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hansson and András Méhes. Priya Mahadevan was kind enough to help explain

characteristics of our address book topologies. I am also appreciative that David

Liben-Nowell was kind enough to provide the LiveJournal.com data.

ix



ABSTRACT OF THE THESIS

Can You Infect Me Now? A Treatise on the Propagation of Malware
in a Cellular Phone Network

by

Christopher Brian Fleizach

Master of Science in Computer Science

University of California San Diego, 2007

Professor Geoffrey M. Voelker, Chair

The prolific spread of mobile phones through all corners of the globe has only

been matched by their rapid increase in computing power. As cellular phones be-

come further integrated into the fabric of everyday life, their value to attackers

will rise accordingly. As a result, the widespread debilitating outbreak of self-

propagating malware in the cell phone environment is a matter of when, rather

than if. Although self-propagating malware is well understood in the Internet,

x



mobile phone networks have very different characteristics in terms of topologies,

services, provisioning and capacity, devices, and communication patterns. To un-

derstand the propagation of malware in this new environment, we have developed

an event-driver simulator that captures the characteristics and constraints of mo-

bile phone networks. Key elements of the simulator are a network topology gen-

erator (RACoON), which creates realistic topologies and provisioned capacities of

the network infrastructure, and a social network topology generator, which models

address books and the resulting contact graph that would be used by propagating

malware. Using the simulator, we evaluate the speed and severity of random-

contact worms in mobile phone networks, characterize the denial-of-service effects

such worms would have on the network, investigate techniques that malware writers

could use to accelerate the rate of infection, and, finally, explore various methods

network operators could take to defend against such attacks.
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Introduction

As rapidly as mobile phones have proliferated, their capabilities have also

evolved from a simple communications device into a full-fledged computing plat-

form capable of running general-purpose applications. Recent estimates put the

number of active mobile phone devices over 1.8 billion as of 2005 [49]. While the

growth of mobile phone use has been astounding, their capabilities have improved

equally dramatically. As battery life has steadily increased since cellular networks

and mobile phones appeared in the mid 1980’s, their processing capability has ben-

efited from Moore’s Law as much as computers. The inevitable consequence is that

mobile phones have evolved into a viable computing platform for daily needs. Most

phones include calendaring software, chatting, Internet connectivity, games, two-

way radio, multimedia messaging, and Bluetooth connectivity. Moreover, many of

these mobile platforms support Java or other familiar environments [35], meaning

a well-established base of programmers already exist that can develop applications

1
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for the devices.

As the differences between mobile phone and desktop computer fade, their

successes and weaknesses are bound to be shared. The growth of the Internet has

allowed consumers unprecedented ease in ordering and obtaining information and

goods, but also with the risk of privacy and security violations. Although 190.9

billion dollars in consumer and business transactions were done on the Internet in

2006 [44], the Federal Trade Commission of the United States reports that identity

theft and other related fraud account for 48 billion dollars in losses annually [66].

Flaws in major operating systems, like Windows XP, have allowed nearly 250

million computers [28] to be transformed into zombie computers, under the control

of criminals intent on stealing personal information, using the machines to pump

billions of spam messages [19] onto the Internet everyday, or launching denial-of-

service attacks [22]. The mobile phone industry, with its even larger base of users,

greater mobility and more personal nature, is clearly a valuable target for hackers

ranging from script kiddies to organized crime. Furthermore, the relentless drive

towards adding new features and functionality has a tendency to introduce security

vulnerabilities.

Although there have been relatively few pieces of malware specifically targeting

mobile phones to date [61, 62], many pundits concur that the cell phone is too lu-

crative a target to be ignored in the future [12,18]. What are the motivations that

will incentivize malware creators in their attempts to compromise phones? As with

the Internet, motivations will likely range from vandalism, identity and informa-
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tion theft, loss of consumers through denial-of-service, public relations disasters,

and ultimately reduced revenue for mobile phone providers. Attackers could even

coordinate large mobile phone botnets for launching distributed denial-of-service

attacks, mobile phone spam, etc. How will such attacks be accomplished and

through what means? Mobile phones can communicate through a variety of tech-

nologies and protocols that allow a diverse set of communication to other mobile

devices, and even the Internet at large.

To explore the range of possibilities of malware propagation on mobile phone

networks, we have developed an extensive event-driver simulation environment

that captures the characteristics and constraints of propagation in this new envi-

ronment. Since modeling the network is critical to understanding malware prop-

agation behavior, we have developed a Radio Access and Core Operator Network

(RACoON) topology generator that creates realistic topologies and provisioned

capacities of the network infrastructure. To reflect the relationship of network de-

ployment and provisioning to customer populations, we have also developed a tool

to incorporate population census data into the topology generation. Mobile phone

networks offer a range of communication services, each with different propagation

characteristics and network support. We model two prototypical services, a voice

over IP service in which malware can self-propagate by exploiting a vulnerability

in the service implementation on the phone, and a Multimedia Messaging Service

(MMS) in which propagation depends on user interaction. Finally, we have de-

veloped a social network topology generator that models mobile phone address
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books and the resulting contact graph used by propagating malware. Together,

our environment is capable of simulating malware propagation on realistic network

topologies, capacity constraints, and address book contact graphs among millions

of mobile phones.

We hypothesize that a worm outbreak on a cellular phone network could have

the ability to spread rapidly and cause significant congestion and delays within

the network. Using the simulator, we evaluate this proposition by examining. the

speed and severity of random contact worms in mobile phone networks, characterize

the denial-of-service effects such worms would have on the network, investigate

techniques that malware writers could use to accelerate the rate of infection, and,

finally, explore various methods network operators could take to defend against

such attacks. We focus on malware designed to propagate as quickly as possible

throughout a network, since this situation represents a worst-case scenario for both

network providers and consumers due to the severe denial-of-service situations that

occur. The results provided by the simulator contribute important insights into

the severe potential for malware to propagate on mobile phone networks.

1.1 Overview of the dissertation

In the remainder of this dissertation, we look at related work in Chapter

2 that describes efforts in worm simulation and simulation of malware in the

mobile domain. These efforts aid in guiding and motivating our exploration of

communications-based malware within cell phone networks. We then explore the
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requirements for building an accurate simulator in Chapter 3. In doing so, we

explore network topologies that model the actual network hierarchy of a Universal

Mobile Telecommunications System (UMTS). We also expore the field of social net-

works and discuss how the characteristics of address books contribute to the spread

of malware. We then discuss the design, structure and operation of the simulator

given the network topology and the social network. In Chapter 4, we present and

analyze results obtained from the simulator. We study different methods in which

malware can propagate, including Voice over IP (VoIP) and Multimedia Messag-

ing System (MMS) scenarios. We look at techniques that malware authors could

use to increase the rate of infection and find that despite heavy bandwidth and

capacity constraints, malware could infect 90% of the population within a matter

of hours if designed correctly. We then examine defenses that networks can use to

control a malware outbreak. We show that network operators need to act quickly

and aggressively to even slow down the spread. Finally, Chapter 5 concludes the

study and summarizes the contributions of the dissertation.



2

Related work and motivation

Although there has been a long history of studying the effects of worm and

virus propagation on the Internet, the mobile phone network, for the most part,

has been given little attention. What little research has been done in the field

has primarily focused on worms that spread through physical proximity, such as

viruses designed to exploit Bluetooth. However, the internals of the mobile phone

network should not be regarded as being similar to the Internet. In fact, there

are a number of differences that affect communication patterns as well as worm

propagation in a number of fundamental ways.

Computer hosts attached to the Internet have operated under the end-to-end

principle [45], assuming that the network in between does not possess any in-

telligence. The mobile phone environment, on the other hand, offers a different

perspective on networking. The intelligence often resides inside the core of the

network, with smart routing stations controlling billing, providing differentiated

6
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services and implementing authentication and access control. Traditionally, the

end hosts in a phone network have been treated as “dumb terminals” due to their

relative lack of functionality. However, this notion is being challenged as phones

become more capable and powerful. Complexity exists within the network and at

the edges. This has an effect not just on speed at which malware spreads, but

also on the defenses deployed by network operators, who possess capabilities not

available to the Internet community.

The notion of services provided by a network operator is another distinguishing

factor. It dictates the attack vectors available to malware, while also contraining

the malware. For instance, an attack that exploits messaging services will behave

differently from an attack propagating through a signaling layer. Moreover, each

service presents varying constraints in terms of bandwidth or capacity that Internet

worms did not face until nearly peak spreading rates were achieved. A mobile

phone network is cohesive and finely tuned, provisioned by a single operator so that

current traffic levels represent a fairly significant portion of total capacity. Adding

capacity and bandwidth is a measure taken only when financial needs dictate so.

The Internet, in contrast, is comprised of many operators, which causes growth

patterns to differ.

The differences between the mobile phone domain and the Internet provide

unique challenges for malware creators, infected mobile phone users and the net-

work operators trying to defend and contain outbreaks. Malware creators need to

be aware of bandwidth and capacity constraints, while trying to avoid duplicating
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effort by contacting already infected phones. Mobile phone users will experience

significant delays and congestion. Users that become infected may now possess a

phone that is no longer capable of communication, due to the malware, and needs

to somehow be disinfected. The network operators are burdened with the need

to quickly recognize that an outbreak is occurring, as well as fashioning a method

for protecting against an attack that can work faster than the virus, much like

the Internet community. However, they are in a stronger position than Internet

operators, in that they entirely control the network and are able to restrict access

and limit rate and bandwidth usage. A non-technical issue, but one that is still

vitally important, is the public relations and customer service problems that arise

from a worm outbreak that infected many phones and disrupted service.

With these differences in mind, we first survey existing research that models

and explores computer virus propagation. We then examine initial efforts to study

viruses operating within the mobile phone environment and highlight the new

contributions that our research offers.

2.1 Traditional computer virus propagation

Understanding the behavior of worms and viruses has long been a goal of re-

searchers in the field of computer security. The characteristics that describe their

patterns of propagation and infection are pertinent for a number of reasons, chief

amongst them is the ability to “predict failures of the global network infrastruc-

ture” and to “use them as an early detection mechanism” [46]. A number of tools
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are available for researchers, such as experimental testbeds, real-world experiments,

simulation and mathematical modeling. However, modeling and simulation both

provide numerous advantages over testbeds and real-world experiments — of note

is the absence of legal liability for real-world experiments. Thus, researchers have

focused on both modeling and simulation as a means for providing important in-

sights into the spread of computer worms and how they differ from traditional,

organic viruses.

Although computer viruses had been around for a number of years — the

first known virus appearing in the wild in 1982 [42] — studying the spread of

these viruses only started to gain momentum in the early 1990s after Kephart and

White [20] discussed a viable modeling method. Using techniques from epidemiol-

ogy, they employed a Susceptible-Infected-Susceptible model, where agents moved

according to a pattern based on random directed graphs. They also recognized

that deterministic equations used for years in biology did not account for the va-

garies of chance. Their probabilistic modeling showed that the sparse connections

through which computer viruses had been spreading limited their infection poten-

tial. However, within a few years it was clear to researchers the sparseness barrier

had been removed with the connectivity present in the Internet.

As the Internet was adopted by many as a means of communication, it was only

a matter of time before traditional computer viruses that percolated through floppy

disks found a new method of propagation. These new computer “worms” necessi-

tated a greater clarity into virus propagation that did not follow traditional models
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of human interaction. Although the first wide-spread Internet worm appeared in

1988, it did not spur substantial research on the topic [41]. Instead, it took over a

decade for the outbreak of another Internet worm to stimulate the research com-

munity towards a more comprehensive understanding of the phenomena. In 1999,

the Melissa worm appeared, which automatically spread by contacting the email

addresses found in a user’s email address book. It was perhaps the first virus to

gain widespread media attention as it affected many ordinary PC users and ap-

peared at a time when Internet usage was skyrocketing [27]. Shortly thereafter, in

2001, an automated worm named Code Red infected more than 350,000 computers

within a 24-hour period [36]. Its rapid spread, coupled with the estimated $2.6 bil-

lion in damage it caused to thousands of organizations, became a cause célèbre for

researchers interested in understanding the effect that computer worms could have

on an infrastructure as complicated as the Internet. Models and simulations soon

followed that attempted to explain and predict worm behavior. Subsequently even

more virulent worms appeared that exploited flaws in servers and home computers,

labeled with monikers like Nimda, Sircam, Blaster, and SQL Slammer [9]. To un-

derstand the epidemiological characteristics of these worms, a variety of methods

were proposed and implemented [5, 57, 58]. However, a common complaint often

discussed was the lack of realism that simulations offered, since the parameters

were often much smaller than the actual Internet. Weaver et al. attempted to

“scale-down” the Internet to simulate worms [60], while Serazzi et al. [46] mod-

eled advanced behaviors including bandwidth saturation and incorporated the AS
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topology into their formulas.

The next generation of worms appeared in early 2003 and the speed and effi-

cacy at which they infected systems was prolific. Consequently, an interest arose to

determine how fast a worm could compromise a significant portion of the suscepti-

ble hosts on the Internet. The seminal work of Staniford, Weaver and Paxson [48]

examined various methods that worms could use to spread in the quickest manner

possible. Simulations and analysis showed that within tens of seconds, the entire

population of susceptible hosts could be compromised. They had the insight that

the sooner the infection rate becomes exponential, the faster the Internet would

be compromised. They also conjectured that a careful construction of the worm

along with an intelligent deployment strategy could confer a substantial speed ad-

vantage. They proposed concepts such as hit-lists that concentrated on initially

infecting the most capable hosts in terms of bandwidth and power. Furthermore,

they described how worms could use “partitioned permutation scanning,” in which

each new infection becomes responsible for an ever-decreasing block of addresses.

The strategy reduces unnecessary probing of already infected hosts due to unco-

ordinated random scanning done independently at each host. The combination of

these techniques enabled a so-called “Warhol worm” to reach epidemic threshold

in literally less than a minute. Further work continued to push the speed limits of

“flash worms” to sub-second durations [11, 47, 69].



12

2.2 Cell phone malware

In the years following the outbreaks of the series of well-publicized fast spread-

ing worms, the desire by malware authors to create worms for the sake of spreading

appears to have diminished. Today’s malware and worms usually arrive in the form

of software packages aimed at handing the complete control of a computer over

to another [3], and collecting such hosts under the control of a single owner into

so-called “botnets.” One consequence of this change is that there is not as strong

an impetus to spread rapidly, since the goal is to continue adding members to the

botnet without being detected. Even so, an attacker possessing the right motiva-

tion and corresponding exploit could potentially take over and control millions of

servers and desktop computers.

However, the explosive growth of the cell phone market, along with the com-

mensurate increase in cell phone computing power and generality, has begun to

change the landscape of malware. Thus, the profit and motive for attackers to

explore malware aimed at cell phones will continue to burgeon [12, 18]. Moreover,

there is a growing consensus [16, 23, 54] that the technological platforms on which

mobile phones are built, such as Bluetooth, have inherent security weaknesses that

may lend themselves to being compromised. Translating the lessons learned from

how worms spread on the Internet to that of the mobile phone domain can thus

become a valuable tool for planning and mitigating the effects and aftermath when

such an attack occurs.

Recent studies have begun to look at worms and viruses in the context of mobile
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phones, mostly by examining their different capabilities. The notion of how quickly

a piece of malware code can spread through the network has been explored on a

few levels. Interestingly, there has been little attention paid to worms that spread

through the communication functions in a phone, which has in turn motivated

this study. Most efforts thus far have focused on the spread of Bluetooth-enabled

malware. Bluetooth, as a proximity-based wireless service, has the potential to act

much like traditional viruses. Malware can spread only when two entities come in

close enough proximity (usually less than 10 meters), for a long enough period of

time (more than a few seconds), to engage the other device and send the payload.

Already there have been reports of some viruses that use Bluetooth as a means to

propagate, such as Cabir [61] and Commwarrior [62]. However, they also rely on

social engineering techniques to infect the device.

To understand more closely how a Bluetooth-capable outbreak in the wild

would behave, some approaches have focused on studying human movement pat-

terns since such patterns determine the contact proximity necessary for propaga-

tion. Perhaps the most in-depth study has been from Su et al. [50], who went to

actual locations and measured various statistics about Bluetooth usage and du-

ration of contact. A key result was that approximately half of the phones they

encountered were in contact long enough to establish a connection and transfer

enough data for a virus to copy itself. Kostakos et al. [21] instrumented a city-

wide deployment of Bluetooth monitoring equipment in Bath, England. They

found that only 8% of their users had discoverable Bluetooth devices and that the
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duration of contact time was scale-free.

Mickens and Noble [30] took a different approach and focused on modifying

traditional analytic models to create a probabilistic queuing technique that ac-

counted for movement and traffic patterns over various time durations. Since it

accounts for the mobility properties of mobile phone users, their model was better

suited to accurately model mobile phone malware propagation than the standard

Kephardt-White model. Zheng et al. [67] also studied modeling proximity-based

malware propagation on mobile phones. They focused on the population distribu-

tion density, Bluetooth radius and node velocity. Their results point to a variety

of quarantine methods that could greatly reduce the virulence potential.

However, the interest in Bluetooth propagation has perhaps overestimated the

threat of the proximity-based infection vector. Of course, malware could certainly

use Bluetooth, and it has done so in the past [62], but its spread would be severely

limited by human movement patterns. More importantly, though, are the severe

restrictions most phones have on Bluetooth use. For instance, any Bluetooth-

enabled worm would need to discover the address of the device in order to com-

municate. If the address is unknown, attempting to correctly guess Bluetooth

addresses through brute-force is an option available only to dedicated adversaries

who are in lengthy physical presence with the device [4]. The addressing difficulty

is further compounded by the observation that very few mobile phone users (8–

10%) keep Bluetooth enabled in discoverable mode [21]. Bluetooth drains battery

life more quickly and most phones leave it off by default. Some phones cannot even
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stay in discoverable mode permanently. These problems suggest that malware that

spreads through Bluetooth is unlikely to spread quickly enough to affect a large

proportion of the user base.

Beyond Bluetooth, there are a number of other avenues that malware can utilize

to infect and impact mobile phones and their supporting infrastructure. Racic et

al. [43] showed how an attacker could surreptitiously drain the battery power on a

user’s cell phone much faster than normal rates. Their investigation also revealed

that the MMS service leaks a significant amount of information about the device.

Traynor et al. [55] studied a form of denial-of-service attack in which a single cable-

modem was capable of producing enough SMS messages to effectively deny cellular

service to a large number of customers in a service area. They note that since SMS

messages use the same control channels as voice data, there is contention that can

be exploited to deny access to other services.

These studies, however, have ignored a vital component of the mobile phone

environment — namely that malware would be able to communicate with other

devices through the network. Two such examples of communication that we focus

on include the Multimedia Messaging Service (MMS), a service that expands upon

the text-based Short Messaging Service (SMS), and Voice over IP (VoIP), enabled

through adoption of the IP Multimedia Subsystem (IMS), a new service that is

currently in the early stages of deployment. Subsequently, malware using commu-

nication channels would be subject to capacity constraints and bandwidth limits

as it propagates through a cellular network, a point that past research efforts leave
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unaddressed.

With these considerations, it is our goal to understand the characteristics of

a communication-based worm as it spreads through a cellular network. The dif-

ferences between a cellular network and the Internet would cause the features of

worm propagation to alter drastically. The consequences of these differences are

two-fold. First, clever malware creators would use different strategies to maxi-

mize infection potential. Second, and more importantly, defenses aimed at slowing

down and ultimately stopping the spread would need to be cognizant of economic

constraints, such as the need to quickly alleviate congestion for customers, lest the

mobile network operator experience significant financial loss.

To answer these questions, our simulator models a real mobile phone network

that accounts for bandwidth and capacity constraints, while operating on realistic

population statistics and geographical considerations. It is not our goal to show

that such a worm is possible through vulnerabilities — we take this as a given —

but rather to realize that as mobile phones become more pervasive and powerful,

they will experience the same problems that the Internet has had in the past in

dealing with malware that spreads through communication mechanisms. It is our

hope to explore the relatively unknown domain of malware propagation in mobile

phone networks, taking into account as much realism as possible, and to use these

results to explore viable counter-measures.
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2.3 Feasibility of a communications-based attack

For the most part, we ignore the specifics of how an attack might occur. We do,

however, assume that the population of mobile phones are generally smartphones

and that they have the ability to run general purpose applications and that they

allow those applications to perform a wide range of network-enabled actions, such

as programmatically initiating calls. Although smartphones comprised only 3.8%

of the U.S. cell phone market at the end of 2006, this number is expected to grow

rapidly [53]. Further, the market is predominantly reliant on a single operating

system, reminiscent of the homogeneity of Windows on the Internet. As of the first

quarter of 2007, 72% of smartphones ran Symbian operating systems, followed by

BREW and J2ME. Microsoft’s WindowsCE has a nearly 7% market share, but is

growing rapidly [52]. While J2ME applications are usually restricted, Symbian,

BREW and WindowsCE open an API to developers that allow them to, for ex-

ample, send MMS messages, make phone calls and send email messages [51]. The

implication is that most smartphones on the market will have a feature-rich set of

abilities malware could make use of to spread. A caveat, however, is that most plat-

forms require some form of code signing. As a result, previous malware outbreaks

have entirely relied on user intervention to start the infection process [61, 62],
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Methodology

To develop a realistic simulator, we first investigated two corollary issues that

impact the spread of malware. The network topology defines how the components

in a Universal Mobile Telecommunications System (UMTS) cellular phone network

are interconnected. To create the network topology, we reference information re-

garding population densities, geography and leverage knowledge from deployed

networss. Next, we study the role of address books in determining the spread of

malware. Social network topologies have been well-researched and we investigate

a number of likely scenarios and their characteristics. With this information, we

proceed to create a simulator capable of using the network topology, while cre-

ating a social network topology that connects mobile devices. To underpin the

discussion, we start by explaining how a UMTS network functions.

18
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3.1 The Universal Mobile Telecommunications

System

To capture the effects of communication within a mobile phone network, we fo-

cused on the forward-looking Universal Mobile Telecommunications System (UMTS),

a third-generation mobile phone system standardized by the the 3rd Generation

Partnership Project (3GPP) as the successor to the Global System for Mobile

Communications (GSM). Although its deployment in the U.S. has been slow com-

pared to other regions, such as Europe, there has been at least one major carrier

that has announced plans to begin roll out of UMTS in the near future [13]. UMTS

defines a hierarchical set of nodes that interact to provide seamless voice and data

services to handheld devices. We present a simplified version of this network and

describe the changes we have introduced when we simulate a malware outbreak

within such a system.

Figure 3.1 illustrates a simplified version of a UMTS for one network carrier.

We have assumed, for simplicity, all communication is packet-based and that sig-

naling and control channel effects are not significant when compared to packetized

bandwidth limits. In the system, a mobile device connects through a radio in-

terface to a Node B — essentially a radio tower. The Node B is responsible for

transmitting and receiving radio signals between the mobile devices. Each user is

typically bandwidth-limited, while total bandwidth for a Node B is also capped.

The Node B then forwards data to a radio network controller (RNC), a control-
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Figure 3.1: A UMTS network is comprised of handheld devices, which transmit and
receive from Node Bs. The Node Bs are connected to RNCs, which are connected
to SGSNs. SGSNs can route to other SGSNs or to GGSN’s, which connect to the
Internet. MMS servers connect to the SGSN backbone.

ling element in the network that is responsible for radio resource management

including hand-over and admission control, amongst other duties. The RNC is

connected to a serving GPRS support node (SGSN), which handles routing, au-

thentication and charging functionality for a region. Typically, there are very few

SGSN’s in a network compared to the number of Node B’s. We have not shown

the backbone between multiple SGSN’s, which connect together to form a routable

network. The hierarchy depicted in the figure is the path through which packets



21

follow in our simulation. We also depict a Multimedia Messaging System (MMS)

Server connected to a SGSN. There may exist relatively few MMS servers for a

very large region. In our simulator, we have simplified MMS communication by

introducing only one MMS server that is connected to one SGSN. Finally, we also

show a Gateway GPRS Support Node (GGSN), which is responsible for bridging

data between different interfaces, such as the radio network and the IP network,

including the Internet. It also authenticates and performs some billing functions.

We do not model GGSN nodes since the scenarios we examine in our simulator

focus primarily on communications within the radio network.

The following sections describe how our simulator operates using a network

topology generated by modeling a UMTS.

3.2 Network modeling

The design and implementation of an accurate simulator required the investi-

gation of a number of related issues having a significant impact on the correctness

of the malware propagation. Our initial step to recreate realism was to obtain and

produce a representation of actual population densities for a region of land large

enough to provide a meaningful analysis. With that geographic information, we

then generated a corresponding topology of the infrastructure of a mobile phone

network. The topology determined the paths through which data would travel,

which dictated how the malware would propagate. It also determined the capacity

of the network, which affected the rate at which infections occurred. Using real
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data to inform decisions about simulations is a critical factor in achieving realistic

insights. Others have also followed this path. For example, Su et al. [50] used data

from the Reality Project [14] to help simulate interactions between people moving

in a physical space. In an orthogonal fashion, data sources can be used to derive

the characteristics of distribution models, such as Zou et al.’s [69] use of data from

Yahoo! email groups to model the degree distribution of contacts within email

address books.

Another important consideration for achieving realism was choosing the vectors

through which malware would spread. A locally transmissible virus would use

Bluetooth to propagate, raising questions of how often and at what times people

came in contact with each other. As Bluetooth-enabled viruses have been examined

heavily in previous studies, we did not focus our efforts on proximity-based worms.

On the other hand, if the virus used remote communication methods, such as MMS

or VoIP, then its rate of infection would depend on the phone numbers listed in

the address book and the constraints of the underlying network.

3.3 Population and geography

To create a realistic infrastructure of a mobile phone network, we used the

U.S. Census data from 2000 for county subdivisions [56], the smallest unit of mea-

surement the U.S. government produced, to determine population densities and

distributions for regions which could be subdivided into radio cells in a grid. The

county subdivisions contained the latitude and longitude, land area and total pop-
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ulation for each county. This non-standard format was not particularly amenable

to processing and, moreover, our goal was to create a region of land that was

broken into standard-sized grid cells on a finer-grained scale than provided by the

census data. We therefore created a program to convert the census data into an

XML format, described in detail in Appendix A, that specifies the location and

population for each cell in the grid.

The program first takes the latitude and longitude of each county subdivision

and places it into a two-dimensional array. It then uses the land area of the

subdivision to, in effect, draw the entire region around the specific coordinates

specified by the census data. Each grid within the two dimensional array was

the equivalent of 1/100 of a degree of latitude and longitude. The program then

determines the population for each cell by dividing the population from the county

by the number of these cells, and uniformly assigning the average to each one.

Finally, the program iterates over each position and coalesces regions together to

produce a map made of square grid cells one mile on a side. 1 If two smaller

regions overlapped, the populations were averaged together for the final result.

The tool then outputs an XML representation of this in-memory data structure

as the final step. In addition to the resulting XML file, it can generate a visual

representation to confirm the accuracy of the transformation. Figure 3.2 depicts

the results of transforming the U.S. Census data from 2000.2 Areas with high

1In future work that involves other propagation vectors, such as Bluetooth, a higher resolution

grid is required. In that case it would be reasonable to have grid cell dimensions on the order of

10–100m, considering the transmission range of the Bluetooth radios.
2The elongated shape of the United States land mass occurs because we have ignored the

effects of the curvature of the Earth.
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Figure 3.2: Visual representation of geographic census data.

population densities appear in darker shades of gray, whereas areas with lower

population densities contain a lighter shade. The light regions represent areas

without substantial population.

3.4 Cell phone network topology

To create a realistic foundation to communication between devices, we devel-

oped the Radio Access and Core Operator Network (RACoON) topology generator

to create the topology of a UMTS cellphone network, as described in Section 3.1.
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3.4.1 Radio Access and Core Operator Network Topology

Generator (RACoON)

To model the communication between cell phones, we created a coarse model of

the capacity of the system to determine how potential capacity bottlenecks affect

the propagation dynamics of malware. Since the capacity of the system is not only

determined by the capacity constraints of the technology and components, but to

a large part by the dimensioning of the system, the network topology generator

attempts to mimic the network planning and design process in a high-level fashion.

It should therefore first be emphasized that a tremendous amount of complexity

and detail is abstracted away, and consequently ignored, in our model. Instead, we

focus on capturing the characteristics of the network topology and capacity that

are essential for modeling malware propagation.

When network carriers design a real cellular network, they typically use as

input data a combination of land use data of a region, optionally supplemented

with population data; they also consult telephony traffic workloads available from

previous deployments, if available. They estimate the number and typical distri-

butions of subscribers, and the typical traffic mix (voice, data, other services), and

use it as input to the planning process. Much of the complexity in the network

planning and design lies in dealing with radio propagation issues. The system cost

needs to be minimized while ensuring adequate coverage and capacity exists. The

planning may start through a cell plan — a hexagonal layout — that is adjusted

by hand to improve performance. However, due to the many practical constraints
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related to obtaining land access to sites for base stations, the starting point is

more likely to be an approximate site plan that has already been defined based

on the topography, rough population patterns, and site access constraints. The

radio cell planning process then consists of tuning the system and verifying that it

meets the coverage and capacity goals. In our case, we omit practically all of the

complexity related to radio propagation, and instead base our model on meeting

the capacity demands of the population base in the region in a coarse fashion.

The only aspect of the radio propagation included in the model is the maximum

transmission range, which defines the maximum radio cell size.

Since our intended malware propagation scenarios were defined to either propa-

gate through MMS or a software-related Voice over IP vulnerability, we decided to

focus on packet data traffic and ignore circuit switched traffic in the network. We

recognize, however, that the signaling involved in establishing packet data com-

munications requires communicating with nodes in the circuit switched domain of

the network.

3.4.2 Operation and data flow

As input for generating the network topology we chose to work from publicly

available census data to create a coarse population distribution, as described in

Section 3.3. This distribution represents the average population density or, alter-

natively, the peak population density expected in different parts of the simulated

region, such that we can capture the presence of population centers vs. sparsely
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populated areas. From the population distribution we generated a plausible net-

work topology that would handle the expected user traffic in the region. We then

output the topology in a format that the simulator could easily load and parse.

The simulator also requires the population density information, so RACoON also

includes that information in the topology information file as well.

The output from RACoON is similar to Internet topology generators [8, 29]

and we considered using previously defined file formats. However, since the node

types and the hierarchy for the radio access network and operator core network

differ greatly from the two-tier Internet model, adopting an existing format without

fundamental changes was not possible. Moreover, these tools tend to use various

ad-hoc text formats with hand-crafted parsers. Since an XML-based format would

be easier to implement and more likely to be used in other studies, we defined a

new XML-based file format described in greater detail in Appendix B.

3.4.3 Population density representation

To simplify the topology generation, we divide a simulated region — the pop-

ulation grid — into grid cells. The grid cell size should be chosen such that the

population resolution is useful even in the most densely populated areas. Un-

fortunately, due to the lack of resolution in the census population data, a high

resolution in the population grid was not possible. Thus, the grid cells used to

build the topology were set to be 1x1 square miles.

Although we would have liked to use the entire United States in simulation,
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practical computing resource concerns limited our simulation to a specific region.

We chose to study a metropolitan area and its surroundings such that the popula-

tion grid contains a mixture of densely and sparsely populated areas. Due to these

differences, it could be useful to use a multi-resolution-inspired approach, specif-

ically a non-uniform size of grid cells. This approach would also have the added

benefit that the population density representation aligns with the way the radio

access system is built to match different population densities in different areas.

However, for simplicity of implementation, we decided to use a uniform grid for

our study.

3.4.4 Network generation

The topology generator uses a bottom-up strategy to construct the network,

starting by placing the radio cells and Node B’s, and then proceeding to construct

the (fixed) transport network from the radio access edge to the core network. Net-

work nodes are added by connecting them to previously added nodes as each layer

is added to the hierarchy, such that they obey capacity constraints of the nodes.

The exact types of constraints may vary from node to node. For example, the

maximum bandwidth and/or maximum number of users might be referenced to

add a node so that the capacity constraints are obeyed to the greatest extent pos-

sible. The actual process that network operators use to design a network is similar

in this respect. However, they also use a tremendous amount of additional detail

in terms of performance constraints and the required capacities in different sys-
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tem traffic channels expected to arise from the assumed load and traffic mix. To

dimension the links interconnecting the nodes, a typical bandwidth was chosen to

represent the interconnection of each type of node. This approach also represents

a significant simplification of the real process.

To outline, the topology generator takes the following steps:

1. Place radio cells and Node B’s in a grid cell.

2. Add RNCs by grouping a number of adjacent Node B’s together and con-

necting them to an RNC.

3. Add SGSNs by grouping a number of adjacent RNCs together and connect-

ing them to an SGSN.

4. Interconnect SGSNs to form a core network.

5. Create a MMS-C node and attach to the network.

To algorithmically deal with the non-uniformity of population and capacity

demands, the generator creates a multi-resolution aggregation data structure to

group nodes. Starting from the original population grid, RACoON creates several

tiers by aggregating population grids with successively larger quadratic cells. Each

level aggregates four cells in a tier below to form larger cells, as illustrated in

Figure 3.3. Rather than requiring that the original grid contains a power of two

number of cells, RACoON adds null cells to the edges to create the illusion of even

powers of two.
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Figure 3.3: Aggregation of population grid data by a multi-resolution data
structure.

At each level, each aggregated cell holds information about all network nodes

in that region. It also stores key measures used in the topology building process,

such as the population size in the aggregated cell and the aggregated bandwidth

required. Starting with the addition of RNCs, then proceeding with SGSNs, the

generator starts from the top of the aggregation hierarchy and checks, for each

cell, if the capacity constraints for the node are met at the cell. If they are, the

node is created and all nodes at the next lower layer in the node hierarchy are

connected to it. If the constraints cannot be met, the region is split by proceeding

downwards to the next lower level in the aggregation hierarchy, and attempting to

add one node for each cell at that lower level. This procedure has been motivated
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in part by R-trees [15].

The placement of radio cells in the generator corresponds to the cell planning

stage of a real network design. However, in reality, neighboring radio cells overlap

in order to support hand-over of connections between cells. Our model uses non-

overlapping radio cells so that choosing a base station for a phone to connect with is

well-defined. The radio cell placement strategy is likewise kept simple. The goal for

placing radio cells is to map one or more population grid cells to a radio cell, such

that the required traffic can be supported by the system and that the maximum

transmission range is not exceeded. However, due to the limited resolution of the

population grid, the current radio cell placement is further simplified to map one

radio cell to each population grid cell. This mapping assumes that the population

grid cell size does not exceed the radio transmission range. As a result, we achieve

full radio coverage for the simulated region. Moreover, we assume omni-directional

cells used throughout, rather than the sectorized radio cells that are often used

for more densely populated regions. Hence, one omni-directional radio cell and

one Node B is deployed for each population grid cell. The maximum packet data

bandwidth available to one user in a radio cell is assumed to be 384 Kbps, and

the total available bandwidth in a radio cell 2 Mbps. These values have been

derived after discussions with engineers responsible for provisioning networks and

represent current practices in the field.

The next step is to connect the Node B’s in a cell to a Radio Network Controller

(RNC) that manages that area. The capacity criterion used for the RNC is defined
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by a maximum number of Node B’s that the RNC can handle. For the model we

assumed this to be on the order of a couple of hundred, choosing 256 for a 16x16

square mile region of Node Bs. Each Node B has a 2-Mbps link to its RNC.

Similarly, RNCs are grouped together in quadratic regions and connected to

Serving GPRS Support Nodes (SGSNs). The capacity constraint chosen for the

SGSNs is the maximum number of Simultaneously Attached Users (SAUs). We

assume that each SGSN can handle up to 10,000 SAUs. Note that the generator

makes a conservative assumption that all users in an area may need to be connected

at once. However, this does not mean that they all necessarily send or receive

traffic at once. It means only that they are attached to the network and can send

packet traffic communication. Additionally, state for each phone is stored in the

network. For normal Web browsing and sending and receiving of MMS messages,

maintaining per-phone state is typically not done. But for some applications, like

push email clients, it is common for the terminal to stay attached to the network

continuously. Hence, it is plausible that this type of device behavior will become

more common over time. In terms of bandwidth, the maximum bandwidth for all

the cells is simply summed. Similarly, this assumes that the maximum capacity

may be used simultaneously for the whole service area, which is also conservative.

When geographically placing the RNCs and other network nodes, it is plausible

that these nodes will tend to be closer to population centers. Therefore, we chose

a simple approach to placement. The generator calculates each node’s position as

the population centroid for the grid cells handled by the nodes in the lower tier.
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Once all the nodes have been created, the SGSNs need to be interconnected

to form the mobile packet core network. Lacking any significant empirical data

regarding the preferred topologies for the core network, we chose to use a model

similar to the Waxman model [59], a distance-biased random topology. Thus,

nodes that are geographically closer to each other will have a higher probability of

having a direct link between them than nodes that are further apart. In Waxman’s

model, nodes are placed at random in a two-dimensional plane, and then connected

pairwise by links using the probability distribution function:

P (u, v) = β ∗ e
−d(u,v)

L∗α

where d(u, v) is the distance between nodes u and v, L is the maximum distance

between nodes, β is a parameter to control the link density, and α is a parameter to

control the mixture of short to long links. For a probability distribution function

in our model, we simply used the inverse of the distance between the nodes

P (u, v) = β ∗
1

d(u,v)

where, again, β is a tunable parameter to control the link density.

Since this procedure does not guarantee that the graph will be connected, the

generator performs a final breadth-first-traversal of the graph to check for and

ensure the graph is connected, adding links if necessary.

Finally, for the scenarios focusing on malware propagated by MMS messages, a

MMS-C node needs to be added to the network. In reality, the MMS-C node would

normally be placed in a service network located on the Gi interface of the GGSN



34

node, i.e., the side connecting to the rest of the Internet. In the model, we have

simplified this placement somewhat so that an MMS-C node connects to one of

the SGSN nodes (the one covering the largest user population). Given the typical

capacity constraints of the MMS-C node itself, compared to the transport network

connecting to it, this simplification should not make any significant difference.

The capacity of a single MMS-C node is on the order of hundreds of messages

per second (MPS) [6]. Although this capacity appears quite small, given that

the expected traffic load at busy hour is assumed to be significantly less than

1 message/user/busy-hour, a single node is able to serve millions of subscribers.

Again, these values have been assigned based on current network provisioning

knowledge.

Figure 3.4 shows an example of a network topology for a 200x200 square mile

grid from the northwest United States. The southeastern part of the region has a

higher population density than the western part, as evidenced by a higher concen-

tration of SGSN nodes.

Our model was sufficient to simulate packet network mediated malware prop-

agation in a single provider network. Future work could further extend the model

to include multiple providers, gateway nodes between their separate networks and

even different system deployments, such as GSM.
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Figure 3.4: Example of a generated topology. The X-Y plane corresponds to
geographic position. The Z-axis is used to separate nodes in the hierarchy. Node
B’s are not shown.

3.4.5 Topology information

The topology we used in our experiments was based on a 100x100 square-

mile grid of cells centered around the Boston metropolitan area. It contained

7,234,667 people initially, which was scaled down in each cell in accordance with

the penetration of cell phones in the United States. At the end of 2006, cell

phones had reached 77.7% of the U.S. market [34], thus the population we used in
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Table 3.1: Overall network topology statistics

Network Topology Characteristics
Topology size 100x100 sq. mi
Population 5,621,336
# of Radio Cells and Node B’s 9616
# of RNCs 49
# of SGSNs 49
# of MMS servers 1

our simulations was 5,621,336. Table 3.1 lists detailed information regarding the

settings of the network topology used in our simulations.

3.4.6 Communication in the network topology

Malware that makes use of communication facilities within a mobile phone,

such as SMS, MMS, Voice over IP or even Internet applications, will necessar-

ily rely on the underlying cellular infrastructure to carry its data. The rate at

which malware can spread, therefore, is a function of the latency and bandwidth

of those underlying connections. As mentioned in section 3.6.3, there are a num-

ber of components in a modern cellular network that are involved in transmitting

packetized data. Our simulation made use of these connections when two mobile

phones contacted each other or when a message was sent to an MMS server.

The simulator uses the infrastructure to inform the communication process

between two phones so that the initiator and the receiver each check the available

bandwidth for sending data. If there is not enough bandwidth available at that time

on either end, such as if other mobile phones have consumed all the bandwidth,



37

then the initiator essentially hangs up and waits until the next time step before

performing another operation. This models how a mobile phone might react in the

case that it could not successfully send data.

If there exists sufficient bandwidth, the phones negotiate the maximum amount

of bandwidth it can use based on available bandwidth and any user limits. The

phones then reserve that amount of bandwidth for the duration of sending the

malware payload. Both parties release the bandwidth when the payload delivery

completes. The simulator calculates the duration based on the available bandwidth

and the latency for each component. The data packets would typically follow a

path that starts at the radio cells of the initiator and moves to the Node B, then

the RNC of the initiator, the SGSN of the initiator, intermediate SGSNs, the

SGSN of receiver, the RNC of receiver, the Node B of receiver and finally wireless

transmission at the radio cell.

The SGSNs form the backbone of the mobile phone infrastructure, although

they are not all directly connected to each other. In fact they will route packets

to the appropriate SGSN through a series of intermediate hops. The source routes

between SGSNs are encoded for each SGSN within the network topology file so

that the simulator is aware of the correct paths to follow so that the simulator

allocates bandwidth and models latency during the propagation of the malware.

The simulator calculates source routes using Dijkstra’s shortest path algorithm.

Table 3.2 lists the bandwidth and capacity constraints used in our network topol-

ogy. Note that bandwidth and capacity constraints are not full duplex — they
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Table 3.2: Bandwidth and capacity network topology statistics

Network bandwidth and latency characteristics
Max. user bandwidth at radio cell 384 Kb/s
Total bandwidth at radio cell 2 Mb/s
Latency at radio cell 0.2 s

Bandwidth from Node B to RNC 2 Mb/s
Latency from Node B to RNC 0.2 s

Bandwidth from RNC to SGSN 100 Mb/s
Latency from RNC to SGSN 0.3 s

Bandwidth between SGSN nodes 1 Gb/s
Latency between SGSN nodes < .001 s

Bandwidth between SGSN and MMS server 1 Gb/s
Latency between SGSN and MMS server 0.1 s
# of messages/s per MMS server 100

must be shared by inbound and outbound data.

3.5 Social network topology

An important consideration for malware that propagates through remote envi-

ronments is the manner in which it spreads. One possible method of propagation

would be to randomly dial phone numbers and hope that the targeted phone is

both a cell phone and powered on. A smarter worm would make use of the address

book within the phone to be aware of already existing phone numbers. Of course,

they may not all be mobile devices, but as cell phones become more pervasive,

the percentage of cell phones within address books will rise accordingly. Thus,

modeling the number of contacts, as well as who the contacts are, is an important
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aspect towards understanding the spread of a worm.

The social networking field has been well studied and we first look at related

work in regards topological structure and topology characteristics before describing

the social networks that we use in our simulations.

3.5.1 Address book degree distributions

The topological structure of social networks is a phenomenon that has long been

studied in sociology, physics, medicine and computer science. Understanding and

programmatically generating these networks has often taken a few forms, including

random, small world, or scale-free networks. A random network assigns, at random,

connections between nodes. Randomness comes in terms of who is connected

together and the number of connections per node. Although random topologies

can be useful for sanity checking, real-world networks often exhibit characteristics

that are more well-defined.

A small world network implies that any two individuals are connected through

a short chain of links. These types of networks are pervasive in many real scenarios.

For example, Newman [38] has found them present in the structure of scientific

collaborations. To generate such a topology, Huang et al. [17] suggest assigning

2n links to n entities and then randomly re-wiring the nodes.

Other studies have recognized that real-world phenomena can often be classified

as scale-free networks, such as the Internet AS topology [7, 26], professional links

between movie actors [1], email address books [65] and file sizes on computers [32].
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A scale-free network is one in which a few nodes act as highly connected hubs,

while the remaining majority of nodes have relatively few connections.

A characteristic of scale-free networks, and occasionally small world networks,

is that they follow a power law distribution in terms of the degree of contacts per

node. A power law graph has the form of y = axk, while its distribution can

be modeled as p(x) ∝ x−a. When plotted, the distribution appears as a straight

line on a log-log plot. This line is often referred to as a long-tail, indicating that

while most nodes have very few connections, the degrees of the remaining nodes

fall within a wide range. In lieu of a power-law distribution, occasionally studies

will argue that a log-normal distribution provides a better fit for an instance of the

long-tail phenomena [24]. Mitzenmacher [33] relates the history of the question,

noting that as early as the 1950s, there were arguments as to whether income

distribution followed a power law or log-normal distribution.

Despite the wealth of information on social networks, there is scant information

explicitly regarding address books in mobile phones. A first step in exploring the

domain then is to recognize that, although not completely similar, email address

books might share many of the same characteristics as mobile phone address books.

Zou et al. [68] collected data from the size of Yahoo! email groups and found that

there was a wide range in the size of these email lists, from just a few users to

hundreds of thousands. In aggregate, the distribution matches a power law dis-

tribution well. They used this data to model the spread of an email-based worm.

When compared to other possible topologies (small world and random), malware
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propagates faster on a scale-free network. The key insight in understanding worm

propagation in scale free networks is that once an infection reaches a highly con-

nected node, the spread of the worm is amplified throughout the network.

In a similar vein, Newman et al. [39] obtained address book data from a large

institution and measured the in and out degree distributions of contacts. They

discovered a small difference between in and out degree — most studies assume

undirected connections — and, although they could not corroborate Zou’s power

law distribution, they observed it was still heavy-tailed. Their data pointed to

a faster decaying distribution that was better modeled by a simple exponential

p(x) ∝ e−j/j0 where j represents degree and j0 is a constant. The differences

between in and out degree pointed to a question about reciprocity between con-

nections. They refer to their topology as semi-directed, as only 23% of nodes

shared bi-directional edges. This result is somewhat surprising and has the poten-

tial for altering the results of previous studies that have made such a simplifying

assumption. However, despite these findings we have used only bi-directional links

and follow the lead of other studies.

Liben-Nowell [24] collected another source of data offering more promise than

email address books in terms of cell phone address book topologies. He used the

“friends” of LiveJournal.com users and found the in and out degrees of each user.

Since the Web site required active participation and manual addition of friends, he

reasoned it was a valid indicator of real-world social networks. The data showed a

long-tailed distribution that was better characterized by a log-normal distribution.
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In contrast with a power-law distribution, a log-normal distribution’s tail does not

go on forever. It also has a higher concentration of nodes near the end of the

tail, whereas the power-law distribution is more evenly spread across the range of

values.

However, there have not been any efforts that have explicitly addressed the

distribution of contacts for mobile phones. One obstacle is the inherent difficulty

in obtaining the data. Mobile phones are personal devices controlled by the owner

(opposed to email addresses to which administrators sometimes have access) and

call logs are closely guarded by network providers. After reviewing the literature on

social network topologies, we were concerned that a scale-free distribution was not

an accurate representation of a cell phone social network topology. For one, there is

often a hard limit in the number of contacts stored in a cell phone. For example, the

LG enV cell phone has a phone book capacity of 1,000 [35]. It also seems unlikely

that the large majority of users would have only two or three contacts; anecdotally,

many people have a much higher degree of connectivity. To explore this further,

we sent email solicitations to the Computer Science Department at UCSD and to

Ericsson research in Sweden, asking how many contacts were in people’s address

books. There were a total of 51 responses from UCSD and 22 from Ericsson. We

then rounded the number of contacts down to the nearest multiple of ten and

plotted the data, shown in Figure 3.5. The results appear to look more like a

shifted Gaussian than a scale-free distribution, although admittedly the number

of samples is small.
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Figure 3.5: The degree distribution of mobile phones users collected at UCSD and
Ericsson.

In fact, we found that an Erlang distribution provided a good fit for the data.

An Erlang probability distribution is characterized by the formula

P (x) = λkxk−1e−λx

(k−1)!

where λ provides the rate of change and k defines the shape of the curve [63]. We

found that if we used a λ = .04 and k = 3, we could create a distribution with

an overall average of 65 contacts, which followed our anecdotal evidence as well as

survey data.

In our experiments, we evaluated networks with different degree distributions

— log-normal, power-law and Erlang — ranging from 1 to 1,000, and observed

the effect that it had on the propagation of malware. The details are further
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Table 3.3: Graph statistics from an example Erlang degree distribution

Example address book information
Avg. node degree 65.67
Max node degree 377
Diameter of graph 5
Avg. distance of graph 3.02

discussed in Section 4.1. However, we settled on using the Erlang distribution for

the majority of experiments, because it made more intuitive sense based on our

survey data. Table 3.3 presents statistics on a sample Erlang address-book contact

topology generated by the simulator.

Figure 3.6 shows the probability density of the Erlang distribution as given by

the formula described above (dotted line), the degree distribution generated by the

simulator (points marked with a “plus”) and our survey data, scaled appropriately

(dashed line with marks). The generated counts have been normalized to show the

correlation with the formula. Figure 3.7 displays the absolute value of counts from

the Liben-Nowell’s LiveJournal.com data set and the normalized data generated

by our simulator when generating a log-normal distribution. Despite their use

of different scales, the similarity is apparent. Figure 3.8 shows the probability

distribution function of a power law degree distribution and the distribution as

generated by the simulator. The distribution uses −1.7 as the power law exponent,

a value obtained from Zou et al.’s study of Yahoo email group distributions.
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Figure 3.6: Erlang degree distribution created by formula, programmatically and
scaled from survey data.

3.5.2 Node attachment

Another principal concern when generating network topologies is determining

which nodes are connected to each other. In scale-free networks, the topologies

are incrementally generated so that the highly connected “hubs” are chosen more

often than other nodes. One way to generate these hubs is by assigning degree

distributions randomly and then randomly connecting nodes to each other. How-

ever, a slightly more advanced technique uses a model of attachment so that nodes

“want” to connect to popular nodes. The method is called preferential attach-

ment and can be important when nodes have a global sense of popularity, such

as routers on the Internet. Bu and Towsley [7] explore this idea and create an
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Figure 3.7: Log-normal degree distribution from LiveJournal.com data and created
programmatically.

Internet topology that was more accurate than previous models. Thus, if node

attachments are randomly wired together, the result may be an unstructured, and

undesirable, topology. Alderson et al. [2] discuss the need to incorporate further

practical constraints and attachment models when generating Internet AS topolo-

gies. They pictorially demonstrate the difference between topologies with the same

degree distribution that, at the same time, have vastly different structural qual-

ities. However, we reason that the preferential attachment model, a factor that

helps to create hubs and structured topologies, may not be appropriate for cell

phone networks. Realistically, a single person cannot be acquainted in daily life

with hundreds of thousands of people, meaning there are no true “superhubs” that
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Figure 3.8: Power law degree distribution created by formula and
programmatically.

have several orders of magnitude more contacts than others.

A more pertinent consideration than popularity, though, is the role of geog-

raphy. Mobile phone users are more likely to communicate with people they are

in regular contact with. In other words, the contacts in a user’s address book

will more likely be geographically nearby than distant. Liben-Nowell [25] corre-

lated LiveJournal.com users with their geographic location based on zip code and

compared that information to the location of their friends. In contrast to pre-

vious work, they found that the probability that two users were “friends” was

proportional to the inverse of the number of people between them. Thus, when

determining if two nodes are connected, the actual geographic distance is not as
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important as the population that separates two nodes. Their results, based on U.S.

population patterns, provide a more accurate picture of a social network. How-

ever, they also discovered this rule only held for about 70% of the relationships.

The remaining 30% could not be characterized by the measure. We make use of

both of these findings in our simulator to inform the choice of contacts found in

address books. Thus, 30% of connections are made through random assignment.

The other 70% are probabilistically assigned based on the number of people in

between every cell. To programmatically accomplish this contact assignment, the

simulator first chooses a grid cell using the inverse proportion rule. Then it chooses

a mobile phone at random from that cell and assigns it to the address book of the

cell phone. As a result, the address books of mobile phones are biased to include

contacts to phones that are geographically nearby.

3.6 Simulator

To gain the greatest control over the experimentation process, we designed and

implemented our own simulator capable of modeling the cellular phone network and

the individual users connected to the network. It takes as input a file containing a

list of variables that modify the behavior of the simulator and an XML file which

specifies the topology of a cellular network. The simulator is single-threaded,

object-oriented, written in C++ and comprised of over 4,500 lines of code.
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3.6.1 Simulator design

The simulator is designed in a modular fashion that allows concrete “event pro-

ducers,” which model various scenarios, to generate various “events”, which are

maintained and scheduled by the simulator core. Each event producer maintains

the necessary state associated with the specific type of event. For example, our

simulator uses a communications event producer that is responsible for simulating

the flow of data over communication channels offered by a cellular phone network.

The use of event producers also allows for more than one virus to exist at a time,

although we only model one virus for simplicity. In future work, we could also add

a proximity based event producer that created events to model the interactions

between mobile phones within a certain distance (e.g., via Bluetooth). The mod-

ular design also allows flexibility in how the simulator operates. For example, we

could use actual trace data files to generate events at the same time that we are

programmatically creating events for another type of scenario.

The simulator runs by querying all instantiated event producers, at each time

step, whether there are new events available. The result of the query is a list of

events which have occurred at that time in each event of the environments. Event

producers can, of course, produce many events per time step. Events are basic

objects which contain information that identifies the mobile device being infected

and the device causing the infection. When retrieving an event, the simulator

ensures that at least one device is infected with the malware (there may be events

where two uninfected phones come in contact when, for example, they pass each
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other in the street). Both phones may also already be infected, in which case it is

a “non-event” and nothing further happens. However, if only one of the phones is

infected, then the simulator processes the event by determining when the phone

will actually become a member of the group of infected. Indeed, it is always the

case that the victim phone will not immediately become infected. There exist

various delays, such as bandwidth constraints, latency and user interaction, that

cause the phone to actually become infected at a later time. These soon-to-be-

infected phones are put in a queue and marked appropriately. When the infection

has completed, the malware is essentially controlling the device and the phone is

now able to infect others. At the end of each time step, we then record the number

of infected phones, which is the primary output of each simulation.

Simulator configuration variables

The behavior of the simulator, and consequently the nature of the malware

propagation, is controlled by a number of variables, outlined in Table 3.4.
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Table 3.4: Simulator configuration variables

Variable Name Description
scenarioFilename The filename of the network topology

to use when simulating communication
between two devices.

timeLimit The duration of the simulation in sec-
onds.

timeIncrement The length of each time step. A finer
granularity can allow more events to
happen in a shorter time span.

numberOfInitialInfections The number of infections that are
present when the simulation starts.

numberOfPhoneTypes The number of phone types that exist
within the simulation.

phoneTypeVulnerability The probability that a certain type of
phone is vulnerable to an exploit.

phoneTypeMarketShare The percentage of all the phones be-
longing to a specific type.

probabilityOfUsersWhoIntervene The probability a user will intervene to
cause their phone to become infected.

probabilityPhoneHasAntiVirus The probability that a phone already
has anti-virus protection, and thus will
never become infected.

payloadSize The size of the malware in bytes.
spreadScenario The mechanism through which the

malware spreads between phones.
usesAddressBook A boolean to determine if phones use

their address book when attempting to
contact devices.

topologyType The type of address book topology to
use in the simulation.

limitBW A boolean to determine if bandwidth
and capacity constraints should be used
within the simulation.

randomDial A boolean to determine if phones will
randomly dial phone numbers in order
to spread malware.
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3.6.2 Simulator operation

When the simulator starts, it reads a configuration filename passed as a com-

mand line argument. This configuration file is a list of key-value pairs that specify

how the simulator should behave under different circumstances. It parses the files

and stores the variables in a hash data structure. The simulator then begins its ini-

tialization step. It begins querying these configuration parameters outlined in 3.6.1

to determine basic parameters, such as the time step granularity and the length

of the simulation, as well as more advanced configurations, such as the probabil-

ity that a phone contains an anti-virus application. It also loads the cell phone

network topology, recreating the appropriate data structures in memory to model

it. Section 3.4 discusses these components of the network topology in detail, but

briefly, each of the components has a correlated data structure, which is connected

with a link that specifies bandwidth and latency to another component.

The network topology file includes in it a representation of the underlying

geography and population dynamics. The simulator uses these values to assign

mobile phone users to different regions, as well as when creating the number of

mobile phone users. When the simulator has loaded the population information it

can begin to initialize each mobile phone with appropriate parameters and features.

Many of the initialization parameters for the mobile phones require the use of a

probability. For example, 30% of the market share may be held by an Ericcson

phone. The remaining phones may originate from another manufacturer. To model

this probabilistic parameter, the simulator chooses a random number that selects
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which manufacturer created the phone. The simulator tests whether the random

number is less than the assigned probability, in our example, 30%. Thus, if the

random number was .27, then the mobile phone would be an Ericcson.

Perhaps the most important action when initializing the mobile phones is to

assign the contacts that the user has in their address book. The address book plays

a significant role in determining who the phone can communicate with when trying

to spread malware. The simulator supports a number of address book topologies

discussed in detail in Section 3.5.

The final initialized component is the malware. The malware object contains

pertinent information that includes the size of the payload, the different vectors

through which it can spread, and whether user intervention is required for propaga-

tion. Each simulation models only one malware component per execution. When

a user is infected, the distinguishing characteristic is that they contain a pointer

to the malware component. The malware component also determines how long an

infection takes between two phones. This value depends on the data size of the

malware and the maximum bandwidth which can be used through the vector. It

is a general routine that can be used by any event producer that has a notion of

bandwidth.

3.6.3 Event producers

Event producers are largely responsible for the interaction between mobile

phone devices. We have currently implemented only one event producer — the
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communication event producer. Although we experimented with a proximity-based

event producer, which would have enabled malware to spread through Bluetooth

for instance, we found that the orders of magnitude difference in spreading, cou-

pled with relatively low usage of Bluetooth in the real world, made this a lower

priority avenue to explore for our purposes (Section 2.2).

The communication-based event producer is intimately connected to the net-

work topology. The foundation of all communication depends upon the hierarchy

of the topology. When the simulator queries for new events at a time step, the

event producer iterates over the list of infected phones idle at the time. Thus, it

skips over phones that are currently communicating with another phone, as we

assume there is no ability to multi-thread communication. We also check to see

if enough bandwidth is available for communicating by validating the amount of

bandwidth remaining at the radio cell level, the Node B to RNC connection and

the RNC to SGSN connection. This check captures almost all cases of congestion

so that we can short-circuit further processing, although there is still a chance that

there exists congestion in the route between SGSNs.

When the communication producer identifies an idle phone with sufficient com-

munication resources in its cell, the phone then chooses another device to contact.

This device may come from their address book, in which case a random contact

from that list is chosen. Of course, the malware will only try to reach a contact

one time. The phone may also try to randomly dial a phone number depending on

the configuration parameters. Our simulator allows the malware to communicate
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through either a VoIP-like scenario or an MMS scenario.

VoIP event producer

In the VoIP scenario, the phone establishes a direct connection. If the target

phone is busy communicating with another phone or if there is not enough band-

width between the two phones through the provider network, a connection is not

made. In this case, the infected phone attempting communication experiences a

certain amount of delay that depends on the hierarchical connections within the

network topology. This delay, in essence, reflects the need to look up and contact

a support node within the hierarchy to determine the other phone’s status. The

infected phone would then be unable to perform any other operation until that

amount of time had passed. However, if these conditions are met, the two phones

establish a connection and determine the minimum bandwidth available to them.

This value dictates the speed at which the malware will transfer and also marks

both phones as being unable to perform other operations during infection. The

communication producer then returns an event to the simulator indicating the

phones involved in communication.

MMS event producer

In the MMS scenario, the communication producer performs a similar process

to model infection, except that the infected phone sends a message to the central

MMS server in the topology. The ability to send a MMS message at a time step

depends on two factors: the bandwidth to the MMS server and the capacity of the



56

MMS server. In real network topologies, most MMS servers have a highly-limited

capacity shared between millions of users. In our simulator, if the infected phone is

not able to send an MMS message at a certain time step, the phone then becomes

unavailable for a time that depends on the latency it takes to reach the MMS

server level within the network hierarchy. If, however, there is remaining capacity,

a message is sent and the phone to which the message is addressed is informed

there is a new message.

The user, however, may not immediately choose to open the message. We simu-

late a configurable amount of wait time that the user experiences before answering

a MMS message. We model this wait time using a bi-modal distribution reflecting

anecdotal evidence that users either check new MMS messages relatively quickly,

or they check messages a short while after receiving them. We have chosen to

model this distribution as a mixture of Gaussians, where the range of response

times for retrieving an MMS message is one hour. The two means are centered at

20 seconds and 45 minutes. Figure 3.9 depicts the bi-modal wait time distribu-

tion plotted as a probability density function. The first Gaussian has a standard

deviation of 200 seconds. The second Gaussian has a standard deviation of 250

seconds. The Gaussians are mixed equally with weights of 0.5. The first Gaussian

has a higher peak because we do not allow negative wait times. Section 4.3 shows

the results of incorporating wait time on malware propagation.

After the infected phone transmits the MMS message, it is free to transmit

other messages. The target phone that will receive the message remains dormant
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Figure 3.9: Probability density function that determines how much time will elapse
before a user retrieves a MMS message.

until the wait time elapses. At this point, the simulator informs the appropriate

event producer that the phone is about to start an infection. The communication

event producer then determines if there is capacity and bandwidth available to

retrieve the message from the MMS server. If there is not enough at that time

step, the phone waits until the next time step to try again. If it is successful, the

phone enters a state of being infected that lasts until the MMS server transmits

the malware to the phone.
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Experimental results

In this chapter we use our simulator to evaluate various aspects of malware

propagation on mobile phone networks. We compiled our experimental results by

running each scenario five times and averaging the result. The lengthy amount

of time for each simulation run to complete, plus the relative consistency of the

results, balanced accuracy and practical time considerations. Each simulation used

a one-second time step and all runs start with one infected phone. Most simulations

run for 43,200 seconds (12 hours), which in most cases provided a wide enough

view of the infection behavior. As mentioned previously, we used a cellular network

topology based on an underlying population distribution. The area modeled is the

Boston metropolitan region.

We also use an Erlang social network topology to inform decisions about the

address book of cell phone users. Although, we examine a few scenarios with other

social network topologies, we focus primarily on the Erlang distribution because it

59



60

better matched our survey data and it provided a realistic, fully connected topol-

ogy. Unless otherwise noted, malware uses this address book to contact other

potential infectees until the list has been exhausted. At that point it attempts

to contact phones by guessing phone numbers. However, the success of randomly

guessing a phone number that results in reaching a cell phone was not immediately

clear. Although it is plausible that there may be segmentation within the phone

number space which can reduce uncertainty, cell phone numbers do not follow log-

ical patterns for the most part and there are no special prefixes designated for cell

phones. To calculate the success of random dialing, we divided the total number of

cellular subscribers in the United States at the end of 2005, 207.9 million [40], by

the space of phone numbers, 1010. Thus, the probability of successfully choosing a

cell phone number at random is 2.079%. The consequence is that random dialing

often has little effect on the overall spread.

We begin by examining how malware spreads by first looking at unconstrained,

simple cases and then subsequently add complexity and constraints and introduce

exploit vectors — VoIP and MMS — that differ significantly in their behavior.

We then experiment with various methodologies that exacerbate and quicken the

spread of malware. We then show the effects of various counter-measures that

could be deployed by network operators. Finally, we discuss the challenging topic

of cleanup in the mobile phone environment. In general, we present results that

show the percentage of the total population infected as a function of malware

propagation time.
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4.1 Unconstrained propagation

We first look at malware operating in an unconstrained environment, one in

which there are no limits on bandwidth or capacity. Figure 4.1 displays the rate

at which malware would spread through the network infrastructure given various

address book topologies. The “complete” case emulates an address book that con-

tains every contact in the population, and is consequently the quickest to spread,

reaching the 90% of the infected population after 86 seconds. The log-normal

and power law cases flat line because the topologies created a disconnected so-

cial network. The Erlang topology is expansive enough to consistently generate a

fully-connected graph and reaches 90% infected after 167 seconds, about twice as

long as the complete address book. The characteristic “S-curves” seen in Internet

outbreaks is also present here, confirming that our simulated infection procedure

operates as expected.

4.2 Voice over IP scenario

The Voice over IP scenario assumes that malware is able to use an exploit within

the software modules dedicated to handling packetized voice data. To spread, it

dials a phone number. When that phone answers, it sends the payload over the

channel. It resembles Internet worms in that there is little a user can do to stop an

infection once it has begun communication with a user. We first look at the basic

infection case for different address book topologies in Figure 4.2. Propagation no
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Figure 4.1: Malware infection with no bandwidth or capacity constraints.

longer has the characteristic “S”-curve, and is much slower than the unconstrained

case due to bandwidth constraints of the network. Even with the complete address

book (fully connected contact topology), propagation took 13,926 seconds to infect

90% of the population, 162 times as long as the unconstrained case.

The contact graphs resulting from the different models of address book con-

nectivity also have a substantial impact on malware propagation. For example,

compared to the nearly 14,000 seconds required by malware to infect 90% of the

population with a complete address book, malware propagating with address books

modeled using the Erlang, log-normal, and power law distributions only reached

71.1%, 47.6%, and 31.9% of the population, respectively, at the same point in time.
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Figure 4.2: Infection rate for address book topologies using a VoIP scenario.

However, if we look at the infection rate on a log-scale time axis, seen in

Figure 4.3, the “S”-curve appears again, demonstrating that there is an epidemic

threshold, but that it takes a significant amount of time to reach. The characteristic

curve appears regardless of the social network topology, although the log normal

and power law topologies would most likely flat line at approximately 90% and

80% respectively, as evidenced by the unconstrained propagation in Figure 4.1.

As a point of comparison, it is useful to know the absolute rate at which

malware could spread under the VoIP scenario. We can perform a few back of the

envelope calculations to produce a rough estimate. We start by identifying that

the RNC to SGSN link is the main bottleneck, since that is a 100Mb/s link, while
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Figure 4.3: The infection rate on a log scale time axis.

there are approximately 256 Node B’s connected to one RNC at 2Mb/s (meaning

they could feed 512Mb/s into an RNC). The maximum user bandwidth allowed

is 384Kb/s, and, to infect a phone, bandwidth needs to be used on the source

path as well as the destination path. Thus, only half of the RNCs can be used

at the same time to infect, assuming the perfect case. As a result, 6,250 phones

can transmit malware at the same time. If we divide this number by the total

population, we need 882 rounds of perfect network usage to infect all the phones.

With each infection taking 2.605s to transmit the payload, the entire population

can be infected after 2,297.6 seconds. For comparison, in the VoIP case described

previously, the malware has only infected 31% at this same point in time.
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The growth curves show that bandwidth becomes the major limiting factor

very quickly in the lifetime of the malware. One might intuitively suspect that

bandwidth at the radio cell level presents the most significant hurdle. However,

measuring average congestion across the network topological hierarchy revealed

that the RNC to SGSN link is actually the primary bottleneck. Figure 4.4 shows

the average congestion when using the Erlang address book topology for the radio

cell level, the Node B to RNC link and the RNC to SGSN link. We measure average

congestion by summing the amount of bandwidth used across all elements at each

link and dividing by the total amount of bandwidth available. The measurement

provides a rough network-wide gauge of congestion. Because of the large fan-in

ratio from Node Bs to RNCs, there is a large flow of traffic constantly arriving at

each RNC. The RNC then has to move this traffic to an SGSN. However, the total

traffic from the Node Bs overwhelms the total bandwidth available to the RNC.

Interestingly, the congestion peaks very early, within approximately 5–7 minutes.

Then congestion decreases slightly over time even though more phones become

infected.

This result is somewhat counter-intuitive and deserves further explanation.

Logically, it would seem that as more phones become infected, they will in turn

try to contact even more phones, and therefore add to congestion. However, we

have defined that only a successful connection attempt uses bandwidth. A success

occurs when the phone is able to make an end-to-end connection with another

phone. If there is too much congestion or the phone busy, then the infecting phone
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does not consume bandwidth. As noted in Section 3.1, we assume that there

is a separate control/signaling channel that handles call-setup before the actual

payload data is sent. Thus, calls that do not connect, do not use data bandwidth.

Congestion decreases for two reasons. First, although more phones are attempt-

ing to dial, they are more likely to dial phones within heavily populated/congested

areas. Consequently, they cannot reach their intended victim because of congestion

and do not add to further congestion. Thus in dense regions, congestion remains

high. However, in sparsely populated regions, congestion goes down, because those

phones are likely attempting to contact victims in congested areas. The result is

that average congestion goes down, because of the mix between heavily and lightly

congested regions. The other reason for the decline in congestion is the increas-

ing number of phones that have completed contacting the entries in their address

books and have begun randomly dialing. Since the chance of actually reaching a

cell phone is low when randomly dialing (2%), those attempts generally do not

add more congestion, as they do not send the malware payload.

A related question is how soon due users experience congestion. Although we

assume that the network topology carries no other traffic except the payload data,

in reality there would be a certain operating load. This load would only serve

to limit the malware’s potential to spread quickly. However, even when malware

is just starting to propagate, phones would begin to experience congestion and

unavailable service within a short amount of time, especially in the areas where

the malware appears.
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Figure 4.4: Average congestion levels over network elements in a VoIP scenario.

Figure 4.5 shows the percentage of infected cell phones who attempt, and are

denied, communication due to unavailable bandwidth — any other phone trying

to use VoIP service, infected or not, would experience similar congestion over time.

Figure 4.6 shows a related measure, the absolute number of phones denied service

over time. Both figures illustrate two sides of the same picture. Early on there are

few phones trying to communicate. The ones that do get through are concentrated

by geography due to our social topology generation. The remaining phones, also

located in nearby regions, are denied service. Thus the percentage of phones denied

service is high, despite there being relatively few infected phones. Over time, the

number of infections increase and spreads out to cover the wider region. Although
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Figure 4.5: Percentage of infected phones experiencing congestion when they try
to communicate.

the absolute count of those denied service blossoms, it actually represents a smaller

fraction of the overall phones attempting communication, because more succeed

as they are located in different areas.

An interesting corollary to the finding is that phones in heavily populated re-

gions, such as city centers, are less likely to be infected sooner because bandwidth

to their areas is quickly exhausted. Meanwhile, devices operating in sparsely pop-

ulated regions have more available bandwidth and will be more likely to become

infected early, consequently infecting others sooner as well. Another measure re-

lated to the user’s perspective is the correlation between the number of contacts

in a phone’s address book and the time at which it becomes infected. Since we use
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Figure 4.6: Absolute count of infected phones experiencing congestion when they
try to communicate.

bi-directional connections, those with more contacts will in turn be reachable by

more phones and will likely be reached sooner than a phone with relatively small

address book. It is an interesting, though unexplored question, how uni-directional

links, investigated by Newman et al. [39], would alter this observation. Figure 4.7

illustrates the phenomenon through a scatter plot of the number of contacts pos-

sessed by a phone and the time at which they became infected. There is a clear

downward trend that suggests those with fewer contacts will remain uninfected

longer.
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Figure 4.7: A scatter plot depicting the time at which a phone was infected and
the degree of their contacts.

4.3 Multimedia Messaging Subsystem scenario

The Multimedia Messaging Subsystem (MMS) is a means for sending messages

with attachments, such as photos or videos. If malware were to spread through

the use of MMS messages, then a message would be generated on the infected

phone and routed to a centralized MMS server. This server often has a severe

capacity constraint (Section 3.4.4), which limits the total number of messages

per second which can be sent or received. The phone to which the message was

addressed would then download the message from the server. As mentioned in

Section 3.6.3, we also employed a bi-modally distributed wait time so that each
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Figure 4.8: Infection rate for different address book topologies with MMS-enabled
malware.

user receiving a message would delay for some period of time before attempting

the download. Figure 4.8 shows the propagation characteristics constrained by

the MMS configurations for different address book topologies. It shows that the

social network does have an effect on the rate at which malware can spread, but

the differences are not as pronounced as in the VoIP scenario. Indeed, if senders

and receivers of MMS messages equally shared the capacity, the maximum rate

achievable would be 50 infection/second. Compared to VoIP, MMS malware takes

a dramatically longer period of time to infect the same number of devices.

Figure 4.8 shows a slight bump in the infection curve near the beginning, ap-

proximately at 45 minutes. This time corresponds to the second mean of the
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Figure 4.9: Infection rate comparing wait times vs. no wait times for an Erlang
address book distribution and complete address books.

bi-modal wait time distribution, which is when the malware achieves the full rate

of infection. Since MMS requires users to react to the messages to continue propa-

gation, how much of an effect does the wait time have on the overall spread of the

malware? Figure 4.9 demonstrates that the added delay does not significantly alter

the overall propagation, aside from nominally slowing down the ramp up period.

Indeed, once there are enough phones infected, the MMS server reaches capacity

at almost every time step regardless of wait time.

Of the relatively small number of malware packages aimed at cell phones so far,

they have typically required user intervention before the phone actually becomes

infected. For example, the Commwarrior virus, which spread through MMS, used
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Figure 4.10: The effect of user interaction on malware spreading through MMS.

certain text messages to convince the user to open the attachment, such as “Game

from me. It is FREE !” [62]. To understand what effect user interaction had on

the spread of such a virus, we ran a simulation where a user successfully interacted

with the virus with a probability of 100%, 75%, 50% and 25%. Figure 4.10 shows

the results of malware propagation under these different scenarios. The results

show that the rate of infection scales down accordingly.

In all MMS scenarios thus presented, it is immediately clear that the bottleneck

resides in the capacity of the centralized MMS server. Presumably, as normal

usage of the MMS service rises over time, operators will provision their networks

accordingly. In Figure 4.11 we look at future configurations of the MMS scenario
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Figure 4.11: The effect of upgrading capacity on the MMS server begins to make
MMS look more like a VoIP scenario.

where capacity has been increased by a factor of two and a factor of five. The

rate of infection is obviously faster, but importantly we see that, at five times

present capacity, the effects of bandwidth begin to become important. Even if

a centralized server can handle more messages per second, it is still connected

through a bandwidth-limited link, albeit a relatively fast link.

It is also useful to know the maximum rate at which malware would spread

assuming perfect conditions in the MMS scenario. The nominal 100 messages/s

capacity, however, makes it challenging to know the best infection technique to

use. At the beginning, malware might spend all its time sending, while towards

the end, the capacity would better be used for receiving infections. To simplify, we
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assume an equal usage of the capacity, so that 50 infections occur per second, while

the other 50 messages are used for sending malware. We also assume that every

cell phone user receives the MMS instantly and always becomes infected. At 50

messages/second, the malware would need 112,426s to infect the entire population,

assuming each infection took 1 second to reach the victim. Our simulations end

at 43,200s, which is 38.4% of the time needed to reach the 100% level total. As

comparison, the MMS scenario, using an Erlang address book topology, without

any wait time, reaches a 27.5% infection level at the end of the simulation, a

difference of about 11% from an optimal spread. The discrepancy occurs due to

longer propagation times due to congestion in the network and duplication of effort

because infected phones are contacted more than once.

4.4 An attacker’s delight - Engineering malware

for speed

Internet malware has the potential to use various mechanisms to speed up the

rate of infection. Weaver et al. [48] describe many of these methods, such as using

hit lists and effectively dividing the known address space to avoid dead ranges.

In the cellular phone realm, these methods are either nearly impossible to achieve

— the address space is difficult to know — or relatively meaningless — there are

no “super-nodes” to use in hit lists. Instead, the attacker can try to leverage

knowledge of the constraints of cell phone networks to engineer a worm that can
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spread more quickly. We present a number of techniques that could be employed by

malware authors and evaluate their potential to cause harm. We examine methods

for both MMS and VoIP scenarios using the Erlang social network topology model.

4.4.1 Using only the address book

One approach to speed up the spread of malware might realize that congestion

and capacity are significant bottlenecks, and that if the malware stopped after

communicating with all the contacts in the address book, it could reduce conges-

tion. However, Figure 4.12 shows that this policy has little effect — the two curves

are nearly indistinguishable. The social network topology is so well-connected that

by the time most phones reach the end of their address books, the infection phase

in nearly over. Figure 4.13 illustrates another point of view of the phenomena and

shows that only 5.3% of the total population has started to randomly dial by the

end of the simulation. In the MMS scenario, the server capacity plays a critical

limiting role that cannot be avoided by this technique either.

4.4.2 Sleeping after successful infections

Another approach to alleviate congestion so that more nodes may communi-

cate would be to sleep for some period of time after a successful infection. This

approach could potentially allow other phones to communicate with their contacts.

Figure 4.14 depicts the infection level if phones sleep for ten seconds after a suc-

cessful infection, showing that the technique results in a deleterious effect to the
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Figure 4.12: Infection rates for MMS and VoIP malware that does not attempt to
randomly dial phone numbers. Note the “no random dialing” curves are occluded
by the “standard” curves.

overall spread by slowing down the rate of infection. The conclusion is that if a

phone has bandwidth to send in the present, it will likely be able to send in the

future. By sleeping, phones in lightly congested areas do not make use of available

bandwidth, while heavily congested areas still remain congested.

4.4.3 Transferring contacts

More advanced malware might distribute contacts between phones that have

just exchanged code. This technique would have the benefit of creating larger ad-

dress books (motivated by the complete address book in Figure 4.2), while having

the potential to reduce duplicated effort in contacting already infected phones. We
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Figure 4.13: The percentage of phones that have completed scanning through their
address books

implemented this feature so that, upon infection, the two phones evenly divide the

contacts who have not yet been contacted between each other. Figure 4.15 demon-

strates the effectiveness of the technique. The VoIP scenario is able to achieve

a 90% infection level at nearly half the time it takes the baseline malware to do

so. The MMS scenario does better than it could without optimization, but is still

limited by the central server.

4.4.4 Wait when encountering congestion

An approach that takes advantage of the knowledge of bandwidth constraints

can do significantly better if judiciously applied. Figure 4.16 illustrates malware
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Figure 4.14: Infection rates for MMS and VoIP malware that sleeps for a period
of time after a successful infection.

which sleeps for 10 seconds if it encounters any congestion — either a busy phone

(one that is currently in contact with another phone) or a network unable to offer

service. The result is a dramatic increase in infection potential in the VoIP case.

A 90% infection level is achieved nearly four times as quickly as the standard

malware. It shows that malware can affect congestion within the network to its

own advantage. The MMS scenario however is aided very little, mostly because

at every time step, the server will always reach maximum messages per second

capacity long before bandwidth becomes a bottleneck.
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Figure 4.15: Infection rates for MMS and VoIP malware that transfers contacts
between phones.

4.4.5 Avoiding congestion and transfer contacts

A clever malware creator could combine techniques that show promise. Avoid-

ing congestion through waiting alleviates congestion, while transferring contacts

more evenly divides the workload of contacting new phones. Figure 4.17 demon-

strates the result from VoIP-enabled malware which uses both techniques. The

individually applied techniques are also shown for comparison. The results show

that avoiding congestion contributes the largest increase in propagation speed, and

that dividing contacts further improves propagation although not as substantially.

The MMS scenario benefits very little, however, and is not shown.
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Figure 4.16: Infection rates for MMS and VoIP malware that avoids congestion
through waiting. Note that the MMS curves are on top of each other.

4.4.6 Tackling MMS constraints

A MMS-enabled virus is an attractive target for malware creators. It has

advantages over a VoIP worm in that it is nominally easier to create — it can rely

on social engineering rather than a software vulnerability — and, moreover, both

phones do not need to be powered on at the same time (a consideration that we

have ignored in our simulations). However, it is clear that the capacity of the MMS

server makes it difficult to spread rapidly. In the most virulent case, the malware

could only hope to achieve an infection rate that was 50% of the server capacity

at every time step, since phones must send and receive using the same constraints.

Due to limited address books and duplicated infection attempts, it is difficult to
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Figure 4.17: Infection rates for VoIP malware that avoids congestion and transfers
contacts.

achieve this bound.

However, if the malware creator uses an out-of-band channel to communicate

information, it would be possible to approach the maximum rate. One such channel

that will likely exist in the future is access to the Internet. Since the number of

messages is constrained, the overall network bandwidth utilization is low. Thus,

if phones uploaded their address books to a centralized server on the Internet, as

well as informing the server of its newly infected state, a nearly complete global

address book could be created. Then, each time a phone was capable of sending

a message, it could query a server for a non-infected phone and be assured that

its effort would not be wasted. Figure 4.18 shows the potential that such a worm
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Figure 4.18: Infection rates for MMS malware that uses a centralized list to coor-
dinate infections.

could have on the network compared to the standard MMS malware. Although it

does not approach the speeds at which VoIP malware spreads, it reaches almost

half the population after only twelve hours. It reaches the 25% infection level

1.3 times faster than the standard MMS malware. The average rate of infection

when using the global list is 48.53 new infections per second (compared to 35.07 in

the standard MMS scenario). Given the 100 messages per second capacity of the

server in our simulation, and the fact that senders and receivers share this limit,

it is nearly optimal. Indeed, in our calculations in Section 4.3, we showed that at

43,200s the highest infection level possible was 38.4% of the population. In this

scenario, the malware infects 37.4% of the population at the same point in time.
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4.5 The operator’s dilemma - Deploying defenses

Once an infection begins spreading, network operators need to act with dili-

gence to contain the worm from reaching more devices. At the same time, they

would still like to be able to offer service to phones that are not infected since

revenue directly depends on service. As we have demonstrated, though, there is

significant congestion present once malware begins to spread. Effective quarantin-

ing not only needs to stop the ability to spread, but also reduce network usage so

that service is available to customers. We examine a few possibilities that network

operators could implement in an effort to contain malware.

4.5.1 Filters

Malware which spreads through MMS messages must transit through the cen-

tralized MMS server, which acts not only as a bottleneck, but also a convenient

location for stopping the spread. Each message is also self-contained, meaning ei-

ther the entire payload of the malware, or some identifying characteristic, must be

present. This situation suggests the ability to filter out offending messages before

they reach cell phone users. In Figure 4.19 we look at the response of a network

operator that identifies the malware 20 minutes after infection starts and installs

a filter on all incoming messages. Predictably, the spread of the virus is cut off

quickly, and the rest of the population remains uninfected.

The centralized location of the MMS server, which allows for a single place

to stop an attack, does not currently have an equivalent in the VoIP scenario.
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Figure 4.19: Infection rate when MMS messages are filtered after starting at 20
minutes after infection starts.

SGSN and GGSN nodes are capable of performing deep packet inspection for the

purposing of billing and basic filtering. However, VoIP data may be encrypted

depending on the implementation, and the streaming nature of VoIP traffic makes

it difficult to apply content filters rapidly. Clearly, adding these capabilities to the

infrastructure would be beneficial to network operators in the case of an outbreak

that spread through an unforeseen vector, such as VoIP. If the operator had such

an ability, the infection could similarly be stopped in its tracks as demonstrated

with the MMS case. However, assuming that this ability may not be feasible, we

examine other methods that operators could deploy.
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4.5.2 Rate limiting

As proposed for Internet malware [64] and even implemented in operating sys-

tems [31], mobile phone network operators could rate limit connection attempts

from phones. With rate limiting, we assume that the network operator becomes

aware of the outbreak at some time and then institutes a conservative policy where

a phone may only make one call every 10 or every 30 minutes. This policy would

hopefully have the effect of slowing the malware down while perhaps giving more

time to determine a way to disinfect phones. Figure 4.20 shows, however, that

even these drastic rate limiting schemes still do not stop the malware. Rather,

they can have the alternative effect of reducing congestion, allowing malware to

spread with greater ease. For example, if the network operator rate limits phones

to one call every ten minutes, starting ten minutes after the start of the infection,

it is too late to effectively block the spread — the infection curve follows nearly the

same curve as the standard infection. However, if the operator starts rate limiting

at five minutes, it appears to be just early enough to catch the spread before it

reaches too many people, and does slow it down. However, none of these policies

stop the spread completely. They only move the early stages of infection to a later

point.

4.5.3 Blacklisting users

Rather than rate limiting all users, operators may wish to disconnect and deny

service to users they suspect have been infected. This technique could be accom-
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Figure 4.20: Rate limiting users to slow down the malware spread. Note that
the “start 10m, rate limit to 1 call/10min” curve is occluded by the “standard”
malware

plished through standard methods which turn off service for non-paying customers.

The practice would stop phones from consuming bandwidth and infecting other

devices. However, they would still most likely contend for radio resources at the

radio cell level. We examine a few simple heuristics for determining when a phone

has become infected from the network operator’s viewpoint. Figure 4.21 shows the

effect of blacklisting cell phone users who try to make three calls in one minute

and users who try to make two calls in one minute. This policy is implemented ten

minutes after the start of the outbreak. The policy is, of course, only one simple

heuristic that could be deployed. Network operators likely have more advanced

profiles of what constitutes suspicious activity. However, even with an aggressive
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Figure 4.21: Blacklisting users exhibiting unusual behavior.

policy of blacklisting users, a large number of devices become infected, albeit more

slowly. Blacklisting users, even infected ones, still ends up being a game of catch

up. Moreover, removing users from the network reduces congestion and allows

non-blacklisted phones to continue to spread. Ultimately, it would seem that any

effort that cannot stop nearly all users at an early stage is doomed to fail, unless

even more drastic measures are taken [10, 37].

4.6 Calling all janitors - Malware cleanup

After an outbreak, a large number of cell phones could be infected and unable

to connect to the network, perhaps because they have been blacklisted. An im-
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portant topic for the future of the network operator’s business is how to disinfect

phones. One option could be to have mechanisms to deploy firmware updates.

This approach, however, may require that phones authenticate and connect to the

network. If the phone is still infected, it may consume valuable radio resources at

the least. Instead, it may be more beneficial to have users visit a local outlet to

update software, which of course presents another logistic challenge. A network

dealing with an outbreak of a worm would also face a public relations disaster,

especially if it was the first instance of such an event. The resulting loss of cus-

tomers to other networks seen as providing more secure technology could deal a

serious blow to a business model, which could of course have been the goal of the

malware in the first place.
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Conclusions

This dissertation investigates malware propagation in a mobile phone network

using communication services. We developed a discrete-event simulator capable of

modeling the characteristics of a worm as it spreads across the topology of a single

network provider. To ensure the accuracy and realism of our experiments, we cre-

ated a Radio Access and Core Operator Network (RACoON) topology generator

that generates a course-grained hierarchy of a single network provider’s system. To

model communication patterns, we studied a number of social network topologies

and provided initial evidence of realistic contact degree distributions for actual

cell phone users. Our simulations focused on two possible attack vectors — MMS

messages and a VoIP software exploit — and found that simple malware propaga-

tion is severely limited in both instances by bandwidth and capacity constraints.

However, more sophisticated malware can spread more quickly, for example, by al-

leviating congestion or distributing address books between phones. We also showed
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that stopping the spread of virulent malware is difficult, even if acted upon quickly.

Even aggressive rate limiting and blacklisting techniques cannot contain malware

spreading through the system within just a few minutes of propagation.

It was our goal not only to study and understand the characteristics of worm

propagation in the relatively proprietary cell phone domain, but also to raise aware-

ness. We hope that the tools we have created will spur others to also examine the

effects of malware and the defenses necessary to contain an attack. As mobile

phones become more powerful — and more attractive to attackers — the topic of

mobile malware will eventually begin to grab headlines. We believe it is impor-

tant to jump-start the discussion before the cell phone domain undergoes what the

Internet has experienced for the past decade.



Appendix A

Population density file format

The XML file that represents population count and distribution has the follow-

ing format:

<grid name=#STRING# sidesize=#INT# sideunits=#STRING#>

<grid_cell x=#INT# y=#INT# longitude=#FLOAT latitude=#FLOAT#

pop=#INT# />

</grid>

The generated file contains a grid which contains many grid cells. Each grid cell

is a square region that has a length of sidesize, measured in the units specified by

sideunits. For our study, each grid cell was 1x1 square miles. The grid cell element

defines more data for a region, including the location in the rectangular grid as x

and y values. It also includes the population for that grid cell and actual longitude

and latitude coordinates for the region.
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Appendix B

Radio Access and Core Operator
Network (RACoON) topology gen-
erator file format

The XML file generated by RACoON has the following format:

<scenario>

<umts_topology>

<nodeb id=#INT# latency=#FLOAT# pop=#INT#>

<radio_cell user_bw=#FLOAT# total_bw=#FLOAT#

pop=#INT#>

<grid_cell x=#INT# y=#INT# />

</radio_cell>

</nodeb>

<rnc id=#INT# pop=#INT#/>

<sgsn id=#INT# pop=#INT#/>

<mmc id=#INT# max_mps=#INT#/>

<link bw=#FLOAT# latency=#FLOAT#>

<attach id=#INT#/>

<attach id=#INT#/>

</link>

</umts_topology>
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<routes>

<sgsn id=#INT#>

<dest id=#INT#>

<hop id=#INT#/>

</dest>

</sgsn>

</routes>

<grid size=#INT# cell_side=#INT#>

<grid_cell x=#INT# y=#INT# pop=#INT#/>

</grid>

</scenario>

A scenario may consist of a umts topology or/and a gsm topology. If both

are included they would typically be connected. However, in our study we only

generate a umts topology. The Node-Bs (nodeb) have an ID attribute, attributes

for location (in grid coordinates), and air-interface latency. The Node-B has one or

more radio cells that each cover a set of grid cells. The radio cell has attributes that

define the maximum packet data rate per user (user bw) and for all users in the cell

(total bw). The umts topology also includes RNC (rnc) and SGSN (sgsn) nodes.

Nodes are connected by links that have bandwidth (bw) and latency attributes.

Bandwidths are given in bps and latencies in seconds.

In addition to the topology information, the scenario includes information re-

garding shortest path routes between SGSNs. It also specifies the grid, which is

divided into grid cells. The routes element defines how to route traffic from a

source SGSN to a destination SGSN using the intermediate hop elements.

The entire grid, and each cell, is quadratic, where the length of a cell side is

defined by the cell side attribute (in meters). Each grid cell specifies an average
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population. Grid cells can be omitted from the grid block, meaning that the

average population in those grid cells is negligible.
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