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Timescales of Evidence Evaluation
for Decision Making and Associated
Confidence Judgments Are Adapted
to Task Demands
Rashed Harun, Elizabeth Jun, Heui Hye Park, Preetham Ganupuru, Adam B. Goldring
and Timothy D. Hanks*

Department of Neurology and Center for Neuroscience, University of California, Davis, Davis, CA, United States

Decision making often involves choosing actions based on relevant evidence. This can
benefit from focussing evidence evaluation on the timescale of greatest relevance based
on the situation. Here, we use an auditory change detection task to determine how
people adjust their timescale of evidence evaluation depending on task demands for
detecting changes in their environment and assessing their internal confidence in those
decisions. We confirm previous results that people adopt shorter timescales of evidence
evaluation for detecting changes in contexts with shorter signal durations, while
bolstering those results with model-free analyses not previously used and extending the
results to the auditory domain. We also extend these results to show that in contexts
with shorter signal durations, people also adopt correspondingly shorter timescales of
evidence evaluation for assessing confidence in their decision about detecting a change.
These results provide important insights into adaptability and flexible control of evidence
evaluation for decision making.

Keywords: perceptual decision, change detection, behavioral model, confidence, audition, evidence evaluation

INTRODUCTION

In statistical analysis, change point detection refers to the identification of the times when the
underlying probability distribution of a time series changes. This has important applications in
manufacturing, medical diagnosis, economics, and many other domains. It is also an important
component of everyday human decision making. Many decisions require or benefit from
explicit detection of changes in the environment. These range from situations as mundane as
determining when to go at a traffic light to situations as critical as determining when to flee from
potential danger.

The ideal observer decision process for change point detection differs from many other types of
decisions that benefit from perfect integration of evidence. Perfect integration combines separate
samples of evidence by giving them equal weight. For a stable environment, equal weighting of
independent samples of evidence will average out variability to obtain the best estimate of the
environmental state to inform one’s decision. This is the basis of accumulation to bound decision
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models, including the sequential probability ratio test (SPRT) and
drift-diffusion model (Wald and Wolfowitz, 1948; Stone, 1960;
Laming, 1968; Link, 1992; Ratcliff and Rouder, 1998; Ratcliff and
Smith, 2004; Palmer et al., 2005).

In contrast, change point detection inherently involves
environmental instability and comparison of the environmental
state at different times. In this situation, combining all samples
of evidence together with equal weight can reduce sensitivity. In
the extreme, imagine a scenario where failure to detect a change
in a timely manner results in a highly salient secondary cue that
the change has been missed. For example, if you are stopped at a
busy traffic intersection waiting for the light to turn green, failure
to move your car within a few seconds of that change will likely
be cued by honking horns from fellow drivers. Thus, more weight
should be given to recent samples of evidence about the light’s
color because it is unlikely the light turned green in the more
distant past if you have not heard honking horns. In general,
because perfect integration of evidence gives equal weight to all
time points, it can result in a loss of sensitivity for change point
detection where the most relevant part of the signal occurs in a
limited window of time (Lasley and Cohn, 1981).

Solutions to this problem universally involve differential
weighting of evidence over time for optimal change point
detection. For example, adopting “leaky” rather than perfect
integration of evidence introduces a time constant of evidence
decay, and therefore gives more weight to recent evidence
compared to that gathered earlier in time (Ossmy et al.,
2013; Glaze et al., 2015). This and related solutions effectively
reduce the timescale of evidence evaluation compared to
perfect integration.

The optimal timescale of evidence evaluation for change point
detection depends on the statistics of the environmental changes
(Ossmy et al., 2013; Glaze et al., 2015; Radillo et al., 2017; Piet
et al., 2018). Shorter timescales are required for detecting changes
in more volatile environments and when signal durations are
briefer. Humans have been shown to adapt their timescale of
evidence evaluation accordingly as a function of the distribution
of signal durations and timing for visual stimuli (Tsetsos et al.,
2012; Ossmy et al., 2013; Bronfman et al., 2016; Levi et al.,
2018). Humans have also been shown to adapt their timescales
of evidence evaluation in the optimal direction as a function of
volatility when classifying source distributions for the location
of visual stimuli (Glaze et al., 2015). Additionally, both humans
and rats have been shown to adapt their timescales of evidence
evaluation in the optimal direction as a function of volatility
when discriminating the current state of a sensory stimulus in
a changing environment (Glaze et al., 2015; Piet et al., 2018).
Furthermore, for this work in rats, the timescale of evidence
evaluation has been shown to be optimal when taking into
account noise in sensory processing (Piet et al., 2018).

Here, we extend this line of work using an auditory change
detection task that we have recently developed (Johnson et al.,
2017). We corroborate previous findings that the timescales of
evidence evaluation can be adapted to expected signal durations
(Ossmy et al., 2013), and extend those results beyond the visual
domain to the auditory domain. In addition to using model-
based analyses similar to the previous work, we demonstrate

this result using model-free psychophysical reverse correlation
(RC) methods. Our task also involves a confidence judgment
component (Ganupuru et al., 2019), allowing us to show that the
timescale of evidence evaluation for confidence in the detection
responses also adapts to expected signal durations. Our results
suggest that adaptive timescales of evidence evaluation are a
general feature of decision processes for change point detection.

MATERIALS AND METHODS

Subjects
A total of 12 subjects were recruited to perform the experiments.
One subject discontinued experimentation at her will. We
analyzed the data from 11 subjects (eight female and three
male). All subjects were aged 18–32 and members of UC Davis.
Three subjects had knowledge about the research motivations
prior to data collection, and the remaining subjects were naive.
Subjects were compensated with $10 Amazon gift cards for
each session that lasted approximately 60 min irrespective of
task performance. Study procedures were approved by the UC
Davis Institutional Review Board, and all subjects provided
informed consent.

Change Detection Task
Apparatus
The experimental apparatus consisted of three conical ports (left,
middle, and right) fitted with LEDs to indicate when the port
could be utilized during a trial and IR beam break sensors that
detected when a finger was inserted into a port. The task was
programmed in MATLAB, which controlled a BPOD interface
that measured the outputs of the behavioral task in real-time
(Sanworks). The auditory stimulus was generated using Pulse
Pal (Sanders and Kepecs, 2014), while the feedback sounds were
generated through the PC and played through headphones worn
by the subjects.

Task Structure
The structure of the change detection task is a modified version
of what was previously described (Ganupuru et al., 2019).
Subjects began each trial by inserting their finger into the
middle port of the behavioral apparatus (Figure 1), whereupon
a train of auditory clicks played. The clicks were randomly
generated through a Poisson process with a mean click rate
of 50 Hz. Thereafter, in change trials, there was a randomly
timed change in the generative click rate that subjects were
tasked to respond to by removing their finger from the port
within a response window. The change time was drawn from a
truncated exponential distribution (mean 4 s, minimum 0.5 s, and
maximum 10 s) to approximate a flat hazard function, meaning
that the instantaneous probability of a change occurring does
not increase or decrease throughout a trial. In a random 30%
of trials, there was no change (catch trials), and the stimulus
continued at a 50 Hz rate for a duration matching the response
window if there had been a change. For catch trials, subjects
were tasked to keep their finger inserted for the full duration
of the stimulus. Thus, there were four possible trial outcomes.
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FIGURE 1 | Schematic of a change trial in the auditory change detection task. Trials begin with the LED “on” in the center port, instructing subjects to insert their
finger. Thereafter, a series of stochastic auditory clicks generated by a 50 Hz Poisson process play, followed by an increase in the generative click rate at a random
time (red arrow in this example). For a correct response, subjects must withdraw their finger from the port within the allotted response window (gray region –
1,000 ms in the LRW condition and 500 ms in the SRW condition). Lastly, subjects have to report their confidence in successfully completing the trial by poking the
right port or left port to indicate high or low confidence, respectively. Auditory feedback was then provided to indicate if subjects were correct.

If the subject removed their finger when there was no change
in the generative click rate, it was classified as a “false alarm”
(FA). In catch trials, if the subject left their finger in the port
for the duration of the stimulus, it was classified as a “correct
rejection” (CR). In change trials, if the subject reported a change
within the allotted response window, it was classified as a “hit,”
while if it was not reported in time it was classified as a “miss.”
Sometimes, subjects responded shortly after the response window
elapsed, which could cause some ambiguity for the subject about
whether they removed their finger within that response window
or whether it was too late. For this reason, we incorporated a
subtle 200 ms haptic feedback signal if the finger was removed
during the stimulus presentation as in the case of a “hit” or FA
but not a “miss” or CR.

In the last step of each trial, subjects had to indicate their
confidence in successfully completing the trial by inserting their
finger into the right port for high confidence or left port for low
confidence. Subjects were instructed to report confidence in a hit
if they had removed their finger in time (i.e., for a trial that could
be either a hit or FA), and confidence in a CR if they had not
removed their finger before the end of the stimulus (i.e., for a
trial that could be either a CR or miss). Auditory feedback was
delivered through the headphones to indicate whether the subject
was successful in the trial regardless of indicated confidence,
using a high frequency or low frequency fluttering tone for
correct or incorrect, respectively. To encourage the reporting
of confidence consistently within and across subjects, there
was a point structure similar to previous work (van den Berg
et al., 2016). If the subject indicated high confidence, they were
awarded two points or lost three points if they were successful
or unsuccessful, respectively. In contrast, if the subject indicated
low confidence, they were awarded one point or lost one point

if they were successful or unsuccessful, respectively. In order to
maximize their score, subjects should indicate high confidence
if they were >2/3 likely to be successful. After the confidence
report, the inter-trial interval did not begin until a minimum time
from trial start so that faster responses would not result in shorter
overall trial times.

Subjects performed one session per day of this experiment,
which consisted of three to four approximately 15-min
experimental blocks separated by short breaks. For each
experimental condition (see below) subjects performed one
training session and additional training sessions as necessary
to meet satisfactory performance criteria (<25% FA rate
and accuracy >45% for the session). Thereafter, the subjects
completed 3–5 sessions in each condition.

Experimental Conditions
This experiment was designed to examine how altering the
response window affected the timescale of evidence evaluation.
Thus, subjects were tested in two different explicitly instructed
response window conditions – a long 1,000 ms response window
condition (LRW) and a short 500 ms response window condition
(SRW). Subjects were initially tested on the LRW and then the
SRW version of the task. We used this design rather than counter-
balancing because we wanted to first replicate our results from a
previous manuscript that used a response window closer to the
duration of the LRW condition (Ganupuru et al., 2019). This
provides a foundation for observing changes in strategy relative
to behavior that has already been characterized.

By virtue of having different response windows, changes of the
same magnitude should be easier to detect in the LRW condition
because subjects have more time to respond. To control for task
difficulty, we manipulated the proportions of change magnitudes

Frontiers in Neuroscience | www.frontiersin.org 3 August 2020 | Volume 14 | Article 826

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-00826 August 11, 2020 Time: 19:12 # 4

Harun et al. Contextual Adaptation of Evaluation Timescales

(1s) in the two conditions. Subjects were exposed to the same set
of 1s (10, 30, 50, and 70 Hz increases) in each condition; however,
the low magnitude 1s (10 and 30 Hz) were more prevalent in
the LRW, while the high magnitude 1s (50 and 70 Hz) were
more prevalent in the SRW. Specifically, the 1s were randomly
drawn from linear probability distributions. The probabilities for
1s 10, 30, 50, and 70 Hz in the LRW condition were p = 0.35,
0.28, 0.22, and 0.15 and in the SRW condition were p = 0.13,
0.21, 0.29, and 0.37. These distributions yield similar miss rates
in the two conditions for an ideal observer after accounting for
non-decision time (NDT) and while keeping FA rate the same.

We considered keeping proportions of 1s similar for the
two conditions. That would have eliminated a confound in
stimulus change magnitude between conditions but introduced
a confound in task difficulty because it is more difficult to
detect the same change in a shorter period of time. The latter
could be particularly problematic for our experimental approach
if it resulted in fewer FA trials that we use to estimate the
psychophysical RC detection report kernel (see below). We
also worried that this difference could lead to differences in
motivation. To combat these concerns, we devised an alternative
that would still use the same magnitudes of stimulus changes
in the two conditions, but with proportions set so that the miss
rate would be the same for an ideal observer who keeps FA
rates matched between conditions. In this way, we can directly
compare performance on matching stimulus change magnitudes
while keeping overall difficulty the same.

Data Analysis
Behavioral Performance
The data points for the psychometric functions were generated
from all change trials in which there wasn’t a FA; in other
words, trials in which subjects were able to listen for a change.
Proportion of ‘hits’ for a given 1 were plotted in Figure 2A, and
data points were fit using a logistic function (Eq. 1).

P (1) =
1

1+ 10−α(1−β)
(1)

In Eq. 1, α corresponds to the slope and β corresponds to the 50%
threshold of detection.

We computed the rates of the different trial types and
expressed the proportion of FAs across all trials, the proportion
of hits and misses across all change trials excluding trials in which
there was a FA, and the proportion of CRs across all catch trials.
The standard error for these proportions were determined using
the binofit function in MATLAB (Figure 2B). Because confidence
reports after each trial ended were binary (high confidence
or low confidence), we similarly estimated the standard error
for reporting high confidence in being successful for each trial
outcome (i.e., hit, miss, FA, and CR) in Figures 2C,D.

Psychophysical reverse correlation detection report kernels
We utilized psychophysical RC on FA trials to make model-
free estimates of how subjects temporally weighted evidence to
make their response decisions (Beard and Ahumada, 1998; Neri
et al., 1999; Churchland and Kiani, 2016). RC “detection report
kernels” were produced by aligning click trains from all FA trials

of a given condition (i.e., LRW and SRW) to the times of the
FAs (Figure 3A). The clicks were convolved using a causal half-
gaussian filter (σ = 0.05 s) and averaged to produce detection
report kernels, which estimate the average click rate that preceded
a FA detection report. There was an attrition in the number
of trials that contributed to each timepoint in the detection
report kernel preceding the time of the FA due to the variability
associated with the time of FA from the stimulus onset. Because
FAs are defined as trials in which subjects responded during the
baseline (pre-change) period and that stimulus is generated by a
Poisson process, the actual rate of clicks calculated for any time
interval during this period exhibits Poisson fluctuations around
the mean generative rate. If subjects responded randomly, these
fluctuations would average out to the mean generative rate. In
contrast, if the RC kernel significantly differs from the generative
baseline rate, it indicates that Poisson fluctuations in the actual
click rate on individual trials influence the subjects’ detection
responses. Furthermore, the Poisson property implies that there
are no temporal correlations in the stimulus. Thus, deflections in
the detection report kernel above baseline, if significant, reflect
periods of time that influence the detection responses without
being confounded by neighboring periods of time that may or
may not have an influence.

To estimate the timescale of evidence evaluation for making
detection responses, we estimated the start of the detection
report kernel (Figure 3B). We fit the final 4 s of the detection
report kernel until its maximum height using a two-piece linear
function. This provided estimates and confidence intervals for
three free parameters – baseline rate, slope, and the start point.
To test whether the kernels were longer in the LRW compared
to the SRW across subjects, we performed a pooled t-test on the
mean difference in start points (H0: µLRW − µSRW ≤ 0).

To determine whether RCs depended on the time of the
FA response, we also performed an identical analysis after first
separating trials by the FA time (Figures 3C,D). We used two
epochs, the first 3.5 s of the trial and greater than 3.5 s of the trial.
To determine whether the RC differences between conditions
were also present for hit trials, we performed the same analysis
aligned to the time of the detection report on hit trials (Figures
3E–H). Hits necessarily involve the confounding influence of
the increase in the generative stimulus rate, so an increase in
the hit RC cannot be interpreted as readily as for FA trials.
Nonetheless, we can still compare the hit RCs between conditions
to find differences. These comparisons were based on estimates
of the start of the detection report kernel in the same manner as
described above for FA RCs.

Psychophysical reverse correlations confidence judgment
kernels
Reverse correlation analysis was also utilized to estimate the
timescales of evidence evaluation for judging one’s confidence
in successfully detecting a change (Figure 4). To do this,
we generated detection report kernels as described above, but
conditioned upon the subsequent confidence report. As high
confidence was generally reported for FAs triggered by higher
click rates, we estimated the time period over which the click rate
was higher for high confidence FAs relative to low confidence
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FIGURE 2 | Task performance (combined N = 11 subjects). (A) Psychometric functions on the task conditions as delineated by hit rate vs change magnitude. Data
points were fit by a logistic function (dashed lines). Note that the proportion of 1s differed in the two conditions to try to match task difficulty, with probabilities for 1s
10, 30, 50, and 70 Hz in the LRW condition 0.35, 0.28, 0.22, 0.15, and in the SRW condition 0.13, 0.21, 0.29, 0.37, respectively. (B) Rate of trial outcomes in the
two conditions. (C) Proportion of high confidence reports on hit and miss trials as a function of change magnitude (1). (D) Proportion of high confidence reports on
FA and CR trials. (E) Reaction times separated by 1 are plotted as the cumulative response probability as a function of the time from the change. Error bars indicate
standard error of proportion.

FAs. This was done by taking the difference of the detection
report kernels (high – low confidence) and approximating the
start of this “confidence judgment kernel” using the same fitting
method as described above for estimating the start of the
detection report kernels.

Model-Based Analysis
We use the term “decision filter” to describe the internal
temporal weighting function that subjects use for evidence
evaluation. While RC-based detection report kernels provide

information about how subjects temporally weight evidence,
the precise decision filter can systematically differ from the
detection report kernel (Okazawa et al., 2018). Thus, in addition
to model-free methods to estimate timescales of evidence
evaluation, we also utilized a model-based approach to estimate
the decision filter. We used a six-parameter model that makes
moment-by-moment probabilistic estimations of a decision
variable (DV) that underlies decision commitment and the
detection response. We then found the model parameters
that maximized the likelihood of observing the experimental
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response times or lack of response (i.e., miss and correct
reject trials involve no response) based on the stimuli subjects
were presented on each trial. We used this to investigate how
the decision filter changed when going from the LRW to
the SRW condition.

In the model, θ corresponds to a vector of model parameters
(Figure 5A). Step 1: For each trial, the click times were convolved
with a causal half-gaussian decision filter with width defined
by the standard deviation of the gaussian (θ1). We utilized a
causal filter to ensure that the current state of the DV was
dependent only on past and not future clicks. This generated
moment-by-moment estimates of the mean DV in the units of
Hz. Step 2: Gaussian noise (θ2 = σDVnoise) was added to the
DV to create a probabilistic distribution of the DV at each time
step. Step 3: To determine the time of decision commitment,
the model incorporated trial-to-trial decision bound variability,
which was drawn from a gaussian distribution with θ3 = mean
bound and θ4 = σbound. Step 4: The weighted sum of the decision
commitment times from step 3 was convolved with the gaussian
NDT distribution with θ5 = mean NDT and θ6 = σNDT. This
yielded response time probability distributions for each trial.

We determined the likelihood of the parameters given the
subjects responses in each trial. For hit and FA trials, the trial
likelihood was calculated as the probability of the response time
being within 10 ms of when the subjects actually responded. For
miss and CR trials, the trial likelihood was the probability of not
having responded for the full trial duration. The minimum trial
likelihood value was set to 1/100,000 to provide robustness to any
outlier response times (<1/260 trials). Using the Nelder-Mead
simplex search algorithm, we determined the parameters that
maximized the likelihood given the observed subjects’ responses
by minimizing:

l(θ|X) =

N∑
i=1

−log(L(θ|xi)), (2)

where θ is the set of parameters, X are the observed responses
across all trials within a condition, i is the trial number, N is the
number of trials in the condition, and L(θ| xi) is the parameters’
likelihood given the response in trial i.

The standard error of the parameter estimates were obtained
by calculating the hessian matrix (H) for the point l(θ| X)
and calculating

√
diag(H−1). The data did not provide well-

constrained estimates with DV noise as a free parameter, so we
fixed this parameter to the median value found across all subjects
and task conditions. Differences in decision filters between
conditions were robust to different values of fixed DV noise.
Goodness of fits were calculated using R2 to quantify the fraction
of the variance of the reaction time (chronometric) and hit rate
(psychometric) functions explained by the model.

RESULTS

Task Performance
A total of 11 subjects were trained on the auditory change
detection task (see section “Materials and Methods” for details).

In brief, each trial began with a series of clicks generated by a
50 Hz Poisson process. Subjects were trained to respond when
they perceived an increase in the generative click rate. The change
magnitude (1) was randomly chosen for each change trial, which
served as a way to vary trial difficulty. A total of 30% of trials were
catch trials (randomly interleaved), meaning they contained no
change in the generative click rate and the appropriate action was
to withhold a response until the stimulus terminated.

All subjects quickly learned the detection task design and
performance plateaued within two training sessions. Subjects
performed 3–5 testing sessions of the LRW version followed
by 3–5 testing sessions of the SRW versions of the task, which
corresponded to a median of 1,347 trials per condition per subject
(range: 774 to 2,209 trials). To match overall task difficulty
between conditions, the low magnitude 1s (10 and 30 Hz) were
more prevalent in the LRW, while the high magnitude 1s (50 and
70 Hz) were more prevalent in the SRW.

Similar to previous results (Johnson et al., 2017; Ganupuru
et al., 2019), hit rates were low for the most difficult trials
(1 = 10 Hz) and progressively increased for larger 1s
(Figure 2A). Subjects’ performance depended upon the task
condition (F(3, 80) = 25.91, p = 8.24e-12 for the 1-condition
interaction, ANOVA), such that subjects had lower hit rates in
the SRW condition for each 1 (p < 0.001 for all 1s). Intuitively,
subjects had lower hit rates in the SRW condition because they
had a shorter time to respond to changes. As subjects went from
the LRW to the SRW condition, there was a mean decrease in the
slope (0.051± 0.001 vs 0.032± 0.001; p < 0.001) and an increase
in detection threshold (26.5 ± 1.2 vs 49.6 ± 2.2; p < 0.001) as
calculated from psychometric functions of individual subjects.
There was a 37.8%± 10.1% decrease in the slope and 86.0± 6.1%
increase in the threshold in the combined subject data (dashed
lines in Figure 2A).

False alarm rates were under 10% and similar in both
conditions, and miss rates were 43 and 51% in the LRW and
SRW conditions, respectively (Figure 2B). The similar error
rates across conditions was not surprising because the task
was designed to control for difficulty across conditions by
including a greater proportion of low magnitude 1s in the
LRW condition and a greater proportion of high magnitude
1s in the SRW condition. While subjects clearly had higher
hit rates for each 1 in the LRW condition, the number of
trials that contributed to each data point in Figure 2A were
uneven across 1s and conditions. CR rates were similar for both
conditions, around 90%.

At the end of each trial, subjects reported either high
or low confidence in successfully completing the trial by
poking either the right or left port, respectively. In hit trials,
subjects’ confidence progressively increased for increasing 1s
(Figure 2C). In miss trials, subjects’ confidence progressively
decreased for increasing 1s in the SRW condition. The
trend was not as clear in the LRW condition, but miss
trials were rare for the higher 1s in this condition. In both
conditions, the proportion of high confidence reports in FA
trials was lower than in hit trials, and the proportion of
high confidence reports in CR trials was higher than in miss
trials (Figure 2D).
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Subjects’ Reaction Times Were Faster in
the SRW Condition
In addition to examining changes in psychometric functions, we
also examined changes in reaction times. To examine reaction
times across conditions with different response windows, we
plotted the cumulative response probability as a function of
the time from the change for each 1 in the two conditions
(Figure 2E). Subjects responded faster to changes in the SRW
condition (steeper slope of the traces). By 500 ms, the cumulative
response probability was different across task conditions (F(3,
80) = 3.61, p < 0.05), such that the cumulative response
probability at 500 ms was higher for all 1s in the SRW condition
(p = 0.022, <0.01, <0.005, <0.001 for 1 = 10, 30, 50, and 70,
respectively). While the faster responses in the SRW could be due
to subjects utilizing shorter timescales of evidence evaluation in
this condition, other mechanisms like shortened sensorimotor
delays (i.e., NDTs) could also explain the faster reaction times
in the SRW. We note that if there was purely a decrease in
the decision bound when switching to the SRW condition, we
would expect to see faster reaction times but also higher FA
rates. However, as previously mentioned, FA rates were similar
across conditions.

Psychophysical Reverse Correlation
Demonstrates That Subjects Adaptively
Adjusted Their Timescale of Evidence
Evaluation for Detection Reports
We next investigated if subjects were indeed utilizing shorter
timescales of evidence evaluation in the SRW compared to the
LRW condition to make their detection reports. To do this, we
estimated the timescales of evidence that had leverage on subjects’
detection reports using psychophysical RC similar to previous
studies to estimate detection report kernels (Johnson et al., 2017;
Ganupuru et al., 2019). Detection report kernels can be used to
infer how subjects temporally weight evidence for a detection
report. The RC analysis was specifically focused on FAs, which are
defined as responses that occurred during the noise-only period
of trials when the generative click rate was 50 Hz. Even though
the generative click rate is 50 Hz, there are random fluctuations
of the actual click rate in small windows of time due to the Poisson
nature of the stimulus. If subjects were randomly responding,
these fluctuations would even out on average and detection
report kernels would approximate a horizontal line at 50 Hz, the
baseline generative click rate. In contrast, a significant upward
deflection above baseline in the detection report kernel indicates
that subjects were on average responding to local increases in the
fluctuations of the click rate over that period of time.

Figure 3A shows the shape of the detection report kernels
in LRW and SRW conditions (data pooled across subjects).
Detection report kernels in both conditions exhibited a clear
increase prior to the response, indicating that subjects’ FAs
were on average preceded by a period of increased click rates.
Detection report kernels in both conditions returned to the 50 Hz
baseline shortly before the choice, consistent with clicks during
this period being too late to have leverage on the response,

matching previous observations (van den Berg et al., 2016;
Johnson et al., 2017; Ganupuru et al., 2019). The amplitude of the
detection report kernel in the SRW condition was significantly
higher than in the LRW condition, indicating that subjects were
responding to relatively higher instantaneous click rates in the
SRW condition. However, the width of the detection report
kernel was narrower in the SRW condition, indicating that a
relatively shorter period of evidence had leverage on subjects’ FA
choices in the SRW condition. We fit the detection report kernel
of each subject in the two conditions with a piecewise linear
function to estimate its start time. The pairwise comparison of
detection report kernel start times is summarized in Figure 3B.
Points to the right of the diagonal line are indicative of longer
detection report kernels in the LRW condition, an effect found
to be significant in our population (p < 0.001). On average,
the detection report kernel started 308 ± 21 ms later in the
SRW condition, suggesting that subjects adaptively adjusted
their timescale of evidence evaluation for their detection reports
depending on task demands.

The difference in detection report kernels between conditions
was not due to a confound of time of the decision response.
While the distribution of change times was identical between
conditions, the times of FA responses that are used for the
detection report kernel analysis depends on the subject’s behavior.
Thus, it is possible that differences in detection report kernels
between conditions may reflect differences in the timing of the
FA response. To address this, we separated FA trials based on
whether the FA occurred within the first 3.5 s of the trial or
greater than 3.5 s from trial start and compared detection report
kernels between the two conditions separately for each epoch
(Figures 3C,D). In both epochs, the main result held: detection
report kernels were significantly longer in the LRW condition
(p < 0.001), with the kernels starting on average 298 ± 24 ms
later in the SRW condition for the earlier epoch and 340± 19 ms
later in the SRW condition for the later epoch.

The results also extended to analyses that considered other
trial types in addition to FAs. In particular, hit trials also revealed
similar differences in timescales of evidence evaluation between
the LRW and SRW conditions as FA trials. Because hit trials
necessarily involve an increased click rate that depends on the 1,
we performed the psychophysical RC analysis separately for each
(Figures 3E–H). For all 1s, we found that the detection report
kernel on hits was significantly longer in the LRW condition
(p < 0.01 in all cases), with the kernels starting on average
355.2 ± 22.1, 345.5 ± 8.3, 248.8 ± 5.6, and 174.8 ± 5.5 ms later
in the SRW condition for 1s of 10, 30, 50, and 70, respectively.

Psychophysical Reverse Correlations
Demonstrate That Subjects Adaptively
Adjusted Their Evaluation Timescale for
Confidence Reports
In addition to reporting change detections, subjects also reported
their confidence in successfully completing each trial. Confidence
reports thus present another opportunity to investigate how
evidence evaluation timescales change based on task demands,
and whether those changes are consistent between different
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FIGURE 3 | Using detection report kernels to compare the timescales of evidence evaluation between the task conditions. (A) Detection report kernel in the LRW
(blue) and the SRW (red) conditions (data pooled across subjects, N shows number of trials). Shaded regions indicate the standard error of the mean. (B) Pairwise
comparison of the start of detection report kernels between the task conditions. Gray points show individual subjects. Error bars for individual subjects indicate the
standard error of the estimated start point. The black point shows the population average, and its error bar indicates the standard error of the mean across subjects.
(C) Detection report kernels for false alarms occurring within the first 3.5 s of the trial. (D) Detection report kernels for false alarms occurring after 3.5 s from trial
start. (E–H) Detection report kernels for hit trials with each panel for a different 1. Same conventions as panel (A).

aspects of decision reports. To examine this, we again used
detection report kernels, but this time they were generated
based on whether subjects subsequently reported high or low
confidence. The detection report kernels from the combined
subject data sorted by confidence from the LRW and SRW
conditions are presented in Figures 4A and B, respectively.
Subjects generally reported high confidence when there was more
evidence of a change (area under the detection report kernels).
Unlike for FA reports (Figure 3A), confidence judgments on FA
trials were informed by evidence until the end of the stimulus,
as shown by the separation in the high and low confidence
detection report kernels at the end of the stimulus. This occurred
because confidence judgments were reported after the time of the
detection response, and therefore, subjects had additional time
to incorporate evidence immediately preceding their detection
responses, similar to previous studies (van den Berg et al., 2016;
Ganupuru et al., 2019).

The time period over which detection report kernels were
higher in the high confidence trials compared to the low
confidence trials provides information about the time period
that had positive leverage for judging confidence as high versus
low. We determined the start of this period by fitting the
confidence judgment kernel (high – low confidence detection
report kernels) with a two-piece linear function to estimate
when it inflected upward starting from a 0 Hz difference.
We found that this time period was narrower in the SRW
condition compared to the LRW condition (272 ± 16 ms vs

572 ± 35 ms, respectively) (Figure 4C), suggesting that the
timescales for evaluating confidence in detection trials adapted
to task demands as well.

Model-Based Analysis Reveals Subjects
Contextually Adapted Their Timescales
of Evaluation
While RC analyses are a powerful model-free approach to
examine the timescale of evidence evaluation, they do not provide
a perfect reflection of the decision filter through which evidence
is temporally processed by the brain for a decision (Okazawa
et al., 2018). Therefore, we also estimated how the decision
filter changed based on the task condition using a model-
based approach.

We applied a behavioral model that makes moment-by-
moment probabilistic estimates of a DV for a response based
on the evaluation of sensory evidence. This model estimates the
distribution of reaction times given a particular stimulus and set
of model parameters. We fit this model to the data separately for
the SRW and LRW conditions to compare best fit parameters in
each condition for each subject.

We validated that the estimated parameters provide
reasonable accounts of individual subjects’ behavioral
performance by simulating task responses using the subject-
condition specific parameter estimates and new sets of stimuli.
We found that simulations closely approximated subjects’
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FIGURE 4 | Changes in confidence evaluation timescales based on task condition. (A,B) Detection report kernels from the LRW and SRW conditions, respectively,
sorted by the subsequent confidence judgment. (C) Confidence judgment kernels show the time periods when high confidence had a higher click rate than low
confidence.

experimental psychometric functions, chronometric functions,
and detection report kernels (Figure 5), thus offering face
validity of the behavioral model. Fits were performed on data
from individual subjects, as illustrated in Figure 5, and had
similar goodness of fit across all subjects with R2 above 0.95 for
all subjects (Figure 5D).

We used this approach to examine if the decision filter adapted
to the task condition by becoming narrower when subjects
went from the LRW to the SRW condition. We found a mean
decrease in the decision filter width in the SRW condition
(σ = 0.50 ± 0.07 s vs 0.29 ± 0.06 s in the LRW vs. SRW,
respectively, p < 0.005). Moreover, the estimated decision filter
was narrower in the SRW condition for all subjects (Figure 5H;
p < 0.005 for all comparisons). Thus, the model-based approach
corroborates our model-free findings showing that subjects
indeed adapted their evaluation timescales for detecting changes
in order to match task demands.

Table 1 summarizes the estimated model parameters for each
subject. We note that the estimates of the bound also increased
for all subjects in the SRW condition (p < 0.005), which we
discuss below. We did not find any significant changes in the
mean NDT parameters nor in the trial-to-trial bound variability
across conditions.

DISCUSSION

To investigate the flexibility of evidence evaluation timescales,
we utilized an auditory change detection task and varied the
allotted window to respond to a change. Because the baseline
click rate was fixed at 50 Hz, the normative strategy for
an ideal observer in this task involves integrating evidence
over a timescale commensurate with the response window
and setting a decision bound on the accumulated evidence
that would minimize the total error rate (i.e., misses and
FAs). In this way, the ideal observer would capture all the
relevant evidence of a real change in order to maximize
the discriminability between signal and noise. Owing to

inherent sensorimotor delays, the normative strategy for a
real observer involves accumulating evidence over a timescale
slightly shorter than but proportional to the response window
and similarly setting the decision threshold to minimize total
error rates. In this report, we demonstrated that subjects
utilized narrower evaluation timescales for SRW compared
to LRW conditions.

Our results provided additional support for the idea that
temporal weighting of evidence is flexible and adaptive to
task demands. Previous studies have shown that a variety of
species adapt their temporal weighting of evidence based on
task demands. Humans and monkeys adopt temporal weighting
of evidence to match learned temporal regularities of stimuli
that are repeatedly presented, giving more weight to time
periods with higher fidelity information (Levi et al., 2018). In
that study, visual stimuli were presented for a fixed amount
of time with no underlying variability in the time at which
the information fidelity changed. In that situation, a temporal
weighting function can potentially be anchored to an external
cue, such as stimulus onset. In environments that involve
change points that vary in timing, the temporal weighting
function should instead shift as time elapses so that the most
weight is given to the most recent times. This describes what
we call a “decision filter” that sets the timescale of evidence
evaluation, with an optimal timescale that depends on the
statistics of the environmental changes (Glaze et al., 2015;
Radillo et al., 2017; Piet et al., 2018). In particular, more volatile
environments demand shorter timescales. Both humans and
rats have been shown to adapt their timescales of evidence
evaluation in the optimal direction as a function of volatility
when discriminating the current state of a sensory stimulus in
a changing environment (Glaze et al., 2015; Piet et al., 2018).
In those studies, the tasks did not require explicit detection
of the change point. Instead, the decision filter applies equally
regardless of whether a change occurred or not. While similar
considerations of optimal timescales of evidence evaluation
extend to our task, it differs in requiring the detection of the
change point itself.

Frontiers in Neuroscience | www.frontiersin.org 9 August 2020 | Volume 14 | Article 826

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-00826 August 11, 2020 Time: 19:12 # 10

Harun et al. Contextual Adaptation of Evaluation Timescales

FIGURE 5 | Modeling the decision process for the auditory change detection task. (A) Schematic of how the model estimates response time probabilities for single
trials. Stimuli were convolved with a half-gaussian decision filter to generate the mean DV. Next, gaussian noise was added to the DV. The probability of decision
commitment as a function of time was calculated based on the probability of crossing a bound with a variable height. Finally, a variable non-decision time is added to
get the response time. (B,C) Experimental psychometric and chronometric data from subject four (data points) compared to model predictions using best fit
parameters (lines). (D) Goodness of fit for each individual subject with subject four highlighted in red. (E) Changes in the best fit decision filter based on task
condition for subject four, with a narrower filter in the SRW condition, (F) Experimental detection report kernels for subject four and (G) detection report kernels
simulated from the best fit model for that subject with the same number of trials as the experimental data. (H) Pairwise comparison of the best fit decision filter width
parameter (θ1) in the SRW vs LRW condition for each subject. Data from subject four is outlined by the red rectangle. Error bars indicate standard error of the
estimated width parameter.

Our primary manipulation involved the signal duration
after a change, with a limited window of time that differs
between conditions to respond to changes. Failure to respond
within that time resulted in trial termination. This is similar
to many natural situations where failure to respond quickly
to an environmental change can have immediate negative
consequences, such as predator avoidance, optimal foraging
behavior (Kilpatrick et al., 2020), or specifically for humans,
driving a vehicle. Previous work has shown the timescales
of evidence evaluation can be adapted to expected signal
durations when humans perform a visual change detection
task (Ossmy et al., 2013). Our work extends these results in
three primary ways. First, in addition to using model-based
analyses similar to the previous study, we corroborate the
main finding using model-free psychophysical RC methods
not used in the previous study. Second, while the previous
work involved visual detection, our work involves detecting an
auditory signal in noise, one of the fundamental functions of
the auditory system (Bronkhorst and Plomp, 1992; Narayan
et al., 2007; Shetake et al., 2011; Moore et al., 2014; Christison-
Lagay et al., 2017) and suggests another important role for
contextual modulation of sound processing (Angeloni and
Geffen, 2018). Third, our task also involves a confidence

judgment component (Ganupuru et al., 2019), allowing us to
show that the timescale of evidence evaluation for confidence in
the detection responses also adapts to expected signal durations
(as discussed further below).

In addition to the changes in the timescale of evidence
evaluation between task conditions, there were also changes in
the model-based estimates of the bound between conditions,
with a higher bound for a short response window (Table 1).
We suspect this occurred for two reasons. First, subjects
may have learned to expect generally higher 1s in the
SRW condition, as this was a feature of the task that
we intentionally designed to yield similar error rates across
conditions (see section “Materials and Methods” for details).
Second, subjects evaluated evidence over shorter timescales in
the SRW condition and this introduces more variance in the
DV that is based on the evaluated evidence. An increase in
the bound in the SRW condition as we observed would help
to curtail an increase in the FA rate that would result from
maintaining the same bound when evaluating evidence over
shorter timescales. We note that we made the design choice
to try to match overall task difficulty between conditions,
which required different proportions of change magnitudes.
Importantly, the optimal width of the decision filter is not
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TABLE 1 | Subject-specific model parameter estimates ± SE for each condition (LRW, long response window; SRW, short response window). Subjects identified by
number.

Filter width Mean NDT σ NDT Mean bound σ Bound

LRW 1 0.37 ± 0.028 0.21 ± 0.013 0.07 ± 0.010 94.79 ± 1.454 8.56 ± 0.555

LRW 2 0.74 ± 0.017 0.16 ± 0.011 0.08 ± 0.013 77.39 ± 0.468 5.83 ± 0.407

LRW 3 0.49 ± 0.008 0.17 ± 0.005 0.03 ± 0.005 84.31 ± 0.413 4.68 ± 0.336

LRW 4 0.53 ± 0.025 0.20 ± 0.009 0.06 ± 0.011 81.87 ± 0.874 6.18 ± 0.430

LRW 5 0.34 ± 0.007 0.18 ± 0.005 0.05 ± 0.005 87.36 ± 0.475 5.71 ± 0.377

LRW 6 0.76 ± 0.016 0.14 ± 0.009 0.06 ± 0.012 78.32 ± 0.448 5.92 ± 0.357

LRW 7 0.35 ± 0.017 0.19 ± 0.006 0.05 ± 0.004 89.40 ± 0.925 5.81 ± 0.402

LRW 8 0.59 ± 0.032 0.16 ± 0.008 0.05 ± 0.008 78.98 ± 0.807 5.14 ± 0.347

LRW 9 0.46 ± 0.028 0.28 ± 0.012 0.07 ± 0.007 90.57 ± 1.150 7.45 ± 0.432

LRW 10 0.47 ± 0.009 0.22 ± 0.007 0.06 ± 0.005 86.47 ± 0.505 7.35 ± 0.367

LRW 11 0.41 ± 0.020 0.23 ± 0.008 0.07 ± 0.007 90.26 ± 1.022 9.64 ± 0.460

Mean LRW: 0.50 ± 0.069 0.19 ± 0.029 0.06 ± 0.028 85.43 ± 2.797 6.57 ± 1.363

SRW 1 0.25 ± 0.019 0.21 ± 0.009 0.07 ± 0.005 98.16 ± 1.859 7.64 ± 0.775

SRW 2 0.33 ± 0.026 0.17 ± 0.009 0.04 ± 0.007 96.90 ± 2.156 10.13 ± 0.887

SRW 3 0.33 ± 0.005 0.17 ± 0.003 0.03 ± 0.003 86.35 ± 0.408 4.70 ± 0.351

SRW 4 0.27 ± 0.014 0.17 ± 0.005 0.05 ± 0.003 89.85 ± 1.096 6.56 ± 0.472

SRW 5 0.27 ± 0.013 0.18 ± 0.005 0.04 ± 0.003 91.91 ± 1.101 6.15 ± 0.450

SRW 6 0.23 ± 0.015 0.16 ± 0.006 0.05 ± 0.004 96.22 ± 1.493 7.59 ± 0.565

SRW 7 0.28 ± 0.015 0.19 ± 0.005 0.04 ± 0.003 91.51 ± 1.196 5.83 ± 0.468

SRW 8 0.47 ± 0.040 0.14 ± 0.009 0.04 ± 0.007 81.79 ± 1.351 4.54 ± 0.532

SRW 9 0.28 ± 0.005 0.21 ± 0.004 0.04 ± 0.003 95.77 ± 0.666 7.76 ± 0.464

SRW 10 0.21 ± 0.009 0.19 ± 0.005 0.04 ± 0.003 100.65 ± 1.18 9.37 ± 0.501

SRW 11 0.30 ± 0.007 0.24 ± 0.007 0.07 ± 0.006 95.13 ± 0.947 8.45 ± 0.656

Mean SRW: 0.29 ± 0.060 0.19 ± 0.021 0.05 ± 0.015 93.11 ± 4.349 7.16 ± 1.912

affected by the proportion of change magnitudes. In our
task design, a missed change results in immediate ending of
the trial after the response window duration, so the ideal
observer should not evaluate evidence further into the past.
Any evidence from the more distant past than the duration
of the response window necessarily precedes a change in
this task. In addition, faster decision responses result in no
speeding of the trial durations, so there is no advantage
conferred for evaluating evidence in a briefer period than
what is allowed given the response window and considering
the NDT. Evaluating over the longest duration given those
constraints maximizes performance regardless of the stimulus
strengths presented.

By incorporating confidence reports into the task design,
we were able to obtain an independent measure of how
evidence evaluation timescales varied based on task demands.
Similar to the detection reports, confidence in the detection
report should also be proportional to the response window
in order to maximize performance. On detection trials, a
feature of the evidence that should yield high confidence is
a relatively high click rate over a period of time preceding
the response. We found that this time period was shorter
in the SRW compared to the LRW condition (Figure 4),
suggesting that subjects contextually adapted their confidence
evaluation timescales as well. While the nature of the effect
was similar for the confidence judgment as the detection
report, the confidence judgment was reported after detection.

Consistent with previous results using a similar design, the
period of time influencing the latter is offset from that
influencing the former. Therefore, we did not incorporate the
confidence judgment into our model for this task. We also
note that our results fully replicated previous work from our
lab showing flexibility in the timescales of evidence evaluation
when comparing detection decisions and associated confidence
judgments (Ganupuru et al., 2019).

While any timepoint shown to have a RC kernel significantly
greater than baseline necessarily has positive leverage on the
detection report on average, it is also possible that timepoints
without a significant effect also have positive leverage. The RC
kernels reflect a complex interplay between how evidence is
temporally weighted through the decision filter, bound, and
NDT. Moreover, RC analyses introduce sampling bias related
to evaluating only epochs that preceded a response during pre-
signal periods of stimuli (Okazawa et al., 2018). Model-based
analyses provide a complementary approach to estimate the
decision filter. This approach explicitly estimates the effects
of other factors such as decision bound and NDT, so it
potentially provides a way to overcome the challenges those
factors pose for interpreting RC kernels. For this reason, we
also utilized the model-based approach to estimate how the
decision filter changed based upon task condition, with results
that confirmed our RC kernel findings. These are complementary
approaches, with the modeling potentially able to distill separate
components of the decision process, but in a way that depends
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on the quality of the model. Even though the goodness of
the model fits were consistently high across subjects, it is
reassuring to have similar results about the decision filter from
the model-free RC kernel analysis that does not depend on the
quality of the model.

For the model, all trial types were utilized to estimate
six model parameters; however, well-constrained estimates
were not achievable when DV noise was treated as a free
parameter, and thus we constrained DV noise to 6 Hz
(the median DV noise value across all subject using the
unconstrained approach). We additionally estimated parameters
by constraining DV noise to values ranging from 3 to 9 Hz
and found that while the nature of difference in decision
filter width between conditions was preserved, it systematically
increased or decreased the width, respectively, across conditions.
Thus, while we cannot precisely estimate the decision filter
for these data, we can conclude that the decision filter
was relatively narrower in the SRW condition, and thus
adapted to the context.

The neural mechanisms of evidence evaluation for decision
making have been studied in large part using paradigms
where the optimal strategy involves perfect integration of
evidence (Brody and Hanks, 2016). These studies have
revealed many brain regions with signals related to evidence
evaluation (Gold and Shadlen, 2007; Brody and Hanks, 2016;
Hebart et al., 2016). However, it is not yet known how
these regions are involved in evidence evaluation across
different timescales nor what neural mechanisms control those
timescales. Answering these questions is an important goal for
future research.
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