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Maintenance of a properly folded proteome is critical for bacterial
survival at notably different growth temperatures. Understand-
ing the molecular basis of thermoadaptation has progressed in
two main directions, the sequence and structural basis of protein
thermostability and the mechanistic principles of protein qual-
ity control assisted by chaperones. Yet we do not fully under-
stand how structural integrity of the entire proteome is main-
tained under stress and how it affects cellular fitness. To address
this challenge, we reconstruct a genome-scale protein-folding net-
work for Escherichia coli and formulate a computational model,
FoldME, that provides statistical descriptions of multiscale cel-
lular response consistent with many datasets. FoldME simula-
tions show (i) that the chaperones act as a system when they
respond to unfolding stress rather than achieving efficient fold-
ing of any single component of the proteome, (ii) how the pro-
teome is globally balanced between chaperones for folding and
the complex machinery synthesizing the proteins in response to
perturbation, (iii) how this balancing determines growth rate
dependence on temperature and is achieved through nonspecific
regulation, and (iv) how thermal instability of the individual
protein affects the overall functional state of the proteome.
Overall, these results expand our view of cellular regulation,
from targeted specific control mechanisms to global regulation
through a web of nonspecific competing interactions that mod-
ulate the optimal reallocation of cellular resources. The methodol-
ogy developed in this study enables genome-scale integration of
environment-dependent protein properties and a proteome-wide
study of cellular stress responses.

thermoadaptation | proteome allocation | bacterial growth law |
genome-scale model | molecular chaperones

Temperature is one of the most important environmental
parameters that dictate the evolution of bacterial species.

Our current understanding of thermoadaptation is based on
deep investigations from a few different standpoints. First,
sequence and structural determinants of thermosensitivity are
identified through comparison of homologous enzymes between
psychrophilic, mesophilic, and thermophilic organisms (1, 2) or
fitness-increasing mutations that arise during laboratory evolu-
tion at high temperatures (3–5). Second, efforts have been made
to comprehend the detailed mechanisms by which molecular
chaperones promote efficient folding, minimize toxic aggrega-
tion, and maintain a properly folded proteome under stressful
perturbations (6–8). In particular, two major chaperone families
that are well conserved across bacteria, the Hsp70 (9) and Hsp60
(10) systems, share the majority of the folding load in a cell.
Therefore, physicochemical principles (11–15) and chaperone–
substrate interactions (16–18) that regulate efficient folding for a
single protein are extensively studied in in vitro experiments and
theoretical models.

Empirical and population genetics models of bacterial growth
try to explain the general principles for various species to adapt
to diverse thermal niches. For example, temperature responses

fit nicely using the activation enthalpy of a single rate-limiting
reaction and thermodynamic parameters of its catalyzing enzyme
(19). In another approach, focusing on marginally stable pro-
teomes that may experience sharp and cooperative denaturation,
thermo-response can be simply described by two parameters, a
dominant metabolic activation barrier and the number of pro-
teins controlling replication process in an organism (20, 21).

Apparently, evolution of protein thermodynamics and the
function of a rate-limiting response reaction (presumably
chaperone-assisted folding) are both critical to the tempera-
ture dependence of bacterial growth. To date, most studies pro-
vide in-depth investigation on the effect of only one aspect.
However, the cytoplasm of a living cell is an active complex
medium, where a large number of protein molecules with var-
ied thermal qualities compete to achieve diverse cellular func-
tions. How do proteins with different evolutionarily developed
thermal features respond to instant temperature perturbations?
How do molecular chaperones catch these changes and dis-
tribute their folding service to optimize growth? How do these
two determinants interact at the systems level to modulate
temperature response of a cell under different environmental
conditions?

To answer these questions, we use the genome-scale network
reconstructions and computational models of metabolism and
protein expression [ME Models (22–24)] for Escherichia coli.
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The E. coli ME Model is capable of generating fine-grained
descriptions of proteome composition that optimizes cellular
growth in a given environment. Furthermore, the decoupling of
protein expression from metabolic requirement enables incor-
poration of multiple protein states, providing the framework to
characterize the changing properties of proteins and lay out how
chaperones are distributed to maintain protein quality control
in vivo.

Herein, we present the reconstruction of the genome-scale
protein-folding and chaperone network in E. coli K-12 MG1655.
This reconstruction is then integrated into the ME Model to
form FoldME. FoldME describes the in vivo protein folding
as a competition between de novo spontaneous folding and
assisted folding, using the HSP70 (DnaK/DnaJ/GrpE) and the
HSP60 chaperonin system (GroEL/GroES). With the chaper-
ones being allowed to respond dynamically to changes in the
proteomic folding state, FoldME delineates how organismal fit-
ness is affected by a variety of perturbations, such as tem-
perature fluctuations, nutrient availability shifts, and genetic
mutations. Importantly, we demonstrate that cellular response
to unfolding stresses is more complicated than a simple deci-
sion about which folding pathway to choose for each unfolded
peptide. It involves a systems-level proteome reallocation in
accordance with empirical bacterial growth laws (25), to bal-
ance availability of chaperones for folding and the biosyn-
thesis machinery to synthesize the proteome, including the
chaperones.
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Fig. 1. FoldME reconstruction and validation. (A) Elementary model reactions for the three folding pathways. The flux going through each reaction is
denoted Vreaction label, and the coupling constraints are explained in the text. (B) Illustration of how temperature dependence of each biophysical property
is combined to compute their collective effect on cell growth. CR stands for chaperone requirement calculated from agg alone; CR(T) takes into account
both agg and ∆G(T). (C) FoldME predictions (circles connected with a solid line) of relative growth rates of E. coli over temperatures, compared with data
obtained from the literature (16, 50, 51) (diamonds) and in-house experiments (triangles).

Results
Model Reconstruction. Environmental and genetic perturbations
modulate cell growth by changing the properties of the cell’s
protein components, followed by a subsequent reallocation of
cellular resources in response to that alteration. To assess this
effect, we first associate all biochemical reactions in the E. coli
genome-scale ME Model [iOL1650 (24)] with the sequences and
structures of their catalytic enzymes, using the protocols devel-
oped in our group (26, 27). Next, we compute the temperature-
dependent protein kinetic folding rate [kf (T )], thermostabil-
ity [free energy of unfolding ∆G(T )], equilibrium constant
of unfolding Keq(T ) , exp{−∆G(T )/RT}, and aggregation
propensity (agg) from first principles (Materials and Methods)
for every protein in FoldME. The calculation provides us with
a condition-specific characterization of the folding state of the
proteome, which is then coupled to cell growth through flux bal-
ance formulation of the folding reactions described below.

Three pathways that actively fold nonspecific protein targets
in vivo are incorporated to form the folding network (Fig. 1A):
(i) the spontaneous folding pathway, (ii) the DnaK-assisted fold-
ing pathway, and (iii) the GroEL/ES-mediated folding pathway.
Spontaneous folding occurs in the presence of trigger factor once
a nascent peptide chain exits the ribosome. We describe the
temperature-dependent unfolded fraction of an individual pro-
tein with the coupling constraint Vdilution ≥ ( µ

kf (T)
+Keq(T )) ·

Vfolding , where µ is the growth rate.
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DnaK- and GroEL/ES-assisted folding pathways have been
studied extensively due to their central role in maintaining cel-
lular proteostasis (12, 18, 28). Without loss of generality, we
describe each chaperone-assisted folding pathway with three
kinetically controlled elementary steps (Fig. 1A) that are con-
strained with the corresponding enzymatic turnover rates mea-
sured experimentally (29, 30). To reflect the fact that multi-
ple repeated cycles of complete release and rebinding of the
peptide are required for the substrate to reach its native state
(31, 32), we design a pair of duplicated reactions, one for the
successful folding event (VK3 and VG3) and another unfruit-
ful chaperone-interaction cycle that releases the unfolded pep-
tide (VK3′ and VG3′). The ratio between the flux of these two
reactions is set to an effective temperature-dependent chaperone
requirement, CR(T ) = agg · (1 +Keq(T )), to estimate the num-
ber of repeated cycles required for a particular peptide. Deriva-
tions and additional details for modeling the three folding path-
ways are described in SI Materials and Methods.

The E. coli protein-folding network has been developed in
more detail based on the concerted action of the molecular chap-
erones and proteases to predict the folding outcome of a sin-
gle protein (14, 15, 33). However, such a kinetic model gives
no clue on how the chaperones should be partitioned simulta-
neously among the folding request from the whole proteome and
how proteome folding is coupled to the metabolic state of a grow-
ing cell. Here, we allow the three folding pathways to compete for
folding of any protein instead of being designated a priori to any
particular clients. Through integration into iOL1650, this unique
computational model, termed FoldME, is capable of dynamically
adjusting the in vivo folding pathway of each protein based on its
folding characteristics, as well as the proteome composition and
metabolic state in a given environment.

Asymmetrical Temperature Dependence of Cell Growth. We sim-
ulated FoldME at different temperatures by computing the
enzyme catalytic rate kcat and proteomic biophysical profile
according to statistical mechanical laws depicted in Fig. 1B.
FoldME computes the proteins’ folding properties separately
from their metabolic activities and can thus assess how each
property contributes to the nonlinear nature of the cell’s tem-
perature response over a wide range of temperatures (Fig. 1C).
Remarkably, without any further assumptions or parameter fit-
ting, the predicted relative growth rate agrees quantitatively with
the independent experimental data from 24 ◦C to 46 ◦C, in both
minimal glucose and defined rich media.

Over the Arrhenius growth temperatures (24∼37 ◦C, region in
pink in Fig. 1C), change in growth rate is governed by the tem-
perature dependence of enzyme catalytic rates. We estimated
the equivalent Arrhenius activation energy for cell growth to
be 55.9 ± 1.1 kJ/mol, consistent with the experimental value
56.5 kJ/mol previously measured for E. coli in rich media (34).
Between 38 ◦C and 42 ◦C, growth rate varies only in a small
range, and the optimal growth temperature is dependent on the
medium type. Consistent with our experimental measurements,
FoldME predicted that the optimal growth temperature in rich
medium was slightly higher (∼1 ◦C) than that in the minimal
glucose medium. Relatively constant growth in this tempera-
ture range is maintained by an intricate competition between all
contributing factors. At higher temperatures (T ≥ 42 ◦C, region
in blue in Fig. 1C), neither the increased kinetic folding rate
nor the elevated enzyme catalytic rate is enough to compensate
for the cost of maintaining stability of the unfolding proteins;
hence, the growth rate decreases sharply.

In addition to predictions of growth behavior, FoldME simula-
tions correctly capture the intracellular abundance and temper-
ature response of the molecular chaperones. At 37 ◦C, FoldME
estimates DnaK to contribute 0.72% to the total mass in defined
rich medium, consistent with the estimation of ∼1% total

proteome mass during exponential growth (35). At 42 ◦C,
DnaK is calculated to increase by 2.3-fold, which is very
close to our experimental measurements (2.1± 0.1). Although
abundances of GroEL vary in different experiments, FoldME
predictions capture the general trend that GroEL is slightly
lower in mass fraction than DnaK at physiological temperatures
(Fig. S1A).

Quantitative consistency in the up-regulation of chaperones at
higher temperatures is obscured due to the difference between
FoldME simulations that reflects an evolved global optimum
and experiments usually performed for the WT cells. Neverthe-
less, in a study that evolved E. coli to an extreme temperature
of 48.5 ◦C, GroEL is determined to increase 16-fold over its
WT level (36), partially supporting our FoldME estimations. The
increased level of chaperones is used to keep the total unfolded
protein fraction below 1% of the proteome mass under all tem-
peratures (Fig. S1B). Therefore, FoldME simulations faithfully
recapitulate the critical function of the chaperone network in
buffering the temperature-induced unfolding stresses and main-
taining robust cell growth.

Chaperone-Mediated Proteome Reallocation Details the Empirical
Bacterial Growth Law. The phenotypic change adapted to differ-
ent temperatures is reflected in proteome allocation strategies.
We compared computed gene expression profiles at 28 ◦C and
45 ◦C, where the growth rates are similar (Fig. 2 and Fig. S2). In
the Arrhenius temperature range, the shift in gene expression is
minor and homogeneously distributed to all metabolic enzymes
to compensate for the overall decrease in enzymatic efficiency.
In contrast, under severe unfolding stress at 45 ◦C, the up-
regulation of chaperones significantly drains cellular resources
away from ribosome synthesis, limiting the synthesis of all other
cellular components. Thus, chaperones not only respond to
unfolding needs, but also mediate global proteome reallocation
by setting a constraint on the use of cellular resources for biomass
synthesis.

We further detailed the constraints associated with proteome
allocation, using large-scale simulations of 21 nutrients that were
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Fig. 2. Proteome reallocation with change in temperature. (A) Pie charts
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Fig. 3. Growth law for the chaperone-regulated proteome. (A–C) The linear relationship between growth rate and mass fraction of the ribosomal proteins
(Φr ), molecular chaperones (Φc), and metabolic proteins (Φp). Arrows indicate the direction of nutrient quality or temperature increase. Nutrient quality is
ordered within each nutrient group by predicted growth rate at 37 ◦C (Fig. S3). (D) Schematic of the bacterial growth law and chaperone’s regulatory role
in proteome allocation. Φt denotes the total expressed proteome.

previously shown to best represent the diversity of the proteome
under different conditions (37). With implementation of the
chaperone network, computed growth rates showed consistent
temperature response from 24 ◦C to 46 ◦C for all nutrients con-
sidered (Fig. S3).

The mechanism underlying these detailed predictions is con-
sistent with reported coarse-grained bacterial growth laws (25,
38, 39). Three overall fractions of the expressed proteome, ribo-
somal proteins (Φr ), molecular chaperones (Φc), and metabolic
proteins (Φp), each show a different type of growth-rate depen-
dency (Fig. 3 A–C). The number of ribosomes in a cell directly
determines how much biomass a cell can produce; therefore
Φr increases linearly with growth rate under all simulated con-
ditions. Consistent with the empirical bacterial growth law,
growth rate increases with better nutrient quality, represent-
ing a higher translational efficiency. In the Arrhenius temper-
ature range, Φc remains constant so that the allocation trade-
off between ribosomal and metabolic proteins gives rise to the
conjugate growth-related change between Φr and Φp . In the
stressed temperature range, growth is modulated by the par-
tition among all three fractions. Φc becomes linearly depen-
dent on the growth rate with a negative slope, similar to the
relationship between Φr and growth rate under translational
inhibition by antibiotics (25). The slope changes according to
the nutrient quality, which likely modulates the overall fold-
ing efficiency of the chaperone. Between the two temperature
ranges, nonlinearity arises within an “optimal plateau” (38),
due to the suboptimal level of both folding and translational
efficiency.

The chaperones’ regulatory role in growth-coupled proteome
partition originates from the need to maintain a low cellular
level of unfolded peptides at the lowest biosynthetic cost. Under
stress, increasing translational efficiency leads to increased levels
of unfolded peptides and native enzymes simultaneously, result-
ing in an inefficient regulation and significant waste of cellular
resources (Fig. 3D). The evolutionary invention of chaperones
resolves this dilemma by producing a balanced cellular process
that increases the flux from a pool of unfolded peptides to native
proteins while suppressing the production of both unfolded pep-
tides and ribosomes.

Multiscale Predictions for the Cellular Adaptation Mechanisms.
FoldME is a multiscale model that describes not only global reg-
ulation of proteome composition but also the statistical effects

on in vivo folding at the level of metabolic pathways or upon
perturbation of a single gene. At the pathway level, FoldME
predicts that at high temperatures, DeoA, an enzyme involved
in the pyrimidine degradation pathway, becomes unstable and
extremely expensive to produce. The high cost of maintaining
DeoA leads to a shift in sugar uptake from pyrimidine degra-
dation to the glycolysis and pentose phosphate pathway (Fig.
S4A). This prediction is confirmed by our experiment show-
ing that E. coli cells grow on glucose, but not on thymidine
at high temperatures (Fig. S4B). Additional support comes
from a long-term evolution experiment of E. coli subjected to
high temperature in LB medium, where the steady-state lev-
els of enzymes involved in pyrimidine degradation including
DeoA, DeoB, and DeoC are significantly down-regulated upon
adaptation (36).

To evaluate the effect of perturbation of a single gene, we
used FoldME to compute the consequences of point mutations
in the core metabolic enzyme dihydrofolate reductase (DHFR),
which were shown to affect the cellular abundance of a large
number of E. coli proteins (40). We reproduced the sharp
decrease in growth rate within small variations of DHFR sta-
bility (Fig. 4A) and correctly predicted that DHFR mutants
used GroEL/ES for folding (41). Upon destabilization of the
DHFR protein, FoldME predicted the differential expression of
a large number of proteins. Consistent with discoveries reported
in Bershtein et al. (40), the overall SD of protein expression
level increases as DHFR stability and organism fitness decrease
(Fig. 4B).

For quantitative comparisons between experiments and
FoldME predictions, we calculated z scores for genes expressed
in both experiment and FoldME: z = Yi−<Y>

σY , where Yi is the
logarithm of relative protein abundance (LRPA) with respect
to the WT level for gene i . Average variations in expres-
sion for individual proteins correlated quantitatively between
transcriptomic data and FoldME predictions for the major-
ity of the clusters of orthologous group (COG) categories
(Fig. 4C). Importantly, the biosynthetic resource is distributed
to the three proteome partitions with the same growth-
coupling relationships as shown in Fig. 3 (Fig. S5). Simi-
lar down-regulation of coenzyme biosynthetic pathways was
observed for temperature elevation and destabilizing mutations
(Fig. S6), indicating a consistent energy allocation strategy in
chaperone-mediated adaptation to environmental and genetic
perturbations.
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Discussion
To obtain a comprehensive understanding of bacterial ther-
moadaptation that bridges the knowledge from the molecular
to the systems level, we have reconstructed the E. coli protein-
folding network. We used this reconstruction to formulate a
computational model, FoldME, through integration with the
genome-scale model of metabolism and protein expression. Even
with uncertainties in model parameters for single proteins (SI
Materials and Methods and Figs. S7–S9), FoldME simulations are
capable of reproducing robust cell growth in conditions that vary
in nutrient, temperature, and gene content. The results illustrate
the complexity of protein folding in vivo, such that thermostabil-
ity of a single protein has only very limited influence on cellu-
lar fitness (Fig. S9E). Instead, interwoven interactions between
protein thermodynamics and chaperone regulation lead to mul-
tilevel strategies, ranging from gene to pathway to network that
a cell uses to deal with unfolding stresses. Moreover, we high-
light the systems-level regulatory role of the chaperone network
that has been overlooked in previous studies. During bacterial
thermoadaptation, the molecular chaperone takes a “service”
function that mediates proteome allocation and cellular fitness
in two interconnected ways. First, the chaperone pool is shared
by the whole proteome; thus occupancy of a chaperone by one
unfolded protein sets a constraint on the structural integrity of
all other proteins. Second, the increased expression of chaper-
ones under stress drains available resources from protein syn-
thesis, setting a stringent translational constraint on the entire
proteome.

Three critical factors contribute to FoldME’s ability to achieve
a deep multiscale understanding of bacterial thermoadaptation.
First, we incorporate a metabolically inactive unfolded state of
protein to facilitate assessment of the proteome’s biophysical
profile. This profile serves as an internal “sensor” to reflect the
environmental and genetic perturbations. Second, we design a
mathematical formulation for the chaperones to respond to the
folding request of the proteome independent of its metabolic
state. Third, instead of imposing the chaperone-assisted folding
reactions only on the few experimentally validated substrates,
we enable competition among the spontaneous, DnaK-assisted,
and GroEL-mediated folding pathways, for all modeled proteins.
As such, changes in the proteostatic state of the cell induced
by environmental and genetic perturbations can be calculated
based on first principles, evaluated by the protein quality-control
machinery, and coupled to the whole cell’s economics. The
approach adopted in this study opens up fundamental unique
possibilities for genome-scale integration of environment-
dependent protein properties, which enables proteome-wide
study of cellular stress responses to environmental and genetic
perturbations.

Materials and Methods
Kinetic Folding-Rate Calculation. The kinetic folding rate kf is calculated
using the Gromiha method, which is reported with a correlation of
0.97 between predicted and experimentally measured folding rates for
a sample of 32 proteins (42). To calculate kf for each modeled pro-
tein, we first compute its secondary structures using the DSSP tool
(43) in ProDy (44) and then submit the protein sequence along with
the assigned secondary structure class to the FOLD-RATE web server
(https://www.iitm.ac.in/bioinfo/fold-rate/). Finally, the predicted values are
set as the reference folding rate at 37 ◦C and scaled according to the rela-
tionship lnkf ∝ 1/T to cover the temperature range between 24 ◦C and
46 ◦C (45).

Thermostability Calculation. Gibbs free energy of unfolding (∆G =

Gunfolded −Gfolded) is predicted using a combination of the Dill expres-
sion (21) and the Oobatake method (46). The Dill expression is formu-
lated based on the empirical correlation between protein length and ther-
mostability. It generates a homogeneously stable proteome with melting
temperatures varying in a small range, between 53.9 ◦C and 58.7 ◦C. The
Oobatake method generates a more diverse thermostability profile, using
information from protein sequence and structure. To maintain both het-
erogeneity and a low level (5%) of E. coli proteome being intrinsically dis-
ordered (47), we assign the unfolding free energy in two steps: (i) Cal-
culate ∆G(T) for T ∈ [24, 46] ◦C using the Oobatake method; and (ii) if
∆G(T) < 0 for all calculated temperatures, recalculate ∆G(T) using the Dill
expression; otherwise, assign ∆G(T) using the values calculated in step i.
Folding constraints and chaperone requirements in FoldME are expressed
in equilibrium constant (Keq = [U]eq/[N]eq) calculated using ∆G(T) =

−RTln(Keq(T)). More details for the calculation and sensitivity analysis of
kf (T) and ∆G(T) are discussed in SI Materials and Methods and Figs. S8
and S9.

agg Calculation. agg is defined as the number of “aggregation-prone”
segments on an unfolded protein sequence. These aggregation-prone
regions have been extensively studied and shown to be highly corre-
lated with chaperone selectivity (48). We choose a consensus method (49),
which incorporates 11 popular algorithms that use different aspects of the
sequence property to predict aggregation propensity of the E. coli pro-
teome. Sequences of the modeled proteins are submitted to the web server
(aias.biol.uoa.gr/AMYLPRED2/) for evaluation. To obtain the best balance
between sensitivity and specificity, we follow the author’s guidelines to con-
sider every five consecutive residues agreed among at least five methods
contributing 1 to the agg.

Bacteria Strains and Growth Media. E. coli strains, culture conditions, and
characterizations of the media used in this study are described in SI Materials
and Methods.
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