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ABSTRACT OF THE DISSERTATION

Markov Random Field Edge-Centric Image/Video Processing

by

Min Li

Doctor of Philosophy in Electrical Engineering

(Signal and Image Processing)

University of California San Diego, 2007

Professor Truong Q Nguyen, Chair

With the rapid development of digital video broadcasting technologies, the re-

quirements on image qualities have been increased significantly. Furthermore, the

computational power of today’s processors is ever increasing and it becomes feasi-

ble to use more robust and complex algorithms to perform post-processing tasks

without distorting edges seriously. In this dissertation, we explore the applica-

tion of Markov Random Field (MRF) models in video post-processing. MRF

models are able to model the spatial dependencies among pixels in an image and

can impose spatial constraints on the processed images. They are a good fit for

content-adaptive processing purposes.

We formulate the 2-D discontinuity-adaptive smoothness (DAS) constraint and

impose it on the processed images via MRF modeling. This constraint assumes

piecewise smoothness of images. However, the smoothness does not disturb dis-

continuity features, such as edges and object boundaries. It helps the processed

image to achieve smoothness along edge directions and remain sharp in across-edge

directions.

Local edge direction information is required when formulating the 2-D DAS

constraint. Considering the limitations of the conventional binary representation,

(edge direction, non-edge direction), regarding local edge directions, we propose a

robust statistic-based approach to measure the local edge direction. In the pro-

xvi



posed method, local edge directions are represented using a weight vector. Using

a rational number which is normalized to the range of zero to one, we provide the

likelihood for each direction to be the true edge direction.

The formulated 2-D DAS constraint is applied to motion compensated (MC)

de-interlacing and spatial interpolation problems. In MC de-interlacing, an efficient

protection strategy against erroneous motion vectors is necessary. By the MRF

model, the 2-D DAS constraint is imposed on the de-interlaced frame. The final

output of each pixel site is the one that fits its context best under the 2-D DAS

constraint. The context includes neighboring pixels from both the available field

and newly interpolated field. Especially, the de-interlaced edges are expected to

have strong geometric regularity. In spatial interpolation, we propose the MRF-

EDI (Edge-Directed Interpolation) method, which uses the local edge direction

information through the 2-D DAS constraint in an implicit manner to create clean

and sharp edges.

Low-complexity implementations of the proposed algorithms are also inves-

tigated. One low-complexity implementation is to apply the proposed iterative

optimization method only to near edge areas because simple, deterministic inter-

polation provides satisfactory results in smooth areas. Another low-complexity

implementation is to replace the iterative optimization with a single-pass imple-

mentation. The complexity is reduced significantly by single-pass while the per-

formance degradation is negligible.

In addition to video post-processing topics, this thesis contains some work

on wavelet-based and H.264/AVC-based scalable video coding. In wavelet-based

SVC, the Low Band Correction (LBC) technology is preferred for its efficiency

in reducing overhead information and bit stream length. However, with the LBC

technology, the lowpass filter implementing spatial scalability has to be a wavelet

filter, which obeys the strong half-band condition. We develop a parametric design

method to design a class of wavelet filters that considers all the design requirements

and is suitable for both motion estimation and compression in SVC.

In the H.264 AVC-based scalable video model, motion vectors have to be coded

and sent for all the spatial layers even in low complexity and low bit-rate applica-

xvii



tions, which is not efficient. We investigate the possibility to perform inter-layer

motion vector prediction/interpolation in low bit-rate applications such that not

all motion vectors have to be sent to the decoder side. Several motion vector pre-

diction methods are combined and a novel mode-map is produced to indicate the

chosen method for a block.
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Introduction

1.1 Development of the Display Technology and

the New Digital Video Broadcast System

With the development and improvements of digitization and display technolo-

gies, traditional television broadcasting is undergoing profound changes. One

change is the arrival of the digital TV era. The other one is the evolution of

broadcasting. The delivery of television signals to homes has been evolving to

the broadcasting of multimedia content to both homes and mobile devices [4].

The diagram in Fig. 1.1 shows the new broadcasting scenario. One can observe

that, under the new mobile broadcast standards [5], the new digital video broad-

casting (DVB) systems contain digital TV and HDTV broadcasting, broadcasting

to battery-powered handheld receivers [6], and IP-based multi-media content and

data delivery [7].

Interactive digital TV [8], for example, is representative of the new broad-

casting project. It is already a reality in Europe. It enables interactive news,

interactive sports, educational programming, home shopping, banking, video on

demand, maps and driving directions, etc. It has the potential in Europe to re-

place computers as the primary e-commerce avenue.

1
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Broadcast
network
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terminal

Internet
service
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radio

Figure 1.1: Typical mobile broadcast scenario (Duplicate of the diagram shown at

http://www.dvb.com).

1.2 Post-Processing in DVB Systems

During the advancement from SDTV to HDTV, as well as from the traditional

mobile phone to the mobile-TV enabled smart phone, the requirements on image

qualities have been increased significantly [9]. Cinema-like picture quality is highly

desired as the resolution of display devices increases to create more pleasant visual

experiences. However, at high display resolution (the number of distinct pixels

in each dimension that can be displayed), the noise which was “hidden” in the

original picture and un-noticeable at low display resolutions becomes obvious and

unacceptable [10]. Thus, high quality images to support high resolution displays

are in demand, calling for efficient post-processing algorithms.

Video post-processing is the process of changing the perceived quality of a video

on playback (done after the decoding process). Typically, there are three categories

of post-processing algorithms in a DVB system. The first category aims to remove

all kinds of distortion. The distortion is a result of lossy video compression that

gives broken edges, smearing, ringing, and blocking artifacts. These artifacts make

the visual quality of images unacceptable, especially on high resolution display

devices. On the other hand, video compression is widely involved in DVB in
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order to meet the transmission bandwidth limitation and is hard to avoid. For

example, the baseband for terrestrial broadcasting of NTSC video is 4.2 MHz wide

while the required bandwidth for full resolution HDTV is over 30 MHz. Efficient

video compression technologies, for example, H.264, has to be used to reduce the

bandwidth requirement.

In addition to distortion-removing post-processing, there are two other classes

of post-processing. One is format conversion and the other is display-specific post-

processing. Format conversion processing contains format changes in both tempo-

ral and spatial dimensions, i.e., frame rate changes in the temporal dimension and

spatial resolution changes in the spatial dimension. The major format conversion

in the temporal dimension is Frame Rate Up Conversion (FRUC). For example, if

the received video sequence has a frame rate of 15 fps, by interpolating one frame

between every two original frames, the frame rate can be converted to 30 fps. Ma-

jor spatial format conversions include de-interlacing and scaling. De-interlacing

is sampling rate doubling in the vertical dimension and scaling includes sampling

rate conversion in both horizontal and vertical dimensions. The work in this thesis

belongs to this category of DVB post-processing. More reviews and introductions

of the previous work are available in Chapter 2.

The third category of post-processing algorithms is display-specific post-processing

algorithms, which are proposed to enhance the displayed image quality based on

the impulse response properties of LCD, such as error concealment, deblocking

filtering, image sharpening and contrast enhancement.

1.3 Scalable Video Coding

Scalable Video Coding (SVC) is the video compression standard jointly devel-

oped by ITU-T and ISO. These two groups created the Joint Video Team (JVT)

to develop the H.264 standard, or MPEG4 AVC video compression standard. In

October 2003 the Moving Picture Experts Group (MPEG) issued a call for propos-

als on SVC Technology. Fourteen proposals, including twelve wavelet-based ones,

were collected. The two remaining proposals were extensions of H.264/MPEG-4
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AVC. One of them, proposed by the image team of the Heinrich-Hertz-Institute

([1]) (HHI) was chosen by MPEG as the starting point of its SVC standardization

project.

The objective of SVC is to offer content in a “scalable” way. The video content

is coded once. However, the produced single bit-stream can then be decoded at

different bit-rates, requiring different computational power and channel bit-rate

and offering streams of various spatial/temporal resolutions or qualities.

Video communications over the next-generation wireless networks are the main

driving force of the development of SVC. This is because wireless channel conditions

fluctuate in a wide range. Scalable video coding and adaptive services have been

designed to adapt to the time-varying wireless environment. As wireless channel

conditions change, the mobile terminal and network elements can scale the video

streams and transport the scaled video streams to receivers at supportable bit-

rates.

1.4 Focus of This Work

The work in this thesis focuses on

• de-interlacing

• spatial interpolation

• scalable video coding

The de-interlacing problem is introduced by two different scanning formats:

progressive scanning format and interlaced scanning format as shown in Fig. 1.2.

Progressive scanning scans a picture line by line while interlaced scanning scans

every other line, where, if even-indexed lines are scanned at time t−1, odd-indexed

lines will be scanned at time t. If a picture contains all the lines of a scene, it is

called a frame. Otherwise, if it contains every other line in a scene, it is called a

field.

The traditional analog TV broadcasting system adopted the interlaced scanning

format as a standard in order to reduce large-scale flickering effects by taking
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(a) Interlaced scanning (b) Progressive scanning

Figure 1.2: Progressive and interlaced scan formats.

advantage of the vision persistence effect of the human vision system (HVS) and

achieve the tradeoff between data transmission bandwidth and vertical resolution

of display. In the digital communication era, the interlaced scanning format is still

widely used as an important strategy to achieve the tradeoff between large video

data and costly communication bandwidth.

De-interlacing is the conversion from interlaced format to progressive format.

People may ask why we need de-interlacing and whether the LCD display can

support interlaced display. In principle, an LCD display can support interlaced

display. However, the requirement that half of the pixels remain black in order to

support interlaced display would result in up to 50% decrease of brightness. As a

matter of fact, all current displays except for CRT screens require de-interlacing.

Spatial interpolation achieves spatial resolution conversion. To some extent,

de-interlacing is a special kind of spatial/temporal interpolation, where only the

resolution in the vertical direction is doubled. By spatial interpolation, we gener-

ally mean the resolution change in both horizontal and vertical dimensions. It’s

an important technique that supports the display of a single picture at various

resolutions and is widely used in video communication over wireless networks.

Normally, the bandwidth limitation of the wireless communication channel does
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not allow transmitting video data at arbitrary frame rates and spatial resolutions.

Consequently, pictures are transmitted at relatively low resolution, and at the re-

ceiver terminal, the decoded frames are then scaled to the desired spatial resolution

via interpolations.
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Previous Work on De-Interlacing

and Spatial Interpolation

2.1 De-Interlacing

From the signal processing point-of-view, de-interlacing is a vertical sampling

rate up-conversion problem since the imaging process in a TV system is a spatio-

temporal sampling process of the real scene [11]. According to the sampling theo-

rem, a filter has to be used prior to sampling in order to remove frequencies that are

beyond the Nyquist sampling rate so that all the original frequency components

can be reconstructed by sampling rate up-conversion (de-interlacing). However,

such a filter should be used in the optical path, which is not feasible for practical

systems. As an ill-posed problem, it is impossible for the de-interlacing process

to reconstruct all the frequency components (content) in the original frame. The

de-interlacing process is the process of preserving the baseline spectrum and sup-

pressing the aliasing artifact as best as possible [12].

If there is no motion, de-interlacing is not a difficult problem. As shown in Fig.

2.1, perfectly de-interlaced frames are obtained by weaving odd and even fields at

adjacent time moments. If there is motion from time t − 1 to t, directly weaving

the neighboring fields will result in annoying artifacts as shown in Fig. 2.2. There

are both camera and object motions in this example. The camera panning results

7
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(a) Odd field at time t − 1 (b) Even field at time t

(c) De-interlaced frame at time t − 1. (d) De-interlaced frame at time t.

Figure 2.1: An example of de-interlacing when there is no motion.

in global motion. In addition to the global motion, the bus is running from the

right to the left and results in local motion.

Numerous algorithms have been proposed to solve the de-interlacing problem.

More recent works can be found in [13–17]. According to [18], the available de-

interlacing algorithms can be categorized into two classes, non motion compensated

(Non-MC) de-interlacing and MC1 de-interlacing. The following two subsections

review these two classes of algorithms.

2.1.1 Non Motion Compensated De-Interlacing Algorithms

Non-MC de-interlacing algorithms include spatial/spatio-temporal de-interlacing

[19–22] and motion adaptive de-interlacing algorithms [13, 14, 23, 24]. In [19]

and [20], the de-interlacing is performed based on local edge direction informa-

tion and the edge direction is determined based on the pixel intensity difference

1MC, depending on the context it is in, can be an abbreviation of motion compensation or
motion compensated.
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(a) Odd field at time t − 1 (b) Even field at time t

(c) De-interlaced frame at time t − 1. (d) De-interlaced frame at time t.

Figure 2.2: De-interlacing artifacts when there is motion.
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between neighboring pixel pairs in each discrete direction. However, with the pres-

ence of imaging noise, a single pixel intensity difference is not a reliable indicator

of local edge directions. Besides, the considered discrete directions are only three

or five, which are too few.

Methods proposed in [21] and [22] are median filtering de-interlacing methods.

The final output of a site s is expressed as med(A, B, C), where A represents the

upper neighboring pixel of s, B represents the lower neighboring pixel of s and

C represents the temporal neighboring pixel at s. A more complex neighborhood

structure can be used in the median filtering method.

The spatial and median filtering methods are preferred for their low imple-

menting complexity but not performance. Commercial products of vertical linear

de-interlacing and median filtering de-interlacing methods are available [25, 26].

The principles of motion adaptive algorithms are as follows. Motion detection

between the reference field and the current field is first performed and the pixels

to be interpolated in the current field are labeled as motion or non-motion pixels.

Weaving of adjacent fields is used in the non-motion areas to increase the vertical

resolution while, in the motion area, spatial de-interlacing is performed. The major

difficulty with this class of methods is the motion detection part, where a decision

of motion/no motion is made based on the magnitude of pixel differences. Due

to camera motions, there is global motion from field to field and throughout a

whole sequence. Consequently, motion detection indicates that there is motion

everywhere. If that is the case, the motion adaptive interpolation results are not

much different from those of spatial interpolation methods.

2.1.2 Motion Compensated De-Interlacing Algorithms

The non-MC algorithms perform well in stationary image regions, but are less

effective with moving objects. This is because the Human Visual System (HVS)

tends to favor motion-tracking. Serious flickering artifacts will be perceived if a

moving object has not been interpolated consistently from frame to frame.

The MC de-interlacing algorithms [15–17] are advanced and perform better

with moving objects, given accurate motion information. However, the direct
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MC de-interlacing method, in which the de-interlacing processing is performed

according to motion vectors (MVs), often does not produce satisfactory results for

the overall video sequence. This is because MVs, which are usually generated from

oversimplified motion models, can not describe all the temporal changes, such as

occlusion, concealment, fades and scene changes. Consequently, an efficient MC

de-interlacer must include effective protection strategies, which can protect the

de-interlacer’s performance against incorrect MVs. Failure near edge or boundary

areas results in unpleasant artifacts since edges and boundaries in an image are

more noticeable to the HVS. On the other hand, visual quality improvements in

near edge or boundary areas significantly improve the overall visual quality.

Motion estimation (ME) and protection against incorrect MVs are two criti-

cal factors for a successful MC de-interlacing algorithm. We discuss field ME in

subsection 2.1.3 and protection strategies in subsection 2.1.4.

2.1.3 Motion Estimation in MC De-Interlacing Algorithms

Unlike ME in coding, where the purpose is to reduce the energy of residual error

images as much as possible, ME for de-interlacing aims to find “true” motion and

the resulting motion vector field (MVF) does not necessarily lead to the minimal

energy level of residual error images.

In terms of “true” ME, two models are promising. One is the 3-D Recursive

Search (3DRS) [27–29] model and the other is the Global ME (GME) model [30].

The 3DRS ME model [29] estimates translational motion only. Its major difference

from the common full search method is that the spatial and temporal continuity

constraint of motion is imposed on the estimated MVFs. It assumes that the

motion in the current block is the same as at least one of its neighboring blocks.

Thus, the produced MVF is continuous temporally or spatially in at least one

direction. This ME model fails where the motion continuity assumption is not

true, for example, motion of small objects.

The GME model in [30] uses an affine model to estimate translational, rota-

tional and zooming motions simultaneously. This model is efficient in estimat-

ing background (camera) motion. Motion of blocks that have different motions



12

from the background is estimated by local block-matching search. A bi-directional

search can help occluded and newly appearing blocks. Both translational and affine

models are oversimplified versions of the real projecting imaging process. Incorrect

MVs are often produced in practical implementations.

The model-related difficulty is true for both field and frame MEs. In addition,

there is structural difficulty with field ME. When a field is used as the reference

image for MC, MVs frequently lead to unavailable pixels. Consequently, simple

interpolation methods are used to generate these pixels. In this case, even when

the motion information is correct, it is hard for the motion compensated candidate,

which has been interpolated using a simple method in another context, to be better

than the spatial interpolation candidates, which have been interpolated in the to-

be-interpolated pixel’s perceiving context. Because of the structural difficulty,

there is lack of agreement on the optimal field ME structure. The three commonly

used ones are reviewed below. In the following discussion, Frame MC means the

MC process with the frame being the reference image and Field MC means the

MC process with the field being the reference image.

Frame-Field ME and Frame MC

In this structure, the ME and MC are between the current field and previously

reconstructed frame. No interpolation is necessary in this structure since the ref-

erence image is a frame. If the MVs are integers, for any pixel site in the current

frame, the motion vector can locate a MC candidate in the reference frame.

The major disadvantage of this structure is that, if the reference frame has

not been de-interlaced properly, the reliability of the resulting MVF will decrease.

Consequently, de-interlacing artifacts will propagate temporally. In addition, the

de-interlacing of the current field can not start until the the previous field has been

de-interlaced. This may cause unnecessary delay.

4-Field ME and Field MC

In this structure, suppose the current field corresponds to time t. We denote

the field at time t − 1 as the forward field, the field at time t − 2 as the forward-
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forward field, and the field at time t + 1 as the backward field. Chang, et al.,

in [31] suggests the following field ME structure. Combine the forward-forward

field with the forward field to obtain the reference frame and combine the current

field with the backward field as the current frame. The ME is performed between

the reference frame and the current frame. The obtained MVs are then scaled

by a factor of 2 for MC, which uses the forward field as the reference image.

Interpolation is involved in the MC process since the reference image for MC is a

field.

This ME structure assumes that the translation-only motion from time t−2 to

t + 1 does not change direction or speed. With this assumption, motion from the

current field to the forward-forward field is the same as that from the backward

field to the forward field. By combining two fields, the ME result is more reliable

than the result of ME between two fields only. Incorrect MVs will be produced

when the assumption for motion from t − 2 to t + 1 is not true, as in the case of

head-turning motion.

Same Parity Field ME and Field MC

This structure is used when implementing GME model. The global motion be-

tween the current field and the forward-forward field is estimated and the forward-

forward field is used for global MC. For blocks that move differently from the

background, bi-directional local block-matching search is used, with the forward-

forward field and the backward field being the forward and backward reference

fields respectively. Bi-directional ME benefits the occlusion or new appearing

blocks. Simple interpolation is involved in ME between the current field and the

backward field since they have opposite parities.

2.1.4 Protection Strategies Against Erroneous MVs

Protection strategies or robustness of incorrect motion vectors are essential for a

successful MC de-interlacer. Frequently used protection strategies are the thresh-

old value method [31], (weighted) median operations [32, 33], and the Adaptive

Recursive (AR) method [34].
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Threshold Value Protection

The threshold value method [31] decides the reliability of MVs based on the

associated SAD (Sum of Absolute Difference) or MSE (Mean Square Error) levels

in ME.

(Weighted) Median Filtering Protection

In median filtering protection, the median value of a pixel’s MC candidate,

vertically upper neighbor and lower neighbor is used as the final output. The

deficiency of this method is that the motion compensated candidate is often filtered

out and the edges get blurred.

Adaptive Recursive Protection

AR protection produces the output as a linear combination of the MC candi-

date and the spatial interpolation candidate (linear averaging interpolation in the

vertical direction), for example, pCm + (1 − p)Cv. The linear combination factor

p is used to decide how closely the two vertical neighboring pixels are related to

their MC candidates. This method can automatically switch the final output be-

tween MC candidate Cm and vertically interpolated candidate Cv to yield the final

output. Error propagation in temporal dimension is a major disadvantage of this

method.

2.2 Spatial Interpolation

Image interpolation is the process of producing a high resolution image from

its low resolution counterpart.

2.2.1 Polynomial-Based Interpolation

The conventional image interpolation methods are bilinear, bicubic and spline

[35] methods. This class of methods assumes continuity of the pixel intensity field,

which is unrealistic. Continuity near edges only exists along edge directions while
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abrupt discontinuities might happen across edge directions. Typically, images

with blurred edges are produced in these methods. They are preferred not for

their performance, but for the low computational complexity. There are several

methods to improve these algorithms, i.e., [36]. [36] models pixel relations as fuzzy

inferences. Consequently, the slope and the shape of the linking curve from one

sample to another is controlled by a contrast enhancement function.

2.2.2 Improved Edge Interpolation

To improve the interpolation performance with edges, one class of methods

is edge-enhancement post-processing and the other class of methods is spatial

adaptive interpolation [37] [38] [39]. Edge-enhancement post-processing performs

edge detection or high-pass filtering of the interpolated image followed by edge

sharpening operations, such as sharpening mapping curves [40] and inverse heat

diffusion equations [41]. The major difficulty of this class of methods is with

the explicit edge detector, which has difficulties in detecting natural edges. More

discussion can be found below. High-pass filtering methods will sharpen edges and

amplify noises as well.

Spatial adaptive interpolation methods are another class of methods to improve

edge interpolation. In this class of methods, the interpolation coefficients are ad-

justed according to the local pixel intensity properties [42,43]. Interpolation along

ideal step edges is not difficult since accurate edge direction information can be

obtained explicitly from edge detectors [44–47]. However, edges in natural images

appear as spatially blurred edges due to sensor noise, focal blur, penumbral blur,

and shading, etc [48]. When edges are blurred or noisy, it is difficult to explicitly

specify their characteristics, which makes detection of natural edges difficult.

2.2.3 Implicit Edge-Directed Interpolation

To avoid the difficulties with explicit edge-directed interpolation methods, im-

plicit edge-directed interpolation methods are proposed. In this class of methods,

the edge directions are not explicitly extracted. However, the interpolation is per-
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formed based on implicit edge direction information.

New Edge-Directed Interpolation (NEDI) [49] is an implicit edge-directed in-

terpolation method. In this method, the to-be-interpolated pixel’s twelve causal

neighboring pixels are vectorized and so are the pixel’s four diagonal neighbor-

ing pixels. All the vectorized pixels are regarded as short-time realizations of a

one-dimensional (1-D) stationary Gaussian process. The to-be-interpolated pixel

is predicted from the short-time realizations of this process using Wiener filtering

theory. The covariance matrix of the short-time realizations is required for the

prediction. The so-called high resolution covariance matrix is interpolated from

its low resolution counterpart according to geometric duality principles. The edge

direction information is included in the low resolution covariance matrix and is

preserved during the interpolation.
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Markov Random Fields

In the 1920’s, Markov Random Fields were presented as a new type of stochas-

tic process in probability theory. They had been broadly used in solving various

problems, including statistical mechanics where it originated. Their first usage

in image processing can be tracked back to 1972 [50] by Besag in processing bi-

nary data. Its applications in image processing became popular in 1980s with the

publication of Geman & Geman’s paper [2].

3.1 About MRF

3.1.1 Origin of MRF

Markov random fields originate from the Ising model in statistical physics.

Consider the following 1-D Ising model example. As shown in Fig. 3.1, there can

be several sites on a line. At each site, there is a small spin. Given any moment,

the spin is in one of two positions, “up” or “down” and is described by function

δi(ω) =

{

1 if ωi is up

−1 if ωi is down
(3.1)

The total magnetization with all the spins is a random variable and can be calcu-

lated according to

U(ω) = −J
∑

i,j

δi(ω)δj(ω) − H
∑

i

δi(ω), (3.2)

17
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where J is a material parameter (J > 0 corresponds to attractive interaction while

J < 0 corresponds to repulsive interaction) and H is the external magnetic field

intensity.

To simplify the modeling task, only neighboring spins are assumed to have

interactions. If two spins are not neighbors, their interaction is too weak to model.

The probability measure is then defined by the Gibbs distribution,

P (ω) =
exp{−u(ω/T )}

Z
, (3.3)

where Z is a normalizing parameter and the original meaning of T is temperature,

which controls the “annealing” speed to the stable state. T becomes a global

convergent control factor in image/video processing problems [51]. At sufficiently

low temperature, even if the spins were random to begin with, they would tend to

converge to a lower energy state. If there is no exterior field, this is completed by

interactions between spins.

In this model, the desired appearance as a whole is achieved by the interactions

between spins. This relationship can be interpreted in terms of images. Desired

image properties such as smoothness and consistency can be achieved by defining

the interactions among pixels.

Figure 3.1: Magnetization of spins.

3.1.2 Basic Concepts and Theories about MRFs

Neighborhood Structure and Cliques

To define a MRF, a neighborhood structure N is required. The neighborhood

structure defines the range of immediate interactions between one pixel and other

pixels. The contribution of this single pixel to the whole image is made through
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(a) 8-pixel NS (b) 24-pixel NS (c) 48-pixel NS

Figure 3.2: Three different neighborhood structures (NS). Non-filled circles repre-

sent neighboring pixels.

the immediate interactions to its neighboring pixels. Fig. 3.2 shows three different

neighborhood structures. Circles represent pixels. The blank circles are neighbors

of the filled circles. Neighborhood relationships are symmetric. If pixel I(i, j) is

one of pixel I(k, l)’s neighbors, pixel I(k, l) will be one of pixel I(i, j)’s neighbors.

Cliques are associated with neighborhood structures. A set of pixel sites c in

N is a clique if all pairs of sites in c are neighbors. One example is shown in Fig.

3.3. Fig. 3.3(a) shows the four-pixel neighborhood structure (NS) and Fig. 3.3(b)

shows the valid associated cliques. The three-pixel clique shown in Fig. 3.3(c) is

not a valid clique for the four-pixel NS in Fig. 3.3(a). Let Pu represent the top

pixel, Pc represent the bottom left pixel and Pr represent the bottom right pixel

in the triangular structure. According to the four-pixel NS definition, pixels Pu

and Pc are neighboring pixels and Pc and Pr are neighboring pixels. However, the

pixel pair Pu and Pr are not declared as neighboring pixels. Thus, not all the pixel

pairs in this clique are neighboring pixels and it is not a valid clique.

On the other hand, not all the valid cliques shown in Fig. 3.3(b) have to be

considered in a single problem. Instead, the considered cliques are chosen according

to application purposes. For example, in the Gaussian MRF model [52], only the

single pixel clique in Fig. 3.3(b) is considered in many cases. Another example
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Figure 3.3: The four-pixel neighborhood structure and the associated cliques.

is with the line process [53]. A line process is a member of the MRF family and

it deals with discontinuity features in an image. It only considers pair-site cliques

because the absolute intensity level of a single pixel could not reflect discontinuity

features.

Potential and Energy Functions

A potential function is a function Vc that defines the interactions of pixel sites

in clique c. The potential function relates to the energy function as U(ω) =
∑

c∈C Vc(ω). From the definition of potential and energy functions, we can see that

cliques define the range of the interactions that contribute to the total energy of

the whole image.

Gibbs Distribution and the Markovian Property

The probability distribution shown in (3.3) is called the Gibbs Distribution. An

interesting aspect of this probability distribution is that it maximizes the entropy

(the uncertainty in the outcome) among all probability laws with given expected

energy [54].

If an image is modeled as an MRF, the global probability of each configuration

ω of this image is governed by the Gibbs Distribution. The Gibbs distribution

describes the global probability of a configuration ω while the MRF describes the

interactions of local neighboring pixels in ω.

For clarity, we formally state the MRF property as follows. With the defined

neighborhood structure N , the Markovian property is described in terms of the



21

conditional probability distribution as

p(I(i, j) = x|I(k, l), (k, l) 6= (i, j)) = p(I(i, j) = x|I(k, l), (k, l) ∈ N (i, j)), (3.4)

where I represents an image and (i, j), (k, l) represent pixel sites in the image. The

conditional probability of a pixel given all other pixels in the image equals the

conditional probability given its neighboring pixels.

The Gibbs Distribution and MRF are equivalent to each other. The formal

statement is as follows.

Statement (Hammersley - Clifford Theorem): A field is an MRF on S with

respect to N if and only if there is a Gibbs Distribution on S with respect to N .

Sometimes “with respect to N ” is stated as “with respect to the nearest neighbor-

hood N ”. Here “nearest neighbor” does not mean geometrically nearest neighbor-

hood structure, but means “nearest neighbor Gibbs potentials”. Actually, both

“with respect to N ” and “with respect to nearest neighbor N ” should be inter-

preted as follows.

1. Cliques are only defined on neighborhood structure N .

2. Only nearest neighbor Gibbs potentials are valid. A potential V is a nearest

neighbor Gibbs potential if Vc(ω) = 0 whenever c is not in the clique set.

The proof of the statement can be found in [55–58]. The proof that a Gibbs

Distribution (GD) results in an MRF is attached in Appendix B. The other direc-

tion where MRF results in a GD is also true. However, the proof for it is quite

involved.

This statement has two practical values:

1. The joint probability P (ω) can be specified by specifying the clique potential

functions Vc(ω).

2. Vc(f) can be chosen to impose desired system behavior.
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3.2 The Application of Markov Random Fields

in Image Processings

If each pixel site in an image is assigned one value from a finite set, such an

assignment is called a configuration. In other words, each image is treated as a

2-D random variable, where each occurrence is called a configuration.

In natural images, neighboring pixels are highly correlated with each other.

This correlation can be described by power spectral densities, or correlation func-

tions [59] or MRFs. The spectral method is a global description, which is used in

Wiener filtering theory based image de-noising [60–62] and super-resolution [63,64].

The correlation function can be used both globally and locally. When used glob-

ally, it is equivalent to the spectrum methods. When used locally, it is generally

used with the locally stationary Gaussian assumption [49]. In contrast, Markov

methods are highly localized and can describe very complex interactions between

neighboring pixels, such as smoothness and abrupt discontinuity.

The “traditional” applications of MRF models in image processings focus on

wavelet domain de-noising, texture modeling and texture segmentation fields. The

following subsections provide a brief review of each.

3.2.1 Wavelet-Domain De-noising

Based on the observation that wavelet coefficients of noise have a much weaker

correlation between scales than coefficients of a clean image [65], Donoho and

Johnstone proposed the wavelet shrinkage technique [66] for de-noising. In this

technique, the wavelet coefficients that have an absolute value smaller than a

threshold are set to zero while the magnitudes of other coefficients are reduced

proportionally or non-linearly. The procedure of the shrinkage technique can be

summarized as follows.

(I) Perform wavelet transformation of the noisy image.

(II) Modify the coefficients of each subband output according to:
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– (1) Compute the local Hölder field of each subband. The local Hölder

is a local regularity measure of the inter-scale coefficients [67].

– (2) Generate a binary mask by applying a threshold T to the local

Hölder field.

– (3) According to the mask result, either set the coefficients to zero or

reduce their magnitude according to an estimated shrinking function.

(III) Reconstruct the clean image through inverse wavelet transform.

In the procedures above, the MRF helps with binary mask refinement [68] and

producing spatially-adaptive shrinkage functions [69–71]. For binary mask refine-

ment, an eight-pixel neighborhood MRF behaves as a regularizer on the binary

mask. The applied potential function is defined as Vs,t = γ with ls = lt, and

Vs,t = −γ with ls 6= lt, where ls and lt represent labels and γ is a constant. A

penalty is assigned if neighboring labels in the binary mask are different. Thus,

through energy minimization, the mask field is smoothed and regularized.

MRF also helps in producing spatial-adaptive shrinkage functions. Tradition-

ally, a linear shrinking function is used. For example, to restore the clean image x

from its observation y, the linear shrinking function is

xi,j =
σ2

x

σ2
x + σ2

n

yi,j, (3.5)

where σ2
x represents the variance of x and σ2

n represents the variance of noise. This

shrinking function assumes independent and identical Gaussian distributions of x.

This assumption disagrees with the strong non-Gaussian property that the wavelet

coefficients of natural images exhibit and thus is inefficient.

By modeling the local Hölder field as a line process [53], the MRF model can

estimate the conditional probability, p(ls|M) of each label ls, where M represents

the local Hölder field. This conditional probability is an indicator of the reliability

level of each noisy pixel and can either be used directly as the shrinkage function

[69] or as a factor to modify the linear shrinkage function [68].
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3.2.2 Texture Modeling

In addition to wavelet-domain de-noising, MRF finds applications to texture

modeling [72–74]. In [72], the motion texture is modeled as a parametric mixed-

state auto-model. In this model, only cliques that contain no more than two pixels

are considered. The major advantage of the auto-model is that its parameters can

be relatively easily decided. However, two-pixel cliques are too small to capture

features of natural texture, which usually have a scale larger than three or four

pixels.

As a compensation, Zhu, et al. in [73] proposed the FRAME (Filters, Random

Fields and Maximum Entropy) model for natural textures. In this model, each

texture is specified by a series of filters. The modeling process is to determine the

filters from a predefined filter bank and a series of linear combination factors. In

this context, the texture is modeled globally as a Gibbs distribution field, where

the energy function is a weighted summation of the histogram of each filtered

result. This model is able to model interactions at large scales. However, this

model is developed based on the assumption that any homogeneous texture can be

synthesized by feeding the white Gaussian field to a series of filters. Consequently,

its application is limited to homogeneous textures. Besides, the computational

complexity is extremely high and there are difficulties in filter bank designs because

the synthesis results are very sensitive to the filters that are available to choose

from [74].

3.2.3 Texture Segmentation

Segmenting an image is defined as the assignment of a label to each location

of an image grid [75]. Under the MAP (Maximum A Posteriori) criterion in the

Bayesian estimation framework, the optimal result corresponds to a label real-

ization l = {li}, where li ∈ {1, 2, · · · , L} is the label value that maximizes the

probability

p(l|x) ∝ p(x|l)p(l), (3.6)

where x denotes the texture image to be segmented. For MRF-based texture
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segmentation, the segmented image or the labeled realization is governed by the

Gibbs’ Distribution. Consequently, by iteratively minimizing the energy of the

segmented image or the labeled realization, the most likely segmented result is ob-

tained. In the adaptive segmentation algorithm in [75,76], the labeling realization

l in (3.6) is modeled as an MRF field where only pair-site cliques {s, t} can possibly

have non-zero potentials. If the labeling at the two sites are different, ls 6= lt, the

potential Vs,t = 1. Otherwise, Vs,t = −1. The high potential is a penalty of the

differences of labeling between immediate neighbors. Consequently, it functions as

a regularizer and smoothes the segmented result.

The probability term p(x|l) in (3.6) is treated as a multivariate Gaussian dis-

tribution, where each variable represents a class of feature and the correlations

between features are specified by the covariance matrix in the Gaussian distri-

bution. The multivariate Gaussian distribution belongs to the MRF family [52],

where the interactions between pixels are specified by the covariance matrix.

Another MRF-based texture segmentation example is proposed in [77], and the

purpose is to segment dynamic textures such as moving grass, foliage, sea-waves,

trees and rivers, from a video sequence. In this algorithm, the segmentation is

not performed on natural textures directly. Instead, it is performed on motion

textures [72], which is built to reflect both the spatial characteristics and temporal

motion of the dynamic textures in the video sequence. In this segmentation, the

segmented label field, p(l), is modeled as an eight-pixel neighborhood MRF, which

behaves as a regularizer on the labeled field. The conditional probability is written

as

p(x|l) = ΠL
k=1p(xk|l), (3.7)

where xk represents the motion texture class k, and all the L motion texture

classes are assumed to be independent of one another. Motion texture is modeled

as a parametric mixed-state auto-model [72], which is also a member of the MRF

family.
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Figure 3.4: The adaptive potential function in [1].

3.2.4 Non-Traditional Applications

In addition to the “traditional” applications that are reviewed above, MRF is

also found to be used non-traditionally in recent years, i.e., the application for

blocking artifacts reduction [78], video transmission error concealment [1], and

edge-preserving data detection [79]. The potential function in [1] is defined to

have some adaptive properties, which uses a modified version of the traditional

Huber function [80], and can be expressed as

h(x) =

{

x2, |x| < T

T 2 + 2kT (|x| − T ), |x| > T
. (3.8)

The function curve with T = 2 is shown in Fig. 3.4. By varying parameter

k, the smoothing strength that is associated with magnitudes of x is adjusted by
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changing the slope of the matching curve. The steeper the slope is, the stronger the

smoothing strength is. In the formulation in [1], the second-order pixel intensity

variation is used as x. Thus, potentials that are associated with large second-

order pixel intensity variations (PIVs) contribute more to the energy function and

thus are suppressed with stronger strength. If the large PIVs represent noise, this

formulation could suppress high-level noise very efficiently. However, if the large

PIVs represent discontinuity features, the smoothing effect will cross edges and

blur them.

3.3 Constraints Used in Typical MRF Models

The most critical part of an MRF model is the definition of the potential

function, which imposes desired properties on the processed image. This section

reviews the commonly used potential functions and their applications. Based on

the knowledge of these potential functions, we propose our 2-D DAS constraint.

3.3.1 Gaussian MRF Model

Many MRF models use energy functions that have the following form

U(ω) =
∑

i∈Z

V1(ωi) +
∑

i∈Z

∑

i′∈Ni

V2(ωi, ωi′), (3.9)

where ω denotes a random configuration of a 1-D or 2-D lattice Z, and Ni rep-

resents the neighborhood structure of site i. Potential function V1 is a single-site

clique potential while function V2 is a pair-site clique potential to reflect interac-

tions between a pair of sites. Comparing (3.2) with (3.9), we can find that the

energy function in the Ising model uses exactly these types of clique potentials.

In addition to the Ising model, the auto model [58] also defines the energy

function based on (3.9). With V1(ωi) = ωiGi(ωi) and V2(ωi, ωi′) = βi,i′ωiωi′, where

Gi(·) is an arbitrary function and βi,i′ are constants, the energy function is

U(ω) =
∑

i∈Z

ωiGi(ωi) +
∑

i∈Z

∑

i′∈Ni

βi,i′ωiωi′). (3.10)
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Another model that defines the energy function based on V1(·) and V2(·) is

the Gaussian MRF model [52]. The joint probability of a multivariate Gaussian

distribution is a Gibbs distribution, defined as

P (ω) =

√

det(B)
√

(2πσ2)m
exp{−(ω − µ)TB(ω − µ)

2σ2
}, (3.11)

where ω is the vectorized configuration, and µ is a vector containing the conditional

means, and B is the interaction matrix, which is related to the covariance matrix

by B =
∑−1 if

∑
represents the covariance matrix. The energy function that

corresponds to the global probability distribution (3.11) is

U(ω) =
(ω − µ)TB(ω − µ)

2σ2
, (3.12)

and can be expressed in terms of potential functions as

U(ω) =
∑

ωi,ωi′

[V1(ωi) + V2(ωi, ωi′)], (3.13)

where i and i′ represent sample indices in configuration ω.

V1(ωi) = (ωi − µi)
2/2σ2 (3.14)

and

V2(ωi, ωi′) = βi,i′(ωi − µi)(ωi′ − µi′)/2σ2. (3.15)

If B = [bi,i′ ], βi,i′ relates with B as follows. If the diagonal elements of B are

unity, the off-diagonal element at (i, i′) is −βi,i′ [81].

The MRF property of (3.11) can be expressed in terms of the conditional p.d.f.

as

P (ωi|Ni) =
1√

2πσ2
exp{− 1

2σ2
[ωi − µi −

∑

i′∈Ni

βi,i′(ωi′ − µi′)]
2}, (3.16)

where the neighborhood structure is defined in terms of the covariance matrix.

3.3.2 Blob and Line Processes

Both blob and line processes are proposed MRF models for image restoration.

Let F represent a blob process and L represent a line process. In the blob process,
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Figure 3.5: An example of a binary line process.
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Figure 3.6: Cliques used in the line process [2].

each single pixel and its neighboring pixels are treated as blobs. The final output

of each pixel leads to the minimal energy state of each blob. The blob process

is observable. In contrast, the line process L is unobservable, which is a process

that is adjoined to the blob process. Suppose the blob process that is associated

with an image is on a m × m lattice. The line process will be on a “dual” m × m

lattice. Each line site on the dual lattice is placed midway between each vertical

or horizontal pair of pixels and represents possible edge elements. The commonly

used line process is binary. That is, at each line site, there may or may not be an

edge element. Fig. 3.5 shows a binary line process, where ◦ represents pixels and

l denotes edge elements. Six line process cliques are shown in Fig. 3.6 and each

clique is assigned a potential.

The major difference of these two models is the directionality. The blob pro-

cess is isotropic while the line process is adaptive to local discontinuity features.

Considering the widely existing discontinuity features (edges, object boundaries,

etc,) in natural images, the blob process itself is not enough for image processing

tasks. Instead, images are treated as the combination of blob and line processes
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in practical applications, I = (F,L). [2] is among the early works that use the

combination of the two models to restore images from their corrupted versions.

The corrupted images are modeled as

Icorrupt = Φ(HI) + N (3.17)

or

Icorrupt = Φ(HI) × N, (3.18)

where H is a lowpass filter that models the blurring process. Φ(·) is absent or

Φ(·) =
√

(·), and N represents white Gaussian noise. The noise can be multiplica-

tive or additive.

Using blob and line processes for the retrieving processing, the energy function

is expressed as

U(f , l) = U(f |l) + U(l), (3.19)

where U(f |l) is the energy term that is associated with the blob process given the

line process. If only pair-site cliques are considered in this model, the interpretation

of this term is as follows. If an edge element appears between pixel sites r and s,

the connection between r and s is “cut-off” and the potential Vf (fr, fs) is set to

zero. Otherwise, the potential is defined as

Vf(f) =

{

1, fs = fr

−1, fs 6= fr

(3.20)

where fs and fr are the two pixels in the same pair-site clique. As for the line

process energy term U(l), only cliques that contain four line sites are nonzero.

With the rotation invariance assumption, there are six distinct cliques, which are

shown in Fig. 3.6. In addition, each is associated with a particular energy value,

which has been designed to reflect the fact that the higher the energy, the lower

the probability. In addition to the example that is shown in Fig. 3.6, there are

many other combinations [2] [82].

3.3.3 Regularizer

To restore a vectorized image f from its observation signal d = f + e, where

e represents noise, the regularization formulation defines the solution f∗ to be the
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global minimization of an energy function E(f), which is

E(f) = U(d|f) + U(f). (3.21)

In (3.21), U(d|f) depicts the closeness term, which measures the energy caused

by the differences between the solution f and observation data d. Weighted mean

square error can be used for the measurement. When f is continuous, U(d|f) can

be defined as

U(d|f) =
∑

i

(fi − di)
2 (3.22)

where i represents a sample index in the solution and observation. The smoothness

term U(f), also called the regularizer, measures the energy caused by the irregu-

larities of the solution f , which in turn can be measured by the nth derivative

magnitude |fn(i)|. It is generally defined as

U(f) =
N∑

n=1

Un(f) =
N∑

n=1

∑

i

g(f (n)(i)). (3.23)

Regularizers are different for different choices of function g(·). The standard

quadratic regularizer has a form

g(f (n)(i)) = (f (n)(i))2. (3.24)

From (3.24), one can observe that the more irregular f (n−1)(i) is at i, the larger

the |f (n)(i)|. Consequently, a larger potential g(f (n)) contributes to Un(f). In other

words, the smoothing strength in the quadratic regularizer is solely proportional

to f (n)(i). It will cause oversmoothing at discontinuities where the derivative is

infinite.

Similar to the concept in blob and line processes, the smoothness constraint in

the line process regularizer is removed where the magnitude of the signal derivative

exceeds a certain threshold. One example can be

U1(f , l) =

m∑

i=2

[fi − fi−1]
2[1 − li] +

m∑

i=2

li, (3.25)

where li is binary, li ∈ {0, 1}, and m is the total number of points on the config-

uration f . Wherever a discontinuity occurs at point i, li=1 and the smoothness

constraint is switched off.
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3.3.4 1-D Discontinuity-Adaptive Smoothness Constraint

In the line process (LP) regularizer, the control over the smoothing strength is

discrete and binary (on, off), of which the control efficiency is quite limited, whereas

continuous control is more exactly adaptive to local context. Li in [3, 83] presents

such a continuous adaptive regularizer, which is called the 1-D discontinuity-

adaptive smoothness (DAS) constraint. The 1-D DAS constraint is adaptive to

discontinuities without switching on or off. The underlying principle is to diminish

the interactions between neighboring points if a discontinuity occurs.

Assuming that only the first order derivative η = f (1)(x) is involved in g(f (n)(x))

in (3.23), Li analyzed the necessary conditions for the function g(η) to have the

continuous DA property, which can be summarized as follows.

Function g(η) is normally chosen to be even (g(η) = g(|η|)), and the derivative

of g(η) can be expressed as the form

g′(η) = 2ηh(η), (3.26)

where h(η) is called the adaptive interaction function (AIF) and defines the in-

teractions between points. g′(η) is the smoothing strength indicator. The form

of (3.26) guarantees that the smoothing strength is related to the differentiation

level η, and at least in a certain range, the smoothing strength can increase as η

increases.

In order to be adaptive to discontinuities, an AIF function has to satisfy

(i) h(η) ∈ C1

(ii) h(η) = h(−η)

(iii) h(η) > 0

(iv) h′(η) < 0(∀η > 0)

(v) limη→∞ |ηh(η)| = C < ∞

The continuity requirement in (i) guarantees the twice differentiability of the

function in (3.21), which is necessary for the existence of a solution f according to
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Table 3.1: Four proposed adaptive interaction functions (AIFs) and the corre-

sponding adaptive potential functions (APFs) in [3]

Index AIF, hγ(η) APF, gγ(η)

(1) exp{−η2

γ
} −γ exp{−η2

γ
}

(2) 1

(1+ η2

γ
)2

− γ

1+ η2

γ

(3) 1

1+ η2

γ

γ log(1 + η2

γ
)

(4) 1

1+ |η|
γ

γ|η| − γ2 ln(1 + |η|
γ

)

the Euler-Lagrange Differential Equation [84]. The evenness of (ii) is assumed for

unbiased smoothing. Condition (iii) guarantees the sign of g′(η) will not be altered

by h(η). Condition (iv) guarantees the decreasing interaction as the magnitude of

the derivative increases. Condition (v) provides the DA control.

Four possible functions (parameterized by γ) are proposed based on the neces-

sary conditions as shown in Table 3.1. The corresponding curve shapes are shown

in Fig. 3.7, where one can observe that the smoothing strength is strongest when

the magnitude of η is small. As η goes to infinity, the smoothing strength goes to

zero.
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Figure 3.7: The graphic demonstration of the four DAS constraints
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Two-Dimensional

Discontinuity-Adaptive

Smoothness (DAS) Constraint

4.1 2-D Extension of the 1-D DAS Constraint

As reviewed in Section 3.3, Li in [3] studied the energy functions that could

incorporate the DAS constraint in the one-dimensional case. The basic idea can

be summarized as follows. Pixel intensity variations (PIVs) carry energy and a

large PIV carries high energy. However, large PIVs that represent discontinuity

features, e.g. PIVs across edges, should be bounded in the potential function

because suppression of such energy terms would blur edges. Four functions, which

could incorporate the one-dimensional DAS constraint, are proposed in [3]. One

of the four functions is used as a prototype function to formulate the 2-D DAS

constraint, which is

g(∆I) = −γe−
∆I2

γ , (4.1)

where the variable ∆I represents the intensity variation and γ is a constant pa-

rameter. The function curves for various values of γ are shown in Fig. 4.1. It

can be observed that the parameter γ controls the shape of the curve. The DAS

constraint is achieved by allowing the smoothing strength g′(∆I) to monotonically

35
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increase with |∆I|’s increase in a certain range. Outside that range, the measure

score g(∆I) is bounded as ∆I increases to ∞ and the smoothing strength decreases

to zero.
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Figure 4.1: The function curves with different γ values.

Measure scores that are calculated according to (4.1) are negative, which is

not convenient for non-negative energy calculation. Based on the guideline that

absolute smoothness carries no energy, g(0) = 0, the DAS potential function is

modified as

Vc(∆I) = −γe−
∆I2

γ + γ, (4.2)

which has an upper bound γ and a lower bound 0.

In order to formulate a 2-D DAS constraint, one has to consider the edge di-

rection information. For edges in a natural image, a discontinuity will only occur

across the edge directions while strong continuity exists along the edge directions.

For example, in the case of a vertical edge on a uniform background, a discontinu-

ity occurs in the horizontal direction while strong smoothness exists in the vertical

direction. High energy levels that are associated with large PIVs in the horizontal

direction may represent sharpness of edges, which should not be suppressed. In

contrast, high energy levels in the vertical direction represent artifacts and should

be minimized. Consequently, a weighting term that indicates the directions of dis-

continuity features is introduced to (4.2). This bounds large PIVs independent of
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direction, to formulate the 2-D DAS constraint. The potential function is expressed

as

Vwc(∆Ik(i, j)) = wk(−γe−
∆I2

k
(i,j)

γ + γ), (4.3)

and Vwc is called the weighted potential function. ∆Ik(i, j) represents the intensity

variation in the kth digitized direction from site (i, j) and wk is the correspond-

ing weight of this direction. The calculations of intensity variation and direction

weights are presented later in this chapter.

4.1.1 Neighborhood Structure and Cliques

As reviewed in Subsection 3.1.2, a neighborhood structure and the associated

clique structures have to be specified in order to explicitly define the potential

function in (4.3).

An eight-pixel neighborhood structure is used in many algorithms, for exam-

ple, traditional edge-directed interpolation [85]. However, this structure is largely

chosen as a matter of convenience. It is evident that correlations between pixels ex-

tend beyond the eight-pixel neighborhood structure in a typical spatial scene. For

example, only four specific digitized directions can be discriminated in an eight-

pixel neighborhood structure without sub-pixel interpolation, too few to accurately

portray the arbitrary edge directions of real images. A larger neighborhood can

be used to define a larger number of edge directions, as illustrated in Fig. 4.2. In

order to reconstruct edges with high geometric regularity, this 48-pixel neighbor-

hood structure is used in the proposed method, which enables the sixteen digitized

edge directions labeled in Fig. 4.2.

The three-pixel cliques shown in Fig. 4.3 are used as support regions of po-

tential functions. These are more complicated than the generally used single-site

and pair-site cliques. In the reviewed MRF applications, formulations rarely in-

volve more than pairwise interactions so that the joint and conditional probabilities

are relatively simple. However, such models can not reproduce large-scale spatial

characteristics. For the application of enhancing edges’ geometric regularity, we

consider three-pixel cliques.
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Figure 4.2: The proposed 48-pixel neighborhood structures. Circles denote neigh-

boring pixels. Edge direction resolution θ is 18.4 degrees.
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Figure 4.3: The proposed sixteen cliques.

As an example, ∆I1(i, j) is obtained according to

∆I1(i, j) = (|I(i − 1, j) − I(i, j)| + |I(i, j) − I(i + 1, j)|)/2. (4.4)

Other ∆Ik(i, j)s are obtained in a similar way, corresponding to the indices of

digitized directions shown in Fig. 4.3. The wk weight term in (4.3) is found using

a method presented in Section 4.2. Parameter γ is adaptive to field data and its

calculation is discussed in Section 5.3.1.

For easy reference, a single-pixel related energy function, Us, corresponding to

pixel I at site (i, j), is defined as

Us((i, j), I) =
16∑

k=1

Vwc(∆Ik(i, j)). (4.5)

It can be observed that Us((i, j), I) only includes the potential terms with support

cliques containing site (i, j). Eq. (4.5) is defined to calculate the energy difference

between two configurations. These two configurations are the same except for a
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single pixel site. This energy difference is defined as

∆U(I1; I2) = Us((i, j), I1) − Us((i, j), I2), (4.6)

and is required for the iterative optimization procedures, which will be described

in Section 5.3.2.

4.2 Calculation of Direction Weights for Motion

Compensated De-Interlacing

The weights for the sixteen digitized directions in Fig. 4.2 are calculated in

this section. The calculation process can be summarized as follows.

1) An M × N data window W centered at the pixel to be interpolated is

chosen.

2) PIVs in various directions within the data window W are calculated.

3) Weights are derived based on the statistical properties of the learned

intensity variations.

Details for each of these steps are presented in the following sub-subsections.

4.2.1 Data Window Sizes

The field to be interpolated is first temporarily de-interlaced using the “Bob”

method (Linear interpolation in the vertical direction). This temporary inter-

polation is necessary because the pixels to be interpolated are also required for

intensity variation calculation. Without interpolation, some directions will have

too few intensity variation samples for weight calculation.

In implementation, we use data windows of two different sizes, 9× 9 and 5× 5.

For windows where only one dominant edge direction is included, direction weights

estimated from a larger sample set are more reliable. For textured areas, a large

window will contain too many tiny edges with various directions. The direction
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Table 4.1: Correspondences of single index and double indices for edge directions

1 ↔ (0, 1) 5 ↔ (−1, 1) 9 ↔ (−1, 0) 13 ↔ (−1,−1)
2 ↔ (−1, 3) 6 ↔ (−3, 2) 10 ↔ (−3,−1) 14 ↔ (−2,−3)
3 ↔ (−1, 2) 7 ↔ (−2, 1) 11 ↔ (−2,−1) 15 ↔ (−1,−2)
4 ↔ (−2, 3) 8 ↔ (−3, 1) 12 ↔ (−3,−2) 16 ↔ (−1,−3)

weights that are calculated based on such a window can not reflect these very local

edge directions. Consequently, the 5×5 window is used in texture areas.

In implementation, the calculation for all the pixels starts from a 9 × 9 data

window. If the resulting direction weights imply that the most likely edge directions

are not close to one another, the weight calculation will switch to the 5×5 window.

With the 5 × 5 data window, only weights for eight directions are calculated,

corresponding to directions 1, 3, 5, 7, 9, 11, 13 and 15 in Fig. 4.2.

4.2.2 Calculation of Intensity Variations

In this and the next subsections, discrete directions in Fig. 4.2 are also referred

to with double indices, (k, q), which represent the distance between the closest

neighboring pixel in the direction in the top right quadrant and the central pixel

(0,0). To clarify, their correspondences are listed in Table 4.2.2. Let random

variable ∆I(k,q) represent intensity variations in digitized direction (k, q). The

samples of the random variable ∆I(k,q) are

∆I(k,q)(i, j) = I(i, j)− I(i + ak, j + aq), (i, j) ∈ W ∪Fi, max(|ak|, |aq|) = 1, (4.7)

where Fi represents the current available field, and a is a scaling factor, used to

satisfy that the distance between pixels I(i + ak, j + aq) and I(i, j) is no further

than
√

2. For some directions, pixel I(i + ak, j + aq) may have to be interpolated.

This constraint guarantees different directions have the same number of samples.

Otherwise, some directions would have fewer samples for the calculation of their

direction weights, resulting in a biased statistical estimation.

Let the central pixel of window W have coordinates (0, 0). The range of i, j

is −4 ≤ i, j ≤ 4 for the 9×9 window, and −2 ≤ i, j ≤ 2 for the 5 × 5 window.
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For direction 7, an example PIV sample can be I(−3, 1)− I(−2, 1
2
), in which case

I(−2, 1
2
) is bilinearly interpolated from its neighboring pixels.

4.2.3 Pixel Intensity Variation Model and Direction Weights

Derivation

Intuitively, PIVs in all directions of smooth regions and along edge directions

of non-smooth regions are noise-like and can be modeled by zero mean Gaussian

distribution. Thus, the absolute intensity variations follow the Half Normal Dis-

tribution model. Useful properties of the Half Normal Distribution are presented

in the Appendix section 9.1. From experimental results shown in Fig. 4.4 and

Fig. 4.5, we observe that the half normal distribution is an accurate probability

distribution in modeling absolute PIVs in smooth areas and along edge directions

in non-smooth regions. The distribution of PIVs in any directions in smooth areas

or in along-edge direction is represented by solid lines in Fig. 4.4(b) and Fig. 4.5

(b). The ideal half-normal distributions are in dash lines. One can observe that,

the practical and ideal curves are matched very well.

As for intensity variations associated with non-edge directions, all samples can

be classified into two distributions. Those from the smooth area in the data win-

dow obey a zero mean half normal distribution and those across-edge variations

obey the general (non-zero mean) half normal distribution. Direction weights are

then derived from the across-edge variations. However, experiments show that

the across-edge subset can contain too few samples, which hinders the correct es-

timation of the mean and variance. Consequently, we still use the half normal

distribution to approximate the distribution of the absolute PIVs for across-edge

directions.

In implementation, both along- and across-edge directions are processed sim-

ilarly since the zero mean half normal distribution is only a special case of the

general half normal distribution. The along-edge directions will be automatically

identified. The direction weight is calculated as follows.

Given ∆I(k,q) ∼ N(µ, σ2), the new variable Z(k,q) = µ + |∆I(k,q) − µ| obeys the

half normal distribution. According to properties of the half normal distribution,
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Figure 4.4: (a) Horizontal intensity variations in the data window are calculated.

(b) The data distribution is compared to the ideal half normal distribution.
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Figure 4.5: (a) Horizontal intensity variations in the data window are calculated.

(b) The data distribution is compared to the ideal half normal distribution.



44

we have

E[Z2
(k,q)] = σ2 + µ2 + 2λσµ (4.8)

E[Z(k,q)] = λσ + µ

where λ =
√

2
π
.

On the other hand, the absolute intensity variations Z(k,q) can be seen as a

short time realization of a wide sense stationary random process and the peak of

the auto-correlation curve, R(k,q)(0), is adopted to specify this process. According

to the definition of the correlation function and the result shown in (4.8),

R(k,q)(0) = E[Z2
(k,q)] = σ2 + µ2 + 2λσµ. (4.9)

The peak values for all the sixteen directions are calculated according to (4.9),

providing R = [R1(0), R2(0), · · · , R16(0)]. Here, the directions are referred to

using the single index notation. This vector R is normalized to R̂ = 2
min(R)

R when

min(R) 6= 0, and R̂ = R + 2 when min(R) = 0. The direction weight vector is

then computed according to

W =
1

log2 R̂
. (4.10)

It can be concluded that relatively large weights are assigned to along-edge di-

rections by the inverse operation. Comparing the two matching function curves,

1/Rk,q(0) and 1/ log2 Rk,q(0), shown in Fig. 4.6, one can observe that the loga-

rithm operation helps to maintain weights of various directions in the same order

of magnitude.

In addition, (4.9) indicates that, for a fixed σ value, having µ < 0 can lead

to a larger weight than in the case of µ = 0. This is not true since µ = 0 is

the necessary condition to achieve the largest weight. The case of µ = 0, σ = 0

is associated with an absolute smooth area. Consequently, we substitute |µ| for

µ in (4.9). From (4.9) and (4.10), one can observe that relatively large weights

are assigned only when both σ and µ are small, which correspond to along-edge

directions or smooth image areas. Otherwise a small weight is assigned for cases

as follows:

large magnitude of µ, small σ: gradual intensity change at a constant speed
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Figure 4.6: Matching function comparison.

small magnitude of µ, large σ: texture areas with lots of tiny edges in all

directions

large magnitude of µ, large σ: across-edge directions for an apparent edge in

uniform area

The weights versus mean µ curves are shown in Fig. 4.7(a) and the weights

versus variance σ2
(k,q) curves are shown in Fig. 4.7(b). It can be observed that the

only case for which the weight is significant is the one for which both variance σ2

and mean µ are small. This corresponds to cases where the local area is smooth

or the direction is along-edge.

4.3 Edge Direction Weights Estimation for Spa-

tial Interpolation

Edge direction weights estimation in the spatial interpolation problem follows

similar procedures as in the motion compensation de-interlacing problem. How-

ever, the following modifications are made:

The direction weights are derived according to (4.12), instead of (4.9). This

modification is trivial since the second order terms in (4.9) dominate the
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Figure 4.7: (a) The weights versus variance σ2
(k,q) curves, (b) the weights versus

mean µ curves.

result. Furthermore, all the direction weights of a pixel are normalized at

the final step. This modification is to simplify the calculation.

The weight calculation is performed in data windows of locally adaptable

size. This modification is based on the observation that, in natural images,

a pixel is correlated with its local context at different scales.

The details of the calculations are as follows. Suppose the high resolution

image H is related to the low resolution image L as H(2i − 1, 2j − 1) = L(i, j);

We consider sixteen discrete directions for each pixel site in H as indexed in Fig.

4.2. Each direction is represented by a vector V = (vr, vc), which is the distance

between the center pixel and its closest neighboring pixel in the corresponding

direction. For example, direction 2 is represented by vector (−1, 3). Each pixel

in image H can be represented by one of the four coordinates, H(2i − 1, 2j −
1), H(2i− 1, 2j), H(2i, 2j − 1) and H(2i, 2j). We take pixel site H(2i− 1, 2j − 1)

as an example to present the calculation of the weights. Weights for other pixel

sites can be obtained in a similar manner.

First an 11×11 data window W , which is centered at pixel site H(2i−1, 2j−1),

is formed from the high resolution image H and then weights are learned from PIVs

in this data window. Before calculating the PIVs, we temporarily interpolate the

unavailable pixels in W by the bilinear method. This temporary interpolation is
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necessary. Otherwise, the PIVs for some directions (e.g., direction 2, 6, 8, 10,12

and 16) are too few for the unbiased estimation of the statistical parameters. On

the other hand, although bilinear interpolation blurs the original edges, main edge

directions are reserved during the interpolation.

When all pixels in W are available, the PIVs in all sixteen directions are cal-

culated. Consequently, an intensity variation set for each direction is obtained

as

∆I(vr, vc) = {H(2(i + k) − 1, 2(j + q) − 1) −
H(2(i + k) − 1 + cvr, 2(j + q) − 1 + cvc)}, (4.11)

where the range of k, q is determined by satisfying the condition that H(2(i +

k) − 1, 2(j + q) − 1) is in data window W . Scalar c is used to guarantee that

max(|cvr|, |cvc|) = 2 (equivalent to 1 in terms of the low resolution image). Eq.

(4.11) shows that each pixel pair that is used for PIV calculation has at least one

pixel available from the low resolution image. This guarantees the reliability of the

samples used and that the same number of samples are used for mean and variance

estimation for all directions.

Let µ and σ2 respectively represent the mean and variance of ∆I(vr, vc). The

weight for the discrete direction (vr, vc) is obtained as

w =
1

log2(σ
2 + µ2)

. (4.12)

This can be interpreted as follows. The intensity variation samples that are ob-

tained through (4.11) can be regarded as a short time realization of a wide sense

stationary random process. The auto-correlation function R(t) at t = 0 is used to

represent the process and σ2 + µ2 is the estimation for R(0). The inverse opera-

tion is introduced so that weights are proportional, but not inversely proportional,

to continuity strengths. The logarithm operation is used to keep all the sixteen

weights of a pixel site in the same order of magnitudes. Otherwise, the weights

decrease too quickly with respect to R(0).

In addition, to limit all the weights of a pixel site to range [0 1], the sixteen

R(0)s of a pixel site are scaled by a factor of 2
Rm(0)

, where Rm(0) represents the
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minimal value of the sixteen R(0)s. Thus, the largest weight is normalized to equal

one. For ideal step edges, variances and means equal to zero could be obtained

along edge directions and Rm(0) could be zero. In this case, all sixteen R(0)s would

be shifted up by 2 to R(0) + 2. It can be concluded that the only case where the

weight is significant is the one for which both variance σ2 and mean µ are small.

This corresponds to cases where the directions are along edges. Consequently, the

edge direction information of a pixel is indicated by a length-N vector, where N

is the number of considered discrete directions. Relatively large weights indicate

relatively strong continuity. An example weight vector is shown in Fig. 4.8(a),

where the height of a bar represents the magnitude of a weight. It can be observed

that direction 2 has the largest weight. Directions 1, 3 and 4 have relatively large

weights compared to across edge directions, such as 10, 11, 12, etc. This weight

vector is calculated for the central pixel of a portion of the “Foreman” image as

shown in Fig. 4.8(b).
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Figure 4.8: An example of direction weights, the direction weights shown in (a)

correspond to the central pixel shown in (b).

The weight vector is a reliable indicator of local edge directions in cases where

only one significant edge is in a uniform background. In contrast, for pixels in

texture area, it is very likely that the data window contains multiple edges in

random directions. To deal with this case, we check the top three or four most
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likely directions of the sixteen directions. If they are distributed randomly rather

than being close to each other, we shrink the data window and re-calculate the

weights in a more localized region. In practice, three window sizes are available:

11×11, 7×7, and 3×3. The corresponding weight vectors have lengths 16, 8 and

4, respectively. This design is based on the observation that pixels in an image are

correlated to their surrounding pixels at various scales.

The text of this chapter is adapted from parts of the materials that will be

published as: M. Li and T. Q Nguyen, A De-Interlacing Algorithm Using Markov

Random Field Model, IEEE Transactions on Image Processing and as: M. Li and

T. Q Nguyen, Markov Random Field Model-Based Edge-Directed Image Interpo-

lation, IEEE Transactions on Image Processing. The dissertation author was the

primary researcher and the co-author T. Q Nguyen listed in these publications

directed and supervised the research forming the basis for this chapter.
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Motion Compensated

De-Interlacing

5.1 Introduction

Given the model-dependency and structural difficulties with field ME, an effi-

cient protection strategy against erroneous MVs is necessary for a MC de-interlacer.

However, the protection should not be over-protective, which could limit the ad-

vantages of MC.

There are deficiencies in the three existing protection strategies that are re-

viewed in Section 2.1.4. In median filtering protection, the median value of a

pixel’s MC candidate, vertically upper neighbor and lower neighbor is used as the

final output. This strategy often filters out the motion compensated candidate and

blurs edges. The threshold value method is not robust either since SAD or MSE

levels are not reliable indicators of “true” motions. The potential problem with

this method is the error propagation in the temporal dimension. Suppose an edge

in the reference frame has been de-interlaced with jagged edges, this noise is very

likely to be passed to the the current frame as error propagation in the temporal

dimension.

It is a challenge for the three protection strategies to guarantee consistency

and sharpness of edges. Moreover, the final output has to be the one that fits

50
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its context best. By the MRF model, we impose the DAS constraint on the de-

interlaced frame. The final output of each pixel site will be the one that fits its

context best under the DAS constraint. The context includes neighboring pixels

from both the available field and newly interpolated field. Specifically, the de-

interlaced edges are expected to have strong geometric regularity (smoothness in

along-edge direction and sharpness in across-edge direction [49]).

The organization of this chapter is as follows. The MAP-MRF formulation of

the MC de-interlacing problem is presented in Section 5.2. Implementation details

are presented in Section 5.3 and simulation results are presented and compared to

other de-interlacing methods in Section 5.4.

5.2 The MAP-MRF Formulation of the MC De-

Interlacing Problem

For ease of understanding, the following notations are used in this chapter:

Fio, F ie – Represent odd and even fields respectively.

F̂ r – Represents the frame that is to be de-interlaced from an odd or even

field.

Firefs – Represents reference fields in temporal dimension.

Ni,j – Represents the defined neighborhood structure of pixel site (i, j).

∆Ik(i, j) – Represents the intensity variation in the kth digitized direction

of pixel site (i, j).

Us((i, j), I) – Single-pixel related energy of pixel site (i, j) when the pixel

value at (i, j) is I.

|∆I| – The absolute value (magnitude) of intensity variation ∆I.

The de-interlacing process can be stated as reconstructing the missing field data

given the available field data. Data or motion information from temporal refer-

ence frames or fields may be involved in the de-interlacing process. Consider the
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field to be reconstructed as a multi-dimensional random variable. Its probability

distribution can be expressed as

P (Fio|Fie, F irefs) =
P (Fio, F ie|Firefs)

P (Fie|Firefs)
. (5.1)

Without losing generality, the available field, Fie, is assumed to be the even

field and the field to be interpolated is odd. The MAP solution to (5.1) corresponds

to the most likely reconstructed field

Fi?o = arg max
F io

P (Fio|Fie, F irefs)

= arg max
F io

P (Fio, F ie|Firefs). (5.2)

Fields Fio and Fie comprise the reconstructed frame F̂ r, which obeys the Gibbs

Distribution. Consequently the joint posterior distribution, P (Fio, F ie|Firefs) can

be expressed as

P (Fio, F ie|Firefs) = P (F̂ r|Firefs) =
exp{−U(F̂ r|Firefs)/T}

Z
. (5.3)

From (5.3) and (5.2), it can be concluded that the MAP solution is also the one

that minimizes the energy function

Fi?o = arg min
F io

U(Fio, F ie|Firefs). (5.4)

5.3 Implementation

5.3.1 Parameters Computation

The parameter γ in (4.2) is learned from the current field data prior to the

de-interlacing process. The steps are

Step 1: PIVs in the horizontal direction are calculated. Here |∆Ih| denotes

the absolute values (magnitudes) of intensity variations and |∆Ip| denotes

the top 10% samples in the data set |∆Ih|.

Step 2: Assume that the top 10% intensity variations |∆Ip| represents sig-

nificant discontinuity features in the field and let ∆It represent the minimal
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Figure 5.1: Parameter calculation example: γ = 114.8709 and ∆It = 23.

value in |∆Ip|. Parameter γ is determined by specifying a near-bound mea-

sure score corresponding to variation ∆It, for example, g(∆It) = .99γ and

thus γ = −∆I2
t / ln(0.01).

An example calculation is shown in Fig. 5.1(a) and the field data shown in

Fig. 5.1(b) is used. The same set of parameters is used for cliques of all the other

fifteen directions in Fig. 4.3.

Another important parameter to be decided is the convergence speed control

factor T . It is chosen empirically according to the energy measure metric and

the desired maximal iteration number. An initial value T0 is used and updated

according to a decreasing rule, for example, Tq = (α)d
q

Ks
eT0, where dxe represents

the minimal integer that is not smaller than x and q represents the qth iteration.

Ks denotes the number of iterations that run with the same T . α is a constant

factor between 0.9 and 1. α controls the decreasing rate of T and forces a faster

convergence speed after every Ks iterations. The specification of T is the same for

various video sequences.

5.3.2 Implementation Procedure

The proposed algorithm is implemented using the Simulated Annealing algo-

rithm [86, 87]. The whole process searches for the MAP configuration from the

state space S, which includes all possible configurations. The state space is gen-
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erally large. To decrease its size, we propose a candidate set for each pixel to be

de-interlaced.

The Candidate Set

With the 48-pixel neighborhood structure, spatial candidates are proposed as

follows. First, the field is de-interlaced using the spatial linear interpolation method

to make all the pixels available. Then for each of the sixteen directions, the linear

average of the closest neighboring pixel pair is one member of the candidate set

as shown in Fig. 5.2. Counting the corresponding MC candidate, each pixel to

be interpolated would have a size-17 candidate set. If any two of the seventeen

candidates are the same, only one of them is kept. Candidates in a candidate
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Figure 5.2: Formulation of the candidate set.

set are initialized to have equal probabilities. The equal probabilities are used to

initialize the symmetric transition matrix Q of the Markov Chain in the Simulated

Annealing algorithm. For example, Q is initialized as Q = [1/2, 1/2; 1/2, 1/2] for

candidate set {a1, a2} with P (a1) = P (a2) = 0.5.

The Iterative Optimization

Step 1: Initialization of the de-interlaced frame. Theoretically, the global op-

timal result can be obtained independent of the starting state. However, many it-
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erations are required to achieve the global optimal state. We use the de-interlaced

frame with the spatial linear interpolation method as the initial state.

Step 2: At each iteration, a new candidate for each missing pixel is generated by

a Gibbs sampler according to the transition probability matrix Q, which is updated

in Step 3 in each iteration. The matrix Q specifies the transition probabilities from

each state to all other states in the candidate set.

Step 3: Suppose one candidate (new state) sj for site (i, j) is chosen from Step

2, of which the old state is si. The new state is accepted according to probability

Pα = min(1,
Psj

Psi

), where Psj
and Psi

denote the global image’s probabilities at

states sj and si respectively. From (5.3), the probability ratio relates the energy

function as
Psj

Psi

= exp{Usi
−Usj

T
}. Note that if only one pixel gets updated in a whole

image, the whole image’s state is completely determined by the state of this single

pixel.

Eq. (4.6) is used to calculate the energy change ∆U = Usi
−Usj

. The transition

probabilities are updated according to

Psi,sj
=







Psi,sj
min(1,

Psj

Psi

) sj 6= si

1 − ∑

k,k 6=i Psi,sk
min(1,

Psk

Psi

) sj = si

(5.5)

Convergence Property and Complexity

The transition matrix Q, which is updated according to (5.5), remains irre-

ducible symmetric during the iterative optimization process and thus the Markov

Chain is irreducible and reversible [86]. Consequently, the convergence to an equi-

librium probability is guaranteed.

The convergence speed and whether the iterative process converges to the global

minimal energy state is associated with parameter T . In [2], it states that if the

temperature T (k) used in executing the kth site replacement satisfies the bound

T (k) ≥ C
log(1+k)

for every k, where C is a constant independent of k, the configu-

ration generated by the iterative optimization process will be the global minimal

energy state. However, the value C is far too large for practical computation. The

proposed de-interlacing algorithm does not guarantee global optimal solutions.

As for the complexity, we lower it by discriminating edge pixels from non-edge
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pixels. Each pixel to be interpolated is labeled as either an edge pixel or a non-

edge pixel. Suppose a pixel has discrete direction k (of the 16 defined discrete

directions), if its two closest neighbor pixels in direction k have the same or similar

directions, k or k±1, this pixel is labeled as an edge pixel. Otherwise, it is labeled

as a non-edge pixel. Non-edge pixels are interpolated by the “Bob” method. Edge

pixels are interpolated under the DAS constraint. The “Bob” method might not be

the optimal interpolation method for non-edge pixels, but it is better for non-edge

pixels to guarantee the local continuity of pixel intensities than to impose the DAS

spatial constraint. Isolated intensity levels will be perceived as noise.

In addition, the complexity can be decreased greatly by implementing the Gibbs

sampler with multiple processors. The Gibbs sampler in the Simulated Annealing

algorithm is highly parallelizable. Currently we used a raster scan serial version

of it in the iterative optimization process, which is relatively slow. The execution

time can be sped up by a factor of two or three if two or three processors run

simultaneously. The full parallel potential can be explored by assigning a processor

to each pixel to be interpolated. A limited amount of communication among

processors is required.

5.4 Simulation Results and Discussions

The proposed MC de-interlacing algorithm is compared to other methods in

this section. In addition, the efficiency of the MRF-based protection strategy is

analyzed.

5.4.1 De-Interlacing Performance Comparison

4-field 3DRS and GME models are used for ME. The ME block size is 4 × 8

in the 3DRS model and in foreground object ME in the GME model. Considering

the diversity of edges in the test video sequences, we used a 48-pixel neighborhood

structure in the implementation of the proposed algorithm. The size of the data

windows is either 9×9 or 5×5, of which the center is the pixel to be interpolated.

The convergence control factor T has an original value T0 = 100 and is updated
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according to Tq = (0.95)d
q

7
eT0, where q represents the qth iteration. The maximum

iteration number is 100. The methods used for comparisons are abbreviated as

follows.

MRF: the proposed MC de-interlacing method.

MA: Motion adaptive de-interlacing method using 4-field 3DRS ME.

Direct MC: Direct motion compensated de-interlacing method. The de-

interlaced frame reflects the reliability of the MVF.

EDI: An edge-directed interpolation method suggested in [31] as a block-

based directional edge interpolation method. In this method, a neighborhood

structure of size 7×9 is used. Compared to other EDI methods, this method

enables higher edge direction resolution.

AR: Motion compensated de-interlacing with the adaptive recursive method

as a protection strategy [34].

The de-interlaced video sequences are available at http://videoprocessing.

ucsd.edu/~minli/TranIPdemo.htm in avi format.

Example 1: The “Bicycle” sequence is used in this example. The major mo-

tion in this sequence is rotation. Two wheels with many spikes rotate at different

speeds counter-clockwise and overlap partially. The translational motion model,

4-field 3DRS, is used for ME. This is a difficult sequence for 3DRS. The comparison

of the de-interlaced third frame is shown in Fig. 5.3 and the zoom in comparison

is shown in Fig. 5.4. Compared to other MC de-interlacing method and the EDI

method, the proposed method produces the best de-interlaced frame with sharp

smooth edges.

The near-horizontal edges have not been de-interlaced as well as edges in other

directions. This is because these directions are beyond the edge direction resolution

of the 7×7 neighborhood structure. A larger neighborhood structure will enable

higher resolution of edge directions and can be expected to perform better with

these edges.
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(a) Original frame (b) MRF method

(c) AR method (d) MA method

(e) EDI method (f) Direct MC method

Figure 5.3: De-interlaced results of the 3rd field in the “bicycle” sequence.
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(a) Original frame (b) MRF method

(c) AR method (d) MA method

(e) EDI method (f) Direct MC method

Figure 5.4: Zoom in comparison.
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Example 2: The “Football” sequence is used in this example. The same parity

GME model [30] is used to estimate the motion. The major motion in this sequence

consists of two parts. One part is the global background motion caused by camera

panning and zooming, the other part has several athletes as foreground objects,

which are small and have different motions from the background. This model

fits well with the motion in this sequence. The background motion is described

by the affine matrix that is produced from phase correlation GME. As outliers,

the motions of the foreground objects are estimated by bi-directional local block-

matching search.

The de-interlaced results are shown in Fig. 5.5 and the zoom-in comparisons

are shown in Fig. 5.6. Significant improvements with major edges can be observed.

Example 3: The sequence is “Foreman” and 4-field 3DRS ME is used for this

sequence. From the direct MC result shown in Fig. 5.7(f), one can observe that

this ME model fails in the head area, which has rotating motion. This is because

this model assumes motion among the four fields is unidirectional and at constant

speed. Obviously, the head turning motion does not satisfy this assumption. The

sixth de-interlaced frame is shown in Fig. 5.7 and the zoom in comparisons are

shown in Fig. 5.8. In comparison, the result with the proposed method is neat

and edges have strong geometric regularity.

Example 4: This example is about the “Flag” sequence and the 4-field 3DRS

model is used for ME. For this sequence, the progressive format is not available.

The motion of the flag in this sequence is rather irregular. Fig. 5.9(f) illustrates

the areas where the ME actually fails. The performances of various methods

are presented in Fig. 5.9 and the zoom in comparisons are shown in Fig. 5.10.

Subjectively, the proposed method produced much smoother edges.

5.4.2 Motion Compensation Maps

The maps shown in Fig. 5.11 are generated as follows. For the de-interlaced

frames shown in Example 1 to 4, we label the final output of each pixel site in the

MRF method. If the final output is the MC candidate, we label this site on the

map as 1. Otherwise, this site is labeled as 0. Thus, the bright pixels in the maps
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(a) Original frame (b) MRF method

(c) AR method (d) MA method

(e) EDI method (f) Direct MC method

Figure 5.5: De-interlaced results of the 11th field in the “football” sequence.
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(a) Original frame (b) MRF method

(c) AR method (d) MA method

(e) EDI method (f) Direct MC method

Figure 5.6: Zoom in comparison.
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(a) Original frame (b) MRF method

(c) AR method (d) MA method

(e) EDI method (f) Direct MC method

Figure 5.7: De-interlaced results of the 6th field in the “Foreman” sequence.
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(a) Original frame (b) MRF method

(c) AR method (d) MA method

(e) EDI method (f) Direct MC method

Figure 5.8: Zoom in comparison
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(a) Original frame (b) MRF method

(c) AR method (d) MA method

(e) EDI method (f) Direct MC method

Figure 5.9: De-interlaced results of the 9th field in the “Flag” sequence.
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(a) Original frame (b) MRF method

(c) AR method (d) MA method

(e) EDI method (f) Direct MC method

Figure 5.10: Zoom in comparison.
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indicate MC candidates.

From the maps, we can observe that, in accordance to the distribution of reliable

MVs, which can be observed from the direction MC results, fewer MC candidates

are adopted in areas where the MVs are incorrect, such as the “Foreman”’s face

area and the “Flag”’s left bottom corner. The maps show the efficiency of the

MRF-based protection strategy. This strategy can be used to protect other MC

de-interlaced algorithms, as a substitution for median filtering or threshold value

method.

5.4.3 Scene Change Performance

We design an artificial sequence to test the effectiveness of the MRF-based

protection strategy. The four fields from the “Foreman” sequence that are shown

in Fig. 5.12 are used for 4-field 3DRS ME, the de-interlaced results of the third

field are shown in Fig. 5.13. From the direct MC de-interlaced result shown in

Fig. 5.13(f), we know that the estimated MVs are not reliable. In extreme scene

change cases, the MRF-based protection strategy performs robustly.

5.4.4 PSNR Comparison

Although Mean Square Error (MSE) is not a convincing assessment criterion of

reconstructed image quality, Peak SNR (PSNR) is used as the objective measure

criterion to measure the quality of the de-interlaced frames in the simulations.

The average PSNR values from five different methods are plotted in Fig. 5.14.

In terms of PSNR comparison, the proposed method outperforms all the other

methods for the “Foreman” sequence. For “Bicycle” sequence, the PSNR level is

slightly lower than the MA method. MA method converts to the “Bob” method

with unreliable motion. The reconstructed edges in the MRF-based method have

much higher geometric regularity. As for the “Football” sequence, the proposed

method does not yield the highest PSNR level. In this sequence, a significant part

is homogeneous textures, leaves and grass. In these areas, the detected local edge

direction information has not been very helpful for de-interlacing. The proposed
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(a) Flag

(b) Foreman

(c) Bicycle

(d) Football

Figure 5.11: Motion compensation maps.
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(a) Forward forward field (b) Forward field

(c) Current field (d) Backward field

Figure 5.12: 4 fields for 3DRS ME.

method produces much sharper and more consistent edges.

5.5 Conclusions

In this chapter we propose a novel motion compensated de-interlacing algo-

rithm. In the proposed algorithm, the de-interlacing process is formulated as an

MAP-MRF problem. The highest probability solution is the configuration that is in

a minimal energy state. By defining the energy function in the Gibbs-MRF model

carefully, a minimal energy state is related with images that have highly geometric

regular edges. A novel weighting scheme is developed to indicate the directions of

local discontinuity features (edges) during the formulation of the DAS constraint.

In comparison with traditional edge direction detection algorithms, the proposed

one is robust and can decide edge directions at high resolution. Compared to other

motion compensated de-interlacing algorithms, the protection strategy against er-

roneous MVs in the proposed algorithm is local statistical-based and should be

more robust. The proposed algorithm is implemented using the Simulated An-

nealing algorithm. Simulation results are presented to verify the efficiency of the

proposed algorithm.

The text of this chapter is adapted from material that has been accepted for

publication as: M. Li and T. Q Nguyen, A De-Interlacing Algorithm Using Markov

Random Field Model, IEEE Transaction on Image Processing and also in part ap-
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(a) Original frame (b) MRF method

(c) AR method (d) MA method

(e) EDI method (f) Direct MC method

Figure 5.13: Performance with scene change.
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Figure 5.14: Average PSNR comparison of the de-interlaced sequences.

pears as: M. Li and T. Q Nguyen, Discontinuity-adaptive de-interlacing scheme

using Markov Random Field model, IEEE International Conference on Image Pro-

cessing 2006. The dissertation author was the primary researcher of this publica-

tion, and the co-author listed directed and supervised the research which forms

the basis for this chapter.
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Spatial Interpolation

6.1 Introduction

As reviewed in Section 2.2, the NEDI method shows improvements of interpo-

lated edges in comparison to the conventional bilinear, bicubic and spline interpo-

lation methods. However, as a result of the fact that the interpolation of a pixel

has been limited within its four nearest neighbors along the diagonal directions,

the sharpness of the interpolated edges is not comparable to the original edges.

Another limitation of this algorithm is that it has difficulties in dealing with tex-

ture areas. Spurious minor edges are observed in the interpolated texture areas,

which make the interpolated images look unnatural. As a result of losing fidelity

of the original image, the interpolated image in the NEDI method will have a

lower PSNR level compared to the conventional methods if texture is contained in

the image. In this chapter, we propose the MRF-EDI method to improve edges’

geometric regularity further while maintaining the fidelity of the original image.

Our proposed MRF model-based edge-directed interpolation method (MRF-

EDI) is an implicit edge-directed interpolation method. In MRF-EDI, the edge

directions of an edge pixel are indicated by the continuity strengths in all directions.

Instead of labeling each direction as either edge or non-edge, we measure the

continuity strength in each direction and represent it by a rational number between

0 and 1. Large values indicate strong continuities (along edge directions) while

small values indicate weak continuities (across edge directions). These values are

72
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derived from the statistical properties of pixel intensity variations (PIVs) in a

local data window. The relative continuity strengths of all directions are used

as edge direction information to formulate the geometric regularity (GR) spatial

constraint, which can be summarized as smoothness along edge directions and

sharpness across edge directions.

The organization of this chapter is as follows. The MAP-MRF formulation

of the interpolation problem is presented in Section 6.2. Implementation details

are presented in Section 6.3 and simulation results are presented and compared to

other interpolation methods in Section 6.4.

6.2 The MAP-MRF Formulation of the Spatial

Interpolation Problem

As many others do in the spatial interpolation problem, we related the interpo-

lated high resolution image to the low resolution image as h(2i−1, 2j−1) = l(i, j),

where h represents the high resolution image and l represents the low resolution

image. Let h−l represent the pixels in h that are not available in l. Then the

interpolation problem is to find the optimal result h−l given the low resolution

image l. Adopting the MAP criterion in the Bayesian estimation framework, the

probability of the result h−l can be expressed as

p(h−l|l) =
p(h−l, l)

p(l)
=

p(h)

p(l)
. (6.1)

Given a low resolution image l, the global probability of h is governed by the

Gibbs distribution, which is

p(h) =
exp{−U(h)/T}

Z
, (6.2)

where h represents one possible interpolation result. Thus the most desired inter-

polation result, h?, is the one that maximizes the probability p and, equivalently,

minimizes the energy function U(h) given the low resolution image. It is

h? = arg min
h

U(h), (6.3)



74

and U(h) is the summation of the single-pixel related energy (4.5) throughout the

overall interpolation result.

6.3 Implementation

6.3.1 Parameter γ Calculation

The parameter γ in (4.3) is derived from the low resolution image. Its calcula-

tion can be summarized in the following two steps.

1. PIVs in the horizontal direction are calculated. Let |∆Ih| denote the data set

consisting of the magnitudes of all the PIVs, and |∆Ip| denote a subset, in

which the magnitudes of the PIV samples are among the top 10% of the data

set |∆Ih|.

2. Assume that |∆Ip| represents significant discontinuity features in the image and

let ∆It represent the minimal magnitude in set |∆Ip|, then the parameter γ is

determined by relating a close-bound measure score to the intensity variation

∆It, i.e.,

−γe−
∆I2

t
γ + γ = .99γ. (6.4)

6.3.2 Schematic Description of the Implementation

The steps of the MRF-EDI method can be summarized as follows.

1. Weight calculation according to the procedures developed in Section 4.3.

2. Discrimination of edge/non-edge pixels.

3. Proposing candidate sets for edge pixels.

4. Single-pass implementation or iterative optimization (using the Gibbs sampler

[86] and the simulated annealing method [2]).

Details of steps 2, 3 and single-pass implementation in step 4 are presented sepa-

rately below. Concrete operations in iterative optimization in step 4 is available

in [88].
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6.3.3 Discrimination Between Edge and Non-Edge Pixels

To lower the complexity, only edge pixels are optimized iteratively while non-

edge pixels are interpolated using deterministic interpolation methods, for example,

bicubic. A pixel is identified as an edge pixel if only its two closest neighboring

pixels in its strongest continuity direction (indicated by the largest weight) have

similar strongest continuity directions. For example, if the strongest continuity

of the being-checked pixel site happens on direction d, its two closest neighboring

pixels in direction d must have their strongest continuities in directions d or d±1 in

order for this pixel to be declared as an edge pixel. Both edge and near-edge pixels

will be identified as edge pixels and are optimized iteratively. Non-edge pixels

include pixels in smooth areas and pixels with very short edges. For pixels in

smooth areas, the MRF-EDI method is not used since no edges are reconstructed.

For pixels with very short edges, where the local intensity variation is random, it

is more important to guarantee local intensity continuity than to impose the DAS

constraint. This is because weights calculated for these pixels are unreliable.

6.3.4 Proposing Candidate Sets

A candidate set for each edge pixel to be interpolated is proposed. With the

proposed candidate set, each pixel to be interpolated can only have values from

its candidate set, instead of any values between 0 and 255. Thus the size of the

state space that the minimal energy state is searched from reduces significantly.

The candidate set is proposed based on the low resolution image and, basically,

one candidate for each discrete direction is proposed. Thus, including one bicubic

interpolation candidate, each pixel site has at most seventeen candidates. If any

two of the seventeen candidates are the same, only one of them is included in the

candidate set. The size of the state space is reduced significantly by this operation.

We take the pixel site (2i− 1, 2j) as an example to show the formulation of its

candidate set. As shown in Fig. 6.1, centered at the pixel site (2i − 1, 2j), a 7×7

window is formed in the high resolution image H . The candidates are proposed

from pixels in this window. In discrete directions 1, 4, 7, 11 & 14, the two closest

neighboring pixels of the center pixel are available and the average of the two
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neighboring pixels in the same direction is taken as one candidate pixel. As for

the other directions, no closest neighboring pixels are available. In those cases,

the pixels at the intersecting points (intersection of the direction and the central

4 × 2 square) are interpolated and their average is used as a candidate pixel. For

example, direction 8 intersects the central square at points A and B. Pixel values

at point A and B are first interpolated as A = 1
8
I(2i−3, 2j−1)+ 7

8
I(2i−3, 2j +1)

and B = 7
8
I(2i + 1, 2j − 1) + 1

8
I(2i + 1, 2j + 1), and their average is then used as

a candidate pixel.

A

5678910111213
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B

Figure 6.1: Candidate set for pixel site (2i−1, 2j). Circles represent pixels available

from the low resolution images.

Proposing the candidates in a 7×7 local area is risky since 7×7 is relatively

large. High frequency noise could be introduced easily if the intensity continuity of

neighboring pixels is not maintained. However, the sharpness of interpolated edges

can benefit from the interpolation from a large local area. In the proposed MRF-

EDI method, the possible high frequency noise could be suppressed efficiently by

the DAS spatial constraint, whereas the sharpness of interpolated edges is reserved.
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The procedures to obtain candidate sets for pixel sites (2i, 2j − 1) and (2i, 2j)

are similar. Only the central squares have different dimensions. The dimension for

pixel site (2i, 2j − 1) is 2 × 4 and it is 2 × 2 for pixel site (2i, 2j).

6.3.5 Single-Pass Implementation

Adopting the one-pass algorithm in [89], we designed a single-pass implementa-

tion to replace the iterative optimization. Although no iteration is required in the

single-pass implementation, its performance is comparable to that of the iterative

optimization. The main reason for the single-pass implementation to work well is

that the initial state is very close to the global optimal state.

The details of the single-pass implementation are as follows. The low resolution

image is initially interpolated using a conventional method, for example, bicubic.

Then for each edge pixel, we calculate the single-pixel related energy of each can-

didate in the candidate set and the one that has the minimal single-pixel related

energy is the final output. The single-pixel related energy is defined in (4.5).

6.4 Simulation Results

In this section, the “Foreman”, “Bicycle” and “Hall” video sequences are used

to test the proposed MRF-EDI interpolation algorithm. The performance of the

proposed MRF-EDI method is compared to that of the NEDI method [49]. In

addition, it is also compared to the traditional bilinear interpolation methods. The

implementation of the new edge-directed interpolation algorithm is downloaded

from the author’s website [90].

The low resolution video sequences are obtained by directly downsampling the

original frame images by a factor of two in both row and column dimensions.

In the implementation of the proposed MRF-EDI method, the parameters are

set as follows. For iterative optimization, the maximal iteration number K is

K = 100. The original value T is set as T0 = 50 and it is updated according to

T = (.95)d
q

Ks
eT0, where dxe represents the minimal integer that is not smaller than

x and q represents the qth iteration. Ks denotes the number of iterations that are
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run with the same parameter value T and is set as Ks = 7. These parameters are

set empirically. For single-pass interpolation, T = 50 is used for energy calculation

and comparison.

Here is a comment on the sensitivity of the algorithm to these parameters.

Theoretically, the initial value T must be high and the updating rate must be slow

in order to achieve the global minimal state. However, in this practical interpola-

tion problem the initial state of the interpolated image is almost “good” because

it’s interpolated using well-developed traditional interpolation methods. On the

other hand, we don’t really care if the final interpolation result is global optimal

if only the edges have been reconstructed well. Consequently, the algorithm is

not sensitive to these parameters. The same set of parameters is used for various

testing sequences and no modification is required.

6.4.1 Interpolation Comparison

The results of the proposed MRF-EDI method are compared to those of NEDI

and conventional bilinear interpolation methods. Interpolation examples are shown

in Fig. 6.2, Fig. 6.4 and Fig. 6.6. The local area zoom-in comparisons are shown

in Fig. 6.3, Fig. 6.5 and Fig. 6.7. From Fig. 6.3, one can observe that the

major edges interpolated by the proposed MRF-EDI method are sharpest. Fig.

6.5 shows that both MRF-EDI and NEDI methods reconstruct the high-contrast

edges very well. However, artificial edges are produced in the texture area by

the NEDI method, which makes the texture area look unnatural. This is the

problem that is addressed as “losing fidelity to the original image” in [49]. The

proposed method is highly locally adaptive and does not have this problem. A

texture interpolation example is shown in Fig. 6.8. Artificial edges are produced

in NEDI method. The interpolated video sequences in avi format are available at

http://videoprocessing.ucsd.edu/~minli/interpolationdemo.htm.
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(a) Original (b) MRF-EDI (33.92 dB)

(c) NEDI (33.50 dB) (d) Bilinear (32.36 dB)

Figure 6.2: 4× interpolation of “Foreman”.
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(a) Original (b) MRF-EDI

(c) NEDI (d) Bilinear

Figure 6.3: Zoom-in comparison.
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(a) Original (b) MRF-EDI (29.58 dB)

(c) NEDI (28.75 dB) (d) Bilinear (28.83 dB)

Figure 6.4: 4× interpolation of “Bicycle”.



82

(a) Original (b) MRF-EDI

(c) NEDI (d) Bilinear

Figure 6.5: Zoom-in comparison.

6.4.2 Edge Maps

The proposed MRF-EDI interpolation is only applied to edge pixels in each

image. The edge maps of interpolation examples in Subsection 6.4.1 are shown in

Fig. 6.9. In the binary map images, bright pixels represent edge pixels. It can

be observed that, in the MRF-EDI method, edge and near-edge pixels are identi-

fied and are interpolated using the proposed method to achieve strong geometric

regularity.

6.4.3 Effects of Neighborhood Structure Sizes

For edge directions that are defined by zigzag patterns, a larger neighborhood

structure size enables more discrete directions and thus higher resolution of edge

directions. Here we show the effects of interpolating the same image with different

neighborhood structure. The first frame in the “Bicycle” sequence is used here, of

which the original image is shown in Fig. 6.2(a). The maximal neighborhood struc-

ture sizes are set as 7×7 and 9×9 respectively. Size 7×7 structure enables sixteen

discrete directions while size 9×9 structure enables twenty-four directions. The
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(a) Original (b) MRF-EDI (28.99 dB)

(c) NEDI (28.26 dB) (d) Bilinear (28.63 dB)

Figure 6.6: 4× interpolation of “Hall”.
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(a) Original (b) MRF-EDI

(c) NEDI (d) Bilinear

Figure 6.7: Zoom-in comparison.
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(a) Original (b) MRF-EDI

(c) NEDI (d) Bilinear

Figure 6.8: Texture interpolation comparison.

data window size for weights calculation for sixteen directions is 11×11 and 15×15

for twenty-four directions. The interpolated frames are shown in Fig. 6.10(a) and

6.10(b). There is a minor difference in PSNR levels. Subjectively, from the zoom-

in region comparisons shown in Fig. 6.10(c) and 6.10(d), one near-horizontal edge

has been reconstructed more smoothly (along-edge direction) in size 9×9 structure

case. Basically we can conclude that higher edge direction resolution leads to more

exact interpolation of edges in arbitrary directions. Certainly, the computational

complexity would increase accordingly.

6.5 Conclusions

An implicit edge-directed interpolation algorithm for natural images is proposed

in this chapter. It is an MRF model-based edge-directed interpolation method. In

this method, the interpolated image is modeled as an MRF and the most desired

interpolated image is related to the minimal energy state of a two-dimensional ran-

dom field. Edge direction information is incorporated when formulating the energy

function. Consequently, energy that is along edge directions is strongly suppressed

to achieve smoothness while energy that is across edge directions is much less sup-
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(a) “Foreman” (b) “Hall”

(c) “Bicycle”

Figure 6.9: Edge pixel maps.
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(a) 7×7 (29.25dB) (b) 9×9 (29.58dB)

(c) 7×7 (d) 9×9

Figure 6.10: Performance comparison of different neighborhood structure sizes.

pressed to maintain the sharpness of edges. As a result, the interpolated edges

have strong geometric regularity.

The edge direction information has been obtained using a statistical-based ap-

proach, which should be more robust than discrete differentiation methods. Con-

sequently, the edge direction information of each edge pixel is represented by a

weight vector, which is integrated into the formulation of the energy function in

the GMRF model.

To lower the complexity, the proposed MRF-EDI method is only applied to edge

pixels. To discriminate edge pixels from others, consistency in edge directions is

checked, which helps avoid the interpolation of spurious minor edges in texture

areas. Simulation results show that the proposed MRF-EDI method produces

interpolated major edges with strong geometric regularity. Comparing to bilinear

interpolation, the proposed method improved the visual quality of the interpolated

edges while maintaining high PSNR. Compared to the NEDI method, the proposed

MRF-EDI method provides sharper edges with higher PSNR.
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The text of this chapter is adapted from material that has been submitted

for publication as: M. Li and T. Q Nguyen, Markov Random Field Model-Based

Edge-Directed Image Interpolation, IEEE Transaction on Image Processing and

also appears in part as: M. Li and T. Q Nguyen, Markov Random Field Model-

Based Edge-Directed Image Interpolation, IEEE International Conference on Im-

age Processing 2007. . The dissertation author was the primary researcher of this

publication, and the co-author listed directed and supervised the research which

forms the basis for this chapter.
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Scalable Video Coding

Video broadcasting has a wide range of applications, such as Internet video,

wireless LAN video, mobile wireless video for conversational and live broadcasting

purposes, multi-channel video production and distribution, and layered protection

of contents. Scalable video codecs [91, 92] have gathered much attention due to

flexibilities they offer in terms of spatial, temporal, signal-to-noise ration (SNR),

and complexity scalabilities [93]. Most SVC techniques can be classified as Wavelet-

based SVC [94,95] or H.264/AVC-based SVC [96].

As an important part of scalable video codecs, low complexity and low bitrate

encoders have important applications. Firstly, the video bitstream can be sent to

different devices which most likely vary in terms of the complexity levels and power

characteristics. The received video bitstream should therefore adapt accordingly.

Secondly, the characteristics of the transmission channels and of the receiving

devices are unknown at the beginning of the transmission. In this case, the trans-

mission should start with a low bit rate bitstream and can later switch to higher bit

rates if the channel and receiving devices’ profiles allow. Lastly, the characteristics

of the transmission channels and of the receiving device’s can change dynamically.

For example, the device should be able to trade off the received video quality for

longer power life. A low-complexity and low bit rate scalable video coding scheme

is necessary for these applications.

89
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7.1 Optimal Wavelet Filter Design in Wavelet-

Based SVC

7.1.1 Introduction

Although the current reference codec (H.264-based SVC) for SVC is not wavelet-

based, it is still a very active research area because the wavelet transform naturally

enables spatial scalability. Consequently, many researchers are exploring applica-

tions of wavelet theories in SVC [97].

The spatial scalability in both wavelet-based SVC and H.264/AVC-based SVC

is achieved by using lowpass filtering followed by downsampling. The downsam-

pling filter H0(z) in H.264/AVC-based SVC can be any good lowpass filter, e.g.,

the MPEG filter [98] or the JPEG filter [99]. In contrast, filter H0(z) has to be a

good wavelet lowpass filter with a smooth basis function in wavelet-based SVC [95].

The Low Band Correction (LBC) technique is proposed in [95] to improve the

spatial scalability. As indicated in Fig. 7.1, in LBC, the prediction error frames,
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Figure 7.1: LBC concept.

E0 and E1, from different spatial layers, layer 0 and layer 1, can be merged into one

texture frame E. This merge effectively reduces the overhead texture information

in SVC. Moreover, at the decoder side, prediction error frames E0 and E1 can

be derived from merged texture frame E under certain conditions. In the LBC
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technique, the merged texture frame E is generated according to

E = E0 − F0(z)(↑ 2)(↓ 2)H0(z){E0} + F0(z)(↑ 2){E1}. (7.1)

where filters F0(z) and H0(z) are the upsampling and downsampling filters, re-

spectively. If filters F0(z) and H0(z) satisfy the condition

(↓ 2)H0(z)F0(z)(↑ 2){X} = X, (7.2)

where X represents an arbitrary signal, the prediction error frames E1 and E0 can

be derived from the merged texture frame E as

E1 = (↓ 2)H0(z){E} (7.3)

and

E0 = E − F0(z)(↑ 2){E1} + F0(z)(↑ 2)(↓ 2)H0(z){E0}, (7.4)

where

(↓ 2)H0(z){E0} = C1 − (↓ 2)H0(z){R0}. (7.5)

The condition in (7.2) is actually a half-band condition, which can be expressed as

P (z) + P (−z) = z−L, (7.6)

where P (z) = H0(z)F0(z) is a halfband filter and L is the delay parameter. Con-

sequently, the downsampling filter H0(z) in wavelet-based SVC [95] has to be a

‘good’ wavelet filter. For a wavelet filter to be ‘good’, the following properties are

important.

• The lowpass filter of the analysis filter bank, H0(z), and the lowpass filter

of the synthesis filter bank, F0(z), have to satisfy the halfband condition:

P (z) = H0(z)F0(z) is a halfband filter.

• The magnitude response of the lowpass filter H0(z) should have flat pass-

band, sharp transition between passband and stopband, and large stopband

attenuation. The requirements on the magnitude response of the lowpass fil-

ter F0(z) are not as strict as those of the filter H0(z), however, F0(z) should

still have acceptable lowpass magnitude response.
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• The filters H0(z) and F0(z) should have a certain regularity order to guaran-

tee the smoothness of the corresponding scaling functions and wavelets. This

property is important for image filtering and reconstruction applications.

According to the requirements stated above, it is not difficult to verify that

the MPEG downsampling filter is not a good wavelet filter. Let H0(z) be the

MPEG filter and design the filter F0(z) to satisfy the half band condition in (7.6).

The highpass filters H1(z) and F1(z) are chosen to satisfy the aliasing cancellation

condition [100], H1(z) = −F0(−z) and F1(z) = H0(−z). The magnitude responses

of filters H0(z) and H1(z) are shown in Fig. 7.2(b). H1(z) has a large “bump” in

the stopband which limits the corresponding wavelet system’s application for video

compression. Thus, the MPEG filter does not work in the proposed scheme and the

Daubechies (9,7) filters are used in [95]. The magnitude response of Daubechies

length-9 filter is shown in Fig. 7.2(a). The main problem of using Daubechies

(9,7) filters is that the downsampling filter H0(z) has too much energy leakage

in the stopband which significantly degrades the full search motion estimation

performance at lower spatial resolution. This point is shown using simulation

results in Section 7.1.4.

In our design, we formulate the design problem as the design of a class of

wavelet filters, which are optimal in the sense that the best tradeoff between high

stopband attenuation of filter H0(z) and flat passband response of filter F0(z) is

achieved.

The organization of this section is as follows. The design procedure is presented

in Sections 7.1.2 and 7.1.3. Some design examples are shown in Section 7.1.4 along

with the application to real video sequences. The performance of the designed

filters is compared to that of the Daubechies (9,7) filters [101] and the MPEG

filter.

7.1.2 Design Procedure

The Daubechies length-9 filter is used as a prototype lowpass filter H0(z). Two

of four zeros at π of the prototype filter are retained while the other two zeros

are moved along the unit circle towards π/2 and −π/2 to obtain other solutions.
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Both the frequency selectivity property and the smoothness of the scaling filter

are essential for the compression performance of the wavelet system, which yields

the following cost function: Φ = α0(stopband energy of H0(e
jω))+α1(1/Hölder

regularity [102] of H0(z))+(1−α0−α1)(1/Hölder regularity of F0(z)) over the pair

of moving zeros of H0(z).

The pair of moving zeros of H0(z) can be specified by a single angle θ so the

design problem is to minimize Φ over the angle θ. A series of angle θs are specified

and the one that minimizes Φ yields the optimal solution h0(n) and f0(n). Lowpass

filters h0(n) and f0(n) are related via the halfband condition.

The following parameters have to be specified at the beginning of the optimiza-

tion process.

• the stopband frequency, ωs, of the lowpass filter H0(z).

• the weighting factors α0 and α1, which enable tradeoff between frequency se-

lectivity and smoothness of the corresponding scaling functions and wavelets,

0 < α0, α1 < 1, and 0 < α0 + α1 < 1.

• the regularity order of filter F0(z). To guarantee its smoothness, the design

specifies its regularity order, i.e., number of zeros at π. For simplicity, its

regularity order is even in the current design program.

The program can be modified to design longer length filters by adding one or

more pairs of zeros to H0(z).

7.1.3 Halfband Condition Specification Using Matrix For-

mulation

Given H0(z), this section presents a method to design the corresponding filter

F0(z) such that they form a perfect reconstruction system. Keep in mind that the

highpass filter H1(z) and F1(z) are obtained by the aliasing cancellation condition.

It implies that the convolution of h0(n) and f0(n), i.e., p(n) = h0(n) ∗ f0(n), is a

halfband filter. The following derivation assumes that all filters have zero phase

and odd length though a similar derivation can be done for other cases.
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The halfband constraint can be expressed as

p(n) =

(L−1)
2∑

k=− (L−1)
2

h0(n − k)f0(k), (7.7)

where p(n) is a halfband filter and L is the length of filter f0(n). The coefficients

of p(n) have the property

p(n) =







0.5 n = 0

0 n = ±2,±4, · · ·
p(−n) n = 1, 3, · · ·

. (7.8)

For symmetric filters f0(n), the convolution in (7.7) can be rewritten linearly [103]

as

p(n) =

(L−1)
2∑

k=1

(h0(n − k) + h0(n + k))f0(k) + h0(n)f0(0). (7.9)

Eq. (7.10) shows the matrix formulation for the case where the lengths of h0(n)

and f0(n) are 9 and 11, respectively. Correspondingly, filter p(n) has length 19.
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(7.10)

In addition to the halfband condition, the filter f0(n) has to have a certain reg-

ularity order in order to yield smooth basis functions. In our design, f0(n) takes

the following form:

F0(z) = z
R
2 (1 + z−1)RF ′(z), (7.11)
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where R is even. If R is odd, the first term becomes z
R−1

2 .

Consequently, (7.11) can be formulated in matrix form. An example for R=2

is 
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.

︸ ︷︷ ︸

f ′

(7.12)

Considering (7.10) and (7.12) together, we can design the filter f ′ by choosing

the last column of matrix [(convh)(smth)]−1 and scaling it by 1
2
. The correspond-

ing designed lowpass filter f0(n) can be obtained from f ′ according to (7.11).

The length of the designed filter f0(n) is limited as follows. The matrix

[(convh)(smth)] has to be square to allow the existence of the inverse matrix. Sup-

pose the halfband filter p is of length (4K+3) for some integer K. Consequently,

the vector p in (7.10) is of length K+1, and thus the row dimension of matrix

(convh) has to be K+1. To guarantee that the product matrix [(convh)(smth)]

is square, the column dimension of matrix (smth) must be K+1. Thus, the length

of vector f ′ in (7.12), which is (L-R-1)/2+1 for a length-L, regularity order-R filter

f0(n), equals K+1. Consequently we have

K + 1 = (L − R − 1)/2 + 1. (7.13)

Suppose filter h0(n) is of length N. Another obvious equation is

N + L − 1 = 4K + 3, (7.14)

which comes from the fact that the convolution of h0(n) and f0(n) is the halfband

filter p(n). From (7.13) and (7.14), we can obtain L=N+2R-2. This result is valid

only for even Rs. Eq. (7.13) becomes

K + 1 = (L − R)/2 (7.15)

for odd Rs and the length of f0(n) becomes N+2R.
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In summary, the length of f0(n) is

L =

{

N + 2R − 2 even R

N + 2R odd R
. (7.16)

7.1.4 Simulation Results

Four sets of filters, New1, New2, New3 and New4 are designed using the pro-

posed method. Their magnitude responses and impulse responses of their scaling

functions are shown in Fig. 7.2.
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Figure 7.2: Design examples. (a), (b), (c), (d), (e) and (f) The magnitude re-

sponses of the filters. (a-s), (b-s), (c-s), (d-s), (e-s) and (f-s) the scaling functions

corresponding to h0(n).

The tradeoff between high stopband attenuation of the analysis lowpass filter
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Table 7.1: Average PSNRs (dB) of prediction frames

Crew City Soccer Harbour
MPEG layer1 30.6 29.5 28.2 25.0
filter layer2 31.0 30.9 27.1 27.2
New3 layer1 30.2 27.7 27.8 24.6
filter layer2 30.6 29.8 27.0 26.4

Daubechies layer1 29.8 26.4 27.3 24.2
L-9 filter layer2 29.9 28.4 26.4 25.2

H0(z) and flat passband response of the synthesis lowpass filter F0(z) can be clearly

seen from plots in Fig. 7.2.

The spatial scalability performance of New3 filter set is compared to that of

the Daubechies (9,7) filters and MPEG filter. The 4CIF video sequences City,

Harbour, Crew and Soccer are filtered and downsampled frame by frame to obtain

the CIF resolution video sequences using the MPEG filter, New3 lowpass filter

and Daubechies length-9 filter. Full search motion estimation is performed on each

adjacent two frames in the CIF sequences. The average PSNRs of the obtained

prediction frames are listed in Table 7.1.

The standard CIF video sequences are applied when calculating PSNRs. The

QCIF sequences that are obtained via downsampling of CIF video sequences are

applied when calculating the PSNRs of QCIF prediction frames, since the stan-

dard QCIF sequences are not available. From the table, we can see that the

New3 filter set out-performs Daubechies (9,7) filters in performing spatial scala-

bility. Please see the website http://videoprocessing.ucsd.edu/demo.htm for

the PSNR plots of each predicted video sequence. In addition, the wavelet system

built based on the New3 filter has good performance for compression applications.

7.1.5 Conclusion

Using the maximal flat wavelet filters as prototype filters, we develop the pro-

cedure to design a class of wavelet filters, suitable for both motion estimation and

compression in SVC. This method is applicable to any halfband filter, not neces-

sarily to be maximally flat. From the magnitude response, the Daubechies (9,7)
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filters have a flat passband, but the length-9 lowpass filter has large energy leakage

in the stopband. On the other hand, the MPEG filter has high stopband atten-

uation and sharp transition band, but the corresponding lowpass synthesis filter

has a big ‘bump’ in its passband which limits its application for video compression

(see Fig. 7.2b).

The proposed design method enables a tradeoff between the features of Daubechies

(9,7) filters and those of the MPEG filter.

The design method incorporates all of the wavelet filter design requirements

and is very efficient. Several parameters are adapted in the design which enables

flexibility. The parameters can be adjusted according to particular application

requirements.

7.2 Motion Vector Prediction in Low-Complexity

Low Bit-Rate H.264-Based SVC

7.2.1 Introduction

In the H.264-based scalable video model, a low complexity implementation has

not been dealt with as an independent issue. However, it can be accomplished to

some extent by exploiting several aspects. The scalable video coding model [104]

has a choice between a fast motion estimation algorithm [105] and full search

motion estimation algorithm. A faster motion estimation method can lower the

encoder complexity considerably. Another way to achieve low complexity is to

transmit the base layer bitstream initially with none or fewer enhancement layers

sent afterwards.

In the current scalable video model, motion vectors have to be coded and sent

for all the spatial layers even under low complexity and low bit rate requirements.

Otherwise, the full resolution video sequence cannot be reconstructed at the de-

coder side. Such complexity for motion estimation and rate allocation for motion

vectors may not satisfy those applications that demand even lower complexities

and lower bit rates. In order to avoid complexity and high motion bit rates, efficient
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inter-layer motion vector interpolation techniques are required.

We propose a new inter-layer motion vector interpolation method for low com-

plexity, low bit-rate applications. The proposed scheme consists of a novel weighted

smoothing method and a novel scheme called interpolation mode map to efficiently

interpolate motion vectors between layers. The motion estimation is performed at

the lowest resolution and it does not consume much system resources since the low-

est resolution layer normally has very few macroblocks. The motion vector fields

for all other spatial layers are interpolated from that of the lowest spatial resolu-

tion layer and no other motion estimation is required. The interpolation for higher

layers is performed by the mode map method which chooses the best interpolation

method for a particular block. Consequently, no motion vectors except for those

in the lowest spatial resolution layer are needed to be coded and transmitted, thus

both the encoder complexity and the transmission bit rate decrease significantly.

The organization of this section is as follows. The combined interpolation

scheme and the mode map method that is used to record the chosen interpola-

tion scheme for a particular block are proposed in Subsection 7.2.2. Four separate

inter-layer motion vector interpolation methods are presented in Subsection 7.2.3.

Simulation results and discussions are presented in Subsection 7.2.4, which is fol-

lowed by conclusions in Subsection 7.2.5.

7.2.2 Mode map method

In this section, we propose the mode map method as a part of a combined mo-

tion vector interpolation scheme. The proposed low-complexity scalable video cod-

ing scheme combines four inter-layer motion vector interpolation methods namely:

repeat, smoothing, weighted smoothing 1 and weighted smoothing 2, for the inter-

polation of motion vectors at the higher spatial layers. The concepts and detailed

operations of each of the four motion vector interpolation methods are presented

in Section 7.2.3. For each spatial layer, a mode map is generated to indicate the

chosen interpolation method for a particular block. One example mode map is

shown in Fig. 7.3. This map has only four different values, 0, 1, 2 and 3. Thus it

has a small entropy and can be coded very efficiently. The mode map method is
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Figure 7.3: The block diagram and an example of interpolation mode map.

much more efficient compared to coding the interpolated motion vectors directly.

Each macroblock has two motion vector components and the values of both com-

ponents can vary over a wide range. As a result, the interpolated motion vector

field has higher entropy than its mode map. The tradeoff for the improved coding

efficiency is that the corresponding interpolation method has to run at the decoder

side as well. If too much computation is involved in the interpolation algorithm,

the decoder complexity will increase significantly. Fortunately, the motion vector

interpolation methods in the proposed scheme are of very low complexity.

7.2.3 Combined Motion Vector Interpolation Method

As mentioned in Section 7.2.2, four motion vector interpolation methods, re-

peat, smoothing, weighted smoothing 1 and weighted smoothing 2 are involved in

the combined method. In this section, we present the four methods one by one

while focusing on the weighted smoothing motion vector interpolation methods.
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Repeat method

The repeat method is the most direct inter-layer interpolation method. The

motion vector of a particular block at the lower resolution layer is scaled by a

factor of 2 and becomes the motion vectors of the four blocks that are at the same

positions at the higher resolution layer. The main problem with this method is that

the motion compensated frames that are obtained according to the interpolated

motion vector information suffer from significant blocking artifacts.

Smoothing method

A smooth motion vector interpolation technique is proposed in [106]. In this

technique, the local smoothness measurement of a motion vector field is defined as

Ψ = ΨN + ΨS + ΨE + ΨW + ΨD + ΨC , (7.17)

where each term corresponds to differences between various pairs of adjacent vec-

tors in various directions such as north, south, east, west, diagonal and center. To

obtain maximally smooth motion vectors, the cost function in (7.17) is minimized.

The minimization of Ψ in (7.17) is achieved by setting its first order differentiation

to be zero since it is convex.

The x and y components of the motion vectors are processed independently in

this scheme. Although the resulting smooth motion vector field reduces blocking,

undesirable smoothness at motion boundaries is introduced and could degrade the

visual quality at the motion boundaries.

Weighted smoothing methods

In situations where the adjacent motion vectors that are being smoothed lie

within the body of a moving object, minimizing the difference between them is

natural. In cases where a block is on an object boundary, it is possible that the

motion vectors of neighboring blocks point in different directions. Smoothing such

vectors would result in undesirable artifacts [107, 108]. Hence, the optimization

problem for obtaining smooth motion vectors would perform better if the terms in
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(7.17) being minimized are weighted by the correlation between the motion vectors

involved in that term.

Two weighted smooth inter-layer motion vector interpolation methods are de-

scribed as follows. The cost function in the first Weighted Smoothing approach,

WS1, is

Ψ = wXΨX + wY ΨY + wD1ΨD1 + wD2ΨD2 + ΨC , (7.18)

where the X , Y , D1 and D2 directions are indicated by arrows in Fig. 7.4(a). It can

be seen as a weighted expansion of the object function in (7.17).

In the second Weighted Smoothing approach, WS2, the cost function formula-

tion follows similar principles as in approach WS1. Only the directions are formed

differently as shown in Fig. 7.4(b). The cost function is

Ψ = wNΨN + wSΨS + wW ΨW + wEΨE + wD1ΨD1

+wD2ΨD2 + wD3ΨD3 + wD4ΨD4 + ΨC , (7.19)

In the following, we present the expressions for the Ψis in (7.18) and (7.19),

where i=N, S, W, E, D1, D2, D3, D4, C, and show how the weights for Ψis are com-

puted. After weights are calculated, the differential method proposed in [106] can

be used to find the solution of (7.18) and (7.19) such that the weighted smoothness

is maximized. The convexity of objective function (7.17) is preserved when it is

expanded to the weighted forms in (7.18) and (7.19).

Ψi calculation

Referring to Fig. 7.4(a), the expressions for ΨY , ΨD1 and ΨC in (7.18) can be

written as

ΨY = (VN − V1)
2 + (V1 − V3)

2 + (V3 − VS)2 + (VN − V2)
2

+(V2 − V4)
2 + (V4 − VS)2 (7.20)

ΨD1 = (Vd1 − V1)
2 + (V1 − V4)

2 + (V4 − Vd4)
2 (7.21)

ΨC = (V1 − VC)2 + (V2 − VC)2 + (V3 − VC)2 + (V4 − VC)2

(7.22)
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The X(i.e., horizontal) and D2 directions can be written in a similar fashion to

(7.20) and (7.21) respectively. In these equations, V1, V2, V3 and V4 are unknown

motion vectors and other Vis are neighboring motion vectors at the lower resolution

layer as shown in the Fig. 7.4(a).

Weight calculation

The proposed weighted smoothing methods utilize correlation between the mo-

tion vectors for improved motion vector interpolation [107, 108]. The correlation

information is used to find weights in different ways based on how the vectors are

grouped into Ψi. Two variants are proposed here, one corresponds to approach

WS1 and the other corresponds to approach WS2.

In the WS1 approach, the relative orientation of the vectors along each of

these axes in the base layer motion vector field determines the weights wi. The

normalized dot product is computed between each of the three pairs of vectors along

each direction in the lower resolution image. Let a1, a2, a3 refer to the normalized

dot products for a particular direction, say horizontal. Then the weight wX = w2

in that direction is computed as

w =

{
a1+a2+a3

3
a1 + a2 + a3 > 0

0 otherwise.
(7.23)

If the sum of the normalized dot product is negative, the vectors along this axis

are completely uncorrelated and should not be smoothed. It is clear that if all

three vectors along an axis are in the same direction, the weight is 1 for that axis.

Also, the center has a default weight of 1. Hence smoothness at the center, which

involves minimizing differences between each of V1, V2, V3, V4 and Vc has a higher

weight.

In the WS2 approach, the correlation between VC and each of its 8-neighbors

at the lower spatial resolution layer given by the normalized dot product is directly

used as a weight to minimize the corresponding term in the cost function, i.e., wN

is obtained by the dot product of VN with VC .

We note that when one of the motion vectors is zero and the other motion

vector’s magnitude is zero or close to zero, the correlation between them should be
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(a) Directions used in approach WS1. (b) Directions used in approach WS2

Figure 7.4: Vi, i = 1, 2, 3, 4 represent motion vectors to be interpolated.

high. Thus, the weight calculation scheme above is unable to arrive at the correct

conclusion. In this case, the weight is computed as w = max[(1 − ||Vi||
th

), 0], where

the threshold th equals
√

50 which corresponds to one third of the general 15-pixel

search range in each direction.

7.2.4 Simulation Results and Discussions

Simulations are performed to show the effectiveness of the proposed method in

this section.

Simulation settings

The encoder and GOP: The baseline JPEG encoder is used to code residue

error frames. A Group Of Picture (GOP) structure: IPPPP is used in the

encoder, where each I frame is followed by four P frames. However, the im-

provements in compression performance is not limited by this GOP structure

as typically, the larger the GOP size, the better the improvements. This is

because the degradations in the reference frame propagate into the frames
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which have used the degraded frame as a reference frame for motion esti-

mation and motion compensation. Consequently, the quality differences of

reconstructed frames (of the same frame index) in two competing methods

become larger as the frame index goes towards the end of a GOP.

Bit assignment scheme: Bit assignment among I frames, motion vectors

and residue error frames is implemented using a simple scheme. In this

scheme, the quantization matrix associated with I frames is 1
2
Q while Q is

the quantization matrix for the coding of residue error frames. The motion

vectors are coded losslessly using the DPCM [109] scheme. Although more

efficient but generally more complicated bit assignment schemes are avail-

able, it is not necessary to apply one in this simulation. This is because, in

principle, a better bit assignment scheme would improve the performance of

both repeat and the proposed methods.

Parameters of the test video sequences: The test sequences are encoded

at 30fps, and 30 frames of each sequence are used in simulations. Sequences

Foreman, Bus, Paris, Crew and Soccer are used. The comparison results can

be interpreted as performance difference during one second at a 30 fps rate.

The MPEG downsampling filter is used to obtain various spatial resolution

sequences. The full spatial resolution is regarded as spatial layer 0. For

4CIF video sequences, CIF spatial resolution is obtained at spatial layer 1

and QCIF spatial resolution is obtained at spatial layer 2. For CIF video se-

quences, QCIF resolution is obtained at spatial layer 1 and SQCIF resolution

is obtained at layer 2.

Motion estimation parameters: Full search motion estimation is per-

formed at layer 2. The full search motion estimation parameters are: search

range=4 pixels in each direction (which corresponds to 16 pixels in the high-

est resolution), motion vector precision= 1
4
pixel, and motion estimation block

size=16×16 for QCIF spatial resolution, block size=8×8 for SQCIF spatial

resolution.
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I frame coding: Coding of I frames is not the focus of this simulation.

However, if each of the three spatial layers is coded separately, too many bits

would be used. To avoid this, the I-frame prediction coding scheme [104] is

adopted here. In this scheme, only the base layer (layer 2) I frame is coded

as a ‘real’ I frame while in the layer 1 and 0, I frames are predicted from

layers 2 and 1, respectively, with the residue frames coded. The prediction

frame is an interpolated version of the reconstructed I frame from the lower

spatial layer.

Coding of the mode maps

The experiment shows that one interpolation method would dominate the in-

terpolation process for the test sequences. For example, around 60% blocks in

the Foreman sequences are interpolated using WS1 method, about 20% blocks are

interpolated with the repeat method and the WS2 and smoothing methods are

used for the remaining blocks. Due to this observation, we fixed the mode maps

coding scheme with 1 bit to indicate WS1, 2 bits to indicate repeat method and 3

bits to represent WS2 and smooth methods for all the test sequences.

We checked and compared the motion vector field and mode map coding at

the 8th test point of the Foreman sequence. The average number of motion vector

bits is around 130 bytes while the average number of mode map bits is around 80

bytes. The bits required to code the mode map is approximately 1
6

of the amount

that is required to code the corresponding motion vector field directly.

Comparison of compression performances

The motion vectors obtained from full search motion estimation at layer 2

are interpolated using the repeat method and the proposed method to obtain the

interpolated motion vector field for spatial layer 1 and 0, respectively. Motion

compensation is performed according to the interpolated motion vector fields and

residue frames are obtained by subtracting the motion compensated frames from

the original frames. The motion vectors from spatial layer 2, the resulting error

frames of three spatial layers and the mode maps (in the proposed method only)
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are coded. Then the total number of bits used in each method with respect to the

PSNR quality of reconstructed frames is plotted.

The PSNR versus bitrate curves of the Foreman(CIF) and Soccer(4CIF) se-

quences are shown in Fig. 7.5 and Fig. 7.6 respectively. For discussion conve-

nience, each curve is divided into three regions: region A, B and C. In region A

the repeat method outperforms the proposed method. This is because at very low

bitrate, very small amount of bits are assigned to code the residue error frames in

both schemes. Although the proposed method consumes less bits, the bit difference

is small. In this context, the actually small amount of bits that is used to code the

mode maps in the proposed method becomes a significant percentage of the overall

bitrate. In contrast, the PSNR improvement of the reconstructed frames is small.

We checked the bit assignment results of the second test point, which is close to

the separation bitrate TA in Fig. 7.5(b). Of the total 100 Kb in the repeat method,

about 34 Kb are assigned to code the six I frames (total frames (30)/GOP size

(5)=6) and about 3 Kb are used to code the 24 (No. of P frames) motion vector

fields from the base layer. Thus, about 63 Kb are used to code the 24 three-layer

residue error frames. On average, each three-layer error frame is assigned 2.6 Kb

while the total data of it is about 133 Kb (=352×288×(1+1
4
+ 1

16
)). Thus, the com-

pression ratio of the error frame is about 48. This check verifies that a very small

amount of bits is assigned to code the residue error frames in cases in region A

(left to rate TA). In regions B (between rate TA and TB) and C (right to rate TB ),

the proposed method outperforms the repeat method. We regard points in region

C as cases where plenty of bits are available to code residue error frames. In these

cases, if the encoder complexity isn’t a big concern, performing full search motion

estimation at each layer and coding motion vectors as well as low energy residue

error frames from each layer is a better choice. Region B represents cases where

the proposed method is a good choice: a low encoder complexity and a relatively

low bitrate budget. The switching bitrate TB should be decided by considering

complexity and bitrate budget jointly.

For the same reconstruction quality, the typical bits saved are 10% as high-

lighted in Fig. 7.6(b) where the bitrate difference, S, is more than 100 Kb, which
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is more than 10% of the total 1000 Kb.

In addition to the Foreman and Soccer sequences, we test video sequences

Bus(CIF), Paris(CIF) and Crew(4CIF) and observe that the proposed method

performs consistently better than the repeat method for various video sequences.
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Figure 7.5: Reconstruction quality versus bitrate (Foreman). Layer 2 is the base

layer and the spatial resolution is SQCIF.

7.2.5 Conclusions

We presented a class of weighted smoothing methods for inter-layer motion

vector interpolation and a mode map method to code the interpolated motion

vector fields efficiently. The two techniques together provide a low complexity and

low bitrate scalable video coding scheme.

The weights in the weighted smoothing methods measure the correlations of

neighboring motion vectors and the weighted smoothness is maximized thus avoid-

ing smoothness at motion boundaries. This class of methods model the naturally

smooth but local motions in real video sequences.

The mode map for each spatial layer is generated to indicate the chosen inter-

polation method for a particular block and can be coded very efficiently. Future

work will be on reducing the overhead of the mode map by exploiting inter-layer

correlation.



109

50 100 150 200 250 300 350 400
27

28

29

30

31

32

33

34

35

36

bit rate (kb)

av
er

ag
e 

ps
nr

repeat

proposed

(a) at layer 1

200 400 600 800 1000 1200 1400 1600 1800
27

28

29

30

31

32

33

34

35

36

bit rate (kb)

av
er

ag
e 

ps
nr

repeat

proposed

S

(b) at layer 0

Figure 7.6: Reconstruction quality versus bitrate (Soccer). Layer 2 is the base

layer and the spatial resolution is SQCIF.

The text of this chapter is adapted from the material that has published in part

as: M. Li and T. Q Nguyen, Optimal wavelet filter design in scalable video coding,

IEEE International Conference on Image Processing 2005 and also will appear in

part as M. Li, P. Chandrasekhar, G. Dane and T. Q Nguyen,Low-Complexity and

Low Bitrate Scalable Video Coding Scheme Using Inter-Layer Motion Vector In-

terpolation Techniques, Asilomar Conference on Signals, Systems and Computers

2007. The dissertation author was the primary researcher of these publications,

and the co-author T. Q Nguyen listed directed and supervised the research which

forms the basis for this chapter.
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Conclusions and Future Work

With the development and improvements of digitization and display technolo-

gies, digital video broadcasting evolves into the broadcasting of multimedia con-

tent to both homes and mobile devices. During this evolution, the requirements

on image qualities have been increased significantly, which call for efficient post-

processing algorithms.

Furthermore, with the ever increasing computational power of today’s proces-

sors, it becomes feasible to use more robust and computationally more complex al-

gorithms to perform content-adaptive post-processing. The traditional algorithms

have been preferred not for their performance but for their low implementation

complexity. The work in this dissertation explores the application of Markov Ran-

dom Field (MRF) models in video post processing. MRF models are able to model

the spatial dependencies among pixels in an image and can serve as a tool to im-

pose spatial constraints on the processed images. It is highly locally adaptive and

is a state-of-art fit for the content-adaptive processing purpose.

The work done in this thesis is summarized as follows.

Formulation of 2-D DAS Constraint

We formulate the 2-D discontinuity-adaptive smoothness constraint and impose

it on the processed images via a MRF model. This constraint assumes piecewise

smoothness of images, where the smoothness does not cross discontinuity features,

110
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such as edges and object boundaries. This helps the processed image to achieve

smoothness along edge directions and remain sharp in across-edge directions.

Statistic-based approach to measure local edge direction information

Local edge direction information is required when formulating the 2-D DAS

constraint. Considering the limitations of the conventional binary representation

(edge direction, non-edge direction) of local edge directions in natural images, we

proposed a statistic-based approach to measure the local edge direction. That is

more robust. In this approach, the local edge direction is represented by a weight

vector. Each entry of the vector corresponds to a weight that is associated with

a discrete direction and a relatively large weight indicates a higher possibility of

being the local edge direction.

Application in MC de-interlacing

The formulated 2-D DAS constraint is applied to MC de-interlacing and spatial

interpolation problems. In MC de-interlacing, efficient protection against erroneous

MVs is necessary. Furthermore, the protection should not be over-protective, which

could limit the advantages of MC. Thus, it is challenging for existing protection

strategies to simultaneously guarantee consistency and sharpness of edges. Using

a MRF model, the 2-D DAS constraint is imposed on the de-interlaced frame.

The final output of each pixel site will be the one that fits its context best under

the 2-D DAS constraint. The context includes neighboring pixels from both the

available field and newly interpolated field. The de-interlaced edges are expected

to have strong geometric regularity.

MRF-EDI spatial interpolation

As for spatial interpolation methods, the traditional polynomial-based interpo-

lation methods assume continuity of the pixel intensity field, which is unrealistic,

and typically produce images with blurred edges. Edge-directed interpolation is

proposed to improve the interpolation performance. However, it is challenging to

specify the edge direction explicitly because edges in natural images are widely
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contaminated by all kinds of imaging noise. We proposed the MRF-EDI interpo-

lation method, which uses the local edge direction information through the 2-D

DAS constraint in an implicit manner. The interpolated image is clean and has

sharper edges.

Low complexity implementation of the proposed algorithms

The proposed MRF-based MC de-interlacing and spatial interpolation algo-

rithms are iterative optimization algorithms. The computational complexity may

be too high for real-time processing. We investigated the low-complexity imple-

mentation of the algorithms. One strategy is to limit the proposed processing only

to pixels near edge areas where a pre- discrimination process discriminates edge

pixels from smooth area pixels. We also designed a single pass implementation

to remove the iterations in the algorithm. The degradation in the interpolation

results has been minimal.

In addition to the work with video post-processing, this thesis also contains

some work with wavelet-based and H.264 AVC- based scalable video coding.

Filters design in wavelet-based SVC

In wavelet-based SVC, the Low Band Correction (LBC) technology is preferred

for its efficiency in reducing overhead information and the size of the bit stream.

However, with the LBC techonology, the lowpass filter implementing spatial scal-

ability has to be a wavelet filter, which obeys the strong half-band condition. The

requirements of being a good wavelet filter for compression purposes and of being

a good lowpass filter for scalability purpose are conflicting requirements.

Using the maximally flat wavelet filters as prototype filters, we develop a para-

metric design method to design a class of wavelet filters. The design method incor-

porates all of the wavelet filter design requirements and achieves optimal tradeoffs

of conflicting requirements. Consequently, the designed filters are suitable for both

motion estimation and compression in SVC.
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Motion vector prediction in low-complexity low bit rate H.264-based

SVC

In the H.264 AVC-based scalable video model, motion vectors have to be coded

and sent for all the spatial layers even under low complexity and low bit-rate

requirements, which is not efficient.

We investigated the possibility of performing inter-layer motion vector pre-

diction/interpolation in low bit-rate applications such that not all motion vectors

have to be sent to the decoder. The performance of several methods was tested and

compared. There is no single method that performs constantly better than others

and thus we combined the interpolation methods to produce a novel mode-map to

indicate the chosen method for a block. The mode map can be coded efficiently

and the overall inter-layer motion vector prediction/interpolation method does not

smooth motion vectors that are near motion boundaries.

In the future, this work can be extended in the following two aspects.

1) The proposed MRF-based algorithm can be modified to perform other

video post-processing, such as edge-enhancement (sharpening) and motion

de-blurring. For example, in the sharpening application, the proposed MRF

model can function as a regularizer to optimize the sharpened images.

2) The proposed algorithms can be modified to have better content-adaptive

properties. Currently, all local discontinuity features are dealt with as straight

lines, which is not accurate enough for corners and curves with large curva-

tures. If a better model or approximation of corners and arbitrary curves can

be formulated, the algorithm should demonstrate an even stronger content-

adaptive property. We hope this work can inspire more efficient MRF-based

video post processing algorithms, which can show stronger content-adaptive

property.

3) After the defensing presentation, one committee member pointed out that

the robustness of the potential function is one important aspect to study. I



114

agree with this point and include the robustness analysis of potential func-

tions as one of my future works. One reference paper for this kind of analysis

is [110], which analyzed the outlier rejection property of line processes.
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Appendices

9.1 Appendix A: The Half-Normal Distribution

Let the random variable Z have a zero mean normal distribution, Z ∼ N(0, 1),

and let W equal the absolute value of Z, W = |Z|. Then the random variable W

obeys the half normal distribution [111] and the probability density function of W

can be expressed as

f(w) =
2√
2π

exp{−w2

2
}, w ≥ 0. (9.1)

The expectation of W 2, E[W 2], equals E[|Z|2]=E[Z2] = 1 and the expectation of

W can be obtained by integrating wf(w) from 0 to ∞. The result is constant

λ =
√

2
π
.

If random variable X obeys the general normal distribution, X ∼ N(µ, σ2),

random variable Y = µ + |X − µ| obeys the general half normal distribution and

the probability density function can be expressed as

f(y) =
2√
2πσ

exp{−(y − µ)2

2σ2
}, y ≥ µ. (9.2)

The expectation values of Y and Y 2 are E[Y ] = λσ+µ and E[Y 2] = σ2+µ2+2λσµ

respectively, which can be derived by employing the facts Z = X−µ

σ
, W = Y −µ

σ
and

linear properties of the expectation operation.

By setting the mean µ as 0, it can be concluded that, if random variable X

obeys distribution N(0, σ2), variable Y = |X| will obey half normal distribution

with E[Y ] = λσ and E[Y 2] = σ2.
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9.2 Appendix B: The Gibbs Distribution and the

MRF Property

Suppose P (ω) is a Gibbs distribution on state space S with respect to neigh-

borhood structure N . The conditional probability of pixel i given all the other

pixels in the configuration, which is represented by ωI−{i} , is

P (ωi|ωI−{i}) =
P (ωi, ωI−{i})

P (ωI−{i})
=

P (ω)
∑

ω′
i∈ω′ P (ω′

i)
, (9.3)

where ω′ = {ω′
1, · · · , ω′

i−1, ω
′
i, · · · , ω′

M} is any configuration which agrees with ω at

all sites except for pixel site i.

As P (ω) obeys Gibbs distribution, we have

P (ω) =
exp{−∑

c∈C Vc(ω)}
Z

, (9.4)

From (9.3) and (9.4), we obtain

P (ωi|ωI−{i}) =
exp{−∑

c∈C Vc(ω)}
∑

ω′
i∈ω′ exp{−∑

c∈C Vc(ω′
i)}

. (9.5)

The cliques set C can be written as the union of two subsets, C = A∪B, where

A includes only those cliques that contain site i and B includes all the other cliques

that do not contain site i. With C = A ∪ B, the conditional probability can be

expressed as

P (ωi|ωI−{i}) =
exp{−∑

c∈A Vc(ω)} exp{−∑

c∈B Vc(ω)}
∑

ω′
i∈ω′ exp{−∑

c∈A Vc(ω′
i)} exp{−∑

c∈B Vc(ω′
i)}

. (9.6)

Because Vc(ω) = Vc(ω
′) for any clique c that does not contain i, exp{−∑

c∈B Vc(ω)}
is cancelled out by exp{−∑

c∈B Vc(ω
′
i)}. Eventually, the conditional probability is

expressed as

P (ωi|ωI−{i}) =
exp{−∑

c∈A Vc(ω)}
∑

ω′
i∈ω′ exp{−∑

c∈A Vc(ω′
i)}

. (9.7)

That is, the conditional probability depends on i’s neighbors only. Thus, a GD

results in an MRF.
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