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Abstract

Data-Driven Bayesian Methods for Analyzing Biochemical Reaction Networks

by

Richard Maxwell Jiang

Significant modern advances in faster and cheaper measurement techniques for biolog-

ical processes has led to an explosion in the availability of biological data, from the clinical

scale down to the molecular scale with the promise to vastly increase our understanding

of these complex systems. However, a critical step in accomplishing this is developing

flexible data-driven and statistical methods to make sense of these rich datasets. As

measurements in this domain are frequently noisy and sparse, Bayesian methods are

promising for providing not only accurate estimates that capture prior knowledge, but

also uncertainties in drawing conclusions.

In this thesis, we describe our contributions to the analysis and development of bio-

chemical reaction networks using Bayesian methods, both from applied and computa-

tional directions. We begin with an application of a Bayesian model for understanding a

biochemical process at the clinical level. Then, we follow by describing our contributions

to inferring the parameters and the structure of the biochemical reaction networks from

experimental data using Bayesian techniques.

Specifically, we first describe our work in applying a hierarchical Bayesian joint lon-

gitudinal survival model to analyze the clinical risks of the protein biomarkers D-Dimer

and Factor II, which play a crucial role in the coagulation cascade. Next, we transition

to the molecular scale and start by describing our innovations in accelerating a critical

step component of the Approximate Bayesian Computation algorithm for Bayesian in-

ference of the parameters of stochastic biochemical reaction networks. Then, we discuss

viii



the problem of inferring the structure of biochemical reaction systems from data and

describe our contributions to this problem using a Bayesian formulation. We close with

our brief work demonstrating the application of stochastic biochemical reaction networks

to the field of epidemiology along with some supporting software.

Lastly, we provide summary of our contributions and a few future directions.
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Chapter 1

Introduction

Knowledge of the complex mechanisms behind biological processes is critical to the de-

velopment of better drugs and therapies for numerous medical conditions and diseases.

By identifying the pathways and interactions that govern functional biological systems,

such as gene regulation and blood coagulation, biologists can create targeted treatments

that can properly regulate systems while also being aware of possible downstream side ef-

fects. As an example, we can observe the coagulation cascade, shown in Fig. (??), which

regulates the complex process of coagulating blood around a wound. Occasionally in

trauma patients, this process is subject to critical failure, resulting in the life-threatening

condition coagulopathy. However, as significant research efforts have demonstrated, the

failure mechanisms of coagulopathy are multi-modal [23, 60], and explainable by both a

lack of necessary clotting factors and an abnormally high rate of clot breakdown, which

could potentially be impacted by the nature of the injury as well. This key knowledge

manifests at the clinical level, as these distinct mechanisms, and the potential causes, can

inform what assays to run and, ultimately, what treatments to administer at a moments

notice.

Many of these inherently non-linear and dynamic biological processes can be math-
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Introduction Chapter 1

Figure 1.1: The coagulation cascade and fibrinolysis [62]. The coagulation
cascade is responsible for formation of a fibrin clot, while fibrinolysis is responsible
for breaking down fibrin clots. Balance in the system is crucial for the regulation of
overall coagulation.

ematically described using the framework of biochemical reaction networks [63]. These

models allow researchers to specify how any number of biochemical species can interact

via any number of reactions to produce interesting and unique effects. Furthermore, the

flexibility of the framework allows for the dynamics to take into account both determin-

istic and stochastic effects, as recent research has demonstrated to be important [29].

However, while these tools allow scientists to describe potential hypotheses, a necessary

step in building a complete understanding of a biological system is validating potential

models to experimental data. With rapid advancements in better and cheaper measure-

ment techniques, such as flouorescence-activated cell sorting (FACS) and single molecule
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Introduction Chapter 1

fluorescence in situ hybridization (smFISH) [119], the ability for biologists to gather

quality experimental data for many complex biological systems has greatly accelerated.

Consequently, this brings to forefront the main motivation of this work, which is the

increased necessity of powerful statistical methods to aid in drawing biological insights

from these vast datasets.

In this work, we utilize Bayesian methods for the study and validation of biochemical

reaction networks to experimental data. The powerful Bayesian method for statistical

inference offers substantial benefits for systems biologists by providing an intuitive way

to specify probabilistic models and incorporate prior knowledge while also providing

uncertainty estimates around parameter estimates and predictions. Furthermore, par-

allel to the explosion of biological data, recent advances in computational algorithms

[69] and software for statistical inference [12] has enabled the Bayesian framework to be

applied to more complex problems. For stochastic biochemical reaction systems, yield

intractable likelihood functions, Bayesian methods such as Approximate Bayesian Com-

putation (ABC) have been gaining traction [110] due to the availability of the slow, but

exact simulation algorithms.

At the time of this work, adoption of Bayesian methods in this field has been limited,

due in part to the added complexity of these techniques as well as standing computational

challenges. To this end, we demonstrate a improvements and applications to Bayesian

methods for the study of biochemical reaction networks, largely motivated and enabled by

the recent availability of high-throughput measurement technologies and the significant

developments in statistical computation and Machine Learning. Our hopes are that these

developments expand the capabilities and adoption of these powerful techniques to this

very important and growing field.

3



Introduction Chapter 1

1.1 Organization

The rest of this thesis will proceed as follows. In Chapter 2, we will discuss an appli-

cation of Bayesian methods to study the effects of the coagulation biochemical reaction

networks at a clinical level. In Chapter 3 and Chapter 4, we will present our work on

novel Bayesian methods for the improving inference of the parameters and the structure

of biochemical reaction networks. In Chapter 5, we will discuss our work demonstrating

the application of the biochemical reaction networks to epidemiological models and data.

We close with a summary of our work and a few future directions in Chapter 7.
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Chapter 2

Bayesian Joint Survival Models for

Quantifying Coagulopathic Survival

Risk

Coagulopathy is a life-threatening condition experienced by many trauma patients who

have lost large amounts of blood. The blood coagulation process can be described by

a set of biochemical reactions that ultimately lead to formation of a clot at a specific

injury site. Malfunctions in this complex biochemical network can lead to the failure

to properly form and maintain a clot, commonly referred to as coagulopathy, especially

among trauma patients. In this work, we focus on the clinical side of this reaction system

and utilize joint survival models to investigate the survival risks of the time varying

biomarkers D-Dimer, a protein fragment formed in the process of clot breakdown, and

Factor-II, a protein consumed in clot formation, using assays from the ICU.

Joint survival modeling is an increasingly popular technique in the area of clinical

data science, used to study the effect of longitudinally measured factors on outcomes.

This Chapter covers the material in our work Associations of Longitudinal D-Dimer and

5
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Factor II on Early Trauma Survival Risk [102]. We begin by providing some background

on the coagulation system. Then we describe the technique of joint survival models.

Lastly, we use the technique to study the early survival risk implied from longitudinal

D-Dimer and Factor II levels.

2.1 Background

Coagulopathy (as defined here) is a condition in which blood fails to properly form

robust clots. Following injury and shock from a major trauma, patients often become

coagulopathic, coinciding with increased bleeding, higher resuscitation requirements and

much higher rates of death [17, 18, 97]. However, despite the increased urgency for

treatment, the complexity of the underlying coagulation system makes understanding

and diagnosis of trauma-induced coagulopathy (TIC) extremely difficult, especially in a

clinical setting with so much interpatient and intrapatient variability. The main objective

of this study is to quantify the level to which markers of two possible mechanisms of TIC

affect survival odds, accounting for patient variability, and to understand what this tells

us about possible targets for intervention.

The Coagulation System and Coagulopathy

The standard model for the coagulation system consists of two distinct physical pro-

cesses: coagulation (clot formation) and fibrinolysis (clot breakdown). Coagulation is

the process by which a sequence of protein interactions ultimately leads to the formation

of cross-linked fibrin clots, which physically block off a wound site [9]. To balance this

process, fibrinolysis breaks down fibrin clots and produces fibrin degradation products,

which are then flushed out of the system. Properly regulated, these two systems prevent

excessive bleeding. A schematic is shown in Fig. 2.1.
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Figure 2.1: The coagulation cascade and fibrinolysis [62]. The coagulation
cascade is responsible for formation of a fibrin clot, while fibrinolysis is responsible
for breaking down fibrin clots. Balance in the system is crucial for the regulation of
overall coagulation.

Malfunctions in the coagulation system lead to the inability to form clots or to keep

clots in place, resulting in excessive bleeding at the wound site. Several hypotheses exist

to explain the driving factors of TIC [23, 60]. Two important coagolopathic conditions

are consumptive coagulopathy and hyperfibrinolysis. Consumptive coagulopathy focuses

on the inability to form fibrin clots, due to a lack of necessary pro-coagulants, while

hyperfibrinolysis emphasizes the inability to keep a sufficient number of fibrin clots active

due to overactive fibrinolysis. Though the mechanisms are different, both manifest as

increased, uncontrollable bleeding at the wound, often through a complex interdependent

mechanism.

7
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In this study we used data collected from trauma patients to quantify how these

two mechanisms may be realized in patient survival odds. We chose Factor II and D-

Dimer as representative biomarkers of consumptive coagulopathy and hyperfibrinolysis

respectively. Factor II, or prothrombin, is a protein that is converted into thrombin in the

coagulation cascade [125]. Thrombin is the central protein in the coagulation cascade,

responsible for forming fibrin clots and activating platelets to essentially seal a wound.

On the other hand, D-Dimer is a fibrin degradation product created when plasmin breaks

down fibrin clots. We fit a joint survival model to this data and examined the distribution

of patient longitudinal curves and the hazards of both longitudinal covariates.

Methods

Dataset

Our dataset consists of severely injured patients admitted to the ICU at the UCSF

Level I Trauma Center. Upon admission, age, sex, injury severity score, injury type,

and the presence of a traumatic brain injury, in addition to many other measurements,

were recorded. Blood draws were attempted for each patient at hours close to 0, 2, 3,

4, 6, 12, and 24 as measured from admission. The time and outcome of each patient

was recorded post dispatch. From each blood draw, a variety of coagulation activity

levels were measured, of which only the protein Factor II (% activity) and the protein

fragment D-Dimer (µg/ml) were used in this analysis, for the aformentioned reasons.

Blood assays were conducted using the Stago Compact Analyzer (Diagnostica Stago,

Parsippany, NJ) according to manufacturer instructions. For D-Dimer, the upper limit

normal value is ∼0.5 µg/ml [117] while for Factor II standard operating range falls within

50%− 200% activity. The hour 0 measurements of most patients fell within these values
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though with a slight skew due to the nature of the dataset. Patients with no Factor

II or D-Dimer measurements were omitted. Post pre-processing, a total of 891 patients

remained with 2062 longitudinal observations. In this work we define outcome as survival

at hour 25, which is on the order of when deaths from TIC are most prevalent [52].

Past this window, many patients die from other causes such as sepsis. From a survival

analysis perspective, patients were considered censored if death was not recorded within

the observation window. A summary of the distributions in the data are presented in

Table 2.1.

2.1.1 Statistical Model

To uncover the effects of Factor II and D-Dimer on early trauma survival, we employ

a joint survival model [86, 111, 54]. Joint survival models relate the effects of time-

dependent covariates, such as measured clinical biomarkers, on time-to-event data, such

as death, accounting for irregular measurement times and intrinsic measurement vari-

ability. Recently, joint survival models have been used to study survival in a variety of

other diseases [81, 99]. In particular, they have gained prominence due to their ability

to robustly model how the continuous evolution of biomarkers affects survival. In the

following, we describe the two subcomponents of the joint model: the longitudinal sub-

models and the survival submodel. We note that for applying this model, we first apply

the natural log to values of D-Dimer and henceforth refer to this quantity as log D-Dimer.

Longitudinal Submodels

The longitudinal submodels describe how each time-dependent covariate evolves over

the observation window. By explicitly specifying the form, as opposed to naively imputing

values, we can account for measurement variability when associating the covariate to the

9
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Characteristic Estimate
Total number of individuals 891
Death within 24h, n (%) 61 (6.8%)
Sex, n (%)

Male 728 (81.7%)
Age, n (%)
≥ 15, < 20 58 (6.5%)
≥ 20, < 30 286 (32.1%)
≥ 30, < 40 170 (19.1%)
≥ 40, < 50 127 (14.3%)
≥ 50, < 60 115 (12.9%)
≥ 60, < 70 62 (6.9%)
≥ 70, < 80 42 (4.7%)
≥ 80 31 (3.5%)

Injury Severity Score, n (%)
≥ 0, < 10 344 (38.6%)
≥ 10, < 20 168 (18.9%)
≥ 20, < 30 192 (21.5%)
≥ 30, < 40 108 (12.1%)
≥ 40, < 50 25 (2.8%)
≥ 50, < 60 38 (4.3%)
≥ 60 16 (1.8%)

Trauma Type, n (%)
Penetrating 385 (43.2%)
Blunt 506 (56.8%)

Traumatic Brain Injury, n (%) 343 (38.5%)

Table 2.1: Characteristics of Cohort

survival outcome. This has been shown to reduce bias in estimates [111] compared to

traditional treatments of time-dependent covariates in survival models.

Let yij(t) denote the measured activity level of coagulopathic biomarker j for patient

i at time t. For our study, the longitudinal biomarkers Factor II and D-Dimer are

modeled using generalized linear mixed effects models with grouping at the individual

10
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level. Specifically, we set yij(t) ∼ N (ηij(t), σF ), with

ηij(t) = β0j + β1ij + β2jt+ β3ijt+ β4lijt+
∑
k

β5jkxik,

the expected value of the respective marker at time t for patient i, and σF the estimated

standard deviation. In this formulation, β0j and β1ij denote the population and individual

level intercepts and β2j and β3ij denote the population level and individual level slopes.

β4jk specifies the effect of the k−th fixed covariate on the j−th time-dependent biomarker.

The included fixed covariates are age, sex, injury severity score, traumatic brain injury,

and injury type, selected due to their relevance in other studies in this area. This is

equivalent to fitting a regression line to each of the coagulopathic biomarkers.

Survival Submodel

The survival submodel connects the longitudinal submodel to the observed patient

outcomes. We use the standard proportional hazards model. For each patient, we have

a tuple (Ti, Di) indicating the time that the patient died or was censored and the binary

outcome of death. Let hi(t) be the hazard function for the i-th patient at time t,

hi(t) = h0(t) exp

(∑
k

γkxik +
∑
j

αjηij(t)

)
,

with h0(t) the baseline hazard function, αj the coefficient indicating the strength of

the association between longitudinal covariate j and survival, and γk the strength of

the association between fixed covariate k and survival. The baseline hazard h0(t) was

selected to be a 6-th order B-Spline, as this choice offers maximum flexibility in fitting

the unique survival curves of subgroups while avoiding overparameterization [8]. This

hazard function at time t can be interpreted as the instantaneous rate at which the subject

11
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accumulates hazard toward the outcome, assuming that they have survived up to time

t. Compared to standard time-dependent survival models, the hazard function depends

on the expected value of the time dependent covariate, as opposed to the observed or

imputed value. The hazard function is linked to the time of the outcome via the survival

function

S(t) = P (Ti ≥ t) = exp

(
−
∫ t

0

hi(x)dx

)
.

For interpretation, we observe the association strengths, α, which indicate the change in

survival odds for every unit change in the covariate.

Estimation

We use the rstanarm package [98, 12] and the joint model function to obtain a

Bayesian fit for our model to the data. To estimate the patient-level effects in the

longitudinal covariates, we use hierarchical priors to induce shrinkage in the case of

few observations [34]. Posterior predictive checks were performed on the longitudinal

trajectories to verify that the resulting fit were consistent with the observed data and

convergence metrics were checked to validate that the chains were consistent. Analysis

was performed using 4000 posterior draws over 4 chains.

2.2 Results

Factor II and D-Dimer Trajectories

In Table 2.2 and Table 2.3 we show the estimated fixed effect coefficients for Factor

II and log D-Dimer in the longitudinal submodels. Traumatic brain injury is tied to

significantly higher levels of both covariates while penetrating injuries tend to decrease

the predicted log D-Dimer levels. Higher injury severity score and age slightly increase

12
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the level of log D-Dimer and decrease the level of Factor II. These effects indicate that

older and more severely injured patients have higher D-Dimer and lower Factor II, which

would be intuitive as they indicate higher levels of fibrinolysis and lower levels of available

pro-coagulants. Penetrating injuries provide an uncertain effect on Factor II but are

associated with lower levels of log D-Dimer. At the population level, Factor II tends to

decrease over time while D-Dimer tends to increase. For healthy patients, these would

be the expected patterns as clotting factors are used and fibrin degradation products are

produced. Fig. 2.2 and Fig. 2.3 show the estimated mean Factor II and log D-Dimer

trajectories for 4 patients. Crucially for diagnosis, the 4 patients show varying individual

behavior but also reversion to the population level distribution in the case of patients

with few measurements.

Factor II
coefficient 95% credible interval

intercept 84.03 80.04, 88.04
slope -0.23 -0.30, -0.17
age -0.15 -0.21, -0.10
sex (ref: Male) -1.58 -4.07, 0.90
injury severity score -0.37 -0.44, -0.30
traumatic brain injury (ref: Yes) 2.65 0.18, 5.07
penetrating injury (ref: Yes) -0.28 -2.73, 2.10

Table 2.2: Coefficients for Longitudinal Factor II

Factor II and log D-Dimer Associations with Survival

Estimated association strengths, interpreted as the increase in odds for every unit

increase in the biomarker, as well as 95% credible intervals are shown in Table 2.4. For

exogenous covariates, we find minimal evidence that a higher initial injury severity score

and age increases the risks of death. The large uncertainty in the gender hazard ratio is

13
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log D-Dimer
coefficient 95% credible interval

intercept -0.64 -0.41, -0.18
slope 0.011 0.008, 0.016
age 0.008 0.004, 0.011
sex (ref: Male) -0.20 -0.34, -0.06
injury severity score 0.043 0.039, 0.047
traumatic brain injury (ref: Yes) 0.44 0.30, 0.59
penetrating injury (ref: Yes) -0.25 -0.38, -0.11

Table 2.3: Coefficients for Longitudinal log D-Dimer

Figure 2.2: Sample Factor II Patient Trajectories. Each plot shows a random pa-
tient along with their estimated mean trajectory for Factor II and confidence intervals
of the mean trajectory. Scattered points are observed data points.

14
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Figure 2.3: Sample log D-Dimer Patient Trajectories. Each plot shows a random
patient along with their estimated mean trajectory for log D-Dimer and confidence
intervals of the mean trajectory. Scattered points are observed data points.

likely due to an insufficient sample size of women in the dataset. As previously known,

we find that traumatic brain injury has an extremely large effect on the risk of early

death. Interestingly, penetrating injuries seem to significantly increase the risk of early

death (hazard ratio [6.08, 3.37 - 11.19]), however, the large credible intervals indicate a

relative lack of data for patients who ultimately died.

For the longitudinal coagulopathic covariates, we find that unit increases in log D-

Dimer significantly increase the risk of early death (hazard ratio [2.22, 1.57 - 3.28]). At

the same time, unit increases in Factor II only marginally decrease the risk of death

(hazard ratio [0.94, 0.91 - 0.96]) but with high certainty. This is in good agreement with

15
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Hazard Ratios 95% credible interval
Factor II 0.94 0.91, 0.96
log D-Dimer 2.22 1.57, 3.28
age 1.02 1.01, 1.03
sex (ref: Male) 0.76 0.45, 1.32
injury severity score 1.03 1.01, 1.04
traumatic brain injury (ref: Yes) 2.71 1.51, 5.04
penetrating injury (ref: Yes) 6.08 3.37, 11.19

Table 2.4: Median and 95% credible interval for Hazard Ratios

[47], which concludes that high log D-Dimer levels are the more definitive predictor of

death regardless of fibrinogen levels. The significant effect of log D-Dimer suggests that

maintaining or lowering the rate of fibrinolysis and thus D-Dimer generation is a key

component in reducing the risk of early death in a hospital setting.

Variation Among Longitudinal Trajectories

In addition to associations, our model estimates individual trajectories for each pa-

tient. In this cohort, the vast majority of patients gradually decrease in Factor II levels

over the 25 hour window, as shown by the distribution of median slopes in Fig. 2.2.

The relatively low rate seems to indicate that, for the majority of patients, Factor II is

being held relatively consistent in this 25 hour window. We see no cases where the model

indicates that Factor II is being consumed at a significantly large rate. In comparison, for

log D-Dimer trajectories, we observe large variation from expected behavior. As shown

in Fig. 2.5, patients are centered around 0 but have significant probability mass at both

increasing and decreasing D-Dimer levels. However, as D-Dimer is only a product of

fibrinolysis, it is difficult to predict what a traditionally healthy trajectory would consist

of.

The level of variation among patients, controlling for all of the fixed covariates, in-
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dicates that these biomarkers are likely subject to some unaccounted for patient level

variability. From a treatment perspective, the varying trends among patients indicate

that when making risk assessments for a particular patient, it is important to understand

both the estimated hazard ratio as well as the projected trajectory of their biomarkers.

As an example, if a patient exhibits high D-Dimer but it is seemingly decreasing, perhaps

treatment for fibrinolysis is not necessary.
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Figure 2.4: Distribution of Median log D-Dimer Slopes Estimated median slopes
of log D-Dimer for each patient. Red, dashed line indicates the zero-line

Figure 2.5: Distribution of Median Factor II Slopes Estimated median slopes
of Factor II for each patient. Red, dashed line indicates the zero-line

2.3 Discussion

Hazard Ratios

The hazard ratios indicate that, in this cohort, unit increases in Factor II levels only

marginally increase survival odds, while a doubling of D-Dimer (due to the log trans-

formation) largely affects survival odds. Observing the data, a doubling of D-Dimer is

not uncommon. Thus, although both consumptive coagulopathy and hyperfibrinolysis do

seem to affect survival in some regard, increased rates of fibrinolysis are much more likely

to be damaging to survival. From this perspective, greater benefit would be gained by
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controlling hyperfibrinolysis rather than further managing or increasing factor availability

levels.

High levels of D-Dimer have often been associated with poor patient outcomes as a

proxy for hyperfibrinolysis. This is further consistent with the growing literature which

indicates the importance of addressing hyperfibrinolysis in TIC. Hyperfibrinolysis is es-

timated to occur in a large number of trauma cases, often with significantly higher

mortality rates [92]. The relatively low, but positive impact of Factor II levels suggests

that managing Factor II levels is not a significant problem in this cohort. Indeed, the

importance of coagulation consumption has long been studied [58] and linked to poor

outcomes. As this is a single hospital, retrospective study, it is possible that monitoring

and treatment for factor depletion is better monitored and maintained, leading to better

outcomes for patients that exhibit signs of coagulopathy.

Also of note is the significant effect of both traumatic brain injury and penetrating

trauma, independent of the levels of both Factor II and D-Dimer. Largely, the increased

mortality from injuries of this types are well known in trauma [109]. The scale of the

hazard ratios provides a rough perspective on the priority of treatment, with concern

based on the the type of injury preceding further monitoring of hyperfibrinolysis and

consumptive coagulopathy.

D-Dimer Modulation in Trauma Care

D-Dimer, while often used as a surrogate for measuring fibrinolysis, can also be af-

fected by other factors. Due to the risk associated with high levels of D-Dimer as indicated

by our model, it is important to further describe some of these alternative factors.

From a physiological perspective, as D-Dimer is a protein fragment created from

the breakdown of a fibrin clot, any processes which effect the rate of clot breakdown
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could result in measured changes in D-Dimer levels. In ICU patients, while initially

elevated levels of D-Dimer are expected due to the nature of the injuries involved, the

type of injury can have a significant effect on D-Dimer levels over time, as the condition

of the patient evolves. As seen in Table 2.4, patients with non-penetrating or trau-

matic brain injuries tend to see an increase in D-Dimer levels over time. Typically, for

healthy patients recovering from injury, coagulation and fibrinolysis are expected to slow

down, resulting in declining D-Dimer levels. Sathe et al. [90] further mentions several

non-hyperfibrinolytic pathological and non-pathological conditions which have also been

shown to increase D-Dimer. An important possibility that may affect D-Dimer levels

without clearly indicating increased fibrinolysis is the decreased ability to clear D-Dimer

from the blood, as has been found in patients with liver disease and cirrhosis [45]. In

these cases, an underlying liver problem may result in abnormally high levels of D-Dimer

as it accumulates over time, even when the patient is not hyperfibrinolytic.

Common interventions may also cause D-Dimer levels to change. A recent standard

treatment for hyperfibrinolysis is administration of the anti-fibrinolytic drug Tranexamic

acid (TXA). As its mechanism of action is to prevent plasmin formation and thus slow

down fibrinolysis, it naturally decreases D-Dimer levels. This has been demonstrated in

both laboratory and clinical settings [87, 75] with time-scales as short as 30 minutes after

administration [93].

Clinical Considerations

Our findings broadly suggest that, from an early clinical perspective, managing fib-

rinolysis is typically more of a concern than managing consumptive coagulopathy over

a 24 hour window of care. Furthermore, as shown in Fig.2.2 and Fig.2.5, the trends of

these factors can vary significantly between different patients and thus treatment and
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evaluation of patient state can possibly improve by projecting how a patient’s state is

trending. This follows exactly the thinking of the clinician, where they are constantly

evaluating the current physiologic/biologic state of a patient and trying to predict and

modify the trajectory. Although high D-Dimer levels are linked to poor outcomes, if

the patient is projected to be improving, further treatment may not be necessary. The

development of explicit risk metrics which provide individual projected trajectories as

such could provide valuable information in acute decision making.

As the factors analyzed in this work are not typically measured in real-time, our work

primarily aims to explore the risk factors in TIC and to observe patient-level variations

over their ICU stay. State of the art treatment of TIC in the ICU typically includes

providing blood products such as crystalloids, fresh frozen plasma, and packed red blood

cells through transfusion and by administering drugs such as Tranexamic acid [55, 87]

both of which aim to control hyperfibrinolysis as well as consumptive coagulopathy.

A significant amount of recent research has focused on implementing better protocols

for these interventions using viscoelastic assays, such as TEG and ROTEM [43, 42].

These measurements aim to provide a more holistic picture of blood coagulation, which

can lead to significant advantages in accuracy or diagnosis of coagulation malfunctions.

Additionally, in the future, we expect that results can be extracted at the point-of-

care and used for a truly precision medicine individualized approach to diagnosis and

treatment.

The use of viscoelastic measurements in a similar computational study can extend

the conclusions of this work to more precisely capture malfunctions of the coagulation

system as well as provide for a practical component in a dynamic risk-prediction system

that can aid in acute decision making over a patient’s stay.
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Model Limitations

Importantly, there are a few limitations to full interpretation of this model. Due to

the retrospective and single hospital nature of the data, these results can be understood

more as an evaluation of early trauma hospital protocol. As interventions such as mass

transfusion are not accounted for, from this perspective we find that the trauma protocol

mediates the effects of most covariates but does not seem to adequately control for the

effects of increasing log D-Dimer levels. To improve interpretation, we would need to

utilize data from multiple hospitals. Furthermore, certain studies indicate that elevated

log D-Dimer is not necessarily a definitive sign of hyperfibrinolysis [85] and can be rather

thought of as a confounded measure of injury severity and the need for an activated

coagulation system. Thus, utilization of viscoelastic assays, such as TEG and ROTEM,

that offer different measurements may help to better distinguish the effect of the two

components of coagulation on survival. Despite this however, our data show that D-

dimer, whatever its biologic interpretation (fibrinolysis or enhanced clot breakdown)

is an important predictor of future mortality. Similarly, use of other proteins in the

coagulation cascade may reveal more informative results with respect to how much of an

impact consumptive coagulopathy over time actually has on survival odds. A secondary

model for interventions may also help for improving treatment for TIC.

Conclusions

We fit a joint-survival model to trauma to quantify the effect of activity levels of

Factor II and log D-Dimer on survival in an early 25 hour window. From this work, we

find that increases in Factor II levels have a small, but positive effect on survival, while

increases in log D-Dimer levels have a large negative effect on survival. The nature of

this study suggests further investigation into methods to prevent excessive fibrinolysis
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in hospital protocol. Furthermore, this model can also be used to better understand

individualized and dynamic risk prediction from a standard patient, due to the large

variability in patient longitudinal trajectories.
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Chapter 3

ABC Summary Statistics for

Stochastic Biochemical Reactions

via Approximate Simulators

Moving to the molecular scale, many biochemical processes exhibit intrinsic stochasticity

[29], which manifests as significant variation of the same process across different cells.

Mathematically, this can be captured and studied using the framework of stochastic bio-

chemical reaction networks, first described in [37]. Developments in modern measurement

techniques such as sMFISH and FACS has lead to significant research effort on inference

of the parameters of these stochastic models to experimental data. However, due to the

complexity of these models and the inability to evaluate the likelihood function, this is

an incredibly challenging task.

In this chapter, we present our work Accelerated Regression-Based Summary Statistics

for Discrete Stochastic Systems via Approximate Simulators [105], focusing on acceler-

ating Approximate Bayesian Computation (ABC) for Bayesian parameter estimation of

these stochastic biochemical models. Specifically, we introduce our method of utilizing
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approximate simulators for the important step of training summary statistics used within

ABC. Furthermore, we detail our proposed method to overcome the potential bias in-

troduced when the approximate simulator is poor. The benefits of our approach are

illustrated using a few example stochastic biochemical models and some implementation

details, and potential practical pitfalls are explained.

3.1 Background

In recent years, stochasticity has been shown to play a crucial role in many molecular

biological processes such as genetic toggle switches [29, 66] and robust oscillators [114]. In

many cases, systems biologists will model these stochastic biochemical reaction networks

using continuous-time, discrete-space Markov Chains [38], which allow one to capture

stochasticity in a system caused by the limited availability of certain reactants, such as

transcription factors. A critical step in building an accurate mechanistic model of these

stochastic systems is calibrating the kinetic rate constants to experimental data. While

efficient methods exist for parameter estimation using maximum likelihood or Bayesian

inference for similar models, for these discrete stochastic models, the intractability of

the likelihood function forces researchers to rely on the growing class of Likelihood-Free

Inference (LFI) methods [21, 91, 116], which depend only on the availability of a model

simulator. Recently, Approximate Bayesian Computation (ABC) [96, 22] has become

one of the most popular LFI methods for discrete stochastic models due to its simplicity

and demonstrated effectiveness.

Approximate Bayesian Computation

Given a prior over parameters p(θ) and a stochastic simulator p(X|θ), Approxi-

mate Bayesian Computation (ABC) approximates the posterior distribution p(θ|X) ∝
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p(X|θ)p(θ) using only forward simulations and without computing the likelihood [96].

The basic Rejection ABC is presented in Algorithm 1.

Algorithm 1: Rejection ABC

Input: simulator model p(θ,X), distance function d, observed dataset Xo,
tolerance ε, N posterior samples

Output: {θi}N ∼ p(θ|X)
samples = {};
while length(samples) < N do

Sample from the prior θ ∼ p(θ);
Draw a simulation X ∼ p(X|θ);
if d(Xo, X) < ε then

samples = samples
⋃
θ

end

end

When X is high dimensional, comparing exact trajectories often results in very low

acceptance rates due to the curse of dimensionality. For this reason, it is standard practice

to trade bias for efficiency by first reducing the dimensionality ofX using a set of summary

statistics, S(X), and subsequently comparing trajectories using d(S(Xo), S(X)), where

d is a user selected distance function. This can lead to much higher acceptance rates,

however, selection of an appropriate S(X) for any given model can be difficult.

Regression-Based Summary Statistics

The performance of ABC is highly dependent on having an effective set of summary

statistics for the experimental data, which becomes increasingly difficult for domain ex-

perts to hand-select as the dimensionality of the problem grows [96]. For stochastic

biochemical reaction networks, where data is often in the form of sample paths of molec-

ular species over time, this is a common issue due to complexity of trajectories where

simple means and correlations may not effectively capture the features. For this reason,

significant focus has recently been given to the automatic learning of summary statistics
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from model simulations, which we will refer to as regression-based summary statistics.

Fearnhead and Prangle [30] formulate the problem of regression-based summary

statistics for ABC as a least squares estimation of the posterior mean:

S(X) = E[θ|X] = fΦ(X) (3.1)

θ|X ∼ N (fΦ(X), 1) (3.2)

θ = fΦ(X) + ε, (3.3)

where fΦ is an arbitrary expressive function and ε is standard normal noise. The parame-

ters of fΦ are fit using maximum likelihood on a simulated datasetD = {(θ0, X0) · · · (θN , XN)}

drawn from the model p(θ,X). While initially proposed as a linear fΦ(X) for each param-

eter, nonlinear Neural Network architectures have shown promise in producing accurate

results [57]. For discrete stochastic models, Akesson et al. [3] show that Convolutional

Neural Networks (CNNs) tend to outperform other architectures. The general procedure

for this is detailed in Algorithm 2.

Algorithm 2: Constructing a Summary Statistic

Input: prior p(θ), SSA simulator p(X|θ), N samples
Output: calibrated S(X) = fΦ(X)
samples = {};
for i = 1 : N do

Sample from the prior θ ∼ p(θ);
Draw a trajectory X ∼ p(X|θ);
samples = samples

⋃
(θ,X)

end
Train S(X) = E[θ|X] = fΦ(X) using samples.

A major bottleneck of regression-based summary statistics is their requirement to

first draw a large number of simulations N to train accurate summary statistics. For dis-

crete stochastic models which rely on expensive simulators such as Gillespie’s stochastic
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simulation algorithm (SSA) [37] for generating exact trajectories, this step introduces a

significant overhead in ABC. Fortunately, many faster approximate simulators exist for

biochemical reaction networks, such as Ordinary Differential Equations (ODEs) in the

form of the reaction rate equations (RRE), the Chemical Langevin Equation (CLE)[39],

or τ -Leaping [84]. However, training a regression-based summary statistic using an ap-

proximation will inevitably lead to bias due to the unknown approximation error as the

summary statistics will learn incorrect features.

In this work we propose to use data driven machine learning models to train approx-

imate summary statistics for discrete stochastic models using a mix of samples from an

approximate simulator and the SSA. This is done with the aim of significantly lowering

the computational cost while also mitigating the potential introduced bias in a black-

box way. The key insight used for this is that, although the quality of an approximate

simulator can vary significantly as we move around parameter space, in many parts it

is sufficiently accurate, but also often unknown. To take advantage of this, we train an

approximate ratio estimator to inform when the approximation is significantly different

and thus when we need to simulate using the SSA to prevent bias. In the following, we

demonstrate the ability for our algorithm to effectively reduce the number of expensive

SSA calls made, while maintaining accuracy of the learned summary statistics.

3.2 Results

Approximate Summary Statistics Overview

The goal of our algorithm is to reduce the computational cost of constructing a set

of regression-based summary statistics for ABC by leveraging the availability of a single

approximate simulator. This is accomplished by our algorithm in two major steps. First,
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a ratio estimator is trained to distinguish between approximate and SSA trajectories

using M samples from both simulators. Next, to train the summary statistic, N −M

additional samples from the approximate simulator are drawn and passed through the

ratio estimator. If the ratio estimator falls below a certain threshold, indicating that it is

significantly different than the true model, we resample it using the full simulator, pre-

venting unnecessary resamples from the costly SSA. For complete details see ”Methods”

and Algorithm 3.

Experiments

To assess the computational savings of our method, we evaluate our method on four

discrete stochastic models of varying complexity and compare to the baseline Algorithm 2

which uses no approximate simulations. We report the total number of SSA calls used to

train a summary statistic as opposed to wall clock time due to the highly parallelizable

nature of the problem. The baseline method utilizes N SSA calls but produces the most

accurate summary statistic by definition. Accuracy of the resulting summary statistic is

evaluated using normalized posterior mean absolute error E% [3] on a large hold out test

set of SSA trajectories. We briefly explain E% in the following section.

For each experiment, we denote X for trajectories that are simulated from SSA and

X̃ for trajectories simulated from the approximation. Each trajectory is also labeled with

Y = {0, 1} where Y = 1 indicates that the trajectory came from the SSA simulator and

Y = 0 indicates that the trajectory came from the approximate simulator. Errors are

reported using 15 replications of training and evaluation. We also plot the predictions of

the trained approximate ratio classifier on samples drawn from the approximate simulator

for each experiment. The output of this is interpreted as the probability, under the

trained ratio estimator, that the approximate trajectory X̃ at θ came from the SSA
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model, P (Y = 1|X̃, θ). Values near 0 or 1 inform the decision to resample using the

SSA model, as we know that the true class label for X̃ is Y = 0. Probabilities near

0.5 indicate that the ratio estimator cannot distinguish between SSA and approximate

samples and the approximate does not need to be resampled. Complete details for each

experiment can be found in the Supplementary Materials.

Normalized Posterior Mean Absolute Error E%

We evaluate the performance of our experiments using the normalized posterior mean

absolute error E% [3], which is defined as,

E% =
Eθ∈p(θ)|θ − θ̂|
Eθ∈p(θ)|θ − θ̄|

.

In this setup, θ̂ is the posterior mean and θ̄ is the prior mean. This quantity can be

approximated for a uniform prior U(a, b) over a set of N test points as

E% ≈
4

b− a
1

N

N∑
i=1

|θi − θ̂i|,

where θ̂i is obtained using the regression based summary statistic, which is trained to

predict the posterior mean.

E% aims to quantify the information gained in the posterior distribution. A value

of E% = 1 indicates no information gained while values of E% < 1 indicate relative

accuracy improvements. The true value of this quantity depends on the informativeness

of observations, which is unknown in general for most problems. For this reason, the

quality of different summary statistics are compared relative to each other under the

assumption that the SSA trained summary statistic is maximally informative and the

ground truth.
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Figure 3.1: Calibrated Ratio Estimates for the Pure Birth Process (a) The
trained ratio estimator captures that the τ -Leaping approximation is exact, assigning
a probability of 0.5 to all samples. (b) The posterior from both summary statistics
captures the ground truth.

Pure-Birth Process

The Pure-Birth Process, or homogenous Poisson Process, is a trivial example where

the likelihood is tractable and the τ -Leaping approximation produces exact trajectories

for all parameter values. In a biochemical system, the pure-birth process represents the

spontaneous generation of a molecular species at a fixed rate, which, while simplistic by

itself, is often a fundamental component in more complex models. The model is described

by a single parameterized reaction:

φ
k→ S,

with initial condition of S0 = 0. We assign a wide uniform prior k ∼ U(0, 10000) and

observe the process at times t = {0 : 100 : 1}. Though trivial, this example explores

the ability to learn the correct approximate ratio-estimator, which should always predict

around 0.5 due to the exactness of the approximation.

Figure 3.1a. shows the output of the approximate ratio estimator trained on only
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M = 300 samples from the parameter space and evaluated on 5000 samples from the ap-

proximate model. The concentration around 0.5 indicates that the ratio estimator is able

to detect that the two models evaluate the same likelihood. Indeed, in Figure 3.1b, we

see that the posterior distributions using summary statistics trained via only τ -Leaping

samples or only SSA samples are effectively the same. In this situation, we use a very

small amount of samples from the SSA model to build the ratio estimator but otherwise

rely entirely on the τ -Leaping approximation for no loss in accuracy.

Lotka-Volterra Stochastic Oscillator

A more challenging and commonly used test problem is the Lotka-Volterra stochastic

oscillator. This model describes predator-prey population dynamics and can be modelled

as a discrete stochastic system. The system is specified via the following set of reactions:

S1 + S2
k1→ 2S1 + S2 S1

k2→ φ

S2
k3→ 2S2 S1 + S2

k2→ S2

with initial populations of S1(0) = 50, S2(0) = 100. We assign the same priors and obser-

vation frequency as [73] and select a deterministic ODE as our approximating simulator.

A key characteristic of this model is that, over the specified prior, only a small region

of parameter space leads to consistent oscillations in both the ODE and the SSA mod-

els. In most other regions, population explosions are the typical behavior. We train the

ratio estimator using M = 3000 samples and train the summary statistic with N = 105

samples. E% is evaluated using 300000 hold out SSA test samples.

As shown in Figure 3.2a, the trained ratio estimator assigns significant mass around

0.5 but with heavy tails, suggesting that some proportion of samples should be resampled

using SSA for better accuracy. Figure 3.2b shows the sensitivity of E% as we increase
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Figure 3.2: Trained Ratio Estimates for the Lotka-Volterra Stochastic Os-
cillator (a) The trained P (Y = 1|X̃, θ) for the Lotka-Volterra easily classifies many
cases, indicated by the peak at the left tail, but remains uncertain for the majority.
(b) As the proportion of included SSA calls increase using the ratio estimator, the er-
ror quickly falls. Note the nonlinear x-axis, suggesting a very stiff decline in error. (c)
Posterior marginals for the four parameters shows that all three summary statistics
are able to perform roughly equivalently in the oscillating region.
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the proportion of SSA samples according to the ratio estimator. In this case, the error

rapidly reduces to the level of the full SSA summary statistic by introducing only 1.5% of

SSA samples. Assigning an insufficient proportion of SSA samples leads to significantly

larger errors.

Figure 3.2c shows the posterior distribution of the trained summary statistics for

a set of observations in the oscillatory regime. All three posteriors are able to capture

the true parameters, indicating that for certain parts of parameter space, the ODE and

the approximate ratio summary statistic can perform just as well as the SSA trained

summary statistic. However, the lower E% indicates that globally the mixed summary

statistics may perform better. Of note in this example is that, despite the ODE being

deterministic, we still obtain good results, demonstrating the robustness of the method

to having a perfectly precise ratio estimator.

Comparison to Random

Proportion of SSA Samples Random E% Ratio Estimator E%

0.015 0.79 [0.63, 1.51] 0.65 [0.57, 0.75]
0.025 0.71 [0.56, 0.94] 0.66 [0.56, 0.70]
0.030 0.66 [0.56, 0.87] 0.62 [0.56, 0.71]

Table 3.1: Approximate Summary Statistic Median E% for Lotka-Volterra
for 100 iterations with 90% intervals

In Table 3.2, we show the performance of summary statistics for the Lotka-Volterra

model trained by randomly including a fixed proportion of SSA samples instead of using

the ratio estimator. We see that, while the randomly trained summary statistic can

produce results comparable to our ratio estimator approximate summary statistic, it is

far less robust, especially when the proportion is small. This makes sense because as we

include more random samples, the chance of randomly including the same samples as the

ratio estimator becomes much higher. Since the Lotka-Volterra model does not really
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require many SSA samples as seen from our experiments, this happens relatively quickly.

Genetic Toggle-Switch

The Genetic Toggle-Switch is a model for a biological system which exhibits stochastic

switching behavior at low-population counts. This system is described by the following

set of reactions:

φ

α1
1+V β→ U φ

α2
1+V γ→ V

U
µ→ φ V

µ→ φ

with initial conditions U = 10, V = 10. We use an adaptive τ -Leaping solver [11] as

our approximate simulator, which in this model produces trajectories with consistently

higher population counts than the SSA model. Since these differences correspond to areas

that have small population counts, the difference in ensemble results are significant. We

train the ratio estimator using M = 5000 and train the summary statistic using a budget

of N = 105. E% is evaluated using 300000 hold out SSA test samples.

Figure 3.3a shows the predicted ratios for all 105 low-fidelity samples after training,

indicating that the classifier can easily distinguish the correct class of most of the τ -

Leaping samples. However, as there is still mass near 0.5, we are able to reduce the

number of SSA calls by 50% while only losing 3% in E%. Under this prior, though

most of the parameter space leads to small population counts, significant portions lead

to growth in the populations of U and V , where the τ -Leaping approximation is more

accurate. The trained ratio estimator is able to capture this difference and prevent

expensive resampling.
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Figure 3.3: Trained Ratio Estimates for the Genetic Toggle-Switch (a) The
trained P (Y = 1|X̃, θ) can easily classify most of the cases. (b) The E% error only
slightly increases by using our mixed training set but still reduces SSA calls signifi-
cantly.

Vilar Oscillator

To investigate our method on a larger problem with a questionable approximation, we

look at a stable stochastic genetic oscillator [114] modelling a circadian clock. The system

is defined with 9 species and 18 reactions controlled by 15 rate constants, and is designed

to produce robust oscillations in the presence of intrinsic noise. See the Appendix for

further details for the reactions of this model. The Vilar Oscillator is a challenging

problem for inference due to oscillations of a certain amplitude being localized to small

region of parameter space coupled with the large prior space. We use an ODE model

with log-normal noise as our approximation and only observe species C,A, and R of the

system. Under the observational settings for this model, the parameters are generally

poorly identified [3]. The ratio estimator is trained using M = 10000 and the summary

statistic is trained using N = 200000. E% is evaluated using 300000 hold out SSA test

samples.

Figure 3.4a shows that the trained approximate ratio estimator is able to easily classify

most of the ODE solutions with added noise, suggesting that the ODE model is a fairly
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Figure 3.4: Trained Ratio Estimates for the Vilar Oscillator (a) The trained
P (Y = 1|X̃, θ) can easily classify most of the cases. (b) The E% error only slightly
increases by using our mixed training set but still reduces SSA calls significantly.

poor approximation. While this model is robust to noise and the mean is captured well by

the ODE, at the same time, the log-normal noise does not properly capture the variance

and the ratio estimator is able to distinguish the two. This is potentially also useful

to diagnose whether an approximation is appropriate to study the model. Nevertheless,

due to the addition of noise, the ratio estimator remains uncertain about some areas and

we are still able to reduce the number of SSA calls by 20% and obtain a similar E%

to that of the full SSA dataset as seen in Figure 3.4b. This shows that, even when the

approximation is poor, computational savings can still be accomplished while maintaining

accuracy by intelligently selecting resamples according to the ratio estimator.

3.3 Discussion

Total Simulations Total SSA Calls % Reduction in SSA Calls
Pure-Birth 30000 0 -100%

Lotka-Volterra 100000 9954 -90.0%
Genetic Toggle-Switch 100000 43699 -56.3%

Vilar Oscillator 200000 151164 -24.4%

Table 3.2: Ratio-Estimated Approximate Summary Statistic SSA Calls
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Approximate Only SSA Mixed % Change in E%

Lotka-Volterra 2.24 0.63 0.64 -1.6%
Genetic Toggle-Switch 0.70 0.57 0.59 -3.5%

Vilar Oscillator 0.75 0.70 0.71 -1.4%

Table 3.3: Approximate Summary Statistic Average E%

Tables 3.2 and 3.3 summarize the primary results for all of the experiments. The

results report the average E% over 15 replications as aforementioned. Notably, in each

case, using our method we are able to train a summary statistic using significantly fewer

expensive SSA calls with only a small loss in accuracy. Overall the trained ratio estimator

is able to detect when the approximate simulator is good and thus when to lean heavily

into the approximate simulator for training.

Practical Implementations

While a precise ratio estimator will inevitably lead to an accurate algorithm, we find

that in many cases, the ratio estimator for training a summary statistic does not need to

be incredibly accurate. In fact, a very expressive ratio estimator may overfit to noise and

lead to perfect classification while less expressive ratio estimators can produce a similar

level of accuracy in the summary statistic. This is most apparent when we use an ODE as

an approximation, where the ratio estimator can quickly learn to discriminate based on

the smoothness of solutions. Nevertheless, this can still be useful for summary statistics,

as approximate models can often still represent the high-level features. In our examples,

we used a variety of Neural Network architectures to learn the ratio estimator, but we

find that often, a simple DNN suffices to obtain similar results. For the Lotka-Volterra

ODE model, we use a DNN to prevent overfitting to noise, as mentioned above. We

use a CNN architecture similar to [3] for the other models where the approximation is

stochastic, and suggest a similar approach based on the approximate simulator used.
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Figure 3.5: E% error vs Number of Ratio Estimator Training Samples for
Lotka-Volterra LargerN increases the accuracy and robustness but with diminishing
returns. Selecting M is highly model dependent.

Selecting the number of samples M to train the ratio-estimator is important both

for the efficiency and accuracy of our method. In general, M depends on how sensitive

the output of the model is through parameter space. If the model exhibits heavily varies

throughout parameter space, M would naturally need to be larger to capture this. In

Figure 3.5, we show the performance of the approximation trained summary statistics as

we change the number of initial samples M for the Lotka-Volterra model. While this is

highly model dependent, we can see that in this case, the number of samples does not

need to be high to obtain good accuracy for the summary statistic. As the approximation

is relatively accurate and behavior does not rapidly change through parameter space,

we only need to add full simulations from a few locations to obtain an accurate ratio

estimator. After which, larger M only marginally changes the accuracy or robustness of

the summary statistic.

In selecting ρ, we are trying to maximize accuracy while minimizing the number of
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SSA samples. An effective heuristic is to simulate a large batch of cheap, approximate

trajectories, pass it through the ratio estimator, and choose ρ to capture the first major

mode in the distribution. For the Lotka-Volterra model, Figure 3.2a would suggest

to set rho to around 0.01. Empirically, we find that setting the threshold quite low

and effectively only correcting for the worst cases can still produce effective summary

statistics. Optimal selection of ρ is something to investigate in the future, as it represents

a key computational trade-off.

Learning an approximate ratio-estimator via binary classification, while generally an

easier task than learning summary statistics, can be expensive if the parameter space is

very sensitive or very high dimensional. In these cases, to distinguish between models we

may need to set M to a large number to get the precision needed. In our examples, we are

able to use a much smaller number of samples than needed to train the summary statistic.

As model complexity increases, the number of training samples needed to learn a good

ratio estimator will likely increase. One possibility to save some computational cost is

to pre-train the first layers of the ratio-estimator to be an encoder, and then fine-tune

the encoder layers to learn the summary statistic. This would act as a semi-supervised

algorithm [59] that may be useful for learning a good summary statistic.

Related Work

The use of multifidelity simulators for Approximate Bayesian Computation has been

explored, but under the assumption of the existence of a set of summary statistics.

Prescott and Baker[80] construct a similar decision process for using multifidelity sim-

ulators within ABC-MCMC and ABC-SMC algorithms. In their method, they derive

optimal continuation probabilities from a set of assumptions, while we take the more

black-box approach of using Deep Neural Networks and approximate ratio estimators.
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Approximate Likelihood Ratios have been used to perform likelihood free inference

within both an MCMC and an ABC framework [48, 106, 20, 7]. These works have mainly

focused on estimating the likelihood ratios within a single model at different parameter

points, whereas our focus is on estimating the likelihood ratio between approximate and

full models.

3.4 Methods

Approximate Summary Statistics

Given access to an approximate simulator q(X̃|θ) and the full SSA simulator p(X|θ)

for a given discrete stochastic biochemical system, our goal is to train a summary statistic

according to (3.1) that utilizes as many approximate samples as possible, while mitigating

the bias in doing so. We assign a computational budget of N total simulations and

assume that the approximate simulator is much faster to simulate from than SSA. For

discrete stochastic models, this assumption is accurate much more often than not. As

the approximation error is often non-trivial, training a summary statistic using only

approximate trajectories will likely lead to bias depending on the problem.

Constructing an Approximate Dataset for Training via Likeli-

hood Ratios

Our approach to solving this problem is to treat each sampling step as a decision

on whether the approximate simulation is sufficient. Specifically, suppose that for each

sample, we draw θ ∼ p(θ) and then simulate from the approximate simulator X̃ ∼

q(X̃|θ). The sample X̃ will induce bias in training S(X) if at θ, q(X̃|θ) is significantly

different from the full SSA simulator p(X̃|θ). Intuitively, to avoid this bias, we will need
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to resample, X ∼ p(X|θ) and discard X̃. Computational savings will be attained if,

in a substantial portion of parameter space, the approximate simulator yields a good

approximation to that of SSA.

We quantify the difference between the two models using the likelihood ratio be-

tween the SSA model and the approximate model evaluated at the approximate sampled

trajectory X̃ and θ:

r(X̃, θ) ,
p(X̃|θ)
q(X̃|θ)

. (3.4)

This can be seen as conducting a hypothesis test at each step to determine whether there

is sufficient evidence to distinguish which simulator the trajectory came from. If at a

given θ and X̃, we cannot distinguish whether it came from the approximation or the

full model, using the approximate simulation should induce little bias. If the two models

produce the exact same likelihood, we would expect a value of 1, expressing indifference

between the two. Most importantly, evaluating this ratio often requires simulating only

from the approximate simulator, requiring a call to SSA only if we are not confident in

the approximate trajectory.

Unfortunately, for discrete stochastic biochemical models, this ratio is unavailable

due to the intractability of the likelihood. However, using recent advances in machine

learning, we can construct powerful approximations to the likelihood ratio.
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Approximate Ratio Estimation

Algorithm 3: Summary Statistic with Approximate Simulators

Input: prior p(θ), SSA simulator p(X|θ), approximate simulator q(X|θ), M

ratio-samples, N samples, tolerance range ρ

Output: calibrated S(X) = fΦ(X)

ratio samples = {};

for i = 1 : M do

Sample from the prior θ ∼ p(θ);

Draw a trajectory X ∼ p(X̃|θ);

ratio samples = ratio samples
⋃

(Y = 1, X, θ);

Draw a trajectory X̃ ∼ q(X̃|θ);

ratio samples = ratio samples
⋃

(Y = 0, X̃, θ);

end

Train r̂(X, θ) = p(Y = 1|X, θ) using ratio samples;

samples = {(X1, θ1), . . . (XM , θM)};

for i = M : N do

Sample from the prior θ ∼ p(θ);

Draw a trajectory X̃ ∼ q(X̃|θ);

if r̂(X̃, θ) < ρ or r̂(X̃, θ) > 1− ρ then

Draw a trajectory X ∼ p(X|θ);

samples = samples
⋃

(θ,X);

else

samples = samples
⋃

(θ, X̃);

end

end

Train S(X) = E[θ|X] = fΦ(X) using samples.
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Although the likelihood ratio in (3.4) cannot be directly computed, recent work has

shown that it can be well approximated by using a binary classifier to distinguish between

samples from the two different models [20, 44, 106]. Specifically, suppose we assign labels

Y = 1 to trajectories X ∼ p(X|θ) and Y = 0 to trajectories from X̃ ∼ q(X|θ). If we

have access to a probability p(Y = 1|X, θ), the likelihood ratio is directly related via:

p(Y = 1|X, θ) =
p(X|θ)

p(X|θ) + q(X|θ)
(3.5)

r(X, θ) ,
p(X|θ)
q(X|θ)

=
p(Y = 1|X, θ)

1− p(Y = 1|X, θ)
. (3.6)

As we do not have access to p(Y = 1|X, θ), we must approximate it. Recent advances

in deep learning have demonstrated how to build powerful approximations to p(Y =

1|X, θ) despite the dimensionality of the trajectories X:

Y ∼ Bernoulli(φ(X, θ)) (3.7)

p̂(Y = 1|X, θ) = φ(X, θ) =
exp(fψ(X, θ))

1 + exp(fψ(X, θ)
(3.8)

with dataset

D = {(θ1, X1, 1), (θ1, X̃1, 0), · · · , (θM , XM , 1), (θM , X̃M , 0)}.

Despite the need to train a ratio estimator, the binary classification task is easier than the

regression task, allowing us to use fewer training samples than for training the summary

statistic. The parameters of fψ are estimated via maximum likelihood. With this initial

step, we describe the full summary statistic training procedure in Algorithm 3. As

p(Y = 1|X, θ) is directly proportional to r̂(X, θ), we use the probability as a more

interpretable surrogate within the algorithm.

44



ABC Summary Statistics for Stochastic Biochemical Reactions via Approximate Simulators
Chapter 3

Implementations of this algorithm and replications of the experiments can be found

at https://github.com/rmjiang7/approximate_summary_statistics.

3.5 Conclusions

We have presented a method to utilize approximate simulators together with exact

simulators of discrete stochastic reaction models to train summary statistics for ABC.

Using advances in Machine Learning and approximate ratio estimators, we demonstrate

that when properly calibrated, we can significantly reduce the number of expensive SSA

calls required for learning a summary statistic. Using four examples of reaction sys-

tems, we showed that significant computational savings can be achieved while preserving

accuracy of approximate summary statistics.

In this work we have focused on utilizing only a single approximation at a time. In

practice, there are numerous approximations available for the same model of varying

accuracy. Extending this method to choose between different levels of approximations

could further reduce the number of full SSA calls needed, even in cases where one of the

approximations is sufficiently poor in all regions.
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Chapter 4

Bayesian Systems Identification of

Mass-Action Biochemical Reaction

Networks

In the previous chapter, we discussed the problem of parameter estimation and inference

for biochemical reaction networks. However, parameter estimation largely assumes that

the biologist is aware of the underlying reaction system, but unaware of the reaction

rates. In many realistic situations, a biologist will only have partial knowledge of the

reaction system, potentially missing several key components. To this end, a complemen-

tary problem to parameter estimation is inference of the structure of the reaction system

itself.

In this chapter, we present our work Identification of Dynamic Mass-Action Bio-

chemical Reaction Networks Using Sparse Bayesian Methods [104] which focuses on the

problem of inferring the structure of a reaction system. Specifically, we describe how we

can utilize the assumption of mass-action kinetics to construct a flexible statistical model,

and then apply recent techniques in Bayesian sparsity priors to recover interpretable re-
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action systems. In addition, we show how the latent variable formulation of the problem

allows for unique observational models without additional bias while still being amenable

to Bayesian inference using modern efficient samplers. We conclude with a discussion of

the significant challenge of identifiability of these systems, which poses a problem for any

solution.

4.1 Abstract

Identifying the reactions that govern a dynamical biological system is a crucial but

challenging task in systems biology. In this work, we present a data-driven method to

infer the underlying biochemical reaction system governing a set of observed species con-

centrations over time. We formulate the problem as a regression over a large, but limited,

mass-action constrained reaction space and utilize sparse Bayesian inference via the reg-

ularized horseshoe prior to produce robust, interpretable biochemical reaction networks,

along with uncertainty estimates of parameters. The resulting systems of chemical reac-

tions and posteriors inform the biologist of potentially several reaction systems that can

be further investigated. We demonstrate the method on two examples of recovering the

dynamics of an unknown reaction system, to illustrate the benefits of improved accuracy

and information obtained.

4.2 Introduction

Reconstructing the correlated reactions that govern a system of biochemical species

from observational temporal data is an essential step in understanding many biological

systems. To facilitate this process, we propose a robust, data-driven approach based on

a sparse Bayesian statistical model. Our approach exploits sparse Bayesian priors and an
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unbiased observational model to recover a parsimonious, interpretable reaction system

from mass-action relations, utilizing very little user input. On a set of simulated test

problems, the method demonstrates increased robustness and decreased bias at different

levels of measurement variability, while also producing interpretable reaction systems and

quantifying uncertainty. As a tool, the approach can be used to flexibly interrogate bio-

logical systems while allowing incorporation of potentially uncertain domain knowledge

to improve the efficiency and identifiability of the problem.

Developments in high-throughput experimental methodologies in biology have en-

abled the collection of massive amounts of time varying molecular data at small scales.

This has resulted in significant advances in understanding the biochemical networks and

mechanisms underlying physiological processes such as gene regulation. Indeed, greater

understanding of regulatory processes at the single cell level can aid in the development

of targeted therapies for diseases such as cancer [2, 74, 118]. A major challenge in this

process is the translation of high-throughput, observational molecular data into analyz-

able and interpretable reaction networks. Typically, this is accomplished by utilizing

significant biological insights to first define a reaction system, and then calibrating the

model based on collected data, which while accurate, requires substantial time and effort

to iterate. An appealing avenue is to utilize data-driven approaches for systems identi-

fication, whereby plausible biochemical reaction networks are generated and estimated

directly from data without the need to initially propose a system. While recently, many

such methods have been developed to infer networks from a wide variety of different

datasets, it remains a challenging statistical and computational task [16]. Most works

of estimating networks typically focus on either reconstructing a network without as-

suming any known dynamics due to destructive time series measurements [65, 61, 53],

or producing networks that replicate dynamics, but without focusing on interpretability

[64, 121, 68, 72, 35].
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In this work, we are primarily interested on identifying interpretable mass-action bio-

chemical reaction networks using only the observed time series of species concentrations.

Expanding upon the problem formulation first proposed as Reactive SINDy in [51], we

automatically enumerate the allowable mass-action reactions given a set of species and

a library of ansatz reactions and utilize advances in sparse Bayesian inference to gen-

erate posterior distributions of interpretable biochemical reaction systems. Compared

with Reactive SINDy, our method provides uncertainty estimates over potential reaction

systems, reduces a major source of bias in the previous method, and produces poten-

tially several interpretable reaction networks. Furthermore, the transparent statistical

formulation of the problem allows us to easily incorporate existing, potentially uncertain,

domain knowledge via prior distributions to improve the efficiency and identifiability of

the problem.

The remainder of this paper proceeds as follows. In Materials and Methods, we de-

scribe mass-action biochemical reaction networks and formulate the problem of inferring

these networks from observational data. Next, we propose improvements to the existing

methodology and describe the specifics of the proposed model applied to inference of

reaction networks. In Results, we demonstrate how our methodology can be used in two

different examples to retrieve interpretable networks from observational concentration

data. We close in Discussion by noting a few details for usage, detailing some future

directions, and mentioning the limitations of our method. All implementations and code

can be found at https://github.com/rmjiang7/bayes_reactive_sindy.
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4.3 Materials and methods

4.3.1 Mass-action Biochemical Kinetics

Systems of biochemical species reacting under any number of reaction channels are

commonly modeled dynamically using the framework of chemical kinetics. Specifically,

denote X(t) ∈ RN as the vector of concentrations of each of N species at time t. The

evolution of the system can be modeled using the following set of coupled ordinary

differential equations (ODEs) formally known as the reaction rate equations:

dX

dt
= Sf(X), (4.1)

where S ∈ ZN×D is the stoichiometric matrix with D reactions among N species and

f(X) is the vector of all rate functions.

Although theoretically, f(X) can take the form of any nonlinear function, in this

work we assume that the system follows mass-action kinetics [115] and thus, the reaction

rates are proportional to the product of the concentrations of each reactant in the case

of multiple reactants, and proportional to the concentration of the reactant in single

reactant reactions.

4.3.2 Network inference for mass-action reaction systems

Suppose we observe a time series of N species concentrations at T discrete times:

X̂(tj) ∈ RN , j = {0, . . . , T}.

Given this data and assuming that the system is governed by up to 2nd-order mass-

action kinetics and the dynamics of Eq. (4.1), we wish to recover a parsimonious system
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of expressible reactions that can explain the observed data.

Under these constraints, this problem can be posed as a linear regression, given a

library of ansatz reactions. More specifically, suppose we initially specify a large set of

D possible reactions among the N species in our system. Each reaction can be expanded

into a stoichiometry s and a rate function f(X), where the rate function is known due

to the assumption of mass-action rate kinetics. Let Sc ∈ ZN×D denote the complete

stoichiometric matrix constructed by stacking all D stoichiometries into a matrix. The

reaction rate equations then take the form,

dX

dt
= STc



k1f1(X)

k2f2(X)

· · ·

kDfD(X)


, (4.2)

where ki > 0 is the unknown rate-constant and fi is simply a product of the reactants for

the i-th reaction. Thus we aim to estimate k such that, when solved, Eq. (4.2) replicates

the observations X̂ at all tj. Many methods exist to solve these types of problems, such

as ridge, LASSO, and Elastic net regression [49, 108, 127, 112].

Although Sc is potentially high dimensional, conditional on the initially specified

set of D reactions, in most situations D over-specifies the possible reactions. Hence,

to replicate the observations, a safe assumption is that most potential reactions do not

exist, which is equivalent to setting ki = 0 when the i-th reaction does not contribute

to the dynamics of the system. This assumption can be captured by estimating k using

sparse regression methods. A small reaction system can then be expressed by rewriting

the system in terms of only the non-zero reactions.

Sparse regression methods for estimating dynamical systems from data have been
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widely applied in the last few years. More generally, when Eq. (4.1) is generated from

polynomial basis functions rather than ansatz reactions, this becomes Sparse Identifica-

tion of Nonlinear Dynamics (SINDy) [10], which has been applied to biological systems

[64], though without the specific aim to recover interpretable reactions. Reactive SINDy,

as described above, expands SINDy by constraining the basis functions to such ansatz

mass-action reactions. Both of these methods estimate the coefficients k using LASSO

regularization, resulting in maximum likelihood networks that do not inform about the

uncertainty associated with the particular fits, an especially important feature when data

is sparse and noisy. Reactive SINDy uses finite difference derivative estimates from ob-

servations to transform Eq. (4.2) into a linear regression problem, which can result in

significant bias for estimating networks when measurements are sparse and noisy, as is

often the case in biological systems.

More specifically, using the assumptions of mass-action kinetics and the law of parsi-

mony, Reactive SINDy solves a mixed LASSO and ridge regression optimization problem.

Letting dX̂
dt

(ti) be the derivatives numerically estimated from the observations X̂(tj) via

second-order finite differences, the optimization problem solved is

Φ(X) =



k1f1(X(tj))

k2f2(X(tj))

· · ·

kDfD(X(tj))


k = arg min

k
(

1

2T
‖X̂− Φ(X)‖2

F + αλ‖k‖2 + α(1− λ)‖k‖2
2)

subject to k ≥ 0.
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The equivalent statistical model for the LASSO optimization can be summarized as

ki ∼ Laplace(λ), (4.3)

dX̂

dt
(tj) ∼ Normal

(
STc



k1f1(X(tj))

k2f2(X(tj))

· · ·

kDfD(X(tj))


, 1

)
, j = 0, . . . , T,

which can also be fit using Bayesian methods to provide uncertainty estimates.

In this work we improve on Reactive SINDy in two key ways. First, we estimate k

using the sparse Bayesian regularized horseshoe prior to obtain uncertainty estimates as

well as to introduce a natural way of incorporate existing domain knowledge via prior

distributions. Second, we avoid biased numerical derivative estimates by re-formulating

the statistical model in terms of the solution of the ODE. This better captures the

observational model and allows us to incorporate alternative models of measurement

noise. Using recent advances in automatic differentiation software for sensitivity analysis

of ODE systems [4, 13, 15, 27], this can be solved efficiently and provides more accurate

solutions, especially in the case of sparsely measured data.

4.3.3 Bayesian Reactive SINDy

In this section we introduce the regularized horseshoe prior [76] used in our Bayesian

formulation of the Reactive SINDy model and the modified observational model, which

better captures the measurement process and avoids biased, low-order derivative esti-

mates. We construct the complete stoichiometric matrix Sc using a library of possible

mass-action ansatz reactions and all reaction rates are specified by k as indicated in

Eq. (4.2) Details for how we construct a set of ansatz reactions can be found in the
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Appendix.

Sparse Bayesian regularized horseshoe priors

A challenge in implementing a Bayesian formulation of this problem is the fact that

the LASSO penalization used for sparse parameter estimation, which can be translated as

a statistical model to Eq. (4.3), does not result in sparse Bayesian posterior distributions.

Instead, we adapt the regularized horseshoe prior, an extension of the standard horseshoe

prior [14], which is a drop-in replacement for the LASSO derived Laplace prior.

Letting N be the number of species, T be the number of observations, and D be

the number of ansatz reactions, the regularized horseshoe prior placed on the reaction

coefficients k takes the form

λi ∼ Cauchy+(0, 1), (4.4)

λ̃i =

√
c2λ2

i

c2 + (τλi)2
,

ki ∼ Normal(0, τ λ̃i), i = 1, . . . , D.

This promotes sparse solutions in the following way: each reaction rate ki is given a

normal prior centered around 0 with a standard deviation of τλi, where τ is a global

shrinkage parameter shared among all reaction rates and λi is a positive parameter specific

to each reaction rate. The heavy tailed half-Cauchy priors on the individual λi allows

for the values to grow extremely large. This has the following effect:

if (τλi)
2 � c2, τ λ̃i → c

if (τλi)
2 � c2, τ λ̃i → τλi.
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Thus, if ki is estimated to be non-zero, λi is allowed to become large and ki breaks

away from τ toward a regularized value of c2, which is an estimate of the scale of the

non-zero terms. On the other hand, if ki is estimated to be zero, λi becomes small

and ki is shrunken to 0 with an often very small standard deviation. The horseshoe

prior has the effect of placing significant prior mass towards 0 for all parameters, but

allowing for any individual parameter to be non-zero if there is sufficient evidence to do

so. The regularized horseshoe further shrinks non-zero estimates using a Gaussian slab

with variance c2, to help when parameters are weakly identified and to prevent non-zero

values from growing too large.

The pivotal global shrinkage parameter τ specifies the scale of the near-zero reaction

rates, which is relevant because, compared to the spike-and-slab prior [56], the regularized

horseshoe prior is continuous in all parameters, preventing any parameter from becom-

ing exactly 0. Furthermore, smaller values of τ also result in sparser networks. For our

problem, as reaction rates can often be very small, specifying the scale at which a reac-

tion is considered negligible can dramatically affect the interpretation and the simulated

dynamics.

Following [76], we place a hyper-prior on the term c with distribution

c ∼ Inv-Gamma(a, b).

The c parameter regularizes by essentially placing a N (0, c2) prior on non-zero rates,

preventing them from getting too large. The non-regularized horseshoe is retrieved when

c2 →∞.

The regularized horseshoe prior offers a few distinct advantages compared to other

sparse Bayesian priors. Primarily, the dependency structure formed by introducing the

global τ and the local λi parameters leads to sparser solutions that can borrow informa-
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tion from other reactions. The regularized horseshoe, as a continuous relaxation of the

commonly used sparse Bayesian spike-and-slab prior [56, 67], allows for efficient Bayesian

computation using modern gradient based MCMC samplers such as Hamiltonian Monte

Carlo (HMC) [69] or Variational Inference [83]. This allows it to be implemented in

probabilistic programming languages such as Stan [12], PyMC3 [89], or Pyro [5].

Observational Model

A potentially large source of bias in SINDy and Reactive SINDy as presented in

Eq. (4.3) is the need to first estimate dX̂
dt

from observations of the system. This presents

an issue as standard methods of estimating derivatives, such as finite difference methods,

become much less accurate as the time between observations increases, resulting in heavily

biased estimates of k. To correct for this, we modify the observational model as follows:

Z(tj) =

∫ tj

0

STc



k1f1(Z(t))

k2f2(Z(t))

· · ·

kDfD(Z(t))


dt

X̂(tj) ∼ Log-Normal(Z(tj), σ), j = 0, . . . , T.

Rather than assuming that we observe derivatives of the process, as in the Eq. (4.3), this

formulation models that the underlying system follows a latent variable Z(tj), which is

the solution of the ODE. We observe noisy measurements of the underlying system X̂(tj)

at times tj. By directly modeling the observations, there is no need to pre-process the

data by estimating derivatives.

In this work, we also assume that the measured concentrations of each species are

corrupted by log-normal error. This captures both that concentration measurements are
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strictly positive and that at higher concentrations, measurements are more variable. In

addition, this formulation enables us to easily change the measurement error model to

better capture the user’s beliefs, without modifying the regularized horseshoe prior for

inferring the network. As an example, a Poisson error model, such as that explained in

[6], can be applied under the assumption that measured values are positive and discrete,

and that measurements at some time tj are distributed with mean and variance of Z(tj).

The use of MCMC for sampling enables the observational model to be configured based

on the experimental setup as long as the likelihood remains tractable.

The use of MCMC for sampling enables the observational model to be configured

based on the experimental setup as long as the likelihood remains tractable. For bio-

chemical reaction networks, PTLasso [46] apply a similar latent observation model, but

with the Laplace prior to the parameters of a biochemical reaction network, further us-

ing parallel tempering MCMC to obtain sparse Bayesian estimates on models of up to a

dozen different reactions.

The latent variable formulation also allows for the realistic scenario of observing only

some of the species in the system. Suppose that in a system consisting of 5 species, we

can only observe species n = {1, 2}. Then the observational model can be easily modified

to

Z(tj) =

∫ tj

0

STc



k1f1(Z(t))

k2f2(Z(t))

· · ·

kDfD(Z(t))


dt

X̂n(tj) ∼Log-Normal(Zn(tj), σ), j = 0, . . . , T, n = {1, 2}. (4.5)

This is possible because the latent trajectory Z does not directly depend on the observed
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values X̂. In comparison, for Eq. (4.3) used in Reactive SINDy and SINDy, the regression

directly depends on the observed values, which thus requires complete observations of

the system.

Statistical model and estimation

Combining the regularized horseshoe prior and the latent variable observational model,

the complete hierarchical statistical model is specified by

λi ∼ Cauchy+(0, 1), (4.6)

λ̃i =

√
c2λ2

i

c2 + (τλi)2
,

ki ∼ Normal(0, τ λ̃i), i = 1, . . . , D

Z(tj) =

∫ tj

0

STc



k1f1(Z(t))

k2f2(Z(t))

· · ·

kDfD(Z(t))


dt

X̂(tj) ∼ Log-Normal(Z(tj), σ).

The algorithm for network identification is then as follows. First, we construct the

complete stoichiometric matrix, Sc, and the set of linear and nonlinear reaction rate

functions f(X) implied by mass-action kinetics. In our examples, the library of reactions

consists of a large set of zero, first, and second order reactions types between all species

modeled, which is automatically defined by our implementation. We note here that our

method of generating possible reactions is intended to be general to demonstrate the

method. In practice, the set of possible reactions is something the modeler can and

should modify according to the constraints of the problem.
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Provided with Sc and f(X), the sparse Bayesian posterior distribution p(k|X̂) is

approximated from the above statistical model using the No-U-Turns [50] sampler im-

plemented in Stan [12].

As the regularized horseshoe is continuous in all parameters, no rate parameter will

be set exactly to zero. Thus to decide whether a reaction is to be removed from the

system, we employ the pruning technique adopted from [36]. Specifically, we estimate

P (τ λ̃i < δ) > p0, i = 1, . . . , D

using the posterior distribution. This can be roughly interpreted as pruning all reactions

where the posterior probability that the scale of ki is less than δ is sufficiently large.

This metric is sensible because rates which are shrunken towards 0 in the regularized

horseshoe are scaled by τλi. This leaves two tuning hyperparameters, δ and p0. These

can be calibrated for a model by choosing the threshold such that, allowing more reactions

does not improve the model’s fit to the data, while removing reactions degrades the fit.

In our examples, we find that δ = 1e−3 and p0 = 0.90 work well for these models.

The complete implementation and all replicating results can be found at https:

//github.com/rmjiang7/bayes_reactive_sindy.

4.4 Results

We demonstrate our method on two synthetic examples where data is first gener-

ated from a known system of reactions and our method is used to recover the underlying

network from a relatively large set of possible reactions. In each example, results are com-

pared to those of Reactive SINDy, to show the ability of our model to obtain a network,

with uncertainty estimates, that replicates the observations in addition to demonstrating
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the superior performance in the case of sparse observations due to the modified observa-

tional model. In the second, larger problem, we demonstrate the ability of our method

to discover multiple small reaction systems that can capture the observations and discuss

identifiability issues. Further descriptions and more precise model specifications can be

found in the supplementary materials.

4.4.1 Lotka-Volterra

The Lotka-Volterra predator-prey system is a simple but informative example of a

non-linear system with oscillatory dynamics. Although not strictly a biochemical reaction

system, we provide it as an example for evaluating the model formulation and method.

Briefly, the Lotka-Volterra system models the interaction dynamics of two species X :=

{P, Y } where P is the predator and Y is the prey. This can be described using the

following reactions:

Y
k1→ 2Y

P + Y
k2→ 2P

P
k3→ φ,

which corresponds to the following stoichiometric matrix and rate vectors under mass-

action kinetics,

S =


0 1

1 0

0 −1

 , f(X) =


k1[Y ]

k2[P ][Y ]

k3[P ]

 .
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With k1 = 1, k2 = 0.01, k3 = 0.3 and initial conditions X(t0) := {50, 100}, this gives rise

to stable oscillations.

Data is generated by solving the above system of reactions and perturbing with

Log-Normal(0, 0.2) noise at fixed times to simulate a noisy measurement process. The

reactions comprising the complete stoichiometric matrix Sc from which we will recover

the underlying system is provided in Table (4.1) and adopted from [51]. In total, there are

16 possible reactions in this system, three of which are non-zero in the original system.

Table 4.1: Library of Ansatz Reactions for the Lotka-Voltera Model
Reaction Index Allowed Reactions True Rate Constant

0 2X
k1→ 0 k1 = 0

1 2Y
k2→ 0 k2 = 0

2 X
k3→ 2X k3 = 1.0

3 X + Y
k4→ 2Y k4 = 0.01

4 X
k5→ 0 k5 = 0.3

5 X + Y
k6→ 2X k6 = 0

6 X
k7→ 0 k7 = 0

7 2Y
k8→ Y k8 = 0

8 Y
k9→ 2Y k9 = 0

9 2X
k10→ X k10 = 0

10 X + Y
k11→ X k11 = 0

11 X + Y
k12→ Y k12 = 0

12 2X
k13→ Y k13 = 0

13 X
k14→ Y k14 = 0

14 Y
k15→ X k15 = 0

15 X
k16→ 2Y k16 = 0

We generate data at three different measurement frequencies dt = {0.2, 1, 2} between

t = [0, 15] and estimate k separately for each using the same Sc. Trajectories of the two

species are shown in Fig. (4.1). For estimation from the regularized horseshoe model,

we set τ = 1e−8 and estimate c along with the other parameters by placing the prior
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c ∼ Inv-Gamma(4, 4). A total of 4000 samples are drawn using four MCMC chains.

We note that while we use MCMC for accuracy and demonstration purposes, variational

inference can also be used to obtain fast approximate solutions and is supported in our

implementations. In our experiments, we found that the variational approximations were

generally reliable, though this largely depends on the problem.

Figure 4.1: Lotka-Volterra Observation Data Simulated data used for network
identification. Log-Normal noise is added to the true trajectory, and measurement
frequency is changed to show the uncertainty in posteriors.

In Fig. (4.2a), we show the posterior credible intervals for the recovered rate constants

from each of the three measurement frequencies, which are heavily centered around the

true values for all reactions. Fig. (4.2b) shows the point estimates obtained by using

Reactive SINDy under equivalent experimental setups. Notably, both methods can re-

cover the reaction system with frequent measurements but Reactive SINDy degrades

considerably as measurements become more sparse.

More specifically, the difference in the results demonstrates the bias introduced by

estimating derivatives. At observation intervals dt = 1.0 and dt = 2.0, too much infor-

mation is lost from estimating derivatives coupled with measurement noise to obtain the

correct system. Fig. (4.3) shows the differences in inferred dynamics along with predic-
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Figure 4.2: Lotka-Volterra Estimated Reactions (a) Estimated parameters using
Eq. (4.6). Reactions correspond to the reactions specified in Table. (4.1) (b) Estimated
parameters using Reactive SINDy at different measurement frequencies as well as using
noise-less measurements.

tive uncertainty intervals from the networks recovered using our observational model, (a),

and Reactive SINDy, (b). Our model remains in phase with the observations while the

networks derived from using estimated derivatives demonstrate a systematic bias away

from the true reaction system, even in the case of dt = 0.2 due to measurement noise.

With the Bayesian treatment of the problem, we can also quantify uncertainty in the

non-zero reaction rates. This informs us of the plausible range of reaction rates, given the

observed data, and can be useful to detect which parameters the model is able to identify

with evidence of correlated reactions. In Fig. (4.4), the posterior distributions of the non-

zero estimated parameters are shown, demonstrating that as we increase measurement

frequency, uncertainty decreases. Furthermore, in this system there is mild correlation

between the reaction rates, indicating that they vary together to replicate the oscillating

behavior.
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Figure 4.3: Reconstructed Trajectories (a) Using posterior samples from Eq. (4.6).
Even at smaller observation frequencies, the observed data is accurately captured,
though (as expected) with greater uncertainty. (b) As Reactive SINDy estimates
derivatives, errors in the numerical methods lead to large deviations in the recon-
structed trajectories as sampling frequency and noise increase. Although a single
trajectory at dt = 0.2 may capture the oscillating behavior, it is clearly biased away
from the true observations.
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Figure 4.4: Lotka-Volterra: Posterior Distributions of Non-Zero Reactions
using the proposed model As expected, uncertainty in the parameters decreases as
the measurement frequency decreases, but all are concentrated in relatively the same
area. Only a single network is consistently identified given this data, indicating that
identifiabiltiy is not a problem for this system.
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Partially observed species

In the previous example, we assumed that the species were completely observed. How-

ever, under the latent variable formulation, this is not strictly required. In this section, we

demonstrate inference of the network for the identifiable Lotka-Volterra example, when

only the prey species, Y , is observed. In this case, the statistical observational model

can be changed to

Z(tj) =

∫ tj

0

STc



k1f1(Z(t))

k2f2(Z(t))

· · ·

kDfD(Z(t))


dt

Ŷ (tj) ∼Log-Normal(Z2(tj), σ), j = 0, . . . , T, (4.7)

where we apply the likelihood only to the observations of Y .

Fig. (4.5) shows the simulated trajectories and posterior distributions obtained by

using our model under this scenario. Compared to the situation where both species

are observed, the uncertainty is significantly higher for the same reactions because the

information gained from observing P is lost. However, the method is still able to retrieve

the correct networks, as the oscillating regime for this problem is generally unique.

Sums of observed species

Similar to above, the latent variable formulation we have presented allows for mod-

eling of the situation where a sum of species concentrations is observed, but not any of

the individual species. In this case, for the Lokta-Volterra system, letting W = X + Y

be the observed sum of X and Y , the statistical model can be stated as
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Figure 4.5: Identified Trajectories and Posterior from Partial Observations
The true network can still be captured using only observations of Y however the
credible intervals are significantly higher due to the loss of observations of P .

Z(tj) =

∫ tj

0

STc



k1f1(Z(t))

k2f2(Z(t))

· · ·

kDfD(Z(t))


dt

Ŵ (tj) ∼Log-Normal(Z1(tj) + Z2(tj), σ), j = 0, . . . , T, (4.8)

Fig. (4.6) shows that our model under only additive observations can still recover the

correct network under this highly identifiable model. Similar to the previous case, un-

certainties in the rate constants are, as expected, larger.

Prokaryotic auto-regulation

To evaluate the method on a larger reaction system with more possible reactions,

we explore a simple synthetic model of auto-regulation of a protein P by a gene g in a
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Figure 4.6: Identified Trajectories and Posterior from Additive Similar to the
case of observing only one Y , the true network can still be recovered in this example
however credible intervals are significantly larger.

prokaryotic cell [120]. The model is described by the following reaction system:

g + P2
k1→ gP2 (Repression)

gP2
k2→ g + P2

g
k3→ g + r (Transcription)

r
k4→ r + P (Translation)

2P
k5→ P2 (Dimerization)

P2
k6→ 2P

r
k7→ φ (mRNA Degradation)

P
k8→ φ (Protein Degradation),

where gP2 is the bound gene and r is the mRNA of protein P . Protein P represses its own

transcription by binding to an available gene location. Denoting X := {g, P2, gP2, r, P},

we generate data from the system with parameters k1 = 0.5, k2 = 1, k3 = 0.15, k4 =
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1, k5 = 0.5, k6 = 0.5, k7 = 1.5, k8 = 0.3 and initial conditionsX(t0) := {20, 20, 20, 20, 20, 20}

at dt = 0.05 for times in the interval [0, 0.5]. Furthermore, Log-Normal(0, 0.07) noise

is added to the observations. At these parameter values, g and P decay rapidly, thus a

small dt is required to provide sufficient information to the model. True trajectories and

observations are shown in Fig. (4.7).

Figure 4.7: Prokaryotic Auto-Regulation Observation Data Simulated data
used for the prokaryotic auto-regulation model. Log-normal observational noise is
added to the true trajectory.

Using our library of ansatz reactions, we construct a complete stoichiometric matrix Sc

of 260 possible reactions. The exact reactions included can be explored in the code repos-

itory. For estimation from the regularized horseshoe model in this problem, we set τ =

1e−6 and estimate c along with the other parameters by setting c ∼ Inv-Gamma(5, 25).

We run several MCMC chains to obtain results however only report the best two networks

obtained for each experiment.

Including Known Reactions

To replicate the more common situation where the biologist has prior domain knowl-

edge about the system under study, we explored the scenario where the first 4 reactions

and rate parameters, k1, k2, k3, and k4, are known with confidence and the aim is to

retrieve a system of reactions which replicates the observations, given these four known

reactions. Below, we present the results of this setting to demonstrate a realistic situa-

tion where partial knowledge about system. The same experiment when no reactions are

known is presented in the Appendix with similar results though converging to different

sparse networks.

Table (4.2) lists the two selected networks obtained from MCMC chains with the rate

constants set to the posterior median. Notably, each chain converges to different reaction
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pathways, neither of which are the true generating network. We note that, though we

only present two networks here, our method was capable of producing several different

reaction pathways with roughly the same number of reactions also capable of capturing

the data.

Table 4.2: Selected Recovered Networks for Prokaryotic Auto-Regulation
System The first 4 reactions are assumed to be known and the remaining reactions
are to be inferred by the method.

True Network Network 1 Network 2

g + P2
0.5→ gP2 g + P2

0.5→ gP2 g + P2
0.5→ gP2

gP2
1→ g + P2 gP2

1→ g + P2 gP2
1→ g + P2

g
0.15→ g + r g

0.15→ g + r g
0.15→ g + r

r
1→ r + P r

1→ r + P r
1→ r + P

2P
0.5→ P2 2r

0.05→ P 2P
0.5→ P2

P2
0.5→ 2P 2P

0.26→ gP2 2P2
0.06→ P

r
1.5→ φ P2 + gP2

0.04→ P gP2 + r
0.05→ P2 + gP2

P
0.3→ φ P2 + P

0.4→ 2P2

As Fig. (B.1) demonstrates, although the reaction networks are different from the

ground truth, the dynamics produced from each inferred reaction system appear plau-

sible, especially given the noise present in data. Fig. (B.2) shows the posterior distri-

butions of the non-zero reactions for both networks provided by our Bayesian approach.

The marginals for each reaction rate in both cases are relatively tight, indicating that

the reactions are well identified within in each discovered mode.

Reactive SINDy is also capable of inferring a network, however it is considerably less

sparse and with larger reaction rates than those from our method. Under a threshold

of 1e−2, selected such that thresholding larger reactions changes the dynamics, the best

estimated network was comprised of 24 total reactions. The full network is detailed in

the Supplementary Materials. As Fig. (B.1) demonstrates, though, the replicated trajec-

tory is still consistent with the observations. In this example, the scale of the observed
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Figure 4.8: Dynamics from the identified networks. The dynamics from both
recovered networks are different from the truth and each other, but still manage
to produce plausible dynamics when compared to the noisy data. This points to an
unidentifiability in the system, caused by noise in the data and structural identifiability
issues.

Figure 4.9: Posterior Distributions over non-zero reaction rates Pair plots of
the two distinct reaction networks inferred by the model. Reaction rates within each
network exhibit are relatively well determined. This indicates a distinct multi-modal-
ity or unidentifiability in the problem.
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concentrations and the small observation frequency provide well estimated derivatives,

resulting in minimal bias for the reactive SINDy method. Under these circumstances, it

may be preferable to utilize Reactive SINDy as it can be run significantly faster than our

method while still providing reasonable results as shown here.

That multiple networks are obtained by different chains in this problem is largely due

to the facts that our complete stoichiometric matrix constructed from the above process

does not restrict many reactions. In this, an iterative procedure can be applied, where the

recovered networks can be examined by the user for plausibility and implausible reactions

can be excluded in future runs to converge to a different reaction system. Realistically,

we expect that the complete stoichiometric matrix will often be constructed in a more

careful manner so as to eliminate many of the implausible reactions before the method is

used. We discuss the identifiability issue in the next section. Interestingly, the inferred

networks converge largely to 2nd-order reactions to describe the system. While from

a combinatorial perspective, this is not surprising considering that the ansatz library

contains significantly more 2nd-order reactions than 1st-order, a possibility is to add a

bias to the system for 1st-order reactions via a prior weight on certain reactions.

4.5 Discussion

4.5.1 Observational Model

The latent variable formulation for the observational model provides robustness when

observations are noisy or observations are not made for all of the species. In these

situations, it is valid and desirable to use this model as it takes into account the true

measurement process as demonstrated in the Lotka-Volterra example. However, this

comes at a substantial computational cost. In some situations, when all of the species are
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observed and the measurements are not too noisy, simply using the Bayesian Regularized

Horseshoe along with estimated derivatives as an extension to Reactive SINDy is sufficient

and significantly faster to identify models. The model for this is:

λi ∼ Cauchy+(0, 1), (4.9)

λ̃i =

√
c2λ2

i

c2 + (τλi)2
,

ki ∼ Normal(0, τ λ̃i), i = 1, . . . , D.

dX̂

dt
(tj) ∼ Normal

(
STc



k1f1(X(tj))

k2f2(X(tj))

· · ·

kDfD(X(tj))


, 1

)
, j = 0, . . . , T,

where dX̂
dt

is estimated numerically as previously discussed. This avoids the need to use

an ODE solver and can provide Bayesian sparsity estimates similar to PTLasso [46]. We

suggest that this method be used initially as it can often result in reasonable networks

significantly faster.

4.5.2 Identifiability

A major problem in the identification of reaction systems is the possibility of multiple

structural networks which can produce nearly identical results, especially when data

is limited and noisy. While the sparsity priors used in this paper aim to resolve this

situation by biasing estimates toward systems with fewer reactions, this remains an issue

as multiple structural pathways may still exist with a very similar number of reactions.

Immediately, this issue can be somewhat relaxed in a few ways.

73



Bayesian Systems Identification of Mass-Action Biochemical Reaction Networks Chapter 4

First, constraining the allowed reactions will naturally bias the solutions away from

certain pathways. However, this requires significant domain knowledge of the species or

the system under observation. The work of Tuza et al. [112] presents one possible way

to restrict the reaction basis to make the problem more identifiable while also using the

LASSO with estimated derivatives. Another possibility would be to first pre-process the

dictionary of functions to eliminate the indistinguishable graphs aided by the concept

of linearly conjugate reaction systems such as demonstrated in acs2016computing. Fur-

ther exploration in this direction is needed as their algorithm focuses on expanding a

known reaction system into it’s equivalents while we do not know the reaction graph at

all. This can potentially automatically eliminate the structural unidentifiabilities in the

problem before inferring the system. An interesting extension in this direction would be

to use recent advances in Machine Learning (ML) to search the literature and generate

a reasonable set of reactions given the species involved in the system [88, 82].

Alternatively, without introducing any domain knowledge, multiple MCMC chains

can be used to explore all of the different networks. As each chain is trivially paralleliz-

able, massive computational power can help explore the space more efficiently. Starting

a large number of chains at different initial points will allow the chains to converge to

different modalities and present it to the user as is in the case of the Prokaryotic Auto-

regulation model above. A user can prune implausible reaction networks and re-run the

model to converge to better solutions. The use of ML techniques such as cross-validation

on a hold-out test set to automatically rank networks based on predictive accuracy [113]

could be useful but limitations in the amount of data may pose a problem.

As explored in Reactive SINDy, the incorporation of more data such as trajecto-

ries from multiple initial conditions can also aid in improving the identifiabiltiy of the

process. Intuitively, this can be relevant in the case where certain dynamics are only

present at certain concentration levels. In this case, a straightforward modification to
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the observational model where L independent trajectories are observed could be stated

as follows,

Z(tj) =

∫ tj

0

STc



k1f1(Z(t))

k2f2(Z(t))

· · ·

kDfD(Z(t))


dt

X̂l(tj) ∼ Log-Normal(Z(tj), σ), j = 0, . . . , T l = 1, . . . , L,

where X̂l(tj) refers to the observed species concentrations at time tj for the l-th trajectory.

4.5.3 Future Directions & Limitations

Scaling

As the number of species grows, the number of possible reactions grows combinatori-

ally. This poses a significant issue computationally, as it results in a large search space for

reactions and possibly further identifiability issues as demonstrated above. The scaling

issue limits the applicability of the method to systems with a small number of active

species. One possibility is to run the method on smaller subsets of reactions to prune re-

actions in a sequential procedure. However, this may lead to bias issues as combining the

estimates from different subsets is a non-trivial problem, especially if dealing with partial

posterior distributions. Practically, biological domain knowledge can substantially help

here in limiting the allowed reactions in the system or specifying known reactions as in

Example 2.

Computationally, the latent variable approach with Bayesian Inference is significantly

more expensive than the approach used by reactive SINDy. A large part of this is the
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need to compute the sensitivities of the ODE system to obtain efficient sampling. In our

experiments, the auto regulatory network with 260 reactions took approximately 4 hours

of time on a M1 Apple ARM processor using our approach while roughly 1.5 hours to

perform a large grid search using reactive SINDy. We find that this difficulty generally

scales as a function of the number of data points in addition to the number of possible

reactions. A possibility on this end is to utilize Variational Inference to speed up the

inference component as presented in [36]. Furthermore, there are a few different methods

for computing the sensitivities of ODE systems as well as a variety of different ODE

solvers [15] that may potentially offer speedups for these types of problems. For our

experiments we employ the rk45 solver and a forward sensitivity solver as implemented

by Stan.

Hyper-parameter selection of τ

Selection of τ determines the level of sparsity of these networks and, in our experience,

is a pivotal hyperparameter to tune when using the horseshoe prior. Generally, we find

that smaller values of τ will force the near-zero reaction rates to smaller values however,

this typically leads to a significant decrease in computational efficiency when estimating

the networks. For this reason, through our experiments and set τ to a small enough

value such that the above pruning procedure removes a large enough set of reactions

while maintaining the dynamics.

Further work exploring how to properly tune and select τ in a more interpretable

way for reaction network inference problems is needed. A common strategy employed in

other models is to place the prior τ ∼ Cauchy+(0, τ0) to allow the data to adjust τ [77],

however this needs to be further explored in the context of the horseshoe for systems of

differential equations. For linear regression models, Piironen et al. [76] propose a way to
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parameterize τ0 as,

τ0 =
m0σ

(D −m0)
√
NM

,

where m0 can be derived as a guess for the effective non-zero coefficients and σ is the

measurement noise, however our models deviate from linear regression and thus the same

interpretations do not hold.

A common concern with Bayesian methods is whether the prior can be overcome with

sufficient data. While in our experience, the utilized horseshoe priors are weakly informa-

tive, and indeed can be overcome with sufficient data to obtain the true network, however

more rigorous study needs to be done for this. The particular case study demonstrated

by Golchi et al. [40] offers good insight into the strength and importance of priors in the

context of ODEs though further investigation needs to be done with respect our model

and for network inference.

Stochastic Models

Many biochemical reaction systems exhibit intrinsic stochasticity. In these situations,

Eq. (4.1) no longer sufficiently captures the dynamics of X(t) and the evolution of the

system is better described using a stochastic process. While mass-action kinetics can still

be applied, they now specify reaction propensities. To accommodate this, Eq. (4.5) can

be modified from the observational ODE model,

Z(tj) ∼ P (Z(tj)|Z(tj−1), STc ,k)

X̂(tj) ∼ P (X|Z(tj)), j = 0, . . . , T.
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where the trajectory Z comes from the stochastic process as specified by [39] while the

regularized horseshoe and Sc remain as previously defined. However, the significant chal-

lenge here is that the posterior distribution becomes intractable due to the intractable

likelihood term P (Z(tj)|Z(tj−1, S
T
c , k)), which corresponds to the solution of the chem-

ical master equation [71]. This prevents the application of standard efficient Bayesian

inference methods, which are heavily reliant on tractable likelihoods.

While there is a growing class of likelihood-free Bayesian inference methods [19] that

can be applied to stochastic biochemical reaction networks, they are known to scale

incredibly poorly to high dimensional parameter spaces. This makes it quite challenging

to utilize with our method of network inference, which introduces a new parameter for

each ansatz reaction. A possibility is to instead use stochastic approximations to the

model, such as the Chemical Langevin Equation or the Linear Noise Approximation, to

capture some intrinsic stochasticity, but also provide much more tractable likelihoods

[39, 28, 41].

4.6 Conclusion

In this work, we have presented a method to recover a parsimonious system of inter-

pretable mass-action reactions directly from observations of species concentrations over

time. Improving on the formulation presented by Reactive SINDy, we have modified the

method via the Bayesian regularized horseshoe prior and by adapting the model as to not

require derivative estimates. Our experiments show that, when identifiable, our modi-

fications are able to recover the underlying system with uncertainty estimates from the

Bayesian formulation even in sparse data scenarios. Alternatively, when unidentifiable,

we present multiple sparse reaction networks which can reasonably explain the results

and upon which a biologists can iterate.
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Chapter 5

StochSS Live! for Epidemiological

Modeling

Although most of this thesis focuses on biochemical reaction networks that capture a bio-

logical process, the techniques and models used to study these reaction systems are widely

applicable to a number of fields, including epidemiology. In this chapter we present our

work Epidemiological Modeling in StochSS Live! [101], which demonstrates the adapta-

tion of stochastic biochemical reactions networks to epidemiological models. Specifically,

we show how one can develop, implement, and calibrate a stochastic epidemiological

model using our software package StochSS Live!. The techniques are illustrated using

an example of specifying and fitting a custom stochastic epidemiological model using

Approximate Bayesian Computation to COVID-19 epidemic data in the Santa Barbara

and Buncombe counties. The results demonstrate the flexibility of our software and

methods for modeling different datasets, in addition to the heterogeneity of the resulting

parameter estimates in different regions.
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5.1 Introduction

Epidemiological models are essential tools to assist public health authorities in the

planning of policy responses to pandemic prevention and control [107]. In general, these

models are classified into different categories (deterministic/stochastic), treatment of the

populations (continuous/discrete) or spatial dependence, and distribution of the popula-

tion (homogeneous/heterogeneous) [33].

An example of a recent application of epidemiological modeling is the study of early

transmission dynamics and effectiveness of control measures in individuals infected by

the novel coronavirus disease (COVID-19). As of September 7, 2020, COVID-19 has been

responsible for over 27 million reported cases and 900,000 deaths worldwide [70]. Given

the global impact of the virus, several software tools have been developed, mostly focused

on either deterministic [31] or stochastic [100] models. These tools typically require some

level of technical expertise.

On the mathematical level, most epidemiological models are structurally identical

to models of chemical kinetics widely used in systems biology. In the systems biology

community, there has been a large focus the last decade on increasingly efficient stochastic

simulation algorithms and on tools to improve usability for modelers. We have in previous

work developed a wide range of model development and simulation tools for such models

in the StochSS Suite of Software. We believe that there is great urgency and potential for

a software environment that makes epidemiological modeling easily accessible to a wide

audience, and that bridges the notation gap needed to effectively re-use simulation tools

from systems biology for epidemiological models. To accomplish this we present StochSS

Live!, a powerful web-based tool that enables users to create models, perform simulations,

infer parameters and visualize the results through simple and intuitive workflows, and

have developed a stochastic COVID-19 epidemiological model accessible via StochSS
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Live!.

We present StochSS Live!, a web-based service for modeling, simulation, and analysis

of a wide range of mathematical, biological and biochemical systems. Using an epidemi-

ological model of COVID-19, we demonstrate the power of StochSS Live! to enable

researchers to quickly develop a deterministic or a discrete stochastic model, infer its

parameters, and analyze the results.

Availability: StochSS Live! is freely available at https://live.stochss.org/.

Supplementary information: Available at https://github.com/StochSS/Covid19_

Modeling

StochSS Live! enables easy access to the powerful feature set of the simulation and

model analysis toolkits in the StochSS Suite of Software [1, 94]. StochSS Live! builds

on and extends the model development UI from [25] in several ways: Through a set

of clear, user friendly interfaces used directly from a web browser (hence requiring no

installation), a researcher can explicitly define their model, simulate it using deterministic

or stochastic solvers, analyze and explore the parameter space using either traditional

parameter sweeps or workflows guided by unsupervised machine learning. Users can

also calibrate the model to observed data using highly scalable likelihood-free parameter

inference. For analysis needs that goes beyond the capability of the UI, StochSS Live! will

automatically generate templated Jupyter notebooks that can be shared and extended.

This automated dual representation of models and computational workflows via a UI

and as code is a defining feature of StochSS Live! and greatly simplifies collaboration

between domain and computational experts.

The StochSS Suite of Software encompasses a hierarchy of open source mathemati-

cal toolboxes which allows a researcher maximum flexibility in modeling and analyzing

their systems and assumptions. GillesPy2 provides common interfaces and a plethora

of advanced solvers for ordinary differential equations (ODE) and discrete stochastic
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simulations[1]. Spatial extensions to the same models are provided via SpatialPy 1. For

analysis of any implemented model, the Sciope toolbox [95] provides algorithms for effi-

cient model exploration [123] and parameter estimation.

5.2 Epidemiological Model

To demonstrate the use of StochSS Live! for epidemiological modeling, we consider

the infection dynamics of COVID-19 in two U.S. counties: Santa Barbara, CA, and

Buncombe, NC. The data was gathered from Santa Barbara’s health department and

[24], between March 13 - August 31, 2020. We construct an extended SEIRD model

with symptomatic and asymptomatic compartments using the StochSS Live! model

builder, as shown in Fig. 5.1-A. We divide the population into 7 groups: susceptible,

exposed, infected, symptomatic, recovered, deceased, and cleared individuals. Transition

events between these groups are shown in Fig. 5.1-A. The user can immediately preview

sample trajectories from either deterministic or stochastic versions of the system simply

by selecting the respective option (Fig. 5.1-B).

Figures 5.1-C, D show the results of parameter inference for a discrete stochastic

version of the model. Inference is performed using Approximate Bayesian Computation,

allowing for uncertainty quantification of parameters and predictions. In Fig. 5.1-C, each

realization (blue lines) corresponds to a simulation using a parameter sample from the

posterior distribution, which are contrasted with the data (black lines). Fig. 5.1-D, shows

the posteriors for parameters for both counties. While infectivity rates between the two

counties are roughly the same, the estimated lethality rate is a bit higher in Buncombe

county, although there is substantial uncertainty. We do note that this particular model

does not seem to sufficiently capture the data as evidenced in Fig. 5.1-C and would need

1https://github.com/StochSS/SpatialPy
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to be further iterated upon before any strong conclusions can be drawn.

5.2.1 Model Details and Implementation

The epidemiological model we implement is an extended version of the SEIRD model

that accounts for symptomatic and asymptomatic cases. The involved compartments

(species) are: susceptible (S), exposed (E), infected (I), symptomatic (Y), recovered (R),

dead (D), and cleared (C). The compartmental system can be visualized in Fig. 5.2.

The system evolves according to SEIR dynamics but with a chance of becoming symp-

tomatic after being exposed. We fix the rate at which exposed patients become infectious

at 0.16, which represents 6.25 day incubation period and estimate the proportion of pa-

tients who become infected vs. symptomatic. This is roughly adopted from a similar

model [32]. Specifically, we implement the following set of reactions:

Susceptible + Infected
β/N→ Infected + Exposed

Exposed
0.16(1−ν)→ Infected

Exposed
0.16ν→ Symptomatic

Symptomatic
κ→ Recovered

Symptomatic
δ→ Dead

Infected
κ→ Cleared

This model assumes that only asymptomatic transmission is possible, all asymp-

tomatic cases recover, and that all parameters are static. Of importance is that the

presented models do not really indicate a sufficient fit to the data to draw any strong
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Figure 5.1: Snapshot of the StochSS Live! web interface. (A) The user can explicitly
define populations, parameters and reactions. (B) The preview window settings allow
the user to preview simulation results for both deterministic and stochastic models.
(C) Example of parameter sweep inference in StochSS Live!. The blue lines are com-
puted realizations obtained by the stochastic solver, and the black lines correspond
to the official data. Notice that, regardless of the fact that data from Buncombe
and Santa Barbara counties have different scales and different levels of stochasticity,
StochSS Live! is capable of modeling both cases. (D) Comparison of posteriors from
Santa Barbara and Buncombe counties.
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Figure 5.2: SEIYRDC Compartmental Model

conclusions. For a complete analysis, this process needs to be repeated, changing the

model to better capture assumptions about the system. For example, we would expect

the infectivity to change over time as policies are implemented and we know that there

are non-intrinsic measurement error, such as reporting errors in the data.

The parameters of the stochastic models are estimated using the Replenishment Ap-

proximate Bayesian Computation algorithm [26] with a separate unpooled fit for each of

the two counties. The following common priors are assigned to the unknown parameters:

β ∼ U(0, 3), κ ∼ U(0, 1)

δ ∼ U(0, 0.1), ν ∼ U(0, 1).

but the observational models differ due to the nature of the data that is recorded.

Specifically, for Santa Barbara, which records the symptomatic (Ỹt), recovered (R̃t), and

dead(D̃t) cases, we use the following observational model where we denote Ỹt as the

observed species at time t and the probabilistic model corresponds to the biochemical

reaction network with stochastic dynamics from above:

Ỹt, R̃t, D̃t ∼ Yt, Rt, Dt|β, κ, δ, ν t = 0, · · · , T.
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In comparison, in Buncombe county, where only total active case Ãt and deaths D̃t

are recorded, we instead have the observational model for total active cases Ãt as:

Ŷt, R̂t, D̃t ∼ Yt, Rt, Dt|β, κ, δ, ν t = 0, · · · , T

Ãt = Ŷt + Ŷt.

The effect of this is that the observations from Buncombe county are less informa-

tive of certain parameters, as demonstrated in the parameters estimated. However, due

to the purely simulation based nature of Approximate Bayesian Computation, such an

observational model is easy to implement without the need to derive likelihoods. The

summary statistics used for inference are the normalized euclidean distances between the

observations.

Figure 5.3: StochSS Live! simulation code

Through StochSS Live!, the model can be easily specified as shown in Fig. 5.3. In this,

we show the code for Santa Barbara county, which allows for partial observations but no

sum type observations as in Buncombe county. Parallelized inference using Replenish-

ment Approximate Bayesian Computation as mentioned above can be accomplished by

passing in the simulator, observed data, and the summary statistic as shown in Fig. 5.4.
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Figure 5.4: StochSS Live! ABC code

In Fig. 5.5 we show the pairs plot of the posterior parameters for Santa Barbara

obtain from this process. Within our specified prior, the parameters are relatively well

identified.

However, in the case of Buncombe county, as shown in Fig. 5.6, this is much less

the case. This is in large part due to the cumulative observations of total active case as

opposed to the split observations that we obtained from Santa Barbara county data.

5.3 Conclusion

We have presented the epidemiological modeling capabilities of StochSS, a freely avail-

able, user-friendly platform for stochastic and deterministic simulations. StochSS Live!

and the StochSS Suite of Software offer users a unique modeling experience by providing

an integrated, web-based, solution that addresses model specification on multiple levels,

features state-of-the-art simulation algorithms for efficient simulation, and removes the

barrier of scaling computational resources when needed.

Our model of COVID-19 demonstrates epidemiological capabilities of StochSS Live!,

a freely available, user-friendly web-based service for the development, simulation and

analysis of a wide range of models. To make these capabilities as widely accessible as

possible, we provide StochSS Live!. In addition, the StochSS Suite of Software provides
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Figure 5.5: Pair plot for parameters calibrated to Santa Barbara data

the individual tools, if you wish to integrate them into your own software.
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Figure 5.6: Pair plot for parameters calibrated to Buncombe County data
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Conclusion

Throughout this thesis, we have described some of our work applying and improving

data-driven Bayesian methods for analyzing biochemical reaction networks, as well as

offering some insights into the motivating problems behind these solutions. We have

demonstrated improvements and new methods for calibrating the mathematical models

describing these complex systems and discussed some of the additional open challenges

of inference within this domain. Furthermore, we have provided many open implemen-

tations of these methods and algorithms.

We first presented our applied work on quantifying the survival risks based on the

levels of several specific blood proteins using Bayesian joint longitudinal models. In

this, we demonstrated how data-driven Bayesian techniques could help in understand-

ing biochemical processes via protein assays at the clinical scale. Then, transitioning to

the molecular scale, we described our innovations on accelerating Approximate Bayesian

Computation (ABC) for inferring the parameters of stochastic biochemical reaction net-

works. Next, we presented our method on the complimentary problem of inferring the

structure of biochemical reaction networks from data through the use of sparse Bayesian

method and a latent variable model. Finally, we closed with a short demonstration,
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along with accompanying open source software, on applying the framework of stochastic

biochemical reaction networks and Approximate Bayesian Computation to model and

calibrate epidemiological models with intrinsic stochasticity.

There are several remaining challenges in adopting data-driven Bayesian methods

for studying biochemical reaction networks. For one, though we propose computational

methods, most problems, and particularly larger scale problems, still require significant

computational effort. ABC remains a struggle to scale to systems with large numbers

of parameters and the use of approximate models needs to be carefully investigated for

bias when used for sampling. Identifiability, especially with the prominence of sparsely

measured and noisy datasets, can be a significant issue when trying to come to reasonable

biological conclusions, though the Bayesian method of introducing prior knowledge is

helpful for resolving this. Using and testing these methods under realistic experimental

assumptions would substantially help in discovering new practical tools. Finally, the

investigation of more recent Deep Learning and Machine Learning tools may help in

resolving some of these problems.
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Appendix A

Accelerated Regression-Based

Summary Statistics for Discrete

Stochastic Systems

Pure-Birth Process

The Pure-Birth Process is represented as

φ
k→ S.

As this is simply a homogenous Poisson process, we can evaluate the likelihood of an

observation at any time t as

P (S(t)|S(0), k) =
kS(t)−S(0)e−k

(S(t)− S(0))!
.
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We assign prior k ∼ U(0, 10000) and observations are made of S at times t = {1 : 100 : 1}.

We train the ratio estimator using M = 300 samples from both the SSA and the Tau-

Leaping approximation. The summary statistic is trained using N = 5000 samples. The

posterior in the main text is obtained using k = 2432.

Lotka-Volterra Stochastic Oscillator

The Lotka-Volterra Stochastic Oscillator is described by

S1 + S2
k1→ 2S1 + S2 S1

k2→ φ

S2
k3→ 2S2 S1 + S2

k2→ S2.

We assign the following priors

log(k1) ∼ U(−6, 2) log(k2) ∼ U(−6, 2)

log(k3) ∼ U(−6, 2) log(k4) ∼ U(−6, 2),

and observations are made of both S1 and S2 at times t = 0 : 30 : 0.2, for a total of

150 time steps. We train the ratio estimator using M = 3000 samples from both the

SSA and the ODE approximation. The summary statistic is trained using N = 100000

samples. The posterior in the main text is obtained from k = [0.01, 0.5, 1.0, 0.01], giving

oscillatory behavior.
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Genetic Toggle-Switch

The Genetic Toggle-Switch is described as

φ

α1
1+V β→ U φ

α2
1+V γ→ V

U
µ→ φ V

µ→ φ.

We assign the following priors

α1 ∼ U(0, 6) α2 ∼ U(0, 6)

β ∼ U(0, 6) γ ∼ U(0, 6) µ ∼ U(0, 6),

and observations are made of both U and V at times t = 0 : 50 : 0.25, for a total of 200

time steps. We train the ratio estimator using M = 5000 samples from both the SSA

and the Tau-Leaping approximation. The summary statistic is trained using N = 100000

samples.

Vilar-Oscillator

The Vilar-Oscillator is described as in [114]. We assign the following priors to the

parameters:

αA ∼ U(0, 80), α′A ∼ U(100, 600), αR ∼ U(0, 4), α′R ∼ U(20, 60),

βA ∼ U(10, 60), βR ∼ U(1, 7), δMA ∼ U(1, 12), δMR ∼ U(0, 2),

δA ∼ U(0, 3), δR ∼ U(0, 0.7), γ′A ∼ U(0.5, 2.5), γR ∼ U(0, 4),

γC ∼ U(0, 3), θA ∼ U(0, 70), θR ∼ U(0, 300),
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and observations are made of species C,A, and R at times t = {0 : 100 : 1}. Most

parameters are poorly identified under these settings [3]. To simulate more realistic

conditions, we also perturb the ODE trajectories with log-normal noise. This prevents

the ratio estimator from overfitting to the smooth ODE solutions, as mentioned in the

main text.

We train the ratio estimator using M = 10000 samples from both the SSA and the

noise added ODE approximation. The summary statistic is trained using N = 200000

samples to more thoroughly explore the high dimensional parameter space.

Neural Network Architectures

Table A.1: Neural Network Architectures
Ratio Estimator Summary Statistics

Pure-Birth CNN CNN
Lotka-Volterra MLP(50,50) CNN

Genetic Toggle Switch CNN CNN
Vilar Oscillator CNN CNN

In Table A.1 we list the details to train the approximate ratio estimator and the

summary statistic. The referenced CNN follows the construction from [3] while the

referenced Multi-Layer Perceptron (MLP) specifies the number of hidden neurons with

ReLU activation functions. For all experiments, we implement the model in PyTorch

and use the Adam Optimizer with an exponential learning rate scheduler to train the

Neural Networks.
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Bayesian Systems Identification of

Mass-Action Biochemical Reaction

Networks

Construction of Ansatz Reactions

To construct the library of ansatz reactions used in our experiments, we use the

following naive algorithm, which can be found implemented in the github repository:

1. For each species Si, generate all reactions of type Si → 0

2. For each species Si, generate all reactions of type, j, k 6= i:

• Si → Sj

• Si → Si + Sj

• 2Si → Sj

• Sj → 2Si
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• Si → 2Si

• Si → Sj + Sk

3. For each pair of species Si and Sj, generate all reactions of type k, l 6= i, j:

• Si + Sj → 2Si

• Si + Sj → 2Sj

• Si + Sj → Sk

• Si + Sj → Si + Sk

• Si + Sj → Sj + Sk

• Si + Sj → Sk + Sl
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Experimental Details

Lotka-Volterra Oscillator

The Lotka-Volterra Oscillator is described by

Y
k1→ 2Y

P + Y
k2→ 2P

P
k3→ φ,

where P represents the predator concentration in an area and Y represents the prey

concentration. This is one of the simplest non-linear systems to exhibit oscillatory be-

havior and is often a building block for such systems. We generate data from this system

by solving the corresponding ODE and then adding independent log-normal noise with

standard deviation σ = 0.2.

To test our method under varying sampling frequencies, we first generate data, record-

ing observations every dt = 0.2. Then, given this time series, we take every 5th obser-

vation to obtain a sampling frequency of dt = 1 and every 10th observation to obtain a

sampling frequency of dt = 2.

Stan Model for Regularized Horseshoe of Lotka-Volterra Model

functions {

vector sys(real t,

vector y,

vector theta) {

vector[2] dydt;

vector[16] v;

matrix[2, 16] S = [

[-2, 0, 1,-1, 0, 1,-1, 0, 0,-1, 0,-1,-2,-1, 1,-1],
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[ 0,-2, 0, 1,-1,-1, 0,-1, 1, 0,-1, 0, 1, 1,-1, 2]

];

v[1] = theta[1] * y[1] * y[1];

v[2] = theta[2] * y[2] * y[2];

v[3] = theta[3] * y[1];

v[4] = theta[4] * y[1]* y[2];

v[5] = theta[5] * y[2];

v[6] = theta[6] * y[1]* y[2];

v[7] = theta[7] * y[1];

v[8] = theta[8] * y[2] * y[2];

v[9] = theta[9] * y[2];

v[10] = theta[10] * y[1] * y[1];

v[11] = theta[11] * y[1]* y[2];

v[12] = theta[12] * y[1]* y[2];

v[13] = theta[13] * y[1] * y[1];

v[14] = theta[14] * y[1];

v[15] = theta[15] * y[2];

v[16] = theta[16] * y[1];

dydt = S * v;

return dydt;

}

}

data {

int N; // Number of observations

int M; // Number of species

int M_obs; // Observed species

int obs_idx[M_obs]; // Indices of observed speces

int D; // Number of possible reactions

int D1; // Number of known rates

vector[M] y0;

real y[N, M_obs];

real ts[N + 1];

vector[D1] known_rates;

// horseshoe parameters

real m0;

real slab_scale;

real slab_df;

99



Bayesian Systems Identification of Mass-Action Biochemical Reaction Networks Chapter B

real<lower = 0> tau0;

// noise model parameters

real<lower = 0> noise_sigma;

}

transformed data {

real slab_scale2 = square(slab_scale);

real half_slab_df = 0.5 * slab_df;

}

parameters {

vector<lower = 0>[D - D1] unknown_rates_tilde;

vector<lower = 0>[D - D1] lambda;

real<lower = 0> c2_tilde;

}

transformed parameters {

vector[D] rates;

real c2;

real tau;

vector[D - D1] lambda_tilde;

vector[M] y_hat[N];

{

tau = tau0;

c2 = slab_scale2 * c2_tilde;

lambda_tilde = sqrt((c2 * square(lambda)) ./

(c2 + square(tau) * square(lambda)));

if(D1 > 0) {

rates[:D1] = known_rates;

}

rates[D1 + 1:] = tau * lambda_tilde .* unknown_rates_tilde;

}

y_hat = ode_rk45(sys,

y0,

ts[1],

ts[2:],
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rates);

}

model {

// horseshoe priors

unknown_rates_tilde ~ normal(0, 1);

lambda ~ cauchy(0, 1);

c2_tilde ~ inv_gamma(half_slab_df, half_slab_df);

// model likelihood

for(j in 1:M_obs) {

y[ ,j] ~ lognormal(log(y_hat[ ,obs_idx[j]]), noise_sigma);

}

}

generated quantities {

real y_rep[N, M];

for(i in 1:N) {

for(j in 1:M) {

y_rep[i,j] = lognormal_rng(log(y_hat[i,j]), noise_sigma);

}

}

}
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Prokaryotic Auto-Regulatory Network

A simple synthetic model of auto-regulation of a protein P by a gene g in a prokaryotic

cell [120] can be described using the following reaction system:

g + P2
k1→ gP2 (Repression)

gP2
k2→ g + P2

g
k3→ g + r (Transcription)

r
k4→ r + P (Translation)

2P
k5→ P2 (Dimerization)

P2
k6→ 2P

r
k7→ φ (mRNA Degradation)

P
k8→ φ (Protein Degradation),

In this example, as the steady state is quickly reached, we generate synthetic data

from times t = [0, 1] with a sampling frequency o dt = 0.5. Our measurement noise

model used is a lognormal error model with σ = 0.07.
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Inferring the Prokaryotic Auto-Regulatory Network with no known

reactions

Below, we present the results of our method when fitting the prokaryotic auto-

regulatory network without assuming the 4 known reactions and using the same data.

Interestingly, these networks are incredibly sparse while also successfully reconstructing

the network.

Figure B.1: Dynamics when inferring all 4 known reactions. Similar to the
case with 4 known reactions, the dynamics from both recovered networks are different
from the truth and each other, but still manage to produce plausible dynamics when
compared to the noisy data.
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Figure B.2: Posterior Distributions over non-zero reaction rates Pair plots of
the two distinct reaction networks inferred by the model. Both largely produce similar
dynamics despite the differences.

Table B.1: Selected Recovered Networks for Prokaryotic Auto-Regulation System
True Network Network 1 Network 2

g + P2
0.5→ gP2 2gP2

0.005→ P g + P
0.7→ gP2

gP2
1→ g + P2 g + P

0.66→ gP2 P2 + P
0.9→ g + P

g
0.15→ g + r P2 + r

0.8→ P2 + P gP2 +R
0.05→ P

r
1→ r + P P2 + P

0.1→ g

2P
0.5→ P2

P2
0.5→ 2P

r
1.5→ φ

P
0.3→ φ
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Network inferred by Reactive SINDy for Prokaryotic Auto-Regulation

System

Table B.2: Reactive SINDy inferred Prokaryotic Auto-Regulation Network.
Bolded reactions are present in the true network though rates may vary
from the true values.

g + P2
0.23→ gP2

r
4.66→ 0

g
7.72→ 0

P2
6.27→ 0

gP2
8.55→ 2gP2

P
1.05→ P + P2

P
17.40→ 2P

g + P2
0.27→ 2g

g + gP2
0.47→ 2gP2

g + gP2
0.05→ r

g + r
0.40→ 2g

g + P
0.03→ P2

g + P
0.11→ 2P

P2 + gP2
0.11→ g

P2 + gP2
0.47→ 2P2

P2 + gP2
0.14→ P

P2 + r
0.18→ 2r

P2 + r
0.05→ P

P2 + P
0.71→ 2P2

gP2 + r
0.03→ g

gP2 + r
0.09→ 2r

gP2 + P
0.18→ g

gP2 + P
0.39→ 2gP2

r + P
0.25→ 2r
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[3] Mattias Åkesson, Prashant Singh, Fredrik Wrede, and Andreas Hellander. Convo-
lutional neural networks as summary statistics for approximate bayesian computa-
tion. arXiv preprint arXiv:2001.11760, 2020.

[4] Atilim Gunes Baydin, Barak A Pearlmutter, Alexey Andreyevich Radul, and Jef-
frey Mark Siskind. Automatic differentiation in machine learning: a survey. Journal
of machine learning research, 18, 2018.

[5] Eli Bingham, Jonathan P Chen, Martin Jankowiak, Fritz Obermeyer, Neeraj Prad-
han, Theofanis Karaletsos, Rohit Singh, Paul Szerlip, Paul Horsfall, and Noah D
Goodman. Pyro: Deep universal probabilistic programming. The Journal of Ma-
chine Learning Research, 20(1):973–978, 2019.

[6] Jérémie Breda, Mihaela Zavolan, and Erik van Nimwegen. Bayesian inference of
the gene expression states of single cells from scrna-seq data. bioRxiv, 2019.

[7] Johann Brehmer, Gilles Louppe, Juan Pavez, and Kyle Cranmer. Mining gold from
implicit models to improve likelihood-free inference. Proceedings of the National
Academy of Sciences, 117(10):5242–5249, 2020.

[8] Samuel L Brilleman, Michael J Crowther, Margarita Moreno-Betancur, Jacqueline
Buros Novik, James Dunyak, Nidal Al-Huniti, Robert Fox, Jeff Hammerbacher, and
Rory Wolfe. Joint longitudinal and time-to-event models for multilevel hierarchical
data. Statistical Methods in Medical Research, page 0962280218808821, 2018.

106



[9] Kathleen E Brummel-Ziedins, Thomas Orfeo, Peter W Callas, Matthew Gissel,
Kenneth G Mann, and Edwin G Bovill. The prothrombotic phenotypes in famil-
ial protein c deficiency are differentiated by computational modeling of thrombin
generation. PloS one, 7(9):e44378, 2012.

[10] Steven L Brunton, Joshua L Proctor, and J Nathan Kutz. Discovering govern-
ing equations from data by sparse identification of nonlinear dynamical systems.
Proceedings of the national academy of sciences, 113(15):3932–3937, 2016.

[11] Yang Cao, Daniel T Gillespie, and Linda R Petzold. Efficient step size selection for
the tau-leaping simulation method. The Journal of chemical physics, 124(4):044109,
2006.

[12] Bob Carpenter, Andrew Gelman, Matthew D Hoffman, Daniel Lee, Ben Goodrich,
Michael Betancourt, Marcus Brubaker, Jiqiang Guo, Peter Li, and Allen Riddell.
Stan: A probabilistic programming language. Journal of statistical software, 76(1),
2017.

[13] Bob Carpenter, Matthew D Hoffman, Marcus Brubaker, Daniel Lee, Peter Li, and
Michael Betancourt. The stan math library: Reverse-mode automatic differentia-
tion in c++. arXiv preprint arXiv:1509.07164, 2015.

[14] Carlos M Carvalho, Nicholas G Polson, and James G Scott. The horseshoe estima-
tor for sparse signals. Biometrika, 97(2):465–480, 2010.

[15] Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David Duvenaud. Neural
ordinary differential equations. arXiv preprint arXiv:1806.07366, 2018.

[16] Shuonan Chen and Jessica C Mar. Evaluating methods of inferring gene regulatory
networks highlights their lack of performance for single cell gene expression data.
BMC Bioinformatics, 19(1):1–21, 2018.

[17] Mitchell J Cohen and S Ariane Christie. Coagulopathy of trauma. Critical Care
Clinics, 33(1):101–118, 2017.

[18] Mitchell Jay Cohen, Matt Kutcher, Britt Redick, Mary Nelson, Mariah Call,
M Margaret Knudson, Martin A Schreiber, Eileen M Bulger, Peter Muskat, Louis H
Alarcon, et al. Clinical and mechanistic drivers of acute traumatic coagulopathy.
The Journal of Trauma and Acute Care Surgery, 75(1 0 1):S40, 2013.

[19] Kyle Cranmer, Johann Brehmer, and Gilles Louppe. The frontier of simulation-
based inference. Proceedings of the National Academy of Sciences, 117(48):30055–
30062, 2020.

[20] Kyle Cranmer, Juan Pavez, and Gilles Louppe. Approximating likelihood ratios
with calibrated discriminative classifiers. arXiv preprint arXiv:1506.02169, 2015.

107



[21] Bernie J Daigle, Min K Roh, Linda R Petzold, and Jarad Niemi. Accelerated max-
imum likelihood parameter estimation for stochastic biochemical systems. BMC
bioinformatics, 13(1):68, 2012.

[22] Pierre Del Moral, Arnaud Doucet, and Ajay Jasra. An adaptive sequential monte
carlo method for approximate bayesian computation. Statistics and Computing,
22(5):1009–1020, 2012.

[23] Geoffrey P Dobson, Hayley L Letson, Rajiv Sharma, Forest R Sheppard, and An-
drew P Cap. Mechanisms of early trauma-induced coagulopathy: The clot thickens
or not? Journal of Trauma and Acute Care Surgery, 79(2):301–309, 2015.

[24] Ensheng Dong, Hongru Du, and Lauren Gardner. An interactive web-based dash-
board to track covid-19 in real time. The Lancet infectious diseases, 20(5):533–534,
2020.

[25] Brian Drawert, Andreas Hellander, Ben Bales, et al. Stochastic simulation ser-
vice: bridging the gap between the computational expert and the biologist. PLoS
computational biology, 12(12):e1005220, 2016.

[26] Christopher C Drovandi and Anthony N Pettitt. Likelihood-free bayesian esti-
mation of multivariate quantile distributions. Computational Statistics & Data
Analysis, 55(9):2541–2556, 2011.

[27] Peter Eberhard and Christian Bischof. Automatic differentiation of numerical in-
tegration algorithms. Mathematics of Computation, 68(226):717–731, 1999.
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