXpLwMC5PJYob/vo=">AAAB+HicbVDLSgMxFL3js9ZHR126CRbBVZkRQZdFNy4r2Ae0w5BJM21okhmSjFCHfokbF4q49VPc+Tem01lo64HLPZxzL7k5UcqZNp737aytb2xubVd2qrt7+wc19/Coo5NMEdomCU9UL8KaciZp2zDDaS9VFIuI0240uZ373UeqNEvkg5mmNBB4JFnMCDZWCt3aIBURGod50f1Z6Na9hlcArRK/JHUo0Qrdr8EwIZmg0hCOte77XmqCHCvDCKez6iDTNMVkgke0b6nEguogLw6foTOrDFGcKFvSoEL9vZFjofVURHZSYDPWy95c/M/rZya+DnIm08xQSRYPxRlHJkHzFNCQKUoMn1qCiWL2VkTGWGFibFZVG4K//OVV0rlo+F7Dv7+sN2/KOCpwAqdwDj5cQRPuoAVtIJDBM7zCm/PkvDjvzsdidM0pd47hD5zPHwNjkqc=</latexit><latexit sha1_base64="q1ccALE35xHFXpLwMC5PJYob/vo=">AAAB+HicbVDLSgMxFL3js9ZHR126CRbBVZkRQZdFNy4r2Ae0w5BJM21okhmSjFCHfokbF4q49VPc+Tem01lo64HLPZxzL7k5UcqZNp737aytb2xubVd2qrt7+wc19/Coo5NMEdomCU9UL8KaciZp2zDDaS9VFIuI0240uZ373UeqNEvkg5mmNBB4JFnMCDZWCt3aIBURGod50f1Z6Na9hlcArRK/JHUo0Qrdr8EwIZmg0hCOte77XmqCHCvDCKez6iDTNMVkgke0b6nEguogLw6foTOrDFGcKFvSoEL9vZFjofVURHZSYDPWy95c/M/rZya+DnIm08xQSRYPxRlHJkHzFNCQKUoMn1qCiWL2VkTGWGFibFZVG4K//OVV0rlo+F7Dv7+sN2/KOCpwAqdwDj5cQRPuoAVtIJDBM7zCm/PkvDjvzsdidM0pd47hD5zPHwNjkqc=</latexit><latexit sha1_base64="q1ccALE35xHFXpLwMC5PJYob/vo=">AAAB+HicbVDLSgMxFL3js9ZHR126CRbBVZkRQZdFNy4r2Ae0w5BJM21okhmSjFCHfokbF4q49VPc+Tem01lo64HLPZxzL7k5UcqZNp737aytb2xubVd2qrt7+wc19/Coo5NMEdomCU9UL8KaciZp2zDDaS9VFIuI0240uZ373UeqNEvkg5mmNBB4JFnMCDZWCt3aIBURGod50f1Z6Na9hlcArRK/JHUo0Qrdr8EwIZmg0hCOte77XmqCHCvDCKez6iDTNMVkgke0b6nEguogLw6foTOrDFGcKFvSoEL9vZFjofVURHZSYDPWy95c/M/rZya+DnIm08xQSRYPxRlHJkHzFNCQKUoMn1qCiWL2VkTGWGFibFZVG4K//OVV0rlo+F7Dv7+sN2/KOCpwAqdwDj5cQRPuoAVtIJDBM7zCm/PkvDjvzsdidM0pd47hD5zPHwNjkqc=</latexit>

hhh555
<latexit sha1_base64="XJ6whdCTP8q32U8f8t4sLvS7Qto=">AAAB+HicbVDLSgMxFL1TX7U+OurSTbAIrsqMKLosunFZwT6gHYZMmrahSWZIMkId+iVuXCji1k9x59+YTmehrQcu93DOveTmRAln2njet1NaW9/Y3CpvV3Z29/ar7sFhW8epIrRFYh6rboQ15UzSlmGG026iKBYRp51ocjv3O49UaRbLBzNNaCDwSLIhI9hYKXSr/UREaBxmeb+chW7Nq3s50CrxC1KDAs3Q/eoPYpIKKg3hWOue7yUmyLAyjHA6q/RTTRNMJnhEe5ZKLKgOsvzwGTq1ygANY2VLGpSrvzcyLLSeishOCmzGetmbi/95vdQMr4OMySQ1VJLFQ8OUIxOjeQpowBQlhk8twUQxeysiY6wwMTarig3BX/7yKmmf132v7t9f1Bo3RRxlOIYTOAMfrqABd9CEFhBI4Rle4c15cl6cd+djMVpyip0j+APn8wcJd5Kr</latexit><latexit sha1_base64="XJ6whdCTP8q32U8f8t4sLvS7Qto=">AAAB+HicbVDLSgMxFL1TX7U+OurSTbAIrsqMKLosunFZwT6gHYZMmrahSWZIMkId+iVuXCji1k9x59+YTmehrQcu93DOveTmRAln2njet1NaW9/Y3CpvV3Z29/ar7sFhW8epIrRFYh6rboQ15UzSlmGG026iKBYRp51ocjv3O49UaRbLBzNNaCDwSLIhI9hYKXSr/UREaBxmeb+chW7Nq3s50CrxC1KDAs3Q/eoPYpIKKg3hWOue7yUmyLAyjHA6q/RTTRNMJnhEe5ZKLKgOsvzwGTq1ygANY2VLGpSrvzcyLLSeishOCmzGetmbi/95vdQMr4OMySQ1VJLFQ8OUIxOjeQpowBQlhk8twUQxeysiY6wwMTarig3BX/7yKmmf132v7t9f1Bo3RRxlOIYTOAMfrqABd9CEFhBI4Rle4c15cl6cd+djMVpyip0j+APn8wcJd5Kr</latexit><latexit sha1_base64="XJ6whdCTP8q32U8f8t4sLvS7Qto=">AAAB+HicbVDLSgMxFL1TX7U+OurSTbAIrsqMKLosunFZwT6gHYZMmrahSWZIMkId+iVuXCji1k9x59+YTmehrQcu93DOveTmRAln2njet1NaW9/Y3CpvV3Z29/ar7sFhW8epIrRFYh6rboQ15UzSlmGG026iKBYRp51ocjv3O49UaRbLBzNNaCDwSLIhI9hYKXSr/UREaBxmeb+chW7Nq3s50CrxC1KDAs3Q/eoPYpIKKg3hWOue7yUmyLAyjHA6q/RTTRNMJnhEe5ZKLKgOsvzwGTq1ygANY2VLGpSrvzcyLLSeishOCmzGetmbi/95vdQMr4OMySQ1VJLFQ8OUIxOjeQpowBQlhk8twUQxeysiY6wwMTarig3BX/7yKmmf132v7t9f1Bo3RRxlOIYTOAMfrqABd9CEFhBI4Rle4c15cl6cd+djMVpyip0j+APn8wcJd5Kr</latexit><latexit sha1_base64="XJ6whdCTP8q32U8f8t4sLvS7Qto=">AAAB+HicbVDLSgMxFL1TX7U+OurSTbAIrsqMKLosunFZwT6gHYZMmrahSWZIMkId+iVuXCji1k9x59+YTmehrQcu93DOveTmRAln2njet1NaW9/Y3CpvV3Z29/ar7sFhW8epIrRFYh6rboQ15UzSlmGG026iKBYRp51ocjv3O49UaRbLBzNNaCDwSLIhI9hYKXSr/UREaBxmeb+chW7Nq3s50CrxC1KDAs3Q/eoPYpIKKg3hWOue7yUmyLAyjHA6q/RTTRNMJnhEe5ZKLKgOsvzwGTq1ygANY2VLGpSrvzcyLLSeishOCmzGetmbi/95vdQMr4OMySQ1VJLFQ8OUIxOjeQpowBQlhk8twUQxeysiY6wwMTarig3BX/7yKmmf132v7t9f1Bo3RRxlOIYTOAMfrqABd9CEFhBI4Rle4c15cl6cd+djMVpyip0j+APn8wcJd5Kr</latexit>

hhh555
<latexit sha1_base64="XJ6whdCTP8q32U8f8t4sLvS7Qto=">AAAB+HicbVDLSgMxFL1TX7U+OurSTbAIrsqMKLosunFZwT6gHYZMmrahSWZIMkId+iVuXCji1k9x59+YTmehrQcu93DOveTmRAln2njet1NaW9/Y3CpvV3Z29/ar7sFhW8epIrRFYh6rboQ15UzSlmGG026iKBYRp51ocjv3O49UaRbLBzNNaCDwSLIhI9hYKXSr/UREaBxmeb+chW7Nq3s50CrxC1KDAs3Q/eoPYpIKKg3hWOue7yUmyLAyjHA6q/RTTRNMJnhEe5ZKLKgOsvzwGTq1ygANY2VLGpSrvzcyLLSeishOCmzGetmbi/95vdQMr4OMySQ1VJLFQ8OUIxOjeQpowBQlhk8twUQxeysiY6wwMTarig3BX/7yKmmf132v7t9f1Bo3RRxlOIYTOAMfrqABd9CEFhBI4Rle4c15cl6cd+djMVpyip0j+APn8wcJd5Kr</latexit><latexit sha1_base64="XJ6whdCTP8q32U8f8t4sLvS7Qto=">AAAB+HicbVDLSgMxFL1TX7U+OurSTbAIrsqMKLosunFZwT6gHYZMmrahSWZIMkId+iVuXCji1k9x59+YTmehrQcu93DOveTmRAln2njet1NaW9/Y3CpvV3Z29/ar7sFhW8epIrRFYh6rboQ15UzSlmGG026iKBYRp51ocjv3O49UaRbLBzNNaCDwSLIhI9hYKXSr/UREaBxmeb+chW7Nq3s50CrxC1KDAs3Q/eoPYpIKKg3hWOue7yUmyLAyjHA6q/RTTRNMJnhEe5ZKLKgOsvzwGTq1ygANY2VLGpSrvzcyLLSeishOCmzGetmbi/95vdQMr4OMySQ1VJLFQ8OUIxOjeQpowBQlhk8twUQxeysiY6wwMTarig3BX/7yKmmf132v7t9f1Bo3RRxlOIYTOAMfrqABd9CEFhBI4Rle4c15cl6cd+djMVpyip0j+APn8wcJd5Kr</latexit><latexit sha1_base64="XJ6whdCTP8q32U8f8t4sLvS7Qto=">AAAB+HicbVDLSgMxFL1TX7U+OurSTbAIrsqMKLosunFZwT6gHYZMmrahSWZIMkId+iVuXCji1k9x59+YTmehrQcu93DOveTmRAln2njet1NaW9/Y3CpvV3Z29/ar7sFhW8epIrRFYh6rboQ15UzSlmGG026iKBYRp51ocjv3O49UaRbLBzNNaCDwSLIhI9hYKXSr/UREaBxmeb+chW7Nq3s50CrxC1KDAs3Q/eoPYpIKKg3hWOue7yUmyLAyjHA6q/RTTRNMJnhEe5ZKLKgOsvzwGTq1ygANY2VLGpSrvzcyLLSeishOCmzGetmbi/95vdQMr4OMySQ1VJLFQ8OUIxOjeQpowBQlhk8twUQxeysiY6wwMTarig3BX/7yKmmf132v7t9f1Bo3RRxlOIYTOAMfrqABd9CEFhBI4Rle4c15cl6cd+djMVpyip0j+APn8wcJd5Kr</latexit><latexit sha1_base64="XJ6whdCTP8q32U8f8t4sLvS7Qto=">AAAB+HicbVDLSgMxFL1TX7U+OurSTbAIrsqMKLosunFZwT6gHYZMmrahSWZIMkId+iVuXCji1k9x59+YTmehrQcu93DOveTmRAln2njet1NaW9/Y3CpvV3Z29/ar7sFhW8epIrRFYh6rboQ15UzSlmGG026iKBYRp51ocjv3O49UaRbLBzNNaCDwSLIhI9hYKXSr/UREaBxmeb+chW7Nq3s50CrxC1KDAs3Q/eoPYpIKKg3hWOue7yUmyLAyjHA6q/RTTRNMJnhEe5ZKLKgOsvzwGTq1ygANY2VLGpSrvzcyLLSeishOCmzGetmbi/95vdQMr4OMySQ1VJLFQ8OUIxOjeQpowBQlhk8twUQxeysiY6wwMTarig3BX/7yKmmf132v7t9f1Bo3RRxlOIYTOAMfrqABd9CEFhBI4Rle4c15cl6cd+djMVpyip0j+APn8wcJd5Kr</latexit>

hhh555
<latexit sha1_base64="XJ6whdCTP8q32U8f8t4sLvS7Qto=">AAAB+HicbVDLSgMxFL1TX7U+OurSTbAIrsqMKLosunFZwT6gHYZMmrahSWZIMkId+iVuXCji1k9x59+YTmehrQcu93DOveTmRAln2njet1NaW9/Y3CpvV3Z29/ar7sFhW8epIrRFYh6rboQ15UzSlmGG026iKBYRp51ocjv3O49UaRbLBzNNaCDwSLIhI9hYKXSr/UREaBxmeb+chW7Nq3s50CrxC1KDAs3Q/eoPYpIKKg3hWOue7yUmyLAyjHA6q/RTTRNMJnhEe5ZKLKgOsvzwGTq1ygANY2VLGpSrvzcyLLSeishOCmzGetmbi/95vdQMr4OMySQ1VJLFQ8OUIxOjeQpowBQlhk8twUQxeysiY6wwMTarig3BX/7yKmmf132v7t9f1Bo3RRxlOIYTOAMfrqABd9CEFhBI4Rle4c15cl6cd+djMVpyip0j+APn8wcJd5Kr</latexit><latexit sha1_base64="XJ6whdCTP8q32U8f8t4sLvS7Qto=">AAAB+HicbVDLSgMxFL1TX7U+OurSTbAIrsqMKLosunFZwT6gHYZMmrahSWZIMkId+iVuXCji1k9x59+YTmehrQcu93DOveTmRAln2njet1NaW9/Y3CpvV3Z29/ar7sFhW8epIrRFYh6rboQ15UzSlmGG026iKBYRp51ocjv3O49UaRbLBzNNaCDwSLIhI9hYKXSr/UREaBxmeb+chW7Nq3s50CrxC1KDAs3Q/eoPYpIKKg3hWOue7yUmyLAyjHA6q/RTTRNMJnhEe5ZKLKgOsvzwGTq1ygANY2VLGpSrvzcyLLSeishOCmzGetmbi/95vdQMr4OMySQ1VJLFQ8OUIxOjeQpowBQlhk8twUQxeysiY6wwMTarig3BX/7yKmmf132v7t9f1Bo3RRxlOIYTOAMfrqABd9CEFhBI4Rle4c15cl6cd+djMVpyip0j+APn8wcJd5Kr</latexit><latexit sha1_base64="XJ6whdCTP8q32U8f8t4sLvS7Qto=">AAAB+HicbVDLSgMxFL1TX7U+OurSTbAIrsqMKLosunFZwT6gHYZMmrahSWZIMkId+iVuXCji1k9x59+YTmehrQcu93DOveTmRAln2njet1NaW9/Y3CpvV3Z29/ar7sFhW8epIrRFYh6rboQ15UzSlmGG026iKBYRp51ocjv3O49UaRbLBzNNaCDwSLIhI9hYKXSr/UREaBxmeb+chW7Nq3s50CrxC1KDAs3Q/eoPYpIKKg3hWOue7yUmyLAyjHA6q/RTTRNMJnhEe5ZKLKgOsvzwGTq1ygANY2VLGpSrvzcyLLSeishOCmzGetmbi/95vdQMr4OMySQ1VJLFQ8OUIxOjeQpowBQlhk8twUQxeysiY6wwMTarig3BX/7yKmmf132v7t9f1Bo3RRxlOIYTOAMfrqABd9CEFhBI4Rle4c15cl6cd+djMVpyip0j+APn8wcJd5Kr</latexit><latexit sha1_base64="XJ6whdCTP8q32U8f8t4sLvS7Qto=">AAAB+HicbVDLSgMxFL1TX7U+OurSTbAIrsqMKLosunFZwT6gHYZMmrahSWZIMkId+iVuXCji1k9x59+YTmehrQcu93DOveTmRAln2njet1NaW9/Y3CpvV3Z29/ar7sFhW8epIrRFYh6rboQ15UzSlmGG026iKBYRp51ocjv3O49UaRbLBzNNaCDwSLIhI9hYKXSr/UREaBxmeb+chW7Nq3s50CrxC1KDAs3Q/eoPYpIKKg3hWOue7yUmyLAyjHA6q/RTTRNMJnhEe5ZKLKgOsvzwGTq1ygANY2VLGpSrvzcyLLSeishOCmzGetmbi/95vdQMr4OMySQ1VJLFQ8OUIxOjeQpowBQlhk8twUQxeysiY6wwMTarig3BX/7yKmmf132v7t9f1Bo3RRxlOIYTOAMfrqABd9CEFhBI4Rle4c15cl6cd+djMVpyip0j+APn8wcJd5Kr</latexit>

hhh555
<latexit sha1_base64="XJ6whdCTP8q32U8f8t4sLvS7Qto=">AAAB+HicbVDLSgMxFL1TX7U+OurSTbAIrsqMKLosunFZwT6gHYZMmrahSWZIMkId+iVuXCji1k9x59+YTmehrQcu93DOveTmRAln2njet1NaW9/Y3CpvV3Z29/ar7sFhW8epIrRFYh6rboQ15UzSlmGG026iKBYRp51ocjv3O49UaRbLBzNNaCDwSLIhI9hYKXSr/UREaBxmeb+chW7Nq3s50CrxC1KDAs3Q/eoPYpIKKg3hWOue7yUmyLAyjHA6q/RTTRNMJnhEe5ZKLKgOsvzwGTq1ygANY2VLGpSrvzcyLLSeishOCmzGetmbi/95vdQMr4OMySQ1VJLFQ8OUIxOjeQpowBQlhk8twUQxeysiY6wwMTarig3BX/7yKmmf132v7t9f1Bo3RRxlOIYTOAMfrqABd9CEFhBI4Rle4c15cl6cd+djMVpyip0j+APn8wcJd5Kr</latexit><latexit sha1_base64="XJ6whdCTP8q32U8f8t4sLvS7Qto=">AAAB+HicbVDLSgMxFL1TX7U+OurSTbAIrsqMKLosunFZwT6gHYZMmrahSWZIMkId+iVuXCji1k9x59+YTmehrQcu93DOveTmRAln2njet1NaW9/Y3CpvV3Z29/ar7sFhW8epIrRFYh6rboQ15UzSlmGG026iKBYRp51ocjv3O49UaRbLBzNNaCDwSLIhI9hYKXSr/UREaBxmeb+chW7Nq3s50CrxC1KDAs3Q/eoPYpIKKg3hWOue7yUmyLAyjHA6q/RTTRNMJnhEe5ZKLKgOsvzwGTq1ygANY2VLGpSrvzcyLLSeishOCmzGetmbi/95vdQMr4OMySQ1VJLFQ8OUIxOjeQpowBQlhk8twUQxeysiY6wwMTarig3BX/7yKmmf132v7t9f1Bo3RRxlOIYTOAMfrqABd9CEFhBI4Rle4c15cl6cd+djMVpyip0j+APn8wcJd5Kr</latexit><latexit sha1_base64="XJ6whdCTP8q32U8f8t4sLvS7Qto=">AAAB+HicbVDLSgMxFL1TX7U+OurSTbAIrsqMKLosunFZwT6gHYZMmrahSWZIMkId+iVuXCji1k9x59+YTmehrQcu93DOveTmRAln2njet1NaW9/Y3CpvV3Z29/ar7sFhW8epIrRFYh6rboQ15UzSlmGG026iKBYRp51ocjv3O49UaRbLBzNNaCDwSLIhI9hYKXSr/UREaBxmeb+chW7Nq3s50CrxC1KDAs3Q/eoPYpIKKg3hWOue7yUmyLAyjHA6q/RTTRNMJnhEe5ZKLKgOsvzwGTq1ygANY2VLGpSrvzcyLLSeishOCmzGetmbi/95vdQMr4OMySQ1VJLFQ8OUIxOjeQpowBQlhk8twUQxeysiY6wwMTarig3BX/7yKmmf132v7t9f1Bo3RRxlOIYTOAMfrqABd9CEFhBI4Rle4c15cl6cd+djMVpyip0j+APn8wcJd5Kr</latexit><latexit sha1_base64="XJ6whdCTP8q32U8f8t4sLvS7Qto=">AAAB+HicbVDLSgMxFL1TX7U+OurSTbAIrsqMKLosunFZwT6gHYZMmrahSWZIMkId+iVuXCji1k9x59+YTmehrQcu93DOveTmRAln2njet1NaW9/Y3CpvV3Z29/ar7sFhW8epIrRFYh6rboQ15UzSlmGG026iKBYRp51ocjv3O49UaRbLBzNNaCDwSLIhI9hYKXSr/UREaBxmeb+chW7Nq3s50CrxC1KDAs3Q/eoPYpIKKg3hWOue7yUmyLAyjHA6q/RTTRNMJnhEe5ZKLKgOsvzwGTq1ygANY2VLGpSrvzcyLLSeishOCmzGetmbi/95vdQMr4OMySQ1VJLFQ8OUIxOjeQpowBQlhk8twUQxeysiY6wwMTarig3BX/7yKmmf132v7t9f1Bo3RRxlOIYTOAMfrqABd9CEFhBI4Rle4c15cl6cd+djMVpyip0j+APn8wcJd5Kr</latexit>

Breakpoint 

h4,hhh555, h6
<latexit sha1_base64="k4ikmGz3DQgBGuITgUft0y0qwLI=">AAACAnicbZBNS8MwGMfT+TbnW9WTeAkOwcMYrcyX49CLxwluE7ZS0ixdw5K0JKkwyvDiV/HiQRGvfgpvfhuzrgfdfCDkx///PCTPP0gYVdpxvq3S0vLK6lp5vbKxubW9Y+/udVScSkzaOGaxvA+QIowK0tZUM3KfSIJ4wEg3GF1P/e4DkYrG4k6PE+JxNBQ0pBhpI/n2QeQ3arCf8ABGfpbfZ5Oa4XPfrjp1Jy+4CG4BVVBUy7e/+oMYp5wIjRlSquc6ifYyJDXFjEwq/VSRBOERGpKeQYE4UV6WrzCBx0YZwDCW5ggNc/X3RIa4UmMemE6OdKTmvan4n9dLdXjpZVQkqSYCzx4KUwZ1DKd5wAGVBGs2NoCwpOavEEdIIqxNahUTgju/8iJ0TuuuU3dvG9XmVRFHGRyCI3ACXHABmuAGtEAbYPAInsEreLOerBfr3fqYtZasYmYf/Cnr8weZwJWf</latexit><latexit sha1_base64="k4ikmGz3DQgBGuITgUft0y0qwLI=">AAACAnicbZBNS8MwGMfT+TbnW9WTeAkOwcMYrcyX49CLxwluE7ZS0ixdw5K0JKkwyvDiV/HiQRGvfgpvfhuzrgfdfCDkx///PCTPP0gYVdpxvq3S0vLK6lp5vbKxubW9Y+/udVScSkzaOGaxvA+QIowK0tZUM3KfSIJ4wEg3GF1P/e4DkYrG4k6PE+JxNBQ0pBhpI/n2QeQ3arCf8ABGfpbfZ5Oa4XPfrjp1Jy+4CG4BVVBUy7e/+oMYp5wIjRlSquc6ifYyJDXFjEwq/VSRBOERGpKeQYE4UV6WrzCBx0YZwDCW5ggNc/X3RIa4UmMemE6OdKTmvan4n9dLdXjpZVQkqSYCzx4KUwZ1DKd5wAGVBGs2NoCwpOavEEdIIqxNahUTgju/8iJ0TuuuU3dvG9XmVRFHGRyCI3ACXHABmuAGtEAbYPAInsEreLOerBfr3fqYtZasYmYf/Cnr8weZwJWf</latexit><latexit sha1_base64="k4ikmGz3DQgBGuITgUft0y0qwLI=">AAACAnicbZBNS8MwGMfT+TbnW9WTeAkOwcMYrcyX49CLxwluE7ZS0ixdw5K0JKkwyvDiV/HiQRGvfgpvfhuzrgfdfCDkx///PCTPP0gYVdpxvq3S0vLK6lp5vbKxubW9Y+/udVScSkzaOGaxvA+QIowK0tZUM3KfSIJ4wEg3GF1P/e4DkYrG4k6PE+JxNBQ0pBhpI/n2QeQ3arCf8ABGfpbfZ5Oa4XPfrjp1Jy+4CG4BVVBUy7e/+oMYp5wIjRlSquc6ifYyJDXFjEwq/VSRBOERGpKeQYE4UV6WrzCBx0YZwDCW5ggNc/X3RIa4UmMemE6OdKTmvan4n9dLdXjpZVQkqSYCzx4KUwZ1DKd5wAGVBGs2NoCwpOavEEdIIqxNahUTgju/8iJ0TuuuU3dvG9XmVRFHGRyCI3ACXHABmuAGtEAbYPAInsEreLOerBfr3fqYtZasYmYf/Cnr8weZwJWf</latexit><latexit sha1_base64="k4ikmGz3DQgBGuITgUft0y0qwLI=">AAACAnicbZBNS8MwGMfT+TbnW9WTeAkOwcMYrcyX49CLxwluE7ZS0ixdw5K0JKkwyvDiV/HiQRGvfgpvfhuzrgfdfCDkx///PCTPP0gYVdpxvq3S0vLK6lp5vbKxubW9Y+/udVScSkzaOGaxvA+QIowK0tZUM3KfSIJ4wEg3GF1P/e4DkYrG4k6PE+JxNBQ0pBhpI/n2QeQ3arCf8ABGfpbfZ5Oa4XPfrjp1Jy+4CG4BVVBUy7e/+oMYp5wIjRlSquc6ifYyJDXFjEwq/VSRBOERGpKeQYE4UV6WrzCBx0YZwDCW5ggNc/X3RIa4UmMemE6OdKTmvan4n9dLdXjpZVQkqSYCzx4KUwZ1DKd5wAGVBGs2NoCwpOavEEdIIqxNahUTgju/8iJ0TuuuU3dvG9XmVRFHGRyCI3ACXHABmuAGtEAbYPAInsEreLOerBfr3fqYtZasYmYf/Cnr8weZwJWf</latexit>

Switch 

(d)  Stitch window-by-window from left to right 

x1
<latexit sha1_base64="9Ebez7AsyXnUS7K0KmzSc78bSSE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9T3+uWKW3XnIKvEy0kFcjT65a/eIGZphNIwQbXuem5i/Iwqw5nAaamXakwoG9Mhdi2VNELtZ/NTp+TMKgMSxsqWNGSu/p7IaKT1JApsZ0TNSC97M/E/r5ua8MrPuExSg5ItFoWpICYms7/JgCtkRkwsoUxxeythI6ooMzadkg3BW355lbQuqp5b9e4uK/XrPI4inMApnIMHNajDLTSgCQyG8Ayv8OYI58V5dz4WrQUnnzmGP3A+fwALsI2g</latexit><latexit sha1_base64="9Ebez7AsyXnUS7K0KmzSc78bSSE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9T3+uWKW3XnIKvEy0kFcjT65a/eIGZphNIwQbXuem5i/Iwqw5nAaamXakwoG9Mhdi2VNELtZ/NTp+TMKgMSxsqWNGSu/p7IaKT1JApsZ0TNSC97M/E/r5ua8MrPuExSg5ItFoWpICYms7/JgCtkRkwsoUxxeythI6ooMzadkg3BW355lbQuqp5b9e4uK/XrPI4inMApnIMHNajDLTSgCQyG8Ayv8OYI58V5dz4WrQUnnzmGP3A+fwALsI2g</latexit><latexit sha1_base64="9Ebez7AsyXnUS7K0KmzSc78bSSE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9T3+uWKW3XnIKvEy0kFcjT65a/eIGZphNIwQbXuem5i/Iwqw5nAaamXakwoG9Mhdi2VNELtZ/NTp+TMKgMSxsqWNGSu/p7IaKT1JApsZ0TNSC97M/E/r5ua8MrPuExSg5ItFoWpICYms7/JgCtkRkwsoUxxeythI6ooMzadkg3BW355lbQuqp5b9e4uK/XrPI4inMApnIMHNajDLTSgCQyG8Ayv8OYI58V5dz4WrQUnnzmGP3A+fwALsI2g</latexit><latexit sha1_base64="9Ebez7AsyXnUS7K0KmzSc78bSSE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9T3+uWKW3XnIKvEy0kFcjT65a/eIGZphNIwQbXuem5i/Iwqw5nAaamXakwoG9Mhdi2VNELtZ/NTp+TMKgMSxsqWNGSu/p7IaKT1JApsZ0TNSC97M/E/r5ua8MrPuExSg5ItFoWpICYms7/JgCtkRkwsoUxxeythI6ooMzadkg3BW355lbQuqp5b9e4uK/XrPI4inMApnIMHNajDLTSgCQyG8Ayv8OYI58V5dz4WrQUnnzmGP3A+fwALsI2g</latexit>

Window 1 Window 1 Window 2 Survivors Window 2 Window 3 Window 4 

h2, h6
<latexit sha1_base64="uybsHnNIJ2/GPV5E3NSDeINSWCA=">AAAB73icbVBNS8NAEJ34WetX1aOXxSJ4kJIUUY9FLx4r2A9oQ9hsN83S3U3c3Qgl9E948aCIV/+ON/+N2zYHbX0w8Hhvhpl5YcqZNq777aysrq1vbJa2yts7u3v7lYPDtk4yRWiLJDxR3RBrypmkLcMMp91UUSxCTjvh6Hbqd56o0iyRD2acUl/goWQRI9hYqRsH9XMUB5dBperW3BnQMvEKUoUCzaDy1R8kJBNUGsKx1j3PTY2fY2UY4XRS7meappiM8JD2LJVYUO3ns3sn6NQqAxQlypY0aKb+nsix0HosQtspsIn1ojcV//N6mYmu/ZzJNDNUkvmiKOPIJGj6PBowRYnhY0swUczeikiMFSbGRlS2IXiLLy+Tdr3muTXv/qLauCniKMExnMAZeHAFDbiDJrSAAIdneIU359F5cd6dj3nrilPMHMEfOJ8/p06PDA==</latexit><latexit sha1_base64="uybsHnNIJ2/GPV5E3NSDeINSWCA=">AAAB73icbVBNS8NAEJ34WetX1aOXxSJ4kJIUUY9FLx4r2A9oQ9hsN83S3U3c3Qgl9E948aCIV/+ON/+N2zYHbX0w8Hhvhpl5YcqZNq777aysrq1vbJa2yts7u3v7lYPDtk4yRWiLJDxR3RBrypmkLcMMp91UUSxCTjvh6Hbqd56o0iyRD2acUl/goWQRI9hYqRsH9XMUB5dBperW3BnQMvEKUoUCzaDy1R8kJBNUGsKx1j3PTY2fY2UY4XRS7meappiM8JD2LJVYUO3ns3sn6NQqAxQlypY0aKb+nsix0HosQtspsIn1ojcV//N6mYmu/ZzJNDNUkvmiKOPIJGj6PBowRYnhY0swUczeikiMFSbGRlS2IXiLLy+Tdr3muTXv/qLauCniKMExnMAZeHAFDbiDJrSAAIdneIU359F5cd6dj3nrilPMHMEfOJ8/p06PDA==</latexit><latexit sha1_base64="uybsHnNIJ2/GPV5E3NSDeINSWCA=">AAAB73icbVBNS8NAEJ34WetX1aOXxSJ4kJIUUY9FLx4r2A9oQ9hsN83S3U3c3Qgl9E948aCIV/+ON/+N2zYHbX0w8Hhvhpl5YcqZNq777aysrq1vbJa2yts7u3v7lYPDtk4yRWiLJDxR3RBrypmkLcMMp91UUSxCTjvh6Hbqd56o0iyRD2acUl/goWQRI9hYqRsH9XMUB5dBperW3BnQMvEKUoUCzaDy1R8kJBNUGsKx1j3PTY2fY2UY4XRS7meappiM8JD2LJVYUO3ns3sn6NQqAxQlypY0aKb+nsix0HosQtspsIn1ojcV//N6mYmu/ZzJNDNUkvmiKOPIJGj6PBowRYnhY0swUczeikiMFSbGRlS2IXiLLy+Tdr3muTXv/qLauCniKMExnMAZeHAFDbiDJrSAAIdneIU359F5cd6dj3nrilPMHMEfOJ8/p06PDA==</latexit><latexit sha1_base64="uybsHnNIJ2/GPV5E3NSDeINSWCA=">AAAB73icbVBNS8NAEJ34WetX1aOXxSJ4kJIUUY9FLx4r2A9oQ9hsN83S3U3c3Qgl9E948aCIV/+ON/+N2zYHbX0w8Hhvhpl5YcqZNq777aysrq1vbJa2yts7u3v7lYPDtk4yRWiLJDxR3RBrypmkLcMMp91UUSxCTjvh6Hbqd56o0iyRD2acUl/goWQRI9hYqRsH9XMUB5dBperW3BnQMvEKUoUCzaDy1R8kJBNUGsKx1j3PTY2fY2UY4XRS7meappiM8JD2LJVYUO3ns3sn6NQqAxQlypY0aKb+nsix0HosQtspsIn1ojcV//N6mYmu/ZzJNDNUkvmiKOPIJGj6PBowRYnhY0swUczeikiMFSbGRlS2IXiLLy+Tdr3muTXv/qLauCniKMExnMAZeHAFDbiDJrSAAIdneIU359F5cd6dj3nrilPMHMEfOJ8/p06PDA==</latexit>

h2, h6
<latexit sha1_base64="uybsHnNIJ2/GPV5E3NSDeINSWCA=">AAAB73icbVBNS8NAEJ34WetX1aOXxSJ4kJIUUY9FLx4r2A9oQ9hsN83S3U3c3Qgl9E948aCIV/+ON/+N2zYHbX0w8Hhvhpl5YcqZNq777aysrq1vbJa2yts7u3v7lYPDtk4yRWiLJDxR3RBrypmkLcMMp91UUSxCTjvh6Hbqd56o0iyRD2acUl/goWQRI9hYqRsH9XMUB5dBperW3BnQMvEKUoUCzaDy1R8kJBNUGsKx1j3PTY2fY2UY4XRS7meappiM8JD2LJVYUO3ns3sn6NQqAxQlypY0aKb+nsix0HosQtspsIn1ojcV//N6mYmu/ZzJNDNUkvmiKOPIJGj6PBowRYnhY0swUczeikiMFSbGRlS2IXiLLy+Tdr3muTXv/qLauCniKMExnMAZeHAFDbiDJrSAAIdneIU359F5cd6dj3nrilPMHMEfOJ8/p06PDA==</latexit><latexit sha1_base64="uybsHnNIJ2/GPV5E3NSDeINSWCA=">AAAB73icbVBNS8NAEJ34WetX1aOXxSJ4kJIUUY9FLx4r2A9oQ9hsN83S3U3c3Qgl9E948aCIV/+ON/+N2zYHbX0w8Hhvhpl5YcqZNq777aysrq1vbJa2yts7u3v7lYPDtk4yRWiLJDxR3RBrypmkLcMMp91UUSxCTjvh6Hbqd56o0iyRD2acUl/goWQRI9hYqRsH9XMUB5dBperW3BnQMvEKUoUCzaDy1R8kJBNUGsKx1j3PTY2fY2UY4XRS7meappiM8JD2LJVYUO3ns3sn6NQqAxQlypY0aKb+nsix0HosQtspsIn1ojcV//N6mYmu/ZzJNDNUkvmiKOPIJGj6PBowRYnhY0swUczeikiMFSbGRlS2IXiLLy+Tdr3muTXv/qLauCniKMExnMAZeHAFDbiDJrSAAIdneIU359F5cd6dj3nrilPMHMEfOJ8/p06PDA==</latexit><latexit sha1_base64="uybsHnNIJ2/GPV5E3NSDeINSWCA=">AAAB73icbVBNS8NAEJ34WetX1aOXxSJ4kJIUUY9FLx4r2A9oQ9hsN83S3U3c3Qgl9E948aCIV/+ON/+N2zYHbX0w8Hhvhpl5YcqZNq777aysrq1vbJa2yts7u3v7lYPDtk4yRWiLJDxR3RBrypmkLcMMp91UUSxCTjvh6Hbqd56o0iyRD2acUl/goWQRI9hYqRsH9XMUB5dBperW3BnQMvEKUoUCzaDy1R8kJBNUGsKx1j3PTY2fY2UY4XRS7meappiM8JD2LJVYUO3ns3sn6NQqAxQlypY0aKb+nsix0HosQtspsIn1ojcV//N6mYmu/ZzJNDNUkvmiKOPIJGj6PBowRYnhY0swUczeikiMFSbGRlS2IXiLLy+Tdr3muTXv/qLauCniKMExnMAZeHAFDbiDJrSAAIdneIU359F5cd6dj3nrilPMHMEfOJ8/p06PDA==</latexit><latexit sha1_base64="uybsHnNIJ2/GPV5E3NSDeINSWCA=">AAAB73icbVBNS8NAEJ34WetX1aOXxSJ4kJIUUY9FLx4r2A9oQ9hsN83S3U3c3Qgl9E948aCIV/+ON/+N2zYHbX0w8Hhvhpl5YcqZNq777aysrq1vbJa2yts7u3v7lYPDtk4yRWiLJDxR3RBrypmkLcMMp91UUSxCTjvh6Hbqd56o0iyRD2acUl/goWQRI9hYqRsH9XMUB5dBperW3BnQMvEKUoUCzaDy1R8kJBNUGsKx1j3PTY2fY2UY4XRS7meappiM8JD2LJVYUO3ns3sn6NQqAxQlypY0aKb+nsix0HosQtspsIn1ojcV//N6mYmu/ZzJNDNUkvmiKOPIJGj6PBowRYnhY0swUczeikiMFSbGRlS2IXiLLy+Tdr3muTXv/qLauCniKMExnMAZeHAFDbiDJrSAAIdneIU359F5cd6dj3nrilPMHMEfOJ8/p06PDA==</latexit>

h1 expands to {h1, h2, h3}
h4 expands to {h4, h5, h6}

<latexit sha1_base64="mgJaJP6wE4JmFL8MG2b4FMrhAl0="></latexit><latexit sha1_base64="mgJaJP6wE4JmFL8MG2b4FMrhAl0="></latexit><latexit sha1_base64="mgJaJP6wE4JmFL8MG2b4FMrhAl0="></latexit><latexit sha1_base64="mgJaJP6wE4JmFL8MG2b4FMrhAl0="></latexit>

h4, h5,h6
<latexit sha1_base64="53T8tZ/azhJGXKl9kkgFGLXSF9U=">AAACA3icbVDLSgMxFM3UV62vUXe6CRbBRSkzUh/LohuXFWwrtMOQyaSd0EwyJBmhDAU3/oobF4q49Sfc+Tdm2llo64GQwzn3cu89QcKo0o7zbZWWlldW18rrlY3Nre0de3evo0QqMWljwYS8D5AijHLS1lQzcp9IguKAkW4wus797gORigp+p8cJ8WI05HRAMdJG8u2DyG/UYOSf1WA/ECxU49h8WeSfT3y76tSdKeAicQtSBQVavv3VDwVOY8I1Zkipnusk2suQ1BQzMqn0U0UShEdoSHqGchQT5WXTGybw2CghHAhpHtdwqv7uyFCs8uVMZYx0pOa9XPzP66V6cOlllCepJhzPBg1SBrWAeSAwpJJgzcaGICyp2RXiCEmEtYmtYkJw509eJJ3TuuvU3dtGtXlVxFEGh+AInAAXXIAmuAEt0AYYPIJn8ArerCfrxXq3PmalJavo2Qd/YH3+AHVClsY=</latexit><latexit sha1_base64="53T8tZ/azhJGXKl9kkgFGLXSF9U=">AAACA3icbVDLSgMxFM3UV62vUXe6CRbBRSkzUh/LohuXFWwrtMOQyaSd0EwyJBmhDAU3/oobF4q49Sfc+Tdm2llo64GQwzn3cu89QcKo0o7zbZWWlldW18rrlY3Nre0de3evo0QqMWljwYS8D5AijHLS1lQzcp9IguKAkW4wus797gORigp+p8cJ8WI05HRAMdJG8u2DyG/UYOSf1WA/ECxU49h8WeSfT3y76tSdKeAicQtSBQVavv3VDwVOY8I1Zkipnusk2suQ1BQzMqn0U0UShEdoSHqGchQT5WXTGybw2CghHAhpHtdwqv7uyFCs8uVMZYx0pOa9XPzP66V6cOlllCepJhzPBg1SBrWAeSAwpJJgzcaGICyp2RXiCEmEtYmtYkJw509eJJ3TuuvU3dtGtXlVxFEGh+AInAAXXIAmuAEt0AYYPIJn8ArerCfrxXq3PmalJavo2Qd/YH3+AHVClsY=</latexit><latexit sha1_base64="53T8tZ/azhJGXKl9kkgFGLXSF9U=">AAACA3icbVDLSgMxFM3UV62vUXe6CRbBRSkzUh/LohuXFWwrtMOQyaSd0EwyJBmhDAU3/oobF4q49Sfc+Tdm2llo64GQwzn3cu89QcKo0o7zbZWWlldW18rrlY3Nre0de3evo0QqMWljwYS8D5AijHLS1lQzcp9IguKAkW4wus797gORigp+p8cJ8WI05HRAMdJG8u2DyG/UYOSf1WA/ECxU49h8WeSfT3y76tSdKeAicQtSBQVavv3VDwVOY8I1Zkipnusk2suQ1BQzMqn0U0UShEdoSHqGchQT5WXTGybw2CghHAhpHtdwqv7uyFCs8uVMZYx0pOa9XPzP66V6cOlllCepJhzPBg1SBrWAeSAwpJJgzcaGICyp2RXiCEmEtYmtYkJw509eJJ3TuuvU3dtGtXlVxFEGh+AInAAXXIAmuAEt0AYYPIJn8ArerCfrxXq3PmalJavo2Qd/YH3+AHVClsY=</latexit><latexit sha1_base64="53T8tZ/azhJGXKl9kkgFGLXSF9U=">AAACA3icbVDLSgMxFM3UV62vUXe6CRbBRSkzUh/LohuXFWwrtMOQyaSd0EwyJBmhDAU3/oobF4q49Sfc+Tdm2llo64GQwzn3cu89QcKo0o7zbZWWlldW18rrlY3Nre0de3evo0QqMWljwYS8D5AijHLS1lQzcp9IguKAkW4wus797gORigp+p8cJ8WI05HRAMdJG8u2DyG/UYOSf1WA/ECxU49h8WeSfT3y76tSdKeAicQtSBQVavv3VDwVOY8I1Zkipnusk2suQ1BQzMqn0U0UShEdoSHqGchQT5WXTGybw2CghHAhpHtdwqv7uyFCs8uVMZYx0pOa9XPzP66V6cOlllCepJhzPBg1SBrWAeSAwpJJgzcaGICyp2RXiCEmEtYmtYkJw509eJJ3TuuvU3dtGtXlVxFEGh+AInAAXXIAmuAEt0AYYPIJn8ArerCfrxXq3PmalJavo2Qd/YH3+AHVClsY=</latexit>

h1, h2,h6
<latexit sha1_base64="EvrgyoDd/DK381w99e9WEwebfaQ=">AAACA3icbVDLSgMxFM3UV62vUXe6CRbBRSkzRdRl0Y3LCvYB7TBkMmknNJMMSUYoQ8GNv+LGhSJu/Ql3/o2ZdhbaeiDkcM693HtPkDCqtON8W6WV1bX1jfJmZWt7Z3fP3j/oKJFKTNpYMCF7AVKEUU7ammpGeokkKA4Y6Qbjm9zvPhCpqOD3epIQL0YjTocUI20k3z6KfLcGI79Rg4NAsFBNYvNlkX8x9e2qU3dmgMvELUgVFGj59tcgFDiNCdeYIaX6rpNoL0NSU8zItDJIFUkQHqMR6RvKUUyUl81umMJTo4RwKKR5XMOZ+rsjQ7HKlzOVMdKRWvRy8T+vn+rhlZdRnqSacDwfNEwZ1ALmgcCQSoI1mxiCsKRmV4gjJBHWJraKCcFdPHmZdBp116m7d+fV5nURRxkcgxNwBlxwCZrgFrRAG2DwCJ7BK3iznqwX6936mJeWrKLnEPyB9fkDa6+WwA==</latexit><latexit sha1_base64="EvrgyoDd/DK381w99e9WEwebfaQ=">AAACA3icbVDLSgMxFM3UV62vUXe6CRbBRSkzRdRl0Y3LCvYB7TBkMmknNJMMSUYoQ8GNv+LGhSJu/Ql3/o2ZdhbaeiDkcM693HtPkDCqtON8W6WV1bX1jfJmZWt7Z3fP3j/oKJFKTNpYMCF7AVKEUU7ammpGeokkKA4Y6Qbjm9zvPhCpqOD3epIQL0YjTocUI20k3z6KfLcGI79Rg4NAsFBNYvNlkX8x9e2qU3dmgMvELUgVFGj59tcgFDiNCdeYIaX6rpNoL0NSU8zItDJIFUkQHqMR6RvKUUyUl81umMJTo4RwKKR5XMOZ+rsjQ7HKlzOVMdKRWvRy8T+vn+rhlZdRnqSacDwfNEwZ1ALmgcCQSoI1mxiCsKRmV4gjJBHWJraKCcFdPHmZdBp116m7d+fV5nURRxkcgxNwBlxwCZrgFrRAG2DwCJ7BK3iznqwX6936mJeWrKLnEPyB9fkDa6+WwA==</latexit><latexit sha1_base64="EvrgyoDd/DK381w99e9WEwebfaQ=">AAACA3icbVDLSgMxFM3UV62vUXe6CRbBRSkzRdRl0Y3LCvYB7TBkMmknNJMMSUYoQ8GNv+LGhSJu/Ql3/o2ZdhbaeiDkcM693HtPkDCqtON8W6WV1bX1jfJmZWt7Z3fP3j/oKJFKTNpYMCF7AVKEUU7ammpGeokkKA4Y6Qbjm9zvPhCpqOD3epIQL0YjTocUI20k3z6KfLcGI79Rg4NAsFBNYvNlkX8x9e2qU3dmgMvELUgVFGj59tcgFDiNCdeYIaX6rpNoL0NSU8zItDJIFUkQHqMR6RvKUUyUl81umMJTo4RwKKR5XMOZ+rsjQ7HKlzOVMdKRWvRy8T+vn+rhlZdRnqSacDwfNEwZ1ALmgcCQSoI1mxiCsKRmV4gjJBHWJraKCcFdPHmZdBp116m7d+fV5nURRxkcgxNwBlxwCZrgFrRAG2DwCJ7BK3iznqwX6936mJeWrKLnEPyB9fkDa6+WwA==</latexit><latexit sha1_base64="EvrgyoDd/DK381w99e9WEwebfaQ=">AAACA3icbVDLSgMxFM3UV62vUXe6CRbBRSkzRdRl0Y3LCvYB7TBkMmknNJMMSUYoQ8GNv+LGhSJu/Ql3/o2ZdhbaeiDkcM693HtPkDCqtON8W6WV1bX1jfJmZWt7Z3fP3j/oKJFKTNpYMCF7AVKEUU7ammpGeokkKA4Y6Qbjm9zvPhCpqOD3epIQL0YjTocUI20k3z6KfLcGI79Rg4NAsFBNYvNlkX8x9e2qU3dmgMvELUgVFGj59tcgFDiNCdeYIaX6rpNoL0NSU8zItDJIFUkQHqMR6RvKUUyUl81umMJTo4RwKKR5XMOZ+rsjQ7HKlzOVMdKRWvRy8T+vn+rhlZdRnqSacDwfNEwZ1ALmgcCQSoI1mxiCsKRmV4gjJBHWJraKCcFdPHmZdBp116m7d+fV5nURRxkcgxNwBlxwCZrgFrRAG2DwCJ7BK3iznqwX6936mJeWrKLnEPyB9fkDa6+WwA==</latexit>

hhh5, h7
<latexit sha1_base64="IBlYBsyjCi7VM7pgjhfppUcAyzk=">AAAB+HicbVDLSgMxFL1TX7U+OurSTbAILqTMiFKXRTcuK9gHtMOQSdM2NMkMSUaoQ7/EjQtF3Pop7vwb03YW2nrgXg7n3EtuTpRwpo3nfTuFtfWNza3idmlnd2+/7B4ctnScKkKbJOax6kRYU84kbRpmOO0kimIRcdqOxrczv/1IlWaxfDCThAYCDyUbMIKNlUK3nPUSEaFReDU9t70WuhWv6s2BVomfkwrkaITuV68fk1RQaQjHWnd9LzFBhpVhhNNpqZdqmmAyxkPatVRiQXWQzQ+folOr9NEgVrakQXP190aGhdYTEdlJgc1IL3sz8T+vm5rBdZAxmaSGSrJ4aJByZGI0SwH1maLE8IklmChmb0VkhBUmxmZVsiH4y19eJa2Lqu9V/fvLSv0mj6MIx3ACZ+BDDepwBw1oAoEUnuEV3pwn58V5dz4WowUn3zmCP3A+fwBdRpI6</latexit><latexit sha1_base64="IBlYBsyjCi7VM7pgjhfppUcAyzk=">AAAB+HicbVDLSgMxFL1TX7U+OurSTbAILqTMiFKXRTcuK9gHtMOQSdM2NMkMSUaoQ7/EjQtF3Pop7vwb03YW2nrgXg7n3EtuTpRwpo3nfTuFtfWNza3idmlnd2+/7B4ctnScKkKbJOax6kRYU84kbRpmOO0kimIRcdqOxrczv/1IlWaxfDCThAYCDyUbMIKNlUK3nPUSEaFReDU9t70WuhWv6s2BVomfkwrkaITuV68fk1RQaQjHWnd9LzFBhpVhhNNpqZdqmmAyxkPatVRiQXWQzQ+folOr9NEgVrakQXP190aGhdYTEdlJgc1IL3sz8T+vm5rBdZAxmaSGSrJ4aJByZGI0SwH1maLE8IklmChmb0VkhBUmxmZVsiH4y19eJa2Lqu9V/fvLSv0mj6MIx3ACZ+BDDepwBw1oAoEUnuEV3pwn58V5dz4WowUn3zmCP3A+fwBdRpI6</latexit><latexit sha1_base64="IBlYBsyjCi7VM7pgjhfppUcAyzk=">AAAB+HicbVDLSgMxFL1TX7U+OurSTbAILqTMiFKXRTcuK9gHtMOQSdM2NMkMSUaoQ7/EjQtF3Pop7vwb03YW2nrgXg7n3EtuTpRwpo3nfTuFtfWNza3idmlnd2+/7B4ctnScKkKbJOax6kRYU84kbRpmOO0kimIRcdqOxrczv/1IlWaxfDCThAYCDyUbMIKNlUK3nPUSEaFReDU9t70WuhWv6s2BVomfkwrkaITuV68fk1RQaQjHWnd9LzFBhpVhhNNpqZdqmmAyxkPatVRiQXWQzQ+folOr9NEgVrakQXP190aGhdYTEdlJgc1IL3sz8T+vm5rBdZAxmaSGSrJ4aJByZGI0SwH1maLE8IklmChmb0VkhBUmxmZVsiH4y19eJa2Lqu9V/fvLSv0mj6MIx3ACZ+BDDepwBw1oAoEUnuEV3pwn58V5dz4WowUn3zmCP3A+fwBdRpI6</latexit><latexit sha1_base64="hP+6LrUf2d3tZaldqaQQvEKMXyw=">AAAB2XicbZDNSgMxFIXv1L86Vq1rN8EiuCozbnQpuHFZwbZCO5RM5k4bmskMyR2hDH0BF25EfC93vo3pz0JbDwQ+zknIvSculLQUBN9ebWd3b/+gfugfNfzjk9Nmo2fz0gjsilzl5jnmFpXU2CVJCp8LgzyLFfbj6f0i77+gsTLXTzQrMMr4WMtUCk7O6oyaraAdLMW2IVxDC9YaNb+GSS7KDDUJxa0dhEFBUcUNSaFw7g9LiwUXUz7GgUPNM7RRtRxzzi6dk7A0N+5oYkv394uKZ9bOstjdzDhN7Ga2MP/LBiWlt1EldVESarH6KC0Vo5wtdmaJNChIzRxwYaSblYkJN1yQa8Z3HYSbG29D77odBu3wMYA6nMMFXEEIN3AHD9CBLghI4BXevYn35n2suqp569LO4I+8zx84xIo4</latexit><latexit sha1_base64="Hyfhy1Ow5L9NBlgostBw77p8CGQ=">AAAB7XicbZDLSgMxGIX/qbdaqx3dugkWwYWUGUHqUnDjsoK9QDsMmTTThiaZIRehDn0SNy4U8XXc+Taml4W2Hkj4OCchf06Sc6ZNEHx7pa3tnd298n7loHp4VPOPqx2dWUVom2Q8U70Ea8qZpG3DDKe9XFEsEk67yeRunnefqNIsk49mmtNI4JFkKSPYOCv2a8UgFwkax9ezS7c3Y78eNIKF0CaEK6jDSq3Y/xoMM2IFlYZwrHU/DHITFVgZRjidVQZW0xyTCR7RvkOJBdVRsRh8hs6dM0RpptySBi3c3zcKLLSeisSdFNiM9Xo2N//L+takN1HBZG4NlWT5UGo5Mhmat4CGTFFi+NQBJoq5WREZY4WJcV1VXAnh+pc3oXPVCING+BBAGU7hDC4ghCbcwj20oA0ELLzAG7x7z96r97Gsq+StejuBP/I+fwAR1pDX</latexit><latexit sha1_base64="Hyfhy1Ow5L9NBlgostBw77p8CGQ=">AAAB7XicbZDLSgMxGIX/qbdaqx3dugkWwYWUGUHqUnDjsoK9QDsMmTTThiaZIRehDn0SNy4U8XXc+Taml4W2Hkj4OCchf06Sc6ZNEHx7pa3tnd298n7loHp4VPOPqx2dWUVom2Q8U70Ea8qZpG3DDKe9XFEsEk67yeRunnefqNIsk49mmtNI4JFkKSPYOCv2a8UgFwkax9ezS7c3Y78eNIKF0CaEK6jDSq3Y/xoMM2IFlYZwrHU/DHITFVgZRjidVQZW0xyTCR7RvkOJBdVRsRh8hs6dM0RpptySBi3c3zcKLLSeisSdFNiM9Xo2N//L+takN1HBZG4NlWT5UGo5Mhmat4CGTFFi+NQBJoq5WREZY4WJcV1VXAnh+pc3oXPVCING+BBAGU7hDC4ghCbcwj20oA0ELLzAG7x7z96r97Gsq+StejuBP/I+fwAR1pDX</latexit><latexit sha1_base64="W+Xi4LVfu0DHGA9a4RvwDXOyev4=">AAAB+HicbVBNSwMxEJ2tX7V+dNWjl2ARPEjZFaQei148VrC10C5LNs22oUl2SbJCXfpLvHhQxKs/xZv/xrTdg7Y+mOHx3gyZvCjlTBvP+3ZKa+sbm1vl7crO7t5+1T047OgkU4S2ScIT1Y2wppxJ2jbMcNpNFcUi4vQhGt/M/IdHqjRL5L2ZpDQQeChZzAg2Vgrdat5PRYRG4eX03PZG6Na8ujcHWiV+QWpQoBW6X/1BQjJBpSEca93zvdQEOVaGEU6nlX6maYrJGA9pz1KJBdVBPj98ik6tMkBxomxJg+bq740cC60nIrKTApuRXvZm4n9eLzPxVZAzmWaGSrJ4KM44MgmapYAGTFFi+MQSTBSztyIywgoTY7Oq2BD85S+vks5F3ffq/p1Xa14XcZThGE7gDHxoQBNuoQVtIJDBM7zCm/PkvDjvzsditOQUO0fwB87nD1wGkjY=</latexit><latexit sha1_base64="IBlYBsyjCi7VM7pgjhfppUcAyzk=">AAAB+HicbVDLSgMxFL1TX7U+OurSTbAILqTMiFKXRTcuK9gHtMOQSdM2NMkMSUaoQ7/EjQtF3Pop7vwb03YW2nrgXg7n3EtuTpRwpo3nfTuFtfWNza3idmlnd2+/7B4ctnScKkKbJOax6kRYU84kbRpmOO0kimIRcdqOxrczv/1IlWaxfDCThAYCDyUbMIKNlUK3nPUSEaFReDU9t70WuhWv6s2BVomfkwrkaITuV68fk1RQaQjHWnd9LzFBhpVhhNNpqZdqmmAyxkPatVRiQXWQzQ+folOr9NEgVrakQXP190aGhdYTEdlJgc1IL3sz8T+vm5rBdZAxmaSGSrJ4aJByZGI0SwH1maLE8IklmChmb0VkhBUmxmZVsiH4y19eJa2Lqu9V/fvLSv0mj6MIx3ACZ+BDDepwBw1oAoEUnuEV3pwn58V5dz4WowUn3zmCP3A+fwBdRpI6</latexit><latexit sha1_base64="IBlYBsyjCi7VM7pgjhfppUcAyzk=">AAAB+HicbVDLSgMxFL1TX7U+OurSTbAILqTMiFKXRTcuK9gHtMOQSdM2NMkMSUaoQ7/EjQtF3Pop7vwb03YW2nrgXg7n3EtuTpRwpo3nfTuFtfWNza3idmlnd2+/7B4ctnScKkKbJOax6kRYU84kbRpmOO0kimIRcdqOxrczv/1IlWaxfDCThAYCDyUbMIKNlUK3nPUSEaFReDU9t70WuhWv6s2BVomfkwrkaITuV68fk1RQaQjHWnd9LzFBhpVhhNNpqZdqmmAyxkPatVRiQXWQzQ+folOr9NEgVrakQXP190aGhdYTEdlJgc1IL3sz8T+vm5rBdZAxmaSGSrJ4aJByZGI0SwH1maLE8IklmChmb0VkhBUmxmZVsiH4y19eJa2Lqu9V/fvLSv0mj6MIx3ACZ+BDDepwBw1oAoEUnuEV3pwn58V5dz4WowUn3zmCP3A+fwBdRpI6</latexit><latexit sha1_base64="IBlYBsyjCi7VM7pgjhfppUcAyzk=">AAAB+HicbVDLSgMxFL1TX7U+OurSTbAILqTMiFKXRTcuK9gHtMOQSdM2NMkMSUaoQ7/EjQtF3Pop7vwb03YW2nrgXg7n3EtuTpRwpo3nfTuFtfWNza3idmlnd2+/7B4ctnScKkKbJOax6kRYU84kbRpmOO0kimIRcdqOxrczv/1IlWaxfDCThAYCDyUbMIKNlUK3nPUSEaFReDU9t70WuhWv6s2BVomfkwrkaITuV68fk1RQaQjHWnd9LzFBhpVhhNNpqZdqmmAyxkPatVRiQXWQzQ+folOr9NEgVrakQXP190aGhdYTEdlJgc1IL3sz8T+vm5rBdZAxmaSGSrJ4aJByZGI0SwH1maLE8IklmChmb0VkhBUmxmZVsiH4y19eJa2Lqu9V/fvLSv0mj6MIx3ACZ+BDDepwBw1oAoEUnuEV3pwn58V5dz4WowUn3zmCP3A+fwBdRpI6</latexit><latexit sha1_base64="IBlYBsyjCi7VM7pgjhfppUcAyzk=">AAAB+HicbVDLSgMxFL1TX7U+OurSTbAILqTMiFKXRTcuK9gHtMOQSdM2NMkMSUaoQ7/EjQtF3Pop7vwb03YW2nrgXg7n3EtuTpRwpo3nfTuFtfWNza3idmlnd2+/7B4ctnScKkKbJOax6kRYU84kbRpmOO0kimIRcdqOxrczv/1IlWaxfDCThAYCDyUbMIKNlUK3nPUSEaFReDU9t70WuhWv6s2BVomfkwrkaITuV68fk1RQaQjHWnd9LzFBhpVhhNNpqZdqmmAyxkPatVRiQXWQzQ+folOr9NEgVrakQXP190aGhdYTEdlJgc1IL3sz8T+vm5rBdZAxmaSGSrJ4aJByZGI0SwH1maLE8IklmChmb0VkhBUmxmZVsiH4y19eJa2Lqu9V/fvLSv0mj6MIx3ACZ+BDDepwBw1oAoEUnuEV3pwn58V5dz4WowUn3zmCP3A+fwBdRpI6</latexit><latexit sha1_base64="IBlYBsyjCi7VM7pgjhfppUcAyzk=">AAAB+HicbVDLSgMxFL1TX7U+OurSTbAILqTMiFKXRTcuK9gHtMOQSdM2NMkMSUaoQ7/EjQtF3Pop7vwb03YW2nrgXg7n3EtuTpRwpo3nfTuFtfWNza3idmlnd2+/7B4ctnScKkKbJOax6kRYU84kbRpmOO0kimIRcdqOxrczv/1IlWaxfDCThAYCDyUbMIKNlUK3nPUSEaFReDU9t70WuhWv6s2BVomfkwrkaITuV68fk1RQaQjHWnd9LzFBhpVhhNNpqZdqmmAyxkPatVRiQXWQzQ+folOr9NEgVrakQXP190aGhdYTEdlJgc1IL3sz8T+vm5rBdZAxmaSGSrJ4aJByZGI0SwH1maLE8IklmChmb0VkhBUmxmZVsiH4y19eJa2Lqu9V/fvLSv0mj6MIx3ACZ+BDDepwBw1oAoEUnuEV3pwn58V5dz4WowUn3zmCP3A+fwBdRpI6</latexit><latexit sha1_base64="IBlYBsyjCi7VM7pgjhfppUcAyzk=">AAAB+HicbVDLSgMxFL1TX7U+OurSTbAILqTMiFKXRTcuK9gHtMOQSdM2NMkMSUaoQ7/EjQtF3Pop7vwb03YW2nrgXg7n3EtuTpRwpo3nfTuFtfWNza3idmlnd2+/7B4ctnScKkKbJOax6kRYU84kbRpmOO0kimIRcdqOxrczv/1IlWaxfDCThAYCDyUbMIKNlUK3nPUSEaFReDU9t70WuhWv6s2BVomfkwrkaITuV68fk1RQaQjHWnd9LzFBhpVhhNNpqZdqmmAyxkPatVRiQXWQzQ+folOr9NEgVrakQXP190aGhdYTEdlJgc1IL3sz8T+vm5rBdZAxmaSGSrJ4aJByZGI0SwH1maLE8IklmChmb0VkhBUmxmZVsiH4y19eJa2Lqu9V/fvLSv0mj6MIx3ACZ+BDDepwBw1oAoEUnuEV3pwn58V5dz4WowUn3zmCP3A+fwBdRpI6</latexit>

hhh1,hhh2, h3
<latexit sha1_base64="e+5rKpShA9Woq6rF4FO0bhlbFx4=">AAACAnicbZDLSsNAFIZPvNZ6i7oSN4NFcFFKUgVdFt24rGAv0IYwmU6aoZNJmJkIJRQ3voobF4q49Snc+TZOL4K2/jDw8Z9zOHP+IOVMacf5spaWV1bX1gsbxc2t7Z1de2+/qZJMEtogCU9kO8CKciZoQzPNaTuVFMcBp61gcD2ut+6pVCwRd3qYUi/GfcFCRrA2lm8fdtM4yKOR75bRD1bLKPLPfLvkVJyJ0CK4MyjBTHXf/uz2EpLFVGjCsVId10m1l2OpGeF0VOxmiqaYDHCfdgwKHFPl5ZMTRujEOD0UJtI8odHE/T2R41ipYRyYzhjrSM3XxuZ/tU6mw0svZyLNNBVkuijMONIJGueBekxSovnQACaSmb8iEmGJiTapFU0I7vzJi9CsVlyn4t6el2pXszgKcATHcAouXEANbqAODSDwAE/wAq/Wo/VsvVnv09YlazZzAH9kfXwDsLiWTg==</latexit><latexit sha1_base64="e+5rKpShA9Woq6rF4FO0bhlbFx4=">AAACAnicbZDLSsNAFIZPvNZ6i7oSN4NFcFFKUgVdFt24rGAv0IYwmU6aoZNJmJkIJRQ3voobF4q49Snc+TZOL4K2/jDw8Z9zOHP+IOVMacf5spaWV1bX1gsbxc2t7Z1de2+/qZJMEtogCU9kO8CKciZoQzPNaTuVFMcBp61gcD2ut+6pVCwRd3qYUi/GfcFCRrA2lm8fdtM4yKOR75bRD1bLKPLPfLvkVJyJ0CK4MyjBTHXf/uz2EpLFVGjCsVId10m1l2OpGeF0VOxmiqaYDHCfdgwKHFPl5ZMTRujEOD0UJtI8odHE/T2R41ipYRyYzhjrSM3XxuZ/tU6mw0svZyLNNBVkuijMONIJGueBekxSovnQACaSmb8iEmGJiTapFU0I7vzJi9CsVlyn4t6el2pXszgKcATHcAouXEANbqAODSDwAE/wAq/Wo/VsvVnv09YlazZzAH9kfXwDsLiWTg==</latexit><latexit sha1_base64="e+5rKpShA9Woq6rF4FO0bhlbFx4=">AAACAnicbZDLSsNAFIZPvNZ6i7oSN4NFcFFKUgVdFt24rGAv0IYwmU6aoZNJmJkIJRQ3voobF4q49Snc+TZOL4K2/jDw8Z9zOHP+IOVMacf5spaWV1bX1gsbxc2t7Z1de2+/qZJMEtogCU9kO8CKciZoQzPNaTuVFMcBp61gcD2ut+6pVCwRd3qYUi/GfcFCRrA2lm8fdtM4yKOR75bRD1bLKPLPfLvkVJyJ0CK4MyjBTHXf/uz2EpLFVGjCsVId10m1l2OpGeF0VOxmiqaYDHCfdgwKHFPl5ZMTRujEOD0UJtI8odHE/T2R41ipYRyYzhjrSM3XxuZ/tU6mw0svZyLNNBVkuijMONIJGueBekxSovnQACaSmb8iEmGJiTapFU0I7vzJi9CsVlyn4t6el2pXszgKcATHcAouXEANbqAODSDwAE/wAq/Wo/VsvVnv09YlazZzAH9kfXwDsLiWTg==</latexit><latexit sha1_base64="e+5rKpShA9Woq6rF4FO0bhlbFx4=">AAACAnicbZDLSsNAFIZPvNZ6i7oSN4NFcFFKUgVdFt24rGAv0IYwmU6aoZNJmJkIJRQ3voobF4q49Snc+TZOL4K2/jDw8Z9zOHP+IOVMacf5spaWV1bX1gsbxc2t7Z1de2+/qZJMEtogCU9kO8CKciZoQzPNaTuVFMcBp61gcD2ut+6pVCwRd3qYUi/GfcFCRrA2lm8fdtM4yKOR75bRD1bLKPLPfLvkVJyJ0CK4MyjBTHXf/uz2EpLFVGjCsVId10m1l2OpGeF0VOxmiqaYDHCfdgwKHFPl5ZMTRujEOD0UJtI8odHE/T2R41ipYRyYzhjrSM3XxuZ/tU6mw0svZyLNNBVkuijMONIJGueBekxSovnQACaSmb8iEmGJiTapFU0I7vzJi9CsVlyn4t6el2pXszgKcATHcAouXEANbqAODSDwAE/wAq/Wo/VsvVnv09YlazZzAH9kfXwDsLiWTg==</latexit>

hhh1,hhh2, h6
<latexit sha1_base64="91j0w6WVinIi8kLcJy9anCluys4=">AAACAnicbZDLSsNAFIZPvNZ6i7oSN4NFcFFKUkRdFt24rGAv0IYwmU6aoZNJmJkIJRQ3voobF4q49Snc+TZOL4K2/jDw8Z9zOHP+IOVMacf5spaWV1bX1gsbxc2t7Z1de2+/qZJMEtogCU9kO8CKciZoQzPNaTuVFMcBp61gcD2ut+6pVCwRd3qYUi/GfcFCRrA2lm8fdtM4yKOR75bRD1bLKPLPfbvkVJyJ0CK4MyjBTHXf/uz2EpLFVGjCsVId10m1l2OpGeF0VOxmiqaYDHCfdgwKHFPl5ZMTRujEOD0UJtI8odHE/T2R41ipYRyYzhjrSM3XxuZ/tU6mw0svZyLNNBVkuijMONIJGueBekxSovnQACaSmb8iEmGJiTapFU0I7vzJi9CsVlyn4t6elWpXszgKcATHcAouXEANbqAODSDwAE/wAq/Wo/VsvVnv09YlazZzAH9kfXwDtUSWUQ==</latexit><latexit sha1_base64="91j0w6WVinIi8kLcJy9anCluys4=">AAACAnicbZDLSsNAFIZPvNZ6i7oSN4NFcFFKUkRdFt24rGAv0IYwmU6aoZNJmJkIJRQ3voobF4q49Snc+TZOL4K2/jDw8Z9zOHP+IOVMacf5spaWV1bX1gsbxc2t7Z1de2+/qZJMEtogCU9kO8CKciZoQzPNaTuVFMcBp61gcD2ut+6pVCwRd3qYUi/GfcFCRrA2lm8fdtM4yKOR75bRD1bLKPLPfbvkVJyJ0CK4MyjBTHXf/uz2EpLFVGjCsVId10m1l2OpGeF0VOxmiqaYDHCfdgwKHFPl5ZMTRujEOD0UJtI8odHE/T2R41ipYRyYzhjrSM3XxuZ/tU6mw0svZyLNNBVkuijMONIJGueBekxSovnQACaSmb8iEmGJiTapFU0I7vzJi9CsVlyn4t6elWpXszgKcATHcAouXEANbqAODSDwAE/wAq/Wo/VsvVnv09YlazZzAH9kfXwDtUSWUQ==</latexit><latexit sha1_base64="91j0w6WVinIi8kLcJy9anCluys4=">AAACAnicbZDLSsNAFIZPvNZ6i7oSN4NFcFFKUkRdFt24rGAv0IYwmU6aoZNJmJkIJRQ3voobF4q49Snc+TZOL4K2/jDw8Z9zOHP+IOVMacf5spaWV1bX1gsbxc2t7Z1de2+/qZJMEtogCU9kO8CKciZoQzPNaTuVFMcBp61gcD2ut+6pVCwRd3qYUi/GfcFCRrA2lm8fdtM4yKOR75bRD1bLKPLPfbvkVJyJ0CK4MyjBTHXf/uz2EpLFVGjCsVId10m1l2OpGeF0VOxmiqaYDHCfdgwKHFPl5ZMTRujEOD0UJtI8odHE/T2R41ipYRyYzhjrSM3XxuZ/tU6mw0svZyLNNBVkuijMONIJGueBekxSovnQACaSmb8iEmGJiTapFU0I7vzJi9CsVlyn4t6elWpXszgKcATHcAouXEANbqAODSDwAE/wAq/Wo/VsvVnv09YlazZzAH9kfXwDtUSWUQ==</latexit><latexit sha1_base64="91j0w6WVinIi8kLcJy9anCluys4=">AAACAnicbZDLSsNAFIZPvNZ6i7oSN4NFcFFKUkRdFt24rGAv0IYwmU6aoZNJmJkIJRQ3voobF4q49Snc+TZOL4K2/jDw8Z9zOHP+IOVMacf5spaWV1bX1gsbxc2t7Z1de2+/qZJMEtogCU9kO8CKciZoQzPNaTuVFMcBp61gcD2ut+6pVCwRd3qYUi/GfcFCRrA2lm8fdtM4yKOR75bRD1bLKPLPfbvkVJyJ0CK4MyjBTHXf/uz2EpLFVGjCsVId10m1l2OpGeF0VOxmiqaYDHCfdgwKHFPl5ZMTRujEOD0UJtI8odHE/T2R41ipYRyYzhjrSM3XxuZ/tU6mw0svZyLNNBVkuijMONIJGueBekxSovnQACaSmb8iEmGJiTapFU0I7vzJi9CsVlyn4t6elWpXszgKcATHcAouXEANbqAODSDwAE/wAq/Wo/VsvVnv09YlazZzAH9kfXwDtUSWUQ==</latexit>

{h1, h2}
<latexit sha1_base64="acsoE5vYo3k1g1sk/+vDstCkPH4=">AAAB83icbVBNS8NAEJ34WetX1aOXxSJ4kJIUQY9FLx4r2A9oQthsN83SzW7Y3Qgl9G948aCIV/+MN/+N2zYHbX0w8Hhvhpl5UcaZNq777aytb2xubVd2qrt7+weHtaPjrpa5IrRDJJeqH2FNORO0Y5jhtJ8pitOI0140vpv5vSeqNJPi0UwyGqR4JFjMCDZW8v0iCb1LlIRNfxrW6m7DnQOtEq8kdSjRDmtf/lCSPKXCEI61HnhuZoICK8MIp9Oqn2uaYTLGIzqwVOCU6qCY3zxF51YZolgqW8Kgufp7osCp1pM0sp0pNole9mbif94gN/FNUDCR5YYKslgU5xwZiWYBoCFTlBg+sQQTxeytiCRYYWJsTFUbgrf88irpNhue2/Aeruqt2zKOCpzCGVyAB9fQgntoQwcIZPAMr/Dm5M6L8+58LFrXnHLmBP7A+fwB0A6Q3w==</latexit><latexit sha1_base64="acsoE5vYo3k1g1sk/+vDstCkPH4=">AAAB83icbVBNS8NAEJ34WetX1aOXxSJ4kJIUQY9FLx4r2A9oQthsN83SzW7Y3Qgl9G948aCIV/+MN/+N2zYHbX0w8Hhvhpl5UcaZNq777aytb2xubVd2qrt7+weHtaPjrpa5IrRDJJeqH2FNORO0Y5jhtJ8pitOI0140vpv5vSeqNJPi0UwyGqR4JFjMCDZW8v0iCb1LlIRNfxrW6m7DnQOtEq8kdSjRDmtf/lCSPKXCEI61HnhuZoICK8MIp9Oqn2uaYTLGIzqwVOCU6qCY3zxF51YZolgqW8Kgufp7osCp1pM0sp0pNole9mbif94gN/FNUDCR5YYKslgU5xwZiWYBoCFTlBg+sQQTxeytiCRYYWJsTFUbgrf88irpNhue2/Aeruqt2zKOCpzCGVyAB9fQgntoQwcIZPAMr/Dm5M6L8+58LFrXnHLmBP7A+fwB0A6Q3w==</latexit><latexit sha1_base64="acsoE5vYo3k1g1sk/+vDstCkPH4=">AAAB83icbVBNS8NAEJ34WetX1aOXxSJ4kJIUQY9FLx4r2A9oQthsN83SzW7Y3Qgl9G948aCIV/+MN/+N2zYHbX0w8Hhvhpl5UcaZNq777aytb2xubVd2qrt7+weHtaPjrpa5IrRDJJeqH2FNORO0Y5jhtJ8pitOI0140vpv5vSeqNJPi0UwyGqR4JFjMCDZW8v0iCb1LlIRNfxrW6m7DnQOtEq8kdSjRDmtf/lCSPKXCEI61HnhuZoICK8MIp9Oqn2uaYTLGIzqwVOCU6qCY3zxF51YZolgqW8Kgufp7osCp1pM0sp0pNole9mbif94gN/FNUDCR5YYKslgU5xwZiWYBoCFTlBg+sQQTxeytiCRYYWJsTFUbgrf88irpNhue2/Aeruqt2zKOCpzCGVyAB9fQgntoQwcIZPAMr/Dm5M6L8+58LFrXnHLmBP7A+fwB0A6Q3w==</latexit><latexit sha1_base64="acsoE5vYo3k1g1sk/+vDstCkPH4=">AAAB83icbVBNS8NAEJ34WetX1aOXxSJ4kJIUQY9FLx4r2A9oQthsN83SzW7Y3Qgl9G948aCIV/+MN/+N2zYHbX0w8Hhvhpl5UcaZNq777aytb2xubVd2qrt7+weHtaPjrpa5IrRDJJeqH2FNORO0Y5jhtJ8pitOI0140vpv5vSeqNJPi0UwyGqR4JFjMCDZW8v0iCb1LlIRNfxrW6m7DnQOtEq8kdSjRDmtf/lCSPKXCEI61HnhuZoICK8MIp9Oqn2uaYTLGIzqwVOCU6qCY3zxF51YZolgqW8Kgufp7osCp1pM0sp0pNole9mbif94gN/FNUDCR5YYKslgU5xwZiWYBoCFTlBg+sQQTxeytiCRYYWJsTFUbgrf88irpNhue2/Aeruqt2zKOCpzCGVyAB9fQgntoQwcIZPAMr/Dm5M6L8+58LFrXnHLmBP7A+fwB0A6Q3w==</latexit>

Figure 3.1: Overview of MendelImpute’s algorithm. (a) After alignment, imputation and phasing
are carried out on short, non-overlapping windows of the typed SNPs. (b) Based on a least squares
criterion, we find two unique haplotypes whose vector sum approximates the genotype vector on
the current window. Once this is done, all reference haplotypes corresponding to these two unique
haplotypes are assembled into two sets of candidate haplotypes. (c) We intersect candidate haplotype
sets window by window, carrying along the surviving set and switching orientations if the result
generates more surviving haplotypes. (d) After three windows the top extended chromosome possess
no surviving haplotypes, but a switch to the second orientation in the current window allows h5 to
survive on the top chromosome. Eventually we must search for a break point separating h1 from h2
or h6 between windows 3 and 4 (bottom panel).
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To minimize the criterion (3.1) efficiently, suppose the genotype vectors xi constitute the columns

of a genotype matrix X, and suppose the haplotype vectors hi constitute the columns of a haplotype

matrix H. Given these conventions we recover all inner products xT
i h j and hT

i h j in equation (3.1) as

entries of two matrix products; the two corresponding BLAS (Basic Linear Algebra Subroutines)[64]

level-3 calls produce

XT H =


xT

1 h1 · · · xT
1 hd

...
...

xT
n h1 · · · xT

n hd


n×d

and HT H =


‖h1‖2

2 · · · hT
1 hd

...
...

hT
d h1 · · · ‖hd‖2

2


d×d

. (3.2)

These allow one to quickly assemble a matrix M with entries mi j = ‖hi‖2
2 +‖h j‖2

2 +2hT
i h j and for

each sample xk a matrix N with entries ni j =−2xT
k hi−2xT

k h j. Therefore, to find the best haplotype

pair (hi,h j) for the sample xk, we search for the minimum entry mi j +ni j of the d×d matrix M+N

across all indices i ≥ j. Extremely unlikely ties are arbitrarily broken. Note that the constant term

||xk||22 can be safely ignored in optimization. Data import and this minimum entry search are the

computational bottlenecks of our software. Once such a haplotype pair is identified, all reference

haplotype pairs identical to (hi,h j) in the current window give the same optimal `2 error.

3.2.3 Phasing by Intersecting Haplotype Sets

As just described, each window w along a sample chromosome generates an optimal pair of unique

haplotypes. These expand into two sets Sw1 and Sw2 of reference haplotypes (Figure 3.1B). In the

first window we arbitrarily assign S11 to extended haplotype 1 and S12 to extended haplotype 2.

From here on the goal is to reconstruct two extended composite haplotypes E1 and E2 that cover the

entire chromosome. Let w index the current window. The two sets Sw−1,1 and Sw−1,2 are already

phased. The new sets Sw1 and Sw2 are not, and their phases must be resolved and their entries pruned

by intersection to achieve extended haplotype parsimony. The better orientation is one which gener-

ates more surviving haplotypes after intersection (Figure 3.1C). Here we count surviving haplotypes

43



across both sets of an orientation. The better orientation and the corresponding survivor sets are

propagated to subsequent windows. If either intersection is empty at window w, then a break is

declared, the empty set is replaced by the entire haplotype set of window w, and a new reference

segment commences (Figure 3.1D). Ties and double empties virtually never occur. Repeated inter-

section may fail to produce singleton haplotype sets, in which case we randomly designate a winner

to use for breakpoint search.

For example, suppose S11 = {h1,h2,h3} and S12 = {h4,h5,h6} are the (arbitrarily) phased sets in

window 1. Since window 2 is not yet phased, the two sets S21 = {h1,h2,h6} and S22 = {h5,h7,h8}

can be assigned to extended haplotypes 1 and 2, respectively, or vice versa as depicted in Figure

3.1C. The first orientation is preferred since it generates two surviving haplotypes h1 and h5 bridging

windows 1 and 2. Thus, {h1} and {h5} are assigned at window 2 with this orientation and propagated

to window 3. In window 3 the contending pairs are {h1} ∩ {h1,h3} and {h5} ∩ {h2,h5} versus

{h1}∩{h2,h5} and {h5}∩{h1,h3}. The former prevails, and {h1} and {h5} are assigned to window

3 and propagated to window 4. In window 4 the opposite orientation is preferred (Figure 3.1D). In

this empty intersection case we set S41 = {h2,h6} and S42 = {h5} and continue the process. Later

we return and resolve the breakpoint in extended haplotype 1 between windows 3 and 4.

3.2.4 Resolving Breakpoints

The unique haplotype pairs found for adjacent windows are sometimes inconsistent and yield empty

intersections. In such situations, we search for a good break point. Figure 3.1D illustrates a single-

breakpoint search. In this example, we slide the putative break point b across windows 3 and 4 in the

top extended haplotype to minimize the least squares value determined by the observed genotype,

h5 spanning both windows, and the breakpoint b between h1 and h2 ∪h6. When there is a double

mismatch, we must search for a pair (b1,b2) of breakpoints, one for each extended haplotype. The

optimal pair can be determined by minimizing the least squares distances generated by all possible

breakpoint pairs (b1,b2). Thus, double breakpoint searches scale as a quadratic. Fortunately, under

the adaptive window width strategy described in Section 3.5.2.1, the number of typed SNPs in each
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Data Set size (MB) for format:
vcf.gz jlso bref3 m3vcf.gz imp5

sim 10K 49 6 18 7 57
sim 100K 472 56 81 29 565
sim 1M 4660 776 415 NA 5650
1000G chr10 459 188 342 116 621
1000G chr20 200 89 154 52 279
HRC chr 10 3346 1328 1156 529 3636
HRC chr 20 1510 706 554 253 1610

Table 3.1: Storage size required for various compressed reference haplotype formats. Here vcf.gz
is the standard compressed VCF format, jlso is used by MendelImpute, bref3 is used by Beagle
5.1, m3vcf.gz is used by Minimac 4, and imp5 is used by Impute 5. For all jlso files we chose the
maximum number of unique haplotypes per window to be dmax = 1000. Note we could not generate
the m3vcf.gz file for the sim 1M panel because it required too much memory (RAM).

window typically is on the order of 102. In this range, quadratic search remains fairly efficient.

3.2.5 Imputation and Phasing of Untyped SNPs

Once haplotyping is complete, it is trivial to impute missing SNPs. Each missing SNP is located on

the reference map, and its genotype is imputed as the sum of the alleles on the extended haplotypes

E1 and E2. Observed genotypes are untouched unless the user prefers phased genotypes. In this

case MendelImpute will override observed genotypes with phased haplotypes similar to Minimac

4. Unfortunately, MendelImpute cannot compute estimated dosages. As shown in Section 3.3.4

on alternative compression schemes, the extended haplotypes E1 and E2 can be output rather than

imputed genotypes at the user’s discretion.

3.2.6 Compressed Reference Panels

Large reference files are typically stored as compressed VCF files. Since VCF files are plain text

files, they are large and slow to read. Read times can be improved by computing and storing an addi-

tional tabix index file [65], but file size remains a problem. Consequently, every modern imputation

program has developed its own specialized reference file format (for instance, the m3vcf, imp5, and
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Data Set Total SNPs Typed SNPs Samples Ref Haplotypes Missing %
Sim 10K 62704 22879 1000 10000 0.5
Sim 100K 80029 23594 1000 100000 0.5
Sim 1M 97750 23092 1000 1000000 0.5
1000G Chr10 3968020 192683 52 4904 0.1
1000G Chr20 1802261 96083 52 4904 0.1
HRC Chr10 1809068 191210 1000 52330 0.1
HRC Chr20 829265 95414 1000 52330 0.1

Table 3.2: Summary of real and simulated data sets used in our experiments. For the 1000G and HRC
datasets, the SNPs also present on the Infinium Omni5-4 Kit constitute the typed SNPs. Missing %
is the percentage of typed SNPs randomly masked to mimic random genotyping error. (* We used
the top 50,000 most ancestry informative SNPs.)

bref3 formats of Minimac, Impute, and Beagle, respectively) for improving read times and storage

efficiency. We propose yet another compressed format for this purpose: the jlso format, and we

compare it against other formats in Table 3.1. Details for generating the jlso format are discussed

in the supplement.

3.2.7 Real and Simulated Data Experiments

For each data set, we use only bi-allelic SNPs. Table 3.2 summarizes the real and simulated data

used in our comparisons.

3.2.7.1 Simulated Data

To test scalability across a broad range of panel sizes, we simulated three 10 Mb sequence data sets

with 12,000, 102,000, and 1,002,000 haplotypes using the software msprime [55]. We randomly

selected 1000 samples (2000 haplotypes) from each pool to form the target genotypes and used the

remaining to form the reference panels. The SNPs with minor allele frequency greater than 5% were

designated the typed SNPs. Approximately 0.5% of the typed genotypes were randomly masked to

introduce missing values.
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3.2.7.2 1000 Genomes Data

We downloaded the publicly available 1000 Genomes (1000G) phase 3 data set [1, 2] from Beagle’s

website [20]. The original 1000 genomes data set contains 2504 samples with 49,143,605 phased

genotypes across 26 different populations, as summarized in Table 3.5 in the supplement. In our

study, structural variants and markers with < 5 minor alleles or non-unique identifiers were excluded.

We focused on chromosomes 10 and 20 data in our speed and accuracy experiments. Following

[96, 20], we randomly selected 2 samples from each of the 26 populations to serve as imputation

targets. All other samples became the reference panel. We chose SNPs present on the Infinium

Omni5-4 Kit to be typed SNPs and randomly masked 0.1% of the typed genotypes to mimic data

missing at random.

For ancestry inference experiments, we chose the top 50,000 most ancestry informative mark-

ers (AIMs) on each chromosome with minor allele frequency ≥ 0.01 as the typed SNPs [18]. The

AIM markers were computed using VCFTools.jl. Samples from ACB, ASW, CLM, MXL, PEL,

and PUR (African Caribbeans, Americans of African Ancestry, Colombians, Mexican Ancestry,

Peruvians, and Puerto Ricans, respectively; n = 504) are assumed admixed and employed in admix-

ture experiments. Samples from the 20 remaining populations (n = 2000) are assumed to exhibit

less continental-scale admixture and serve as the reference panel. Unfortunately, the indigenous

Amerindian populations are not surveyed in the 1000 Genomes data, so we use East Asian (EAS)

and South Asian (SAS) populations as the best available proxy.

3.2.7.3 Haplotype Reference Consortium Data

We also downloaded the Haplotype Reference Consortium (HRC) v1.1 data from the European

Genotype-Phenome archive [63] (data accession = EGAD00001002729). This data set consists of

39,741,659 SNPs in 27,165 individuals of predominantly European ancestry. We randomly selected

1000 samples in chromosomes 10 and 20 to serve as imputation targets and the remaining to serve

as the reference panel. SNPs also present on the Infinium Omni5-4 Kit are chosen to be typed SNPs.
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Finally, we randomly masked 0.1% of the typed genotypes to mimic data missing at random.

3.3 Results

Due to Julia’s flexibility, MendelImpute runs on Windows, Mac, and Linux operating systems,

equipped with either Intel or ARM hardware.

3.3.1 Comparison setup

All programs were run on Linux CentOS 7 equipped with 10 cores of an Intel i9 9920X CPU and

64 GB of RAM. All reference files were previously converted to the corresponding compressed

formats, bref3, m3vcf, imp5, or jlso. All target genotypes were unphased, and 0.1-0.5% of typed

genotypes were deleted at random. Since Minimac 4 and Impute 5 required pre-phased data, we

used Beagle 5.1’s built-in pre-phasing algorithm and report its run-time and RAM usage beside

their run times. All output genotypes are phased and complete.

MendelImpute was run with Julia v1.5.0. The maximum number of unique haplotypes per

window (see supplement on jlso compression) was set to dmax = 1000, and the number of BLAS

threads was set to 1 to avoid over-subscription. Beagle and Minimac were run under their default

settings. Impute 5 was run on 20Mb chunks corresponding to different chromosome regions, except

for chromosome 10 of HRC. Chunks were initialized in parallel and imputed separately. Each chunk

potentially employs multithreading. We used as many threads as possible without exceeding 10 total

threads over all chunks. For chromosome 10 of HRC, we imputed 10Mb chunks, with a maximum of

8 processes active at any given time. Using the maximum 10 processes or employing longer chunks

resulted in out of memory error.
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sim 10K Error Rate Time (sec) Memory (GB)
MendelImpute 3.00E-04 10 1.6
Impute 5 2.82E-05 43 8.9 [6.6]
Beagle 5.1 2.81E-05 189 8.8
Minimac 4 2.38E-05 271 [177] 1.0 [6.6]
sim 100K Error Rate Time (sec) Memory (GB)
MendelImpute 2.19E-05 14 1.6
Impute 5 9.36E-06 74 [253] 9.9 [14.5]
Beagle 5.1 8.22E-06 279 20.1
Minimac 4 7.91E-06 3032 [253] 2.6 [14.5]
sim 1M Error Rate Time (sec) Memory (GB)
MendelImpute 2.21E-05 27 4.4
Impute 5 1.33E-05 153 [752] 12.6 [25.6]
Beagle 5.1 7.01E-06 769 25.6
Minimac 4 NA NA NA
1000G chr10 Error Rate Time (sec) Memory (GB)
MendelImpute 7.52E-03 34 4.1
Impute 5 4.79E-04 35 [151] 5.6 [7.3]
Beagle 5.1 4.82E-04 178 26.2
Minimac 4 4.89E-04 298 [151] 3.8 [7.3]
1000G chr20 Error Rate Time (sec) Memory (GB)
MendelImpute 7.49E-03 14 2.2
Impute 5 4.48E-03 21 [74] 5.5 [5.3]
Beagle 5.1 4.53E-03 88 6.4
Minimac 4 4.48E-03 243 [74] 2.8 [5.3]
HRC chr10 Error Rate Time (sec) Memory (GB)
MendelImpute 1.70E-03 183 8.4
Impute 5 8.00E-04 754 [2619] 47.6 [13.0]
Beagle 5.1 8.34E-04 3191 33.2
Minimac 4 8.57E-04 17100 [2619] 11.5 [13.0]
HRC chr20 Error Rate Time (sec) Memory (GB)
MendelImpute 1.89E-03 84 5.1
Impute 5 8.57E-04 645 [1319] 39.0 [13.3]
Beagle 5.1 9.10E-04 1549 22.1
Minimac 4 9.18E-04 8640 [1319] 15.1 [13.3]

Table 3.3: Error, time, and memory comparisons on real and simulated data. The best number in
each cell is bold faced. The displayed error rate is the proportion of incorrectly imputed genotypes.
Minimac 4 and Impute 5’s benchmarks include the pre-phasing step done by Beagle 5.1, whose
memory and time are reported in brackets. For the sim 1M data, the m3vcf reference panel required
for Minimac could not be computed due to excessive memory requirements.
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Figure 3.2: Imputation accuracy for imputed genotypes of the 1000 Genomes Project and the Hap-
lotype Reference Consortium. Imputed alleles are binned according to minor allele frequency in the
reference panel.

3.3.2 Speed, Accuracy, and Peak Memory Demand

Table 3.3 compares the speed, raw imputation accuracy, and peak memory (RAM) usage of MendelImpute,

Beagle 5.1, Impute 5 version 1.1.4, and Minimac 4. Following the earlier studies [20, 31, 96], Fig-

ure 3.2 additionally plots the squared Pearson correlation r2 between the vector of genotypes and the

vector of imputed posterior genotype dosages. Note that we binned imputed minor alleles according

to the minor allele count in the reference panel. For MendelImpute we plot squared r2 between true

genotypes and the imputed genotypes. Memory was measured via the usr/bin/time command,

except for Impute 5 where memory is monitored manually via the htop command.

On HRC, MendelImpute runs 18-23 times faster than Impute 5 (including pre-phasing time),

17-18 times faster than Beagle 5.1, and 108-119 times faster than Minimac 4. On the smaller

1000 Genomes data set, MendelImpute runs 5-7 times faster than Impute 5, 5-6 times faster than

Beagle 5.1, and 10-23 times faster than Minimac 4. Increasing the reference panel size by a factor

of 100 on simulated data only increases MendelImpute’s computation time by a factor of at most

three. MendelImpute also scales better than HMM methods as the number of typed SNPs increase.

This improvement is evident from the timing results for simulated and real data. Thus, denser SNP

arrays may benefit disproportionately from using MendelImpute. The 1000 Genomes data set is

exceptional in that it has fewer than 5000 reference haplotypes. Therefore, traversing that HMM

state space is not much slower than performing the corresponding linear algebra calculations in
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MendelImpute. Notably, except for the HRC panels, MendelImpute spends at least 50% of its total

compute time importing data.

In terms of error rate, MendelImpute is 1.5-1.7 times worse 1000 Genomes data and 2.1-2.2

worse on the HRC compared to the best HMM method. This translates to slightly lower r2 values,

particularly for rare alleles. On simulated data, our error rate is 2.7-10 times worse. Note the 1000

genomes have higher aggregate r2 because the panel have undergone quality control procedures.

The error rates of Impute 5, Beagle 5.1, and Minimac 4 are similar, consistent with previous find-

ings [96]. As discussed in the supplement, it is possible to improve MendelImpute’s error rate by

computationally intensive strategies such as phasing by dynamic programming.

Finally, MendelImpute requires much less memory for most data sets. As explained in the

methods section and the supplement, the genotype matrix and compressed reference panel are com-

pactly represented in memory. Since most analysis is conducted in individual windows, only small

sections of these matrices need to be decompressed into single-precision arrays at any one time.

Consequently, MendelImpute uses at most 8.4 GB of RAM in each of these experiments. In gen-

eral, MendelImpute permits standard laptops to conduct imputation even with the sizeable HRC

panels.

3.3.3 Ancestry Inference for Admixed Populations

MendelImpute lends itself to chromosome painting, the process of coloring each haplotype seg-

ment by the country, region, or ethnicity of the reference individual assigned to the segment. For

chromosome painting to be of the most value, reference samples should be representative of dis-

tinct populations. Within a reference population there should be little admixture. Also the colors

assigned to different regions should be coordinated by physical, historical, and ethnic proximity.

The overall proportions of the colors assigned to a sample individual genome immediately translate

into global admixture coefficients. Here we illustrate chromosome painting using chromosome 18

data from the 1000 Genomes Project. The much larger Haplotype Reference Consortium data would
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be better suited for chromosome painting, but unfortunately its repository does not list country of

origin. Our examples should therefore be considered simply as a proof of principle. As already

mentioned, the populations present in the 1000 Genomes Project data are summarized in Table 3.5

of the supplement.

Figure 3.3A displays the painted chromosomes 18 of a native Puerto Rican (PUR, sample 1),

a Peruvian from Lima, Peru (PEL, sample 2), and a person of African ancestry from the South-

west USA (ASW, sample 3). Here a total of 20 reference populations potentially contribute genetic

segments. They are colored with red, brown, blue, or green to capture South Asian, East Asian, Eu-

ropean, or African backgrounds, respectively. Note that the samples from South/East Asian popula-

tions serve as a proxy for Amerindian ancestral populations. After coloring, the two PUR extended

haplotypes are predominantly blue, the two PEL haplotypes are predominantly red/brown and blue,

while the two ASW haplotypes are predominantly green. Interestingly, one of the PUR and one

of the PEL haplotypes contain a block of African origin as well as blocks of Asian and European

origin, while the ASW haplotypes contain two blocks of European origin. The relatively long blocks

are suggestive of recent admixture. The resulting chromosome barcodes vividly display population

origins and suggest the locations of ancient or contemporary recombination events.

We compared MendelImpute to our ADMIXTURE [6] software using K = 4 populations. Fig-

ure 3.3B displays every admixed sample’s (n = 504) global admixture proportions. Both programs

qualitatively agree for samples from the CLM, MXL, and PUR populations. However, ADMIXTURE

assigned ∼ 25% South Asian ancestry to the two populations with African ancestry (ACB, ASW)

whereas MendelImpute predicts ∼ 20% Europeans for them. Previous studies [21, 68] suggest Eu-

ropeans constitute ∼ 20% ancestry in African Americans, so MendelImpute delivered the more

reliable estimate. On the other hand, ADMIXTURE finds > 70% East Asian ancestry (proxy for

Amerindians) for Peruvians (PEL), whereas MendelImpute predicts 50-50 split between European

and South/East Asians. Based on previous admixture studies [88, 87], Peruvians tend to have 50%

to 90% Amerindian ancestries, so ADMIXTURE appears more reliable for them. It is noteworthy that

the Peruvian studies both used the ADMIXTURE software to infer ancestry, while the African Amer-
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Data Set vcf.gz ultra-compressed compression
size (MB) size (MB) ratio

Sim 10K 10.07 0.05 201
Sim 100K 10.71 0.04 267
Sim 1M 11.05 0.04 276
1000G Chr10 24.04 0.43 56
1000G Chr20 10.69 0.25 43
HRC Chr10 157.76 6.01 26
HRC Chr20 70.93 3.47 20

Table 3.4: Output file size comparison of compressed VCF and ultra-compressed formats.

ican studies did not. Nevertheless, the fact that MendelImpute sometimes performs better than

ADMIXTURE suggests caution. The addition of proper Amerindian samples to the reference panels

would likely clarify results and bring the two programs into closer agreement.

3.3.4 Ultra-Compressed Phased Genotype Files

As discussed earlier, VCF files are enormous and slow to read. If genotypes are phased with respect

to a particular reference panel, then an alternative is to store each haplotype segment’s starting

position and a pointer to its corresponding reference haplotype. This offers massive compression

because long haplotype segments are reduced to two integers. Instead of outputting compressed

VCF files, which is the default, MendelImpute can optionally output such ultra-compressed phased

data. Table 3.4 shows that the ultra-compressed format gives 20-270 fold compression compared to

standard compressed VCF outputs. In principle, all phased genotypes can be stored in such files. The

drawback is that compressed data can only be decompressed with the help of the original reference

panel. Thus, this tactic relies on universal storage and curation of reference haplotype panels. These

panels should be stored on the cloud for easy access and constructed so that they can be consistently

augmented by new reference haplotypes.
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(a) Chromosome 18: local admixture with MendelImpute for 3 samples

(b) Genome-wide global admixture for 504 samples

Figure 3.3: (a) Local ancestry inference on chromosome 18 using MendelImpute. Sample 1 is
Puerto Rican (PUR), sample 2 is Peruvian (PEL), and sample 3 is African American (ASW). Other
abbreviations are explained in the text. (b) Every sample’s (n = 504) global ancestry proportions
estimated using every chromosome. Each column is a sample’s admixture proportion. Samples in
(a) are located at index 2, 339, and 500.
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3.4 Discussion

We present MendelImpute, the first scalable, data-driven method for phasing and genotype impu-

tation. MendelImpute and supporting OpenMendel software [128] provide an end-to-end analysis

pipeline in the Julia programming language that is typically 10–100 times faster than methods based

on hidden Markov models, including Impute 5, Beagle 5.1 (Java) and Minimac 4 (C++). The speed

difference increases dramatically as we increase the number of typed SNPs. Thus, denser SNP chips

potentially benefit more from MendelImpute’s design. Furthermore, MendelImpute occupies a

smaller memory footprint. This makes it possible for users to run MendelImpute on standard desk-

top or laptop computers on very large data sets such as the HRC. Unfortunately we cannot yet have

the best of both worlds, as MendelImpute exhibits a 1.5-2.2 fold worse error rate on real data. How-

ever, as seen in Table 3.3, MendelImpute’s error rate is still acceptably low. One can improve its

error rate by implementing strategies that detect recombinations within windows [69] or that phase

by dynamic programming as discussed in the appendix. Regardless, it is clear that big data methods

can compete with HMM based methods on the largest data sets currently available and that there is

still room for improvement and innovation in genotype imputation.

Beyond imputation and phasing, our methods extend naturally to ancestry estimation and data

compression. If each reference haplotype is labeled with its country or region of origin, then

MendelImpute can decompose a sample’s genotypes into segments of different reference haplo-

types colored by these origins. The cumulative lengths of these colored segments immediately yield

an estimate of admixture proportions. These results are comparable and possibly superior to those

provided by ADMIXTURE [6]. Countries can be aggregated into regions if too few reference haplo-

types originate from a given country. The colored segments also present a chromosome barcode that

helps one visualize subject variation, recombination hotspots, and global patterns of linkage dise-

quilibrium. Data compression is achieved by storing the starting positions of each segment and its

underlying reference haplotype. This leads to output files that are 20-270 fold smaller than standard

compressed VCF files. Decompression obviously requires ready access to stable reference panels
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stored on accessible sites such as the cloud. Although such an ideal resource is currently part dream

and part reality, it could be achieved by a concerted international effort.

For potential users and developers, the primary disadvantage of MendelImpute is its reliance

on the importation and storage of a haplotype reference panel. Acquiring these panels requires an

application process which can take time to complete. Understanding, storing, and wrangling a panel

add to the burden. The imputation server for Minimac 4 thrives because it relieves users of these

burdens [31]. Beagle 5.1 and Impute5 are capable of fast parallel data import on raw VCF files

[20] that neither Minimac 4 nor MendelImpute can currently match. This makes target data import,

and especially pre-processing the reference panel, painfully slow for both programs. Fortunately,

pre-processing only has to happen once.

Finally, let us reiterate the goals and achievements of this paper. First, we show that data-driven

methods are competitive with HMM methods on genotype phasing and imputation, even on the

largest data sets available today. Second, we challenge the notion that pre-phasing and imputation

should be kept separate; MendelImpute performs both simultaneously. Third, we argue that data-

driven methods are ultimately more flexible; for instance, MendelImpute readily handles imputation

and phasing on dosage data. Fourth, we demonstrate that data-driven methods yield dividends in an-

cestry identification and data compression. Fifth, MendelImpute is completely open source, freely

downloadable, and implemented in Julia, an operating system agnostic, high-level programming

language for scientific research. Julia is extremely fast and enables clear modular coding. Our ex-

perience suggests that data-driven methods will offer a better way forward as we face increasingly

larger reference panels, denser SNP array chips, and greater data variability.
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3.5 Supplemental Material

3.5.1 Imputation Quality Scores

Consider the observed genotype xi j ∈ [0,2]∪{missing} at SNP i of sample j and the corresponding

imputed genotype gi j derived from the two extended haplotypes of j. If Si denotes the set of indi-

viduals with observed genotypes at the SNP, then MendelImpute’s quality score qi for the SNP is

defined as

qi = 1− 1
|Si| ∑j∈Si

(
xi j−gi j

2

)2

.

Note that 0≤ qi ≤ 1 and that the larger the quality score, the more confidence in the imputed values.

Because qi can only be computed for the typed SNPs, an untyped SNP is assigned the average of the

quality scores for its two closest flanking typed SNPs. Figure 3.4A plots each SNP’s quality score

in the 1000G Chr20 experiment summarized in Table 3.3. For each sample, one can also compute

the mean least squares error over all p SNPs to obtain a per-sample quality score. This is shown in

Figure 3.4B. By default MendelImpute outputs both quality scores. Thus, investigators can perform

post-imputation quality control by SNPs and by samples separately.

Empirically, it is rather common for a sample subject to harbor a few poorly imputed windows.

Thus, we observe a long left tail in the histogram for per-sample error in Figure 3.4. Unfortunately,

the bad windows generally do not exhibit any discernible regional patterns across subjects. We

suspect that poorly imputed windows involve breakpoints that occur near the middle of a window.

It is possible to detect such breakpoints by IBS matching and ancestry weighting [69]. We plan a

detailed analysis of this issue in future work.

3.5.2 JLSO Compressed Reference Haplotype Panels

The jlso format is constructed in three steps: (a) specify window intervals, (b) compute unique

haplotypes in addition to hash maps to reference haplotypes in each window, and (c) save the result
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Figure 3.4: Histograms of per-SNP and per-sample quality scores for chromosome 20 in our 1000G
analysis. By default MendelImpute computes (a) per-SNP quality scores and (b) per-sample quality
scores. SNPs and samples with noticeably lower quality scores should be removed from downstream
analysis.

in a binary compressed format via the JLSO.jl package [37]. The resulting jlso files are 30-50x

faster to read and 3-5x smaller in file size (varies depending on window width) than compressed

VCF files in the vcf.gz format. Note the jlso format is simply a container object that facilitates

reading and transferring large VCF files stored as Julia variables. In principle, all files that are slow

to read can be pre-processed and stored in this alternative format for quicker access. As such, we

similarly store ultra-compressed sample haplotypes, as discussed in Section 3.3.4, using the JLSO.jl

package.

3.5.2.1 Adaptive Window Widths via Recursive Bisection

The first step in generating JLSO haplotype panel is to specify genomic window ranges. The width

of genomic windows is an important parameter determining both imputation efficiency and accuracy.

Empirically, larger window widths give better error rates but also increase the computational burden

of the matrix multiplications and minimum entry search described in Section 3.2.2. The magnitudes

of these burdens depend on local haplotype diversity. Thus, we choose window widths dynamically.
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This goal is achieved by a bisection strategy. After aligning all typed SNPs with the reference

panel, initially we view all typed SNPs on a large section of a chromosome as belonging to a single

window. We then divide the window into equal halves if it possesses too many unique haplotypes.

Each half is further bisected and so forth recursively until every window contains fewer than a

predetermined number of unique haplotypes. Empirically, choosing the maximum number dmax of

unique haplotypes per window to be 1000 works well for both real and simulated data. When a

larger number is preferred, we resort to a stepwise search heuristic for minimizing criterion (3.1)

that scales linearly in the number of unique haplotypes d. This heuristic is described above.

3.5.2.2 Elimination of Redundant Haplotypes by Hashing

Within a small genomic window of the reference panel, multiple haplotype pairs may be identical

at the typed SNPs. Only the unique haplotypes play a role in matching reference haplotypes to

sample genotypes. MendelImpute identifies redundant haplotypes by hashing. For each reference

haplotype limited to the window, hashing stores an integer representation of the haplotype via a hash

function. This integer serves as an index (key) to locate the reference haplotype (value). Put another

way, hashing stores the inverse images of the map from reference haplotypes to unique haplotypes.

In our software, the GroupSlices.jl package [46] identifies a unique key for each haplotype.

3.5.2.3 Save in binary compressed format

Since haplotypes are long binary vectors, the entire haplotype reference panel can be compactly

represented using a single bit per entry. We have already divided the full reference panel into non-

overlapping windows of various widths after proper alignment of all typed and reference SNPs in

the window. For each window we save two compressed mini-panels. The first houses the unique

haplotypes determined by just the typed SNPs. The second houses the unique haplotypes deter-

mined by all SNPs in the window, typed or untyped. The former is much smaller than the later,

but each entry of both can be compactly represented by a single bit per entry in memory. Thus, for
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each window we save two compressed windows in addition to meta information and pointers that

coordinate reference haplotypes with the two mini-panels per each window. This whole ensemble is

stored in the jlso file. Because there are only a limited number of SNP array chips on the market, one

can in principle store just a few jlso files on a universal source such as the cloud. The same JLSO

compressed panel can also be re-used as long as the set of typed SNPs does not change drastically

between different GWAS chips.

3.5.3 Parallel Computing and Memory Requirements

MendelImpute employs a shared-memory parallel computing model where each available core han-

dles an independent component of the entire problem. Work is assigned via Julia’s multi-threading

functionality. When computing the optimal haplotype pairs in equation (3.1), we parallelize over

windows. This requires allocating c copies of XT H and HT H, where c is the number of CPU cores

available. Note the dimensions of these matrices vary across windows. To avoid accruing memory

allocations, we pre-allocate c copies of n× dmax and dmax× dmax matrices and re-use their top-left

corners in windows with d < dmax. For intersecting adjacent reference haplotype sets (phasing), we

parallelize over samples. This step requires no additional memory. Writing to output is also triv-

ially parallelizable by assigning each thread to write a different portion of the imputed matrix to a

different file, then concatenating these files into a single output file. Data import is not parallelized.

Beyond allocating XT H and HT H, our software requires enough memory (RAM) to load the target

genotype matrix and the compressed haplotype reference panel.

3.5.4 Bias Correction for Initializing Missing Data

Since BLAS requires complete data, we must first initialize the missing data in each genotype vector

x before computing M and N in equation (3.2). This may introduce bias in our minimization of

criterion (3.1) if there is a high fraction of missing genotypes in the typed SNPs, for example above

10%. One way to alleviate bias is to initialize missing data with the mean and save all unique
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haplotype pairs minimizing criterion (3.1) under this convention. Once this set of optimal haplotype

pairs are identified, we re-minimize criterion (3.1) but now skipping the missing entries of x. That

is equivalent to setting xk−hik−h jk = 0 when xk is missing.

3.5.5 Avoidance of Global Searches for Optimal Haplotype Pairs

Recall that minimizing the criterion (3.1) requires searching through all lower-triangular entries of

the d× d matrix M+N, where d denotes the number of unique haplotypes in the window. When

d < 1000, searching through all
(d

2

)
+ d lower-triangular entries of M+N via MendelImpute’s

standard procedure is fast, but this global search quickly degrades as d→ ∞. Below we outline two

heuristic procedures for large d. These heuristics typically produce sub-optimal solutions compared

to global searches, so they should be used with caution.

3.5.5.1 Stepwise Search Heuristics

Consider minimizing the loss fi(β) =
1
2 ||xi−Hβ||22, where the d columns of H ∈ {0,1}p×d store

unique haplotypes, p is the window width, and xi is a sample genotype vector. The original problem

(3.1) minimizes fi(β) under the constraint that exactly two β j = 1 and the remaining βk = 0 or the

constraint that exactly one β j = 2 and the remaining βk = 0. As an approximate alternative, one first

finds the r unique haplotypes with the largest influence on fi(β). This is accomplished by identifying

the r most negative components of the gradient

∇ fi(β) =−HT (xi−Hβ) =−HT xi +HT Hβ

at β= 0. These are the r directions of steepest descent. Note that ∇ fi(00) =−HT xi and that HT xi is

pre-computed and cached in N. The residual function gi j(hk) =
1
2 ||x−h j−hk||22 is then minimized

over hk to find the candidate pair (h j,hk) generated by each of the vectors h j determined by the

gradient ∇ fi(0). The ingredients to perform these minimizations are already in hand. This heuristic

scales as O(rd), much better than O(d2) in equation (3.2). MendelImpute sets the default r = 100.
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In the same spirit as the first step, one can alternatively find for each j the most negative component

k of the gradient ∇ fi(e j), where e j is the standard unit vector with 1 in position j. This again

determines a nearly optimal pair (h j,hk). Under this tactic the Gram matrix HT H comes into play.

Note that HT He j reduces to its jth column v j. Hence, no new matrix-by-vector multiplications are

necessary in calculating ∇ fi(e j) =−HT xi +v j = ∇ fi(00)+v j.

Alternatively, one can find the best r unique haplotypes for a given sample xi en masse by ar-

ranging all pairwise column distances of X and H in the matrix

R =


||x1−h1||22 · · · ||xn−h1||22

...
...

||x1−hd||22 · · · ||xn−hd||22


d×n

.

Then we partially sort each column of R to identify the top r haplotypes matching each sample

xi. Here R is computed via the Distance.jl package of Julia, which internally performs BLAS

level-3 calls analogous to computing HT H and XT H. Instead of searching through all haplotypes to

minimize gi j(hk) for a given sample xi, one can instead search only over the
(r

2

)
+ r combinations

of the top haplotypes. This allows one to entertain much larger values of r. Empirically, choosing

r = 800 works well for most data sets.

3.5.6 Phasing by Dynamic Programming

We also investigated a dynamic programming strategy that gives the global solution for minimizing

the number of haplotype breaks across the extended haplotypes E1 and E2. For each given haplotype

pair p1 = (hi,h j) in window w, we can compute the squared Hamming distance between it and the
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pair p2 = (hk,hl) in window w+1; in symbols

d(p1,p2) =



0 hi = hk,h j = hl (0 breaks)

1 hi = hk,h j 6= hl (1 break)

1 hi 6= hk,h j = hl (1 break)

4 hi 6= hk,h j 6= hl (2 breaks).

Observe that a double break is assigned an error of 4 to favor 2 single breaks across 3 windows as

opposed to a double break plus a perfect match.

Now we describe a dynamic programming strategy for finding the two paths with the minimal

number of unique haplotype breaks. We start with all candidate pairs pi in the leftmost window

and initialize sums si = 0 and traceback path vectors ti to be empty. One then recursively visits all

windows in turn from left to right. If w is the current window, then every candidate haplotype pair

pi in window w is connected to every candidate pair p j in window w+ 1. The traceback path t j is

determined by the pair pk minimizing d(pi,p j). The traceback path t j is constructed by appending

pk to tk and setting s j = sk + d(pk,p j). This process is continued until the rightmost window v is

reached. At this point the pair p j with lowest running sum s j is declared the winner. The traceback

path t j allows one to construct the extended haplotypes E1 and E2 in their entirety. Unfortunately,

too many haplotype pairs per window can overwhelm dynamic programming with large reference

panels because one must enumerate and store all possible haplotype pairs in every genomic window

for every individual. For large reference panels such as HRC, the number of possible haplotype pairs

often exceeds 100,000 per window. Thus, it is impossible to store all of these pairs in memory. One

partial recourse is to discard partial paths and associated partial termini pi that are unpromising in the

sense that their running sums si are excessively large. This does not completely alleviate the memory

burden, and the approximate algorithm is burdened by extra bookkeeping. The bookkeeping of the

exact algorithm is already demanding.
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3.5.7 Msprime simulation script

# Usage: python3 msprime_script.py n ne seq recomb mut seed > full.vcf

# We used ne=10000; seq=10000000; seed=2020; recomb=2e-8; mut=2e-8

# n = 12000 or 102000 or 1002000

import msprime, sys

# parameters

sample_size = int(sys.argv[1])

effective_population_size = int(sys.argv[2])

sequence_length = int(sys.argv[3])

recombination_rate=float(sys.argv[4])

mutation_rate=float(sys.argv[5])

seed = int(sys.argv[6])

# run the simulation

ts = msprime.simulate(sample_size=sample_size, Ne=effective_population_size,

length=sequence_length, recombination_rate=recombination_rate, random_seed=seed)

model = msprime.InfiniteSites(msprime.NUCLEOTIDES)

ts = msprime.mutate(ts, rate=mutation_rate, model=model, random_seed=seed)

# print results (2 is for diploid, "legacy" = no matching positions)

with sys.stdout as vcffile:

ts.write_vcf(vcffile, 2, position_transform="legacy")
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Population Code Description Super Population
CHB Han Chinese in Beijing, China East Asian (EAS)
JPT Japanese in Tokyo, Japan East Asian (EAS)
CHS Southern Han Chinese East Asian (EAS)
CDX Chinese Dai in Xishuangbanna, China East Asian (EAS)
KHV Kinh in Ho Chi Minh City, Vietnam East Asian (EAS)
CEU Utah Residents with NW European Ancestry European (EUR)
TSI Toscani in Italia European (EUR)
FIN Finnish in Finland European (EUR)
GBR British in England and Scotland European (EUR)
IBS Iberian Population in Spain European (EUR)
YRI Yoruba in Ibadan, Nigeria Africans (AFR)
LWK Luhya in Webuye, Kenya Africans (AFR)
GWD Gambian in Western Divisions in the Gambia Africans (AFR)
MSL Mende in Sierra Leone Africans (AFR)
ESN Esan in Nigeria Africans (AFR)
ASW Americans of African Ancestry in SW USA Africans (AFR)
ACB African Caribbeans in Barbados Africans (AFR)
MXL Mexican Ancestry from Los Angeles USA Ad Mixed American (AMR)
PUR Puerto Ricans from Puerto Rico Ad Mixed American (AMR)
CLM Colombians from Medellin, Colombia Ad Mixed American (AMR)
PEL Peruvians from Lima, Peru Ad Mixed American (AMR)
GIH Gujarati Indian from Houston, Texas South Asian (SAS)
PJL Punjabi from Lahore, Pakistan South Asian (SAS)
BEB Bengali from Bangladesh South Asian (SAS)
STU Sri Lankan Tamil from the UK South Asian (SAS)
ITU Indian Telugu from the UK South Asian (SAS)

Table 3.5: The 26 population codes present in the 1000 genomes project.

3.5.8 Summary of 1000 Genomes Reference Panel

A total of 26 different populations contribute to the 1000 Genomes Project data set. These popu-

lations are further organized into five super population. While this information is freely available

online, we summarize it in Table 3.5 for completeness.
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3.6 Availability of source code

Project name: MendelImpute.jl

Project home page: https://github.com/OpenMendel/MendelImpute.jl

Supported operating systems: Mac OS, Linux, Windows

Programming language: Julia 1.5, 1.6

License: MIT

All commands needed to reproduce the following results are available at the MendelImpute site in

the manuscript sub-folder. SnpArrays.jl is available at https://github.com/OpenMendel/

SnpArrays.jl. VCFTools.jl is available at https://github.com/OpenMendel/VCFTools.jl.

The Haplotype Reference Consortium data is available at https://www.ebi.ac.uk/ega/datasets/

EGAD00001002729. Raw 1000 genomes data is available at ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/,

and Beagle’s webpage http://bochet.gcc.biostat.washington.edu/beagle/1000_Genomes_

phase3_v5a/ provides a quality controlled 1000 genomes data which we used in our experiments.
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CHAPTER 4

Multivariate Genomewide Association Analysis with IHT

4.1 Introduction

Current statistical methods for genome-wide association studies (GWAS) can be broadly catego-

rized as single variant or multi-variant in their genomic predictors. Multi-variant sparse models

ignore polygenic background and assume that only a small number of single-nucleotide polymor-

phisms (SNPs) are truly causal for a given phenotype. Model fitting is typically accomplished

via regression with penalties such as the least absolute shrinkage and selection operator (LASSO)

[5, 94, 112, 127, 124], minimax concave penalty (MCP) [17, 122], iterative hard thresholding (IHT)

[28, 56], or Bayesian analogues [48]. Linear mixed models (LMM) dominate the single variant

space. LMMs control for polygenic background while focusing on the effect of a single SNP. LMMs

are implemented in the contemporary programs GEMMA [130], BOLT [71], GCTA [54, 116], and

SAIGE [129]. The virtues of the various methods vary depending on the genetic architecture of a

trait, and no method is judged uniformly superior [43].

Although there is no consensus on the best modeling framework for single-trait GWAS, there is

considerable support for analyzing multiple correlated phenotypes jointly rather than separately [43,

90, 106]. When practical, joint analysis (a) incorporates extra information on cross-trait covariances,

(b) distinguishes between pleiotropic and independent SNPs, (c) reduces the burden of multiple

testing, and (d) ultimately increases statistical power. Surprisingly, simulation studies suggest these

advantages hold even if only one of multiple traits is associated with a SNP or if the correlation

among traits is weak [43]. These advantages motivate the current paper and our search for an efficient
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method for analyzing multivariate traits.

Existing methods for multivariate-trait GWAS build on the polygenic model or treat SNPs one

by one. For instance, GEMMA [131] implements multivariate linear mixed models (mvLMM), mv-

PLINK [36] implements canonical correlation analysis, and MultiPhen [89] and Scopa [75] invert

regression so that the genotypes at a single SNP become the trait and observed phenotypes become

predictors.

To our knowledge, there are no sparse regression methods for multivariate-trait GWAS. In this

paper, we extend IHT [14] to the multivariate setting and implement it in the Julia [12] package

MendelIHT.jl, part of the larger OpenMendel statistical genetics ecosystem [128]. We have previ-

ously demonstrated the virtues of IHT compared to LASSO regression and single-SNP analysis for

univariate GWAS [28, 56]. Since IHT assumes sparsity and focuses on mean effects, it is ill suited to

capture polygenic background as represented in classic variance components models. In the sequel

we first describe our generalization of IHT. Then we study the performance of IHT on simulated

traits given real genotypes. These simulations explore the impact of varying the sparsity level k and

the number of traits r. To demonstrate the potential of IHT on real large-scale genomic data, we also

apply it to three hypertension related traits from the UK Biobank. These studies showcase IHT’s

speed, low false positive rate, and scalability to large numbers of traits. Our concluding discussion

summarizes our main findings, limitations of IHT, and question worthy of future research.

4.2 Materials and Methods

4.2.1 Model Development

Consider multivariate linear regression with r traits under a Gaussian model. Up to a constant, the

loglikelihood L(B,Γ) for n independent samples is

L(B,Γ) =
n
2

log(detΓ)− 1
2

tr
[
Γ(Y−BX)(Y−BX)T

]
. (4.1)
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The loglikelihood L(B,Γ) is a function of the r× p regression coefficients matrix B and the r× r

unstructured precision (inverse covariance) matrix Γ. Furthermore, Y is the r× n matrix of traits

(responses), and X is the p×n design matrix (genotypes plus non-genetic predictors). All predictors

are treated as fixed effects.

IHT maximizes L(B,Γ) subject to the constraints that k or fewer entries of B are non-zero and

that Γ is symmetric and positive definite. Optimizing L(B,Γ) with respect to B for Γ fixed relies on

three core ideas. The first is gradient ascent. Elementary calculus tells us that the gradient ∇BL(B,Γ)

is the direction of steepest ascent of L(B,Γ) at B for Γ fixed. IHT updates B in the steepest ascent

direction by the formula Bm+1 = Bm + tm∇BL(Bm,Γm), where tm > 0 is an optimally chosen step

length and (Bm,Γm) is the current value of the pair (B,Γ). The gradient is derived in the appendix

as the matrix

∇BL(B,Γ) = Γ(Y−BX)XT . (4.2)

The second core idea dictates how to choose the step length tm. This is accomplished by expanding

the function t 7→ L[Bm + tm∇BL(Bm,Γm)] in a second-order Taylor series around (Bm,Γm). Our

appendix shows that the optimal tm for this quadratic approximant is

tm =
‖Cm‖2

F
tr(XT CT

mΓmCmX)
(4.3)

given the abbreviation Cm = ∇BL(Bm,Γm). The third core idea of IHT involves projecting the

steepest ascent update Bm+1 = Bm + tm∇BL(Bm,Γm) to the sparsity set Sk = {B : ‖B‖0 ≤ k}. The

projection operator PSk(B) sets to zero all but the largest k entries in magnitude of B. This goal

can be achieved efficiently by a partial sort on the vectorized version vec(Bm+1) of Bm+1. For all

predictors to be treated symmetrically in projection, they should be standardized to have mean 0 and

variance 1. Likewise, in cross-validation of k with mean square error prediction, it is a good idea to

standardize all traits.
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To update the precision matrix Γ for B fixed, we take advantage of the gradient

∇ΓL(B,Γ) =
n
2
Γ−1− 1

2
(Y−BX)(Y−BX)T (4.4)

spelt out in the appendix. At a stationary point where ∇ΓL(B,Γ) = 0r×r, the optimal Γ is

Γm+1 =

[
1
n
(Y−BmX)(Y−BmX)T

]−1

. (4.5)

Equation (4.5) preserves the symmetry and positive semidefiniteness of Γm. The required matrix

inversion is straightforward unless the number of traits r is exceptionally large. Our experiments

suggest solving for Γm+1 exactly is superior to running full IHT jointly on both B and Γ. Figure 2

displays our block ascent algorithm.

Algorithm 2: Block Ascent Multivariate Iterative Hard-Thresholding

Input : Genotypes Xp×n, traits Yr×n, sparsity parameter k.
1 Initialize: B to univariate regression values, Γr×r to identity matrix.
2 while not converged do
3 Calculate gradient: C = Γ(Y−BX)XT

4 Calculate step size: t = ‖C‖2
F

tr(XT CTΓCX)

5 Project to Sparsity: Bnew = PSk(B+ tC)

6 Update: Γnew =
[1

n(Y−BnewX)(Y−BnewX)T ]−1

7 while L(B,Γ)> L(Bnew,Γnew) and backtrack steps ≤ 3 do
8 t = t/2
9 Bnew = PSk(B+ tC)

10 Γnew =
[1

n(Y−BnewX)(Y−BnewX)T ]−1

11 end
12 end

Output: B with k non-zero entries and a symmetric and positive definite Γ

4.2.2 Linear Algebra with Compressed Genotype Matrices

We previously described how to manipulate PLINK files using the OpenMendelmodule SnpArrays.jl

[128], which supports linear algebra on compressed genotype matrices [28]. We now outline several
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enhancements to our compressed linear algebra routines.

Compact genotype storage and fast reading. A binary PLINK genotype [93] stores each SNP

genotype in two bits. Thus, an n× p genotype matrix requires 2np bits of memory. For bit-level

storage Julia [12] supports the 8-bit unsigned integer type (UInt8) that can represent four sample

genotypes simultaneously in a single 8-bit integer. Extracting sample genotypes can be achieved via

bitshift and bitwise and operations. Genotypes are stored in little endian fashion, with 0, 1, 2, and

missing genotypes mapped to the bit patterns 00, 01, 11, and 10, respectively. For instance, if a locus

has four sample genotypes 1, 0, 2, and missing, then the corresponding UInt8 integer is 10110001 in

binary representation. Finally, because the genotype matrix is memory-mapped, opening a genotype

file and accessing data is fast even for very large files.

SIMD-vectorized and tiled linear algebra. In IHT the most computationally intensive opera-

tions are the matrix-vector and matrix-matrix multiplications required in computing gradients. To

speed up these operations, we employ SIMD (single instruction, multiple data) vectorization and

tiling. On machines with SIMD support such as AVX (Advanced Vector Extensions), our linear

algebra routine on compressed genotypes is usually twice as fast as BLAS 2 (Basic Linear Algebra

Subroutines) [64] calls with an uncompressed numeric matrix and comparable in speed to BLAS 3

calls if B is tall and thin.

Computation of the matrix product C = AB requires special care when A is the binary PLINK-

formatted genotype matrix and B and C are numeric matrices. The idea is to partition these three

matrices into small blocks and exploit the representation Ci j = ∑k AikBk j by computing each tiled

product AikBk j in parallel. Because entries of a small matrix block are closer together in mem-

ory, this strategy improves cache efficiency. The triple for loops needed for computing products

AikBk j are accelerated by invoking Julia’s LoopVectorization.jl package, which performs auto-

matic vectorization on machines with SIMD support. Furthermore, this routine can be parallelized

because individual blocks can be multiplied and added independently. Because multi-threading in

Julia is composable, these parallel operations can be safely nested inside other multi-threading Julia

functions such as IHT’s cross-validation routine.
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4.2.3 Simulated Data Experiments

Our simulation studies are based on the chromosome 1 genotype data of the Northern Finland Birth

Cohort (NFBC) [97]. The original NFBC1966 data contain 5402 samples and 364,590 SNPs; 26,906

of the SNPs reside on chromosome 1. After filtering for samples with at least 98% genotype success

rate and SNPs with missing data less than 2%, we ended with 5340 samples and 24,523 SNPs on

chromosome 1. For r traits, phenotypes are simulated according to the matrix normal distribution

[32, 41, 118] as

Yr×n ∼ MatrixNormal(Br×pXp×n, Σr×r, σ
2
g Φn×n +σ

2
e In×n)

using the OpenMendel module TraitSimulation.jl [52]. Here X is the chromosome 1 NFBC

p× n genotype matrix with n samples aligned along its columns. The matrix B contains the true

regression coefficients bi j uniformly drawn from {0.05,0.1, ...,0.5} and randomly set to 0 so that

ktrue entries bi j survive. In standard mathematical notation, ‖B‖0 = ktrue. Note the effect-size set

{0.05,0.1, ...,0.5} is comparable to previous studies [28]. To capture pleiotropic effects, kplei SNPs

are randomly chosen to impact 2 traits. The remaining kindep causal SNPs affect only one phenotype.

Thus, ktrue = 2kplei+kindep. Note it is possible for 2 traits to share 0 pleiotropic SNPs. The row (trait)

covariance matrix Σ is simulated so that its maximum condition number does not exceed 10. The

column (sample) covariance matrix equals σ2
g Φ+σ2

e I, where Φ is the centered genetic relationship

matrix (GRM) estimated by GEMMA [131]. We let σ2
g = 0.1 and σ2

e = 0.9, so polygenic heritability

is 10%. Different combinations of r, ktrue, kindep, and kplei are summarized in Table 4.1. Each

combination is replicated 100 times. It is worth emphasizing that this generative model should favor

LMM analysis.

4.2.4 Method Comparisons

In our simulation experiments, we compared MendelIHT.jl to mv-PLINK [36] and GEMMA [131].

The linear mixed model software GEMMA enjoys wide usage in genetic epidemiology. The software
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mv-PLINK is chosen for its speed. A recent review [43] rates mv-PLINK as the second fastest of the

competing programs. The fastest method, MV-BIMBAM [101], is an older method published by the

authors of GEMMA, so it is not featured in this study.

In simulated data experiments, all programs were run within 16 cores of an Intel Xeon Gold

6140 2.30GHz CPU with access to 32 GB of RAM. All experiments relied on version 1.4.2 of

MendelIHT and Julia v1.5.4. IHT’s sparsity level k is tuned by cross-validation. The number of

cross-validation paths is an important determinant of both computation time and accuracy. Thus, for

simulated data, we employed an initial grid search involving 5-fold cross validation over the sparsity

levels k ∈ {5,10, ...,50}. This was followed by 5-fold cross-validation for k ∈ {kbest −4, ...,kbest +

4}. This strategy first searches the space of potential values broadly, then zooms in on the most

promising candidate sparsity level. GEMMA and mv-PLINK were run under their default settings. For

both programs, we declared SNPs significant whose p-values were lower than 0.05/24523. For

GEMMA, we used the Wald test statistic.

4.2.5 Quality Control for UK Biobank

We ran MendelIHT.jl on a subset of the data from the second release of the UK Biobank [102],

which contains ∼ 500,000 samples and ∼ 800,000 SNPs. Specifically, we jointly analyzed three

potentially correlated traits: average systolic blood pressure (SBP), average diastolic blood pressure

(DBP), and body mass index (BMI). These phenotypes were first log-transformed to minimize the

impact of outliers. Then each phenotype was standardized to mean 0 and variance 1, so that the

three traits were treated similarly in mean-squared error (MSE) cross-validation. Following [28],

we first filtered samples exhibiting sex discordance, high heterozygosity, or high SNP missingness.

We then excluded samples of non-European ancestry and first and second-degree relatives based on

empirical kinship coefficients. We also excluded samples who were on hypertension medicine at

baseline. Finally, we excluded samples with < 98% genotyping success rate and SNPs with < 99%

genotyping success rate and imputed the remaining missing genotypes by the corresponding sample-

mean genotypes. Note that imputation occurs in IHT on-the-fly. The final dataset contains 185,656
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samples and 470,228 SNPs. Given these reduced data and ignoring the Biobank’s precomputed

prinicipal components, we computed afresh the top 10 principal components via FlashPCA2 [3] and

included these as predictors to adjust for hidden ancestry. We also designated sex, age, and age2 as

non-genetic predictors.

4.3 Results

4.3.1 Simulation Experiments

Table 4.1 summarizes the various experiments conducted on the simulated data. For IHT cross-

validation times are included. Multivariate IHT is the fastest method across the board, and is the

only method that can analyze more than 50 traits. Multivariate IHT’s runtime increases roughly

linearly with the number of traits. All methods perform similarly in recovering the pleiotropic and

independent SNPs. Univariate IHT exhibit slightly worse true positive rate compared to multivariate

methods. Given the identically distributed effect sizes in our simulations, all methods are better at

finding pleiotropic SNPs than independent SNPs.

Notably, the false positive rates for both univariate and multivariate IHT are much lower than

competing methods, often by more than an order of magnitude. Presumably, many of the false

positives from mvLMM and CCA represent SNPs in significant LD with the causal SNP. IHT is

better at distilling the true signal within these LD blocks because it considers the effect of all SNPs

jointly. GEMMA’s mvLMM is better at controlling false positives than mv-PLINK’s CCA, but model

fitting for mvLMM is slower, especially for large numbers of traits. In summary, IHT offers better

model selection than these competitors with better computational speed.

4.3.2 UK Biobank Analysis

The UK Biobank analysis completed in 20 hours and 8 minutes on 36 cores of an Intel Xeon Gold

6140 2.30GHz CPU with access to 180 GB of RAM. As described in methods section, the fea-
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Time (sec) Plei TP Indep TP FP
Set 1: (2 traits, ktrue = 10, kindep = 4, kplei = 3)
mIHT 164.6±69.3 0.92±0.16 0.76±0.2 3.7±6.4
uIHT 114.9±48.6 0.93±0.16 0.72±0.2 1.4±3.7
CCA 152.6±57.3 0.96±0.14 0.78±0.2 77.8±40.6
mvLMM 307.7±121.4 0.95±0.15 0.76±0.2 42.8±18.5
Set 2: (3 traits, ktrue = 20, kindep = 10, kplei = 5)
mIHT 214.4±100.1 0.91±0.12 0.75±0.14 5.7±6.0
uIHT 169.6±81.9 0.86±0.16 0.72±0.16 2.4±2.5
CCA 226.8±101.9 0.95±0.09 0.79±0.15 125.3±55.3
mvLMM 449.9±221.7 0.93±0.1 0.75±0.16 66.1±22.8
Set 3: (5 traits, ktrue = 30, kindep = 16, kplei = 7)
mIHT 227.9±41.1 0.93±0.09 0.73±0.12 5.9±4.6
uIHT 213.8±45.7 0.9±0.11 0.69±0.12 3.2±3.8
CCA 371.5±34.0 0.96±0.07 0.75±0.11 173.2±54.9
mvLMM 1135.3±125.5 0.94±0.09 0.71±0.11 93.6±22.7
Set 4: (10 traits, ktrue = 10, kindep = 4, kplei = 3)
mIHT 278.8±53.0 0.97±0.09 0.74±0.2 2.2±2.0
uIHT 245.8±34.8 0.96±0.11 0.7±0.23 3.1±6.4
CCA 985.1±97.5 0.99±0.06 0.78±0.2 64.6±30.5
mvLMM 8067.4±3900.8 0.99±0.06 0.74±0.18 41.8±16.4
Set 5: (50 traits, ktrue = 20, kindep = 10, kplei = 5)
mIHT 1892.2±419.0 0.93±0.12 0.75±0.14 2.9±2.5
uIHT 1336.9±310.2 0.92±0.11 0.72±0.12 7.6±5.9
CCA 26589.1±907.7(*) NA NA NA
mvLMM NA NA NA NA
Set 6: (100 traits, ktrue = 30, kindep = 16, kplei = 7)
mIHT 3699.3±410.4 0.91±0.11 0.71±0.11 2.8±2.1
uIHT 2353.8±212.3 0.92±0.11 0.7±0.10 10.7±4.3
CCA NA NA NA NA
mvLMM NA NA NA NA

Table 4.1: Comparison of multivariate IHT (mIHT) and multiple univariate IHT (uIHT) implemented
in MendelIHT, canonical correlation analysis (CAA) implemented in mv-PLINK, and multivariate
linear mixed models (mvLMM) implemented in GEMMA on chromosome 1 of the NFBC1966 data
with simulated traits. Plei TP is the proportion of true positives for pleiotopic SNPs, Indep TP is
proportion of true positives for independent SNPs, and FP is the total number of false positive. ±
indicates standard deviations. ktrue is the total number of non-zero entries in B, kindep is the number
of independent SNPs affecting only one trait, and kplei is the number of pleiotropic SNPs affecting
two traits. These numbers satisfy ktrue = 2×kplei +kindep. Each simulation relied on 100 replicates.
NA: not available due to excessive run time. (*) Only two replicates contribute to timing.
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tured phenotypes are body mass index (BMI), average systolic blood pressure (SBP), and aver-

age diastolic blood pressure (DBP). A first pass with 3-fold cross-validation across model sizes

k ∈ {100,200, ...,1000} showed that k = 200 minimizes the MSE (mean squared error). A second

pass with 3 fold cross-validation across model sizes k ∈ {110,120, ...,290} showed that k = 190

minimizes the MSE. A third 3-fold cross-validation pass across k ∈ {191,192, ...,209} identified

k = 197 as the best sparsity level. Given k = 197, we ran multivariate IHT on the full data to esti-

mate effect sizes, correlation among traits, and proportion of phenotypic variance explained by the

genotypes.

IHT selected 13 pleiotropic SNPs and 171 independent SNPs. Selected SNPs and non-genetic

predictors appear in the supplement as Tables 4.2-4.6. To compare against previous studies, we

used the R package gwasrapidd [76] to search the NHGRI-EBI GWAS catalog [74] for previ-

ously associated SNPS within 1 Mb of each IHT discovered SNP. After matching, all 13 pleiotropic

SNPs and 158 independent SNPs are either previously associated or are within 1Mb of a previously

associated SNP. We discovered 3 new associations with SBP and 10 new associations associated

with DBP. Seven SNPs, rs2307111, rs6902725, rs11977526, rs2071518, rs11222084, rs365990, and

rs77870048, are associated with two traits in opposite directions.

One can estimate the genotypic variance explained by the sparse model as Var(β̂iX)/Var(yi)

for each trait yi where β̂i ∈ R1×p is the ith row of B. MendelIHT.jl output the values σ2
BMI =

0.033, σ2
SBP = 0.143, and σ2

DBP = 0.048. Note these estimates do not include contributions from the

intercept or non-genetic predictors. The estimated correlations among traits are rBMI,SBP = 0.197,

rBMI,DBP = 0.286, and rSBP,DBP = 0.738. As expected, all traits are positively correlated, with a

strong correlation between SBP and DBP and a weak correlation between BMI and both SBP and

DBP.
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4.4 Discussion

This paper presents multivariate IHT for analyzing multiple correlated phenotypes. In simulation

studies, multivariate IHT exhibits similar true positive rates, significantly lower false positive rates,

and better overall speed than linear mixed models and canonical correlation analysis. Computational

time for multivariate IHT increases roughly linearly with the number of traits. Since IHT is a pe-

nalized regression method, the estimated effect size for each SNP is explicitly conditioned on other

SNPs and non-genetic predictors. Analyzing three correlated UK Biobank traits with ∼ 200,000

samples and ∼ 500,000 SNPs took 20 hours on a single machine. IHT can output the correlation

matrix and proportion of variance explained for component traits. MendelIHT.jl also automati-

cally handles various input formats (binary PLINK, BGEN, and VCF files) by calling the relevant

OpenMendel packages. If binary PLINK files are used, MendelIHT.jl avoids decompressing geno-

types to full numeric matrices.

IHT’s statistical and computational advantages come with limitations. For instance, it ignores

hidden and explicit relatedness. IHT can exploit principal components to adjust for ancestry, but

PCA alone is insufficient to account for small-scale family structure [91]. To overcome this limita-

tion, close relatives can be excluded from a study. Although cross-validation may implicitly adjust

for family relatedness, a more comprehensive analysis is required before we can recommend includ-

ing related samples. Although our simulation studies suggest the contrary, there is also the possibility

that strong linkage disequilibrium may confuse IHT. Finally, it is unclear how IHT will respond to

wrongly imputed markers and the rare variants generated by sequencing. In spite of these qualms,

the evidence presented here is very persuasive about IHT’s potential for multivariate GWAS.

We will continue to explore improvements to IHT. Extension to non-Gaussian traits is hindered

by the lack of flexible multivariate distributions with non-Gaussian margins. Cross-validation re-

mains computationally intensive in tuning the sparsity level k. Although our vectorized linear alge-

bra routine partially overcomes many of the computational barriers, we feel that further gains are

possible through GPU computing [58, 57, 59, 125] and trading cross-validation for knockoff strate-
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gies in model selection [8, 99]. Given IHT’s advantages, we recommend it for general use with

the understanding that epidemiologists respect its limitations and complement its application with

standard univariate statistical analysis.
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SNP Chrom BMI SBP DBP # prior report
rs1801131 1 0.0 0.009 0.008 41
rs17367504 1 0.0 0.02 0.019 41
rs16998073 4 0.0 -0.023 -0.023 24
rs1173727 5 0.0 0.016 0.017 19
rs2307111 5 0.013 0.0 -0.01 34
rs6902725 6 0.0 -0.009 0.01 4
rs11977526 7 0.0 0.013 -0.011 6
rs2071518 8 0.0 -0.008 0.009 6
rs11222084 11 0.0 -0.011 0.009 9
rs3184504 12 0.0 -0.011 -0.018 41
rs365990 14 0.0 0.008 -0.011 6
rs7497304 15 0.0 -0.019 -0.018 14
rs77870048 16 0.0 -0.011 0.01 20

Table 4.2: 13 pleiotropic SNPs selected by IHT listed with their effect sizes. An effect size of 0
means the particular predictor was not selected. The field prior reports records the number of SNPs
previously associated with BMI, SBP, or DBP (p value < 10−8) that are within 1Mb of the given
SNP. BMI = body mass index; SBP = systolic blood pressure; DBP = diastolic blood pressure.

4.5 Appendix

4.5.1 Significant SNPs from the UKB analysis

Tables 4.2-4.6 list the SNPs discovered by our UK Biobank analysis. The reported effect sizes cor-

respond to the predictors of the log-transformed and standardized phenotypes. To compare against

previous studies, we searched the NHGRI-EBI GWAS catalog [74] using the R package gwasrapidd

[76]. For each SNP discovered by IHT, we queried a 1Mb radius for other SNPs that have been pre-

viously associated with the given trait with p value < 10−8. Each known association is defined as

the most significant SNP in a locus identified to be associated with the trait. All 13 pleiotropic SNPs

were previously known and 158 out of 171 independent SNPs were previously known. Among the

13 newly discovered associations, 3 were with SBP and 10 were with DBP.
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covariate BMI SBP DBP
intercept 0.0002 -0.0 0.0003
sex 0.1165 0.1639 0.1808
age 0.1073 -0.1395 0.6484
age2 -0.0505 0.4581 -0.6131
PC1 -0.0287 -0.0066 -0.0074
PC2 0.0052 -0.0077 -0.0011
PC3 0.0174 0.0043 -0.0091
PC4 -0.0019 -0.0055 0.0015
PC5 0.0022 0.0137 0.0167
PC6 -0.0165 -0.0067 -0.0056
PC7 -0.003 -0.0038 -0.0078
PC8 -0.0014 -0.0015 -0.0014
PC9 0.0039 -0.0004 0.0017
PC10 0.0068 0.0005 0.0001

Table 4.3: Non-genetic covariates estimated by IHT listed with their effect sizes. PC is short for
principal component. BMI = body mass index, SBP = systolic blood pressure, and DBP = diastolic
blood pressure.

4.5.2 Loglikelihood

Consider multivariate linear regression with r traits under a Gaussian model. Up to a constant, the

loglikelihood for the response vector yi of subject i can be written

Li

B

Γ

 =
1
2

log(detΓ)− 1
2
(yi−Bxi)

TΓ(yi−Bxi)

=
1
2

log(detΓ)− 1
2

tr[Γ(yi−Bxi)(yi−Bxi)
T ],

where B is the r× p matrix of regression coefficients, xi is the p× 1 vector of predictors, and Γ is

the r× r unstructured precision (inverse covariance) matrix. For n independent samples, let Y be the

r× n matrix with ith column yi and let X be the p× n design matrix with ith column xi. Then the
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SNP Chrom β # Prior reports SNP Chrom β # Prior reports
rs2815757 1 0.019 14 rs17207196 7 0.016 9
rs543874 1 -0.028 22 rs925946 11 -0.007 24
rs2820312 1 -0.014 9 rs6265 11 0.012 24
rs62106258 2 0.027 51 rs2049045 11 0.007 24
rs11127485 2 0.017 51 rs10835211 11 -0.011 24
rs13393304 2 0.008 51 rs7138803 12 -0.007 9
rs713586 2 -0.026 26 rs7132908 12 -0.014 9
rs9821675 3 0.007 20 rs4776970 15 0.01 17
rs1062633 3 0.012 20 rs16951304 15 0.008 17
rs957919 3 -0.015 17 rs2531995 16 0.016 17
rs61587156 3 0.017 9 rs72793809 16 -0.015 17
rs34811474 4 0.015 3 rs4788190 16 0.019 16
rs10938397 4 -0.022 17 rs4889490 16 0.014 20
rs13107325 4 -0.026 7 rs1421085 16 -0.05 56
rs2112347 5 0.009 22 rs17782313 18 -0.011 47
rs1422192 5 -0.015 20 rs10871777 18 -0.015 47
rs2744962 6 -0.017 33 rs17773430 18 -0.014 45
rs987237 6 -0.012 37 rs1800437 19 0.017 20
rs9473932 6 -0.009 37 rs3810291 19 0.022 12

Table 4.4: 38 SNPs associated with BMI independently of SBP and DBP listed with their effect
sizes. The field prior reports records the number of SNPs previously associated with BMI (p value
< 10−8) that are within 1Mb of the given SNP.
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SNP Chrom β # Prior reports SNP Chrom β # Prior reports
rs3936009 1 0.009 7 rs12673516 7 0.01 3
rs1757915 1 -0.009 4 rs2282978 7 0.016 4
rs6684353 1 0.011 2 rs2392929 7 -0.027 5
rs12069946 1 -0.009 2 rs2978456 8 -0.01 1
rs2820441 1 0.009 1 Affx-32837790 8 -0.009 3
rs1522484 2 0.016 3 rs35758124 8 -0.01 2
rs9306894 2 0.009 4 rs10757278 9 -0.01 3
rs55654088 2 -0.01 4 rs10986626 9 -0.009 5
rs13002573 2 0.012 13 rs12258967 10 0.009 10
rs560887 2 0.011 1 rs1908339 10 0.01 4
rs10497529 2 0.011 3 rs11191064 10 0.009 6
rs1052501 3 0.02 6 rs11598702 10 -0.011 17
rs2498323 4 -0.008 3 rs4980389 11 -0.009 14
rs776590 4 0.008 2 rs573455 11 -0.014 6
rs17084051 4 -0.01 3 rs10750441 11 0.01 3
rs1229984 4 0.009 1 rs10770612 12 0.012 9
rs6842241 4 -0.008 2 rs2681492 12 0.011 21
rs4690974 4 -0.01 9 rs12882307 14 0.009 1
rs13116200 4 -0.01 2 rs4903064 14 -0.01 5
rs7715779 5 0.007 12 rs956006 15 0.009 1
rs1173771 5 0.005 12 rs34862454 15 -0.012 14
rs1982192 5 0.009 Novel rs3803716 16 0.008 3
rs2303720 5 0.011 6 rs4888372 16 0.01 6
rs11954193 5 0.01 13 rs60675007 16 0.008 2
rs12198986 6 -0.008 1 rs9889363 17 -0.011 6
rs9349379 6 0.012 5 rs185478092 17 -0.01 Novel
rs385306 6 0.011 7 rs3744760 17 -0.01 9
rs12191865 6 -0.014 3 rs17608766 17 -0.013 3
rs1012257 6 -0.009 3 rs9909933 17 0.009 7
rs9689048 6 0.009 Novel rs35688424 17 -0.011 8
rs2221389 6 -0.012 1 rs67882421 18 -0.012 4
rs9505897 6 -0.01 1 rs12459507 19 -0.009 6
rs57301765 7 -0.014 2 rs34328549 19 0.007 8

Table 4.5: 66 SNPs associated with SBP independently of BMI and DBP listed with their effect
sizes. The field prior reports records the number of GWAS Catalog associations with SBP (p value
< 10−8) that are within 1Mb of the given SNP. A novel SNP is not within 1Mb of any GWAS Catalog
associations.
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SNP Chrom β # Prior reports SNP Chrom β # Prior reports
rs61776719 1 -0.015 Novel rs4754834 11 -0.009 1
rs12739904 1 -0.009 1 rs59317921 11 0.009 2
rs3766090 1 -0.01 Novel rs7975252 12 -0.009 1
rs61822997 1 -0.009 Novel rs7973748 12 0.011 10
rs665834 1 0.011 1 rs12581906 12 0.009 10
rs2275155 1 -0.013 6 rs17287293 12 0.01 Novel
rs11690961 2 -0.012 1 rs74340001 12 -0.01 1
rs10199082 2 -0.01 3 rs653178 12 -0.007 16
rs2692893 2 -0.012 5 rs12875271 13 0.011 3
rs17362588 2 -0.014 3 rs36033161 14 -0.009 Novel
rs12996836 2 -0.011 3 rs686861 15 -0.013 1
rs1863703 2 0.009 3 rs11853359 15 0.011 2
rs2624847 3 -0.009 3 rs1378942 15 -0.012 10
rs3617 3 0.008 5 rs4886615 15 -0.008 10
rs9850919 3 0.009 5 rs2277547 15 0.01 1
rs871606 4 -0.018 1 rs7174546 15 -0.009 2
rs1826909 4 -0.01 Novel rs67456613 16 -0.01 2
rs1047440 5 -0.014 3 rs72790195 16 -0.008 1
rs11949055 5 0.009 5 rs11078485 17 -0.009 2
rs1233708 6 0.013 2 rs72824497 17 0.009 1
rs11154022 6 0.01 3 rs768168 19 -0.011 Novel
rs12110693 6 -0.012 3 rs997669 19 -0.01 2
rs9376740 6 -0.009 Novel rs755690 19 -0.01 1
rs58023137 6 -0.011 1 rs2876201 20 -0.009 6
rs194524 7 -0.012 Novel rs652661 20 0.015 6
rs13226502 7 -0.014 2 rs78309244 20 0.014 6
rs2469997 8 0.01 3 rs6046144 20 0.015 2
rs507666 9 0.012 2 rs76701589 20 0.009 3
rs3812595 9 -0.009 1 rs2831969 21 0.009 Novel
rs183348357 10 -0.009 7 rs9982601 21 -0.009 1
rs3739998 10 0.005 1 rs2298336 21 0.01 1
rs2505083 10 0.007 1 rs112005532 21 0.012 1
rs7125196 11 0.01 5 rs73167017 22 0.011 1
rs2304500 11 -0.012 1

Table 4.6: 67 SNPs associated with DBP independently of BMI and SBP listed with their effect
sizes. The field prior reports records the number of GWAS Catalog associations with DBP (p value
< 10−8) that are within 1Mb of the given SNP. A novel SNP is not within 1Mb of any GWAS Catalog
associations.
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loglikelihood for all samples is

L

B

Γ

 =
n

∑
i=1

{1
2

log(detΓ)− 1
2

tr[Γ(yi−Bxi)(yi−Bxi)
T ]
}

=
n
2

log(detΓ)− 1
2

tr
[
Γ

n

∑
i=1

(yi−Bxi)(yi−Bxi)
T
]

=
n
2

log(detΓ)− 1
2

tr[(Γ(Y−BX)(Y−BX)T ].

In subsequent sections we will present both full and block ascent IHT. The former updates B and Γ

simultaneously. The latter alternates updates of B and Γ, holding the other parameter block fixed.

4.5.3 First Directional Derivative

Recall that the Hadamard’s semi-directional derivative [34, 61] of a function f (x) in the direction v

is defined as the limit

dv f (x) = lim
h→0
w→v

f (x+hw)− f (x)
h

.

To calculate the directional derivative of the loglikelihood (4.1), we perturb B in the direction U and

Γ in the symmetric direction V. The sum and product rules then give

d(U

V

) tr[Γ(Y−BX)(Y−BX)T ]

= tr[V(Y−BX)(Y−BX)T ]− tr[Γ(Y−BX)XT UT −ΓUX(Y−BX)T ].
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The directional derivative dV lndet(Γ) = tr(Γ−1V) is derived in Example 3.2.6 of [61]. The trace

properties tr(CD) = tr(DC) and tr(CT ) = tr(C) consequently imply

d(U

V

)L(B,Γ) =
n
2

tr(Γ−1V)− 1
2

tr[(Y−BX)(Y−BX)T V]+ tr[X(Y−BX)TΓU]. (4.6)

Because this last expression is linear in (U,V), the loglikelihood is continuously differentiable.

4.5.4 Second Directional Derivative

Now we take the directional derivative of the directional derivative (4.6) in the new directions Ũ

and Ṽ. This action requires the inverse rule dṼΓ
−1 =−Γ−1ṼΓ−1 proved in Example 3.2.7 of [61].

Accordingly, we find

d(Ũ

Ṽ

)n
2

tr(Γ−1V) = −n
2

tr
(
Γ−1ṼΓ−1V

)
.

We also calculate

d(Ũ

Ṽ

)− 1
2

tr[(Y−BX)(Y−BX)T V] =
1
2

tr[(Y−BX)XT ŨT V]+
1
2

tr[ŨX(Y−BX)T V]

and

d(Ũ

Ṽ

) tr[X(Y−BX)TΓU] = tr[X(Y−BX)T ṼU]− tr(XT ŨTΓUX).

Finally, setting the two directions equal so that Ṽ = V and Ũ = U produces the quadratic form

Q(U,V) = −n
2

tr[Γ−1VΓ−1V]+
1
2

tr[(Y−BX)XT UT V]+
1
2

tr[UX(Y−BX)T V] (4.7)

+ tr[X(Y−BX)T VU]− tr(XT UTΓUX).

generated by the second differential.
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4.5.5 Extraction of the Gradient and Expected Information

To extract the gradient from a directional derivative, we recall the identity dv f (x) = ∇ f (x)T v for

vectors v and x and the identity tr(AT B) = vec(A)T vec(B) for matrices A and B [77]. The first

identity shows that the directional derivative is the inner product of the gradient with respect to the

direction v. The second displays the trace function as an inner product on dimensionally identical

matrices. Thus, the matrix directional derivative is

dV f (X) = vec[∇ f (X)]T vec(V) = tr[∇ f (X)T V]. (4.8)

Inspection of the directional derivative (4.6) now leads to the gradient with blocks

∇BL

B

Γ

 = [X(Y−BX)TΓ]T = Γ(Y−BX)XT (4.9)

∇ΓL

B

Γ

 =
n
2
Γ−1− 1

2
(Y−BX)(Y−BX)T . (4.10)

Analogously, the quadratic form (4.7) implicitly defines the Hessian H through the identity

Q(U,V) = tr
{[

vec(U)T vec(V)T
]HBB HBΓ

HΓB HΓΓ

vec(U)

vec(V)

}
≡ −n

2
tr
(
Γ−1VΓ−1V

)
+

1
2

tr
(
(Y−BX)XT UT V

)
+

1
2

tr
(
UX(Y−BX)T V

)
+ tr

(
X(Y−BX)T VU

)
− tr(XT UTΓUX).

Because E(Y)=BX, the expected information J=E(−H) has the off-diagonal blocks JB,Γ= 0pr×r2
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and JΓ,B = 0r2×pr. Now the Kronecker product identity vec(ABC) = (CT ⊗A)vec(B) implies

tr(XT UTΓUX) = tr(XXT UTΓU)

= tr[(ΓUXXT )T U]

= vec(ΓUXXT )T vec(U)

=
[
(XXT ⊗Γ)vec(U)

]T
vec(U)

= vec(U)T (XXT ⊗Γ)vec(U).

It follows that JBB = XXT ⊗Γ. Similarly,

tr(Γ−1VΓ−1V) =
[
(Γ−1⊗Γ−1)vec(V)

]T
vec(V)

= vec(V)T [Γ−1⊗Γ−1]vec(V),

so that JΓΓ = Γ−1⊗Γ−1. In summary, the expected information matrix takes the block diagonal

form

J =

(XXT )⊗Γ 0

0 Γ−1⊗Γ−1

 . (4.11)

In our projected steepest ascent algorithm, the expected information matrix is never explicitly formed.

It is implicitly accessed in the step-size calculation through the associated quadratic form Q(B,Γ).

4.5.6 Full IHT Step Size

The next iterate in full IHT is the projection of the point

∆m+1 =

Bm

Γm

+ tm∇L

Bm

Γm

 =

Bm

Γm

+ tm

Cm

Wm

 , (4.12)
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where Cm = ∇BL and Wm = ∇ΓL evaluated at (Bm,Γm). The loglikelihood along the ascent direc-

tion is a function of the scalar tm and can be approximated by the second-order expansion

L(∆m+1) ≈ L

Bm

Γm

+ tm tr


Cm

Wm

T Cm

Wm


− t2

m
2

tr


Cm

Wm

T

J

Bm

Γm

Cm

Wm


 .

The choice

tm =

tr


Cm

Wm

T Cm

Wm




tr


Cm

Wm

T

J

Bm

Γm

Cm

Wm




=

∥∥∥∥∥∥
Cm

Wm

∥∥∥∥∥∥
2

F

tr(XT CT
mΓmCmX)+ m

2 tr(Γ−1
m WmΓ

−1
m Wm)

maximizes the approximation. If the support of the matrix (B,Γ) does not change under projection,

then this IHT update is particularly apt.

4.5.7 IHT Projection

Recall that full IHT iterates according to

Bm+1

Γm+1

 = PSk(∆m+1),

where ∆m+1 is derived in equation (4.12). Here k is a positive integer representing the sparsity

level, which is assumed known. In practice k is found through cross-validation. The projection

PSk(∆) splits into separate projections for B and Γ. One can independently project each row of B to

sparsity. Alternatively, one can require each row of B to have the same sparsity pattern if the same

set of predictors plausibly contribute to all r traits. The Γ projection must preserve symmetry and

positive semidefiniteness. Symmetry is automatic because the gradient of Γ is already symmetric.
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To project to positive semidefiniteness, one takes the SVD of Γ and project its eigenvalues λ to

nonnegativity. One can even project Γ to the closest positive definite matrix with an acceptable

condition number [104].

4.5.8 The Block Ascent IHT

In block ascent we alternate updates of B and Γ. The exact update (4.4) of Γ is particularly con-

venient, and we take advantage of it. Symmetry and positive semidefiniteness are automatically

preserved. Inversion can be carried out via Cholesky factorization of Γ. This choice of Γ simplifies

the step length

tm =
‖Cm‖2

F
tr(XT CT

mΓCmX)
.

Note that the denominator of the step size does not require formation of the n×n matrix XT CT
mΓCmX.

One can write tr(XT CT
mΓCmX) = tr(XT CT

mLLT CmX) = ‖LT CmX‖2
F , where L is the Cholesky fac-

tor of Γ. The matrix LT CmX is fortunately only r×n.

4.5.9 UK Biobank Runtime Script

Here is the script used to perform our UK Biobank analysis

#

# Parameter explanations

# MvNormal: Distribution of traits is multivariate normal

# q: number of cross-validation folds

# init_beta: get good initial estimates for genetic and nongenetic regression coefficients

# min_iter: iterate at least 10 times before checking for convergence

#
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using MendelIHT, Random

Random.seed!(2021) # seed for reproducibility

plinkfile = "ukb.plink.filtered" # plink files without .bed/bim/fam

phenotypes = "normalized.bmi.sbp.dbp.txt" # comma-seprated phenotype file (no header line)

covariates = "iht.covariates.txt" # comma-separated covariates file (no header line)

# cross-validate k = 100, 200, ..., 1000

path = 100:100:1000

@time mses = cross_validate(plinkfile, MvNormal, path=path, q=3,

covariates=covariates, phenotypes=phenotypes, init_beta=true, min_iter=10,

cv_summaryfile="cviht.summary.roughpath1.txt")

# cross-validate k = 110, 120, ..., 290 (assuming best k was 200 in previous step)

k_rough_guess = path[argmin(mses)]

path = (k_rough_guess - 9):10:(k_rough_guess + 9)

@time mses = cross_validate(plinkfile, MvNormal, path=path, q=3,

covariates=covariates, phenotypes=phenotypes, init_beta=true, min_iter=10,

cv_summaryfile="cviht.summary.roughpath2.txt")

# cross-validate k = 181, 182, ..., 209 (assuming best k was 190 in previous step)

k_rough_guess = path[argmin(mses)]

dense_path = (k_rough_guess - 9):(k_rough_guess + 9)

@time mses_new = cross_validate(plinkfile, MvNormal, path=dense_path,

covariates=covariates, q=3, phenotypes=phenotypes, min_iter=10, init_beta=true)

# now run IHT on best k

@time iht_result = iht(plinkfile, dense_path[argmin(mses_new)], MvNormal,
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covariates=covariates, phenotypes=phenotypes, min_iter=10, init_beta=true)

4.6 Web Resources

Project name: MendelIHT.jl

Project home page: https://github.com/OpenMendel/MendelIHT.jl

Supported operating systems: Mac OS, Linux, Windows

Programming language: Julia 1.6

License: MIT

All commands needed to reproduce the following results are available at the MendelIHT site in

the manuscript sub-folder. SnpArrays.jl is available at https://github.com/OpenMendel/

SnpArrays.jl. VCFTools.jl is available at https://github.com/OpenMendel/VCFTools.jl.

BGEN.jl is available at https://github.com/OpenMendel/BGEN.jl
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CHAPTER 5

Conclusions and Future research

This dissertation presented three distinct projects with different applications in human genetics. The

first project extends IHT to generalized linear models, lifting the Gaussian distribution assumption of

standard univariate IHT. We also discuss grouping and weighting strategies to further enhance model

selection when the association of certain predictors is supported by external evidences. The second

project presents an imputation and phasing algorithm that is much faster than existing methods.

Extensions to ancestry inference and new data compression strategies are also presented. The final

chapter extends IHT to the multivariate setting. It offers better model selection and faster compute

times compared to existing multivariate methods, possibly enabling investigators to analyze dozens

or hundreds of correlated traits simultaneously.

In the remaining chapter, we discuss a few potential projects built on these results. Some projects

are exploratory in nature, and others I sketch partial progress.

5.1 Tuning hyperparameters without cross validation

Penalized regression algorithms such as LASSO and IHT require tuning hyperparameters λ or k,

which is typically accomplished via cross-validation. A 10-fold 10-times repeated cross validation

across k = 1, ...,100 requires fitting 10,000 separate IHT models, dramatically increasing compu-

tation requirement. Can we dynamically adjust k in each iteration, abandoning cross-validation

altogether?
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5.1.1 Block update with Knockoffs

The knockoff framework [8, 99] may replace cross-validation in model selection. The knockoff

filter controls the false discovery rate for any algorithm in model selection. The idea is to construct

a doppelganger X̃ for the original design matrix X, where X̃ is uncorrelated with the response but

mimic the correlation structure of X *. We perform model selection on the concatenated matrix

[X, X̃], for which X̃ serves as negative control and consequently informs the false discovery rate.

One can adapt knockoff filters to replace cross validation, by simply trying numerous sparsity

levels k and see which generated the best false discovery rate. But that suffers from the same compu-

tational burden as cross validation. Instead, we propose to adapt knockoff filters into IHT via block

update:

1. Initialize IHT algorithm with some initial sparsity level k

2. Run IHT on [XX̃] with current k for just 1 iteration

3. Determine current false discovery rate and adjust k accordingly

4. Repeat 2-3 until convergence

The crucial idea is to dynamically update the sparsity constraint k and false discovery rate informa-

tion with each new iteration. Of course, convergence of IHT relies on fixed k, while false discovery

control of knockoffs presumably also relies on running an algorithm to convergence. However, even

if this block update strategy requires more iterations to complete, it may be a small price to pay

compared to using cross-validation with 10,000x increase in compute time.

5.2 Polygenic risk scores on summary statistics

This idea is based on reference [78] and is suggested by Janet Sinsheimer during one of our weekly

meetings.

*In particular X remains distributionally unchanged if a column is replaced with the corresponding column from X̃

93



5.2.1 Motivation and limitations of polygenic risk scores

Polygenic risk scores (PRS) predict phenotype values using genotype data obtained from microar-

rays. To keep the discussion simple, let us assume the phenotype has Gaussian distribution. Then

PRS relies on the following decomposition

ŷi = β0 +
p

∑
j=1

X jβ j (5.1)

where ŷi is the predicted phenotype value for sample i, X j is the genotype at the jth locus, and β j is

the estimated effect size for the jth locus. The main criticisms of PRS include

1. It is unclear how many β to include in equation (5.1)

2. If multiple locus are in tight linkage disequilibrium, including them all will exaggerate their

contribution to the phenotype

3. Poor penetrance [109]

5.2.2 Improved model selection and estimation with IHT

The paper [78] tackles (1) and (2) above by minimizing the LASSO objective

f (β) = (y−Xβ)t(y−Xβ)+2λ‖β‖1
1 (5.2)

= yty+βtXtXβ−2βtXty+2λ‖β‖1
1 (5.3)

where R = XtX captures correlation among SNPs and r = Xty captures correlation between SNPs

and phenotype. In the setting where we want to exploit summary statistics, the genotypes Xr used

to estimate R is not the same as X used to estimate r. Thus, R = Xt
rXr. The original authors

manipulates the objective f (β) by re-expressing it in terms of a convex combination of βtXt
rXrβ

and βtβ.

From this exposition, it seems we might be able to replace the `1 penalty with the `0 IHT penalty
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in equation (5.2). This will potentially give rise to numerous advantages. First, as shown in section

2, IHT recovers sharper estimates for the regression coefficients β and finds far fewer false positives

under cross validation. Both seem crucial for PRS. Second, IHT may implicitly adjust for problem

(2) above. In our experience, if IHT picked multiple SNPs in LD, the total contribution of the

LD block will simply be divided among those SNPs. Finally, because MendelIHT.jl [27] already

supports sparse linear regression with IHT penalty, modifying the existing code to support summary

statistics regression may be straightforward.

5.3 Extended discussion on MendelImpute.jl

In chapter 3, we briefly discussed how the MendelImpute.jl [29] software can be used for ad-

mixture mapping. Unfortunately, due to lack of appropriate data, there are a number of potential

improvements and applications that we glanced over. Here we summarize two potential enhance-

ments for admixture mapping and some ideas to improving the existing softwares.

5.3.1 Supervised global ancestry estimation

As discussed in chapter 1, standard methods for obtaining global ancestry estimates relies on unsu-

pervised clustering approaches. Because these methods are unsupervised, often they fail to distin-

guish sub-population structures when the sub-population contains a small number of samples [6].

MendelImpute.jl may potentially overcome this limitation because it matches observed genotypes

X to those present in a haplotype reference panel H. Thus, the rarity of sample population within

X should not matter in principle, as long as said population are present abundantly in the reference

panel H. We also illustrate as a proof-of-principle that MendelImpute.jl is possibly superior to

the best unsupervised approach (see Figure 3.3b) in our real data analysis. Future work may want to

investigate this detail and justify our findings via simulation studies.
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5.3.2 Phasing by considering ancestral origins

Our local ancestry plot (Figure 3.3a) reveals that the displayed recombination rate is possibly higher

than we would normally expect. On closer inspection, we observe that many haplotype blocks can be

exchanged with the opposing haplotype block in the other chromosome. This action would absolve

one or both of the observed recombination event, decreasing the observed recombination rate and

possibly improve phasing accuracy.

To decide when to perform an exchange, one can exploit ancestral origin information. When we

intersect haplotype pairs across windows during phasing (see section 3.2.3), the current method only

considers exact haplotype matches across windows. However, candidate haplotypes are often labeled

with ancestral origins. The intersecting strategy can thus be amended to also consider haplotype

origin as an alternative or additional metric for phasing. Whether this extra information should be

considered in every window or just be used to resolve ties will require experiments.

5.3.3 Potential improvements to imputation accuracy

Here we sketch a few ideas to potentially improve imputation accuracy.

• Within-window breakpoints: Consider recombination within genomic window as noted in

section 3. If a breakpoint occurs near the middle of a genomic window, the search routine for

the best haplotype pair may be completely thrown-off since it has to compromise for break-

point.

• Phasing may additionally incorporate ancestral origin information, as discussed above in pre-

vious subsection

• Overlapping windows: Brian Browning said in his talk [19] that HMM methods typically

implement overlapping windows. Currently genomic windows in MendelImpute are disjoint.

• Weighted least squares: The least squares criteria for imputation treats each SNP equally.

We may want to give certain alleles higher weight, depending on e.g. minor allele frequency
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or ancestral informativeness.

• Currently, if a breakpoint occurs, the untyped SNPs between 2 genomic window will all be

assigned to one of the window. This is an implementation detail that was hard to overcome,

but of course, those untyped SNPs should be divided from the middle, half assigned to the first

window and the remaining assigned to the next.

5.3.4 Potential improvements to software

Here we sketch a few ideas to improve the performance and user-friendliness of MendelImpute.jl.

• Parallel read of VCF files. Currently VCFTools.jl (the back-end for parsing raw VCF files)

does not support parallel read. Parallel read can be enabled by supporting tabix index files,

as discussed in section 3.

• Accommodate Multiallelic markers. Currently multi-allelic markers (markers where a SNP

have > 1 alternate alleles) must be filtered out. To impute multi-allelic markers, we can align

markers with SNP id instead of SNP positions, since I think multiallelic SNPs have the same

allelic position but different SNP ids. This can also allow us to impute target panels against

reference panels even if they are on different builds.

• Ignore typed SNPs not present on reference panel. Currently, all typed SNPs must be

present on the reference panel. This ensures that all output genotypes can be phased. If

we do not insist on outputting phased data, we should add an option so that MendelImpute

automatically ignores those typed SNPs and just output them unphased.
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