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ABSTRACT OF THE DISSERTATION

Mulit-omic Analysis of B-Cell Lymphoma Reveals Novel Mechanisms of Chemotherapeutic Drug
Resistance

by

Colin Flinders
Doctor of Philosophy Biological Chemistry
University of California, Los Angeles, 2014

Professor Joseph Loo, Chair

The genetic origins of chemotherapy resistance are well established, however the role of the
epigenome and post-transcriptional regulation in drug resistance is less well understood. To investigate
mechanisms of drug resistance we performed a systematic genetic, epigenetic, transcriptomic and
proteomic analysis of a mafosfamide sensitive and resistant murine lymphoma cell line, along with a
series of resistant lines derived by drug dose escalation. Our data suggest that acquired resistance could
not be explained by genetic alterations. By integrating our transcriptional profiles with transcription
factor binding data we hypothesize that the resistance was associated with changes in the activity of the
polycomb repressive complex (Prc2) as well as the transcription factor E2a. We verified that the
resistant cells had distinct H3K27me3 and DNA methylation profiles, compared to the parental lines, and
differentially expressed genes were enriched for targets of E2a. In addition, the resistant lines appear to
de-differentiate to a less mature state along the B cell maturation axis. Overall, we propose that
resistant lines are transformed by an E2a and Pcr2 driven cellular program that leads to a less mature B

cell state in which the apoptotic cascade induced by mafosfamide treatment is attenuated.



Furthermore, combined transcriptomic and proteomic data analysis elucidated mechanisms of
resistance involving the ubiquitination activating enzyme Ubal which were not revealed by analysis of

either transcriptomic or proteomic data alone.
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Chapter 1: Drug Resistance in Burkitt's Lymphoma

Introduction

Since the discovery of the first oncogene mutation in human cancer, research into the
development of cancer and therapeutic resistance has primarily focused on mutations of the genome.
Mutations can provide a survival advantage such as the nullification of the target of drug action,
inactivation of apoptotic pathways, over expression of DNA repair genes, or the activation of
proliferative pathways. Whereas traditional chemotherapy non-specifically kills rapidly dividing cells
more modern targeted therapies leverage knowledge of these specific mutations to specifically target
only those cells that contain a specific unique mutation or gene product. Despite the success of both
traditional and targeted therapies, resistance is a major cause for the failure of treatment and as such
understanding the mechanisms of acquired drug resistance will have important implications in the

development of new therapies and drug regimens.

Despite extensive investigation, genetic mutations are unable to explain all cases of acquired
resistance. Non-genetic mechanism of resistance have been suggested as an alternate to explain those
cases of resistance that arise rapidly, reverse with drug holiday, lack detectable mutations, or where
there exits heterogeneity in drug responsiveness amongst cells sharing the same genetic profile.
Epigenetics, the heritable change in gene expression that is independent of alterations in the underlying
DNA sequence is capable of explaining these cases of resistance. Epigenetic mechanisms of drug
resistance can involve the aberrant loss or acquisition of DNA methylation or through the chemical
modification of histone tails. Alteration of either DNA methylation patterns or histone modifications can
lead to changes in higher order higher order chromatin structure resulting in either the compaction

(heterochormatin) or decompression (euchromatin) of a section of the chromosome. Such structural



changes lead to the physical occlusion of DNA binding factors and preventing transcription in the case of
compaction or allowing for an open confirmation which would permit their binding and allow for
transcription. Furthermore, both types of modifications can act as binding sites for specific activator or
repressors of gene expression (such as bromodomain or methyl-CpG-binding domain containing

proteins).

During carcinogenesis alterations in the epigenome can lead to the transcriptional repression or
activation of targets of drug action, DNA repair pathways, apoptosis, or the activation of cell
proliferative pathways. Epigenetic alterations occur early in tumorigenesis and as a result tumors show a
high degree of heterogeneity at the epigenetic level**. This epigenetic heterogeneity has important
clinical implications as it can be a source for therapeutic selection. Furthermore, alterations of the
epigenome can result in the ectopic expression of genes involved in differentiation and stem cell

maintenance leading to the reprogramming of cancer cells towards a more stem cell like state.

B-cell Lymphoma

Lymphomas affect an estimated 450,000 new cases every year with 225,000 deaths annually®.
Increased precision of histological and molecular classification techniques has led to the identification of
over 60 lymphoma subtypes”. Treatment outcome is widely varied between these subtypes with some
indolent types such as follicular and marginal zone lymphoma remaining incurable chronic diseases that
require repeated rounds of treatment to more aggressive subtypes such as diffuse large B-cell
lymphoma (DLBCL) and Burkitt's lymphoma (BL) that require intensive high dose therapy. B-cell
lymphomas are a group heterogeneous malignancies that arise from mature naive B-cells that have
successfully undergone rearrangement of the B-cell receptor. In normal B-cell development antigen

activated B-cells migrate to lymphoid structures known as germinal centers (GC) where they undergo



stomatic hypermutation and class-switch recombination. B-cell lymphoma classification is based on the

rationale that malignant B-cells are arrested at the stage of development from which they originate’.

Burkitt's Lymphoma accounts for 1-2% of all cases of adult lymphoma in Westerns Europe and
the United States®. BL is characterized by a C-myc translocation leading to over expression of C-Myc
mRNA and protein’. Approximately, 80% of BL cases harbor a t(8;14) translocation, which places C-myc
under the control of the IgH enhancer elements, with the other 20% of cases having translocation that
place c-myc adjacent to either the k or A light chain loci and enhancer elements’. The structure of the
IgH c-myc translocation suggests that this event occurs during class-switch recombination during normal
B-cell development®. C-myc is a helix-loop-helix leucine zipper transcription factor involved in multiple
pathways important in cancer including cell cycle regulation, apoptosis, cell growth, cell adhesion and

differentiation’.

Despite the greater understanding of molecular differences between various lymphoma
subtypes the treatment paradigm for the vast majority lymphomas and in particular aggressive B-cell
lymphomas has remained unchanged. The most commonly used therapeutic regime is the combinatorial
treatment known as R-CHOP (rituximab, cyclophosphamide, hydroxydaunorubicin, oncovin, and

6,10

prednisone)”™ ™. In BL, high intensity short duration R-CHOP regimens result in complete response (CR)

rates of 47-100% in adults with most attaining CR within 4 to 6 weeks of the start of treatment™*%.
However, only 47%-86% of individuals with CR maintain these results for at least a year following
therapy®. Furthermore, for those individuals with only a partial response or who relapse an optimal
salvage therapy remains unknown®. Even those patients who obtain long term remission of the disease

often suffer from lasting toxicity induced health problems, predisposition to secondary malignancies,

and an overall lower quality of life®*.

Drug Resistance in Cancer




Cancer cells are capable of becoming resistant to therapy in several different ways, some of
which act broadly to enable the cancer to become resistant to multiple drug types, where as others are
more specific and affect sensitivity to only one drug or class of drugs. Resistance can arise during the
course of treatment (acquired resistance) or resistant cells can be present before the incitation of
therapy (innate resistance). Regardless of how or when resistance arises, it ultimately results in a
population of cells which are selected for and enriched during the course of treatment. Overtime, these
cells may come to constitute the bulk of the tumor at which point therapy becomes ineffective and

unless alternative therapies can be found the disease will progress.

Largely, resistance arises either through the over expression of pro-survival pathways or the
down regulation of apoptotic pathways. Over expression or activating mutations in genes in pro-survival
pathways such as the PI3K/Akt/mTor pathway can lead to cell survival. In the PI3K/Akt/mTor pathway
for example, activating mutations in PI3KCA leads to hyperphosphorylation of phosphatidylinositol
ultimately leading to the activation of Akt and mTor. Akt and mTor are then able to activate multiple
anti-apoptotic molecules such as Bad, caspase 9 and various members of the forkhead transcription

factor family™**

. Alternatively, over expression of drug efflux pumps, specifically the ATP-binding
cassette (ABC) transporter family can lead to resistance against a broad swath of anti-cancer
compounds. By up regulating ABC transporter genes cells are capable of lowering intracellular drug
concentration, thus reducing the effect the drug has'®. Over expression of ABC transporter proteins can
be inherent to specific tissues from which the cancer arises, however over expression can also be
induced by chemotherapy exposure'’. For example, over expression of ABCB1 is associated with
treatment failure in a wide range of cancers including kidney, colon, lung, as well as leukemias and

lymphomas'®. Cancer stem cells (discussed below) are inherently more resistant to therapy have been

shown to express higher levels of drug eflux proteins®.



Inactivating mutations in tumor suppressor genes can broadly affect drug resistance by disabling
cell cycle checkpoints or inhibiting apoptosis. One of the most extensively studies examples is the tumor
suppressor Tp53 which affects multiple survival pathway, including cell cycle regulation, senescence,
DNA damage and repair®. Disruption of Tp53-dependent apoptosis either through inactivating
mutations in Tp53 itself or of components of the Tp53 pathway are essential for the development of

2122 As such the Tp53 status is an important prognostic indicator in

lymphoproliferative diseases
lymphoid malignancies where it is associated with unfavorable outcome® . Although the frequency of

Tp53 mutations across all lymphoid malignancies is low, over 30% of BL samples possess mutated

Tp53*.

Besides these general mechanisms of drug resistance, cells are capable of undergoing
alterations that are specific to individual drugs or families of drugs. Targeted therapy is more specific
than traditional chemotherapy in that it is directed at specific genetic legions that are altered in cancer.
The first clinically successful targeted therapy is the kinase imatinib which inhibits the Bcr-Abl fusion
gene that is a hallmark of chronic myeloid leukemia (CML)>. Resistance to targeted therapies is often
the result of either point mutations which prevent drug binding or activation of pathway components
downstream of the target protein. In CML patients, resistance to imatinib is most often the result of the

former with point mutations in the ATP binding domain of Bcr-Abl preventing imatinib binding®”.

B-cell lymphomas are a highly heterogeneous malignancies and as such the mechanisms of
resistance are varied. In BL, mutations in the hematopoietic differentiation transcription factors ID3 and
TCF3 (E2a) result in PI3K/Akt/mTOR pathway dependency***® and mutations in this pathway leaad to
worse prognosi527. As mentioned above mutations in p53 or p53 pathway components are essential to
disease development and progression. The location of disruption of the pathway can have important

21,28

clinical implications™™“°. Besides these intrinsic forms of resistance, B-cell lymphomas also experience



acquired resistance. Up regulation of ABC family members or drug metabolism genes such as Adh1
frequently occur®. Similarly, down regulation of rituximab target CD20 has been noted in individuals

who relapse following R-CHOP™.

Epigenetics and Tumor Heterogeneity

Tumor heterogeneity

Cellular heterogeneity is a well characterized attribute of cancer tissue. Tumor heterogeneity
may be the result of genetic drift during early stages of cancer progression which leads to several clonal
subpopulations. Deep-sequencing studies have revealed genetic heterogeneity through the analysis of
copy number variations at the level of single cell sequencing and of genetic mutations from different

tumor sites and metastases from an individual patients>*>?

. Identified genetic changes can be traced
along a phylogenetic tree to develop a history of the appearance of specific mutations. These clonal
subpopulations could then go through evolutionary selection as the result of nutrient deficiencies that
arise as the initial tumor grows or as the result of therapeutic intervention®*. The resultant
heterogeneity will have therapeutic consequences as genetically distinct clonal subpopulations may

3135 Whether resistance arises as the result of de novo

have varying responses to targeted therapies
mutations during treatment or are present in the tumor at the time of initial treatment remains open for

debate®®. These two models are not mutually exclusive and which model may dominate in a particular

case may be dependent on tumor type.

While it is clear that certain epigenetic modifications occur early in tumor progression and that
they can be selected for, the lack of longitudinal epigenetic studies in cancer have hindered a better
understanding of the evolutionary dynamics of these marks during the progression and treatment of the
disease. Such studies are necessary in order to better understand epigenetic heterogeneity and how it

can arise. Currently, epigenetic heterogeneity is thought to arise in one of two ways. In deterministic



variability, epigenetic differences represent distinct cell type specific alterations that lead to
differentiation hierarchies. In stochastic variability, cell to cell variability within differentiation status
results in heterogeneity within a population of cells at the same developmental stage. An epigenetic
alteration in a progenitor cell population can lead to the clonal expansion of a distinct sub-population
within a larger polyclonal population. These cells can then undergo further genetic or epigenetic
alterations that can result in cycles of selection and clonal expansion. Ultimately, this can lead to
increased plasticity amongst various tumor cell subpopulations which allows for greater survival. All
tumor types show widespread aberrant epigenetic modification, which is capable of generating diversity

in tumor populations that can be a source of drug resistant subclones>*’.

While heterogeneity in cancer cell populations exists at both the genetic and epigenetic level, it
is far greater at the epigenetic level. The frequency of gene promoter hypermethylation is several times
higher than the frequency of nonsynonymous gene mutations in cancer, with a median of 250-800
versus 150-170 respectively®®. Additionally, the fidelity at which CpG methylation is copied during cell
division is estimated to be 2x10” per CpG per division compared to the mutation rate in cancer cells of
10 mutations per nucleotide base pair per division®*. This results in a far higher level of heterogeneity
at the DNA methylation level in tumors than is found in mutations. The resulting heterogeneity has
clinical implications as well. It has been shown that in individuals with diffuse large B-cell lymphoma

(DLBCL) DNA methylation heterogeneity is correlated with poor prognosis*.

Epigenetic modifications in cancer

DNA methylation

DNA methylation is perhaps the most well studied chromatin modification. In mammals, DNA
methylation primarily occurs on the cytosine residues of CpG dinucleotides by the action of DNA

methyltransferases (DNMTs) forming the more hydrophobic 5-methly-cytosine. Much of the DNA



methylation of the genome occurs at regions enriched for CpG dinucleotides known as CpG islands
which were first described in 1982 by Wolf and Migeon when they observed that methylated regions on
the inactive X chromosome were associated with silencing of housekeeping genes*'. DNA methylation
acts through affecting higher order chromatin structure leading to a more condensed chromatin state
and as a binding site for chromatin binding proteins. DNA methylation plays a vital role in gene
expression during embryogenesis and development, where methylation of CpG islands in the promoter
regions of genes leads to gene silencing. Conversely, methylation can also increase gene expression
when it occurs in gene bodies where it is thought to facilitate transcription elongation. Besides its role in
gene expression, DNA methylation is also critical in X chromosome inactivation, imprinting, and

chromosomal stability through the methylation of repetitive DNA regions.

Cells from neoplastic tissue show aberrant DNA methylation patterns and increased
heterogeneity compared to normal matched controls. Generally speaking, tumors are hypomethylated
which leads to increased variable gene expression in differentially methylated regions' and increased
chromosomal instability potentially contributing to gene copy number changes seen in cancer®.
Simiarly, site specific hypomethylation has been observed as well. For example, hypomethylation of the
drug eflux pump ABCB1 has been observed during treatment in AML patients and correlates with
increased ABCB1 mRNA within 4 hours of the start of chemotherapy *. In addition to hypomethylation,
there are examples of gene specific hypermethyation in cancer. Hypermethylation typically occurs in the

promoter regions of tumor suppression genes such as RB1***°

or the CDKN2A locus. Hypermethylation
has been shown to inactivate several important tumor suppressor genes in Burkitt's Lymphoma
including KIf4*, p16Ink4a, p15Ink4b*’, PUMA® and Bcl2111*. Hypermethylation of tumor suppressor
genes appears to occur after genes have already been repressed by histone modifications indicating a

50,51

link between histone modification mediated gene silencing and DNA methylation®>". Similarly,

hypermethylation of CpG islands in the promoter of mismatch repair (MMR) enzyme MGMT results in its



silencing in numerous tumors including lymphoma. In glioblastoma, the methylation status of MGMT is
used as a biomarker since hypermethylation of MGMT correlates with better response to the alkylating
chemotherapy temozolomide®’. MGMT repairs temozolomide induced O°-methylguanine converting it
back to guanine and thus preventing cell death. Hypomethylation of MGMT results in increased

expression of MGMT and thus increased ability to repair temozolomide induced damage.

DNA methylation can be inhibited through the use of cytosine analog 5'-aza-cytosine (5-Aza)
whose incorporation into DNA leads to the reduction of DNA methylation. When incorporated into DNA
5-Aza will irreversibly bind DNMTs thereby preventing them from methylating cytosine residues. Sub-
lethal doses of 5-Aza lead to widespread de-methylation of the genome resulting in the re-expression of
genes actively repressed by hypermethylation. Treatment of c-MYC driven lymphomas with 5-Aza has
been shown to be able to induce expression of ID2 a negative regulator of c-MYC causing the reduction
in both c-MYC RNA and protein levels and leading to the inhibition of proliferation®®. Currently 5-Aza is
approved for the treatment of several myelodysplastic syndromes including chronic myelomonocytic

leukemia.

Histone Modifications

The packaging of DNA into nucleosomes by histones allows for the dynamic regulation of gene
activity through the extensive modification of histone tails. Histone tails are capable of undergoing
extensive post-translational modification including acetylation, methylation, phosphorylation,
ubiquination and sumoylation. Beyond potentially acting as binding sites for other chromatin modifying
proteins as well as activators and repressors of gene transcription, these modifications directly cause
changes in the chromatin structure. Histone acetyltransferases (HATs) acetylate lysine residues thereby
neutralizing the positive charge of lysine and resulting in a weaker interaction between nucleosomes

and DNA allowing for greater accessibility to transcription factors. Histone deacetyltransferases (HDACs)



catalyze the opposite reaction reestablishing the positive charge resulting in a tightly packed chromatin
structure that physically occludes transcription factors from binding the underlying DNA sequence.
Histone methylation can occur at both lysine and arginine residues and results in an increase in the
hydrophobicity of the histone tails. Whereas lysine acetylation is exclusively an activating modification,
histone methylation can serve both as an activation as well as a repressive mark depending on the
residue and the amount of methylation (mono-, di-, or tri-). For example, monomethylation of histone
H3 lysine 9 (H3K9) and trimethylation of H3K4 leads to activation, while trimethylation of H3K9 and
H3K27 lead to transcriptional repression. As mentioned previously, histones can exist in a bivalant state
containing both activating as well as repressive marks leading to low levels of gene transcription, while

keeping genes poised for activation.

Histone modifying proteins as well as the altered histone marks themselves have been shown to
play a role both in the development of tumors as well as the acquisition of resistance. For example, over
expression of the H3K27 methyltransferase EZH2 is implicated in tumorogensis and its experession

>*3¢Additionally, activating mutations in EZH2 have

correlates with poor prognosis in multiple cancers
been found in primary tumor samples taken from patients with non-Hodgkin's lymphoma®’. These
mutations change the substrate specificity of the enzyme allowing for the more favorable addition of
second and third methyl groups to H3K27°%. Additionally, ER positive breast cancer patients who replase
early in response to aromatase inhibitors have an enrichment for H3K27me3 marks>°. Similarly, loss of
H3K18 acetylation is correlated with tumor grade and poor prognosis in breast, lung, prostate,

8062 Mutations in epigenetic modifiers frequently occur in cancers that

pancreatic and kidney cancer
either replase or are resistant to therapy such as the histone acetyltransferase CBP in acute

lymphoblastic leukemia®.

10



Given the role that altered histone modifications play in the development of cancer and their
potential role in drug resistance several small molecule inhibitors have been developed. Currently two
HDAC inhibitors (HDACi), vorinostat and romidepsin are approved for the treatment of advanced
coetaneous T-cell ymphoma. The use of HDACi's to treat multiple other cancer types such as diffuse
large B-cell ymphoma and non-small cell lung carcinomas that are resistant to EGF TKIs has shown them

a5, Similarly, allosteric inhibitors to the histone

to have anti-cancer activity and to be well tolerate
methyltransferase EZH2 are currently in the preclinical development phase for the treatment of non-
Hodgkin's lymphoma. Another inhibitor currently being developed targets the histone methyltransferase
DOTL1L which catalyzes the methylation of H3K79. Increased DOT1L activity is found in some mixed
lineage leukemias (MLLs) which contain rearrangements of the MLL gene. Inhibition of DOTL1 with

shRNA or small molecules inhibits proliferation of MLL rearranged leukemia cells in vitro and extends

survival of MLL tumor xenografts®.

Investigating various mechanisms of drug resistance in Burkitt's lymphoma

Mutations in Ezh2 have been shown to exist in various forms of lymphoma including BL.
However, it is less clear how alterations in the Ezh2 mark H3K27me3 affect drug sensitivity and whether
such changes can occur independently to activating mutations in Ezh2. Chapter 2 of this dissertation
examines how H3K27me3 occupancy changes during adaptation to the DNA alkylating drug
mafosfamide. Our data indicates that alterations in gene expression which accompany increased drug
tolerance show increased H3K27me3 occupancy. Furthermore, those genes with increased H3K27me3
occupancy are associated with the master B-cell regulator E2a, which shows a similar pattern of

expression as does H3k27me3.

The studies conducted in Chapter 3 concern the combined analysis of omic data (transcriptomic

and proteomic) and their application in investigating drug resistance. By studying gene and protein

1"



expression changes in response to mafosfamide over time in both resistant and sensitive Burkitt's
lymphoma cell lines we elucidate the role that Ubal plays in drug resistance. Our data shows thatin a
Tp53 null Burkitt's lymphoma cell line increased protein expression of Ubal and that the inhibition of

Ubal shows a synergistic effect with mafosfamide.
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Chapter 2: Epigenetic Changes Mediated by Polycomb Repressive Complex 2

and E2a are Associated with Drug Resistance in a Mouse Model of Lymphoma

Introduction

Evolutionary processes are a central component of cancer initiation and progression. During
treatment, cancers often acquire resistance, which ultimately leads to poor clinical outcome. A number
of explanations for resistance have been proposed, including the presence of cancer stem cells®, and of
mutations conferring drug resistance’. Here we examine drug resistance mechanisms in a model of
Burkitt’s lymphoma. Though extremely aggressive®, Burkitt's lymphoma has a high cure rate with
complete remission among 90-95% of children receiving the standard of care therapy, a combinatorial
treatment of rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone. In adults,
treatment isn’t as successful®, in part due to acquired resistance. In both children and in adults, salvage
treatment has a poor success rate; only one third of children and very few adults have positive
outcomes from salvage therapy. Uncovering novel mechanisms of resistance may lead to new

approaches to more effective treatment strategies.

Currently, the mechanisms underlying acquisition of resistance in Burkitt’s lymphoma are only
partially understood. Numerous genetic mechanisms have been hypothesized including up regulation of
drug efflux genes such as the ATP-binding cassette (ABC) transporter family, cyclophosphamide
inactivation through aldheyde dehydrogenase up regulation, increased expression of DNA repair
enzymes, or deregulation of apoptosis through the loss of Tp53>. However, genetic mutations are
unable to explain cases of acquired resistance that arise rapidly, or reverse in response to a drug
holiday®’. Alterations in histone modifications and DNA methylation that lead to an altered

transcriptional program have also been proposed as epigenetic mechanisms for acquired drug resistance
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in B cell ymphoma and other types of cancer®®. Recent work has shown that treatment with the DNA
methylation inhibitor 5-azacytidine is capable of reactivating /d2, a repressor of translocated Myc under
control of the El promoter in an in vitro model of Burkitt's lymphoma resulting in the inhibition of
proliferation®. Similarly, pretreatment of lymphoma cell lines with the histone deacetylase (HDAC)
inhibitor suberoylanilide hydroxamic acid (SAHA) has been able to re-sensitize lymphoma cell lines to

various therapeutic agents and resulted in better treatment outcome in vitro **.

Furthermore, studies of clinical specimens revealed that tumors are both genetically and

812 While the role of genetic heterogeneity within tumors and its effect

epigenetically heterogeneous
on treatment response and outcome has been extensively studied, less is known about the role that
epigenetic heterogeneity plays in disease progression and clinical outcome. Previous studies have
shown that drug treatment can generate a selective pressure upon heterogeneous populations, leading

to the enrichment of specific genetically distinct subpopulations™**

. These subpopulations can
ultimately become the dominant population of the tumor, resulting in resistance to the therapeutic
agent. Itis possible that similar mechanisms of selection may act at the epigenetic level. Recent

research in prostate cancer has documented the inherent heterogeneity of DNA methylation in patient

tumor samples®®, though the selection of epigenetically distinct subpopulations has yet to be shown.

Beyond evident genetic alterations leading to resistance, there is also accumulating evidence
that cell differentiation may impact chemosensitivity. Loss of differentiation and subsequent acquisition
of a stem-like phenotype enables cancer cells to survive treatment through an increase in DNA damage
response and alterations in cell cycle progression®®. There is also evidence to suggest that epigenetic
alterations can lead to transcriptional programs that resemble those of less differentiated cell types®’.
Perhaps the best-studied example of this phenomenon is the epithelial to mesenchymal transition

(EMT). EMT is characterized by dysregulation of the TGF-8 signaling pathway and down regulation of E-
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cadherin® and has been observed in a variety of cancers where it is associated with a stem cell

1920 gimilarly, previous work has shown that

phenotype, metastasis, and multi-drug resistance
hematopoietic stem cells are more radioresistant than their more differentiated progeny (Meijne et al.

1991).

Through a dose escalation experiment we investigate the mechanism by which Eu-Myc Cdkn2a™
Non-Hodgkin's B cell lymphoma cells acquire resistance to the chemotherapeutic agent mafosfamide, a
DNA alkylating agent that is similar to the active form of cyclophosphamide. By sequencing the genomes
of both the parental and resistant cell lines we were unable to identify genetic changes that might
underlie the acquired resistance. In contrast, we hypothesize that the acquired resistance is mediated
by Polycomb Repressive Complex 2 associated alterations in histone H3 lysine 27 trimethylation
(H3K27me3) and DNA methylation, and transcriptional changes mediated by E2a, a master regulator of
B cell development. Overall, our results indicate that the Eu-Myc Cdkn2a”” lymphoma cell line may
become resistant to mafosfamide through the epigenetic reactivation of developmental pathways

leading to a less mature state of B cell development.

Methods

Creation of resistant Ep-Myc Cdkn2a-/- lines

Eu-Myc Cdkn2a-/- parental lymphoma lines were generated from a C57BL/6J mouse as described in
Schmitt, et. al. 1999*! (Supplementary Figure 1A). Lymphoma cells from these mice were cultured in
vitro to generate the cell line. Resistant strains were generated from this parental line via dose

escalation of mafosfamide (Cell Signaling Technology, Danvers, Ma) over a 34-day peroid.

Cell Viability and Cell Cycle Analysis

18



Cell viability was measured using the Perkin-Elmer Operetta platform, and 2.5uM Draqg5 (Abcam,
Cambridge, Ma) for nuclear detection and 5 pg/mL of propidum iodide (Sigma-Aldrich, St. Louis, Mo) to
detect dead cells. For cell cycle analysis, cells were fixed in EtOH and placed in solution with propidium

iodide and measured on a Beckman LSRIl and gated for GO/G1, S, and M phase cells.

Genome Sequencing

To identify variations between the sequences of the parental and resistant lines, all cell lines
were sequenced to a minimum of 8x average coverage (after QC) using lllumina HiSeq 2000 sequencers.
The reads were aligned to the mm9 (MGSCv37) Mus musculus reference genome using BWA version
0.6.2-r126 (backtrack)?, with default parameters. Duplicate reads were removed using PICARD Version:

1.85(1345), default parameters (See supplemental methods).

Microarray

Oligonucleotide microarray analysis was carried out using GeneChip Mouse Gene ST 1.0
(Affymetrix, Santa Clara, Ca). The resulting data is publically available via Gene Expression Omnibus
(GEO) Accession GSE60342. The Affymetrix Mouse Gene ST 1.0 Array expression measures were
guantified and processed with robust multi-array average using the justRMA function of the 1.40.0 affy
R package (RMA)?. Expression values were log, transformed for further downstream analysis. Probe
sets were annotated using the Affymetrix MoGene-1_0-st-vl.na33.2.mm39.probeset.csv file. We selected
the top 1000 probe sets ranked by their covariance to identify up regulated genes across the time

course or resistant cell lines (See supplemental methods).

Transcription Factor Analysis
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Targets for 64 murine transcription factors were identified from ChlPBase
(http://deepbase.sysu.edu.cn/chipbase, downloaded August 1, 2013)** and limited to genes with
binding events within 5kb of transcriptional start sites (See Supplemental Table S2 for list of mouse cell
lines used). To identify potential upstream regulators of lists of genes, we identified the overlap of these

lists with transcription factor targets and used a one-sided Fisher's exact test to determine significance.

ChiP-Seq

Chromatin was immunoprecipitated as described previously”. Briefly, cells were grown to 50%
confluency and formaldehyde was added for 10 min at room temperature. 100 pl of the lysate (5 x 10°
cells) were used for each immunoprecipitation with anti-H3K27me3 (Active Motive cat # 39155).

Libraries were sequenced using lllumina Hiseg-2000 to obtain 50-bp-long reads.

Peaks were called by comparing counts in the immunoprecipitated libraries with input libraries
in windows tiling the genome, using Poisson statistics as previously described®. Combinatorial
clustering of data was achieved by determining significant enrichment for the histone mark in each
condition within 5 Kb spanning the TSS of mouse promoters (at least 3 50 bp bin with p <1.0e-6). A
binary distribution was created based on a promoter being enriched (1) or not enriched (0) and a
combinatorial matrix was created with all possible combinations across all conditions. H3K27me3 data
was plotted based on the combinatorial clustering and visualized by Cluster 3.0-generated CDT file

loaded on Java-Tree view to produce a heat map.

Bisulfite Sequencing

Reduced Representation Bisulfite (RRBS) libraries were generated following the standard RRBS
protocol®. The genome was digested with the methylation-insensitive restriction enzyme Mspl, and

fragments from 100 to 300 bases were selected. The fragments were ligated with Illumina adaptors,
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denatured and treated with sodium bisulfite. The libraries were sequenced using lllumina Hiseq 2000
sequencers. The reads were aligned using the bisulfite aligner, BS Seeker2*’, to determine which

fragment they uniquely mapped to allowing for 3 mismatches to the reference genome (mouse mm9).

DNA Methylation Analysis

To identify DNA methylation changes that increased or decreased significantly with resistance,
we computed RRBS fragment CpG methylation levels and calculated the covariance between the
fragment methylation score and sample order (ordered from least to most resistant) (See supplemental

methods).

Principal Component Analysis

Principal Component Analysis of expression profiles was performed by applying the R prcomp
function with the scaled option to the expression microarray values of the resistant cell lines and B cells
at different stages of development (NCBI GEO GSE15907) (See supplemental methods for more details

on samples used).

Results

Generation of resistant lines and assessment of cell cycle characteristics.

To investigate the factors driving acquisition of resistance to chemotherapy, we selected a
widely used cell line derived from a Eu-Myc mouse model of Burkitt's lymphoma®! which expresses the
c-myc oncogene under control of an immunoglobulin heavy chain enhancer, thereby restricting its
expression to B cell lineage cells. In addition, this line has a deletion in Cdkn2a that recapitulates a
common mutation seen in human tumors®. Eu-Myc Cdkn2a”" mice experience accelerated

lymphomagenesis and tumors that are highly invasive with apoptotic defects**. We refer to this line as
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our ‘parental’ line. Resistant lines were generated by gradually exposing the parental line to increasing
amounts of mafosfamide in cell culture. (Figure 1A & B). The cell cycle progression of our parental and
resistant lines in the absence of mafosfamide was indistinguishable (Supplementary Table S1). Upon
treatment with mafosfamide there was a decrease in the percentage of apoptotic cells in the resistant
lines compared to the parental (Figure 1C). Among the non-apoptotic fraction of the population there
was a similar decrease in percentage of cells in G1 and a concurrent increase in G2 percentage across all
lines. As all the lines showed approximately the same amount of cell cycle delay upon treatment in the
non-apoptotic fraction, it does not appear that the resistance phenotype is the result of increased cell

cycle delay in the resistant lines.

Resistance is unlikely to have arisen by genetic mechanisms.

Given the pronounced difference in drug sensitivity between the parental and resistant cell
lines, we initially hypothesized that resistance could be mediated by genetic variants that were initially
present in a small number of cells and then came to dominate the population over the course of the
dose escalation. To investigate this we attempted to identify genetic alterations in the resistant lines by
searching for single nucleotide variants (SNVs) which showed and an increase in allele frequency in each
successively more resistant line. We were unable to find any high confidence SNVs that displayed this
pattern (see Supplementary Results). Similarly, no large structural variations or potential copy number
variations were found to convincingly vary between the lines. Taken together, this data suggest that

genetic alterations do not contribute to the acquired resistance phenotype.

Analysis of upstream regulators of gene expression point to Prc2 and E2a.

To gain insights into possible resistance mechanisms, we first sought to characterize the

transcriptome changes of the parental line in the presence of mafosfamide over a 48-hour period
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(Figure 2A). Initially we focused on genes known to be involved in either drug metabolism or transport

2930 Overall, we found that the expression

of mustard alkylating agents and those involved in DNA repair
of these genes did not significantly increase in our dose escalation lines, suggesting that they also are

unlikely to play a significant role in mediating resistance (see Supplementary Materials for details).

We identified genes that show significantly increased or decreased expression over time by
computing the covariance of the top and bottom 1000 probe sets with respect to time (Figure 2A). In
order to elucidate a common mechanism responsible for the transcriptional changes we observed, we
sought to identify upstream regulators of the co-regulated genes using a mouse chromatin
immunoprecipitation followed by sequencing (ChIP-seq) database on 64 transcription factors and their
targets®®. Each transcription factor was tested for association with the probe sets identified to have
consistent changes in expression. Targets of transcription factors involved in hematopoietic stem cell
development including members of Prc2, Suz12 and Pcl2, are enriched in the high covariance gene list
(p< 1e-12), while E2a transcription factor target genes are highly enriched in the low covariance list (p<

1e-18) (Figure 2B)*">*.

Resistant cell lines show altered H3K27me3 occupancy.

As Prc2 complex is involved in the trimethylation of lysine 27 of Histone H3 (H3K27me3), we
performed ChIP-seq for H3K27me3 in all lines. We found rapid and widespread acquisition of
H3K27me3 at the transcriptional start sites (TSS) of genes after only a short time in co-culture with
mafosfamide (Figure 3A). Upon further co-culture, H3K27me3 is globally reduced at the TSS but is
retained and even further enriched at specific genomic loci. As most H3K27me3 peaks are near the TSS,
we analyzed promoters by means of combinatorial clustering and identified three major groups of
genes, one of which showed a high level of H3k27me3 throughout the time course (K1), another with

rapid and widespread H3K27me3 acquisition followed by a gradual decrease (K2), and one group with
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little to no H3k27me3 (K3). Functional analysis of these groups showed enrichment for developmentally-
regulated genes in K1 and cell cycle-regulated genes in K2 (Figure 3B & C). Measuring the level of
H3K27me3 across all E2a bound genes revealed that the average profile follows a similar pattern of
change to that of cluster K2 (Figure 3D). Furthermore, when we looked for enrichment of E2a bound
genes within clusters K1, K2, and K3 we found a significant enrichment for them in cluster K2, and a

significant depletion in K1 (Figure 3E).

Alteration of DNA methylation in Prc2 target genes in resistant cell lines.

To gain further insights into epigenetic changes that occur during the acquisition of drug
resistance, we measured DNA methylation using Reduced Representation Bisulfite Sequencing (RRBS) of
the parental and resistant lines. Focusing our analysis on the top and bottom 1000 genes (Figure 4A)
with the highest and lowest covariance with respect to resistance revealed an enriched for Pcr2 and E2a
(Figure 4B). Consistent with the previous results, we found that these fragments are also proximal to
genes that are enriched for binding by Prc2 subunits Suz12, Pcl2, Ezh2, and Jarid2 (Figure 4C).
Furthermore the level of DNA methylation across ChIP-seq H3K27me3 clusters showed that genes in K2
increased in DNA methylation between the parental and resistant cell lines (Figure 4E) compared to
those from K1 and K3 (Figures 4D and F). On a more global scale entropy analysis, a measure of the
variability of methylation patterns, of RRBS fragments show that those loci with increased CpG
methylation entropy show an increase in H3K27me3 occupancy suggesting that fragments undergoing

changes in their methylation status are being bound by Prc2 (Supplementary Figure 5).

Gene expression changes in mafosfamide treated resistant cell lines.

For each resistant line we measured the changes in gene expression that occur upon treatment,
and calculated the covariance of the expression response to mafosfamide with respect to increasing

resistance. Comparing these covariance measures to those computed for the parental line revealed a
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Figure 3. H3K27me3 ChIP-Seq.

ChIP-seq against histone H3 Lysine 27 tri-methylation. A) Clusters of promoters based on
their H3K27me3 levels across the parental and resistant lines (n=2). B) Group K1 shows
enrichment for developmental genes. C) Group K2 shows enrichment for cell cycle
regulated genes. D) Average H2K27me3 levels across E2a bound genes. E) Analysis of E2a
bound genes in the three clusters.
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significant inverse correlation between the two covariance measures with a Pearson coefficient of -
0.646 (p< 1le-23), suggesting that many genes that are induced by mafosfamide in the parental line are
repressed in the resistant ones (Figure 5A). For example Rras2, an oncogene associated with B cell
proliferation, is strongly induced by mafosfamide in the parental line, but its expression decreased in

the resistant ones (Figures 5B and C).

The upstream regulatory analysis of the covarying probe sets also revealed opposite trends
between the parental and resistant lines (Figure 5D). Functional analysis of gene expression data from
the mafaosfamide treated parental line showed an enrichment for target genes of Prc2 component
Suz12 in the Gene Set Enrichment Analysis (GSEA) (Figure 5E). Conversely, the same functional analysis
of gene expression in response to treatment for the resistant cell lines showed depletion for the same

gene set (Figure 5F).

Principal Component Analysis (PCA) of basal gene expression indicates alterations in B Cell

maturation.

The observation that changes in gene expression, DNA methylation and H3K27me3 in the
resistant lines is associated with E2a bound genes, a master regulator of B cell development, lead us to
hypothesize that gradual incremental dose escalation results in epigenetic changes associated with B cell
maturation. PCA of gene expression data obtained from the untreated dose escalated cell lines
combined with expression data of B cells at different stages of development gathered from the Immgen
dataset® showed that the second principal component (PC2) captures the developmental state of B cells
(Figure 6A), with less differentiated progenitor cells toward the negative direction of the PC.2 axis and
the more mature states in the positive. Based on this interpretation of PC.2, we find that our four
resistant lines are ordered by their differentiation, with the least resistant line being more differentiated

than the most resistant line (from right to left). Furthermore, when the Immgen gene expression data
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set is analyzed, those genes that had a positive correlation with development (i.e. an increase in
expression during differentiation) showed greater significance in enrichment for targets of E2a (Figure

6B), supporting its role as a master regulator of B cell development.

Human Diffuse Large B-Cell Lymphoma

Based on the above finding we sought to determine the methylation status of £2a bound genes in a
clinically relevant dataset. We obtained DNA methylation data from diffuse large B-cell lymphoma
patients collected from the Cancer Genome Atlas project. Of 19 total samples we were able to obtain,
14 corresponded to patients who were tumor free while 5 experienced disease progression. For all
methylation sites, we computed the Kolmogorov-Smirnov statistic and an associated p-value between
these two groups. From 482,421 total CG sites on the Illumina 450K array, 5541 had a KS test with p <
0.05. We linked CpG sites to E2a (TCF3) binding regions if both the CpG and binding region occurred in
the gene or within 10 kilobases of the genes transcription start site (TSS). We then identified the
intersection of genes that had both evidence of TCF3 binding and at least 2 CG sites with significant
methylation changes between the two patient populations. From a total of 17,744 genes used in the
linking calculations, we derived Table 1 (p-value = 0), which shows a strong enrichment of TCF3 genes
associated with differentially methylated sites. This analysis suggests that £2a (TCF3) bound genes are

differentially methylated and are associated with treatment failure in a lymphoma subtype.

Discussion

Through a series of drug escalation co-cultures of Eu-Myc Cdkn2a-/- cells with mafosfamide we
developed a series of cell lines that showed increasing resistance to this cyclophosphamide analog. We
hypothesized that if a mutation provided the cells a proliferative or survival advantage, then the

frequency of that mutation would have increased over time in culture. However, we observed no high
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TCF3 Target Not TCF3 Target

Differential Methylation 208 80

No Differential Methylation 5086 12370

Table 1: TCF3 (E2a) target gene methylation.

DNA methylation data obtained from TCGA shows an increase in differential methylation in TCF3 (E2a)
target genes in patients with diffuse large B-cell lymphoma who showed stable or progressive disease
compared to individuals who had complete response.
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confidence mutations that displayed this pattern. Based on these results we concluded that the

observed resistance results from epigenetic changes.

Reasoning that the gene expression response to mafosfamide might identify altered processes
in the resistant cells we identified alterations in transcript levels that co-varied with resistance.
Upstream regulatory analysis of these co-varying genes suggested that they are significantly enriched for
binding of Prc2 as well as E2a. Prc2 plays a critical role in B cell development by repressing genes
necessary for hematopoietic differentiation through the addition of tri-methylation to lysine 27 of
histone H3. During hematopoietic stem cell differentiation this repressive mark is lost allowing for the
expression of genes that commit hematopoietic stem cells to differentiation®***°. Numerous studies
have shown that over expression of or activating mutations in Prc2 components, particularly Ezh2
contribute to proliferation and lymphomagenesis in diffuse large B cell lymphoma (DLBCL)*"*. The
pattern we observe of rapid H3K27 methylation followed by demethylation, is in agreement with what

has been reported in patients where loss of H3K27me3 is a poor predictor of outcome *.

To measure the activity of Prc2, we performed ChIP-seq on H3K27me3 in the parental and
resistant cell lines. A large fraction of promoters in the resistant lines showed rapid and widespread
H3K27me3 acquisition followed by a gradual reduction. These results suggest that Prc2 is rapidly
activated by the DNA damage induced by mafosfamide, which is consistent with previous literature

suggesting the Prc2 is targeted to sites of DNA damage®®*

. Furthermore, these results suggest that as
cells become adapted to higher doses of mafosfamide, this initial response is attenuated, and the most

resistant line returns to a more basal state of H3K27me3.

However, the observation that H3K27me3 is rapidly gained but then lost, suggests that it may
not be the primary mechanism leading to resistance. The removal of H3K27me3 at many loci may lead

to its replacement with DNA methylation, a more permanent mark. Previous work has shown a possible
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connection between DNA methylation, gene expression, and the Prc2 complex. It has been suggested
that histone methylation by Prc2 may recruit Dnmt3/, an inactive homolog of DNA methyltransferases,
resulting in the inhibition of CpG methylation®. Thus the gradual removal of H3K27me3 could lead to
the replacement of Dnmt3/ with its active counterparts, Dnmt3a and Dnmt3b, leading to an increase in
DNA methylation. Because of this potential coupling of Prc2 with DNA methytransferases, we sought to
characterize changes in DNA methylation using RRBS. In agreement with this model, we observed that
genes that gained H3K27me3 early, and then lost it (cluster K2), showed a gradual increase in DNA
methylation. Moreover, fragments whose methylation entropy increases also show the same pattern of
increase and then decrease of H3k27me3. Thus, we conclude that the addition of H3k27me3 to these
loci perturbs DNA methylation, and increases the diversity of methylation patterns found there. One
possible explanation for this effect, is that H3k27me3 often affects DNA methylation on only one of the
two chromosomes, in a stochastic fashion, generating allelic methylation, a state of inherently high

entropy.

Clustering of the H3K27me3 ChIP-seq data also showed that the K2 cluster is strongly enriched
for E2a target genes and that E2a is also strongly associated with those genes that gain and
subsequently lose H3K27me3, while gradually gaining DNA methyaltion. E2a encodes two proteins, E12
and E47 that are known to be master regulators involved in the process of B cell lineage commitment®.
PCA analysis of gene expression from the resistant lines and from various stages of B cell development
indicated that the expression of E2a target genes is strongly correlated with B cell maturation states.
Early in B cell development the E2a locus is repressed but becomes transcriptionally active during B cell
commitment. E2a's central role in Burkitt's lymphoma pathogenesis is made evident by the fact that it is
the fifth most mutated gene in Burkitt's lymphoma with all mutations affecting its DNA binding
domain®. Depletion of E2a using siRNA has been shown to lead to lower Cdknal (p21) accumulation and

higher PUMA expression, leading to impairment of cell cycle arrest and increased Tp53-dependent
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apoptosis®. Our data suggests that £2a may be playing a critical role in mediating the resistance

phenotype, as it appears to be a key regulator of the mafosfamide response in the parental line.

Taken together, our results suggest that Prc2 and E2a activity may be responding to
mafosfamide to induce epigenetic changes in the transcription of key hematopoietic developmental and
pluripotency genes. We propose that upon treatment with mafosfamide, our lines undergo rapid and
widespread acquisition of the repressive mark H3K27me3 and that this methylation is coupled to
changes in the activity of E2a, leading to changes in transcription of genes involved in B cell
development. As the cells become more resistant, the H3K27me3 response is attenuated, and replaced
by the more permanent mark, 5-methylcytosine. We further speculate that these changes lead the Eu-
Myc cell lines to revert to an earlier developmental state that suppresses the apoptotic response upon
exposure to mafosfamide. This reversion is supported by our integrative analysis of Immgen data that
captures a principal component of the B cell developmental axis. As our cells become more resistant to
mafosfamide, they appear to move backwards along this axis, suggesting they are becoming more stem
like as they become more resistant. The diminished apoptotic response of stem cells compared to
differentiated cells has been described in many other systems, and may thus represent a critical

mechanism for the acquisition of drug resistance®**,

Finally, we have shown that similar mechanisms may also be at play in human lymphomas. Our
analysis of diffuse large B-cell ymphoma suggests that there are epigenetic differences between
patients that remain disease free versus those that have disease progression. Moreover, these sites of
differential methylation are significantly associated with genes that are bound by Tcf3. Thus our murine
model may be capturing epigenetic resistance mechanisms that are also present in human disease,

suggesting that epigenetic plasticity may impair therapeutic regimens.
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Supplemental Figure 1: Whole genome sequencing of parental and resistant lines.
A) Cdkn2a deletion in parental and resistant lines. B) Single nucleotide variant (SNV) allele
frequency in parental line in the presence and absence of treatment, and resistant lines. C)

Stastical anlaysis of SNV allele frequency.
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Supplemental Figure 2: Gene expression of genes known to be involved in drug
resistance

A) Gene expression of genes known to be involved in mafosfamide metabolism, expres-
sion relative to parental line. B) Gene expression of genes known to be involved in mafos-
famide export, expression relative to parental line. C) Gene expression of genes known to
be involved in DNA repair and apoptosis, expression relative to parental line.
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Supplemental Figure 4: DNA methylation entropy.

A) DNA entropy distribution of K1 ChIP-seq cluster fragments. B) DNA entropy distribution

of K2 ChIP-seq cluster fragments. C) DNA entropy distribution of K3 ChIP-seq cluster

fragments. D) Average H3K27me3 level of low entropy methylation fragments. E) Average
H3K27me3 level of high entropy methylation fragments. F) Entropy versus DNA methyla-

tion level.
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Cell Line Treatment |(Non-Apoptotic % Apoptotic
% G1 % G2 %S

Eu-Myc Parental |OnM 29.22 8.86 61.92 1.36

Eu-Myc Parental 750nM 21.63 17.57 69.79 81.47

Eu-Myc R500 |0nM 27.49 8.25 64.26 0.78

Eu-Myc R500 750nM 23.39 15.72 60.89 46.5

Eu-Myc R1000 |OnM 29.62 7.2 63.18 1.03

Eu-Myc R1000 750nM 22.83 16.55 60.55 36.3

Eu-Myc R4000 |0nM 29.93 9 61.07 0.1

Eu-Myc R4000 750nM 22.06 19.27 58.67 3.26

Supplmental Table 1:
Cell cycle analysis of parental and resistant lines in the presence and absence of
mafosfamide.
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Chapter 3: Combined Transcriptomic-Proteomic Analysis of

Drug Response Reveals a Role for Ubal in Drug Resistance

Introduction

To date, transcriptomic analysis has been used to define gene expression signatures that
differentiate between cancer subpopulations and guide the design of personalized treatment
regimen™?. However, changes in gene expression are not always capable of discerning two
cancer subtypes from one another, or even more importantly discerning two cancer cells from
the same tumor that have differential response to treatment>*. Since proteins are the
effectors of genes and are ultimately responsible for a given phenotype protein expression
signatures can similarly differentiate between cancer cell subpopulations. The proteome is a
dynamic system, whose expression levels are determined by a myriad of factors including
transcription and translation rates as well as protein degradation’. Due to this extensive post-
transcriptional regulation gene expression shows poor correlation with protein expression’.
While some genes are controlled primarily at the level of transcription and can be explained by
simple mathematical equations, many are regulated in a more complex fashion which makes
them less amenable to this type of analysis®. As such it is important to understand at which
stage of regulation differences in mRNA and protein levels arise since it would be indicative of

post-transcriptional regulation.

Eighty percent of all BL cases in humans harbor t(8;14) translocation which drives c-Myc

expression and this translocation is a hallmark of Burkitt's lymphoma’. Myc is a transcription
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factor that controls a wide spectrum of pathways involved in carcinogenesis and drug
resistance including the control of proliferation, metabolism and apoptosis by binding to the
enhancers of active genes amplifying their expressions’g. Myc is also one of the most frequently
deregulated oncogenesg. Myc binds to the enhancers of active genes and amplifies their
expression resulting in elevated levels of cellular RNA in c-Myc over expressing cells.
Additionally, approximately 13% of Myc bound promoters have a direct role in ribosome
biogenesis and protein synthesis including translation initiating and elongation factors™®.
Transgenic mice over expressing Myc in B lymphocytes have been shown to have an increase in
total protein synthesis **. Myc over expressing lymphomas become oncogene addicted and
inhibition of Myc through the induction of dominant-negative, recombinant Myc has lead to
significant inhibition in cancer progression with limited toxicities'>. Similarly, silencing of Myc
with shRNA resulted in suppressed proliferation and increased apoptosis™. Pharmacological
inhibition of myc represents a rational approach to therapy in Myc over expressing cancers.
However, due to the nature of its protein binding domains which are large and do not contain
clefts or pockets that could bind small molecules development of small molecule inhibitors of
Myc is difficult®. One potential way side step Myc inhibition would be to inhibit pathways

downstream of Myc potentially phenocopying Myc inhibition itself.

To do so, we sought to characterize the proteome and transcriptome dynamics in
response to DNA damage in a mouse BL cell line that contains a translocation of c-Myc placing it
under the control of the IgH enhancer (Eu-Myc). Additionally, the two lines being tested
contain mutations in either Cdkn2a or Tp53 leading to the inactivation Myc over expressed

induced apoptosis. Both lines give rise to lymphomas that form rapidly and display apoptotic
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defects in vivo *. BL is treated with high intensity, short duration regimens of a combination of
cytotoxic agents including the monoclonal antibody rituximab, cyclophosphamide,
hydroxydaunorubicin (doxorubicin), oncovin, and prednisone (R-CHOP) and is able to achieve
complete response rates between 70% and 90% of patients, with long term event-free survival
rates between 45% and 97%". Due to the intense nature of the therapeutic regime in BL
treatment drug toxicity is a major cause of mortality and morbidity. In one study, only 32% of
patients older than 50 years of age were able to complete 6 to 7 treatment cycles compared
with 79% of younger patients, with increases in mortality, disease progression and toxicity rates

in those individuals older than 50 yearsl6.

Resistance to therapy is a major problem for the successful treatment of BL since a large
percentage of those individuals who do not achieve remission with the standard therapy

17,18

regime are unlikely to do so with salvage treatment """, Tp53 is one of the most frequently

mutated genes in Burkitt's lymphoma*®. Inactivation of the Tp53 pathway is frequently

18,19

disrupted in Myc over expressing malginacies since over expression of Myc triggers Tp53-

dependent apoptosis*®**

. Tp53 is a tumor suppressor gene that integrates signals from various
stressor indicators such as DNA damage and nutrient stress®”. Normally present in the cytosol,
upon phosphorylation p53 translocates to the nucleus in response to DNA damage®2. Exposure
to DNA-alkylating agents is suggested to be responsible for the development of mutation in
Tp53 and resistance to chemotherapy?’. However, despite Tp53's role in DNA damage response

and maintaining genome integrity, the prognostic value of Tp53 is of limited use in several

malignancies including Iymphoma24.
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Methods

Cell Culture

Eu-Myc Cdkn2a-/- and Tp53-/- lymphoma lines were generated from a C57BL/6J mouse as
described in Schmitt, et. al. 1999'*. Lymphoma cells from these mice were cultured in 50%
DMEM (Invitrogen, Waltham, MA, USA) and 50% IMEM (Invitrogen, Waltham, MA, USA), with
10% FBS, 1% Pen-Strep, 4mM L-Glutamine and 50uM B-mercaptoethanol. Eu-Myc lines were

cultured on a feeder layer of irradiated Cdkn2a-/- mouse embryonic fibroblasts.

Cell Viability Measurements

Cell viability was measured using the Perkin-Elmer Operetta platform, and 2.5uM Draq5
(Abcam, Cambridge, Ma) for nuclear detection and 5 pg/mL of propidum iodide (Sigma-Aldrich,
St. Louis, Mo) to detect dead cells. Viability was measured after 24 hours in the prescence of
either mafosfamide (Abcam, Cambridge, England), Pyr-41 (Cell Signaling Technologies, Danvers,
MA, USA), Bortezomib (Selleck Chemicals, Houston, Tx, USA), or Chloroquine (Sigma Aldirch, St.

Louis, MO, USA).

Microarray

Oligonucleotide microarray analysis was carried out using GeneChip Mouse Gene ST 1.0
(Affymetrix, Santa Clara, Ca). The Affymetrix Mouse Gene ST 1.0 Array expression measures
were quantified and processed with robust multi-array average using the justRMA function of
the 1.40.0 affy R package (RMA)®. Expression values were log, transformed for further

downstream analysis. Probe sets were annotated using the Affymetrix MoGene-1_0-st-
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vl.na33.2.mm9.probeset.csv file. We selected the top 1000 probe sets ranked by their
covariance to identify up regulated genes across the time course or resistant cell lines (See

supplemental methods).

LC-MS/MS and Protein Identification

Samples were lysed in RIPA buffer with HALT protease inhibitor (Invitrogen, Waltham, MA, USA)
and lysates were cleared by centrifugation at 14,000g for 10 minutes at 4°C. Protein
concentration was measured using the bicinchonimic acid assay (BCA). 100ug of protein was
then reduced, alkylated, trypsin digested and isobarically labeled using Tandem Mass Tags
(TMTs) (Thermo Scientific, Waltham, MA, USA). according to the Thermo Scientific protocol®.
Samples were then pooled, lyophilized, and resuspended in 50ul 10mM KH2PO4, 25% Acn, pH
(SCX Buffer A). Samples were then separated using a 100 x 2.1mm 5um 200A polySULFOETHYL
A strong cation exchange column (PolyLC, Columbia, MD, USA) with a flow rate of 200ul/minute
with a gradient of 10mM KH2P04, 500mM KClI, 25% Acn, pH 2.85 (Buffer B) of 100% for 30
minutes, followed by a linear gradient to 50% B in 50 minutes, followed by a linear gradient to
100% B 10 minutes. Fractions were collected every minute and poolled into 26 total fractions
which were lyophilized and resuspended in 200ul of 95% H20, 5% acetonitrile, 0.1% formic acid
(Buffer A). 5ul of sample were injected on to an Agilent Zorbax SB C18 150 x 0.3 mm 5um 200A
column. The samples were eluted with a linear gradient from 5% Buffer A to 65% Buffer B over

60 minutes, followed by a linear gradient from 65% B to 95% B 5 minutes.

An Orbitrap XL (Thermo Fisher Scientific) mass spectrometer was used to collect peptide

masses. The mass spectrometer was operated in positive ion mode with an acquisition time of 180
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minutes. A hybrid data acquisition method was used where both a CID and HCD scan were acquired for
the six most abundant precursor ions, excluding singly charged ions. Monoisotopic precursor selection

and FT master scan preview mode were enabled. For the CID scan, normalized collision energy (CE) was
set to 35, activation time was 10 ms, and activation Q was 0.25. For the HCD scan, CE was set to 45, and

HCD spectra were recorded at a resolution of 7500 (at 400 m/z) starting at 100 m/z.

Proteome Discoverer 1.2 was used for the analysis of mass spectrometry data. lon trap CID
spectra were searched with the SEQUEST version implemented in Proteome Discoverer 1.2. Settings for
peptide identification were: precursor mass tolerance, 8 ppm; fragment mass tolerance, 0.6 Da; trypsin
allowing max. two missed cleavage sites; static modifications, TMT 6plex (peptide N-terminus and Lys)
and methylthione modification of Cys residues; dynamic modifications, phosphorylation (Tyr, Ser),
oxidation (Met), deamidation (Asn, GIn) and TMT 6plex (Tyr) with a maximum of 4 modifications per

peptide.

Analysis of Variance

Differentially expressed genes across omic, cell type, and time were selected by
calculating their statistical significance using an ANOVA model, with an error term controlling
for the hierarchy of the experiment design. We specified the hierarchical variance structure
(across technical replicates and time points) by including an Error term in the model. The 50
most significant genes were selected as those with the smallest (most significant) p-value of the
interaction coefficient between omic, cell type, and time. These genes were then used to
perform group set analysis.

Group set analysis

53



Functional categorization and classification of differentially expressed genes was
performed according to functional annotation data, including the Gene Ontology annotation
database (Biological Process), based on group set (enrichment) analysis, as implemented in the
R/topGO package. 1,246 GO terms that contained at least 5 of the ~600 genes available in our
measurements were ranked according to their strength of association with the selected genes
using Fisher's one sided test.

SDS-PAGE and Western Blots

Protein samples were prepared by mixing the protein solution with sample buffer (Life
Technologies) followed by denaturation of the sample at 90 °C for 10 minutes. Protein samples
were loaded on the precast 4-20% polyacrylamide gel (Criterion TGX Precast Gels, BioRad,
Hercules, CA, USA) next to 15 pl of the SeeBlue Plus2 pre-stained standard (Life Technologies).
Protein electrophoresis was performed in running buffer (100mM HEPES, 100mM Tris-base, 1%
SDS) using 120 V at room temperature. Proteins were transferred to nitrocellulose membrane
using the Trans-Blot Turbo Transfer System (BioRad, Hercules, CA, USA) using the standard
protocol.

After protein transfer, the nitrocellulose membranes were incubated for 1 hour at room
temperature 5% milk PBS-T blocking buffer. Membranes were incubated with primary
antibodies diluted in blocking buffer overnight at 4 °C. Membranes were then washed with PBS-
T 3 times for 10 minutes. Membranes were incubated with HRP-conjugated secondary
antibodies (anti-mouse or anti-rabbit, Life Technologies) for 1 hour at room temperate followed
by washing with PBS-T 3 times for 10 minutes. Proteins were detected by incubating the

membrane for 5 minutes in SuperSignal West Pico Chemiluminescent substrate (Thermo
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Scientific). Primary antibodies used were: a-Psmb1 (Abcam), a-Tubulin (Life Tecnologies), a-
Ubiquitin (Abcam), a-Uba1l (Cell Signaling Technologies), and a-Fkbp3 (Abcam).

Results

Temporal transcriptomic and proteomic sample generation

Epu-Myc Tp53-/- cells are significantly more resistant to chemotherapies including
mafosfamide (a derivative of cyclophosphamide) compared to Cdkn2a-/- cells in vitro (Figure
1A). Cdkn2a-/- and Tp53-/- Eu-Myc lymphoma cells were cultured in the presence of the
mafosfamide for 48 hours and samples from each line were collected at the time of drug
addition (0 hrs) as well as 6, 12, 24 and 48 hours post drug addition (Figure 1B). Each sample
was split and half the sample was used for transcriptomic analysis (see Methods) and the other
half was used for quantitative proteomic analysis (see Methods)(Figure 1B). For isobaric
peptide labeling, 100ng of protein from each time point was trypsinized and labeled with a
specific TMT tag (Figure 1B). The samples from each cell line time course study were mixed and
separated into 20 fractions using strong cation exchange (SCX) liquid chromatography. SCX
fractions were further separated using reverse-phase liquid chromatography (Figure 1B) in line

to the tandem mass spectrometer to obtain spectra for peptide sequence determination.

After performing the time series experiments in biological triplicate for each cell line, a
total of 2694 proteins were identified by at least one peptide with high confidence of correct
sequence assignment. The three Cdkn2a-/- biological triplicates resulted in a total of 2,137
proteins identified, with 1065 proteins common amongst all three replicates (Supplmental

Figure 1A), while the three Tp53-/- biological replicates yeilded 1,595 proteins with 675
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Figure 1: EC-50 of Ep-Myc cell lines and experimental desgin.
A) EC-50 of Ey-Myc Cdkn2a-/- and Tp53-/- lines after 24 hours of mafosfamide treatment. B) Sample
generation for each line was performed as shown above in biological triplicate.
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proteins in common (Supplemental Figure 1B). Of those proteins identified, only those present
in all three replicates of both experiments were kept for further analysis resulting in 607

proteins identified across all sample sets (Supplemental Figure 1C).

Analysis of variance (ANOVA) of either the transcriptomic or proteomic data resulted in
different lists of significant genes and the enrichment of non-overlapping gene ontology (GO)
processes. For the transcriptomic analysis, all 21720 transcripts identified in common across all
samples were ranked by their interaction significance using a two-way ANOVA whose factors
were time since treatment (continuous) and the cell type (categorical) (Supplemental Table 1).
A multi-level noise model was employed including strata for technical replicate and sample
splitting by time since treatment. GO term group set analysis for the top 50 significant genes
showed enrichment for biological processes related to cellular response to DNA damage and
cell cycle checkpoint control (Supplemental Table 2). For the proteomic analysis, the 607
proteins identified in common across all samples were analyzed using the same two-way
ANOVA resulting in a different list of top 50 most significant proteins (Supplemental Table 3).
Furthermore, GO term group set analysis showed enrichment for metabolic processes such as
gylcolysis and carbohydrate catabolic processes (Supplemental Table 4). Since Myc is known to
be involved in the regulation of both cell cycle checkpoint and proliferation as well as promote
the transcription of genes involved in glycolysis the differing results of the two independent
analyses suggests that their exists differential regulation of the transcriptome and proteome
between the two lines centered around Myc controlled genes. Based on these differing results
we sought to investigate potential mechanisms of regulation that would give rise to such

differences.
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Transcriptomic and proteomic analysis

Clustering of the transcriptomic and proteomic data with respect to cell line and time
showed an inverse in the regulation of the transcriptome and proteome over time (Figure 2A).
Overall protein expression appeared to increase in the Tp53-/- line with a corresponding
decrease in mMRNA expression particularly at the 48 hour time point. This trend is reversed in
the Cdkn2a-/- line which displays decreasing protein expression, but increasing mRNA
expression. The overall correlation between gene and protein expression after 48 hours of drug
exposure within these 594 mRNA-protein pairs was low (R*~0.0) suggesting that there exists

extensive post-transcriptional regulation occurring during drug exposure (Figure 2B & C).

Combined transcriptomic-proteomic ANOVA resulted in pathways with overall higher
significance involved in post-transcriptional regulation compared to either transcriptomic or
proteomic data alone. To identify genes and pathways involved in post-transcriptional
regulation we first reduced the 607 proteins identified in all replicates to those that had
corresponding mRNA values yielding 594 mRNA-protein expression pairs. We then performed a
triple interaction ANOVA similar to the one described above, but with the additional factor of
"omic" state. mMRNA- protein pairs where ranked and selected based on their interaction
significance (Table 1). GO term group set analysis of the 169 significant mRNA-protein pairs
identified by the triple interaction ANOVA differed greatly from the individual analyses with
enrichment for completely different GO terms and overall higher significance. Specifically, the
combined analysis showed enrichment for terms related to the regulation of protein

ubiquitination or the proteasome, which did not appear in either the mRNA or protein analysis
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Gene Name| p-value |Gene Name | p-value
Psmb1 1.36E-07 Suclgl 0.00074

Aldh9al 1.70E-06 Hprt 0.00081
Fkbp3 2.41E-06 Atic 0.00082
Ubal 4.41E-06 Mdh1l 0.00086
Cycs 9.30E-06 Psma3 0.00103

Histlhla 4.40E-05 Psmb7 0.00104
Etfb 4.60E-05 Ptma 0.00112
Tagln2 7.23E-05 Bub3 0.0012

Lmnb1l 7.95E-05 Psmd6 0.00133
Ndufad 9.99E-05 Wars 0.00148
Psma6 0.0001 Psmb4 0.0016
Ywhaq 0.00012 Snrpdl 0.00166
Ywhae 0.00012 Psmal 0.00171
Rpl34 0.00015 | Rnaseh2b | 0.00205

Eif5b 0.00017 Eeflb2 0.00211
Adk 0.00018 Pa2g4a 0.00218
Psmel 0.00023 Ide 0.00232
Hdgf 0.00025 Psma5 0.00232
Srsf3 0.00028 Mcm7 0.00254
Actn4 0.00028 Pfnl 0.00275
Atad3a 0.00037 Xpol 0.00307
Psmc2 0.00039 Ncbpl 0.00333
Alb 0.00048 Ywhab 0.00336
Dars 0.00057 Strap 0.00356
lars 0.00062 Eif3g 0.00365

Table 1: Top 50 mRNA-protein pairs by interaction significance.

Top 50 genes by interaction significance from the three-way ANOVA for mRNA-
protein expression pairs in Tp53-/- and Cdkn2a-/- lines after 48 hours of mafosfamide
treatment.
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(Table 2). One such gene, E1 ubiquitin ligase Ubal showed increasing protein expression over
time in the Tp53-/- line compared to the Cdkn2a-/- line despite decreasing levels of Ubal
transcript levels (Figure 2D). Ubiquitination is a multistep enzymatic pathway whereby ubiquitin
is conjugated to target proteins via Ubal, an E1 ATP-dependent ubiquitin Iigase27. Protein
degradation via the ubiquitin-proteasome pathway is the major method by which cells remove
excess or damaged proteinszg. Pharmacological inhibition of the proteasome using clinically
approved inhibitors has been shown to be cytotoxic to malignant cells and improve patient
outcome in certain hematological malignancies®. However, the consequences of inhibiting the
ubiquitin-proteasome pathway upstream of protein degradation is less well understood. Based
off of our initial data showing increased Ubal protein expression, but decreasing mRNA levels
over time in the Tp53-/- cell line and the opposite trend in the Cdkn2a-/- cell line we set out to

investigate the effect of Ubal inhibition on drug sensitivity.
Ubal inhibition

Using sub-lethal concentrations of Ubal inhibitor Pyr-41 in combination with
mafosfamide significantly reduced the LC50 of the Tp53-/- line compared to that of the Cdkn2a-
/- line (Figure 3A)(Supplemental Figure 2A). At lower concentrations of mafosfamide, the
addition of Pyr-41 displayed an additive effect marginally increasing cell death in both lines.
However, at the highest concentration of mafosfamide tested the percent of viable cells
decreased from ~52% to less than 30% suggesting that the effects of both Ubal inhibition and
DNA damage induced cell death becomes synergistic. While the Cdkn2a-/- cell line also

displayed increased cell death with the addition of Pyr-41 compared to mafosfamide alone, at
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higher mafosfamide concentrations the combinatorial effect was less pronounced than in the
Tp53-/- line. Furthermore, Ubal inhibition in the presence of mafosfamide resulted in a
decrease of Ubal expression in the Tp53-/- line without changing the pattern of expression
seen in the Cdkn2a-/- line under mafosfmide treatment alone (Figure 3B). The changes in Ubal
expression under combinatorial treatment suggests that inhibition of Ubal results in decreased
Ubal protein expression. Both lines had substantially less protein ubiquitination with almost no

detectable ubiquitination by 48 hours (Figure 3B).

Inhibition of pathways downstream of Ubal including the proteasome were shown
preferentially affect the Tp53-/- line, but do not appear to be synergistic when combined with
mafosfamide. Since Ubal mediated protein ubiquitination is one of the earliest steps in the
ubiquitin-protease pathway we asked whether inhibition of downstream components of the
pathway would have a similar result to Ubal inhibition. Ubal is involved in the proteasome as
well as the autophagy pathways, both of which have been previously been shown to contribute
directly to drug resistance. As such, both pathways are currently under investigation as
pharmacological targets for the treatment of various malignancies. Bortezomib is one such
small molecule that inhibits the proteasome and has been approved for use in the clinic for the
treatment of hematological malignancies®’. While bortezomib resulted in cell death in the
nano-molar range and preferentially killed Tp53-/- cells compared to Cdkn2a-/- cells,
combinatorial treatment with sub-lethal doses of bortezomib and mafosfamide did not
synergistically increase in cell death in either cell line (Figure 3C)(Supplemental Figure 2B).
Cholorquine inhibits autophagy induced protein and organelle turnover and has been

implicated in drug resistance in Tp53-/- Burkitt's Iymphoma3l. However, in our model neither
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Figure 2: mRNA and protein expression under mafosfamide treatment.

A) (From left to right) Cdkn2a-/- and Tp53-/- mRNA expression respectively over 48 hours. Cdkn2a-/- and Tp53-/-
protein expression respectively over 48 hours. B) Tp53-/- mRNA-protein correlation after 48 hours of mafosfamide
treatment. C) Cdk2na-/- mRNA-protein correlation after 48 hours of mafosfamide treatment. D) Ubal mRNA and

protein expression over time in both Tp53-/- and Cdkn2a-/- cells.
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cell lines showed an increase in cell death when mafosfamide was combined with chloroquine
(Figure 3C)(Supplemental Figure 2C). Since neither combinatorial proteasome and autophagy
inhibitors resulted in increased cell death when combined with mafosfamide, Uba1l inhibition
appears be acting independently of either pathway to result in increased drug tolerance in the
Tp53-/- cell line. Ubal is known to be involved in DNA repair and it must be this function of
Ubal acting independently of either autophagy or the proteasome to increase drug
resistance”’. This suggests that targeting Ubal may be a clinically relevant target independent

of drugs targeting either the proteasome or autophagy.

Discussion

Developing an understanding of global proteome changes is important in identifying
pathways that are of biological significance. Extensive work using mRNA platforms have done
just that at the transcriptomic level. However, given the poor correlation between mRNA and
protein level it is important to develop independent proteomic signatures. Similarly,
developing such proteomic signatures and comparing them to the transcriptomic signatures
should elucidate genes and pathways that are regulated at the translational level. Interestingly,
in our data protein levels in both lines fall within a much narrower range than those of the
corresponding mRNA levels suggesting that the control over protein expression is more tightly
controlled than that of mRNA. Current methods to de-convolute mRNA and protein dynamics
rely on mathematical models that are only able to explain a small portion of mRNA-protein
expression dynamics and do not elucidate molecular mechanisms through which they might

act.
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Figure 3: Combinitorial inhibition and mafosfamide treatment.

A) EC-50 of combinitorial treatment of mafosfamide and Uba1 inhibitor Pyr-41 (10uM) after 24 hours. B) Uba1 protein
expression reproduces protein levels seen in LC-MS/MS experiments, with decrease expression over time in Cdk2na-/-
cells and increase expression in Tp53-/- cells. After 48 hours of combinitorial mafosfamide Pyr-41 treatment, Uba1
protein levels are reduced in the Tp53-/- cells. Both lines show reduction in total protein ubiquitination after 48 hours

of treatmet. C) EC-50 of Tp53-/- and Cdkn2a-/- lines 24 hours after either mafosfamide, mafosfamide and bortezomib
(bzt) (1nM), or mafosfamide and chloroquine (CQ) (1uM).
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In this study we sought to identify pathways involved in chemotherapeutic resistance
that are regulated at the post-transcriptional level. By comparing changes in mRNA and protein
level in a temporal manner in response to the DNA alkylating agent mafosfamide we were able
to identify Ubal as a potential mechanism of resistance that is regulated at the post-
translational level. Although individual analysis of changes of either the transcriptome or
proteome highlighted the potential role of Myc regulation of cell cycle control and metabolism
neither alone suggested a role for Ubal mediated post-transcriptional regulation. Interestingly,
our work suggests that in response to cytotoxic agents the control of cell cycle checkpoint and
apoptosis pathways is regulated at the of transcription, while metabolic changes are regulated

at the level of the proteome.

Combined transcriptomic-proteomic analysis yield enrichment of GO terms associated
with the ubiquitin-proteasome pathway with overall greater significance and the individual
analyses. In our Tp53-/- cell line, Ubal showed increased protein expression compared to the
drug sensitive Cdkn2a -/- cell line. Pharmacological inhibition of Uba1l resulted in increased cell
death in the Tp53-/- cell line compared to the Cdkn2a-/- cell line. Furthermore, Ubal inhibition
led to lower levels of protein ubiquitination, suggesting that protein ubiquitination is in some
part mediating drug resistance in these cell lines. Although both lines and in particular the
Tp53-/- cell appear to be highly sensitive to proteasome inhibition, combinatorial inhibition of
Ubal and the proteasome were not synergistic. As such, Ubal appears to be acting
independently of downstream pathways since inhibition of either the proteasome or autophagy

did not result in increased cell death when combined with mafosfamide.
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The increase in protein expression and simultaneous decrease in mRNA expression in
the Tp53-/- line suggests that either an increased translational rate or decreased degradation
in the Tp53-/- line compared to the Cdkn2a-/- line may explain observed differences between
the two lines in response to mafosfamide. Despite the high frequency of Tp53 mutations in
various cancers its mutational status is of limited prognostic value®®. This is partly due to
mutations downstream of Tp53 which can inactivate aspects of its function. However, Tp53
inactivation of has also been shown to lead to an increase in ribosome biogenesis32. Given both
the role that Myc and Tp53 play in the biogenesis, ribosomal activity and protein synthesis and
that Myc over expressing cancers often contain Tp53 inactivating mutations it would be
interesting to look further into the synergy that these two lesions have in protein synthesis and

how it affects disease progress and drug resistance.
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Supplemental Figure 1: Protein overlap between LC-MS/MS experiments.

A) Protein identification overlap between biological replicates of LC-MS/MS experiments from mafosfamide treated
Cdkn2a-/- cells. B)Protein identification overlap between biological replicates of LC-MS/MS experiments from
mafosfamide treated Tp53-/- cells. C) Protein identification overlap between all LC-MS/MS experiments.
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Supplmental Figure 2: EC-50s of inhibitors
A) EC-50 of Uba1 inhibitor Pyr-41 after 24 hours of treatment in Cdkn2a-/- and Tp53-/- cells. B) EC-50 of proteasome
inhibitor bortezomib (btz) after 24 hours of treatment in Cdkn2a-/- and Tp53-/- cells. C) EC-50 of autophagy
inhibitor chloroquine (CQ) after 24 hours of treatment in Cdkn2a-/- and Tp53-/- cells.
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Gene Name| p-value |Gene Name | p-value
H2-Eb1 1.45E-09 Pnol 1.25E-07
wdr74 1.51E-09 Ddit4 1.38E-07
Lipt2 3.89E-09 Corolc 1.40E-07
Ddx39 6.80E-09 B4galt5 1.49E-07
Cacnale 7.38E-09 H2-DMa 1.52E-07
Mxd4 7.88E-09 Bcllla 1.63E-07
Prmt5 9.10E-09 Prr5 1.66E-07
Smyd5 9.96E-09 |1110001A16Rik| 1.70E-07
Sap30bp 1.09E-08 Clpp 1.74E-07
Btg2 1.14E-08 Enophl 2.05E-07

Tmem181la 2.07E-08 Thgill 2.16E-07
Tmco4 2.26E-08 Ltvl 2.20E-07
1810013D10Rik| 3.02E-08 Guk1 2.59E-07
Rrp12 3.81E-08 Aven 2.82E-07
Wars 4.52E-08 Zfp593 2.83E-07
Rnf138 7.02E-08 |1110008F13Rik| 2.86E-07
Mrpl40 7.17E-08 Prkrir 3.60E-07
wdr34 7.38E-08 Tmem109 3.64E-07
Hddc2 7.58E-08 Timm8al 3.70E-07
Phb 8.24E-08 Sfxnl 4.12E-07
Fam54b 9.67E-08 Rnaseh2b 4.24E-07
Rslld1 9.73E-08 Lyar 4.58E-07
Eif2s3y 1.02E-07 Gart 4.69E-07
PIk3 1.07E-07 Kcnab2 5.14E-07
Nme2 1.11E-07 Cisd1 5.38E-07

Supplemental Table 1: Top 50 mRNA genes by interaction signifi-

cance.
Top 50 genes by interaction significance from the two-way ANOVA for mRNA
expression in Tp53-/- and Cdkn2a-/- lines after 48 hours of mafosfamide treatment.
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Gene Name| p-value |Gene Name | p-value
Lmnb1 4.71E-06 Rpll11 0.000885
Rpl34 1.80E-05 Pdia3 0.000896
Rps4x 2.23E-05 P4hb 0.000902
Tpil 2.31E-05 Calr 0.000916
Assl 2.57E-05 Hsp90b1 0.000973
Hdgf 4.32E-05 Ppib 0.000977
Tfrc 4.61E-05 Ywhae 0.001083
Ubal 4.77E-05 Ahcy 0.001123
Cycs 4.97E-05 Eeflg 0.001182
Sf3b1 5.09E-05 Rps29 0.001299
Alb 5.32E-05 Hmgb?2 0.001551
U2surp 6.31E-05 Prdx1 0.001633
Tagin2 8.27E-05 Rps12 0.001734
Psmb1l 0.000101 Slc25a3 0.001753

HnrnpaO 0.000158 Anxab 0.001781
Aldh2 0.00025 Prpf8 0.001788
Lcpl 0.000268 Taldol 0.00234
Psmel 0.000325 Aldoa 0.002433
Fthl 0.000334 Bub3 0.002459
Hspa9 0.000379 Lrpprc 0.002529
Eeflb2 0.000506 Myl6 0.002566
Ptma 0.000637 Rpl13a 0.002642
Rpl39 0.000819 Adk 0.002677
Pgk1l 0.00086 Sfpq 0.002717
Fubp1l 0.000868 Phb2 0.002762

Supplemental Table 3: Top 50 proteins by interaction significance.
Top 50 proteins by interaction significance from the two-way ANOVA for protein
expression in Tp53-/- and Cdkn2a-/- lines after 48 hours of mafosfamide treat-
ment.
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Conclusion

Over the past decade advancements in DNA sequencing and peptide mass spectrometry
technology have resulted in the widespread use of these technologies by researchers. Where as
previously these technologies were confined to highly specialized laboratories their decrease in expense
and increase in robustness have allowed their use to become more widespread. As the use of these
platforms increases and becomes more common place the number of studies leveraging multiple global
measurement platforms as similarly increased. Global measurements spanning the genome,
transcriptome, and proteome are collected on differing platforms all with differing levels of reliability,
coverage depth, and quantitation. As a result, the integration of large biological datasets from multiple
platforms in a relevant way that reveals new insights remains a challenge. However, integrating these
data sets in such a fashion as to provide new insights into biology also represents an opportunity to
understand not only fundamental aspects of molecular regulation but could also provide new insights

into the development and treatment of disease.

Characterization of individual cancers based on gene expression patterns allowed for the
segmentation of different cancer types based on molecular properties. This molecular definition of
specific cancer types as enabled the stratification of patients and allows for a refinement of treatment
tailored to an individual's specific cancer. Such an analysis allowed for a molecular definition of Burkitt's
lymphoma based on gene expression patterns that distinguishes it from other high grade non-Hodgkin's
lymphoma such as diffuse large B-cell lymphoma. However, individual cancers with similar gene
expression profiles will still often have differential responses to treatment suggesting that gene
expression patterns alone are incapable of fully segregating between different tumor types at a

molecular level. The use of other global measurements of molecular status at levels other than the
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transcriptome such as DNA methylation and quantitative proteomics could allow for new insights into

cancer biology that could enable a more personalized treatment.

A major hurdle to the successful treatment of Burkitt's lymphoma is the acquisition of
resistance. Up to approximately 80% of individuals who present with disease that initially responds to
therapy later re-present with disease that is no longer amenable to treatment using the standard
treatment regime R-CHOP. To gain insight into the mechanisms by which these individuals become
resistant to treatment we investigated the acquisition of resistance as well as the response to treatment

using a multi-omic approach.

In our initial studies we chose to investigate the regulation of mMRNA-protein dynamics in two
mouse models of Burkitt's lymphoma that display differing sensitivity to the DNA alkylating agent
mafosfamide. By characterizing transcriptomic and proteomic changes in response to mafosfamide
treatment we were able to show that not only are the transcriptome and proteome regulated in
different manners, but the pathways which appear to be regulated at either level differ from one
another. By performing a multi-omic analysis that took into account differences between the
transcriptome and proteome over time between the two lines in response to treatment we were able to
identify biological pathways that were unique to the combined analysis. Furthermore, the genes and
pathways identified by the combined analysis showed greater significance than either analysis of the
transcriptome or proteome alone. The combined analysis, suggested a role for the ubiquitin-proteasome
pathway and in particular the ubiquitin activating enzyme Ubal. Inhibition of Ubal resulted in
decreased Uba1l protein expression and lead to decreased viability of the resistant Tp53-/- cell line. This
work demonstrates that an analysis that takes into account both the transcriptome and proteome is
capable of revealing novel drug resistance mechanisms and drug targets that is not revealed by analysis

of either alone.
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Acquired resistance arises through the acquisition of mutations or alteration of gene expression
that leads to reduced treatment response. In our second study we sought to understand the rise of
resistance using a model derived via dose escalation of an initially mafosfamide sensitive cell line.
Analysis gene expression changes in response to treatment in the parental sensitive cell line over 48
hours suggested that an alteration of the histone 3 lysine 27 tri-methylation (H3K27me3) modifying
mark was associated with drug response. Similar analysis of gene expression changes of the resistant
lines derived from the parental cell line showed that genes whose expression decreased with increasing
resistance were enriched for targets of the histone methyltransferase Polycomb Repressive Complex 2
(Prc2). Chromatin immuno-precipitation sequencing (ChlP-seq) of the parental and resistant lines
confirmed that the resistant lines showed increased abundance of the Prc2 mark H3 lysine 27 tri-
methylation. Furthermore, genes that showed increase H3K27me3 were enriched for gene ontology
terms related to development. Those genes that showed increased H3K27me3 were also enriched for
binding targets of the B-cell maturation transcription factor E2a. Prc2 and the addition of H3K27me3 has
previously been shown to be associated with increased DNA methylation. By performing reduced
representation bisulfite sequencing on our parental and resistant lines we were able to show that the
DNA methylation data matched our initial gene expression analysis. Genes that showed an increase in
DNA methylation were similarly enriched for targets of Prc2, thus confirming our initial hypothesis that
alterations in H3K27me3 are associated with the development of resistance. Furthermore, principle
component analysis of gene expression changes during normal B-cell maturation suggested that the

development of resistance in our derived lines is accompanied by a regression in B-cell maturity.

Although multi-omic integration is capable of revealing new insights into biology and treatment
response in cancer the analysis of multiple large datasets remains challenging. Much of the difficulty
arises from differences in the measurement platforms themselves which gives rise to datasets of

differing quantitation and coverage. While sequencing data can give absolute quantitative data in the
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form of number of fragments sequenced, proteomic approaches are capable of only giving relative
changes. This can present a problem in that recent advances in measuring the transcriptome such as
RNA-sequencing allow for the measurement of precise number of mRNA transcripts for a particular
gene. However, quantitative proteomics results only in the relative abundance between one sample and
another. In order to better understand the dynamics of transcriptional and translational regulation it
would be beneficial to be able to compare quantitative measurements across both platforms. In order to
compare two datasets, one of which is absolutely quantified while the other is only relatively quantified
requires either that each dataset is analyzed individually and the results compared or that the dataset
that is absolutely quantified be converted to relative quantitation so that both dataset can be properly
integrated. While there do exist methods to absolutely quantify protein abundance they are as of yet
not robust enough to apply on a global level. As such for the time being until peptide mass spectrometry
improves it will be necessary to use relative quantitation between experimental sample and control

when comparing differing global datasets.

Besides quantitation level, coverage depth poses another difficultly in comparing multi-omic
data. While DNA sequencing technology has progressed to the degree that whole genome sequences
and whole RNA sequences can be achieved at a depth that coverage approaches 100% of sample
coverage, proteomic measurements and in particular quantitative mass spectrometry of peptides is still
limited by the depth of coverage. Reasonably achievable depth of coverage of the proteome is limited
due to the wide biological dynamic range of protein expression compared to the dynamic range mass
spectrometry instruments. The disparity in coverage between DNA sequencing and mass spectrometry
technology results in data sets that have only partial overlap and thus reduce the amount of useful data
collected. Furthermore, given that current mass spectrometry protocols are incapable of detecting low

abundant proteins such as transcription factors and other DNA binding proteins, a great deal of
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interesting biological is potentially being missed since measurements for given genes do not have data

at both the transcriptomic and proteomic level.

In the studies described above the differences in coverage depth between platforms became
acutely evident. The narrower dynamic range of peptide mass spectrometry compared to DNA
microarray and sequencing greatly limited our ability to measure compare global transcriptomic-
proteomic changes. In the initial study, we were able to identified over 2500 proteins quantitatively,
however we were forced to reduce that number to those that were identified in all biological replicates
yielding less than 800 proteins. Furthermore, this number was again reduced to approximately 600
because of disparities in coverage between the quantitative mass spectrometry experiments and
microarray studies. Although peptide mass spectrometry technology continues to improve even the
state of the art mass spectrometers are capable of reliably identifying less than 10,000 proteins
guantitatively. Given that whole genome microarrays assay well over 30,000 transcripts a full two-thirds

of genes will not have data at both levels.

Similarly, in our second study differences in coverage depth prevented a more in depth analysis.
To sequence the methylome of our cell lines we used the reduced representation bisulfate sequencing
(RRBS) method which preferentially sequences CpG islands. Since RRBS sequences only CpG islands
methylated CpGs outside of CpG island are not measured. This prevented a greater in-depth analysis of
overlap between DNA methylation sequencing and our ChlP-seq data which covered the entire genome.
The limited overlap greatly inhibited our ability to assess the co-occupancy of these marks at particular

genes of interest.
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