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ABSTRACT OF THE THESIS

Scalable Enforcement of Geometric Non-interference Constraints and Application to
Gradient-based Wind Farm Layout Optimization

by

Ryan C. Dunn

Master of Science in Engineering Sciences (Aerospace Engineering)

University of California San Diego, 2023

Professor John T. Hwang, Chair

Many design optimization problems, including the optimal layout of wind turbines

within a wind farm, enforce constraints to prevent the design from crossing the boundary

of the feasible space. When applying gradient-based optimization to such problems, the

models must provide an accurate representation of the feasible space and be continuous,

smooth, amenable to differentiation, and fast-to-evaluate. This thesis presents the work

from two intertwined topics involved in modeling geometric non-interference constraints

and wind farm optimization. First, we formulate a new method that uses B-splines to

generate an efficient-to-evaluate level set function that approximates the signed distance

xiii



function for boundary constraint enforcement. Adapting ideas from the field of surface

reconstruction, we formulate an energy minimization problem to calculate the B-spline

control point values. Unlike previous constraint formulations, the new method requires an

initial setup, but results in a more efficient and scalable representation of the geometric non-

interference constraint. We present the results of accuracy and scaling studies performed

on our formulation. Second, we perform optimization studies to the design of a wind farm.

Utilizing the aforementioned constraint method, we perform a layout, yaw misalignment,

and hub height optimizations to improve the annual energy production of a wind farm.

These models used are verified and compared to industry-leading frameworks that conduct

similar optimization studies. Overall, the new constraint method provides an effective

way to conduct optimization studies, such as the one conducted in this thesis, with high

computational efficiency, and shows promise as a tool for many more design optimization

problems.
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Chapter 1

Introduction

1.1 Geometric non-interference constraints

Accurate detection of physical interference between two or more bodies is crucial

in the design of many engineering systems. Modeling interference between physical bodies

is, therefore, an important problem in computational design.

Non-interference constraints appear in numerical optimization problems that ma-

nipulate an object within an environment containing other objects such that there is no

collision. Efficient and accurate modeling of the non-interference constraints is critical for

fast and reliable solutions in the overarching optimization problem. Prior literature on

these problems describe these constraints using inconsistent terminology, e.g., anatomical

constraints [1, 2], spatial integration constraints [3], boundary constraints [4, 5], and inter-

ference checks [6]. We observe that these terms represent the same underlying constraint.

We propose to call these constraints geometric non-interference constraints since they

are employed in design optimization to ensure a design where there exists no interference

between two or more geometric shapes or paths of motion.

In our study, a geometric shape is associated with the design configuration of an

engineering system at a particular instance of time. The geometric shapes of interest in

this paper are curves in two dimensions, or orientable surfaces in three dimensions. We

assume that the geometric shapes are non-self-intersecting but make no assumptions on

1



whether they are open or closed. A path of motion or trajectory is the set of points that

traces the motion of a point on the engineering system as the system changes configuration

over time. The paths considered in this paper are simply curves in two or three dimensions.

We use the term layout to refer to a set of geometric shapes.

Based on the definitions above, we identify three major classes of optimization prob-

lems with geometric non-interference constraints: layout optimization, shape optimization,

and optimal path planning. All three classes are parts of the scope of problems we address in

this paper. Layout optimization optimizes the positions of geometric shapes via translation

subject to geometric non-interference, with or without additional boundary constraints.

For example, the wind farm layout optimization problem (WFLOP) consists in positioning

the wind turbines within a wind farm in an optimal way such that interference between

turbines and the boundary of the farm is avoided [4, 5, 7–9]. Another example of a layout

optimization problem is the packing problem. Packing problems consist of positioning

objects within a space to ensure the minimum space is occupied or the maximum number

of objects are placed without geometric interference [3, 6, 10].

Shape optimization seeks to optimize geometric shapes subject to geometric non-

interference, with or without additional boundary constraints. For example, shape opti-

mization of an aircraft fuselage optimizes the shape of a fuselage with constraints ensuring

that the passengers, crew, payload, and all the subsystems fit inside the fuselage [3].

Optimal path planning optimizes the trajectory of a point or a set of points subject

to geometric non-interference, with or without additional boundary constraints. Robot

motion planning is a class of problems that falls under optimal path planning and is

widely researched [11]. The design optimization of surgical robots is an example of a

problem involving robot motion planning that has had recent attention [1, 2]. In the

design optimization of surgical robots, non-interference constraints are imposed such that

the robot does not collide with the anatomy of a patient during operation. Additionally, it

is desirable for the robot to maintain a safe distance from the anatomy, motivating the
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use of a distance-based non-interference constraint formulation in such problems.

The problems just mentioned are solved using numerical optimization algorithms.

Historically, gradient-free algorithms have been more commonly used to solve such problems,

e.g., in layout optimization [12–14] and in robot motion planning [1]. A major reason behind

this was the difficulty in efficiently computing the derivatives for a complex model. As

models become more complex, that is, with more disciplines and design variables, solutions

become impracticable with gradient-free algorithms since these algorithms scale poorly with

the number of design variables. However, the recent emergence of modeling frameworks

such as OpenMDAO [15] has enabled efficient design of large-scale and multidisciplinary

systems using gradient-based optimization, including some of the aforementioned problems

with geometric non-interference constraints [2–4, 8, 9].

Geometric non-interference constraint functions for gradient-based optimization

require special consideration. These functions must be continuously differentiable or

smooth in order to be used with a gradient-based optimization algorithm. They should

also be efficient to compute because optimization algorithms evaluate constraint functions

and their derivatives repeatedly over many optimization iterations. During some iterations,

the optimizer may violate an interference constraint, and useful gradient information

on such iterations is still required despite it being infeasible. Consequently, any non-

interference constraint function must be defined in the event of an overlap between objects

and provide necessary gradient information.

Figure 1.1 shows a diagram with two iterations of a design body in an optimization

problem. One of the designs shown is feasible while the other is not. The feasible design

is the one where the design body is completely inside the feasible space whereas the

infeasible design has at least one point on the design body lying outside the feasible

space. For the ϕ defined in Fig. 1.1, enforcing the optimization constraint ϕ(x(i)) ≥ ϵ

for certain representative points x(i) chosen on the surface of the design body guarantees

non-interference by ensuring that all x(i) stay within the feasible region for the final
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Design
body

Feasible space Ω
𝜙 > 0

Boundary Γ
𝜙 = 0

𝜙 < 0
Infeasible space

Figure 1.1. An ideal constraint function ϕ indicates geometric interferences using signed
distances of representative points x(i) on a body from the boundary Γ defining the feasible
space Ω.

optimized design. The constant ϵ can be any small positive value appropriate for a given

problem.

Existing non-interference constraint formulations suffer from various limitations.

The formulation of quasi-phi-functions by Stoyan et al. [16] provides an analytical

form to represent an interference for simple geometric shapes. Quasi-phi-functions are

continuous but only piecewise continuously differentiable. These functions are also not

generalized to represent any arbitrary shape. The formulation by Brelje et al. [3] is

generalized to any triangulated 3D geometric shape, but has computational limitations.

The computational complexity of their method is O(NΓ), where NΓ is the number of

elements in the triangulation. They are able to overcome this scaling issue by making use of

graphics processing units (GPUs) but demonstrate their formulation on a geometric shape

with only 626 elements in the triangulation. In their recent work on the WFLOP, Risco et

al. [4] formulate a generic explicit method for geometric shapes in 2D, but the method

suffers from the same scaling issues as in [3] and contains discontinuous derivatives. The

formulation by Bergeles et al. [1] employs a distance potential function that is calculated

with the k-nearest neighbors. With the use of a k-d tree structure, the computational

complexity of the k-nearest neighbor search scales better than linearly, O(k log(NΓ)) on
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average, but the structure is not suitable for gradient-based optimization because the

derivatives are discontinuous when the set of k-nearest neighbors switches.

Outside the domain of non-interference constraint formulations currently employed

in optimization, we discovered a significant body of research conducted on a remarkably

similar problem by the computer graphics community. Surface reconstruction in the field

of computer graphics is the process of converting a set of points into a surface for graphical

representation. A popular approach for surface reconstruction is the representation of

surfaces by an implicit function. Implicit surface reconstruction methods such as Poisson

[17], Multi-level Partition of Unity (MPU) [18], and Smooth Signed Distance (SSD) [19],

to name a few, construct an implicit function from a point cloud to represent a surface.

We observed that some of these distance-based formulations can be applied to overcome

prior limitations in enforcing geometric non-interference constraints in gradient-based

optimization.

The first objective of this thesis is to devise a general methodology based on an

appropriate surface reconstruction method to generate a smooth and fast-to-evaluate

geometric non-interference constraint function from an oriented point cloud. It is desired

that the function locally approximates the signed distance to a geometric shape and that

its evaluation time scales independently of the number of points sampled over the shape

NΓ. The function must also be an accurate implicit representation of the surface implied by

the given point cloud. The contribution of this paper is a new formulation for representing

geometric non-interference constraints in gradient-based optimization. We investigate

various properties of the proposed formulation, its efficiency compared to existing non-

interference constraint formulations, and its accuracy compared to state-of-the-art surface

reconstruction methods. Additionally, we demonstrate the computational speedup of our

formulation in an experiment with a path planning optimization and shape optimization

problem.

This section, in full, is currently being prepared for submission for publication of
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the material. Anugrah J. Joshy, Jui-Te Lin, Cédric Girerd, Tania K. Morimoto, and John

T. Hwang. The thesis author was the primary investigator and author of this material.

1.2 Wind farm optimization

Wind energy is a sustainable method for electric power generation that mitigates

greenhouse gas emissions from other power generation resources, such as with fossil fuels.

Predictions show that the climate change mitigation from wind energy development ranges

from 0.3◦C to 0.8◦C by 2100 [20]. Off-shore wind farms can also mitigate the impacts of

hurricanes for coastal communities [21]. As such an impactful energy resource, the field of

wind farm optimization has gained recent attention to maximize the energy production

and economic feasibility of developing wind farms.

The increased adoption of multidisciplinary design optimization (MDO) techniques

by the wind energy community has produced many recent works including the optimization

of wind turbine designs [22], wind farm layouts [23], and active wind farm control [24].

In general, turbine design, wind turbine layout, and active turbine control strategies are

the three main methods to increase wind farm efficiency by reducing the wake interaction

between turbines [5]. Although these methods individually may increase the net efficiency,

it has been shown that considering multiple or all three methods can further the a more

optimal model. Recent simultaneous optimization studies include control and layout

optimization [25, 26] and turbine design and layout optimization [5].

Numerical optimization, as an important design tool to solving these problems, has

been widely used for wind farm optimization. Gradient-based and gradient-free algorithms

are the two main algorithms to perform optimization. Historically, gradient-free algorithms

have been used for wind farm optimization problems due to the high multi-modality in

the design space of these problems [7, 27, 28]. Gradient-free optimizers are robust to

local minima, while gradient-based optimizers often converge to a local optima. However,
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as these problems increase in scale and the number of disciplines, the dimensionality of

the design space may become impractical for gradient-free optimization. Gradient-free

optimizers scale poorly in the number of function evaluations as the number of design

variables increase in these complex wind farm problems. Gradient-based optimization,

especially with analytic gradients, scales better in the number of function evaluations

over gradient-free optimizers in these cases. In addition, recent developments have added

methods for gradient-based optimizers to navigate the multi-modal design space of these

problems [4, 29]. As a result, gradient-based optimization continues to play a key role in

optimizing wind farms.

When modeling wind farms for gradient-based optimization, it is important to

consider the computational speed and differentiability of the models. High fidelity models

are often very computational expensive to evaluate, and these models must be evaluated

up to hundreds of times during optimization. Therefore, lower fidelity models that are

less computationally expensive are often considered for use in gradient-based optimization.

Additionally, the differentiability of the models is a requirement in order to perform

gradient-based optimization. The ability to calculate derivatives within the model has

not always been readily available. Oftentimes, significant effort must be made to hand-

derive the derivatives [22, 30], or in the worst case, using the finite difference method

for derivatives [31], which is on the same order of function evaluations as gradient-free

optimization. Current state-of-the-art gradient-based optimizations are performed using

automatic differentiation [4, 5, 23], however it still requires a level of effort to implement

into new models, especially when local smoothing techniques are required [32].

A notable research problem in wind farm layout optimization is the representation

of wind farm boundary constraints. Boundary constraints in wind farm layout optimization

prevent the placement of a wind turbine on regions outside of the permitted zone. Examples

of exclusion zones for off-shore wind farms include unsuitable seabed gradients, shipwrecks,

and shipping lanes. These zones are often disjoint, non-convex, and highly irregular
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shapes represented in 2D. There exists a lack of a generic method to represent these

boundaries in the wind farm optimization community [33]. Additionally, the state-of-the-

art methods suffer from the same problems noted in Section 1.1, where the computational

complexity scales with the number of points representing the polygonal wind farm boundary

[4]. Conveniently, the first contribution of this thesis addresses this issue. The new

geometric non-interference constraint formulation provides a smooth, differentiable, and

fast-to-evaluate constraint function that represents the wind farm boundary suitable for

gradient-based optimization.

Another tool that may show to benefit gradient-based wind farm optimization is a

new modeling code language called the computational system design language (CSDL)

[34]. CSDL is an algebraic modeling language for defining numerical models that fully

automates adjoint-based sensitivity analysis. Additionally, CSDL contains a three-stage

compiler system that constructs an optimized computational graph representation of the

models. As a new design language, it shows potential to improving the convenience and

speed of developing the models to perform gradient-based wind farm optimization.

The second objective of this thesis is to implement the two aforementioned tools–the

geometric non-interference constraint formulation and the computational system design

language (CSDL)–and perform optimization studies on multiple wind farm optimization

problems. We conduct optimization studies on turbine hub heights, turbine yaw misalign-

ment, and wind farm layout, and investigate their properties as it pertains to gradient-based

optimization. These three problems demonstrate the potential of gradient-based optimiza-

tion in turbine design, wind farm control, and wind farm layout optimization problems.

Using well know analytical models, we conduct multiple optimization studies using CSDL

as a modeling paradigm and verify its accuracy with other industry-leading optimization

frameworks. Additionally, we perform a wind farm layout optimization with a real-world

wind farm, highlighting the accuracy and efficiency of the geometric non-interference

constraint formulation.
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This section, in full, is currently being prepared for submission for publication of

the material. Anugrah J. Joshy and John T. Hwang. The thesis author was a contributor

to this material.
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Chapter 2

Literature Review

2.1 Related work for geometric non-interference
constraints

This section presents an overview of related work to the defined research prob-

lem. We begin by reviewing prior methods for enforcing non-interference constraints in

gradient-based optimization in subsection 2.1.1. We then review the problem of surface

reconstruction and its complexities in subsection 2.1.2. In subsection 2.1.3, we present a lit-

erature review for methods that approximate the signed distance function to contextualize

our formulation within the field of surface reconstruction.

2.1.1 Prior methods for enforcing non-interference constraints
in gradient-based optimization

We identify two preexisting methods for enforcing geometric non-interference

constraints in gradient-based optimization that are both continuous and differentiable.

Previous constraint formulations that utilize the nearest neighbor distance, e.g., Risco et

al. [4] and Bergeles et al. [1], have been used in optimization, but we note the that they

are non-differentiable and may incur numerical difficulties in gradient-based optimization.

Brelje et al. [3] implement a general mesh-based constraint formulation for non-

interference constraints between two triangulations of objects. Two nonlinear constraints
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define their formulation. The first constraint is that the minimum distance of the design

shape to the geometric shape is greater than zero, and the second constraint is that the

intersection length between the two bodies is zero, i.e., there is no intersection. A binary

check, e.g., ray tracing, must be used to reject optimization iterations where the design

shape is entirely in the infeasible region, where the previous two constraints are satisfied.

As noted by Brelje et al., this formulation may be susceptible to representing very thin

objects, where the intersection length is very sensitive to the step size of the optimizer.

Additionally, the constraint function has a computational complexity of O(NΓ), which

may be addressed by the use of graphics processing units (GPUs).

Lin et al. [2] implement a modified signed distance function, making it differentiable

throughout. Using an oriented set of points to represent the bounds of the feasible region,

the constraint function is a distance-based weighted sum of signed distances between the

points and a set of points on the design shape. This representation is inexact and is found

to compromise accuracy for a smoothness in the constraint representation in practice.

Additionally, their formulation has a computational complexity of O(NΓ).

2.1.2 Surface reconstruction

Our first objective—to derive a smooth level set function from a set of oriented

points—closely aligns with the problem of surface reconstruction in computer graphics.

Surface reconstruction is done in many ways, and we refer the reader to [35, 36] for a full

survey on surface reconstruction methods from point clouds. We, in particular, focus on

surface reconstruction with implicit function representations from point clouds. Implicit

surface reconstruction is done by constructing an indicator function between the interior

and exterior of a surface, whose isocontour represents a smooth surface implied by the

point cloud. The methodologies for surface reconstruction use implicit functions as a

means to an end; however, the focus of our investigation is on the implicit function itself

for enforcing non-interference constraints. We identify that the direct connection between
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non-interference constraints and implicit functions in surface reconstruction is that the

reconstructed surface represents the boundary between the feasible and infeasible region

in a continuous and differentiable way.

The surface reconstruction problem begins with a representation of a geometric

shape. Geometric non-interference constraints may be represented by geometric shapes

using scanned samples of the surface of an anatomy [1, 2], outer mold line (OML) meshes

[3], user defined polygons [4], and a sampled set of points of seabed depths [7]. Many

geometric shape representations, including those mentioned, can be sampled and readily

converted into an oriented point cloud and posed as a surface reconstruction problem.

The construction of any point cloud comes with additional complexities. For

example, machine tolerance of scanners introduce error into scans, and meshing algorithms

produce different point cloud representations for the same geometric shape. As a result,

implicit surface reconstruction methods often take into consideration nonuniform sampling,

noise, outliers, misalignment between scans, and missing data in point clouds. Implicit

surface reconstruction methods have been shown to address these issues well, including

hole-filling [37–39], reconstructing surfaces from noisy samples [17, 40, 41], reconstructing

sharp corners and edges [40], and reconstructing surfaces without normal vectors in the

point cloud [41, 42].

Basis functions are commonly used to define the space of implicit functions for

implicit surface reconstruction. Basis functions are constructed from a discrete set of points

scattered throughout the domain, whose distribution and locations play an important

role to defining the implicit function. Examples of these points include control points

for B-splines, centers for radial basis functions, and shifts for wavelets. Implicit surface

reconstruction methods distribute these points in various ways.

One approach is to adaptively subdivide the implicit function’s domain using an

octree structure. Octrees, as used by [17–19, 41, 43, 44], recursively subdivide the domain

into octants using various heuristics in order to form neighborhoods of control points near
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the surface. Heuristics include point density [19], error-controlled [18], and curvature-based

[44] subdivisions. Octrees are notable because the error of the surface reconstruction

decays with the sampling width between control points, which decreases exponentially

with respect to the octree depth [17]. Additionally, the neighborhoods of control points

from octrees can be solved for and evaluated in parallel using graphics processing units

(GPUs), which allows for on-demand surface reconstruction as demonstrated in [43].

Another approach for distributing the points that control the implicit function is to

locate them directly on the points in the point cloud. In the formulation by Carr et al. [45],

a chosen subset of points in the point cloud and points projected in the direction of the

normal vectors are used to place the radial basis function (RBF) centers, resulting in fewer

centers than octrees that are still distributed near the surface. The explicit formulation

by Hicken and Kaur [46] uses all points in the point cloud to define the implicit function

and shows favorable decay in surface reconstruction error as the number of points in the

point cloud NΓ increases. This structure has been used in combination with RBFs for

hole-filling in [37] and anisotropic basis functions for representing sharp corners in [40].

Another approach is to construct a uniform grid of points to control the implicit

function. Unlike the aforementioned approaches, the distribution of points is decoupled

from the resolution of the point cloud. As a result, deformations to the geometric shape can

be represented without loss in accuracy near the surface as shown by Zhao et al. [38]. This

makes it a popular structure in partial differential equation (PDE) based reconstruction

methods that evolve the surface during reconstruction, such as in [47, 48]. In general,

more points representing the implicit function are required to achieve the same level of

accuracy to other approaches. As a result, implicit functions defined by a uniform grid

are more computationally expensive to solve for in both time and memory usage than the

aforementioned approaches, as experienced by Sibley and Taubin [49], but can be reduced

by a GPU-based multigrid approach as implemented by Jakobsen et al. [48].
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2.1.3 Formulations for signed distance function approximation

The signed distance function (SDF) presents an ideal candidate for implicit surface

reconstruction and geometric non-interference constraints. It is known that the zero level

set of the SDF is a smooth representation of the points in a point cloud, and its gradient

field is a smooth representation of the normal vector field from the normal vectors in a

point cloud. As a result, many formulations to approximate the SDF have been researched

for implicit surface reconstruction. We note that there exists other methodologies, such as

wavelets [50] and a Fast Fourier Transform (FFT) based method [51], that fit a smooth

indicator function instead, but are less applicable for non-interfernce constraints where a

measurement of distance is desired. We identify four categories that approximate the SDF

in some way: explicit formulations, interpolation formulations with RBFs, PDE-based

formulations, and energy minimization formulations.

Explicit formulations

Explicit formulations use the data defined in the point cloud to define linear

approximations to the SDF. These formulations then apply smoothing to these linear

approximations in order to define the level set function. Risco et al. [4] present the simplest

approach which uses the nearest edge and normal vector to define the function explicitly.

The resultant constraint function is piecewise continuous but non-differentiable at points

where the nearest edge switches. Belyaev et al. [52] derive a special smoothing method

for defining signed Lp-distance functions, which is a continuous and smooth transition

between piecewise functions. Hicken and Kaur [46] use modified constraint aggregation

methods to define the function in a smooth and differentiable way. Upon the investigation

of Hicken and Kaur, the signed Lp-distance functions give poor approximations of the

surface. Additionally, Hicken and Kaur’s formulation is shown to increase in accuracy

as the data in the point cloud, number of points NΓ, increases. We identify Hicken and

Kaur’s explicit formulation as a good candidate for enforcing non-interference constraints,
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as it is continuous and differentiable with good accuracy.

Given an oriented point cloud is a set of ordered pairs P = {(pi, n⃗i) : i = 1, . . . ,NΓ},

where pi is the location of the points sampled over the geometric shape, and n⃗i are the

unit normal vectors at pi, the level set function by Hicken and Kaur [46] is given as

ϕH(x) =
∑NΓ

i=1 di(x)e−ρ(∆i(x)−∆min)∑NΓ
j=1 e−ρ(∆j(x)−∆min)

, (2.1)

where di(x) is the signed distance to the hyperplane defined by the point and normal vector

pair in the point cloud (pi, n⃗i), ∆i(x) is the Euclidean distance to the point pi, ∆min is the

Euclidean distance to the nearest neighbor, and ρ is a smoothing parameter. To improve

accuracy, Hicken and Kaur suggest modifications to make the linear approximation in

to a quadratic approximation by using the principal curvatures of the surface. Unless

readily provided by a smooth geometric representation, the principal curvatures must be

approximated from the point cloud, similar to the approximation method by Tang and Feng

[44]. To reduce the computational complexity, Hicken and Kaur suggest only evaluating the

k-nearest neighbors, since the basis weights exponentially decay with distance. However,

using the k-nearest neighbors will remove the function’s differentiability as the set of

k-nearest neighbors changes. As a result, their formulation must scale in computational

complexity by O(NΓ) to be differentiable. While not originally purposed for geometric non-

interference constraints, the formulation by Hicken and Kaur is on par in computational

complexity with current non-interference constraint formulations [2–4]. No calculations

are required to set up the function because the equation is explicitly defined by the data

in the point cloud, but it is susceptible to the various complexities of point clouds, such as

noise and outliers.
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Interpolation formulations with radial basis functions

Another method to construct the level set function is to solve an interpolation

problem given an oriented point cloud P. Because the data points of P always lie on

the zero contour, nonzero interpolation points for the implicit function can be defined

on the interior and exterior, as originally done by Turk and O’Brien [53]. Radial basis

functions (RBFs) are then formulated to interpolate the data. To avoid overfitting, thin-

plate splines can be used to formulate the smoothest interpolator for the data, as noted

in [37, 45]. Solving for the weights of a RBF involves solving a linear system, which is

often dense and very computationally expensive due to their global support. Turk and

O’Brien [53] solve up to 3,000 RBF centers, and improvements by Carr et al. [45] allow

up to 594,000 RBF centers to be constructed in reasonable time (hours). On top of the

significant computational expense, interpolating RBFs have been criticized for having

blobby reconstructions [40, 53] which poorly represent sharp features in the geometric

shapes.

PDE-based formulations

Another approach is to construct the level set function as a smooth vector field

that smoothly approximates the normal vectors n⃗i given by the point cloud P . The vector

field is then integrated and fit, usually by a least squares fitting, to make the zero level set

fit the point cloud. We classify the methods that solve for the vector field as a solution to

a partial differential equations (PDEs) as PDE-based methods. Poisson’s method [17] uses

variational techniques to Poisson’s equation to construct a vector field. Improvements to

this method add penalization weights to better fit the zero contour to the point cloud in

[54]. Tasdizen et al. [47] prioritize minimal curvature and minimal error in the vector field

by solving a set of coupled second order PDEs to derive their level set function. Zhao et al.

[38] use the level set method, originally introduced by Osher and Sethian [55], for surface

reconstruction, with the advantage of modeling deformable shapes. In the aformentioned
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PDE-based methods, the setup for the implicit function reduces to solving a PDE by

time-stepping [38, 47] or a sparse linear system [17, 51] in the case of Poisson’s equation.

Kazhdan et al. [17] note that care should be taken when choosing a smoothing filter for

the normal field defined by n⃗i, especially for nonuniformly sampled points. In the analysis

done by Calakli and Taubin [19], they found that Poisson’s method often over-smooths

some surfaces. We also note that solutions to PDEs are more difficult to implement than

other methods in practice.

Energy minimization formulations

Another methodology is to solve an optimization problem that minimizes some

energy function with respect to the values of the basis function directly. The smooth

signed distance (SSD) surface reconstruction method [19] minimizes an energy function

with three terms. Minimizing these three terms maximizes smoothness and minimizes the

approximation error of the zero level set and the gradient field to the data in P, all in

a least squares sense. Alternative forms, such as in [18, 44], propose a different energy

term to this formulation, which does a direct least squares fit to the approximate signed

distance function. We perform a more thorough discussion of the four energy terms in

Chapter 3, as our method also poses an energy minimization problem.

The energy minimization problem posed by these papers is a well-posed uncon-

strained quadratic programming (QP) problem. The solution to these unconstrained QP

problems reduces to the solution of a linear system. Making use of hierarchical structures,

such as octrees, and compactly supported basis functions, the linear system is sparse and

recursively solved at increasing depths of the structure. These advantages allow for fast

solutions on the order of minutes as reported by [19, 44]. It should be noted that the time

and space (memory) consumed by hierarchical approaches grows exponentially with the

depth of the octree, so many implementations limit the depth up to 11. The resultant

number of control points in Tang and Feng [44] are on the order of 106.
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Summary

We note that interpolation formulations with RBFs, PDE-based formulations, and

energy minimization formulations are different approaches to the same problem of approx-

imating the SDF. The primary differences lie within the derivation and implementation of

such methods. The energy minimization formulation by Calakli and Taubin [19] performs

a least squares fit to the data in the point cloud. Thin-plate spline RBFs are an exact

solution to the same energy minimization formulation to interpolate the data and maximize

smoothness, as derived by [56]. The two-step energy minimization formulation by Sibley

and Taubin [49] follows the same approach as PDE-based methods, where a vector field

is solved for and then a least squares fit is done to fit the surface. We recommend the

interested reader to Calakli and Taubin [19] who discuss the similarities and differences

between SSD and Poisson surface reconstruction methods.

Table 2.1. Signed distance approximations and their basis function representations.

Formulation Basis Function Point Distribution
[46] Explicit Exponential On-surface
[53] Interpolating Thin-plate RBF On- & off-surface
[45] Interpolating Polyharmonic RBF On- & off-surface
[40] Interpolating Anisotropic RBF On- & off-surface
[47] PDE-based Polynomial Uniform

[38, 48] PDE-based Linear Uniform
[17] PDE-based Quadratic Octree
[54] PDE-based Quadratic B-splines Octree
[49] Energy minimization Linear Uniform
[19] Energy minimization Linear Octree

[18, 41, 44] Energy minimization Quadratic B-splines Octree
Our method Energy minimization Cubic B-splines Uniform

We summarize the context for all the methods in Table 2.1, highlighting the main

differences in their formulation, basis function representation, and distribution of points

controlling the function. We note our method is an energy minimization formulation,

which uses the same energy terms as Calakli and Taubin [19], but with a different basis
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function and different distribution of control points.

This section, in part, is currently being prepared for submission for publication

of the material. The authors of this work are Ryan C. Dunn, Anugrah Jo Joshy, Jui-Te

Lin, Cédric Girerd, Tania K. Morimoto, and John T. Hwang. The thesis author was the

primary investigator and author of this material.

2.2 Related work for wind farm optimization

Objective functions

Wind farm optimization problems contain an objective to be minimized (or max-

imized) with respect to design variables. The objective function is important to the

optimization problem because its minimum defines the optimal design of the wind farm.

When an objective function is narrow in scope, the optimal result often compromises

other aspects of the design. We tabulate the different objective functions in Table 2.2.

Historically, many wind farm optimizations have focused on the annual energy production

(AEP) of a wind farm, which is considered to be too narrow of a scope. When optimizing

AEP, solutions may be difficult to manufacture, economically impractical, and over-reliant

on the model’s assumptions making it impractical in the real-world. The levelized cost of

energy (LCoE) objective function is larger in scope and emphasizes efficient and economi-

cally feasible solutions, and is often considered a better objective than AEP [57]. Recent

work has converted an existing hub height optimization using AEP [58] to improve the

economic viability and competitiveness using LCoE as the objective function [59]. Other

optimizations such as cable length, noise, and mass are considered more narrow in scope.

In some cases, multiple objective functions are considered in an optimization [28, 60]. For

further conversation on the selection of an appropriate objective function, we direct the

reader to [57].
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Table 2.2. Objective functions used in wind farm design optimization.

Objective Functions
Annual Energy Production (AEP)∗ [23–25, 32, 57, 58, 61–64]
Levelized Cost of Energy (LCoE) [5, 22, 31, 57, 59]
Noise level [60, 65–67]
Cable length [31]
Power density [31]
Turbine mass [57, 68]

Note: (∗) indicates what is investigated in this thesis.

Design variables

The design variables of the wind farm optimization are also important to defining

the problem. In terms of decreasing the wake interactions of wind turbines, three main

methods emerge that define the design variables of each problem. The first method uses

the turbine positions as design variables and is called the wind farm layout optimization

problem (WFLOP). The WFLOP has a highly multi-modal design space that is especially

challenging for gradient-based optimization. The second method uses the turbine’s tower,

blade, and rotor-nacelle assembly as design variables and is the turbine design optimization

problem. The third method uses the turbine’s control to affect its wakes and is the

turbine control optimization problem. We refer the reader to two reviews on wind turbine

controls strategies [69, 70]. A summary of the design variables considered in previous

gradient-based optimization studies is in Table 2.3. Note that some recent studies consider

two optimization problems at once: simultaneous layout and control optimization [25] and

simultaneous layout and turbine design optimization [5]. In these studies, the optimal

results were improved compare to solving the optimization problems individually.

Boundary constraints

An important problem in the wind farm layout optimization problem (WFLOP)

is the representation of the wind farm boundary. The wind farm boundary defines the

feasible regions of a wind farm, and can be limited due to the geographic features of
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Table 2.3. Design variables used in the three types of wind farm design optimization
problems.

Optimization Problem Design Variables
Wind farm layout Positions (x,y)∗ [23, 25, 26, 31, 60, 63–65, 67]

Turbine design

Hub heights (zh)∗ [5, 22, 58, 59]
Rotor diameters (D) [5, 22, 57]
Blade geometry [22, 57, 66]
Tower geometry [5, 22, 68]

Turbine control Yaw misalignment (γ)∗ [23, 24, 26, 31, 32, 62]
Turbine derating [25, 57, 61]

Note: (∗) Indicates what is investigated in this thesis.

the land or sea. In optimization, these zones must be enforced as constraints to ensure

turbines are placed in a feasible zone. For gradient-free optimization, the representation of

these boundaries are simple. Wind farm boundaries may be enforced by a binary function

[28] or by discretizing the domain and excluding the points outside of the feasible space

[7]. However, a gradient-based boundary constraint function must be continuous and

differentiable. Many papers have tried to address this issue in their own unique ways. A

common method seen is a polygonal representation of the boundary. With these polygons,

Guirguis et al. uses the nearest edge to define an equivalent circular constraint [30]. Risco

et al. uses the nearest edge of the polygon to define the signed distance function (SDF) [4].

Note that both of these method’s use of the nearest edge in their formulation, which means

that the constraint function is non-differentiable when there are two edges of equal distance

away from the wind turbine. Additionally, there is a trade-off between computational

cost and accuracy in the constraint function with respect to the number of edges in the

polygon [4]. The unique approach by Reddy poses an interpolation problem using a

support vector domain description (SVDD) to describe the boundaries in an optimal way

[33]. This approach is continuous and differentiable, but the report does not provide

any accuracy and scaling studies, so it is unknown how it may perform with increasingly

complex boundaries.
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To the author’s knowledge, no other wind farm boundary constraint has taken

the unique implicit surface reconstruction perspective as was described in Section 2.1.

Implicit surface reconstruction constructs a level set function that represents the wind farm

boundary by its zero level set. The inputs to most surface reconstruction methods is a point

cloud, which is easily obtainable from the polygonal representations of previous studies.

Note that Reddy’s SVDD method is very similar to the interpolation formulations in

surface reconstruction. In this way, SVDD may suffer from the aforementioned limitations,

including blobby reconstructions [40, 53] and significant computational expense for large

scale SVDDs [45].

The SDF is useful when the feasible zones are disconnected. In gradient-based

optimization, it is not possible for wind turbines to move across disconnected domains in

a continuous way, however, a relaxation approach to the boundary constraints can allow

for wind turbines to move freely across regions until the true constraint is represented.

The relaxation approach is shown to work well in avoiding turbines getting stuck within

disconnected domains [4]. With the SDF approximation described in Chapter 3, the

relaxation approach is easily repeatable using the surface reconstruction method.

Wind farm optimization frameworks

Many frameworks to model and support the optimization of wind farms have

been developed. We identify three of these frameworks relevant to the work within this

thesis: PyWake, TOPFARM, and FLORIS. PyWake is an open-source Python library that

contains many engineering wake models to calculate the annual energy production of wind

farms. TOPFARM is an OpenMDAO-based Python library that performs gradient-based

optimization on wind farms using PyWake as its backend for modeling turbine wakes and

calculating annual energy production. FLORIS is an open-source Python library that is

controls-focused framework that models the wakes of yawed turbines and supports gradient-

free and gradient-based optimization. Gradient-based optimization within FLORIS is at a
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limited capacity, as it only supports automatic differentiation on some models. Otherwise,

the finite difference method is used for derivative calculation. The finite difference method

is less accurate and requires many more model evaluations.

This section, in part, is currently being prepared for submission for publication of

the material. The authors of this work are Anugrah Jo Joshy, Ryan C. Dunn, and John T.

Hwang. The thesis author was a contributor to this material.
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Chapter 3

Novel methodology for Enforcing
Geometric Non-interference Con-
straints

3.1 Signed distance function

We now present our methodology to compute an implicit level set function ϕ by

approximating the signed distance function (SDF) of a geometric shape. We assume that

the geometric shape partitions its neighboring space into a feasible region and an infeasible

region as shown in Fig. 3.1. Our goal is to generate a level set function such that the zero

contour of the function approximates the boundary between the feasible and infeasible

regions, i.e., the geometric shape. We also require that evaluating the implicit function at

any point in the domain of interest will determine if the point is located on the boundary

or within one of the two regions, as indicated by the signed distance of the point from

the boundary. We follow the convention of denoting distances in the feasible region as

positive and those in the infeasible region as negative. The signed distance function in the

neighborhood N ⊂ Rn of a point on the geometric shape can then be defined as

dΓ(x) =


+D(x) if x ∈ Ω

−D(x) if x ∈ N \Ω
(3.1)
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where D : Rn → R≥0 measures the shortest distance of a point x to the boundary Γ. The

local feasible region Ω ⊂ N and the local infeasible region N \Ω are separated by the local

boundary Γl = Γ∩N within the neighborhood, and Γl ⊂ Ω. Note that n = 2 or n = 3 for

geometric shapes: n = 2 implies Γ is a curve in two dimensions while n = 3 implies Γ is an

orientable surface in three dimensions. We assume that Γ is always a connected set. We

make no assumptions on the surface or curve being open or closed. However, we assume

that Γ does not contain the boundary points or curves if the curve or surface is open to

ensure the existence of a neighborhood where the definition of dΓ is valid. We also note

that for closed geometric shapes, the definition of a local neighborhood is not necessary,

as the feasible and infeasible regions can be simply defined as the inside and outside of the

closed boundary Γ (see Fig. 1.1), or vice versa. This is identical to the standard definition

of the signed distance function.

Γ!

Γ

Ω 𝒩 ∖ Ω

+
−

𝒩(𝒑")

𝒑"

Figure 3.1. A 2D open funnel partitions the neighborhood of a point pi into a feasible
region Ω and an infeasible region N \Ω.

3.2 B-spline functions

Our desired level set function is a smooth approximation to the signed distance

function of a geometric shape and is defined as a mapping ϕ :V ⊂ Rn → R, where V is

the space where we wish to evaluate the level set function as a non-interference constraint

function during optimization. This means that the zero level set S = {x : ϕ(x) = 0}

implicitly approximates the given geometric shape. To achieve such an approximation, we
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utilize tensor product B-splines. A B-spline volume P : [0,1]3 → R3 is defined as

P(u,v,w) =
ni,nj ,nk∑
i,j,k=0

Ci,j,kBi,d1(u)Bj,d2(v)Bk,d3(w), (3.2)

where (u,v,w) ∈ [0,1]3 are the normalized parametric coordinates, Bi,d1(u), Bj,d2(v),

Bk,d3(w) are the B-spline basis functions of degrees d1,d2,d3 in the i, j,k directions

respectively, and Ci,j,k are the control points that form the (ni +1)× (nj +1)× (nk +1)

control net in the physical coordinate system. Equation (3.2) is essentially a tensor product,

and hence P is also called a tensor product B-spline.

A B-spline volume maps a volumetric space in the parametric coordinate system

(u,v,w) to the physical coordinate system (x,y,z) by translating and deforming the

volumetric space according to the control net Ci,j,k. The volumetric space we wish to

represent in the physical coordinate system is a rectangular prism V. This is the physical

space where geometric non-interference constraints need to be evaluated; therefore, we refer

to V as the domain of interest. We require that V encompasses the minimum bounding

box for a given point cloud. The minimum bounding box is the smallest closed box in

Rn that contains the input point cloud representing a geometric shape. We uniformly

space the control points Ci,j,k across V and consider them to be constant. The domain of

interest is not always a cube; therefore, parametric coordinates may be scaled differently

along different directions. To compensate for this, some directions may contain more

control points than others depending on the dimensions of V.

The B-spline basis functions Bi,d1(u), Bj,d2(v), and Bk,d3(w) are generated by the

de Boor’s recursion formula [71]. The formulas for all three directions are identical, and
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Bi,d1(u) along the i direction is computed by recursion

Bi,0(u) =


1 if ti ≤ u < ti+1

0 otherwise
,

Bi,k(u) = u− ti

ti+k − ti
Bi,k−1(u)+ ti+k+1 −u

ti+k+1 − ti+1
Bi+1,k−1(u),

(3.3)

where ti denotes the knots in the i direction. The basis functions corresponding to Ci,j,k

provides support only for (u,v,w) ∈ [ui,ui+d1+1] × [vj ,vj+d2+1] × [wk,wk+d3+1]; thus the

basis functions are sparse. This also means that the number of nonzero terms in the

summation of Eq. (3.2) is proportional to the degrees d1, d2, and d3.

We define our B-splines with standard uniform knot vectors and uniformly spaced

control points Ci,j,k across V. This makes the mapping (u,v,w) → (x,y,z) a linear, one-

to-one relationship with (u,v,w) ∈ [0,1]3 spanning the entire volumetric space of V. Thus,
∂u
∂x , ∂v

∂y , and ∂w
∂z are constants that depend only on the dimensions of the rectangular prism

V. Since we are using a standard uniform knot vector, it should be noted that the control

points must lie beyond V in order for the mapping to hold for all points in V. With these

assumptions, we apply our target function ϕ to both sides of Eq. (3.2) to obtain

ϕ(x,y,z) =
ni,nj ,nk∑
i,j,k=0

C(ϕ)
i,j,kBi,d1(u(x))Bj,d2(v(y))Bk,d3(w(z)), (3.4)

where u(x),v(y), and w(z) map the physical coordinates back to normalized parametric

coordinates, and C(ϕ)
i,j,k are the values of the function ϕ at the control points. The derivatives

with respect to the spatial coordinates and derivatives with respect to the control points

are easily derived from this form. The sparsity of the basis functions over the entire domain

and the use of standard uniform knot vectors make the computation of ϕ at any given point

(x,y,z) in the domain highly efficient. Moreover, ϕ becomes continuously differentiable

with easily computed higher order derivatives for appropriately defined B-spline degrees.
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Note that while computing the level set function ϕ for a curve in two dimensions,

V is a rectangle, P reduces to a B-spline surface, and we omit terms along the k direction

in Eq. (3.4). In all of the remaining discussion, we assume n = 3 with the geometric shape

being a surface in three dimensions.

3.3 Energies for B-spline fitting

The core of our methodology lies in computing appropriate C(ϕ)
i,j,k values on the

control net so that the level set function ϕ approximates the signed distance function with

favorable properties for gradient-based optimization. Note that since our approximation

uses B-splines, the resulting function will already be smooth and fast-to-evaluate. Therefore,

the remaining task is to formulate an approach for reliably estimating C(ϕ)
i,j,k using the

information available from an oriented point cloud.

An oriented point cloud is a set of ordered pairs P = {(pi, n⃗i) : i = 1, . . . ,NΓ}, where

pi are the physical coordinates of the points sampled over the geometric shape, and n⃗i are

the unit surface (or curve) normal vectors at pi oriented towards the infeasible region. Our

method always requires an oriented point cloud as its input. However, we note that in cases

where only a point cloud without normal information is available, Principal Component

Analysis (PCA) along with a Minimum Spanning Tree (MST) algorithm can be used

for estimating normals and their orientation [42]. Edge-Aware Resampling (EAR) [72] is

another method that can be used for generating noise-free normals that also preserves

sharp features.

We calculate C(ϕ)
i,j,k values by minimizing an energy function consisting of multiple

energies. The terms in the energy function are adopted from existing surface reconstruction

methods [18, 19, 41, 44]. Since the zero contour of our desired level set function ϕ should

approximate the geometric shape represented by the point cloud, it is straightforward to

see that we should minimize energies to approximately satisfy ϕ(pi) = 0 and ∇ϕ(pi) = −n⃗i.
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Hence we first define energies

Ep = 1
NΓ

NΓ∑
i=1

ϕ(pi)2 and (3.5)

En = 1
NΓ

NΓ∑
i=1

∥∇ϕ(pi)+ n⃗i∥2 , (3.6)

where Ep estimates the approximation error as the average of squared distances of the

point cloud from the zero contour of ϕ, and En measures the average of squared alignment

errors of the level set function’s gradient when compared to the negative of the unit normal

vectors in the point cloud. Note that we take the negative of the normals (oriented toward

the infeasible region) from the point cloud since we want distances given by ϕ to be positive

inside the feasible region. Minimizing Ep forces the zero contour of ϕ to pass through all

the points in the point cloud, and minimizing En tries to orient the function’s direction

of steepest increase ∇ϕ along the normal to the geometric shape while pointing toward

the feasible direction, both in the least squares sense. Minimizing En is important since

the derivatives of the exact signed distance function dΓ on the boundary of a geometric

shape is along the normal to the boundary, and dΓ always satisfies the eikonal equation,

i.e., ∥∇dΓ∥ = 1.

If we perform a direct minimization of energies Ep and En, the resulting function

attempts to accurately fit the point data on the geometric shape, and since these energies

do not control the behavior of ϕ away from the geometric shape, it could create superfluous

zero contours away from the point cloud as reported in previous studies [19]. To overcome

this issue, we define the regularization energy

Er = 1
|V |

∫
V

∥∥∥∇2ϕ(x)
∥∥∥2

F
dV, (3.7)

where ∇2ϕ(x) is the Hessian matrix of ϕ evaluated at x, ∥·∥F represents the Frobenius

norm, and |V | =
∫
V dV is the total volume of V. The regularization energy Er is interpreted
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as the aggregate curvature of ϕ over the entire volumetric space of V. The minimization

of Er smooths the function ϕ since forcing the Hessian to be zero forces the variations in

the gradient field ∇ϕ to a minimum. Since the gradient of ϕ is approximately aligned with

the unit normals on the point cloud when minimizing En, trying to maintain a constant

∇ϕ by minimizing Er also helps satisfy the eikonal equation ∥∇ϕ∥ = 1 for points further

away from the point cloud. We evaluate the integral in Er using the B-spline control

points Ci,j,k lying inside V as quadrature points with unit quadrature weights. We define

the set of quadrature points as {q1,q2, ...,qN }. Therefore, the regularization energy is

approximated as a discrete sum is given by

Er = 1
|V |

∫
V

∥∥∥∇2ϕ(x)
∥∥∥2

F
dV ≈ 1

N

N∑
i=1

∥∥∥∇2ϕ(qi)
∥∥∥2

F
, (3.8)

where N is total number of quadrature points, typically about the same as the number of

control points Ncp = (ni +1)× (nj +1)× (nk +1).

Some surface reconstruction techniques employ another energy term Ed, which

attempts to fit the signed distance function over the entire domain V. However, minimizing

this energy was found to create overfitting issues and produce high frequency oscillations

in the level set function ϕ in our investigation and previous studies [44]. As a result, we

neglect this energy in our formulation. Nevertheless, we present it here for the sake of

completeness. The signed distance energy is given by

Ed = 1
N

N∑
i=1

(ϕ(xi)−dΓ(xi))2 , (3.9)

where signed distances dΓ(xi) are evaluated at the control points within V (same as

quadrature points in Er). The signed distances dΓ(xi) can be approximated using distances

to the nearest neighbor in the point cloud and its normal [44], or by evaluating the explicit

equation (2.1). Note that minimizing Er can act as a regularization to avoid overfitting
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caused by Ed but careful weighting of the four energies according to the geometric shape

is necessary.

3.4 Final energy minimization problem

Finally, we define the total energy function f as

f = 1
NΓ

NΓ∑
i=1

ϕ(pi)2

︸ ︷︷ ︸
Ep

+ λn

NΓ

NΓ∑
i=1

∥∇ϕ(pi)+ n⃗i∥2

︸ ︷︷ ︸
λnEn

+ λr

N

N∑
i=1

∥∇2ϕ(qi)∥2
F︸ ︷︷ ︸

λrEr

, (3.10)

where λn and λr are the relative penalization weights for En and Er with respect to Ep.

The energy minimization problem that yields the desired level set function ϕ is then given

by

minimize f = Ep +λnEn +λrEr

with respect to cϕ

(3.11)

Note that the function values at the control points C(ϕ)
i,j,k directly affect Ep,En, and Er

through the definition of ϕ using B-splines (see Eq. (3.4)). If the geometric shape is a curve

in two dimensions, then the optimization variables are C(ϕ)
i,j . The choice of penalization

weights is not obvious. Penalization weights may require tuning on a case-by-case basis

depending on the geometric shape. In general, we recommend λn ∼ 10−2 and λr ∼ 10−4

based on the parameter study presented in Sec. 4.

We provide a summary of our methodology in Algorithm 1 for geometric shapes

that are surfaces in three dimensions. The algorithm is easily adapted for curves in two

dimensions by simply omitting terms along the k direction.

We also provide a visualization of the various grids represented by the non-

interference constraint. Figure A.1 visualizes the surface points, control points, quadrature

points, minimum bounding box, and domain of interest for a non-interference constraint
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Algorithm 1. A scalable and differentiable geometric non-interference constraint formu-
lation
1: Discretize the given geometric shape into an oriented point cloud P.
2: Define the domain V for non-interference constraint evaluation, where V is a closed box in

R3 and contains the minimum bounding box of P.
3: Select the appropriate numbers of control points ni, nj , and nk along each direction, and

define the corresponding standard uniform knot vectors and spatially uniform control points
Ci,j,k. Note that some of the control points may lie outside V.

4: Select appropriate weights λn and λr, and solve the energy minimization problem (3.11) to
obtain C(ϕ)

i,j,k.
5: Evaluate the geometric non-interference constraint(s) during each optimization iteration

using the ϕ given by Eq. (3.4) and optimized C(ϕ)
i,j,k from Step 4.

representing an ellipse.

3.5 Implementation details

This section derives the solution to the energy minimization problem (3.11). The

energy minimization problem is a well-posed unconstrained quadratic programming (QP)

problem. Thus, it may be reduced to the solution of a linear system.

3.5.1 Unconstrained quadratic programming problem

The general form of an unconstrained quadratic programming problem with n

design variables is

minimize f = 1
2xT Ax +bT x

with respect to x,
(3.12)

where x ∈Rn is a the vector of design variables, A ∈Rn×n is the Hessian matrix, and b ∈Rn

is a vector. The two sufficient conditions for a strong local minima for an unconstrained
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optimization problem are

(1) ∇f(x) = 0 and (3.13)

(2) ∇2f ≻ 0. (3.14)

To satisfy condition (1), we take the gradient of the objective function given in prob-

lem (3.12) and set it to zero to get

∇f = Ax +b = 0 (3.15)

Ax = −b. (3.16)

A unique solution to Eq. (3.16) exists if and only if A is invertible. If we assume that

sufficient condition (2) is satisfied by A ≻ 0, then A is invertible. The global minimum

to problem (3.12) is given by the solution x∗ = −A−1b that is a unique solution to the

linear system of equations defined in Eq. (3.16).

3.5.2 Derivation to the linear system for energy minimization

The following derivation will be for a B-spline volume representing a 3D geometric

shape in problem (3.11). The derivation is generic, and one may ignore the k-direction to

acquire a solution for a B-spline surface that represents a 2D geometric shape.

Given an oriented point cloud containing a set of ordered pairs of points and normal

vectors P = {(pi, n⃗i) : i = 1,2, . . . ,NΓ}, we define a B-spline volume ϕ with a domain no

smaller than the minimum bounding box of the point cloud, uniformly spaced control

points, and standard uniform knot vectors. We define a vector cϕ ∈ RNcp that contains

the full set of B-spline control point values C(ϕ)
i,j,k in the B-spline ϕ. In order to solve

problem (3.11), a vectorized approach is taken to evaluate the B-spline and calculate the

objective function.
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Given the set of points in the point cloud P, the vectorized evaluation of ϕ(p)

and its gradients ∇ϕ(p) are matrix-vector multiplications, where the basis matrix is

precomputed as a function of the point cloud P and the vector is the control point values

cϕ. The basis functions are given by Eq. (3.3), which may be evaluated after setting up

the B-spline knot vectors and parametric coordinate transformation for the points in the

point cloud. The vectorized equations for ϕ(p) and ∇ϕ(p) in three dimensions are given

by

ϕ(p) = A0cϕ (3.17)
dϕ

dx
(p) = Axcϕ

dϕ

dy
(p) = Aycϕ

dϕ

dz
(p) = Azcϕ, (3.18)

where A0 ∈ RNΓ×Ncp , Ax ∈ RNΓ×Ncp , Ay ∈ RNΓ×Ncp , and Az ∈ RNΓ×Ncp are the precom-

puted bases with respect to the points in the point cloud p. Given the set of quadrature

points Q = {qi : i = 1,2, . . . ,N}, which lie on the control points within the domain of

interest, the evaluation of ∇2ϕ(q) are matrix-vector multiplications, where the basis

matrices are precomputed as a function of the quadrature points q, and the vector is the

control point values cϕ. The vectorized equations for ∇2ϕ(q) in three dimensions are given

by
d2ϕ

dx2 (q) = Axxcϕ
d2ϕ

dxdy
(q) = Axycϕ

d2ϕ

dy2 (q) = Ayycϕ
d2ϕ

dxdz
(q) = Axzcϕ

d2ϕ

dz2 (q) = Azzcϕ
d2ϕ

dydz
(q) = Ayzcϕ,

(3.19)

where Axx ∈ RN×Ncp , Axy ∈ RN×Ncp , Ayy ∈ RN×Ncp , Ayz ∈ RN×Ncp , and Azz ∈ RN×Ncp

are the precomputed bases with respect to the quadrature points q.

The energy terms are now computed by substituting Eqs. (3.17, 3.18, 3.19) into the

corresponding energy terms defined in Eqs. (3.5, 3.6, 3.7). The vectorized representation
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of Ep is given by

Ep = 1
NΓ

cT
ϕ Apcϕ, (3.20)

where Ap = AT
0 A0 ∈ RNcp×Ncp is the quadratic contribution of Ep. The representation of

En uses the following equality that

∥∇ϕ(pi)+ n⃗i∥2 = ∥∇ϕ(pi)∥2 +2n⃗T
i ∇ϕ(pi)+∥n⃗i∥2. (3.21)

Note that ∥n⃗i∥2 is a constant and it may be ignored when formulating it into the energy

term because it does not change with respect to the B-spline control point values cϕ. Using

the equality in Eq. (3.21), the vectorized representation of En is given by

En = 1
NΓ

cT
ϕ Ancϕ + 1

NΓ

(
2nT

x Ax +2nT
y Ay +2nT

z Az

)
cϕ, (3.22)

where An = AT
x Ax + AT

y Ay + AT
z Az ∈ RNcp×Ncp is the quadratic contribution of En,

nx ∈ RNΓ , ny ∈ RNΓ , and nz ∈ RNΓ are the vectorized components of the normal vectors

pointing in the x, y, and z directions of the coordinate frame, respectively. The vectorized

representation of Er is given by

Er = 1
N

cT
ϕ Arcϕ, (3.23)

where Ar = AT
xxAxx +2AT

xyAxy +AT
yyAyy +2AT

xzAxz +2AT
yzAyz +AT

zzAzz ∈ RNcp×Ncp

is the quadratic contribution of Er.

Assembling all energy terms by substituting Eqs. (3.20, 3.22, 3.23) into Eq. (3.10)

and dividing by 2, we have

f = 1
2cT

ϕ

(
1

NΓ
Ap + λn

NΓ
An + λr

N
Ar

)
︸ ︷︷ ︸

Ã

cϕ + λn

NΓ

(
nT

x Ax +nT
y Ay +nT

z Az

)
︸ ︷︷ ︸

b̃T

cϕ, (3.24)
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where λn > 0 and λr > 0 are the penalization weights. The form of Eq. (3.24) fits the

generic form of Eq. (3.12) as

f = 1
2cT

ϕ Ãcϕ + b̃T cϕ. (3.25)

Therefore, the energy minimization problem reduces to an unconstrained quadratic pro-

gramming problem. In a similar way as Eq. (3.16), satisfying sufficient condition (1) given

the objective function in Eq. (3.25) results in solving the linear system

Ãcϕ = −b̃, (3.26)

where Ã ∈ RNcp×Ncp is the collective Hessian matrix and b̃ is the right hand side vector.

Note that b̃ only depends on En and that Ã will always be a symmetric positive definite

square matrix, satisfying sufficient condition (2). The informal proof that Ã ≻ 0 is described

here. The matrix Ã is guaranteed to be symmetric positive semi-definite because all

precomputed basis matrices are left multiplied by their transposes and comprise the terms

of the weighted sum to Ã. Additionally, the Ar matrix will always have positive entries

along its diagonal because every control point in the domain of interest has a corresponding

quadrature point in Q for which it has a nonzero positive weight. The diagonals along Ap

and An are greater than or equal to zero. Therefore, Ã will have positive values along its

diagonal. As shown, Ã is positive semi-definite and it has nonzero positive entries along

the diagonal. Because all diagonal entries are positive and nonzero, the determinant of Ã

is positive, and therefore, Ã is positive definite, invertible, and satisfies sufficient condition

(2). The sparsity of Ã is visualized in Fig. 3.2.

In order to solve Eq. (3.26), an iterative solver is recommended. For most appli-

cations of the geometric non-interference constraint, Ncp ∼ 105 or greater is required to

accurately represent most basic objects. Because the size of Ã scales with O(N2
cp), it is not

practical to compute its inverse directly. Instead, we elect to use a conjugate gradient (CG)
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Figure 3.2. The sparsity of Ã for a simple problem.

solver, which takes advantage of the symmetry of Ã. The computational speed of the CG

solver is typically on the order of seconds, as demonstrated in the results in Chapter 4.

This chapter, in part, is currently being prepared for submission for publication

of the material. The authors of this work are Ryan C. Dunn, Anugrah Jo Joshy, Jui-Te

Lin, Cédric Girerd, Tania K. Morimoto, and John T. Hwang. The thesis author was the

primary investigator and author of this material.

37



Chapter 4

Results of the Novel Geometric Non-
interference Formulation

This chapter presents the results of various numerical studies using our formulation.

We begin by studying our method using simple two-dimensional geometric shapes in

Section 4.1. In Section 4.2, we investigate the dependence of our method on various

weights using the Stanford Bunny dataset. Section 4.3 then compares our method to

previous non-interference constraint formulations using the Stanford Bunny, and other

surface reconstruction methods using three datasets from the Stanford 3D Scanning

Repository. We demonstrate the accuracy of our method in representing geometric shapes

for aircraft design optimization in Section 4.4. We conclude the section by demonstrating

the application of our method by solving a medical robot design optimization problem

with non-interference constraints in Section 4.5.

We implement the proposed method in a Python environment, and run all experi-

ments on a desktop with an 8-core Ryzen 7 @ 3.6 GHz processor and 32 GB of RAM. We

do not implement multi-threading or parallelization with GPUs in any of our numerical

experiments.
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4.1 Investigations using simple geometric shapes in
two dimensions

We begin by applying our formulation to curves in two dimensions. Because our

formulation is generic, no modifications are required to Eq. (3.10), and the terms in the k

direction are simply ignored for 2D geometric shapes.

For 2D curves, the isocontours from the level set function (LSF) ϕ can be readily

visualized to facilitate a better understanding of the function both near and far from the

curve. Figure 4.1 visualizes the isocontours of the initialized and energy minimized LSF

for a rectangle using our formulation. We initialize C(ϕ)
i,j using the explicit equation (2.1).

Neglecting the sharp corners in this example, the contours of the initialized function closely

match the exact signed distance function (SDF). Thus, the explicit method provides an

excellent approximation of the SDF. We observe that the contours of the LSF are more

rounded near the corners after energy minimization. Minimizing Er smooths sharp corners

on all isocontours, however, not to a degree that compromises En and Ep near the zero

contour. We note that En and Ep have less influence compared to Er on the isocontours

corresponding to 1 and 2, hence these contours are even more rounded.
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Figure 4.1. The −1, 0, 1, and 2 contours of the initialized (left) and the energy minimized
(right) level set function ϕ.

A LSF representing multiple geometric shapes may also be obtained using a single

B-spline. Figure 4.2 shows the exact SDF and a one-dimensional slice of our energy
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minimized LSF ϕ along the x axis for a domain containing multiple circles. Notice that the

non-differentiable points in the exact SDF can lie inside or outside of a geometric shape.

This example illustrates how our energy minimization formulation balances the tradeoff

between minimizing the curvature of ϕ and maximizing the accuracy at representing the

SDF near points of non-differentiability and high curvature. We see that our LSF ϕ poorly

approximates the SDF near points of non-differentiability and high curvature. However, in

regions without any non-differentiabilities or high curvatures, the zero level set preserves a

good approximation to the exact SDF. For the remainder of the numerical results section,

we only consider a single geometric shape within the domain of interest V, because the

error of our formulation increases with the minimum bounding box diagonal.
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> 0
dΓ
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Non-differentiable points

x

0

φ

Our function φ

Exact SDF dΓ

Non-differentiable points

Figure 4.2. The exact SDF (top) and the energy minimized LSF ϕ along a 1D slice
(bottom) for multiple geometric shapes.

4.2 Investigations using a complex geometric shape
in three dimensions

We use the well known Stanford Bunny scanned dataset (shown in Fig. 4.3) to

analyze our formulation’s performance on three-dimensional geometric shapes. This dataset

contains a large oriented point set which we consider as an exact surface. We coarsely
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sample this point set and apply our method, measuring the accuracy of the resultant

energy minimized LSF. The Stanford Bunny contains small scale features, sharp corners,

flat surfaces, and smooth surfaces which will test the accuracy of our formulation in

representing different geometric features. The sampled point set is free of noise, missing

data, and nonuniformity, which are challenges not investigated in this paper.

Figure 4.3. The Stanford Bunny model.

We use the root-mean-squared (RMS) error and max error to evaluate the accuracy

of our energy minimized LSF in approximating the signed distance function. The errors are

normalized by the minimum bounding box diagonal L to ensure that they are independent

of the size of a geometric shape. This allows for a common metric for comparing accuracies

across different geometric shapes. The errors are defined as

RMS error = 1
L

√√√√∑Ne
i=1(ϕ(xi)−dΓ(xi))2

Ne
, and (4.1)

max error = max
i=1,2,...,Ne

1
L

|ϕ(xi)−dΓ(xi)|, (4.2)

where Ne is the number of points xi used to calculate the error, and the signed distances

are approximated using the explicit equation (2.1). The on-surface error is evaluated on

the geometric shape Γ where the true value is zero. The off-surface error is evaluated on

points that are near but do not lie on Γ. To acquire these sample points, we take the

original sample points and move them in the direction of the normal vectors by specified

distances.
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The energy minimization problem has two different resolution scales: (1) resolution

of the input dataset, and (2) resolution of the B-spline control grid. The energy minimized

LSF’s ability to approximate the signed distance is best when both resolutions are very

fine. Unlike hierarchical structures or explicit methods, the control grid resolution for

our method is independent of the input dataset resolution. As a result, an important

consideration in our method is the decision of how many control points with which to

represent the implicit function. Table 4.1 tabulates the on-surface errors for our energy

minimized function, varying the two resolution scales. A total of nine experiments were

ran, using three different resolutions for each resolution scale. It was found that only

increasing NΓ was not correlated to any increase in the computation time. Thus, we only

consider the average time to solve across the three experiments with the same Ncp. In

terms of the on-surface error, increasing both resolutions correlates to a decrease in both

RMS and maximum error. In terms of the time to solve the energy minimization problem

(setup time), increasing the number of control points Ncp increases the number of design

variables in the minimization problem (3.11), consequently increasing the time to solve for

C(ϕ)
i,j,k.

Table 4.1. The relative on-surface error for our method applied to the Stanford Bunny
model. Penalization weights used were λn = 10−2, and λr = 5×10−4.

32×31×26 40×39×32 46×45×37
Ncp = 25,792 Ncp = 49,920 Ncp = 76,590

NΓ = 5k RMS 1.0×10−3 7.5×10−4 6.7×10−4

Max 4.7×10−3 3.7×10−3 3.3×10−3

NΓ = 25k RMS 8.2×10−4 5.4×10−4 4.6×10−4

Max 3.7×10−3 3.3×10−3 2.7×10−3

NΓ = 64k RMS 7.8×10−4 5.1×10−4 4.2×10−4

Max 6.1×10−3 5.1×10−3 2.9×10−3

Average setup time 4.79 8.90 15.87(seconds)

While we do not propose an exact method for selecting the penalization weights λn
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and λr, we provide a fixed point parameter study on each weight. Figure 4.4 shows the

resulting errors from varying each penalization weight about the fixed point λn = λr = 1

using the Stanford Bunny dataset. The study on λr shows that small values (λr < 1) have

very little effect on the RMS error, and large values (λr > 1) significantly reduce the energy

minimized function’s accuracy. The study on λn suggests that for a given geometric shape,

there exists an optimum value of λn that minimizes the energy minimized function’s error.

In all studies, we observed an increase in the minimization time as the corresponding

weight increased (not visualized in the figure). These observations lead us to recommend

the use of λn ∼ 10−2 and λr ∼ 10−4 for reasonable accuracy and fast setup time for the

energy minimized function.
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Figure 4.4. The RMS errors for on- and off-surface points while varying λn and λr about
1. This result uses the Stanford Bunny sampled at NΓ = 25,000, and a control point grid
of 31×31×26.

The ability of our function to represent nonzero level sets of the Stanford Bunny is

visualized in Fig. 4.5. The level sets form good approximations of the offset surfaces, with

a maximum relative distance error of 9.8×10−3. In these visualizations, we observe the

region of highest error to be near the neck and feet of the model, where edges and corners

exist. Most notably, the 0.005 and 0.01 level sets remove the ears of the model, despite

them being in the exact SDF representation. As a thin feature, the removal of the ears in

the 0.005 and 0.01 level sets is consistent with similar observations by Tang and Feng [44].
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Figure 4.5. Isocontours of the energy minimized LSF for the Stanford Bunny and color
representation of the error with the true signed distance value normalized by the minimum
bounding box diagonal.

4.3 Comparison to other methods using complex
geometric shapes in three dimensions

We show the computation time and accuracy of our method compared to alternative

non-interference constraint formulations for gradient-based methods in Fig. 4.6, varying

the sample size NΓ of the Stanford Bunny. We observe that the method presented by Lin

et al. [2] and the explicit method presented by Hicken and Kaur [46] scale in computational

complexity with O(NΓ), while our method scales independently of NΓ. We note that

formulation from Lin et al. is not an attempt at approximating the signed distance function,

thus is neglected from the RMS error comparisons. In terms of on-surface error, the explicit

method has a steady decay in RMS error with respect to increasing NΓ, suggesting a power

law relationship. Our method has a similar decay up to NΓ = 104, where the RMS error

decays more slowly for larger NΓ > 104. Similarly, the off-surface RMS error of the explicit

method steadily decays for both the ±0.005 and ±0.01 contours, and our method decays

until NΓ = 104. For NΓ > 104, the off-surface error of our method decays slowly. Our

method’s ±0.01 contours have significantly more error than the ±0.005 contours, while

the explicit method has similar error for both sets of isocontours. For both on-surface and

off-surface error, our method performs better in terms of accuracy up until the ±0.005

contours and NΓ < 2×104. From this information, we conclude that the explicit method

will outperform in terms of accuracy and underperform in terms evaluation time compared
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to our method for most very finely sampled geometries. We note that our method can

achieve better accuracy than shown in Fig. 4.6 by a tradeoff in setup time as shown in

Table 4.1, and the explicit method requires a noise-free, uniform sampling to achieve the

presented results, which is not always feasible.
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Figure 4.6. Scaling of computation time (left) and on-surface (center) and off-surface
root-mean-square error (right) with respect to NΓ for the Bunny model with a grid of
(31×31×26) and λn = 10−2,λr = 5×10−4.

We apply our method using two additional scanned datasets from the Stanford 3D

Scanning Repository. Table 4.2 records the results of the on-surface error of our method,

as well as the reported on-surface error from four notable surface reconstruction methods

for necessary context. The methods are smooth signed distance (SSD) reconstruction [19],

Multi-Level Partition of Unity (MPU) [18], wavelets [50], and screened Poisson (SP) [54].

The results for the surface reconstruction methods were obtained from [18, 41, 44, 54] and

were not reproduced in our investigation, resulting in missing data in the table. Of the

three scanned datasets, our energy minimized LSF maintains on-surface RMS error and

max error on the same order of magnitude compared to the four other methods.
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Table 4.2. Reported on-surface error of surface reconstruction methods and our method
for three benchmarking datasets. We reconstruct using Ncp = 25,000, λn = 10−2, and
λr = 5×10−4.

Model SSD [19] MPU [18] Wavelets [50] SP [54] Our method

Bunny RMS 8.0×10−4 1.0×10−3 1.1×10−3 8.0×10−4 6.3×10−4

Max ... ... ... ... 4.5×10−3

Armadillo RMS 3.0×10−4 ... 1.2×10−3 4.0×10−4 1.3×10−3

Max 9.0×10−4 1.9×10−3 2.0×10−3 8.0×10−4 7.6×10−3

Dragon RMS 3.5×10−4 8.0×10−4 1.4×10−3 5.1×10−4 1.4×10−3

Max ... 4.8×10−3 ... 5.1×10−3 1.0×10−2

4.4 Accuracy of our method for aircraft design
optimization

We now apply our formulation to a number of geometric shapes involved in novel

aircraft design. Aircraft design optimization is a long standing problem and has been the

subject of recent interest in problems involving geometric non-interference constraints,

e.g., the layout optimization of air cargo [10] and aerodynamic shape optimization [3].

To enable gradient-based design optimization involving these constraints, a new generic

method is required to represent numerous components within an aircraft’s design. We

recognize the potential for our formulation and demonstrate its capabilities by conducting

an experiment.

In this experiment, we apply our formulation and quantify the resultant errors

of five geometric shapes commonly associated with aircraft design. The geometries we

model include a fuselage and a wing from a novel electric vertical take-off and landing

(eVTOL) concept vehicle [73], a human avatar [74], a luggage case, and a rectangular

prism representing a battery pack within the wing. A visualization of these components in

a feasible design configuration is illustrated in Fig. 4.7.

Table 4.3 tabulates the on-surface error of the energy minimized LSF for each

geometry. We observe that the smallest relative on-surface error is of the smooth fuselage
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Figure 4.7. Components necessary for spatial integration in aircraft design optimization.
A cross section view is shown for an aircraft fuselage, wing, battery pack, human avatar,
and luggage.

shape, while the largest relative error is of the human avatar. We note from this example

that geometries with features reasonably proportioned to their minimum bounding box

diagonal are easier to represent using our method, hence our formulation poorly represents

small scale features (e.g. hands and feet) of the human avatar while it can represent the

smooth fuselage very well. We observe that the bounding boxes of the fuselage, wing, and

battery pack are poorly proportioned, yet they do not result in an increase of relative error

compared to other geometries. However, their longer minimum bounding box diagonals

will result in larger absolute errors.

Table 4.3. Relative on-surface error of our method on various components of engineering
systems. All geometries were sampled at NΓ = 25,000. The optimization weights λn = 10−2

and λr = 5×10−4 were used.

Fuselage Luggage Wing Battery pack Human avatar

Relative error RMS 7.6×10−5 1.8×10−4 2.5×10−4 4.4×10−4 7.8×10−4

Max 5.7×10−4 1.8×10−3 1.0×10−3 1.8×10−3 3.8×10−3

Absolute error RMS 0.24 cm 0.01 cm 1.28 cm 0.66 cm 0.14 cm
Max 1.78 cm 0.15 cm 5.29 cm 2.61 cm 0.67 cm

Discretization 47×29×29 32×44×26 29×47×29 28×47×28 37×32×34
Setup time 6.7 13.5 39.4 15.6 21.3(seconds)
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4.5 Application to a medical robot design problem

We now apply our method for enforcing geometric non-interference constraints

to a medical robot design problem involving concentric tube robots (CTRs). CTRs are

composed of two or more long and slender pre-curved tubes made of superelastic materials.

They can be designed to reach points in a large region of interest by rotating and translating

the tubes relative to each other at their bases. These characteristics make them ideal for

minimally invasive surgeries where a surgeon can operate on a small region of interest

with high dexterity through actuation at the base.

In the foundational works of Sears and Dupont [75] and Webster et al. [76],

expressions for the shape and tip position of the CTR are derived with respect to the

robot’s geometric and control variables. Bergeles et al. [1] use these expressions to perform

gradient-free optimization of the CTR’s geometric and control variables with anatomical

constraints. These anatomical constraints, i.e., geometric non-interference constraints,

enforce that the CTR does not interfere with the anatomy (e.g., the right ventricle of the

heart shown in Fig. 4.8) during operation. Recent work by Lin et al. [2] shows that gradient-

based optimization enables an efficient and scalable solution to simultaneously optimize

the large set of the tube’s geometric and control variables while enforcing anatomical

constraints. The experiment we now present follows the workflow of Lin et al. [2], however,

using our new formulation for representing the anatomical constraint function.

The presented workflow involves the solution of multiple optimization problems,

including an initial path planning problem, and the geometric design and control of the

CTR (the ‘simultaneous optimization problem’ described by Lin et al. [2]). The path

planning problem solves for a parametric 3D curve that represents an optimal collision-free

path to the surgical site within the anatomy. Then, points along this path serve as inputs

to the geometric design and control optimization of the CTR, which involve a kinematic

model of the robot. In both subproblems, the non-interference constraints are enforced
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by evaluating a discrete set of points along the path or physical CTR to ensure that no

points lie outside of the anatomy.

We begin our experiment with an investigation in the heart anatomy which repre-

sents the non-interference constraint of the problem. The initial oriented point cloud of

the heart is obtained from segmentation and 3D reconstruction by magnetic resonance

imaging (MRI) scans. Due to the limited machine accuracy, error introduced by aligning

multiple scans, and normal approximation, the oriented point cloud is noisy, nonuniform,

and contains poorly oriented normals. We perform a simple and necessary smoothing step

on this point cloud as illustrated in Fig. 4.8. Although less precise at capturing small scale

features, the smoothing step assists our method in reconstructing a smooth zero contour

for constraint representation.

Figure 4.8. Preprocessing the raw scanned data (left) to a smooth approximate model
(right).

The smooth representation has relative errors 3.1 × 10−3 (RMS) and 1.9 × 10−2

(max) compared to the original noisy representation. The error in our energy minimized

function obtained from the smoothed heart model is tabulated in Table 4.4. We observe

that the on-surface RMS and max error of our representation is an order of magnitude

less than the error introduced by the smoothing step. This implies that our representation

of the smooth model is no worse than the smoothing step itself. We see that our method

generates a function with a reliable zero level set of the smooth heart geometry, with an

on-surface RMS error of 2.1×10−4. This error is lower compared to all the other examples

in Table 4.2, and we attribute this to the smoothness of the heart geometry. We also note
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that the max on- and off-surface absolute errors of our representation are of the same

order as the diameter of the CTR itself, typically 0.5-2.0 mm.

Table 4.4. Error for the non-interference constraint with a minimum bounding box
diagonal of 244.75 mm, sampled at NΓ = 100,000, and a control grid of (28 × 23 × 37),
using λn = 10−2, and λr = 10−4.

Relative error Absolute error

On-surface RMS 2.1×10−4 0.053 mm
Max 1.8×10−3 0.432 mm

5mm Off-surface RMS 3.1×10−3 0.758 mm
Max 4.3×10−3 1.058 mm

We now solve the two optimization subproblems using our energy minimized LSF

of the smoothed heart model to enforce the geometric non-interference constraint. In the

model from Lin et al. [2], the non-interference constraint was imposed using a penalization

function g(x), where it was defined as negative for the feasible region, and positive for

the infeasible region. In our implementation, we represent this function with our energy

minimized LSF in the form g(x) = −ϕ(x). The results from this experiment are shown in

Table 4.5, where the number of function evaluations and optimization time are tabulated

for each subproblem and non-interference constraint method. The time to solve the energy

minimization problem for our method is denoted as the setup time. Between the two

subproblems, the number of function evaluations and optimization time is significantly more

for the design subproblem due to the inclusion of the kinematics models. Between the two

non-interference constraint methods, we observe a significant decrease in optimization time

by using our new method for both subproblems. Even when accounting for the setup time,

our method provides a significant speedup for the design subproblem. However, we note

that the speedup provided by our method for computationally inexpensive optimization

problems, such as the path planning subproblem, may be negated by the setup time to

solve for the energy minimized LSF. For geometries with larger NΓ and more complex

optimization problems requiring more function evaluations, we expect the speedup in
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optimization time to be more pronounced.

Table 4.5. Constraint function evaluations and optimization time for the concentric
tube robot’s path planning and design optimization. The anatomy is represented using
NΓ = 1,842.

Lin et al. [2] Our method
Subproblem Path planning Design Path planning Design
Function evaluations 37 35,142 62 20,793
Optimization time 4.2 sec 3 hr 11 min 0.9 sec 1 hr 24 min
Setup time N/A 8.7 sec

This chapter, in part, is currently being prepared for submission for publication

of the material. The authors of this work are Ryan C. Dunn, Anugrah Jo Joshy, Jui-Te

Lin, Cédric Girerd, Tania K. Morimoto, and John T. Hwang. The thesis author was the

primary investigator and author of this material.
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Chapter 5

Methodology of Wind Farm Layout
Optimization

5.1 Turbine model

Models of the wind turbine are necessary for characterizing the flow field in its wakes

and for the power production of an individual turbine. For the analytical wake models

and the calculation of annual energy production, we solely need a wind turbine to provide

coefficient of thrust (CT ) and power production (P ). For simplicity and computational

efficiency, the wind turbine model is simplified to a surrogate model where CT and P are

simply functions of the wind speed experienced at the rotor. We note that any increase to

the fidelity of the model will improve the power and CT accuracy, however the analytical

wake models used in this study do not consider varying thrust/power at different radial

sections of the blades. We do recommend a more accurate turbine model in the future

work that will account for structural loading and fatigue on the blade structures.

The two wind turbines considered in this study are the National Renewable Energy

Laboratory (NREL) 5MW open-source turbine model [77], and the International Energy

Agency Wind Task 37 (IEA37) 15MW turbine model [78]. These wind turbines were

selected for their size and viability in off-shore wind farms on small and large scale. The

power and coefficient of thrust curves for the NREL 5MW and IEA37 15MW reference

wind turbines are shown in Fig. 5.1 and Fig. B.1, respectively. The parameters of each
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Figure 5.1. Power and CT curves of the NREL 5MW reference turbine [77].

wind turbine are also tabulated in Table 5.1. Note the significant diameter size.

Table 5.1. Parameters of the NREL 5MW and IEA37 15MW reference turbines.

Parameter NREL 5-MW IEA37 15-MW
Rotor diameter 126 m 240 m
Hub height 90 m 150 m
Rated Power 5 MW 15 MW
Cut-in speed 4 m/s 3 m/s
Rated speed 9.8 m/s 10.9 m/s
Cut-out speed 25 m/s 25 m/s

Wind speed experienced by the rotor is not uniform across the entire rotor’s swept

area. As a result, it is common to see rotor sampling methods to approximate the average

wind speed experienced by the wind turbine. In our model, we consider the velocity at

the hub (center of the rotor) for the average velocity of the rotor. We justify this decision

by prioritizing the computational efficiency of the model over the accuracy, as sampling

more points would increase the computational complexity of the model.

5.2 Wind speed and direction

Wind direction and wind speed and the two main factors that characterize the

ambient wind in a wind farm. We represent the wind speed by a weibull disctribution.
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The weibull probability distribution as a function of wind speed U is given by

pdf(U) = k

A

(
U

A

)k−1
exp

(
−
(

U

A

)k)
, (5.1)

where A is a scale factor given in units of [m/s] and k is a shape factor. A visualization

of a weibull distribution is shown in Fig. 5.2, where the shape paramter k is varied. It

can be seen that a larger shape factor results in a distribution more centered around the

scale factor A. It is common practice for weibull parameters A and k to be given for

multiple wind directions from real-world data studies, as the weibull distribution varies

from direction to direction. Note that we do not consider a atmospheric boundary layer

with a power law profile. This is a significant limitation to the model and is of high priority

for future work.
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Figure 5.2. Weibull distribution varying the shape parameter k with Weibull scale A = 8.

The characterization of wind direction is emperical. The visualization of wind

direction distributions is given by a polar plot called a wind rose. The wind rose describes

the probability distribution of the radial direction of wind at a particular wind farm site.

Examples of wind roses are shown in Figures B.5, B.12, and B.14. The data in Fig. B.5 is

based on the International Energy Agency (IEA) Wind Task 37 (IEA37) [79]. The data in

Fig. B.12 is based on the Lillgrund off-shore wind farm with data presented by [25] and

54



the weibull parameters are detailed in Table B.1. The data in Fig. B.14 is based on the

Hollandse Kust (West) (HKW) off-shore wind farm with data presented by [80] and the

weibull parameters are detailed in Table B.2.

5.3 Flow field calculation

5.3.1 Wake deficit models

Jenson top-hat

For sake of completeness, we present the historically significant wake model devel-

oped by Jensen [81]. The wake deficit is given by

∆U

Uref
= 1−

√
1−CT(

1+ 2kwakex
D

)2 , (5.2)

where kwake is the wake growth rate, CT is the coefficient of thrust of the wind turbine, D

is the diameter of the wind turbine, and x is the downwind distance in reference to the

upwind wind turbine. It is common practice to see the velocity deficit ∆U be a normalized

value with respect to some reference wind speed Uref . More context to Uref is given in

subection 5.3.2. This model, commonly referred to as the top-hat model, has a point of

non-differentiability where the unaffected flow collides with the wake deficit field. As a

result, we do not implement this model.

Bastankhah

Another very popular wake model is the Bastankhah wake model [82]. Bastankhah,

unlike the Jensen model, assumes a gaussian distribution in the wake deficit, making is

smooth and favorable for gradient-based optimization. The Bastankhah wake deficit is
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given by

ϵ = 0.2

√√√√1+
√

1−CT

2
√

1−CT
(5.3)

∆U

Uref
=
1−

√√√√1− CT

8(k∗x/D + ϵ)2


exp

(
−1

2(k∗x/D + ϵ)2

((
y

D

)2
+
(

z − zh

D

)2))
,

(5.4)

where k∗ is the wake growth rate, ϵ is the wake diamater at the rotor, CT is the coefficient

of thrust of the wind turbine, D is the wind turbine diameter, zh is the hub height of

the wind turbine, and x,y are the downwind and crosswind distances in reference to the

upwind wind turbine.

Gaussian

In another one of Bastankhah’s works, a different model was derived to characterize

the deflection of the wake induced by turbine yaw [83]. This model is called the Gaussian

model. The wake deficit of the Gaussian model is given by

x0 = D cos(γ)(1+
√

1−CT√
2(2.32I +0.154(1−

√
1−CT ))

(5.5)

∆U

Uref
=
1−

√√√√1− CT cos(γ)D2

8σyσz

exp
−1

2

(
y − δ

σy

)2
− 1

2

(
z − zh

σz

)2
 , (5.6)

where x0 is the downwind location where the velocity distribution achieves self-similarity,

D is the turbine diameter, CT is the thrust coefficient of the turbine, γ is the turbine’s

yaw misalignment angle in radians, I is the turbulence intensity, δ is the wake deflection

distance, σy and σz are the widths of the wake in th y and z-directions, respectively, y

is the horizontal distance in the crosswind direction, z is the vertical height, and zh is

the vertical hub height of the wind turbine. For our model, we use a modified equation

from the Crespo and Hernández turbulence intensity model [84]. The added turbulence

56



intensity from a wind turbine is given by

I = 0.5a0.8I0.5
a

(
x

D

)−0.32
, (5.7)

where a is the axial induction, Ia is the ambient turbulence intensity, x is the downwind

distance, and D is the wind turbine diameter. Axial induction is computed by the simple

relation a = 1
2cos(γ)

(
1−

√
1−CT cos(γ)

)
[83].

The near wake deflection δnear for x < x0 is given by

θc0 = 0.3γ

cos(γ)

√
1−

√
1−CT cos(γ) (5.8)

δnear = xtan(θ), (5.9)

where θc0 is the added flow skew angle. The far wake deflection distance δfar for x > x0 is

given by

σz0 = D

√
1+

√
1−CT cos(γ)

8(1+
√

1−CT )
(5.10)

σy0 = σz0 cos(γ) (5.11)

σy = ky(x−x0)+σy0 (5.12)

σz = kz(x−x0)+σz0 (5.13)

C0 = 1−
√

1−CT (5.14)

E0 = (C0)2 −3(C0)e1/12 +3e1/3 (5.15)

δfar = x0 tan(θc0)+ θc0E0
5.2

√
σy0σz0
kykzCT

exp

(1.6+
√

CT )
√

1.6σyσz

σy0σz0
−

√
CT

(1.6−
√

CT )
√

1.6σyσz

σy0σz0
+

√
CT

 , (5.16)

where σy0 and σz0 are the wake widths σy and σz at x0, ky and kz are the wake growth

rates in the y and z-directions, respectively, C0 is the normalized velocity deficit in the
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center of the deficit core, and E0 comes from the derivation.

Wake expansion continuation

Wake Expansion Continuation (WEC) is a model developed to decrease the local

minima within layout optimization problems [29]. At its core, WEC performs a simple

manipulation to the wake models in order to increase the width of the turbine wakes,

producing the intended effect. Adding the WEC factor ξ to the Bastankhah wake deficit

model from Eq. (5.4) we obtain

ϵ = 0.2

√√√√1+
√

1−CT

2
√

1−CT
(5.17)

∆U

Uref
=
1−

√√√√1− CT

8(k∗x/D + ϵ)2


exp

 −1
2(k∗x/D + ϵ)2

( y

ξD

)2
+
(

z − zh

ξD

)2 ,

(5.18)

where a WEC factor of ξ = 1 is identical to the original model. The result of adding this

term is a new wake model that is more favorable to gradient-based optimization. The

wake has the same centerline velocity deficit as the original model, but a wider area of

effect. The resultant affect on the annual energy production (AEP) of a 3 wind turbine

row in a simple example is shown in Fig. 5.3. It is clear that the model reduces the local

minima and creates a smooth function easier to navigate with a gradient-based optimizer.

5.3.2 Wake superposition

Wake superposition is an important method to combine the wakes from multiple

wind turbines into the resultant velocity deficit in the downwind flow field. Four methods

are presented for completeness. Two of these models are based on the superposition of

energy deficit (∆u2) [85, 86] and the other two are based on the superposition of the

velocity deficit (∆u) [87, 88]. The second unique feature of these models is the underlying
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Figure 5.3. Annual energy production with Wake Expansion Continuation on a 3 wind
turbine row varying position of the last turbine.

assumption of the value of Uref . Rotor-based models assume that Uref is the velocity at

the rotor of the wind turbine. Ambient-based models assume that Uref is approximately

U∞, or the ambient wind speed. It should be noted that the rotor-based methods are

not grounded in theoretical justification, but do show favorable accuracy in cases with

small wind turbine spacing and large velcity deficits ∆U such that the prior assumption

Urotor ≈ U∞ no longer holds [89].

The superposition models are given by

Uw = U∞−

√√√√√Nt∑
i=1

[
Ui

(
∆U

Uref

)
i

]2
(5.19)

Uw = U∞−

√√√√√Nt∑
i=1

[
U∞

(
∆U

U∞

)
i

]2
(5.20)

Uw = U∞−
Nt∑
i=1

Ui

(
∆U

Uref

)
i

(5.21)

Uw = U∞−
Nt∑
i=1

U∞

(
∆U

Uref

)
i

D, (5.22)

where Uw is the velocity deficit in the wake, Ui is the wind speed at the rotor of wind

turbine i, Eq. (5.19) is the rotor-based superposition based on a root sum-of-squares [88],
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Eq. (5.21) is the rotor-based superposition based on a linear sum [86], Eq. (5.20) is the

ambient-based superposition based on a root sum-of-squares [87], and Eq. (5.22) is the

ambient-based superposition based on a linear sum [85]. A visualization of the different

superpositions on a three wind turbine row is shown in Fig. B.2. We note that the default

superposition options within FLORIS and TOPFARM is the ambient-based superposition

using a root sum-of-squares method (Eq. (5.20)). We choose to follow the popular choice

and apply Eq. (5.20) in all optimization studies.

5.3.3 Iterative solver

In order to solve for the wind turbine’s power production, a solution must be

calculated to the flow field in order to calculate the wind speed at the rotor. For wind

turbines not in the wake of any other turbine, their wind speed is trivially equal to U∞.

However, for all wind turbines within the wakes of other turbines, the corresponding

velocity deficit must be computed. When multiples turbines are within multiple other

wind turbine wakes, the problem becomes quickly unmanageable to solve directly. Instead,

a common approach is to formulate the velocity of each wind turbine into an iterative

solver that converges to a flow field solution for the entire wind farm.

We define the residual function R to represent the implicit function solved by the

iterative solver. The residual function is given by

R(Ueff ) = Ueff − (U∞ −Uw(Ueff )), (5.23)

where Ueff is the state variable representing the effective wind speed at the rotor hubs, Uw

is the velocity deficit in the wake calculated as a function of the aforementioned models

which rely on Ueff primarily for the calculation of each wind turbine’s thrust coefficient

CT . In practice, an initial guess of Ueff = U∞ is used, and at each iteration the wakes of

the upwind-most turbines are induced on downwind turbines.
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In PyWake, this solver is called All2AllIterative, and in FLORIS it is called

sequential solver. At their core, these models iterate through all wind turbines or until

convergence is met (the latter more often). In our formulation, we choose to use the

built-in Nonlinear Block Gauss-Seidel (NLBGS) solver in CSDL. NLBGS is a generic

fixed-point iterative solver and is suitable to the problem.

5.4 Annual energy production

Annual energy production (AEP) is defined as the amount of energy produced

in a year by a particular wind energy system. AEP behaves as a metric to measure the

effectiveness of a wind energy system in all conditions that may arise throughout the year.

The equation for AEP of a wind farm is given by the expected value function

AEP = 8760
∫ 360

0

∫ Umax

0
ρ(θ,U)

 Nt∑
k=1

Pk(θ,U)
 dθdU, (5.24)

where 8760 comes from the number of hours in a year, ρ is the joint distribution function

for the wind speed U and wind direction θ, Nt is the number of wind turbines, and Pk

is the power production of an individual turbine at a given state of wind direction and

speed. In practice, AEP is calculated by discretizing the random variables θ and U . The

approximated value of AEP is then given by

AEP ≈ 8760
Nwd∑
i=1

Nws∑
j=1

ρ(θi,Uj)
 Nt∑

k=1
Pk(θi,Uj)

 , (5.25)

where Nwd is the number of wind direction bins, and Nws is the number of wind speed

bins. The most accurate results are produced when Nwd and Nws are large, but increases

the complexity of the function.
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5.5 Optimization problems

The layout optimization problem is defined as

maximize f = AEP

with respect to x,y ∈ RNt ,RNt

subject to spacing constraints

boundary constraints,

(5.26)

where the spacing constraint enforces the distance between each wind turbine be greater

than or equal to some minimum and the boundary constraint enforces that each wind

turbine be placed within a user defined function. In all optimizations presented within

this thesis, the spacing constraint was that the turbines had at least 1.8 turbine diameters

between one another. Note that the number of spacing constraints is Nt(Nt −1)/2 and

the number of boundary constraints are Nt. In practice, these constraints are represented

using KS functions in order to reduce the number of constraints enforced by the optimizer

to improve performance. The yaw control optimization problem is defined as

maximize f = AEP

with respect to γ ∈ RNwd×Nws×Nt

subject to γlower ≤ γ ≤ γupper,

(5.27)

where γlower and γupper are the lower and upper bounds for the design variable γ, respec-

tively. These design variable bounds are not considered constraints in the optimization

problem, but nonetheless presented for completeness. The hub height optimization problem
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is defined as

maximize f = AEP

with respect to zh ∈ RNt

subject to zlower ≤ zh ≤ zupper,

(5.28)

where zlower and zupper are the lower and upper bounds for the design variable z, respectively.

These design variable bounds are not considered constraints in the optimization problem,

but nonetheless presented for completeness. A summary of all optimization problems and

their properties are tabulated in Table 5.2.

Table 5.2. Table of properties for the three investigated wind farm optimization problems.

Layout Yaw Hub Heights
Contains local minima ✓ ✓ ✓
# of Design Variables 2Nt NwdNwsNt Nt

# of Constraints 2 0 0

Note that the complexity of all models will scale with O(NwdNwsN
2
t ). This scaling

comes from the wake models which must calculate the wake deficit from each turbine,

to each other turbine, for each wind speed, and for each wind direction. In terms of

the iterative solver, Nt iterations is a worst-case number of iterations required. Some

frameworks address this scaling. In PyWake and FLORIS, the iterative solvers only

perform calculations on downwind turbines whose rotor wind speed is affected by another

wake. In a fully continuous and differentiable framework like CSDL, these operations are

not continuous and are instead considered in full by using smooth masking matrices.

Using the aforementioned models and problem setups, we modeled a wind farm

within CSDL. CSDL provided convenience with automatic sensitivity analysis, fewer lines

of code, and familiarity with the authors. The model’s structure for the defined problems

is the same, apart from the inclusion or exclusion of some values as design variables. The

design structure matrix is shown in Fig. 5.4
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Figure 5.4. Design structure matrix for wind farm optimization.

5.6 Model verification

While this thesis does not provide validation with ground-truth, verification is

provided to the existing models within PyWake and FLORIS. The major assumptions

with this model depends on the accuracy of models individually. Validation studies are

important and would be a valuable future work to this thesis. A study on flexible and

stiff blades [90] found that low fidelity models have significant discrepancies at low wind

speeds and small inter-turbine spacing. Additionally, we rely heavily on the assumption

an accurate thrust coefficient curve for the given wind turbine.

An example to verify the Bastankhah wake model (Eq. (5.4)) in a simple 3 turbine

row is done in Fig. B.3. The error in the AEP calculated from our model on the order of

machine precision, confirming the model’s accuracy. Derivative calculation is automatically

done in CSDL, but for additional validation it is verified with finite differencing during

optimization, and is confirmed to be on the order of the step length of the finite difference
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O(10−8).

A verification of the Gaussian wake model (Eq. (5.6)) in a simple 3 turbine row

is done in Fig. B.4. The net AEP calculated from our model has a normalized error on

the order of machine precision, confirming the model’s accuracy. Derivative calculation is

automatically done in CSDL, but for additional validation it is confirmed to be on the

order of the step length of the finite difference O(10−8).

This chapter, in part, is currently being prepared for submission for publication of

the material. The authors of this work are Anugrah Jo Joshy, Ryan C. Dunn, and John T.

Hwang. The thesis author was a contributor to this material.
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Chapter 6

Results of Wind Farm Layout Opti-
mization

All studies within this chapter were executed on a desktop with an 8-core Ryzen

7 @ 3.6 GHz processor and 32 GB of RAM. We do not implement multi-threading or

parallelization with GPUs in any of our numerical experiments.

6.1 Computational model

We conduct a scaling study on our model and the TOPFARM model to compute

the annual energy production (AEP) and spacing constraints of a wind farm with varying

numbers of wind turbines. The expectation of the models is to scale in computational

complexity with O(NwdNwsN
2
t ) in both model evaluation and sensitivity analysis. We

consider a range of the number of turbines between 10 for a small wind farm and 1000 for

a very large study with multiple wind farms. For each of the data points, the models were

evaluated 10 times and an average was taken in their computation time to minimize the

variance from the computer used. The results of this scaling study are shown in Fig. 6.2,

with logarithmic scaling to highlight the quadratic dependance on Nt. As expected, the

asymptotic scaling of both models depends on O(NwdNwsN
2
t ), or a slope of 2 in the figure.

In terms of model evaluation, our new model is faster to evaluate for small wind farms

(Nt < 60), and slower to evaluate for larger wind farms (Nt > 60) compared to TOPFARM.
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Figure 6.1. Model evaluation and sensitivity analysis time scaling with respect to the
number of wind turbines of our new model compared to TOPFARM.

Although the differences appear negligible, the gradient-based optimization of a wind farm

will evaluate the model hundreds of times and further exaggerate the difference in model

efficiency. We predict these minor differences in model evaluation time source from the

difference in the frameworks used, PyWake and CSDL. In terms of sensitivity analysis,

the two models have nearly identical computation times. The difference between the two

models is on the order of the machine variance between the multiple evaluations done, so

no meaningful differences between the models are identified for sensitivity analysis.

We conduct another scaling study between our model and the TOPFARM model

in model evaluation and sensitivity analysis computation time with respect to the number

of points representing the wind farm boundary. In this study, a model evaluation and

sensitivity analysis includes the annual energy production, spacing constraints, and the

boundary constraints of the model. We consider a range of the number of points representing

the boundary NΓ from 10 for a simple boundary, 103 for a simple wind farm boundary,

and up to 105 for a complex wind farm boundary, such as in Fig. B.15. We extend this

study to NΓ = 106 in order to confirm the computational scaling for very large values. On
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Figure 6.2. Model evaluation and sensitivity analysis computation time increasing the
number of points discretizing the boundary for our new model compared to TOPFARM.

the backend, TOPFARM uses the explicit method of Risco et al. [4], which is expected to

scale in computational complexity with O(NΓ). Our model uses the new method presented

in Chapter 3, which is expected to scale in computational with O(1). Similarly, each

data point was evaluated 10 times and an average was taken across the computation

time to mitigate the variance from the computer. The results of this study is shown in

Fig. 6.2. The asymptotic scaling for the model evaluation and sensitivity analysis of Risco

et al. is O(NΓ), while ours remains O(1). For models with simple boundaries (NΓ < 103),

the boundary constraint’s time-to-evaluate and perform sensitivity analysis is negligible

compared to the objective calculation. As a result, the results in Fig. 6.1 show a flat region

with no scaling with respect to NΓ. The expectation for larger models with greater Nt is

a vertical shift in the graphs. This result confirms and illustrates the significance of the

contribution to the new scalable constraint formulation from Chapter 3.
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6.2 Simple layout optimizations

As part of the International Energy Agency Wind Task 37 (IEA37) effort, a

set of standardized wind farm layout optimization problems were created to encourage

collaboration among researchers to find the best algorithms to locate the most optimal

solution. A report on the IEA37 cases with multiple optimization algorithms is shown in

[9], where the gradient-based optimization with SNOPT and Wake Expansion Continuation

(SNOPT+WEC) consistently exceeded other approaches.

The IEA37 initial layouts for 16, 36, and 64 wind turbines are shown in Fig-

ures B.6,B.8, and B.10, respectively. The wind farm boundary for these cases are circular

and simple to represent. The windrose for these problems is shown in Fig. B.5. Note that

Nwd = 16 and Nws = 1. The layout optimization problem is given by problem (5.26), and

the Bastankhah wake model was used (Eq. (5.4)).

Our optimization results using SNOPT and our model with NREL’s 5MW reference

turbine for the 16, 36, and 64 wind turbine cases are shown in Figures B.7, B.9, and

B.11, respectively. In the optimal layout of 16 wind turbines, we note a distinct row of

wind turbines along the 122.8◦ wind direction. This alignment is shown in Fig. 6.3 and

is a biproduct of the optimizer exploiting the wind direction discretization, as this wind

direction lies directly between the 112.5◦ and 135.0◦ directions evaluated in the model. To

address this explotation issue, we recalculate the windrose with linear interpolation into

more wind direction bins. At its highest resolution, we perform a full calculation of the

AEP in 1◦ increments. The original 16 bin model has a 6.71% error in AEP calculation

to the 360 bin model in the optimal position. While more accurate, the 360 bins is very

computationally expensive and therefore impractical to use in optimization. Instead, we

find that by using 36 wind direction bins we reduce the error in AEP calculation of the

optimal result to 1.40% compared to the 360 wind direction discretization. We find that

with any wind direction discretization, the optimizer will exploit the gaps between wind
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Figure 6.3. Optimized layout of the IEA37 test case with 16 wind turbines, discretized
with 16 wind directions, with a row of aligned turbines.

direction bins.

We recognize that this problem is highly multi-modal, and the application of

SNOPT alone is prone to fall into local minima. As a result, we optimize the problems

using the Wake Expansion Continuation (WEC) model [29] (Eq. (5.18)). With WEC,

two optimizations are performed sequentially. First, an optimization with ζ = 4, then

with ζ = 1, where ζ = 1 is equivalent to the original Bastankhah model of Eq. (5.4).

The selection of ζ = 4 is by trial and error for this particular problem, and may vary in

performance depending on the layout. Tables 6.1, 6.2, and 6.3 tabulate the results of

the optimization studies conducted with and without WEC for the 16, 36, and 64 wind

turbine cases, respectively. As expected, SNOPT+WEC improves the optimizer’s ability

to navigate through local minima to find a more optimal result. However, the use of

WEC resulted in an increase in the number of model evaluations. This result confirms

the findings in [9] and highlights the impact that WEC has on gradient-based layout

optimization of wind turbines.

70



Table 6.1. Optimization results on the IEA37 16 wind turbine case with SNOPT and
SNOPT+WEC.

Method # of Model Evaluations Optimized AEP AEP Increase
SNOPT 87 392.634 GWh 1.52%
SNOPT+WEC 140 393.590 GWh 1.76%

Table 6.2. Optimization results on the IEA37 36 wind turbine case with SNOPT and
SNOPT+WEC.

Method # of Model Evaluations Optimized AEP AEP Increase
SNOPT 167 846.056 GWh 3.95%
SNOPT+WEC 158 848.214 GWh 4.22%

6.3 Hub height optimization

In the following two studies (Sec. 6.3 and Sec. 6.4), the Lillgrund wind farm site

is used. Lillgrund is an off-shore wind farm located off of the coast of Sweden and has

48 Siemens SWT2.3-93 wind turbines installed. To the author’s knowledge, there is no

open-source data with these wind turbines, and therefore we continue to model using the

NREL 5MW reference wind turbine. While this removes capabilities to compare across

studies, the use of the Lillgrund site provides a realistic layout, wind speed, and wind

direction distributions that are otherwise theoretical without a reference site. The windrose

of the Lillgrund site is shown in Fig. B.12, with corresponding weibull data in Table B.1,

and the layout is shown in Fig. B.13. Note that Nwd = 12, Nws = 6, and Nt = 48. This

site is characterized by small inter-turbine spacing and is the subject of many previous

optimization studies [25, 58, 59].

In the following study, we consider optimization of the hub heights of the wind

turbines in the Lillgrund site layout. The optimization problem is stated in problem (5.28).

Using the Lillgrund site, the optimization problem has a total of 48 design variables. The

initialization is given by the standard hub height of 90 meters for each turbine and has

a minimum hub height such that the blade tips remain 20 meters above the ground and
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Table 6.3. Optimization results on the IEA37 64 wind turbine case with SNOPT and
SNOPT+WEC.

Method # of Model Evaluations Optimized AEP AEP Increase
SNOPT 105 1496.165 GWh 2.60%
SNOPT+WEC 392 1503.011 GWh 3.07%

a maximum hub height of 150 meters. The optimization results are shown in Fig. 6.4.

The results produce an expected result that the hub heights are at the upper and lower

bounds to minimize the overlap between wakes of the downwind turbines. Additionally,

the hub heights of neighboring wind turbines have a somewhat alternating pattern, similar

to the results of [58]. The results from this study have significant limitations As previously

mentioned, the number of wind direction bins (12 in this optimization) are not enough

to accurately calculate the AEP. Additionally, the using a gradient-based optimizer for

this problem is prone to falling into a local minima. For example, changing the 20th

turbine indicated on the figure from the lower bound to the upper bound hub height

would increase the AEP to 1058.45 GWh. Furthermore, the accuracy of the low-fidelity

models is not accurate at capturing the significant compromises needed to be made with

changing hub heights. Increased reinforcements to the towers, the increased cost of the

towers, atmospheric boundary layer, and larger rotor sampling for calculating the wind

speed at the rotor are examples of models needed to increase the realism of our results.

For the interested reader, a study conducted a similar optimization using the internal rate

of return as the objective function which is expected to be much more realistic in [59].

6.4 Yaw optimization

In this optimization study, we perform a yaw misalignment optimization with the

Lillgrund site. We utilize FLORIS’s built in boolean optimization tool called Serial Refine

[62] in order to initialize our optimization. Serial Refine reduces the design space by

considering wind turbines in order of upwind to downwind, and recursively discretizes
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Figure 6.4. Initial hub height and optimized hub heights for the Lillgrund site.

the design space (yaw misalignment angles) and checks the model evaluations for the

maximum value. In this way, it is a gradient-free optimizer, and it has shown to be very

fast at finding a near-optimal solution and not susceptible to local minima. Because SR

is fast and robust to local minima, we may apply it to get a good initial guess for our

optimization. Our new model can take this suboptimal initial guess and improve it further

using gradient-based optimization by considering yaw as a fully continuous variable.

The yaw optimization problem is shown in problem 5.27, and the Gaussian wake

model was used (Eq. (5.6)) with the Crespo and Hernández turbulence intensity model

(Eq. (5.7)). Using the Lillgrund site, the optimization problem has a total of 3,456 design

variables. The results of multiple optimizations are shown in Table 6.4, where the design

space is gradually reduced. According to prior studies, positive yaw misalignment angles

reduce the fatigue loads and increase the overall lifespan of the turbine blades opposed to

negative yaw misalignment angles [91]. As a result, the optimization study favors design

spaces with more positive yaw misalignment angles. It is shown that the SR optimization

is much faster than our gradient-based optimizer, despite having a good initialization.

However, by using the gradient-based optimizer, a higher AEP is able to be achieved for
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approximately an order of magnitude increase in optimization time. In a previous study,

it was shown that the optimization time of a gradient-based optimizer to same problem as

problem 5.27 was approximately 100x slower than SR [62]. However, the gradient-based

optimizer used was SLSQP using finite difference to calculate derivatives, which is much

less efficient than our model. The increase in AEP by using our gradient-based model is

less significant for smaller design spaces, as the (−10◦, 10◦) yaw bounds only achieves an

increase of 0.145 GWh opposed to the (−30◦, 30◦) yaw bounds increase of 1.360 GWh in

the optimal result. We attribute this to the fact that the SR discretization of the design

space is held constant, so as the design space reduces in size so too does the step size

between yaw angle samples. With a smaller step size, SR is expected to find a result closer

to the optimal result. The optimization result for the (−30◦, 30◦) yaw bounds is shown in

Fig. 6.5.

Table 6.4. Yaw optimization results for the Lillgrund site using Serial Refine (SR) and
the new model with different design variable bounds. Time is in seconds and AEP is in
GWh.

Yaw Bounds (◦) Optimization Time Optimized AEP Increase
(lower, uppper) SR New Model SR New Model in AEP
(−30◦, 30◦) 20.1 305.5 958.092 959.453 1.360
(−15◦, 30◦) 21.6 333.1 948.962 949.879 0.916
(−10◦, 25◦) 22.4 277.0 940.651 940.959 0.308
(0◦, 25◦) 19.8 266.8 935.219 935.701 0.482
(−10◦, 10◦) 22.1 317.6 923.384 923.529 0.145

6.5 Layout optimization with a complex boundary

The Hollandse Kust (West) site VI (HKW) is an off-shore wind farm zone in the

Dutch North Sea. Using a publicly released metocean survey, the HKW site’s windrose

and weibull data are presented in Fig. B.14 and Table B.2, respectively [80]. Note that

Nwd = 12 and Nws = 6 are used in this optimization study. The HKW site is planned

to be commissioned in 2026 with 54 wind turbines (Nt) and a total capacity of 756 MW
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Figure 6.5. Visualization of the flow field for the optimal yaw misalignment of the wind
turbines at the Lillgrund site at a 270◦ wind direction and 12.4 m/s wind speed.

[92]. As a result of the predicted size, we use the IEA37 15MW off-shore reference wind

turbine to perform a layout optimization [78]. The parameters for this turbine are in

Table 5.1 and Cp and power curves in Fig. B.1. We note that in such a large optimization

problem the optimization tolerance was almost never met. Therefore, the optimizations

were terminated when the AEP did not increase by any significant margins O(10−3) and

the constraints were satisfied.

The HKW wind farm boundary is defined by sets of disconnected and irregularly

shaped polygons shown in Fig. B.15. The exclusion zones represent shipwrecks, unexploded

ordinances, shipping lanes, steep seabed gradients, and other regions where the placement

of a wind turbine is infeasible. To begin a layout optimization study on this site, we must

represent these boundaries in a continuous and smooth way for gradient-based optimization.

We apply the aforementioned method of geometric non-interference constraints given by

Algorithm 1. The resultant values from solving the energy minimization problem (3.11)

are in Table 6.5, and a visualization of the zero contour is given in Fig. B.16. Notably, the

accuracy of the boundary constraint representation has an on-surface root-mean-square
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(RMS) error of 6.29 meters, which is on the same order of magnitude of the tower’s

diameter.

Table 6.5. Energy minimization values for the boundary constraint function of the
Hollandse Kust (West) site.

Number of points (NΓ) 80,710
Number of disconnected polygons 5,180
Setup time 87.3 seconds
Control grid size 440×550
Bounding box diagonal (L) 20,717 meters
Relative surface RMS error 2.250×10−4

Relative surface Max error 2.882×10−3

Absolute surface RMS error 6.29 meters
Absolute surface Max error 59.7 meters

In order to quantify the computational speedup of the new boundary constraint

model, constraint evaluations were ran for the TOPFARM model and our new model.

Running an optimization with the same initial starts would produce a different optimal

layout because the constraint functions are inherently different, despite the wake models

being identical. As a result, it is only appropriate to highlight the differences in a single

model evaluation. With 54 wind turbines and NΓ = 80,710, a single model evaluation

in TOPFARM takes 1.060 seconds, and our new model takes 0.034 seconds. The timing

results are the average timings of 10 model evaluations. Given this result, the significant

increase in model evaluation time makes it significantly more computationally expensive

to solve a layout optimization problem with this boundary in TOPFARM. As the number

of model evaluations required for optimization, typically hundreds to thousands, the

additional computational expense of using TOPFARM becomes impractical. As a result,

we strongly recommend using the new boundary constraint formulation for wind farm

layout optimization.

In order to optimize the wind farm, two measures were taken to avoid local minima.

The first method is the implementation of the aforementioned WEC model to decrease the
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local minima in the flow fields. As done in the optimization study presented in Sec. 6.2,

the optimization is completed with ζ = 4 first, then with ζ = 1. The second method is

the implementation of relaxation to the boundary constraints. The constraints are first

enforced to be within 250 meters, then within 25 meters, then fully enforced to be within

the wind farm boundaries. A visualization of the 250 meters boundary 25 meters boundary,

and zero boundary are shown in Fig B.17. In total, the optimization problem (5.26) is

completed by solving four sequential optimizations described in Table 6.6. The application

of these two methods represent the state-of-the-art methodologies to avoid local minima

within gradient-based wind farm layout optimization, and are still subject to local minima

in practice.

Table 6.6. The Wake Expansion Continuation (WEC) and boundary constraint relaxation
values for the four sequential optimization problems to solve the layout optimization
problem of Hollandse Kust (West) site VI.

Optimization Initialization WEC value (ξ) Boundary Relaxation
1 Random 4 -250 m
2 From (1) 4 -25 m
3 From (2) 4 0 m
4 From (3) 1 0 m

We conduct a wind farm layout optimization using Nt = 54 for the HKW site.

The initialization is shown in Fig. B.18, the result of the first optimization in Fig. B.19,

the result of the second optimization in Fig. B.20, the result of the third optimization

in Fig. B.21, and the result of the last optimization in Fig. B.22, with annual energy

production and the median distance to the boundary shown for all optimization iterations.

The optimal layout found from the four sequential optimizations is shown in Fig. 6.6. The

error of the wind direction discretization with respect to the 1◦ discretization is 2.24%.

The 360 wind direction bins were approximated using linear interpolation. Note that

many wind turbines lie on the outer-most boundary, maximizing their distance from one

another. Additionally, note that many wind turbines are on disconnected zones from one
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another. This result is difficult to reproduce in gradient-based optimization without a

boundary constraint relaxation approach. The AEP was increased by 6.82% from a random

initialization that violated the boundary constraint within 250 meters. No meaningful

conclusions can be made about improvement of AEP because it was subject to a random

initialization. Using a heuristic-based or gradient-free approach to achieve a better initial

guess is of high priority for future work. Nonetheless, the result represents the capability

of using gradient-based optimization on a wind farm layout optimization problem.
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Figure 6.6. Optimal layout of 54 wind turbines for the Hollandse Kust (West) site VI.
The wakes are shown for the 240◦ direction and 12.4 m/s speed.

In addition, we conduct an optimization study varying the number of wind turbines

at the HKW site and tabulated the results in Table 6.7. For each data point, the sequential

optimization was completed with their own random initializations. Due to the randomness

of the initialization, no conclusive differences were drawn based on optimization time, as
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the quality of the initial start plays an important role to the number of model evaluations

required to optimize. For reference, the scaling of one model evaluation and sensitivity

analysis times are shown in Fig. 6.1. Based on the results of this study, is unclear that the

addition of more wind turbines than the baseline Nt = 54 will harm the efficiency of the

overall wind farm. As shown in Table 6.7, the amount of AEP produced on a per turbine

basis remains steady with the largest difference between 46 and 70 wind turbines. The

incorrect conclusion drawn from this data is that increasing the number of wind turbines

will increase the AEP of the wind farm without significant loss in efficiency due to wakes.

In reality, this result represents the limitation of the models in our implementation in

capturing diminishing returns. A better model would consider levelized cost of energy

(LCoE), increased fatigue loading based on wake interactions on the turbine blades, and

other models to capture to the lifecycle of the wind farm. This should be addressed in

future work.

Table 6.7. Optimization results for the Hollandse Kust (West) site VI. Annual energy
production (AEP) is in GWh.

# of Turbines Initial AEP Optimized AEP Improvement AEP GWh/Turbine
46 864.07 919.27 6.39% 19.98
50 936.54 995.82 6.33% 19.92
54∗ 1002.94 1071.35 6.82% 19.84
58 1068.91 1134.35 6.12% 19.56
62 1135.91 1204.71 6.06% 19.34
66 1202.89 1284.45 6.78% 19.46
70 1269.09 1336.83 5.33% 19.10
74 1329.21 1429.07 7.51% 19.31

Note: (∗) indicates the real-world number of turbines.

This chapter, in part, is currently being prepared for submission for publication of

the material. The authors of this work are Anugrah Jo Joshy, Ryan C. Dunn, and John T.

Hwang. The thesis author was a contributor to this material.

79



Chapter 7

Conclusion

Summary

Two topics were explored in this thesis. The first topic was concerned with

developing a new scalable geometric non-interference constraint formulation. In Sec.

1.1, we consolidated the terminology used in prior literature and call this category of

constraints ‘geometric non-interference constraints’. Additionally, we framed the set of

optimization problems with geometric non-interference constraints into three groups:

layout optimization, shape optimization, and optimal path planning problems. Section 2.1

reviewed the existing geometric non-interference constraint formulations in gradient-based

optimization and contextualized our formulation within the field of surface reconstruction.

In Chapter 3, we drew upon ideas from surface reconstruction techniques to construct

our constraint formulation. Our formulation is based on an approximation of the signed

distance function generated by solving an energy minimization problem for the values of

the B-spline control points. Chapter 4 presented accuracy and scaling studies with our

formulation. We also solved a path planning and shape optimization problem using our

new formulation.

The second topic was concerned with investigating gradient-based wind farm

optimization problems. In Sec. 1.2, we introduced the scope of optimization and its

importance to wind farm design in combating climate change. Section 2.2 reviewed the
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literature that conducted studies on wind farm optimization. A clear gap in these studies

was identified within gradient-based optimization, and particularly, the continuous and

smooth representation of wind farm boundary constraints. In Chapter 5, we presented

the models used to represent the turbines, wakes, and optimization model to conduct the

optimization studies. Chapter 6 presented the results of scaling and optimization studies,

including hub heights, yaw misalignment, and a layout optimization problem.

Results

The first topic of this thesis contributes a new formulation for representing geometric

non-interference constraints in gradient-based optimization. This formulation involves

a scalable, smooth, and fast-to-evaluate constraint function that approximates the local

signed distance to a geometric shape. The use of B-spline functions is key to our formulation

being scalable, smooth, and fast-to-evaluate. We showed that our formulation achieves a

level of accuracy on the same order of magnitude as surface reconstruction methods used

in computer graphics. Additionally, our formulation scales better in accuracy, up to a

certain limit, and computational time with respect to the number of points sampled on the

geometric shape NΓ compared to previous non-interference constraint formulations used

by the optimization community. Our resultant computational speed is on the order of 10−6

seconds per point as measured on a modern desktop workstation, entirely independent

of the number of sample points NΓ. The method results in a 78% and 56% speedup in

optimization time for a path planning and design subproblem, respectively, for an existing

concentric tube robot (CTR) gradient-based design optimization problem.

The second topic of this thesis investigates the use of gradient-based optimization

for wind farm layout design. We investigated three subproblems to wind farm optimization

problems including turbine hub heights, yaw misalignment control, and wind farm layout

optimization. In the optimization of hub heights, we identified consistent patterns as

previous works, however were subject to local minima. In the optimization of yaw
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misalignment angles, an increase of 1.360 GWh AEP was achieved for only an order a

magnitude increase in optimization time, compared to a gradient-free optimizer. It was

shown that the new geometric non-interference constraint formulation provides an efficient

way to enforce complex wind farm boundary constraints. Model evaluations with the new

constraint function were 30x faster than previously in an industry leading optimization

framework. In addition, the constraint formulation is well-suited for relaxation approaches,

as it provides an approximate distance to the boundary. We investigated the vulnerabilities

of our model including the lack of diminishing returns when adding more wind turbines,

local minima in the results, and inaccuracies in the annual energy production (AEP)

calculation due to the wind direction discretization.

Future work

We identify multiple directions for future work for the first topic. Adaptive octrees

with B-splines can represent small-scale features such as edges and sharp corners more

accurately. Using octrees for discretization instead of using a uniform grid can clearly yield

faster and more accurate solutions in problems where any of the modeled geometries remain

constant during optimization iterations, e.g., the CTR or wind farm layout optimization

problems. However, it is worth restating that when geometries evolve during optimization,

rediscretizing surfaces using octrees in each optimization iteration becomes unreasonably

expensive, and we only recommend a uniform discretization in such cases. Acceleration

with multi-threading or graphics processing units (GPUs) is another possible direction for

future research.

For the second topic, there are many directions to improve the models or expand

the results. Uncertainty in wind farm optimization is a major issue to address. Using

uncertainty quantification to address the variability in the wind speed, wind direction,

and performances of individual turbines will increase the confidence in optimal solutions.

In addition, the inclusion of more models to represent the distribution of wind speeds at
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the rotor, tower and blade structures, rotor-nacelle assemblies, and cost models would

greatly increase the fidelity of the models. More accurate wake models than the ones

presented in this thesis are also under continued research, although may not be well suited

for gradient-based optimization. To expand the results, more optimization studies where

design variables are considered simultaneously should be considered. The computational

cost of these models should also be addressed with parallelization, such as in the AEP

calculation.
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Appendix A

Geometric non-interference con-
straint
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Figure A.1. The various grids in the geometric non-interference constraint representation
for an ellipse in 2D.
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Appendix B

Wind farm optimization
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Figure B.1. Power and CT curves of the IEA37 15MW reference turbine [78].
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Table B.1. Weibull shape and scale parameters for the Lillgrund site divided into 12
sectors. Data according to [25].

Centered wind sector (◦) Frequency (%) Weibull scale (A) Weibull shape (k)
0 3.8 4.5 1.69
30 4.5 4.7 1.78
60 0.4 3.0 1.82
90 2.8 7.2 1.70
120 8.3 8.8 1.97
150 7.5 8.2 2.49
180 9.9 8.4 2.72
210 14.8 9.5 2.70
240 14.3 9.2 2.88
270 17.0 9.9 3.34
300 12.6 10.3 2.84
330 4.1 6.7 2.23

Table B.2. Weibull shape and scale parameters for the Hollandse Kust (west) site VI
divided into 12 sectors. Data according to [80].

Centered wind sector (◦) Frequency (%) Weibull scale (A) Weibull shape (k)
0 6.8 9.60 2.22
30 6.0 9.14 2.33
60 6.9 9.45 2.36
90 6.8 9.91 2.30
120 5.5 9.30 2.26
150 4.7 9.25 2.18
180 7.7 11.04 2.14
210 13.8 12.65 2.32
240 14.2 12.61 2.41
270 11.4 12.12 2.23
300 8.8 11.14 2.16
330 7.4 10.62 2.16
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Figure B.2. Centerline velocity of a 3 wind turbine row varying superposition method.
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Figure B.3. Verification study of the new model with PyWake by repositioning 3 turbines
in a row and comparing each turbine’s power generation at 8 m/s.
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Figure B.4. Verification study of the new model with FLORIS by yawing 3 turbines in a
slightly misaligned row and comparing each turbine’s power generation at 8 m/s.
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Figure B.5. Wind rose for the IEA37 test case sampled into 16 wind direction bins and
1 wind speed bin.
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Figure B.6. Initial layout for the IEA37 test site with 16 wind turbines in a circular
farm boundary.
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Figure B.7. Optimized layout for the IEA37 test site with 16 wind turbines in a circular
farm boundary.
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Figure B.8. Initial layout for the IEA37 test site with 36 wind turbines in a circular
farm boundary.
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Figure B.9. Optimized layout for the IEA37 test site with 36 wind turbines in a circular
farm boundary.
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Figure B.10. Initial layout for the IEA37 test site with 64 wind turbines in a circular
farm boundary.
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Figure B.11. Optimized layout for the IEA37 test site with 64 wind turbines in a circular
farm boundary.
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Figure B.12. Wind rose for the Lillgrund site sampled into 12 wind direction bins and 6
wind speed bins. Data according to [25].
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Figure B.13. The Lillgrund site with 48 wind turbines within the farm’s boundaries.
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Figure B.14. Wind rose for the Hollandse Kust (West) site VI, sampled into 12 wind
direction bins and 6 wind speed bins. Data according to [80].
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Figure B.15. The wind farm boundary of the Hollandse Kust (West) site VI.
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Figure B.16. Zero level set of the wind farm boundary constraint for the Hollandse Kust
(West) site VI.
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Figure B.17. The 250, 25, and 0 level sets of the non-interference constraint representing
the boundary of the Hollandse Kust (West) site VI.
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Figure B.18. The random initialization of 54 wind turbines in the HKW site with a
relaxed boundary of 250 meters.

Figure B.19. Layout optimization 1 results of the HKW site with a relaxed boundary of
250 meters. AEP and median distance violation of the boundary constraint is plotted for
each optimization iteration.
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Figure B.20. Layout optimization 2 results of the HKW site with a relaxed boundary of
25 meters. AEP and median distance violation of the boundary constraint is plotted for
each optimization iteration.

Figure B.21. Layout optimization 3 results of the HKW site. AEP and median distance
violation of the boundary constraint is plotted for each optimization iteration.
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Figure B.22. Layout optimization 4 results of the HKW site. AEP and median distance
violation of the boundary constraint is plotted for each optimization iteration.
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